text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
ι : Type u_1
X : Type u_2
E : Type u_3
inst✝⁷ : TopologicalSpace X
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : NormalSpace X
inst✝³ : ParacompactSpace X
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
t : X → Set E
ht : ∀ (x : X), Convex ℝ (t x)
H : ∀ (x : X), ∃ U, U ∈ 𝓝 x ∧ ∃ g, ContinuousOn g U ∧ ∀ (y : X), y ∈ U → g y ∈ t y
⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x
[PROOFSTEP]
choose U hU g hgc hgt using H
[GOAL]
ι : Type u_1
X : Type u_2
E : Type u_3
inst✝⁷ : TopologicalSpace X
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : NormalSpace X
inst✝³ : ParacompactSpace X
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
t : X → Set E
ht : ∀ (x : X), Convex ℝ (t x)
U : X → Set X
hU : ∀ (x : X), U x ∈ 𝓝 x
g : X → X → E
hgc : ∀ (x : X), ContinuousOn (g x) (U x)
hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y
⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x
[PROOFSTEP]
obtain ⟨f, hf⟩ :=
PartitionOfUnity.exists_isSubordinate isClosed_univ (fun x => interior (U x)) (fun x => isOpen_interior) fun x _ =>
mem_iUnion.2 ⟨x, mem_interior_iff_mem_nhds.2 (hU x)⟩
[GOAL]
case intro
ι : Type u_1
X : Type u_2
E : Type u_3
inst✝⁷ : TopologicalSpace X
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : NormalSpace X
inst✝³ : ParacompactSpace X
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
t : X → Set E
ht : ∀ (x : X), Convex ℝ (t x)
U : X → Set X
hU : ∀ (x : X), U x ∈ 𝓝 x
g : X → X → E
hgc : ∀ (x : X), ContinuousOn (g x) (U x)
hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y
f : PartitionOfUnity X X univ
hf : PartitionOfUnity.IsSubordinate f fun x => interior (U x)
⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x
[PROOFSTEP]
refine'
⟨⟨fun x => ∑ᶠ i, f i x • g i x,
hf.continuous_finsum_smul (fun i => isOpen_interior) fun i => (hgc i).mono interior_subset⟩,
fun x => f.finsum_smul_mem_convex (mem_univ x) (fun i hi => hgt _ _ _) (ht _)⟩
[GOAL]
case intro
ι : Type u_1
X : Type u_2
E : Type u_3
inst✝⁷ : TopologicalSpace X
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : NormalSpace X
inst✝³ : ParacompactSpace X
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
t : X → Set E
ht : ∀ (x : X), Convex ℝ (t x)
U : X → Set X
hU : ∀ (x : X), U x ∈ 𝓝 x
g : X → X → E
hgc : ∀ (x : X), ContinuousOn (g x) (U x)
hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y
f : PartitionOfUnity X X univ
hf : PartitionOfUnity.IsSubordinate f fun x => interior (U x)
x i : X
hi : ↑(↑f i) x ≠ 0
⊢ x ∈ U i
[PROOFSTEP]
exact interior_subset (hf _ <| subset_closure hi)
| {"mathlib_filename": "Mathlib.Analysis.Convex.PartitionOfUnity", "llama_tokens": 1277} |
[GOAL]
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
⊢ ∀ (a₁ a₂ b₁ b₂ : K),
Setoid.r a₁ b₁ → Setoid.r a₂ b₂ → (fun a b => ∃ c, c • b = a) a₁ a₂ = (fun a b => ∃ c, c • b = a) b₁ b₂
[PROOFSTEP]
rintro _ _ a b ⟨c, rfl⟩ ⟨d, rfl⟩
[GOAL]
case intro.intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) = (fun a b => ∃ c, c • b = a) a b
[PROOFSTEP]
ext
[GOAL]
case intro.intro.a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) ↔ (fun a b => ∃ c, c • b = a) a b
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.a.mp
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) → (fun a b => ∃ c, c • b = a) a b
[PROOFSTEP]
rintro ⟨e, he⟩
[GOAL]
case intro.intro.a.mp.intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • (fun m => m • b) d = (fun m => m • a) c
⊢ ∃ c, c • b = a
[PROOFSTEP]
use(c⁻¹ : Aˣ) * e * d
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • (fun m => m • b) d = (fun m => m • a) c
⊢ (↑c⁻¹ * e * ↑d) • b = a
[PROOFSTEP]
apply_fun fun t => c⁻¹ • t at he
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : c⁻¹ • e • (fun m => m • b) d = c⁻¹ • (fun m => m • a) c
⊢ (↑c⁻¹ * e * ↑d) • b = a
[PROOFSTEP]
simpa [mul_smul] using he
[GOAL]
case intro.intro.a.mpr
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun a b => ∃ c, c • b = a) a b → (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d)
[PROOFSTEP]
rintro ⟨e, he⟩
[GOAL]
case intro.intro.a.mpr.intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ ∃ c_1, c_1 • (fun m => m • b) d = (fun m => m • a) c
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.a.mpr.intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ ∃ c_1, c_1 • d • b = c • a
[PROOFSTEP]
use(d⁻¹ : Aˣ) * c * e
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ (↑d⁻¹ * ↑c * e) • d • b = c • a
[PROOFSTEP]
erw [← he, ← mul_smul, ← mul_smul]
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ (↑d⁻¹ * ↑c * e * ↑d) • b = (↑c * e) • b
[PROOFSTEP]
congr 1
[GOAL]
case h.e_a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ ↑d⁻¹ * ↑c * e * ↑d = ↑c * e
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e_a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
e : A
he : e • b = a
⊢ ↑d * (↑d⁻¹ * ↑c * e) = ↑c * e
[PROOFSTEP]
simp only [← mul_assoc, ← Units.val_mul, mul_inv_self, one_mul]
[GOAL]
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
⊢ ∀ (a₁ a₂ b₁ b₂ : K),
Setoid.r a₁ b₁ →
Setoid.r a₂ b₂ → (fun a b => Quotient.mk'' (a * b)) a₁ a₂ = (fun a b => Quotient.mk'' (a * b)) b₁ b₂
[PROOFSTEP]
rintro _ _ a b ⟨c, rfl⟩ ⟨d, rfl⟩
[GOAL]
case intro.intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun a b => Quotient.mk'' (a * b)) ((fun m => m • a) c) ((fun m => m • b) d) = (fun a b => Quotient.mk'' (a * b)) a b
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case intro.intro.a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ Setoid.r ((fun m => m • a) c * (fun m => m • b) d) (a * b)
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ Setoid.r (c • a * d • b) (a * b)
[PROOFSTEP]
use c * d
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ (fun m => m • (a * b)) (c * d) = c • a * d • b
[PROOFSTEP]
simp only [mul_smul, Algebra.smul_def, Units.smul_def, RingHom.map_mul, Units.val_mul]
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x y : ValueGroup A K
a b : K
c d : Aˣ
⊢ ↑(algebraMap A K) ↑c * (↑(algebraMap A K) ↑d * (a * b)) = ↑(algebraMap A K) ↑c * a * (↑(algebraMap A K) ↑d * b)
[PROOFSTEP]
ring
[GOAL]
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x : ValueGroup A K
⊢ ∀ (a b : K), Setoid.r a b → (fun a => Quotient.mk'' a⁻¹) a = (fun a => Quotient.mk'' a⁻¹) b
[PROOFSTEP]
rintro _ a ⟨b, rfl⟩
[GOAL]
case intro
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x : ValueGroup A K
a : K
b : Aˣ
⊢ (fun a => Quotient.mk'' a⁻¹) ((fun m => m • a) b) = (fun a => Quotient.mk'' a⁻¹) a
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case intro.a
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x : ValueGroup A K
a : K
b : Aˣ
⊢ Setoid.r ((fun m => m • a) b)⁻¹ a⁻¹
[PROOFSTEP]
use b⁻¹
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x : ValueGroup A K
a : K
b : Aˣ
⊢ (fun m => m • a⁻¹) b⁻¹ = ((fun m => m • a) b)⁻¹
[PROOFSTEP]
dsimp
[GOAL]
case h
A : Type u
inst✝² : CommRing A
K : Type v
inst✝¹ : Field K
inst✝ : Algebra A K
x : ValueGroup A K
a : K
b : Aˣ
⊢ b⁻¹ • a⁻¹ = (b • a)⁻¹
[PROOFSTEP]
rw [Units.smul_def, Units.smul_def, Algebra.smul_def, Algebra.smul_def, mul_inv, map_units_inv]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
rcases a with ⟨a⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b : ValueGroup A K
a : K
⊢ Quot.mk Setoid.r a ≤ b ∨ b ≤ Quot.mk Setoid.r a
[PROOFSTEP]
rcases b with ⟨b⟩
[GOAL]
case mk.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
a b : K
⊢ Quot.mk Setoid.r a ≤ Quot.mk Setoid.r b ∨ Quot.mk Setoid.r b ≤ Quot.mk Setoid.r a
[PROOFSTEP]
obtain ⟨xa, ya, hya, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective a
[GOAL]
case mk.mk.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b✝ : ValueGroup A K
b : K
xa ya : A
hya : ya ∈ nonZeroDivisors A
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r b ∨
Quot.mk Setoid.r b ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
obtain ⟨xb, yb, hyb, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective b
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
have : (algebraMap A K) ya ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hya
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this : ↑(algebraMap A K) ya ≠ 0
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
have : (algebraMap A K) yb ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hyb
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
obtain ⟨c, h | h⟩ := ValuationRing.cond (xa * yb) (xb * ya)
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro.intro.inl
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
right
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro.intro.inl.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
use c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ c • (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
rw [Algebra.smul_def]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ↑(algebraMap A K) c * (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
field_simp
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ↑(algebraMap A K) c * ↑(algebraMap A K) xa * ↑(algebraMap A K) yb = ↑(algebraMap A K) xb * ↑(algebraMap A K) ya
[PROOFSTEP]
simp only [← RingHom.map_mul, ← h]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ↑(algebraMap A K) (c * xa * yb) = ↑(algebraMap A K) (xa * yb * c)
[PROOFSTEP]
congr 1
[GOAL]
case h.h.e_6.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ c * xa * yb = xa * yb * c
[PROOFSTEP]
ring
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro.intro.inr
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
left
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro.intro.inr.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤
Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)
[PROOFSTEP]
use c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ c • (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya
[PROOFSTEP]
rw [Algebra.smul_def]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ↑(algebraMap A K) c * (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya
[PROOFSTEP]
field_simp
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ↑(algebraMap A K) c * ↑(algebraMap A K) xb * ↑(algebraMap A K) ya = ↑(algebraMap A K) xa * ↑(algebraMap A K) yb
[PROOFSTEP]
simp only [← RingHom.map_mul, ← h]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ↑(algebraMap A K) (c * xb * ya) = ↑(algebraMap A K) (xb * ya * c)
[PROOFSTEP]
congr 1
[GOAL]
case h.h.e_6.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : ValueGroup A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ c * xb * ya = xb * ya * c
[PROOFSTEP]
ring
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), a ≤ a
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝¹ : ValueGroup A K
a✝ : K
⊢ Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝
[PROOFSTEP]
use 1
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝¹ : ValueGroup A K
a✝ : K
⊢ 1 • a✝ = a✝
[PROOFSTEP]
rw [one_smul]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a b c : ValueGroup A K), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ⟨e, rfl⟩ ⟨f, rfl⟩
[GOAL]
case mk.mk.mk.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ c✝ : ValueGroup A K
c : K
e f : A
⊢ Quot.mk Setoid.r (e • f • c) ≤ Quot.mk Setoid.r c
[PROOFSTEP]
use e * f
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ c✝ : ValueGroup A K
c : K
e f : A
⊢ (e * f) • c = e • f • c
[PROOFSTEP]
rw [mul_smul]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a b : ValueGroup A K), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨e, rfl⟩ ⟨f, hf⟩
[GOAL]
case mk.mk.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : b = 0
⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b
[PROOFSTEP]
simp [hb]
[GOAL]
case neg
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b
[PROOFSTEP]
have : IsUnit e := by
apply isUnit_of_dvd_one
use f
rw [mul_comm]
rw [← mul_smul, Algebra.smul_def] at hf
nth_rw 2 [← one_mul b] at hf
rw [← (algebraMap A K).map_one] at hf
exact IsFractionRing.injective _ _ (mul_right_cancel₀ hb hf).symm
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
⊢ IsUnit e
[PROOFSTEP]
apply isUnit_of_dvd_one
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
⊢ e ∣ 1
[PROOFSTEP]
use f
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
⊢ 1 = e * f
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
⊢ 1 = f * e
[PROOFSTEP]
rw [← mul_smul, Algebra.smul_def] at hf
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : ↑(algebraMap A K) (f * e) * b = b
hb : ¬b = 0
⊢ 1 = f * e
[PROOFSTEP]
nth_rw 2 [← one_mul b] at hf
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : ↑(algebraMap A K) (f * e) * b = 1 * b
hb : ¬b = 0
⊢ 1 = f * e
[PROOFSTEP]
rw [← (algebraMap A K).map_one] at hf
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : ↑(algebraMap A K) (f * e) * b = ↑(algebraMap A K) 1 * b
hb : ¬b = 0
⊢ 1 = f * e
[PROOFSTEP]
exact IsFractionRing.injective _ _ (mul_right_cancel₀ hb hf).symm
[GOAL]
case neg
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
this : IsUnit e
⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case neg.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
e f : A
hf : f • e • b = b
hb : ¬b = 0
this : IsUnit e
⊢ Setoid.r (e • b) b
[PROOFSTEP]
exact ⟨this.unit, rfl⟩
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ DecidableRel fun x x_1 => x ≤ x_1
[PROOFSTEP]
classical infer_instance
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ DecidableRel fun x x_1 => x ≤ x_1
[PROOFSTEP]
infer_instance
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a b c : ValueGroup A K), a * b * c = a * (b * c)
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩
[GOAL]
case mk.mk.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
c✝ : ValueGroup A K
c : K
⊢ Quot.mk Setoid.r a * Quot.mk Setoid.r b * Quot.mk Setoid.r c =
Quot.mk Setoid.r a * (Quot.mk Setoid.r b * Quot.mk Setoid.r c)
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.mk.mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
c✝ : ValueGroup A K
c : K
⊢ Setoid.r (a * b * c) (a * (b * c))
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case mk.mk.mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
c✝ : ValueGroup A K
c : K
⊢ Setoid.r (a * (b * c)) (a * (b * c))
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), 1 * a = a
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ 1 * Quot.mk Setoid.r a = Quot.mk Setoid.r a
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r (1 * a) a
[PROOFSTEP]
rw [one_mul]
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r a a
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), a * 1 = a
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Quot.mk Setoid.r a * 1 = Quot.mk Setoid.r a
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r (a * 1) a
[PROOFSTEP]
rw [mul_one]
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r a a
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a b : ValueGroup A K), a * b = b * a
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case mk.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
⊢ Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r b * Quot.mk Setoid.r a
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
⊢ Setoid.r (a * b) (b * a)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case mk.mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
b✝ : ValueGroup A K
b : K
⊢ Setoid.r (b * a) (b * a)
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a b : ValueGroup A K), a ≤ b → ∀ (c : ValueGroup A K), c * a ≤ c * b
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c, rfl⟩ ⟨d⟩
[GOAL]
case mk.mk.intro.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
c : A
c✝ : ValueGroup A K
d : K
⊢ Quot.mk Setoid.r d * Quot.mk Setoid.r (c • b) ≤ Quot.mk Setoid.r d * Quot.mk Setoid.r b
[PROOFSTEP]
use c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
c : A
c✝ : ValueGroup A K
d : K
⊢ c • (d * b) = d * c • b
[PROOFSTEP]
simp only [Algebra.smul_def]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ b✝ : ValueGroup A K
b : K
c : A
c✝ : ValueGroup A K
d : K
⊢ ↑(algebraMap A K) c * (d * b) = d * (↑(algebraMap A K) c * b)
[PROOFSTEP]
ring
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), 0 * a = 0
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ 0 * Quot.mk Setoid.r a = 0
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r (0 * a) 0
[PROOFSTEP]
rw [zero_mul]
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r 0 0
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), a * 0 = 0
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Quot.mk Setoid.r a * 0 = 0
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r (a * 0) 0
[PROOFSTEP]
rw [mul_zero]
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
⊢ Setoid.r 0 0
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ 0 • 1 = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∃ x y, x ≠ y
[PROOFSTEP]
use 0, 1
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ 0 ≠ 1
[PROOFSTEP]
intro c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : 0 = 1
⊢ False
[PROOFSTEP]
obtain ⟨d, hd⟩ := Quotient.exact' c
[GOAL]
case h.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : 0 = 1
d : Aˣ
hd : (fun m => m • 1) d = 0
⊢ False
[PROOFSTEP]
apply_fun fun t => d⁻¹ • t at hd
[GOAL]
case h.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : 0 = 1
d : Aˣ
hd : d⁻¹ • (fun m => m • 1) d = d⁻¹ • 0
⊢ False
[PROOFSTEP]
simp only [inv_smul_smul, smul_zero, one_ne_zero] at hd
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ 0⁻¹ = 0
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Setoid.r 0⁻¹ 0
[PROOFSTEP]
rw [inv_zero]
[GOAL]
case a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Setoid.r 0 0
[PROOFSTEP]
apply Setoid.refl'
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (a : ValueGroup A K), a ≠ 0 → a * a⁻¹ = 1
[PROOFSTEP]
rintro ⟨a⟩ ha
[GOAL]
case mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : Quot.mk Setoid.r a ≠ 0
⊢ Quot.mk Setoid.r a * (Quot.mk Setoid.r a)⁻¹ = 1
[PROOFSTEP]
apply Quotient.sound'
[GOAL]
case mk.a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : Quot.mk Setoid.r a ≠ 0
⊢ Setoid.r (a * a⁻¹) 1
[PROOFSTEP]
use 1
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : Quot.mk Setoid.r a ≠ 0
⊢ (fun m => m • 1) 1 = a * a⁻¹
[PROOFSTEP]
simp only [one_smul, ne_eq]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : Quot.mk Setoid.r a ≠ 0
⊢ 1 = a * a⁻¹
[PROOFSTEP]
apply (mul_inv_cancel _).symm
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : Quot.mk Setoid.r a ≠ 0
⊢ a ≠ 0
[PROOFSTEP]
contrapose ha
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : ¬a ≠ 0
⊢ ¬Quot.mk Setoid.r a ≠ 0
[PROOFSTEP]
simp only [Classical.not_not] at ha ⊢
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : a = 0
⊢ Quot.mk Setoid.r a = 0
[PROOFSTEP]
rw [ha]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a✝ : ValueGroup A K
a : K
ha : a = 0
⊢ Quot.mk Setoid.r 0 = 0
[PROOFSTEP]
rfl
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ∀ (x y : K),
ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(x + y) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
x)
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
y)
[PROOFSTEP]
intro a b
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a b : K
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(a + b) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
a)
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
b)
[PROOFSTEP]
obtain ⟨xa, ya, hya, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective a
[GOAL]
case intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
b : K
xa ya : A
hya : ya ∈ nonZeroDivisors A
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + b) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
b)
[PROOFSTEP]
obtain ⟨xb, yb, hyb, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective b
[GOAL]
case intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
have : (algebraMap A K) ya ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hya
[GOAL]
case intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this : ↑(algebraMap A K) ya ≠ 0
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
have : (algebraMap A K) yb ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hyb
[GOAL]
case intro.intro.intro.intro.intro.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
obtain ⟨c, h | h⟩ := ValuationRing.cond (xa * yb) (xb * ya)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inl
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
case intro.intro.intro.intro.intro.intro.intro.inr
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inl
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max (Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(Quotient.mk'' (↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
apply le_trans _ (le_max_left _ _)
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)
[PROOFSTEP]
use c + 1
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ (c + 1) • (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) =
↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
rw [Algebra.smul_def]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ↑(algebraMap A K) (c + 1) * (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) =
↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
field_simp
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ (↑(algebraMap A K) c + 1) * ↑(algebraMap A K) xa * (↑(algebraMap A K) ya * ↑(algebraMap A K) yb) =
(↑(algebraMap A K) xa * ↑(algebraMap A K) yb + ↑(algebraMap A K) xb * ↑(algebraMap A K) ya) * ↑(algebraMap A K) ya
[PROOFSTEP]
simp only [← RingHom.map_mul, ← RingHom.map_add, ← (algebraMap A K).map_one, ← h]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ ↑(algebraMap A K) ((c + 1) * xa * (ya * yb)) = ↑(algebraMap A K) ((xa * yb + xa * yb * c) * ya)
[PROOFSTEP]
congr 1
[GOAL]
case h.h.e_6.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xa * yb * c = xb * ya
⊢ (c + 1) * xa * (ya * yb) = (xa * yb + xa * yb * c) * ya
[PROOFSTEP]
ring
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya))
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb))
[PROOFSTEP]
apply le_trans _ (le_max_right _ _)
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤
ZeroHom.toFun
(↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) },
map_one' :=
(_ :
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1),
map_mul' :=
(_ :
∀ (x x_1 : K),
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1) =
ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }
(x * x_1)) })
(↑(algebraMap A K) xb / ↑(algebraMap A K) yb)
[PROOFSTEP]
use c + 1
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ (c + 1) • (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) =
↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
rw [Algebra.smul_def]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ↑(algebraMap A K) (c + 1) * (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) =
↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb
[PROOFSTEP]
field_simp
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ (↑(algebraMap A K) c + 1) * ↑(algebraMap A K) xb * (↑(algebraMap A K) ya * ↑(algebraMap A K) yb) =
(↑(algebraMap A K) xa * ↑(algebraMap A K) yb + ↑(algebraMap A K) xb * ↑(algebraMap A K) ya) * ↑(algebraMap A K) yb
[PROOFSTEP]
simp only [← RingHom.map_mul, ← RingHom.map_add, ← (algebraMap A K).map_one, ← h]
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ ↑(algebraMap A K) ((c + 1) * xb * (ya * yb)) = ↑(algebraMap A K) ((xb * ya * c + xb * ya) * yb)
[PROOFSTEP]
congr 1
[GOAL]
case h.h.e_6.h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
xa ya : A
hya : ya ∈ nonZeroDivisors A
xb yb : A
hyb : yb ∈ nonZeroDivisors A
this✝ : ↑(algebraMap A K) ya ≠ 0
this : ↑(algebraMap A K) yb ≠ 0
c : A
h : xb * ya * c = xa * yb
⊢ (c + 1) * xb * (ya * yb) = (xb * ya * c + xb * ya) * yb
[PROOFSTEP]
ring
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x : K
⊢ x ∈ Valuation.integer (valuation A K) ↔ ∃ a, ↑(algebraMap A K) a = x
[PROOFSTEP]
constructor
[GOAL]
case mp
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x : K
⊢ x ∈ Valuation.integer (valuation A K) → ∃ a, ↑(algebraMap A K) a = x
[PROOFSTEP]
rintro ⟨c, rfl⟩
[GOAL]
case mp.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : A
⊢ ∃ a, ↑(algebraMap A K) a = c • 1
[PROOFSTEP]
use c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : A
⊢ ↑(algebraMap A K) c = c • 1
[PROOFSTEP]
rw [Algebra.smul_def, mul_one]
[GOAL]
case mpr
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x : K
⊢ (∃ a, ↑(algebraMap A K) a = x) → x ∈ Valuation.integer (valuation A K)
[PROOFSTEP]
rintro ⟨c, rfl⟩
[GOAL]
case mpr.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : A
⊢ ↑(algebraMap A K) c ∈ Valuation.integer (valuation A K)
[PROOFSTEP]
use c
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
c : A
⊢ c • 1 = ↑(algebraMap A K) c
[PROOFSTEP]
rw [Algebra.smul_def, mul_one]
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x✝¹ x✝ : A
⊢ (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x✝¹ * x✝) =
(fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x✝¹ *
(fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x✝
[PROOFSTEP]
ext1
[GOAL]
case a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x✝¹ x✝ : A
⊢ ↑((fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x✝¹ * x✝)) =
↑((fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x✝¹ *
(fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x✝)
[PROOFSTEP]
exact (algebraMap A K).map_mul _ _
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0
[PROOFSTEP]
ext1
[GOAL]
case a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ ↑(MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0) =
↑0
[PROOFSTEP]
exact (algebraMap A K).map_zero
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x✝¹ x✝ : A
⊢ MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
(x✝¹ + x✝) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
x✝¹ +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
x✝
[PROOFSTEP]
ext1
[GOAL]
case a
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x✝¹ x✝ : A
⊢ ↑(MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
(x✝¹ + x✝)) =
↑(MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
x✝¹ +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
x✝)
[PROOFSTEP]
exact (algebraMap A K).map_add _ _
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Function.Bijective
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
[PROOFSTEP]
constructor
[GOAL]
case left
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Function.Injective
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
[PROOFSTEP]
intro x y h
[GOAL]
case left
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x y : A
h :
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
x =
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
y
⊢ x = y
[PROOFSTEP]
apply_fun (algebraMap (valuation A K).integer K) at h
[GOAL]
case left
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x y : A
h :
↑(algebraMap { x // x ∈ Valuation.integer (valuation A K) } K)
(↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
x) =
↑(algebraMap { x // x ∈ Valuation.integer (valuation A K) } K)
(↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
y)
⊢ x = y
[PROOFSTEP]
exact IsFractionRing.injective _ _ h
[GOAL]
case right
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Function.Surjective
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
[PROOFSTEP]
rintro ⟨-, ha⟩
[GOAL]
case right.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
val✝ : K
ha : val✝ ∈ Valuation.integer (valuation A K)
⊢ ∃ a,
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
a =
{ val := val✝, property := ha }
[PROOFSTEP]
rw [mem_integer_iff] at ha
[GOAL]
case right.mk
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
val✝ : K
ha✝ : val✝ ∈ Valuation.integer (valuation A K)
ha : ∃ a, ↑(algebraMap A K) a = val✝
⊢ ∃ a,
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
a =
{ val := val✝, property := ha✝ }
[PROOFSTEP]
obtain ⟨a, rfl⟩ := ha
[GOAL]
case right.mk.intro
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
a : A
ha : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)
⊢ ∃ a_1,
↑(let_fun this :=
{
toMulHom :=
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) },
map_zero' :=
(_ :
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_1 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_1) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_1) }
0 =
0),
map_add' :=
(_ :
∀ (x x_1 : A),
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
(x + x_1) =
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x +
MulHom.toFun
{
toFun := fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) },
map_mul' :=
(_ :
∀ (x x_2 : A),
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
(x * x_2) =
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x *
(fun a =>
{ val := ↑(algebraMap A K) a,
property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) })
x_2) }
x_1) };
this)
a_1 =
{ val := ↑(algebraMap A K) a, property := ha }
[PROOFSTEP]
exact ⟨a, rfl⟩
[GOAL]
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
⊢ Valuation.integer (valuation A K) = RingHom.range (algebraMap A K)
[PROOFSTEP]
ext
[GOAL]
case h
A : Type u
inst✝⁵ : CommRing A
K : Type v
inst✝⁴ : Field K
inst✝³ : Algebra A K
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : IsFractionRing A K
x✝ : K
⊢ x✝ ∈ Valuation.integer (valuation A K) ↔ x✝ ∈ RingHom.range (algebraMap A K)
[PROOFSTEP]
exact mem_integer_iff _ _ _
[GOAL]
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
⊢ ∀ (a : A), IsUnit a ∨ IsUnit (1 - a)
[PROOFSTEP]
intro a
[GOAL]
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a : A
⊢ IsUnit a ∨ IsUnit (1 - a)
[PROOFSTEP]
obtain ⟨c, h | h⟩ := ValuationRing.cond a (1 - a)
[GOAL]
case intro.inl
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : a * c = 1 - a
⊢ IsUnit a ∨ IsUnit (1 - a)
[PROOFSTEP]
left
[GOAL]
case intro.inl.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : a * c = 1 - a
⊢ IsUnit a
[PROOFSTEP]
apply isUnit_of_mul_eq_one _ (c + 1)
[GOAL]
case intro.inl.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : a * c = 1 - a
⊢ a * (c + 1) = 1
[PROOFSTEP]
simp [mul_add, h]
[GOAL]
case intro.inr
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : (1 - a) * c = a
⊢ IsUnit a ∨ IsUnit (1 - a)
[PROOFSTEP]
right
[GOAL]
case intro.inr.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : (1 - a) * c = a
⊢ IsUnit (1 - a)
[PROOFSTEP]
apply isUnit_of_mul_eq_one _ (c + 1)
[GOAL]
case intro.inr.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : ValuationRing A
a c : A
h : (1 - a) * c = a
⊢ (1 - a) * (c + 1) = 1
[PROOFSTEP]
simp [mul_add, h]
[GOAL]
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
⊢ ∀ (a b : Ideal A), a ≤ b ∨ b ≤ a
[PROOFSTEP]
intro α β
[GOAL]
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
by_cases h : α ≤ β
[GOAL]
case pos
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
h : α ≤ β
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
exact Or.inl h
[GOAL]
case neg
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
h : ¬α ≤ β
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
erw [not_forall] at h
[GOAL]
case neg
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
h : ∃ x, ¬(x ∈ α → x ∈ β)
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
h : ∃ x, x ∈ α ∧ ¬x ∈ β
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
obtain ⟨a, h₁, h₂⟩ := h
[GOAL]
case neg.intro.intro
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
⊢ α ≤ β ∨ β ≤ α
[PROOFSTEP]
right
[GOAL]
case neg.intro.intro.h
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
⊢ β ≤ α
[PROOFSTEP]
intro b hb
[GOAL]
case neg.intro.intro.h
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
⊢ b ∈ α
[PROOFSTEP]
obtain ⟨c, h | h⟩ := ValuationRing.cond a b
[GOAL]
case neg.intro.intro.h.intro.inl
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : a * c = b
⊢ b ∈ α
[PROOFSTEP]
rw [← h]
[GOAL]
case neg.intro.intro.h.intro.inl
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : a * c = b
⊢ a * c ∈ α
[PROOFSTEP]
exact Ideal.mul_mem_right _ _ h₁
[GOAL]
case neg.intro.intro.h.intro.inr
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : b * c = a
⊢ b ∈ α
[PROOFSTEP]
exfalso
[GOAL]
case neg.intro.intro.h.intro.inr.h
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : b * c = a
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
case neg.intro.intro.h.intro.inr.h
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : b * c = a
⊢ a ∈ β
[PROOFSTEP]
rw [← h]
[GOAL]
case neg.intro.intro.h.intro.inr.h
A : Type u
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : ValuationRing A
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : CompleteLattice (Ideal A) := inferInstance
α β : Ideal A
a : A
h₁ : a ∈ α
h₂ : ¬a ∈ β
b : A
hb : b ∈ β
c : A
h : b * c = a
⊢ b * c ∈ β
[PROOFSTEP]
apply Ideal.mul_mem_right _ _ hb
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
[PROOFSTEP]
classical
refine ⟨fun H => ⟨fun a b => ?_⟩, fun H => ⟨fun a b => ?_⟩⟩
· obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b <;> simp
· obtain ⟨c, rfl⟩ | ⟨c, rfl⟩ := @IsTotal.total _ _ H a b <;> use c <;> simp
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
[PROOFSTEP]
refine ⟨fun H => ⟨fun a b => ?_⟩, fun H => ⟨fun a b => ?_⟩⟩
[GOAL]
case refine_1
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
a b : R
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b
[GOAL]
case refine_1.intro.inl
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
a c : R
⊢ a ∣ a * c ∨ a * c ∣ a
[PROOFSTEP]
simp
[GOAL]
case refine_1.intro.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
b c : R
⊢ b * c ∣ b ∨ b ∣ b * c
[PROOFSTEP]
simp
[GOAL]
case refine_2
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal R fun x x_1 => x ∣ x_1
a b : R
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨c, rfl⟩ | ⟨c, rfl⟩ := @IsTotal.total _ _ H a b
[GOAL]
case refine_2.inl.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal R fun x x_1 => x ∣ x_1
a c : R
⊢ ∃ c_1, a * c_1 = a * c ∨ a * c * c_1 = a
[PROOFSTEP]
use c
[GOAL]
case refine_2.inr.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal R fun x x_1 => x ∣ x_1
b c : R
⊢ ∃ c_1, b * c * c_1 = b ∨ b * c_1 = b * c
[PROOFSTEP]
use c
[GOAL]
case h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal R fun x x_1 => x ∣ x_1
a c : R
⊢ a * c = a * c ∨ a * c * c = a
[PROOFSTEP]
simp
[GOAL]
case h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal R fun x x_1 => x ∣ x_1
b c : R
⊢ b * c * c = b ∨ b * c = b * c
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
[PROOFSTEP]
classical
refine' ⟨fun _ => ⟨le_total⟩, fun H => iff_dvd_total.mpr ⟨fun a b => _⟩⟩
have := @IsTotal.total _ _ H (Ideal.span { a }) (Ideal.span { b })
simp_rw [Ideal.span_singleton_le_span_singleton] at this
exact this.symm
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
[PROOFSTEP]
refine' ⟨fun _ => ⟨le_total⟩, fun H => iff_dvd_total.mpr ⟨fun a b => _⟩⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1
a b : R
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
have := @IsTotal.total _ _ H (Ideal.span { a }) (Ideal.span { b })
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1
a b : R
this : Ideal.span {a} ≤ Ideal.span {b} ∨ Ideal.span {b} ≤ Ideal.span {a}
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
simp_rw [Ideal.span_singleton_le_span_singleton] at this
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1
a b : R
this : b ∣ a ∨ a ∣ b
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
exact this.symm
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
p q : R
hp : Irreducible p
hq : Irreducible q
⊢ Associated p q
[PROOFSTEP]
have := dvd_total p q
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
p q : R
hp : Irreducible p
hq : Irreducible q
this : p ∣ q ∨ q ∣ p
⊢ Associated p q
[PROOFSTEP]
rw [Irreducible.dvd_comm hp hq, or_self_iff] at this
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
p q : R
hp : Irreducible p
hq : Irreducible q
this : q ∣ p
⊢ Associated p q
[PROOFSTEP]
exact associated_of_dvd_dvd (Irreducible.dvd_symm hq hp this) this
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R → ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
[PROOFSTEP]
intro H x
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
x : K
⊢ IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
[PROOFSTEP]
obtain ⟨x : R, y, hy, rfl⟩ := IsFractionRing.div_surjective (A := R) x
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
x y : R
hy : y ∈ nonZeroDivisors R
⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y) ∨
IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y)⁻¹
[PROOFSTEP]
have := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr (nonZeroDivisors.ne_zero hy)
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
x y : R
hy : y ∈ nonZeroDivisors R
this : ↑(algebraMap R K) y ≠ 0
⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y) ∨
IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y)⁻¹
[PROOFSTEP]
obtain ⟨s, rfl | rfl⟩ := ValuationRing.cond x y
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
x s : R
hy : x * s ∈ nonZeroDivisors R
this : ↑(algebraMap R K) (x * s) ≠ 0
⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s)) ∨
IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s))⁻¹
[PROOFSTEP]
exact Or.inr ⟨s, eq_inv_of_mul_eq_one_left <| by rwa [mul_div, div_eq_one_iff_eq, map_mul, mul_comm]⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
x s : R
hy : x * s ∈ nonZeroDivisors R
this : ↑(algebraMap R K) (x * s) ≠ 0
⊢ ↑(algebraMap R K) s * (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s)) = 1
[PROOFSTEP]
rwa [mul_div, div_eq_one_iff_eq, map_mul, mul_comm]
[GOAL]
case mp.intro.intro.intro.intro.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
y : R
hy : y ∈ nonZeroDivisors R
this : ↑(algebraMap R K) y ≠ 0
s : R
⊢ IsLocalization.IsInteger R (↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y) ∨
IsLocalization.IsInteger R (↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y)⁻¹
[PROOFSTEP]
exact Or.inl ⟨s, by rwa [eq_div_iff, map_mul, mul_comm]⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ValuationRing R
y : R
hy : y ∈ nonZeroDivisors R
this : ↑(algebraMap R K) y ≠ 0
s : R
⊢ ↑(algebraMap R K) s = ↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y
[PROOFSTEP]
rwa [eq_div_iff, map_mul, mul_comm]
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ (∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹) → ValuationRing R
[PROOFSTEP]
intro H
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
⊢ ValuationRing R
[PROOFSTEP]
constructor
[GOAL]
case mpr.cond'
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
⊢ ∀ (a b : R), ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
intro a b
[GOAL]
case mpr.cond'
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
subst ha
[GOAL]
case pos
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
b : R
⊢ ∃ c, 0 * c = b ∨ b * c = 0
[PROOFSTEP]
exact ⟨0, Or.inr <| mul_zero b⟩
[GOAL]
case neg
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ¬a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ¬a = 0
hb : b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
subst hb
[GOAL]
case pos
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a : R
ha : ¬a = 0
⊢ ∃ c, a * c = 0 ∨ 0 * c = a
[PROOFSTEP]
exact ⟨0, Or.inl <| mul_zero a⟩
[GOAL]
case neg
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ¬a = 0
hb : ¬b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
replace ha := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr ha
[GOAL]
case neg
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
hb : ¬b = 0
ha : ↑(algebraMap R K) a ≠ 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
replace hb := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr hb
[GOAL]
case neg
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ↑(algebraMap R K) a ≠ 0
hb : ↑(algebraMap R K) b ≠ 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨c, e⟩ | ⟨c, e⟩ := H (algebraMap R K a / algebraMap R K b)
[GOAL]
case neg.inl.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ↑(algebraMap R K) a ≠ 0
hb : ↑(algebraMap R K) b ≠ 0
c : R
e : ↑(algebraMap R K) c = ↑(algebraMap R K) a / ↑(algebraMap R K) b
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
rw [eq_div_iff hb, ← map_mul, (IsFractionRing.injective R K).eq_iff, mul_comm] at e
[GOAL]
case neg.inl.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ↑(algebraMap R K) a ≠ 0
hb : ↑(algebraMap R K) b ≠ 0
c : R
e : b * c = a
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
exact ⟨c, Or.inr e⟩
[GOAL]
case neg.inr.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ↑(algebraMap R K) a ≠ 0
hb : ↑(algebraMap R K) b ≠ 0
c : R
e : ↑(algebraMap R K) c = (↑(algebraMap R K) a / ↑(algebraMap R K) b)⁻¹
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
rw [inv_div, eq_div_iff ha, ← map_mul, (IsFractionRing.injective R K).eq_iff, mul_comm c] at e
[GOAL]
case neg.inr.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
a b : R
ha : ↑(algebraMap R K) a ≠ 0
hb : ↑(algebraMap R K) b ≠ 0
c : R
e : a * c = b
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
exact ⟨c, Or.inl e⟩
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
⊢ IsBezout R
[PROOFSTEP]
classical
rw [IsBezout.iff_span_pair_isPrincipal]
intro x y
rw [Ideal.span_insert]
cases' le_total (Ideal.span { x } : Ideal R) (Ideal.span { y }) with h h
· erw [sup_eq_right.mpr h]; exact ⟨⟨_, rfl⟩⟩
· erw [sup_eq_left.mpr h]; exact ⟨⟨_, rfl⟩⟩
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
⊢ IsBezout R
[PROOFSTEP]
rw [IsBezout.iff_span_pair_isPrincipal]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
⊢ ∀ (x y : R), Submodule.IsPrincipal (Ideal.span {x, y})
[PROOFSTEP]
intro x y
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
⊢ Submodule.IsPrincipal (Ideal.span {x, y})
[PROOFSTEP]
rw [Ideal.span_insert]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y})
[PROOFSTEP]
cases' le_total (Ideal.span { x } : Ideal R) (Ideal.span { y }) with h h
[GOAL]
case inl
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
h : Ideal.span {x} ≤ Ideal.span {y}
⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y})
[PROOFSTEP]
erw [sup_eq_right.mpr h]
[GOAL]
case inl
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
h : Ideal.span {x} ≤ Ideal.span {y}
⊢ Submodule.IsPrincipal (Ideal.span {y})
[PROOFSTEP]
exact ⟨⟨_, rfl⟩⟩
[GOAL]
case inr
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
h : Ideal.span {y} ≤ Ideal.span {x}
⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y})
[PROOFSTEP]
erw [sup_eq_left.mpr h]
[GOAL]
case inr
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
K : Type u_2
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsFractionRing R K
inst✝ : ValuationRing R
x y : R
h : Ideal.span {y} ≤ Ideal.span {x}
⊢ Submodule.IsPrincipal (Ideal.span {x})
[PROOFSTEP]
exact ⟨⟨_, rfl⟩⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R
[PROOFSTEP]
classical
refine ⟨fun H => ⟨inferInstance, inferInstance⟩, ?_⟩
rintro ⟨h₁, h₂⟩
refine iff_dvd_total.mpr ⟨fun a b => ?_⟩
obtain ⟨g, e : _ = Ideal.span _⟩ := IsBezout.span_pair_isPrincipal a b
obtain ⟨a, rfl⟩ :=
Ideal.mem_span_singleton'.mp (show a ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp))
obtain ⟨b, rfl⟩ :=
Ideal.mem_span_singleton'.mp (show b ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp))
obtain ⟨x, y, e'⟩ :=
Ideal.mem_span_pair.mp (show g ∈ Ideal.span {a * g, b * g} by rw [e]; exact Ideal.subset_span (by simp))
cases' eq_or_ne g 0 with h h
· simp [h]
have : x * a + y * b = 1 := by apply mul_left_injective₀ h; convert e' using 1 <;> ring
cases' LocalRing.isUnit_or_isUnit_of_add_one this with h' h'
left
swap
right
all_goals exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R
[PROOFSTEP]
refine ⟨fun H => ⟨inferInstance, inferInstance⟩, ?_⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ LocalRing R ∧ IsBezout R → ValuationRing R
[PROOFSTEP]
rintro ⟨h₁, h₂⟩
[GOAL]
case intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
⊢ ValuationRing R
[PROOFSTEP]
refine iff_dvd_total.mpr ⟨fun a b => ?_⟩
[GOAL]
case intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
a b : R
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
obtain ⟨g, e : _ = Ideal.span _⟩ := IsBezout.span_pair_isPrincipal a b
[GOAL]
case intro.mk.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
a b g : R
e : Ideal.span {a, b} = Ideal.span {g}
⊢ a ∣ b ∨ b ∣ a
[PROOFSTEP]
obtain ⟨a, rfl⟩ :=
Ideal.mem_span_singleton'.mp (show a ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp))
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
a b g : R
e : Ideal.span {a, b} = Ideal.span {g}
⊢ a ∈ Ideal.span {g}
[PROOFSTEP]
rw [← e]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
a b g : R
e : Ideal.span {a, b} = Ideal.span {g}
⊢ a ∈ Ideal.span {a, b}
[PROOFSTEP]
exact Ideal.subset_span (by simp)
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
a b g : R
e : Ideal.span {a, b} = Ideal.span {g}
⊢ a ∈ {a, b}
[PROOFSTEP]
simp
[GOAL]
case intro.mk.intro.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
b g a : R
e : Ideal.span {a * g, b} = Ideal.span {g}
⊢ a * g ∣ b ∨ b ∣ a * g
[PROOFSTEP]
obtain ⟨b, rfl⟩ :=
Ideal.mem_span_singleton'.mp (show b ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp))
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
b g a : R
e : Ideal.span {a * g, b} = Ideal.span {g}
⊢ b ∈ Ideal.span {g}
[PROOFSTEP]
rw [← e]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
b g a : R
e : Ideal.span {a * g, b} = Ideal.span {g}
⊢ b ∈ Ideal.span {a * g, b}
[PROOFSTEP]
exact Ideal.subset_span (by simp)
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
b g a : R
e : Ideal.span {a * g, b} = Ideal.span {g}
⊢ b ∈ {a * g, b}
[PROOFSTEP]
simp
[GOAL]
case intro.mk.intro.intro.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
obtain ⟨x, y, e'⟩ :=
Ideal.mem_span_pair.mp (show g ∈ Ideal.span {a * g, b * g} by rw [e]; exact Ideal.subset_span (by simp))
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
⊢ g ∈ Ideal.span {a * g, b * g}
[PROOFSTEP]
rw [e]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
⊢ g ∈ Ideal.span {g}
[PROOFSTEP]
exact Ideal.subset_span (by simp)
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
⊢ g ∈ {g}
[PROOFSTEP]
simp
[GOAL]
case intro.mk.intro.intro.intro.intro.intro
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
cases' eq_or_ne g 0 with h h
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inl
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g = 0
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
simp [h]
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
have : x * a + y * b = 1 := by apply mul_left_injective₀ h; convert e' using 1 <;> ring
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
⊢ x * a + y * b = 1
[PROOFSTEP]
apply mul_left_injective₀ h
[GOAL]
case a
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
⊢ (fun a => a * g) (x * a + y * b) = (fun a => a * g) 1
[PROOFSTEP]
convert e' using 1
[GOAL]
case h.e'_2
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
⊢ (fun a => a * g) (x * a + y * b) = x * (a * g) + y * (b * g)
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
⊢ (fun a => a * g) 1 = g
[PROOFSTEP]
ring
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
cases' LocalRing.isUnit_or_isUnit_of_add_one this with h' h'
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inl
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (x * a)
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
case intro.mk.intro.intro.intro.intro.intro.inr.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (y * b)
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
left
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inl.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (x * a)
⊢ a * g ∣ b * g
case intro.mk.intro.intro.intro.intro.intro.inr.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (y * b)
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
[PROOFSTEP]
swap
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inr
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (y * b)
⊢ a * g ∣ b * g ∨ b * g ∣ a * g
case intro.mk.intro.intro.intro.intro.intro.inr.inl.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (x * a)
⊢ a * g ∣ b * g
[PROOFSTEP]
right
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inr.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (y * b)
⊢ b * g ∣ a * g
case intro.mk.intro.intro.intro.intro.intro.inr.inl.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (x * a)
⊢ a * g ∣ b * g
[PROOFSTEP]
all_goals exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inr.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (y * b)
⊢ b * g ∣ a * g
[PROOFSTEP]
exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _
[GOAL]
case intro.mk.intro.intro.intro.intro.intro.inr.inl.h
R : Type u_1
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
h₁ : LocalRing R
h₂ : IsBezout R
g a b : R
e : Ideal.span {a * g, b * g} = Ideal.span {g}
x y : R
e' : x * (a * g) + y * (b * g) = g
h : g ≠ 0
this : x * a + y * b = 1
h' : IsUnit (x * a)
⊢ a * g ∣ b * g
[PROOFSTEP]
exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _
[GOAL]
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ List.TFAE
[ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹,
IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R]
[PROOFSTEP]
tfae_have 1 ↔ 2
[GOAL]
case tfae_1_iff_2
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
[PROOFSTEP]
exact iff_isInteger_or_isInteger R _
[GOAL]
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
⊢ List.TFAE
[ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹,
IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R]
[PROOFSTEP]
tfae_have 1 ↔ 3
[GOAL]
case tfae_1_iff_3
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
[PROOFSTEP]
exact iff_dvd_total
[GOAL]
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
⊢ List.TFAE
[ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹,
IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R]
[PROOFSTEP]
tfae_have 1 ↔ 4
[GOAL]
case tfae_1_iff_4
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
[PROOFSTEP]
exact iff_ideal_total
[GOAL]
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
⊢ List.TFAE
[ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹,
IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R]
[PROOFSTEP]
tfae_have 1 ↔ 5
[GOAL]
case tfae_1_iff_5
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R
[PROOFSTEP]
exact iff_local_bezout_domain
[GOAL]
R✝ : Type u_1
inst✝⁶ : CommRing R✝
inst✝⁵ : IsDomain R✝
K : Type u_2
inst✝⁴ : Field K
inst✝³ : Algebra R✝ K
inst✝² : IsFractionRing R✝ K
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹
tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1
tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1
tfae_1_iff_5 : ValuationRing R ↔ LocalRing R ∧ IsBezout R
⊢ List.TFAE
[ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹,
IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R]
[PROOFSTEP]
tfae_finish
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
inst✝² : ValuationRing R
inst✝¹ : CommRing S
inst✝ : IsDomain S
f : R →+* S
hf : Function.Surjective ↑f
a b : S
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨⟨a, rfl⟩, ⟨b, rfl⟩⟩ := hf a, hf b
[GOAL]
case intro.intro
R : Type u_1
S : Type u_2
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
inst✝² : ValuationRing R
inst✝¹ : CommRing S
inst✝ : IsDomain S
f : R →+* S
hf : Function.Surjective ↑f
a b : R
⊢ ∃ c, ↑f a * c = ↑f b ∨ ↑f b * c = ↑f a
[PROOFSTEP]
obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b
[GOAL]
case intro.intro.intro.inl
R : Type u_1
S : Type u_2
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
inst✝² : ValuationRing R
inst✝¹ : CommRing S
inst✝ : IsDomain S
f : R →+* S
hf : Function.Surjective ↑f
a c : R
⊢ ∃ c_1, ↑f a * c_1 = ↑f (a * c) ∨ ↑f (a * c) * c_1 = ↑f a
case intro.intro.intro.inr
R : Type u_1
S : Type u_2
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
inst✝² : ValuationRing R
inst✝¹ : CommRing S
inst✝ : IsDomain S
f : R →+* S
hf : Function.Surjective ↑f
b c : R
⊢ ∃ c_1, ↑f (b * c) * c_1 = ↑f b ∨ ↑f b * c_1 = ↑f (b * c)
[PROOFSTEP]
exacts [⟨f c, Or.inl <| (map_mul _ _ _).symm⟩, ⟨f c, Or.inr <| (map_mul _ _ _).symm⟩]
[GOAL]
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
⊢ ValuationRing 𝒪
[PROOFSTEP]
constructor
[GOAL]
case cond'
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
⊢ ∀ (a b : 𝒪), ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
intro a b
[GOAL]
case cond'
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
cases' le_total (v (algebraMap 𝒪 K a)) (v (algebraMap 𝒪 K b)) with h h
[GOAL]
case cond'.inl
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b)
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨c, hc⟩ := Valuation.Integers.dvd_of_le hh h
[GOAL]
case cond'.inl.intro
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b)
c : 𝒪
hc : a = b * c
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use c
[GOAL]
case h
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b)
c : 𝒪
hc : a = b * c
⊢ a * c = b ∨ b * c = a
[PROOFSTEP]
exact Or.inr hc.symm
[GOAL]
case cond'.inr
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a)
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨c, hc⟩ := Valuation.Integers.dvd_of_le hh h
[GOAL]
case cond'.inr.intro
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a)
c : 𝒪
hc : b = a * c
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use c
[GOAL]
case h
𝒪 : Type u
K : Type v
Γ : Type w
inst✝⁴ : CommRing 𝒪
inst✝³ : IsDomain 𝒪
inst✝² : Field K
inst✝¹ : Algebra 𝒪 K
inst✝ : LinearOrderedCommGroupWithZero Γ
v : Valuation K Γ
hh : Valuation.Integers v 𝒪
a b : 𝒪
h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a)
c : 𝒪
hc : b = a * c
⊢ a * c = b ∨ b * c = a
[PROOFSTEP]
exact Or.inl hc.symm
[GOAL]
K : Type u
inst✝ : Field K
⊢ ValuationRing K
[PROOFSTEP]
constructor
[GOAL]
case cond'
K : Type u
inst✝ : Field K
⊢ ∀ (a b : K), ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
intro a b
[GOAL]
case cond'
K : Type u
inst✝ : Field K
a b : K
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases b = 0
[GOAL]
case cond'
K : Type u
inst✝ : Field K
a b : K
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases b = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
a b : K
h : b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
inst✝ : Field K
a b : K
h : b = 0
⊢ a * 0 = b ∨ b * 0 = a
[PROOFSTEP]
left
[GOAL]
case h.h
K : Type u
inst✝ : Field K
a b : K
h : b = 0
⊢ a * 0 = b
[PROOFSTEP]
simp [h]
[GOAL]
case neg
K : Type u
inst✝ : Field K
a b : K
h : ¬b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use a * b⁻¹
[GOAL]
case h
K : Type u
inst✝ : Field K
a b : K
h : ¬b = 0
⊢ a * (a * b⁻¹) = b ∨ b * (a * b⁻¹) = a
[PROOFSTEP]
right
[GOAL]
case h.h
K : Type u
inst✝ : Field K
a b : K
h : ¬b = 0
⊢ b * (a * b⁻¹) = a
[PROOFSTEP]
field_simp
[GOAL]
case h.h
K : Type u
inst✝ : Field K
a b : K
h : ¬b = 0
⊢ b * a = a * b
[PROOFSTEP]
rw [mul_comm]
[GOAL]
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
⊢ ValuationRing A
[PROOFSTEP]
constructor
[GOAL]
case cond'
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
⊢ ∀ (a b : A), ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
intro a b
[GOAL]
case cond'
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use 0
[GOAL]
case h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : a = 0
⊢ a * 0 = b ∨ b * 0 = a
[PROOFSTEP]
right
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : a = 0
⊢ b * 0 = a
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
hb : b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use 0
[GOAL]
case h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
hb : b = 0
⊢ a * 0 = b ∨ b * 0 = a
[PROOFSTEP]
left
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
hb : b = 0
⊢ a * 0 = b
[PROOFSTEP]
simp [hb]
[GOAL]
case neg
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
hb : ¬b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨ϖ, hϖ⟩ := DiscreteValuationRing.exists_irreducible A
[GOAL]
case neg.intro
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
a b : A
ha : ¬a = 0
hb : ¬b = 0
ϖ : A
hϖ : Irreducible ϖ
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
obtain ⟨m, u, rfl⟩ := DiscreteValuationRing.eq_unit_mul_pow_irreducible ha hϖ
[GOAL]
case neg.intro.intro.intro
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
b : A
hb : ¬b = 0
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
⊢ ∃ c, ↑u * ϖ ^ m * c = b ∨ b * c = ↑u * ϖ ^ m
[PROOFSTEP]
obtain ⟨n, v, rfl⟩ := DiscreteValuationRing.eq_unit_mul_pow_irreducible hb hϖ
[GOAL]
case neg.intro.intro.intro.intro.intro
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m
[PROOFSTEP]
cases' le_total m n with h h
[GOAL]
case neg.intro.intro.intro.intro.intro.inl
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m
[PROOFSTEP]
use(u⁻¹ * v : Aˣ) * ϖ ^ (n - m)
[GOAL]
case h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ ↑u * ϖ ^ m * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑u * ϖ ^ m
[PROOFSTEP]
left
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ ↑u * ϖ ^ m * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑v * ϖ ^ n
[PROOFSTEP]
simp_rw [mul_comm (u : A), Units.val_mul, ← mul_assoc, mul_assoc _ (u : A)]
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ ϖ ^ m * (↑u * ↑u⁻¹) * ↑v * ϖ ^ (n - m) = ↑v * ϖ ^ n
[PROOFSTEP]
simp only [Units.mul_inv, mul_one, mul_comm _ (v : A), mul_assoc, ← pow_add]
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ ↑v * ϖ ^ (m + (n - m)) = ↑v * ϖ ^ n
[PROOFSTEP]
congr 2
[GOAL]
case h.h.e_a.e_a
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : m ≤ n
⊢ m + (n - m) = n
[PROOFSTEP]
exact Nat.add_sub_of_le h
[GOAL]
case neg.intro.intro.intro.intro.intro.inr
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m
[PROOFSTEP]
use(v⁻¹ * u : Aˣ) * ϖ ^ (m - n)
[GOAL]
case h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ ↑u * ϖ ^ m * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑u * ϖ ^ m
[PROOFSTEP]
right
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ ↑v * ϖ ^ n * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑u * ϖ ^ m
[PROOFSTEP]
simp_rw [mul_comm (v : A), Units.val_mul, ← mul_assoc, mul_assoc _ (v : A)]
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ ϖ ^ n * (↑v * ↑v⁻¹) * ↑u * ϖ ^ (m - n) = ↑u * ϖ ^ m
[PROOFSTEP]
simp only [Units.mul_inv, mul_one, mul_comm _ (u : A), mul_assoc, ← pow_add]
[GOAL]
case h.h
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ ↑u * ϖ ^ (n + (m - n)) = ↑u * ϖ ^ m
[PROOFSTEP]
congr 2
[GOAL]
case h.h.e_a.e_a
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : DiscreteValuationRing A
ϖ : A
hϖ : Irreducible ϖ
m : ℕ
u : Aˣ
ha : ¬↑u * ϖ ^ m = 0
n : ℕ
v : Aˣ
hb : ¬↑v * ϖ ^ n = 0
h : n ≤ m
⊢ n + (m - n) = m
[PROOFSTEP]
exact Nat.add_sub_of_le h
| {"mathlib_filename": "Mathlib.RingTheory.Valuation.ValuationRing", "llama_tokens": 80998} |
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
z : ℂ
⊢ ↑x ^ (↑y * z) = ↑(x ^ y) ^ z
[PROOFSTEP]
rw [cpow_mul, ofReal_cpow hx]
[GOAL]
case h₁
x : ℝ
hx : 0 ≤ x
y : ℝ
z : ℂ
⊢ -Real.pi < (log ↑x * ↑y).im
[PROOFSTEP]
rw [← ofReal_log hx, ← ofReal_mul, ofReal_im, neg_lt_zero]
[GOAL]
case h₁
x : ℝ
hx : 0 ≤ x
y : ℝ
z : ℂ
⊢ 0 < Real.pi
[PROOFSTEP]
exact Real.pi_pos
[GOAL]
case h₂
x : ℝ
hx : 0 ≤ x
y : ℝ
z : ℂ
⊢ (log ↑x * ↑y).im ≤ Real.pi
[PROOFSTEP]
rw [← ofReal_log hx, ← ofReal_mul, ofReal_im]
[GOAL]
case h₂
x : ℝ
hx : 0 ≤ x
y : ℝ
z : ℂ
⊢ 0 ≤ Real.pi
[PROOFSTEP]
exact Real.pi_pos.le
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
hf : MellinConvergent f s
𝕜 : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedSpace 𝕜 E
inst✝ : SMulCommClass ℂ 𝕜 E
c : 𝕜
⊢ MellinConvergent (fun t => c • f t) s
[PROOFSTEP]
simpa only [MellinConvergent, smul_comm] using hf.smul c
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s a : ℂ
⊢ MellinConvergent (fun t => ↑t ^ a • f t) s ↔ MellinConvergent f (s + a)
[PROOFSTEP]
refine' integrableOn_congr_fun (fun t ht => _) measurableSet_Ioi
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s a : ℂ
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • (fun t => ↑t ^ a • f t) t = ↑t ^ (s + a - 1) • f t
[PROOFSTEP]
simp_rw [← sub_add_eq_add_sub, cpow_add _ _ (ofReal_ne_zero.2 <| ne_of_gt ht), mul_smul]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → ℂ
s : ℂ
hf : MellinConvergent f s
a : ℂ
⊢ MellinConvergent (fun t => f t / a) s
[PROOFSTEP]
simpa only [MellinConvergent, smul_eq_mul, ← mul_div_assoc] using hf.div_const a
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s
[PROOFSTEP]
have := integrableOn_Ioi_comp_mul_left_iff (fun t : ℝ => (t : ℂ) ^ (s - 1) • f t) 0 ha
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi (a * 0))
⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s
[PROOFSTEP]
rw [mul_zero] at this
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s
[PROOFSTEP]
have h1 :
EqOn (fun t : ℝ => (↑(a * t) : ℂ) ^ (s - 1) • f (a * t))
((a : ℂ) ^ (s - 1) • fun t : ℝ => (t : ℂ) ^ (s - 1) • f (a * t)) (Ioi 0) :=
fun t ht ↦ by simp only [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), mul_smul, Pi.smul_apply]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
⊢ (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) t = (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) t
[PROOFSTEP]
simp only [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), mul_smul, Pi.smul_apply]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0)
⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s
[PROOFSTEP]
have h2 : (a : ℂ) ^ (s - 1) ≠ 0 :=
by
rw [Ne.def, cpow_eq_zero_iff, not_and_or, ofReal_eq_zero]
exact Or.inl ha.ne'
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0)
⊢ ↑a ^ (s - 1) ≠ 0
[PROOFSTEP]
rw [Ne.def, cpow_eq_zero_iff, not_and_or, ofReal_eq_zero]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0)
⊢ ¬a = 0 ∨ ¬s - 1 ≠ 0
[PROOFSTEP]
exact Or.inl ha.ne'
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this :
IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔
IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0)
h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0)
h2 : ↑a ^ (s - 1) ≠ 0
⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s
[PROOFSTEP]
rw [MellinConvergent, MellinConvergent, ← this, integrableOn_congr_fun h1 measurableSet_Ioi, IntegrableOn, IntegrableOn,
integrable_smul_iff h2]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ MellinConvergent (fun t => f (t ^ a)) s ↔ MellinConvergent f (s / ↑a)
[PROOFSTEP]
refine Iff.trans ?_ (integrableOn_Ioi_comp_rpow_iff' _ ha)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ MellinConvergent (fun t => f (t ^ a)) s ↔
IntegrableOn (fun x => x ^ (a - 1) • ↑(x ^ a) ^ (s / ↑a - 1) • f (x ^ a)) (Ioi 0)
[PROOFSTEP]
rw [MellinConvergent]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f (t ^ a)) (Ioi 0) ↔
IntegrableOn (fun x => x ^ (a - 1) • ↑(x ^ a) ^ (s / ↑a - 1) • f (x ^ a)) (Ioi 0)
[PROOFSTEP]
refine' integrableOn_congr_fun (fun t ht => _) measurableSet_Ioi
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (t ^ a) = t ^ (a - 1) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a)
[PROOFSTEP]
dsimp only [Pi.smul_apply]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (t ^ a) = t ^ (a - 1) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a)
[PROOFSTEP]
rw [← Complex.coe_smul (t ^ (a - 1)), ← mul_smul, ← cpow_mul_ofReal_nonneg (le_of_lt ht), ofReal_cpow (le_of_lt ht), ←
cpow_add _ _ (ofReal_ne_zero.mpr (ne_of_gt ht)), ofReal_sub, ofReal_one, mul_sub,
mul_div_cancel' _ (ofReal_ne_zero.mpr ha), mul_one, add_comm, ← add_sub_assoc, sub_add_cancel]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s a : ℂ
⊢ mellin (fun t => ↑t ^ a • f t) s = mellin f (s + a)
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun t ht => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s a : ℂ
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • (fun t => ↑t ^ a • f t) t = ↑t ^ (s + a - 1) • f t
[PROOFSTEP]
simp_rw [← sub_add_eq_add_sub, cpow_add _ _ (ofReal_ne_zero.2 <| ne_of_gt ht), mul_smul]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℂ E
inst✝³ : CompleteSpace E
f : ℝ → E
s : ℂ
𝕜 : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedSpace 𝕜 E
inst✝ : SMulCommClass ℂ 𝕜 E
c : 𝕜
⊢ mellin (fun t => c • f t) s = c • mellin f s
[PROOFSTEP]
simp only [mellin, smul_comm, integral_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → ℂ
s a : ℂ
⊢ mellin (fun t => f t / a) s = mellin f s / a
[PROOFSTEP]
simp_rw [mellin, smul_eq_mul, ← mul_div_assoc, integral_div]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ mellin (fun t => f (t ^ a)) s = |a|⁻¹ • mellin f (s / ↑a)
[PROOFSTEP]
simp_rw [mellin]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t
[PROOFSTEP]
conv_rhs => rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
| |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t
[PROOFSTEP]
rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
| |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t
[PROOFSTEP]
rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
| |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t
[PROOFSTEP]
rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (t ^ a) =
∫ (a_1 : ℝ) in Ioi 0, |a|⁻¹ • (|a| * a_1 ^ (a - 1)) • ↑(a_1 ^ a) ^ (s / ↑a - 1) • f (a_1 ^ a)
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun t ht => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • (|a| * t ^ (a - 1)) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a)
[PROOFSTEP]
dsimp only
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • (|a| * t ^ (a - 1)) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a)
[PROOFSTEP]
rw [← mul_smul, ← mul_assoc, inv_mul_cancel (mt abs_eq_zero.1 ha), one_mul, ← smul_assoc, real_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : a ≠ 0
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (t ^ a) = (↑(t ^ (a - 1)) * ↑(t ^ a) ^ (s / ↑a - 1)) • f (t ^ a)
[PROOFSTEP]
rw [ofReal_cpow (le_of_lt ht), ← cpow_mul_ofReal_nonneg (le_of_lt ht), ←
cpow_add _ _ (ofReal_ne_zero.mpr <| ne_of_gt ht), ofReal_sub, ofReal_one, mul_sub,
mul_div_cancel' _ (ofReal_ne_zero.mpr ha), add_comm, ← add_sub_assoc, mul_one, sub_add_cancel]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
⊢ mellin (fun t => f (a * t)) s = ↑a ^ (-s) • mellin f s
[PROOFSTEP]
simp_rw [mellin]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (a * t) = ↑a ^ (-s) • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f t
[PROOFSTEP]
have :
EqOn (fun t : ℝ => (t : ℂ) ^ (s - 1) • f (a * t))
(fun t : ℝ => (a : ℂ) ^ (1 - s) • (fun u : ℝ => (u : ℂ) ^ (s - 1) • f u) (a * t)) (Ioi 0) :=
fun t ht ↦ by
dsimp only
rw [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), ← mul_smul, (by ring : 1 - s = -(s - 1)), cpow_neg,
inv_mul_cancel_left₀]
rw [Ne.def, cpow_eq_zero_iff, ofReal_eq_zero, not_and_or]
exact Or.inl ha.ne'
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
t : ℝ
ht : t ∈ Ioi 0
⊢ (fun t => ↑t ^ (s - 1) • f (a * t)) t = (fun t => ↑a ^ (1 - s) • (fun u => ↑u ^ (s - 1) • f u) (a * t)) t
[PROOFSTEP]
dsimp only
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑t ^ (s - 1) • f (a * t) = ↑a ^ (1 - s) • ↑(a * t) ^ (s - 1) • f (a * t)
[PROOFSTEP]
rw [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), ← mul_smul, (by ring : 1 - s = -(s - 1)), cpow_neg,
inv_mul_cancel_left₀]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
t : ℝ
ht : t ∈ Ioi 0
⊢ 1 - s = -(s - 1)
[PROOFSTEP]
ring
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
t : ℝ
ht : t ∈ Ioi 0
⊢ ↑a ^ (s - 1) ≠ 0
[PROOFSTEP]
rw [Ne.def, cpow_eq_zero_iff, ofReal_eq_zero, not_and_or]
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
t : ℝ
ht : t ∈ Ioi 0
⊢ ¬a = 0 ∨ ¬s - 1 ≠ 0
[PROOFSTEP]
exact Or.inl ha.ne'
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
this : EqOn (fun t => ↑t ^ (s - 1) • f (a * t)) (fun t => ↑a ^ (1 - s) • (fun u => ↑u ^ (s - 1) • f u) (a * t)) (Ioi 0)
⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (a * t) = ↑a ^ (-s) • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f t
[PROOFSTEP]
rw [set_integral_congr measurableSet_Ioi this, integral_smul,
integral_comp_mul_left_Ioi (fun u ↦ ↑u ^ (s - 1) • f u) _ ha, mul_zero, ← Complex.coe_smul, ← mul_smul,
sub_eq_add_neg, cpow_add _ _ (ofReal_ne_zero.mpr ha.ne'), cpow_one, abs_of_pos (inv_pos.mpr ha), ofReal_inv,
mul_assoc, mul_comm, inv_mul_cancel_right₀ (ofReal_ne_zero.mpr ha.ne')]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
a : ℝ
ha : 0 < a
⊢ mellin (fun t => f (t * a)) s = ↑a ^ (-s) • mellin f s
[PROOFSTEP]
simpa only [mul_comm] using mellin_comp_mul_left f s ha
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f : ℝ → E
s : ℂ
⊢ mellin (fun t => f t⁻¹) s = mellin f (-s)
[PROOFSTEP]
simp_rw [← rpow_neg_one, mellin_comp_rpow _ _ (neg_ne_zero.mpr one_ne_zero), abs_neg, abs_one, inv_one, one_smul,
ofReal_neg, ofReal_one, div_neg, div_one]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f g : ℝ → E
s : ℂ
hf : MellinConvergent f s
hg : MellinConvergent g s
⊢ MellinConvergent (fun t => f t + g t) s
[PROOFSTEP]
simpa only [MellinConvergent, smul_add] using hf.add hg
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f g : ℝ → E
s : ℂ
hf : MellinConvergent f s
hg : MellinConvergent g s
⊢ mellin (fun t => f t + g t) s = mellin f s + mellin g s
[PROOFSTEP]
simpa only [mellin, smul_add] using integral_add hf hg
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f g : ℝ → E
s : ℂ
hf : MellinConvergent f s
hg : MellinConvergent g s
⊢ MellinConvergent (fun t => f t - g t) s
[PROOFSTEP]
simpa only [MellinConvergent, smul_sub] using hf.sub hg
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
f g : ℝ → E
s : ℂ
hf : MellinConvergent f s
hg : MellinConvergent g s
⊢ mellin (fun t => f t - g t) s = mellin f s - mellin g s
[PROOFSTEP]
simpa only [mellin, smul_sub] using integral_sub hf hg
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T
[PROOFSTEP]
have : AEStronglyMeasurable (fun t : ℝ => (t : ℂ) ^ (s - 1) • f t) (volume.restrict T) :=
by
refine' ((ContinuousAt.continuousOn _).aestronglyMeasurable hT').smul (hfc.mono_set hT)
exact fun t ht => continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt (hT ht))
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
⊢ AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T)
[PROOFSTEP]
refine' ((ContinuousAt.continuousOn _).aestronglyMeasurable hT').smul (hfc.mono_set hT)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
⊢ ∀ (x : ℝ), x ∈ T → ContinuousAt (fun t => ↑t ^ (s - 1)) x
[PROOFSTEP]
exact fun t ht => continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt (hT ht))
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T)
⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T
[PROOFSTEP]
rw [IntegrableOn, ← integrable_norm_iff this, ← IntegrableOn]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T)
⊢ IntegrableOn (fun a => ‖↑a ^ (s - 1) • f a‖) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T
[PROOFSTEP]
refine' integrableOn_congr_fun (fun t ht => _) hT'
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
T : Set ℝ
hT : T ⊆ Ioi 0
hT' : MeasurableSet T
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
s : ℂ
this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T)
t : ℝ
ht : t ∈ T
⊢ ‖↑t ^ (s - 1) • f t‖ = t ^ (s.re - 1) * ‖f t‖
[PROOFSTEP]
simp_rw [norm_smul, Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos (hT ht), sub_re, one_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c)
[PROOFSTEP]
obtain ⟨d, hd'⟩ := hf.isBigOWith
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d : ℝ
hd' : IsBigOWith d atTop f fun x => x ^ (-a)
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c)
[PROOFSTEP]
simp_rw [IsBigOWith, eventually_atTop] at hd'
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d : ℝ
hd' : ∃ a_1, ∀ (b : ℝ), b ≥ a_1 → ‖f b‖ ≤ d * ‖b ^ (-a)‖
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c)
[PROOFSTEP]
obtain ⟨e, he⟩ := hd'
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c)
[PROOFSTEP]
have he' : 0 < max e 1 := zero_lt_one.trans_le (le_max_right _ _)
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c)
[PROOFSTEP]
refine' ⟨max e 1, he', _, _⟩
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
⊢ AEStronglyMeasurable (fun t => t ^ (s - 1) * f t) (Measure.restrict volume (Ioi (max e 1)))
[PROOFSTEP]
refine' AEStronglyMeasurable.mul _ (hfc.mono_set (Ioi_subset_Ioi he'.le))
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
⊢ AEStronglyMeasurable (fun t => t ^ (s - 1)) (Measure.restrict volume (Ioi (max e 1)))
[PROOFSTEP]
refine' (ContinuousAt.continuousOn fun t ht => _).aestronglyMeasurable measurableSet_Ioi
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
t : ℝ
ht : t ∈ Ioi (max e 1)
⊢ ContinuousAt (fun t => t ^ (s - 1)) t
[PROOFSTEP]
exact continuousAt_rpow_const _ _ (Or.inl <| (he'.trans ht).ne')
[GOAL]
case intro.intro.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t
[PROOFSTEP]
have : ∀ᵐ t : ℝ ∂volume.restrict (Ioi <| max e 1), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d :=
by
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht => _
have ht' : 0 < t := he'.trans ht
rw [norm_mul, rpow_add ht', ← norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le (-a)), mul_assoc, mul_comm _ d,
norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le _)]
exact mul_le_mul_of_nonneg_left (he t ((le_max_left e 1).trans_lt ht).le) (rpow_pos_of_pos ht' _).le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
[PROOFSTEP]
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht => _
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
t : ℝ
ht : t ∈ Ioi (max e 1)
⊢ ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
[PROOFSTEP]
have ht' : 0 < t := he'.trans ht
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
t : ℝ
ht : t ∈ Ioi (max e 1)
ht' : 0 < t
⊢ ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
[PROOFSTEP]
rw [norm_mul, rpow_add ht', ← norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le (-a)), mul_assoc, mul_comm _ d,
norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le _)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
t : ℝ
ht : t ∈ Ioi (max e 1)
ht' : 0 < t
⊢ t ^ (s - 1) * ‖f t‖ ≤ t ^ (s - 1) * (d * ‖t ^ (-a)‖)
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left (he t ((le_max_left e 1).trans_lt ht).le) (rpow_pos_of_pos ht' _).le
[GOAL]
case intro.intro.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t
[PROOFSTEP]
refine' (HasFiniteIntegral.mul_const _ _).mono' this
[GOAL]
case intro.intro.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
⊢ HasFiniteIntegral fun a_1 => a_1 ^ (s - 1 + -a)
[PROOFSTEP]
exact (integrableOn_Ioi_rpow_of_lt (by linarith) he').hasFiniteIntegral
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
a s : ℝ
hf : f =O[atTop] fun x => x ^ (-a)
hs : s < a
d e : ℝ
he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖
he' : 0 < max e 1
this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d
⊢ s - 1 + -a < -1
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c)
[PROOFSTEP]
obtain ⟨d, hd, hd'⟩ := hf.exists_pos
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
hd' : IsBigOWith d (𝓝[Ioi 0] 0) f fun x => x ^ (-b)
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c)
[PROOFSTEP]
simp_rw [IsBigOWith, eventually_nhdsWithin_iff, Metric.eventually_nhds_iff, gt_iff_lt] at hd'
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
hd' : ∃ ε, 0 < ε ∧ ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c)
[PROOFSTEP]
obtain ⟨ε, hε, hε'⟩ := hd'
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c)
[PROOFSTEP]
refine' ⟨ε, hε, integrableOn_Ioc_iff_integrableOn_Ioo.mpr ⟨_, _⟩⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ AEStronglyMeasurable (fun t => t ^ (s - 1) * f t) (Measure.restrict volume (Ioo 0 ε))
[PROOFSTEP]
refine' AEStronglyMeasurable.mul _ (hfc.mono_set Ioo_subset_Ioi_self)
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ AEStronglyMeasurable (fun t => t ^ (s - 1)) (Measure.restrict volume (Ioo 0 ε))
[PROOFSTEP]
refine' (ContinuousAt.continuousOn fun t ht => _).aestronglyMeasurable measurableSet_Ioo
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
t : ℝ
ht : t ∈ Ioo 0 ε
⊢ ContinuousAt (fun t => t ^ (s - 1)) t
[PROOFSTEP]
exact continuousAt_rpow_const _ _ (Or.inl ht.1.ne')
[GOAL]
case intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t
[PROOFSTEP]
apply HasFiniteIntegral.mono'
[GOAL]
case intro.intro.intro.intro.refine'_2.hg
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ HasFiniteIntegral ?intro.intro.intro.intro.refine'_2.g
[PROOFSTEP]
show HasFiniteIntegral (fun t => d * t ^ (s - b - 1)) _
[GOAL]
case intro.intro.intro.intro.refine'_2.hg
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ HasFiniteIntegral fun t => d * t ^ (s - b - 1)
[PROOFSTEP]
refine' (Integrable.hasFiniteIntegral _).const_mul _
[GOAL]
case intro.intro.intro.intro.refine'_2.hg
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ Integrable fun t => t ^ (s - b - 1)
[PROOFSTEP]
rw [← IntegrableOn, ← integrableOn_Ioc_iff_integrableOn_Ioo, ← intervalIntegrable_iff_integrable_Ioc_of_le hε.le]
[GOAL]
case intro.intro.intro.intro.refine'_2.hg
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ IntervalIntegrable (fun t => t ^ (s - b - 1)) volume 0 ε
[PROOFSTEP]
exact intervalIntegral.intervalIntegrable_rpow' (by linarith)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ -1 < s - b - 1
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioo 0 ε), ‖a ^ (s - 1) * f a‖ ≤ d * a ^ (s - b - 1)
[PROOFSTEP]
refine' (ae_restrict_iff' measurableSet_Ioo).mpr (eventually_of_forall fun t ht => _)
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
t : ℝ
ht : t ∈ Ioo 0 ε
⊢ ‖t ^ (s - 1) * f t‖ ≤ d * t ^ (s - b - 1)
[PROOFSTEP]
rw [mul_comm, norm_mul]
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
t : ℝ
ht : t ∈ Ioo 0 ε
⊢ ‖f t‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1)
[PROOFSTEP]
specialize hε' _ ht.1
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
t : ℝ
ht : t ∈ Ioo 0 ε
⊢ dist t 0 < ε
[PROOFSTEP]
rw [dist_eq_norm, sub_zero, norm_of_nonneg (le_of_lt ht.1)]
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖
t : ℝ
ht : t ∈ Ioo 0 ε
⊢ t < ε
[PROOFSTEP]
exact ht.2
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ ‖f t‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1)
[PROOFSTEP]
refine' (mul_le_mul_of_nonneg_right hε' (norm_nonneg _)).trans _
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ d * ‖t ^ (-b)‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1)
[PROOFSTEP]
simp_rw [norm_of_nonneg (rpow_nonneg_of_nonneg (le_of_lt ht.1) _), mul_assoc]
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ d * (t ^ (-b) * t ^ (s - 1)) ≤ d * t ^ (s - b - 1)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left (le_of_eq _) hd.le
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ t ^ (-b) * t ^ (s - 1) = t ^ (s - b - 1)
[PROOFSTEP]
rw [← rpow_add ht.1]
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ t ^ (-b + (s - 1)) = t ^ (s - b - 1)
[PROOFSTEP]
congr 1
[GOAL]
case intro.intro.intro.intro.refine'_2.h.e_a
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ -b + (s - 1) = s - b - 1
[PROOFSTEP]
abel
[GOAL]
case intro.intro.intro.intro.refine'_2.h.e_a
E : Type u_1
inst✝ : NormedAddCommGroup E
b : ℝ
f : ℝ → ℝ
hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0))
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
s : ℝ
hs : b < s
d : ℝ
hd : 0 < d
ε : ℝ
hε : 0 < ε
t : ℝ
ht : t ∈ Ioo 0 ε
hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖
⊢ -b + (s - 1) = s - b - 1
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0)
[PROOFSTEP]
obtain ⟨c1, hc1, hc1'⟩ := mellin_convergent_top_of_isBigO hfc.aestronglyMeasurable hf_top hs_top
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0)
[PROOFSTEP]
obtain ⟨c2, hc2, hc2'⟩ := mellin_convergent_zero_of_isBigO hfc.aestronglyMeasurable hf_bot hs_bot
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0)
[PROOFSTEP]
have : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 := by
rw [union_assoc, Ioc_union_Ioi (le_max_right _ _), Ioc_union_Ioi ((min_le_left _ _).trans (le_max_right _ _)),
min_eq_left (lt_min hc2 hc1).le]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
⊢ Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1
[PROOFSTEP]
rw [union_assoc, Ioc_union_Ioi (le_max_right _ _), Ioc_union_Ioi ((min_le_left _ _).trans (le_max_right _ _)),
min_eq_left (lt_min hc2 hc1).le]
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1
⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0)
[PROOFSTEP]
rw [this, integrableOn_union, integrableOn_union]
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1
⊢ (IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc c2 c1)) ∧
IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
[PROOFSTEP]
refine' ⟨⟨hc2', integrableOn_Icc_iff_integrableOn_Ioc.mp _⟩, hc1'⟩
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1
⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Icc c2 c1)
[PROOFSTEP]
refine'
(hfc.continuousOn_mul _ isOpen_Ioi).integrableOn_compact_subset (fun t ht => (hc2.trans_le ht.1 : 0 < t))
isCompact_Icc
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
a b : ℝ
f : ℝ → ℝ
s : ℝ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s
c1 : ℝ
hc1 : 0 < c1
hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1)
c2 : ℝ
hc2 : 0 < c2
hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2)
this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1
⊢ ContinuousOn (fun t => t ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
exact ContinuousAt.continuousOn fun t ht => continuousAt_rpow_const _ _ <| Or.inl <| ne_of_gt ht
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
⊢ MellinConvergent f s
[PROOFSTEP]
rw [MellinConvergent, mellin_convergent_iff_norm Subset.rfl measurableSet_Ioi hfc.aestronglyMeasurable]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
⊢ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) (Ioi 0)
[PROOFSTEP]
exact mellin_convergent_of_isBigO_scalar hfc.norm hf_top.norm_left hs_top hf_bot.norm_left hs_bot
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : b < a
hf : f =O[atTop] fun x => x ^ (-a)
⊢ (fun t => log t • f t) =O[atTop] fun x => x ^ (-b)
[PROOFSTEP]
refine'
((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).isBigO.smul hf).congr' (eventually_of_forall fun t => by rfl)
((eventually_gt_atTop 0).mp (eventually_of_forall fun t ht => _))
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : b < a
hf : f =O[atTop] fun x => x ^ (-a)
t : ℝ
⊢ (fun x => log x • f x) t = (fun t => log t • f t) t
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : b < a
hf : f =O[atTop] fun x => x ^ (-a)
t : ℝ
ht : 0 < t
⊢ (fun x => x ^ (a - b) • x ^ (-a)) t = (fun x => x ^ (-b)) t
[PROOFSTEP]
simp only
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : b < a
hf : f =O[atTop] fun x => x ^ (-a)
t : ℝ
ht : 0 < t
⊢ t ^ (a - b) • t ^ (-a) = t ^ (-b)
[PROOFSTEP]
rw [smul_eq_mul, ← rpow_add ht, ← sub_eq_add_neg, sub_eq_add_neg a, add_sub_cancel']
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
⊢ (fun t => log t • f t) =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
[PROOFSTEP]
have : log =o[𝓝[>] 0] fun t : ℝ => t ^ (a - b) :=
by
refine'
((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).neg_left.comp_tendsto tendsto_inv_zero_atTop).congr'
(eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _)
(eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _)
· simp_rw [Function.comp_apply, ← one_div, log_div one_ne_zero (ne_of_gt ht), Real.log_one, zero_sub, neg_neg]
· simp_rw [Function.comp_apply, inv_rpow (le_of_lt ht), ← rpow_neg (le_of_lt ht), neg_sub]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
⊢ log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
[PROOFSTEP]
refine'
((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).neg_left.comp_tendsto tendsto_inv_zero_atTop).congr'
(eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _)
(eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _)
[GOAL]
case refine'_1
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
t : ℝ
ht : t ∈ Ioi 0
⊢ ((fun x => -log x) ∘ fun x => x⁻¹) t = log t
[PROOFSTEP]
simp_rw [Function.comp_apply, ← one_div, log_div one_ne_zero (ne_of_gt ht), Real.log_one, zero_sub, neg_neg]
[GOAL]
case refine'_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
t : ℝ
ht : t ∈ Ioi 0
⊢ ((fun x => x ^ (b - a)) ∘ fun x => x⁻¹) t = (fun t => t ^ (a - b)) t
[PROOFSTEP]
simp_rw [Function.comp_apply, inv_rpow (le_of_lt ht), ← rpow_neg (le_of_lt ht), neg_sub]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
⊢ (fun t => log t • f t) =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
[PROOFSTEP]
refine'
(this.isBigO.smul hf).congr' (eventually_of_forall fun t => by rfl)
(eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => _))
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
t : ℝ
⊢ (fun x => log x • f x) t = (fun t => log t • f t) t
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
t : ℝ
ht : t ∈ Ioi 0
⊢ (fun x => x ^ (a - b) • x ^ (-a)) t = (fun x => x ^ (-b)) t
[PROOFSTEP]
simp_rw [smul_eq_mul, ← rpow_add ht]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
t : ℝ
ht : t ∈ Ioi 0
⊢ t ^ (a - b + -a) = t ^ (-b)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
t : ℝ
ht : t ∈ Ioi 0
⊢ a - b + -a = -b
[PROOFSTEP]
abel
[GOAL]
case e_a
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a b : ℝ
f : ℝ → E
hab : a < b
hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a)
this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b)
t : ℝ
ht : t ∈ Ioi 0
⊢ a - b + -a = -b
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
set F : ℂ → ℝ → E := fun (z : ℂ) (t : ℝ) => (t : ℂ) ^ (z - 1) • f t
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
set F' : ℂ → ℝ → E := fun (z : ℂ) (t : ℝ) => ((t : ℂ) ^ (z - 1) * log t) • f t
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
obtain ⟨v, hv0, hv1, hv2⟩ : ∃ v : ℝ, 0 < v ∧ v < s.re - b ∧ v < a - s.re :=
by
obtain ⟨w, hw1, hw2⟩ := exists_between (sub_pos.mpr hs_top)
obtain ⟨w', hw1', hw2'⟩ := exists_between (sub_pos.mpr hs_bot)
exact ⟨min w w', lt_min hw1 hw1', (min_le_right _ _).trans_lt hw2', (min_le_left _ _).trans_lt hw2⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re
[PROOFSTEP]
obtain ⟨w, hw1, hw2⟩ := exists_between (sub_pos.mpr hs_top)
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
w : ℝ
hw1 : 0 < w
hw2 : w < a - s.re
⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re
[PROOFSTEP]
obtain ⟨w', hw1', hw2'⟩ := exists_between (sub_pos.mpr hs_bot)
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
w : ℝ
hw1 : 0 < w
hw2 : w < a - s.re
w' : ℝ
hw1' : 0 < w'
hw2' : w' < s.re - b
⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re
[PROOFSTEP]
exact ⟨min w w', lt_min hw1 hw1', (min_le_right _ _).trans_lt hw2', (min_le_left _ _).trans_lt hw2⟩
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
let bound : ℝ → ℝ := fun t : ℝ => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h1 : ∀ᶠ z : ℂ in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict <| Ioi 0) :=
by
refine' eventually_of_forall fun z => AEStronglyMeasurable.smul _ hfc.aestronglyMeasurable
refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi
refine' ContinuousAt.continuousOn fun t ht => _
exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
⊢ ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
refine' eventually_of_forall fun z => AEStronglyMeasurable.smul _ hfc.aestronglyMeasurable
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
z : ℂ
⊢ AEStronglyMeasurable (fun t => ↑t ^ (z - 1)) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
z : ℂ
⊢ ContinuousOn (fun t => ↑t ^ (z - 1)) (Ioi 0)
[PROOFSTEP]
refine' ContinuousAt.continuousOn fun t ht => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
z : ℂ
t : ℝ
ht : t ∈ Ioi 0
⊢ ContinuousAt (fun t => ↑t ^ (z - 1)) t
[PROOFSTEP]
exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht)
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h2 : IntegrableOn (F s) (Ioi (0 : ℝ))
[GOAL]
case h2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
⊢ IntegrableOn (F s) (Ioi 0)
[PROOFSTEP]
exact mellinConvergent_of_isBigO_rpow hfc hf_top hs_top hf_bot hs_bot
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h3 : AEStronglyMeasurable (F' s) (volume.restrict <| Ioi 0) :=
by
apply LocallyIntegrableOn.aestronglyMeasurable
refine' hfc.continuousOn_smul isOpen_Ioi ((ContinuousAt.continuousOn fun t ht => _).mul _)
· exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht)
· refine' continuous_ofReal.comp_continuousOn _
exact continuousOn_log.mono (subset_compl_singleton_iff.mpr not_mem_Ioi_self)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
⊢ AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
apply LocallyIntegrableOn.aestronglyMeasurable
[GOAL]
case hf
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
⊢ LocallyIntegrableOn (F' s) (Ioi 0)
[PROOFSTEP]
refine' hfc.continuousOn_smul isOpen_Ioi ((ContinuousAt.continuousOn fun t ht => _).mul _)
[GOAL]
case hf.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
⊢ ContinuousAt (fun t => ↑t ^ (s - 1)) t
[PROOFSTEP]
exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht)
[GOAL]
case hf.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
⊢ ContinuousOn (fun t => ↑(log t)) (Ioi 0)
[PROOFSTEP]
refine' continuous_ofReal.comp_continuousOn _
[GOAL]
case hf.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
⊢ ContinuousOn (fun t => log t) (Ioi 0)
[PROOFSTEP]
exact continuousOn_log.mono (subset_compl_singleton_iff.mpr not_mem_Ioi_self)
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h4 : ∀ᵐ t : ℝ ∂volume.restrict (Ioi 0), ∀ z : ℂ, z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t :=
by
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht z hz => _
simp_rw [norm_smul, norm_mul, Complex.norm_eq_abs (log _), Complex.abs_ofReal, mul_assoc]
refine' mul_le_mul_of_nonneg_right _ (mul_nonneg (abs_nonneg _) (norm_nonneg _))
rw [Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos ht]
rcases le_or_lt 1 t with h | h
· refine' le_add_of_le_of_nonneg (rpow_le_rpow_of_exponent_le h _) (rpow_nonneg_of_nonneg (zero_le_one.trans h) _)
rw [sub_re, one_re, sub_le_sub_iff_right]
rw [mem_ball_iff_norm, Complex.norm_eq_abs] at hz
have hz' := (re_le_abs _).trans hz.le
rwa [sub_re, sub_le_iff_le_add'] at hz'
· refine' le_add_of_nonneg_of_le (rpow_pos_of_pos ht _).le (rpow_le_rpow_of_exponent_ge ht h.le _)
rw [sub_re, one_re, sub_le_iff_le_add, sub_add_cancel]
rw [mem_ball_iff_norm', Complex.norm_eq_abs] at hz
have hz' := (re_le_abs _).trans hz.le
rwa [sub_re, sub_le_iff_le_add, ← sub_le_iff_le_add'] at hz'
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
[PROOFSTEP]
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht z hz => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
⊢ ‖F' z t‖ ≤ bound t
[PROOFSTEP]
simp_rw [norm_smul, norm_mul, Complex.norm_eq_abs (log _), Complex.abs_ofReal, mul_assoc]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
⊢ ‖↑t ^ (z - 1)‖ * (|log t| * ‖f t‖) ≤ (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * (|log t| * ‖f t‖)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right _ (mul_nonneg (abs_nonneg _) (norm_nonneg _))
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
⊢ ‖↑t ^ (z - 1)‖ ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1)
[PROOFSTEP]
rw [Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos ht]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1)
[PROOFSTEP]
rcases le_or_lt 1 t with h | h
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : 1 ≤ t
⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1)
[PROOFSTEP]
refine' le_add_of_le_of_nonneg (rpow_le_rpow_of_exponent_le h _) (rpow_nonneg_of_nonneg (zero_le_one.trans h) _)
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : 1 ≤ t
⊢ (z - 1).re ≤ s.re + v - 1
[PROOFSTEP]
rw [sub_re, one_re, sub_le_sub_iff_right]
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : 1 ≤ t
⊢ z.re ≤ s.re + v
[PROOFSTEP]
rw [mem_ball_iff_norm, Complex.norm_eq_abs] at hz
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : ↑Complex.abs (z - s) < v
h : 1 ≤ t
⊢ z.re ≤ s.re + v
[PROOFSTEP]
have hz' := (re_le_abs _).trans hz.le
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : ↑Complex.abs (z - s) < v
h : 1 ≤ t
hz' : (z - s).re ≤ v
⊢ z.re ≤ s.re + v
[PROOFSTEP]
rwa [sub_re, sub_le_iff_le_add'] at hz'
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : t < 1
⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1)
[PROOFSTEP]
refine' le_add_of_nonneg_of_le (rpow_pos_of_pos ht _).le (rpow_le_rpow_of_exponent_ge ht h.le _)
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : t < 1
⊢ s.re - v - 1 ≤ (z - 1).re
[PROOFSTEP]
rw [sub_re, one_re, sub_le_iff_le_add, sub_add_cancel]
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : z ∈ Metric.ball s v
h : t < 1
⊢ s.re - v ≤ z.re
[PROOFSTEP]
rw [mem_ball_iff_norm', Complex.norm_eq_abs] at hz
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : ↑Complex.abs (s - z) < v
h : t < 1
⊢ s.re - v ≤ z.re
[PROOFSTEP]
have hz' := (re_le_abs _).trans hz.le
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
t : ℝ
ht : t ∈ Ioi 0
z : ℂ
hz : ↑Complex.abs (s - z) < v
h : t < 1
hz' : (s - z).re ≤ v
⊢ s.re - v ≤ z.re
[PROOFSTEP]
rwa [sub_re, sub_le_iff_le_add, ← sub_le_iff_le_add'] at hz'
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h5 : IntegrableOn bound (Ioi 0) := by
simp_rw [add_mul, mul_assoc]
suffices
∀ {j : ℝ} (hj : b < j) (hj' : j < a), IntegrableOn (fun t : ℝ => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) volume
by
refine' Integrable.add (this _ _) (this _ _)
all_goals linarith
· intro j hj hj'
obtain ⟨w, hw1, hw2⟩ := exists_between hj
obtain ⟨w', hw1', hw2'⟩ := exists_between hj'
refine' mellin_convergent_of_isBigO_scalar _ _ hw1' _ hw2
· simp_rw [mul_comm]
refine' hfc.norm.mul_continuousOn _ isOpen_Ioi
refine' Continuous.comp_continuousOn continuous_abs (continuousOn_log.mono _)
exact subset_compl_singleton_iff.mpr not_mem_Ioi_self
· refine (isBigO_rpow_top_log_smul hw2' hf_top).norm_left.congr_left fun t ↦ ?_
simp only [norm_smul, Real.norm_eq_abs]
· refine (isBigO_rpow_zero_log_smul hw1 hf_bot).norm_left.congr_left fun t ↦ ?_
simp only [norm_smul, Real.norm_eq_abs]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
⊢ IntegrableOn bound (Ioi 0)
[PROOFSTEP]
simp_rw [add_mul, mul_assoc]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
⊢ IntegrableOn (fun t => t ^ (s.re + v - 1) * (|log t| * ‖f t‖) + t ^ (s.re - v - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
suffices
∀ {j : ℝ} (hj : b < j) (hj' : j < a), IntegrableOn (fun t : ℝ => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) volume
by
refine' Integrable.add (this _ _) (this _ _)
all_goals linarith
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ IntegrableOn (fun t => t ^ (s.re + v - 1) * (|log t| * ‖f t‖) + t ^ (s.re - v - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
refine' Integrable.add (this _ _) (this _ _)
[GOAL]
case refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ b < s.re + v
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ s.re + v < a
case refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ b < s.re - v
case refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ s.re - v < a
[PROOFSTEP]
all_goals linarith
[GOAL]
case refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ b < s.re + v
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ s.re + v < a
[PROOFSTEP]
linarith
[GOAL]
case refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ b < s.re - v
[PROOFSTEP]
linarith
[GOAL]
case refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
⊢ s.re - v < a
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
⊢ ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
intro j hj hj'
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
obtain ⟨w, hw1, hw2⟩ := exists_between hj
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
obtain ⟨w', hw1', hw2'⟩ := exists_between hj'
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0)
[PROOFSTEP]
refine' mellin_convergent_of_isBigO_scalar _ _ hw1' _ hw2
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ LocallyIntegrableOn (fun t => |log t| * ‖f t‖) (Ioi 0)
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ LocallyIntegrableOn (fun t => ‖f t‖ * |log t|) (Ioi 0)
[PROOFSTEP]
refine' hfc.norm.mul_continuousOn _ isOpen_Ioi
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ ContinuousOn (fun t => |log t|) (Ioi 0)
[PROOFSTEP]
refine' Continuous.comp_continuousOn continuous_abs (continuousOn_log.mono _)
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ Ioi 0 ⊆ {0}ᶜ
[PROOFSTEP]
exact subset_compl_singleton_iff.mpr not_mem_Ioi_self
[GOAL]
case intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ (fun t => |log t| * ‖f t‖) =O[atTop] fun x => x ^ (-w')
[PROOFSTEP]
refine (isBigO_rpow_top_log_smul hw2' hf_top).norm_left.congr_left fun t ↦ ?_
[GOAL]
case intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
t : ℝ
⊢ ‖log t • f t‖ = |log t| * ‖f t‖
[PROOFSTEP]
simp only [norm_smul, Real.norm_eq_abs]
[GOAL]
case intro.intro.intro.intro.refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
⊢ (fun t => |log t| * ‖f t‖) =O[𝓝[Ioi 0] 0] fun x => x ^ (-w)
[PROOFSTEP]
refine (isBigO_rpow_zero_log_smul hw1 hf_bot).norm_left.congr_left fun t ↦ ?_
[GOAL]
case intro.intro.intro.intro.refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
j : ℝ
hj : b < j
hj' : j < a
w : ℝ
hw1 : b < w
hw2 : w < j
w' : ℝ
hw1' : j < w'
hw2' : w' < a
t : ℝ
⊢ ‖log t • f t‖ = |log t| * ‖f t‖
[PROOFSTEP]
simp only [norm_smul, Real.norm_eq_abs]
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have h6 :
∀ᵐ t : ℝ ∂volume.restrict (Ioi 0), ∀ y : ℂ, y ∈ Metric.ball s v → HasDerivAt (fun z : ℂ => F z t) (F' y t) y :=
by
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht y _ => _
have ht' : (t : ℂ) ≠ 0 := ofReal_ne_zero.mpr (ne_of_gt ht)
have u1 : HasDerivAt (fun z : ℂ => (t : ℂ) ^ (z - 1)) (t ^ (y - 1) * log t) y :=
by
convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1
rw [ofReal_log (le_of_lt ht)]
ring
exact u1.smul_const (f t)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y
[PROOFSTEP]
refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht y _ => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
⊢ HasDerivAt (fun z => F z t) (F' y t) y
[PROOFSTEP]
have ht' : (t : ℂ) ≠ 0 := ofReal_ne_zero.mpr (ne_of_gt ht)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
ht' : ↑t ≠ 0
⊢ HasDerivAt (fun z => F z t) (F' y t) y
[PROOFSTEP]
have u1 : HasDerivAt (fun z : ℂ => (t : ℂ) ^ (z - 1)) (t ^ (y - 1) * log t) y :=
by
convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1
rw [ofReal_log (le_of_lt ht)]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
ht' : ↑t ≠ 0
⊢ HasDerivAt (fun z => ↑t ^ (z - 1)) (↑t ^ (y - 1) * ↑(log t)) y
[PROOFSTEP]
convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1
[GOAL]
case h.e'_7
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
ht' : ↑t ≠ 0
⊢ ↑t ^ (y - 1) * ↑(log t) = ↑t ^ (y - 1) * Complex.log ↑t * 1
[PROOFSTEP]
rw [ofReal_log (le_of_lt ht)]
[GOAL]
case h.e'_7
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
ht' : ↑t ≠ 0
⊢ ↑t ^ (y - 1) * Complex.log ↑t = ↑t ^ (y - 1) * Complex.log ↑t * 1
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
t : ℝ
ht : t ∈ Ioi 0
y : ℂ
x✝ : y ∈ Metric.ball s v
ht' : ↑t ≠ 0
u1 : HasDerivAt (fun z => ↑t ^ (z - 1)) (↑t ^ (y - 1) * ↑(log t)) y
⊢ HasDerivAt (fun z => F z t) (F' y t) y
[PROOFSTEP]
exact u1.smul_const (f t)
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
h6 :
∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
have main := hasDerivAt_integral_of_dominated_loc_of_deriv_le hv0 h1 h2 h3 h4 h5 h6
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℂ E
a b : ℝ
f : ℝ → E
s : ℂ
hfc : LocallyIntegrableOn f (Ioi 0)
hf_top : f =O[atTop] fun x => x ^ (-a)
hs_top : s.re < a
hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b)
hs_bot : b < s.re
F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t
F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t
v : ℝ
hv0 : 0 < v
hv1 : v < s.re - b
hv2 : v < a - s.re
bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖
h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0))
h2 : IntegrableOn (F s) (Ioi 0)
h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0))
h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t
h5 : IntegrableOn bound (Ioi 0)
h6 :
∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y
main : Integrable (F' s) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ioi 0, F n a) (∫ (a : ℝ) in Ioi 0, F' s a) s
⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
[PROOFSTEP]
simpa only [mul_smul] using main
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s)
[PROOFSTEP]
have aux1 : -1 < (s - 1).re := by simpa only [sub_re, one_re, sub_eq_add_neg] using lt_add_of_pos_left _ hs
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
⊢ -1 < (s - 1).re
[PROOFSTEP]
simpa only [sub_re, one_re, sub_eq_add_neg] using lt_add_of_pos_left _ hs
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s)
[PROOFSTEP]
have aux2 : s ≠ 0 := by contrapose! hs; rw [hs, zero_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
⊢ s ≠ 0
[PROOFSTEP]
contrapose! hs
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
aux1 : -1 < (s - 1).re
hs : s = 0
⊢ s.re ≤ 0
[PROOFSTEP]
rw [hs, zero_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
aux2 : s ≠ 0
⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s)
[PROOFSTEP]
have aux3 : MeasurableSet (Ioc (0 : ℝ) 1) := measurableSet_Ioc
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
aux2 : s ≠ 0
aux3 : MeasurableSet (Ioc 0 1)
⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s)
[PROOFSTEP]
simp_rw [HasMellin, mellin, MellinConvergent, ← indicator_smul, IntegrableOn, integrable_indicator_iff aux3,
smul_eq_mul, integral_indicator aux3, mul_one, IntegrableOn, Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
aux2 : s ≠ 0
aux3 : MeasurableSet (Ioc 0 1)
⊢ (Integrable fun x => ↑x ^ (s - 1)) ∧ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s
[PROOFSTEP]
rw [← IntegrableOn, ← intervalIntegrable_iff_integrable_Ioc_of_le zero_le_one]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
aux2 : s ≠ 0
aux3 : MeasurableSet (Ioc 0 1)
⊢ IntervalIntegrable (fun x => ↑x ^ (s - 1)) volume 0 1 ∧ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s
[PROOFSTEP]
refine' ⟨intervalIntegral.intervalIntegrable_cpow' aux1, _⟩
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
s : ℂ
hs : 0 < s.re
aux1 : -1 < (s - 1).re
aux2 : s ≠ 0
aux3 : MeasurableSet (Ioc 0 1)
⊢ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s
[PROOFSTEP]
rw [← intervalIntegral.integral_of_le zero_le_one, integral_cpow (Or.inl aux1), sub_add_cancel, ofReal_zero, ofReal_one,
one_cpow, zero_cpow aux2, sub_zero]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a s : ℂ
hs : 0 < s.re + a.re
⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a))
[PROOFSTEP]
have := hasMellin_one_Ioc (by rwa [add_re] : 0 < (s + a).re)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a s : ℂ
hs : 0 < s.re + a.re
⊢ 0 < (s + a).re
[PROOFSTEP]
rwa [add_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a s : ℂ
hs : 0 < s.re + a.re
this : HasMellin (indicator (Ioc 0 1) fun x => 1) (s + a) (1 / (s + a))
⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a))
[PROOFSTEP]
simp_rw [HasMellin, ← MellinConvergent.cpow_smul, ← mellin_cpow_smul, ← indicator_smul, smul_eq_mul, mul_one] at this
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a s : ℂ
hs : 0 < s.re + a.re
this :
MellinConvergent (indicator (Ioc 0 1) fun x => ↑x ^ a) s ∧
mellin (indicator (Ioc 0 1) fun x => ↑x ^ a) s = 1 / (s + a)
⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a))
[PROOFSTEP]
exact this
| {"mathlib_filename": "Mathlib.Analysis.MellinTransform", "llama_tokens": 63682} |
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsLocalMinOn f (Icc a b) a
h_conv : ConvexOn ℝ (Icc a b) f
⊢ IsMinOn f (Icc a b) a
[PROOFSTEP]
rintro c hc
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsLocalMinOn f (Icc a b) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
⊢ c ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
dsimp only [mem_setOf_eq]
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsLocalMinOn f (Icc a b) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
⊢ f a ≤ f c
[PROOFSTEP]
rw [IsLocalMinOn, nhdsWithin_Icc_eq_nhdsWithin_Ici a_lt_b] at h_local_min
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
⊢ f a ≤ f c
[PROOFSTEP]
rcases hc.1.eq_or_lt with (rfl | a_lt_c)
[GOAL]
case inl
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
hc : a ∈ Icc a b
⊢ f a ≤ f a
[PROOFSTEP]
exact le_rfl
[GOAL]
case inr
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
⊢ f a ≤ f c
[PROOFSTEP]
have H₁ : ∀ᶠ y in 𝓝[>] a, f a ≤ f y := h_local_min.filter_mono (nhdsWithin_mono _ Ioi_subset_Ici_self)
[GOAL]
case inr
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
⊢ f a ≤ f c
[PROOFSTEP]
have H₂ : ∀ᶠ y in 𝓝[>] a, y ∈ Ioc a c := Ioc_mem_nhdsWithin_Ioi (left_mem_Ico.2 a_lt_c)
[GOAL]
case inr
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
⊢ f a ≤ f c
[PROOFSTEP]
rcases(H₁.and H₂).exists with ⟨y, hfy, hy_ac⟩
[GOAL]
case inr.intro.intro
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
y : ℝ
hfy : f a ≤ f y
hy_ac : y ∈ Ioc a c
⊢ f a ≤ f c
[PROOFSTEP]
rcases(Convex.mem_Ioc a_lt_c).mp hy_ac with ⟨ya, yc, ya₀, yc₀, yac, rfl⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
ya yc : ℝ
ya₀ : 0 ≤ ya
yc₀ : 0 < yc
yac : ya + yc = 1
hfy : f a ≤ f (ya * a + yc * c)
hy_ac : ya * a + yc * c ∈ Ioc a c
⊢ f a ≤ f c
[PROOFSTEP]
suffices : ya • f a + yc • f a ≤ ya • f a + yc • f c
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
ya yc : ℝ
ya₀ : 0 ≤ ya
yc₀ : 0 < yc
yac : ya + yc = 1
hfy : f a ≤ f (ya * a + yc * c)
hy_ac : ya * a + yc * c ∈ Ioc a c
this : ya • f a + yc • f a ≤ ya • f a + yc • f c
⊢ f a ≤ f c
case this
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
ya yc : ℝ
ya₀ : 0 ≤ ya
yc₀ : 0 < yc
yac : ya + yc = 1
hfy : f a ≤ f (ya * a + yc * c)
hy_ac : ya * a + yc * c ∈ Ioc a c
⊢ ya • f a + yc • f a ≤ ya • f a + yc • f c
[PROOFSTEP]
exact (smul_le_smul_iff_of_pos yc₀).1 (le_of_add_le_add_left this)
[GOAL]
case this
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
ya yc : ℝ
ya₀ : 0 ≤ ya
yc₀ : 0 < yc
yac : ya + yc = 1
hfy : f a ≤ f (ya * a + yc * c)
hy_ac : ya * a + yc * c ∈ Ioc a c
⊢ ya • f a + yc • f a ≤ ya • f a + yc • f c
[PROOFSTEP]
calc
ya • f a + yc • f a = f a := by rw [← add_smul, yac, one_smul]
_ ≤ f (ya * a + yc * c) := hfy
_ ≤ ya • f a + yc • f c := h_conv.2 (left_mem_Icc.2 a_lt_b.le) hc ya₀ yc₀.le yac
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : ℝ → β
a b : ℝ
a_lt_b : a < b
h_local_min : IsMinFilter f (𝓝[Ici a] a) a
h_conv : ConvexOn ℝ (Icc a b) f
c : ℝ
hc : c ∈ Icc a b
a_lt_c : a < c
H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y
H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c
ya yc : ℝ
ya₀ : 0 ≤ ya
yc₀ : 0 < yc
yac : ya + yc = 1
hfy : f a ≤ f (ya * a + yc * c)
hy_ac : ya * a + yc * c ∈ Ioc a c
⊢ ya • f a + yc • f a = f a
[PROOFSTEP]
rw [← add_smul, yac, one_smul]
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
⊢ IsMinOn f s a
[PROOFSTEP]
intro x x_in_s
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
let g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have hg0 : g 0 = a := AffineMap.lineMap_apply_zero a x
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have hg1 : g 1 = x := AffineMap.lineMap_apply_one a x
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have hgc : Continuous g := AffineMap.lineMap_continuous
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have h_maps : MapsTo g (Icc 0 1) s := by
simpa only [mapsTo', ← segment_eq_image_lineMap] using h_conv.1.segment_subset a_in_s x_in_s
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
⊢ MapsTo (↑g) (Icc 0 1) s
[PROOFSTEP]
simpa only [mapsTo', ← segment_eq_image_lineMap] using h_conv.1.segment_subset a_in_s x_in_s
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have fg_local_min_on : IsLocalMinOn (f ∘ g) (Icc 0 1) 0 :=
by
rw [← hg0] at h_localmin
exact h_localmin.comp_continuousOn h_maps hgc.continuousOn (left_mem_Icc.2 zero_le_one)
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
⊢ IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
[PROOFSTEP]
rw [← hg0] at h_localmin
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
h_localmin : IsLocalMinOn f s (↑g 0)
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
⊢ IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
[PROOFSTEP]
exact h_localmin.comp_continuousOn h_maps hgc.continuousOn (left_mem_Icc.2 zero_le_one)
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
have fg_min_on : IsMinOn (f ∘ g) (Icc 0 1 : Set ℝ) 0 :=
by
refine' IsMinOn.of_isLocalMinOn_of_convexOn_Icc one_pos fg_local_min_on _
exact (h_conv.comp_affineMap g).subset h_maps (convex_Icc 0 1)
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
⊢ IsMinOn (f ∘ ↑g) (Icc 0 1) 0
[PROOFSTEP]
refine' IsMinOn.of_isLocalMinOn_of_convexOn_Icc one_pos fg_local_min_on _
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
⊢ ConvexOn ℝ (Icc 0 1) (f ∘ ↑g)
[PROOFSTEP]
exact (h_conv.comp_affineMap g).subset h_maps (convex_Icc 0 1)
[GOAL]
E : Type u_1
β : Type u_2
inst✝⁷ : AddCommGroup E
inst✝⁶ : TopologicalSpace E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalAddGroup E
inst✝³ : ContinuousSMul ℝ E
inst✝² : OrderedAddCommGroup β
inst✝¹ : Module ℝ β
inst✝ : OrderedSMul ℝ β
s : Set E
f : E → β
a : E
a_in_s : a ∈ s
h_localmin : IsLocalMinOn f s a
h_conv : ConvexOn ℝ s f
x : E
x_in_s : x ∈ s
g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x
hg0 : ↑g 0 = a
hg1 : ↑g 1 = x
hgc : Continuous ↑g
h_maps : MapsTo (↑g) (Icc 0 1) s
fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0
fg_min_on : IsMinOn (f ∘ ↑g) (Icc 0 1) 0
⊢ x ∈ {x | (fun x => f a ≤ f x) x}
[PROOFSTEP]
simpa only [hg0, hg1, comp_apply, mem_setOf_eq] using fg_min_on (right_mem_Icc.2 zero_le_one)
| {"mathlib_filename": "Mathlib.Analysis.Convex.Extrema", "llama_tokens": 8990} |
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
[PROOFSTEP]
have hε' : 0 < ε / 3 := div_pos hε zero_lt_three
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
[PROOFSTEP]
obtain ⟨δ, hδ, h⟩ := exists_forall_sphere_dist_add_le_two_sub E hε'
[GOAL]
case intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
[PROOFSTEP]
set δ' := min (1 / 2) (min (ε / 3) <| δ / 3)
[GOAL]
case intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
[PROOFSTEP]
refine' ⟨δ', lt_min one_half_pos <| lt_min hε' (div_pos hδ zero_lt_three), fun x hx y hy hxy => _⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
obtain hx' | hx' := le_or_lt ‖x‖ (1 - δ')
[GOAL]
case intro.intro.inl
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : ‖x‖ ≤ 1 - δ'
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
rw [← one_add_one_eq_two]
[GOAL]
case intro.intro.inl
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : ‖x‖ ≤ 1 - δ'
⊢ ‖x + y‖ ≤ 1 + 1 - δ'
[PROOFSTEP]
exact (norm_add_le_of_le hx' hy).trans (sub_add_eq_add_sub _ _ _).le
[GOAL]
case intro.intro.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
obtain hy' | hy' := le_or_lt ‖y‖ (1 - δ')
[GOAL]
case intro.intro.inr.inl
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : ‖y‖ ≤ 1 - δ'
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
rw [← one_add_one_eq_two]
[GOAL]
case intro.intro.inr.inl
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : ‖y‖ ≤ 1 - δ'
⊢ ‖x + y‖ ≤ 1 + 1 - δ'
[PROOFSTEP]
exact (norm_add_le_of_le hx hy').trans (add_sub_assoc _ _ _).ge
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
have hδ' : 0 < 1 - δ' := sub_pos_of_lt (min_lt_of_left_lt one_half_lt_one)
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
have h₁ : ∀ z : E, 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 := by
rintro z hz
rw [norm_smul_of_nonneg (inv_nonneg.2 <| norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne']
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
⊢ ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
[PROOFSTEP]
rintro z hz
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
z : E
hz : 1 - δ' < ‖z‖
⊢ ‖‖z‖⁻¹ • z‖ = 1
[PROOFSTEP]
rw [norm_smul_of_nonneg (inv_nonneg.2 <| norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne']
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
have h₂ : ∀ z : E, ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' :=
by
rintro z hz hδz
nth_rw 3 [← one_smul ℝ z]
rwa [← sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le <| one_le_inv (hδ'.trans_le hδz) hz), sub_mul,
inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le_comm]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
⊢ ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
[PROOFSTEP]
rintro z hz hδz
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
z : E
hz : ‖z‖ ≤ 1
hδz : 1 - δ' ≤ ‖z‖
⊢ ‖‖z‖⁻¹ • z - z‖ ≤ δ'
[PROOFSTEP]
nth_rw 3 [← one_smul ℝ z]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
z : E
hz : ‖z‖ ≤ 1
hδz : 1 - δ' ≤ ‖z‖
⊢ ‖‖z‖⁻¹ • z - 1 • z‖ ≤ δ'
[PROOFSTEP]
rwa [← sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le <| one_le_inv (hδ'.trans_le hδz) hz), sub_mul,
inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le_comm]
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
set x' := ‖x‖⁻¹ • x
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
set y' := ‖y‖⁻¹ • y
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
have hxy' : ε / 3 ≤ ‖x' - y'‖ :=
calc
ε / 3 = ε - (ε / 3 + ε / 3) := by ring
_ ≤ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) := by
gcongr
· exact (h₂ _ hx hx'.le).trans <| min_le_of_right_le <| min_le_left _ _
· exact (h₂ _ hy hy'.le).trans <| min_le_of_right_le <| min_le_left _ _
_ ≤ _ := by
have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := fun _ _ => by abel
rw [sub_le_iff_le_add, norm_sub_rev _ x, ← add_assoc, this]
exact norm_add₃_le _ _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ε / 3 = ε - (ε / 3 + ε / 3)
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ε - (ε / 3 + ε / 3) ≤ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖)
[PROOFSTEP]
gcongr
[GOAL]
case hcd.h₁
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ‖x' - x‖ ≤ ε / 3
[PROOFSTEP]
exact (h₂ _ hx hx'.le).trans <| min_le_of_right_le <| min_le_left _ _
[GOAL]
case hcd.h₂
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ‖y' - y‖ ≤ ε / 3
[PROOFSTEP]
exact (h₂ _ hy hy'.le).trans <| min_le_of_right_le <| min_le_left _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
⊢ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) ≤ ‖x' - y'‖
[PROOFSTEP]
have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := fun _ _ => by abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
x✝¹ x✝ : E
⊢ x - y = x✝¹ - x✝ + (x - x✝¹) + (x✝ - y)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
x✝¹ x✝ : E
⊢ x - y = x✝¹ - x✝ + (x - x✝¹) + (x✝ - y)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y)
⊢ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) ≤ ‖x' - y'‖
[PROOFSTEP]
rw [sub_le_iff_le_add, norm_sub_rev _ x, ← add_assoc, this]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y)
⊢ ‖?x' - ?y' + (x - ?x') + (?y' - y)‖ ≤ ‖x' - y'‖ + ‖x - x'‖ + ‖y' - y‖
case x'
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y)
⊢ E
case y'
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y)
⊢ E
[PROOFSTEP]
exact norm_add₃_le _ _ _
[GOAL]
case intro.intro.inr.inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ ‖x + y‖ ≤ 2 - δ'
[PROOFSTEP]
calc
‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖ :=
by
have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := fun _ _ => by abel
rw [norm_sub_rev, norm_sub_rev y', this]
exact norm_add₃_le _ _ _
_ ≤ 2 - δ + δ' + δ' := (add_le_add_three (h (h₁ _ hx') (h₁ _ hy') hxy') (h₂ _ hx hx'.le) (h₂ _ hy hy'.le))
_ ≤ 2 - δ' := by
rw [← le_sub_iff_add_le, ← le_sub_iff_add_le, sub_sub, sub_sub]
refine' sub_le_sub_left _ _
ring_nf
rw [← mul_div_cancel' δ three_ne_zero]
norm_num
-- Porting note: these three extra lines needed to make `exact` work
have : 3 * (δ / 3) * (1 / 3) = δ / 3 := by linarith
rw [this, mul_comm]
gcongr
exact min_le_of_right_le <| min_le_right _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ ‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖
[PROOFSTEP]
have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := fun _ _ => by abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
x✝¹ x✝ : E
⊢ x + y = x✝¹ + x✝ + (x - x✝¹) + (y - x✝)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
x✝¹ x✝ : E
⊢ x + y = x✝¹ + x✝ + (x - x✝¹) + (y - x✝)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y')
⊢ ‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖
[PROOFSTEP]
rw [norm_sub_rev, norm_sub_rev y', this]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y')
⊢ ‖?x' + ?y' + (x - ?x') + (y - ?y')‖ ≤ ‖x' + y'‖ + ‖x - x'‖ + ‖y - y'‖
case x'
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y')
⊢ E
case y'
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y')
⊢ E
[PROOFSTEP]
exact norm_add₃_le _ _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ 2 - δ + δ' + δ' ≤ 2 - δ'
[PROOFSTEP]
rw [← le_sub_iff_add_le, ← le_sub_iff_add_le, sub_sub, sub_sub]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ 2 - δ ≤ 2 - (δ' + (δ' + δ'))
[PROOFSTEP]
refine' sub_le_sub_left _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ δ' + (δ' + δ') ≤ δ
[PROOFSTEP]
ring_nf
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ min (↑(Int.ofNat 1) / ↑2) (min (ε * (↑(Int.ofNat 1) / ↑3)) (δ * (↑(Int.ofNat 1) / ↑3))) * 3 ≤ δ
[PROOFSTEP]
rw [← mul_div_cancel' δ three_ne_zero]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ min (↑(Int.ofNat 1) / ↑2) (min (ε * (↑(Int.ofNat 1) / ↑3)) (3 * (δ / 3) * (↑(Int.ofNat 1) / ↑3))) * 3 ≤ 3 * (δ / 3)
[PROOFSTEP]
norm_num
-- Porting note: these three extra lines needed to make `exact` work
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ min (1 / 2) (min (ε * (1 / 3)) (3 * (δ / 3) * (1 / 3))) * 3 ≤ 3 * (δ / 3)
[PROOFSTEP]
have : 3 * (δ / 3) * (1 / 3) = δ / 3 := by linarith
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
⊢ 3 * (δ / 3) * (1 / 3) = δ / 3
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : 3 * (δ / 3) * (1 / 3) = δ / 3
⊢ min (1 / 2) (min (ε * (1 / 3)) (3 * (δ / 3) * (1 / 3))) * 3 ≤ 3 * (δ / 3)
[PROOFSTEP]
rw [this, mul_comm]
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : 3 * (δ / 3) * (1 / 3) = δ / 3
⊢ 3 * min (1 / 2) (min (ε * (1 / 3)) (δ / 3)) ≤ 3 * (δ / 3)
[PROOFSTEP]
gcongr
[GOAL]
case h
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
hε' : 0 < ε / 3
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3))
x : E
hx : ‖x‖ ≤ 1
y : E
hy : ‖y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
hx' : 1 - δ' < ‖x‖
hy' : 1 - δ' < ‖y‖
hδ' : 0 < 1 - δ'
h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1
h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ'
x' : E := ‖x‖⁻¹ • x
y' : E := ‖y‖⁻¹ • y
hxy' : ε / 3 ≤ ‖x' - y'‖
this : 3 * (δ / 3) * (1 / 3) = δ / 3
⊢ min (1 / 2) (min (ε * (1 / 3)) (δ / 3)) ≤ δ / 3
[PROOFSTEP]
exact min_le_of_right_le <| min_le_right _ _
[GOAL]
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ
[PROOFSTEP]
obtain hr | hr := le_or_lt r 0
[GOAL]
case inl
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : r ≤ 0
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ
[PROOFSTEP]
exact
⟨1, one_pos, fun x hx y hy h =>
(hε.not_le <| h.trans <| (norm_sub_le _ _).trans <| add_nonpos (hx.trans hr) (hy.trans hr)).elim⟩
[GOAL]
case inr
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ
[PROOFSTEP]
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (div_pos hε hr)
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ
[PROOFSTEP]
refine' ⟨δ * r, mul_pos hδ hr, fun x hx y hy hxy => _⟩
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx : ‖x‖ ≤ r
y : E
hy : ‖y‖ ≤ r
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
rw [← div_le_one hr, div_eq_inv_mul, ← norm_smul_of_nonneg (inv_nonneg.2 hr.le)] at hx hy
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx✝ : r⁻¹ * ‖x‖ ≤ 1
hx : ‖r⁻¹ • x‖ ≤ 1
y : E
hy✝ : r⁻¹ * ‖y‖ ≤ 1
hy : ‖r⁻¹ • y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
try infer_instance
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx✝ : r⁻¹ * ‖x‖ ≤ 1
hx : ‖r⁻¹ • x‖ ≤ 1
y : E
hy✝ : r⁻¹ * ‖y‖ ≤ 1
hy : ‖r⁻¹ • y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
infer_instance
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx✝ : r⁻¹ * ‖x‖ ≤ 1
hx : ‖r⁻¹ • x‖ ≤ 1
y : E
hy✝ : r⁻¹ * ‖y‖ ≤ 1
hy : ‖r⁻¹ • y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
have := h hx hy
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx✝ : r⁻¹ * ‖x‖ ≤ 1
hx : ‖r⁻¹ • x‖ ≤ 1
y : E
hy✝ : r⁻¹ * ‖y‖ ≤ 1
hy : ‖r⁻¹ • y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
this : ε / r ≤ ‖r⁻¹ • x - r⁻¹ • y‖ → ‖r⁻¹ • x + r⁻¹ • y‖ ≤ 2 - δ
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
simp_rw [← smul_add, ← smul_sub, norm_smul_of_nonneg (inv_nonneg.2 hr.le), ← div_eq_inv_mul, div_le_div_right hr,
div_le_iff hr, sub_mul] at this
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : SeminormedAddCommGroup E
inst✝¹ : UniformConvexSpace E
ε : ℝ
inst✝ : NormedSpace ℝ E
hε : 0 < ε
r : ℝ
hr : 0 < r
δ : ℝ
hδ : 0 < δ
h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
x : E
hx✝ : r⁻¹ * ‖x‖ ≤ 1
hx : ‖r⁻¹ • x‖ ≤ 1
y : E
hy✝ : r⁻¹ * ‖y‖ ≤ 1
hy : ‖r⁻¹ • y‖ ≤ 1
hxy : ε ≤ ‖x - y‖
this : ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ * r
⊢ ‖x + y‖ ≤ 2 * r - δ * r
[PROOFSTEP]
exact this hxy
| {"mathlib_filename": "Mathlib.Analysis.Convex.Uniform", "llama_tokens": 24574} |
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Sbtw ℝ p₁ p₂ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
have hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p := by simpa using h.left_ne_right
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Sbtw ℝ p₁ p₂ p₃
⊢ p₁ -ᵥ p ≠ p₃ -ᵥ p
[PROOFSTEP]
simpa using h.left_ne_right
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Sbtw ℝ p₁ p₂ p₃
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rw [Sbtw, ← wbtw_vsub_const_iff p, Wbtw, affineSegment_eq_segment, ← insert_endpoints_openSegment, Set.mem_insert_iff,
Set.mem_insert_iff] at h
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : (p₂ -ᵥ p = p₁ -ᵥ p ∨ p₂ -ᵥ p = p₃ -ᵥ p ∨ p₂ -ᵥ p ∈ openSegment ℝ (p₁ -ᵥ p) (p₃ -ᵥ p)) ∧ p₂ ≠ p₁ ∧ p₂ ≠ p₃
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rcases h with ⟨h | h | h, hp₂p₁, hp₂p₃⟩
[GOAL]
case intro.inl.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : p₂ -ᵥ p = p₁ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rw [vsub_left_cancel_iff] at h
[GOAL]
case intro.inl.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : p₂ = p₁
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
exact False.elim (hp₂p₁ h)
[GOAL]
case intro.inr.inl.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : p₂ -ᵥ p = p₃ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rw [vsub_left_cancel_iff] at h
[GOAL]
case intro.inr.inl.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : p₂ = p₃
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
exact False.elim (hp₂p₃ h)
[GOAL]
case intro.inr.inr.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : p₂ -ᵥ p ∈ openSegment ℝ (p₁ -ᵥ p) (p₃ -ᵥ p)
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rw [openSegment_eq_image, Set.mem_image] at h
[GOAL]
case intro.inr.inr.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
h : ∃ x, x ∈ Set.Ioo 0 1 ∧ (1 - x) • (p₁ -ᵥ p) + x • (p₃ -ᵥ p) = p₂ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
rcases h with ⟨r, ⟨hr0, hr1⟩, hr⟩
[GOAL]
case intro.inr.inr.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
r : ℝ
hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p
hr0 : 0 < r
hr1 : r < 1
⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
simp_rw [@dist_eq_norm_vsub V, ← hr]
[GOAL]
case intro.inr.inr.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
r : ℝ
hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p
hr0 : 0 < r
hr1 : r < 1
⊢ ‖(1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p)‖ < max ‖p₁ -ᵥ p‖ ‖p₃ -ᵥ p‖
[PROOFSTEP]
exact norm_combo_lt_of_ne (le_max_left _ _) (le_max_right _ _) hp₁p₃ (sub_pos.2 hr1) hr0 (by abel)
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
r : ℝ
hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p
hr0 : 0 < r
hr1 : r < 1
⊢ 1 - r + r = 1
[PROOFSTEP]
abel
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p
hp₂p₁ : p₂ ≠ p₁
hp₂p₃ : p₂ ≠ p₃
r : ℝ
hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p
hr0 : 0 < r
hr1 : r < 1
⊢ 1 - r + r = 1
[PROOFSTEP]
abel
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
by_cases hp₁ : p₂ = p₁
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
hp₁ : p₂ = p₁
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
simp [hp₁]
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
hp₁ : ¬p₂ = p₁
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
by_cases hp₃ : p₂ = p₃
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
hp₁ : ¬p₂ = p₁
hp₃ : p₂ = p₃
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
simp [hp₃]
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
hp₁ : ¬p₂ = p₁
hp₃ : ¬p₂ = p₃
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
have hs : Sbtw ℝ p₁ p₂ p₃ := ⟨h, hp₁, hp₃⟩
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
h : Wbtw ℝ p₁ p₂ p₃
hp₁ : ¬p₂ = p₁
hp₃ : ¬p₂ = p₃
hs : Sbtw ℝ p₁ p₂ p₃
⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p)
[PROOFSTEP]
exact (hs.dist_lt_max_dist _).le
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
rcases h.wbtw_or_wbtw_or_wbtw with (hw | hw | hw)
[GOAL]
case inl
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₁ p₂ p₃
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
exact hw
[GOAL]
case inr.inl
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
by_cases hp₃p₂ : p₃ = p₂
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
hp₃p₂ : p₃ = p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
simp [hp₃p₂]
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
hp₃p₂ : ¬p₃ = p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
have hs : Sbtw ℝ p₂ p₃ p₁ := ⟨hw, hp₃p₂, hp₁p₃.symm⟩
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
hp₃p₂ : ¬p₃ = p₂
hs : Sbtw ℝ p₂ p₃ p₁
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
have hs' := hs.dist_lt_max_dist p
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
hp₃p₂ : ¬p₃ = p₂
hs : Sbtw ℝ p₂ p₃ p₁
hs' : dist p₃ p < max (dist p₂ p) (dist p₁ p)
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
rw [hp₁, hp₃, lt_max_iff, lt_self_iff_false, or_false_iff] at hs'
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₂ p₃ p₁
hp₃p₂ : ¬p₃ = p₂
hs : Sbtw ℝ p₂ p₃ p₁
hs' : r < dist p₂ p
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
exact False.elim (hp₂.not_lt hs')
[GOAL]
case inr.inr
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
by_cases hp₁p₂ : p₁ = p₂
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
hp₁p₂ : p₁ = p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
simp [hp₁p₂]
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
hp₁p₂ : ¬p₁ = p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
have hs : Sbtw ℝ p₃ p₁ p₂ := ⟨hw, hp₁p₃, hp₁p₂⟩
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
hp₁p₂ : ¬p₁ = p₂
hs : Sbtw ℝ p₃ p₁ p₂
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
have hs' := hs.dist_lt_max_dist p
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
hp₁p₂ : ¬p₁ = p₂
hs : Sbtw ℝ p₃ p₁ p₂
hs' : dist p₁ p < max (dist p₃ p) (dist p₂ p)
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
rw [hp₁, hp₃, lt_max_iff, lt_self_iff_false, false_or_iff] at hs'
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p ≤ r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
hw : Wbtw ℝ p₃ p₁ p₂
hp₁p₂ : ¬p₁ = p₂
hs : Sbtw ℝ p₃ p₁ p₂
hs' : r < dist p₂ p
⊢ Wbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
exact False.elim (hp₂.not_lt hs')
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p < r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
⊢ Sbtw ℝ p₁ p₂ p₃
[PROOFSTEP]
refine' ⟨h.wbtw_of_dist_eq_of_dist_le hp₁ hp₂.le hp₃ hp₁p₃, _, _⟩
[GOAL]
case refine'_1
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p < r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
⊢ p₂ ≠ p₁
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_1
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₂ p₃ : P
r : ℝ
hp₂ : dist p₂ p < r
hp₃ : dist p₃ p = r
h : Collinear ℝ {p₂, p₂, p₃}
hp₁ : dist p₂ p = r
hp₁p₃ : p₂ ≠ p₃
⊢ False
[PROOFSTEP]
exact hp₂.ne hp₁
[GOAL]
case refine'_2
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ p₃ : P
r : ℝ
h : Collinear ℝ {p₁, p₂, p₃}
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p < r
hp₃ : dist p₃ p = r
hp₁p₃ : p₁ ≠ p₃
⊢ p₂ ≠ p₃
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_2
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : PseudoMetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : StrictConvexSpace ℝ V
p p₁ p₂ : P
r : ℝ
hp₁ : dist p₁ p = r
hp₂ : dist p₂ p < r
h : Collinear ℝ {p₁, p₂, p₂}
hp₃ : dist p₂ p = r
hp₁p₃ : p₁ ≠ p₂
⊢ False
[PROOFSTEP]
exact hp₂.ne hp₃
| {"mathlib_filename": "Mathlib.Analysis.Convex.StrictConvexBetween", "llama_tokens": 8508} |
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝ : Fintype ι
⊢ stdSimplex ℝ ι ⊆ closedBall 0 1
[PROOFSTEP]
intro f hf
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝ : Fintype ι
f : ι → ℝ
hf : f ∈ stdSimplex ℝ ι
⊢ f ∈ closedBall 0 1
[PROOFSTEP]
rw [Metric.mem_closedBall, dist_pi_le_iff zero_le_one]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝ : Fintype ι
f : ι → ℝ
hf : f ∈ stdSimplex ℝ ι
⊢ ∀ (b : ι), dist (f b) (OfNat.ofNat 0 b) ≤ 1
[PROOFSTEP]
intro x
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝ : Fintype ι
f : ι → ℝ
hf : f ∈ stdSimplex ℝ ι
x : ι
⊢ dist (f x) (OfNat.ofNat 0 x) ≤ 1
[PROOFSTEP]
rw [Pi.zero_apply, Real.dist_0_eq_abs, abs_of_nonneg <| hf.1 x]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝ : Fintype ι
f : ι → ℝ
hf : f ∈ stdSimplex ℝ ι
x : ι
⊢ f x ≤ 1
[PROOFSTEP]
exact (mem_Icc_of_mem_stdSimplex hf x).2
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁸ : LinearOrderedRing 𝕜
inst✝⁷ : DenselyOrdered 𝕜
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : OrderTopology 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : TopologicalSpace E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ [x-[𝕜]y] ⊆ closure (openSegment 𝕜 x y)
[PROOFSTEP]
rw [segment_eq_image, openSegment_eq_image, ← closure_Ioo (zero_ne_one' 𝕜)]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁸ : LinearOrderedRing 𝕜
inst✝⁷ : DenselyOrdered 𝕜
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : OrderTopology 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : TopologicalSpace E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ (fun θ => (1 - θ) • x + θ • y) '' closure (Ioo 0 1) ⊆ closure ((fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1)
[PROOFSTEP]
exact image_closure_subset_closure_image (by continuity)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁸ : LinearOrderedRing 𝕜
inst✝⁷ : DenselyOrdered 𝕜
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : OrderTopology 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : TopologicalSpace E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ Continuous fun θ => (1 - θ) • x + θ • y
[PROOFSTEP]
continuity
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝¹¹ : LinearOrderedRing 𝕜
inst✝¹⁰ : DenselyOrdered 𝕜
inst✝⁹ : PseudoMetricSpace 𝕜
inst✝⁸ : OrderTopology 𝕜
inst✝⁷ : ProperSpace 𝕜
inst✝⁶ : CompactIccSpace 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ closure (openSegment 𝕜 x y) = [x-[𝕜]y]
[PROOFSTEP]
rw [segment_eq_image, openSegment_eq_image, ← closure_Ioo (zero_ne_one' 𝕜)]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝¹¹ : LinearOrderedRing 𝕜
inst✝¹⁰ : DenselyOrdered 𝕜
inst✝⁹ : PseudoMetricSpace 𝕜
inst✝⁸ : OrderTopology 𝕜
inst✝⁷ : ProperSpace 𝕜
inst✝⁶ : CompactIccSpace 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ closure ((fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1) = (fun θ => (1 - θ) • x + θ • y) '' closure (Ioo 0 1)
[PROOFSTEP]
exact (image_closure_of_isCompact (bounded_Ioo _ _).isCompact_closure <| Continuous.continuousOn <| by continuity).symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝¹¹ : LinearOrderedRing 𝕜
inst✝¹⁰ : DenselyOrdered 𝕜
inst✝⁹ : PseudoMetricSpace 𝕜
inst✝⁸ : OrderTopology 𝕜
inst✝⁷ : ProperSpace 𝕜
inst✝⁶ : CompactIccSpace 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : ContinuousAdd E
inst✝¹ : Module 𝕜 E
inst✝ : ContinuousSMul 𝕜 E
x y : E
⊢ Continuous fun θ => (1 - θ) • x + θ • y
[PROOFSTEP]
continuity
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
a b : 𝕜
ha : 0 < a
hb : 0 ≤ b
hab : a + b = 1
⊢ interior (a • s) + closure (b • s) = interior (a • s) + b • s
[PROOFSTEP]
rw [isOpen_interior.add_closure (b • s)]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
⊢ a • closure s + b • interior s ⊆ interior s
[PROOFSTEP]
rw [add_comm]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
⊢ b • interior s + a • closure s ⊆ interior s
[PROOFSTEP]
exact hs.combo_interior_closure_subset_interior hb ha (add_comm a b ▸ hab)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
⊢ a • s + b • interior s ⊆ interior s
[PROOFSTEP]
rw [add_comm]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
⊢ b • interior s + a • s ⊆ interior s
[PROOFSTEP]
exact hs.combo_interior_self_subset_interior hb ha (add_comm a b ▸ hab)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ interior s
hy : y ∈ closure s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ interior s
hy : y ∈ closure s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior s
[PROOFSTEP]
exact hs.combo_interior_closure_mem_interior hx hy ha hb.le hab
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ closure s
hy : y ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ closure s
hy : y ∈ interior s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior s
[PROOFSTEP]
exact hs.combo_closure_interior_mem_interior hx hy ha.le hb hab
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ closure s
hy : y ∈ interior s
t : 𝕜
ht : t ∈ Ioc 0 1
⊢ x + t • (y - x) ∈ interior s
[PROOFSTEP]
simpa only [sub_smul, smul_sub, one_smul, add_sub, add_comm] using
hs.combo_interior_closure_mem_interior hy hx ht.1 (sub_nonneg.mpr ht.2) (add_sub_cancel'_right _ _)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ closure s
hy : x + y ∈ interior s
t : 𝕜
ht : t ∈ Ioc 0 1
⊢ x + t • y ∈ interior s
[PROOFSTEP]
simpa only [add_sub_cancel'] using hs.add_smul_sub_mem_interior' hx hy ht
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
⊢ StrictConvex 𝕜 s
[PROOFSTEP]
refine' strictConvex_iff_openSegment_subset.2 _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
⊢ Set.Pairwise s fun x y => openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
intro x hx y hy hne
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
by_cases hx' : x ∈ interior s
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : x ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
exact hs.openSegment_interior_self_subset_interior hx' hy
[GOAL]
case neg
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
by_cases hy' : y ∈ interior s
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
hy' : y ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
exact hs.openSegment_self_interior_subset_interior hx hy'
[GOAL]
case neg
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
hy' : ¬y ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
rcases h ⟨hx, hx'⟩ ⟨hy, hy'⟩ hne with ⟨c, hc⟩
[GOAL]
case neg.intro
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
hy' : ¬y ∈ interior s
c : 𝕜
hc : ↑(lineMap x y) c ∈ interior s
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
refine' (openSegment_subset_union x y ⟨c, rfl⟩).trans (insert_subset_iff.2 ⟨hc, union_subset _ _⟩)
[GOAL]
case neg.intro.refine'_1
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
hy' : ¬y ∈ interior s
c : 𝕜
hc : ↑(lineMap x y) c ∈ interior s
⊢ openSegment 𝕜 x (↑(lineMap x y) c) ⊆ interior s
case neg.intro.refine'_2
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hne : x ≠ y
hx' : ¬x ∈ interior s
hy' : ¬y ∈ interior s
c : 𝕜
hc : ↑(lineMap x y) c ∈ interior s
⊢ openSegment 𝕜 (↑(lineMap x y) c) y ⊆ interior s
[PROOFSTEP]
exacts [hs.openSegment_self_interior_subset_interior hx hc, hs.openSegment_interior_self_subset_interior hc hy]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s)
⊢ StrictConvex 𝕜 s
[PROOFSTEP]
refine' hs.strictConvex' <| h.imp_on fun x hx y hy _ => _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s)
x : E
hx : x ∈ s \ interior s
y : E
hy : y ∈ s \ interior s
x✝ : x ≠ y
⊢ fun ⦃a b⦄ => Set.Nonempty ([a-[𝕜]b] \ frontier s) → ∃ c, ↑(lineMap a b) c ∈ interior s
[PROOFSTEP]
simp only [segment_eq_image_lineMap, ← self_diff_frontier]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s)
x : E
hx : x ∈ s \ interior s
y : E
hy : y ∈ s \ interior s
x✝ : x ≠ y
⊢ Set.Nonempty ((fun a => ↑(lineMap x y) a) '' Icc 0 1 \ frontier s) → ∃ c, ↑(lineMap x y) c ∈ s \ frontier s
[PROOFSTEP]
rintro ⟨_, ⟨⟨c, hc, rfl⟩, hcs⟩⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s)
x : E
hx : x ∈ s \ interior s
y : E
hy : y ∈ s \ interior s
x✝ : x ≠ y
c : 𝕜
hc : c ∈ Icc 0 1
hcs : ¬(fun a => ↑(lineMap x y) a) c ∈ frontier s
⊢ ∃ c, ↑(lineMap x y) c ∈ s \ frontier s
[PROOFSTEP]
refine' ⟨c, hs.segment_subset hx.1 hy.1 _, hcs⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : Convex 𝕜 s
h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s)
x : E
hx : x ∈ s \ interior s
y : E
hy : y ∈ s \ interior s
x✝ : x ≠ y
c : 𝕜
hc : c ∈ Icc 0 1
hcs : ¬(fun a => ↑(lineMap x y) a) c ∈ frontier s
⊢ ↑(lineMap x y) c ∈ [x-[𝕜]y]
[PROOFSTEP]
exact (segment_eq_image_lineMap 𝕜 x y).symm ▸ mem_image_of_mem _ hc
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Set.Finite s
⊢ IsCompact (↑(convexHull ℝ) s)
[PROOFSTEP]
rw [hs.convexHull_eq_image]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Set.Finite s
⊢ IsCompact (↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x) '' stdSimplex ℝ ↑s)
[PROOFSTEP]
apply (@isCompact_stdSimplex _ hs.fintype).image
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Set.Finite s
⊢ Continuous ↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x)
[PROOFSTEP]
haveI := hs.fintype
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Set.Finite s
this : Fintype ↑s
⊢ Continuous ↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x)
[PROOFSTEP]
apply LinearMap.continuous_on_pi
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
t : ℝ
ht : 1 < t
⊢ closure s ⊆ ↑(homothety x t) '' interior s
[PROOFSTEP]
intro y hy
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
t : ℝ
ht : 1 < t
y : E
hy : y ∈ closure s
⊢ y ∈ ↑(homothety x t) '' interior s
[PROOFSTEP]
have hne : t ≠ 0 := (one_pos.trans ht).ne'
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
t : ℝ
ht : 1 < t
y : E
hy : y ∈ closure s
hne : t ≠ 0
⊢ y ∈ ↑(homothety x t) '' interior s
[PROOFSTEP]
refine'
⟨homothety x t⁻¹ y, hs.openSegment_interior_closure_subset_interior hx hy _,
(AffineEquiv.homothetyUnitsMulHom x (Units.mk0 t hne)).apply_symm_apply y⟩
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
t : ℝ
ht : 1 < t
y : E
hy : y ∈ closure s
hne : t ≠ 0
⊢ ↑(homothety x t⁻¹) y ∈ openSegment ℝ x y
[PROOFSTEP]
rw [openSegment_eq_image_lineMap, ← inv_one, ← inv_Ioi (zero_lt_one' ℝ), ← image_inv, image_image, homothety_eq_lineMap]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
t : ℝ
ht : 1 < t
y : E
hy : y ∈ closure s
hne : t ≠ 0
⊢ ↑(lineMap x y) t⁻¹ ∈ (fun x_1 => ↑(lineMap x y) x_1⁻¹) '' Ioi 1
[PROOFSTEP]
exact mem_image_of_mem _ ht
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hconv : Convex ℝ s
hne : Set.Nonempty s
⊢ IsPathConnected s
[PROOFSTEP]
refine' isPathConnected_iff.mpr ⟨hne, _⟩
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hconv : Convex ℝ s
hne : Set.Nonempty s
⊢ ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → JoinedIn s x y
[PROOFSTEP]
intro x x_in y y_in
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hconv : Convex ℝ s
hne : Set.Nonempty s
x : E
x_in : x ∈ s
y : E
y_in : y ∈ s
⊢ JoinedIn s x y
[PROOFSTEP]
have H := hconv.segment_subset x_in y_in
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hconv : Convex ℝ s
hne : Set.Nonempty s
x : E
x_in : x ∈ s
y : E
y_in : y ∈ s
H : [x-[ℝ]y] ⊆ s
⊢ JoinedIn s x y
[PROOFSTEP]
rw [segment_eq_image_lineMap] at H
[GOAL]
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
s : Set E
hconv : Convex ℝ s
hne : Set.Nonempty s
x : E
x_in : x ∈ s
y : E
y_in : y ∈ s
H : ↑(lineMap x y) '' Icc 0 1 ⊆ s
⊢ JoinedIn s x y
[PROOFSTEP]
exact JoinedIn.ofLine AffineMap.lineMap_continuous.continuousOn (lineMap_apply_zero _ _) (lineMap_apply_one _ _) H
| {"mathlib_filename": "Mathlib.Analysis.Convex.Topology", "llama_tokens": 10187} |
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
cases' ne_or_eq (affineSpan ℝ s) ⊤ with hspan hspan
[GOAL]
case inl
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
hspan : affineSpan ℝ s ≠ ⊤
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
refine' measure_mono_null _ (addHaar_affineSubspace _ _ hspan)
[GOAL]
case inl
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
hspan : affineSpan ℝ s ≠ ⊤
⊢ frontier s ⊆ ↑(affineSpan ℝ s)
[PROOFSTEP]
exact
frontier_subset_closure.trans (closure_minimal (subset_affineSpan _ _) (affineSpan ℝ s).closed_of_finiteDimensional)
[GOAL]
case inr
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
hspan : affineSpan ℝ s = ⊤
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
rw [← hs.interior_nonempty_iff_affineSpan_eq_top] at hspan
[GOAL]
case inr
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
hspan : Set.Nonempty (interior s)
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
rcases hspan with
⟨x, hx⟩
/- Without loss of generality, `s` is bounded. Indeed, `∂s ⊆ ⋃ n, ∂(s ∩ ball x (n + 1))`, hence it
suffices to prove that `∀ n, μ (s ∩ ball x (n + 1)) = 0`; the latter set is bounded.
-/
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
suffices H : ∀ t : Set E, Convex ℝ t → x ∈ interior t → Bounded t → μ (frontier t) = 0
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
let B : ℕ → Set E := fun n => ball x (n + 1)
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
have : μ (⋃ n : ℕ, frontier (s ∩ B n)) = 0 :=
by
refine' measure_iUnion_null fun n => H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _))
rw [interior_inter, isOpen_ball.interior_eq]
exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
⊢ ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0
[PROOFSTEP]
refine' measure_iUnion_null fun n => H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _))
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
n : ℕ
⊢ x ∈ interior (s ∩ B n)
[PROOFSTEP]
rw [interior_inter, isOpen_ball.interior_eq]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
n : ℕ
⊢ x ∈ interior s ∩ ball x (↑n + 1)
[PROOFSTEP]
exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
this : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
refine' measure_mono_null (fun y hy => _) this
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
this : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0
y : E
hy : y ∈ frontier s
⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)
[PROOFSTEP]
clear this
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)
[PROOFSTEP]
set N : ℕ := ⌊dist y x⌋₊
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)
[PROOFSTEP]
refine' mem_iUnion.2 ⟨N, _⟩
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
⊢ y ∈ frontier (s ∩ B N)
[PROOFSTEP]
have hN : y ∈ B N := by simp [Nat.lt_floor_add_one]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
⊢ y ∈ B N
[PROOFSTEP]
simp [Nat.lt_floor_add_one]
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
hN : y ∈ B N
⊢ y ∈ frontier (s ∩ B N)
[PROOFSTEP]
suffices : y ∈ frontier (s ∩ B N) ∩ B N
[GOAL]
case inr.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
hN : y ∈ B N
this : y ∈ frontier (s ∩ B N) ∩ B N
⊢ y ∈ frontier (s ∩ B N)
case this
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
hN : y ∈ B N
⊢ y ∈ frontier (s ∩ B N) ∩ B N
[PROOFSTEP]
exact this.1
[GOAL]
case this
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
hN : y ∈ B N
⊢ y ∈ frontier (s ∩ B N) ∩ B N
[PROOFSTEP]
rw [frontier_inter_open_inter isOpen_ball]
[GOAL]
case this
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
B : ℕ → Set E := fun n => ball x (↑n + 1)
y : E
hy : y ∈ frontier s
N : ℕ := ⌊dist y x⌋₊
hN : y ∈ B N
⊢ y ∈ frontier s ∩ ball x (↑N + 1)
[PROOFSTEP]
exact ⟨hy, hN⟩
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s : Set E
hs : Convex ℝ s
x : E
hx : x ∈ interior s
⊢ ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0
[PROOFSTEP]
intro s hs hx hb
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : Metric.Bounded s
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
replace hb : μ (interior s) ≠ ∞
[GOAL]
case hb
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : Metric.Bounded s
⊢ ↑↑μ (interior s) ≠ ⊤
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
exact (hb.mono interior_subset).measure_lt_top.ne
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
suffices μ (closure s) ≤ μ (interior s) by
rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb, tsub_eq_zero_iff_le]
/- Due to `Convex.closure_subset_image_homothety_interior_of_one_lt`, for any `r > 1` we have
`closure s ⊆ homothety x r '' interior s`, hence `μ (closure s) ≤ r ^ d * μ (interior s)`,
where `d = finrank ℝ E`. -/
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
this : ↑↑μ (closure s) ≤ ↑↑μ (interior s)
⊢ ↑↑μ (frontier s) = 0
[PROOFSTEP]
rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb, tsub_eq_zero_iff_le]
/- Due to `Convex.closure_subset_image_homothety_interior_of_one_lt`, for any `r > 1` we have
`closure s ⊆ homothety x r '' interior s`, hence `μ (closure s) ≤ r ^ d * μ (interior s)`,
where `d = finrank ℝ E`. -/
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)
[PROOFSTEP]
set d : ℕ := FiniteDimensional.finrank ℝ E
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)
[PROOFSTEP]
have : ∀ r : ℝ≥0, 1 < r → μ (closure s) ≤ ↑(r ^ d) * μ (interior s) :=
by
intro r hr
refine' (measure_mono <| hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _
rw [addHaar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
⊢ ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
[PROOFSTEP]
intro r hr
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
r : ℝ≥0
hr : 1 < r
⊢ ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
[PROOFSTEP]
refine' (measure_mono <| hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
r : ℝ≥0
hr : 1 < r
⊢ ↑↑μ (↑(AffineMap.homothety x ↑r) '' interior s) = ↑(r ^ d) * ↑↑μ (interior s)
[PROOFSTEP]
rw [addHaar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal]
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
this : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)
[PROOFSTEP]
have : ∀ᶠ (r : ℝ≥0) in 𝓝[>] 1, μ (closure s) ≤ ↑(r ^ d) * μ (interior s) := mem_of_superset self_mem_nhdsWithin this
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)
[PROOFSTEP]
refine' ge_of_tendsto _ this
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
⊢ Tendsto (fun c => ↑(c ^ d) * ↑↑μ (interior s)) (𝓝[Ioi 1] 1) (𝓝 (↑↑μ (interior s)))
[PROOFSTEP]
refine'
(((ENNReal.continuous_mul_const hb).comp (ENNReal.continuous_coe.comp (continuous_pow d))).tendsto' _ _ _).mono_left
nhdsWithin_le_nhds
[GOAL]
case H
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : IsAddHaarMeasure μ
s✝ : Set E
hs✝ : Convex ℝ s✝
x : E
hx✝ : x ∈ interior s✝
s : Set E
hs : Convex ℝ s
hx : x ∈ interior s
hb : ↑↑μ (interior s) ≠ ⊤
d : ℕ := finrank ℝ E
this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)
⊢ ((fun x => x * ↑↑μ (interior s)) ∘ ENNReal.some ∘ fun a => a ^ d) 1 = ↑↑μ (interior s)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.Convex.Measure", "llama_tokens": 9601} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ x ∈ ↑(convexHull 𝕜) s ↔ ∀ (t : Set E), s ⊆ t → Convex 𝕜 t → x ∈ t
[PROOFSTEP]
simp_rw [convexHull_eq_iInter, mem_iInter]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ ↑(convexHull 𝕜) s = ∅ ↔ s = ∅
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ ↑(convexHull 𝕜) s = ∅ → s = ∅
[PROOFSTEP]
intro h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
h : ↑(convexHull 𝕜) s = ∅
⊢ s = ∅
[PROOFSTEP]
rw [← Set.subset_empty_iff, ← h]
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
h : ↑(convexHull 𝕜) s = ∅
⊢ s ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
exact subset_convexHull 𝕜 _
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ s = ∅ → ↑(convexHull 𝕜) s = ∅
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
t : Set E
x y : E
⊢ ↑(convexHull 𝕜) ∅ = ∅
[PROOFSTEP]
exact convexHull_empty
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ Set.Nonempty (↑(convexHull 𝕜) s) ↔ Set.Nonempty s
[PROOFSTEP]
rw [nonempty_iff_ne_empty, nonempty_iff_ne_empty, Ne.def, Ne.def]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
⊢ ¬↑(convexHull 𝕜) s = ∅ ↔ ¬s = ∅
[PROOFSTEP]
exact not_congr convexHull_empty_iff
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x✝ y✝ x y : E
⊢ ↑(convexHull 𝕜) {x, y} = segment 𝕜 x y
[PROOFSTEP]
refine
(convexHull_min ?_ <| convex_segment _ _).antisymm
(segment_subset_convexHull (mem_insert _ _) <| subset_insert _ _ <| mem_singleton _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x✝ y✝ x y : E
⊢ {x, y} ⊆ segment 𝕜 x y
[PROOFSTEP]
rw [insert_subset_iff, singleton_subset_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x✝ y✝ x y : E
⊢ x ∈ segment 𝕜 x y ∧ y ∈ segment 𝕜 x y
[PROOFSTEP]
exact ⟨left_mem_segment _ _ _, right_mem_segment _ _ _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ Convex 𝕜 (s \ {x}) ↔ ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ Convex 𝕜 (s \ {x}) → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
rintro hsx hx
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hsx : Convex 𝕜 (s \ {x})
hx : x ∈ ↑(convexHull 𝕜) (s \ {x})
⊢ False
[PROOFSTEP]
rw [hsx.convexHull_eq] at hx
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hsx : Convex 𝕜 (s \ {x})
hx : x ∈ s \ {x}
⊢ False
[PROOFSTEP]
exact hx.2 (mem_singleton _)
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) → Convex 𝕜 (s \ {x})
[PROOFSTEP]
rintro hx
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
⊢ Convex 𝕜 (s \ {x})
[PROOFSTEP]
suffices h : s \ { x } = convexHull 𝕜 (s \ { x })
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
h : s \ {x} = ↑(convexHull 𝕜) (s \ {x})
⊢ Convex 𝕜 (s \ {x})
[PROOFSTEP]
rw [h]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
h : s \ {x} = ↑(convexHull 𝕜) (s \ {x})
⊢ Convex 𝕜 (↑(convexHull 𝕜) (s \ {x}))
[PROOFSTEP]
exact convex_convexHull 𝕜 _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y : E
s : Set E
hs : Convex 𝕜 s
x : E
hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
⊢ s \ {x} = ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
exact
Subset.antisymm (subset_convexHull 𝕜 _) fun y hy =>
⟨convexHull_min (diff_subset _ _) hs hy, by
rintro (rfl : y = x)
exact hx hy⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set E
hs : Convex 𝕜 s
x : E
hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
y : E
hy : y ∈ ↑(convexHull 𝕜) (s \ {x})
⊢ ¬y ∈ {x}
[PROOFSTEP]
rintro (rfl : y = x)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x y✝ : E
s : Set E
hs : Convex 𝕜 s
y : E
hx : ¬y ∈ ↑(convexHull 𝕜) (s \ {y})
hy : y ∈ ↑(convexHull 𝕜) (s \ {y})
⊢ False
[PROOFSTEP]
exact hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ ↑f '' ↑(convexHull 𝕜) s = ↑(convexHull 𝕜) (↑f '' s)
[PROOFSTEP]
apply Set.Subset.antisymm
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ ↑f '' ↑(convexHull 𝕜) s ⊆ ↑(convexHull 𝕜) (↑f '' s)
[PROOFSTEP]
rw [Set.image_subset_iff]
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ ↑(convexHull 𝕜) s ⊆ ↑f ⁻¹' ↑(convexHull 𝕜) (↑f '' s)
[PROOFSTEP]
refine' convexHull_min _ ((convex_convexHull 𝕜 (f '' s)).affine_preimage f)
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ s ⊆ ↑f ⁻¹' ↑(convexHull 𝕜) (↑f '' s)
[PROOFSTEP]
rw [← Set.image_subset_iff]
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ ↑f '' s ⊆ ↑(convexHull 𝕜) (↑f '' s)
[PROOFSTEP]
exact subset_convexHull 𝕜 (f '' s)
[GOAL]
case h₂
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
f : E →ᵃ[𝕜] F
⊢ ↑(convexHull 𝕜) (↑f '' s) ⊆ ↑f '' ↑(convexHull 𝕜) s
[PROOFSTEP]
exact convexHull_min (Set.image_subset _ (subset_convexHull 𝕜 s)) ((convex_convexHull 𝕜 s).affine_image f)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
⊢ affineSpan 𝕜 (↑(convexHull 𝕜) s) = affineSpan 𝕜 s
[PROOFSTEP]
refine' le_antisymm _ (affineSpan_mono 𝕜 (subset_convexHull 𝕜 s))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
⊢ affineSpan 𝕜 (↑(convexHull 𝕜) s) ≤ affineSpan 𝕜 s
[PROOFSTEP]
rw [affineSpan_le]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
⊢ ↑(convexHull 𝕜) s ⊆ ↑(affineSpan 𝕜 s)
[PROOFSTEP]
exact convexHull_subset_affineSpan s
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ s : Set E
⊢ ↑(convexHull 𝕜) (-s) = -↑(convexHull 𝕜) s
[PROOFSTEP]
simp_rw [← image_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ s : Set E
⊢ ↑(convexHull 𝕜) (Neg.neg '' s) = Neg.neg '' ↑(convexHull 𝕜) s
[PROOFSTEP]
exact (AffineMap.image_convexHull _ <| -1).symm
| {"mathlib_filename": "Mathlib.Analysis.Convex.Hull", "llama_tokens": 5555} |
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.962
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : OrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
hf : ConvexOn 𝕜 s f
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : 0 < ∑ i in t, w i
hmem : ∀ (i : ι), i ∈ t → p i ∈ s
⊢ f (centerMass t w p) ≤ centerMass t w (f ∘ p)
[PROOFSTEP]
have hmem' : ∀ i ∈ t, (p i, (f ∘ p) i) ∈ {p : E × β | p.1 ∈ s ∧ f p.1 ≤ p.2} := fun i hi => ⟨hmem i hi, le_rfl⟩
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.962
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : OrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
hf : ConvexOn 𝕜 s f
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : 0 < ∑ i in t, w i
hmem : ∀ (i : ι), i ∈ t → p i ∈ s
hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd}
⊢ f (centerMass t w p) ≤ centerMass t w (f ∘ p)
[PROOFSTEP]
convert (hf.convex_epigraph.centerMass_mem h₀ h₁ hmem').2
[GOAL]
case h.e'_3.h.e'_1
𝕜 : Type u_3
E : Type u_2
F : Type ?u.962
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : OrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
hf : ConvexOn 𝕜 s f
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : 0 < ∑ i in t, w i
hmem : ∀ (i : ι), i ∈ t → p i ∈ s
hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd}
⊢ centerMass t w p = (centerMass t (fun i => w i) fun i => (p i, (f ∘ p) i)).fst
[PROOFSTEP]
simp only [centerMass, Function.comp, Prod.smul_fst, Prod.fst_sum, Prod.smul_snd, Prod.snd_sum]
[GOAL]
case h.e'_4
𝕜 : Type u_3
E : Type u_2
F : Type ?u.962
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : OrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
hf : ConvexOn 𝕜 s f
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : 0 < ∑ i in t, w i
hmem : ∀ (i : ι), i ∈ t → p i ∈ s
hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd}
⊢ centerMass t w (f ∘ p) = (centerMass t (fun i => w i) fun i => (p i, (f ∘ p) i)).snd
[PROOFSTEP]
simp only [centerMass, Function.comp, Prod.smul_fst, Prod.fst_sum, Prod.smul_snd, Prod.snd_sum]
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.21511
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : OrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
hf : ConvexOn 𝕜 s f
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : ∑ i in t, w i = 1
hmem : ∀ (i : ι), i ∈ t → p i ∈ s
⊢ f (∑ i in t, w i • p i) ≤ ∑ i in t, w i • f (p i)
[PROOFSTEP]
simpa only [centerMass, h₁, inv_one, one_smul] using hf.map_centerMass_le h₀ (h₁.symm ▸ zero_lt_one) hmem
[GOAL]
𝕜 : Type u_3
E : Type u_1
F : Type ?u.35782
β : Type u_2
ι : Type ?u.35788
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s✝ : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
s : Finset E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f
hx : x ∈ ↑(convexHull 𝕜) ↑s
⊢ f x ≤ sup' s (_ : Finset.Nonempty s) f
[PROOFSTEP]
obtain ⟨w, hw₀, hw₁, rfl⟩ := mem_convexHull.1 hx
[GOAL]
case intro.intro.intro
𝕜 : Type u_3
E : Type u_1
F : Type ?u.35782
β : Type u_2
ι : Type ?u.35788
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s✝ : Set E
f : E → β
t : Finset ι
w✝ : ι → 𝕜
p : ι → E
s : Finset E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f
w : E → 𝕜
hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y
hw₁ : ∑ y in s, w y = 1
hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s
⊢ f (centerMass s w _root_.id) ≤ sup' s (_ : Finset.Nonempty s) f
[PROOFSTEP]
exact (hf.map_centerMass_le hw₀ (by positivity) <| subset_convexHull _ _).trans (centerMass_le_sup hw₀ <| by positivity)
[GOAL]
𝕜 : Type u_3
E : Type u_1
F : Type ?u.35782
β : Type u_2
ι : Type ?u.35788
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s✝ : Set E
f : E → β
t : Finset ι
w✝ : ι → 𝕜
p : ι → E
s : Finset E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f
w : E → 𝕜
hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y
hw₁ : ∑ y in s, w y = 1
hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s
⊢ 0 < ∑ i in s, w i
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_3
E : Type u_1
F : Type ?u.35782
β : Type u_2
ι : Type ?u.35788
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s✝ : Set E
f : E → β
t : Finset ι
w✝ : ι → 𝕜
p : ι → E
s : Finset E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f
w : E → 𝕜
hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y
hw₁ : ∑ y in s, w y = 1
hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s
⊢ 0 < ∑ i in s, w i
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
⊢ ∃ i, i ∈ t ∧ f (centerMass t w p) ≤ f (p i)
[PROOFSTEP]
set y := t.centerMass w p
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i)
[PROOFSTEP]
obtain ⟨i, hi, hfi⟩ : ∃ i ∈ t.filter fun i => w i ≠ 0, w i • f y ≤ w i • (f ∘ p) i
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i
case intro.intro
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
i : ι
hi : i ∈ filter (fun i => w i ≠ 0) t
hfi : w i • f y ≤ w i • (f ∘ p) i
⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i)
[PROOFSTEP]
rotate_left
[GOAL]
case intro.intro
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
i : ι
hi : i ∈ filter (fun i => w i ≠ 0) t
hfi : w i • f y ≤ w i • (f ∘ p) i
⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i)
[PROOFSTEP]
rw [mem_filter] at hi
[GOAL]
case intro.intro
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
i : ι
hi : i ∈ t ∧ w i ≠ 0
hfi : w i • f y ≤ w i • (f ∘ p) i
⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i)
[PROOFSTEP]
exact ⟨i, hi.1, (smul_le_smul_iff_of_pos <| (hw₀ i hi.1).lt_of_ne hi.2.symm).1 hfi⟩
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i
[PROOFSTEP]
have hw' : (0 : 𝕜) < ∑ i in filter (fun i => w i ≠ 0) t, w i := by rwa [sum_filter_ne_zero]
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
⊢ 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i
[PROOFSTEP]
rwa [sum_filter_ne_zero]
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i
⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i
[PROOFSTEP]
refine' exists_le_of_sum_le (nonempty_of_sum_ne_zero hw'.ne') _
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i
⊢ ∑ i in filter (fun i => w i ≠ 0) t, w i • f y ≤ ∑ i in filter (fun i => w i ≠ 0) t, w i • (f ∘ p) i
[PROOFSTEP]
rw [← sum_smul, ← smul_le_smul_iff_of_pos (inv_pos.2 hw'), inv_smul_smul₀ hw'.ne', ← Finset.centerMass,
Finset.centerMass_filter_ne_zero]
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.90866
β : Type u_1
ι : Type u_4
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x : E
h : ConvexOn 𝕜 s f
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : 0 < ∑ i in t, w i
hp : ∀ (i : ι), i ∈ t → p i ∈ s
y : E := centerMass t w p
hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i
⊢ f y ≤ centerMass t (fun i => w i) fun i => (f ∘ p) i
[PROOFSTEP]
exact h.map_centerMass_le hw₀ hw₁ hp
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.105120
β : Type u_1
ι : Type ?u.105126
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x✝ : E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ ∃ y, y ∈ s ∧ f x ≤ f y
[PROOFSTEP]
rw [_root_.convexHull_eq] at hx
[GOAL]
𝕜 : Type u_3
E : Type u_2
F : Type ?u.105120
β : Type u_1
ι : Type ?u.105126
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t : Finset ι
w : ι → 𝕜
p : ι → E
x✝ : E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f
x : E
hx : x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
⊢ ∃ y, y ∈ s ∧ f x ≤ f y
[PROOFSTEP]
obtain ⟨α, t, w, p, hw₀, hw₁, hp, rfl⟩ := hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_3
E : Type u_2
F : Type ?u.105120
β : Type u_1
ι : Type ?u.105126
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t✝ : Finset ι
w✝ : ι → 𝕜
p✝ : ι → E
x : E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f
α : Type
t : Finset α
w : α → 𝕜
p : α → E
hw₀ : ∀ (i : α), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hp : ∀ (i : α), i ∈ t → p i ∈ s
⊢ ∃ y, y ∈ s ∧ f (centerMass t w p) ≤ f y
[PROOFSTEP]
rcases hf.exists_ge_of_centerMass hw₀ (hw₁.symm ▸ zero_lt_one) fun i hi => subset_convexHull 𝕜 s (hp i hi) with
⟨i, hit, Hi⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_3
E : Type u_2
F : Type ?u.105120
β : Type u_1
ι : Type ?u.105126
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : LinearOrderedAddCommGroup β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
t✝ : Finset ι
w✝ : ι → 𝕜
p✝ : ι → E
x : E
hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f
α : Type
t : Finset α
w : α → 𝕜
p : α → E
hw₀ : ∀ (i : α), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hp : ∀ (i : α), i ∈ t → p i ∈ s
i : α
hit : i ∈ t
Hi : f (centerMass t (fun i => w i) fun i => p i) ≤ f (p i)
⊢ ∃ y, y ∈ s ∧ f (centerMass t w p) ≤ f y
[PROOFSTEP]
exact ⟨p i, hp i hit, Hi⟩
| {"mathlib_filename": "Mathlib.Analysis.Convex.Jensen", "llama_tokens": 7815} |
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
⊢ intrinsicInterior 𝕜 ∅ = ∅
[PROOFSTEP]
simp [intrinsicInterior]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
⊢ intrinsicFrontier 𝕜 ∅ = ∅
[PROOFSTEP]
simp [intrinsicFrontier]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
⊢ intrinsicClosure 𝕜 ∅ = ∅
[PROOFSTEP]
simp [intrinsicClosure]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
⊢ Set.Nonempty (intrinsicClosure 𝕜 s) → Set.Nonempty s
[PROOFSTEP]
simp_rw [nonempty_iff_ne_empty]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
⊢ intrinsicClosure 𝕜 s ≠ ∅ → s ≠ ∅
[PROOFSTEP]
rintro h rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
t : Set P
x : P
h : intrinsicClosure 𝕜 ∅ ≠ ∅
⊢ False
[PROOFSTEP]
exact h intrinsicClosure_empty
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ x : P
⊢ intrinsicInterior 𝕜 {x} = {x}
[PROOFSTEP]
simpa only [intrinsicInterior, preimage_coe_affineSpan_singleton, interior_univ, image_univ, Subtype.range_coe] using
coe_affineSpan_singleton _ _ _
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ x : P
⊢ intrinsicFrontier 𝕜 {x} = ∅
[PROOFSTEP]
rw [intrinsicFrontier, preimage_coe_affineSpan_singleton, frontier_univ, image_empty]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ x : P
⊢ intrinsicClosure 𝕜 {x} = {x}
[PROOFSTEP]
simpa only [intrinsicClosure, preimage_coe_affineSpan_singleton, closure_univ, image_univ, Subtype.range_coe] using
coe_affineSpan_singleton _ _ _
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
h : s ⊆ t
⊢ intrinsicClosure 𝕜 s ⊆ intrinsicClosure 𝕜 t
[PROOFSTEP]
refine' image_subset_iff.2 fun x hx => _
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ : P
h : s ⊆ t
x : { x // x ∈ affineSpan 𝕜 s }
hx : x ∈ closure (Subtype.val ⁻¹' s)
⊢ x ∈ Subtype.val ⁻¹' intrinsicClosure 𝕜 t
[PROOFSTEP]
refine' ⟨Set.inclusion (affineSpan_mono _ h) x, _, rfl⟩
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ : P
h : s ⊆ t
x : { x // x ∈ affineSpan 𝕜 s }
hx : x ∈ closure (Subtype.val ⁻¹' s)
⊢ inclusion (_ : affineSpan 𝕜 s ≤ affineSpan 𝕜 t) x ∈ closure (Subtype.val ⁻¹' t)
[PROOFSTEP]
refine' (continuous_inclusion (affineSpan_mono _ h)).closure_preimage_subset _ (closure_mono _ hx)
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x✝ : P
h : s ⊆ t
x : { x // x ∈ affineSpan 𝕜 s }
hx : x ∈ closure (Subtype.val ⁻¹' s)
⊢ Subtype.val ⁻¹' s ⊆ inclusion (_ : affineSpan 𝕜 s ≤ affineSpan 𝕜 t) ⁻¹' (Subtype.val ⁻¹' t)
[PROOFSTEP]
exact fun y hy => h hy
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
⊢ (fun a => ↑a) '' (closure (Subtype.val ⁻¹' s) \ frontier (Subtype.val ⁻¹' s)) = intrinsicInterior 𝕜 s
[PROOFSTEP]
rw [closure_diff_frontier, intrinsicInterior]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
⊢ intrinsicInterior 𝕜 s ∪ intrinsicFrontier 𝕜 s = intrinsicClosure 𝕜 s
[PROOFSTEP]
simp [intrinsicClosure, intrinsicInterior, intrinsicFrontier, closure_eq_interior_union_frontier, image_union]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
⊢ intrinsicFrontier 𝕜 s ∪ intrinsicInterior 𝕜 s = intrinsicClosure 𝕜 s
[PROOFSTEP]
rw [union_comm, intrinsicInterior_union_intrinsicFrontier]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
hs : IsClosed (Subtype.val ⁻¹' s)
⊢ intrinsicClosure 𝕜 s = s
[PROOFSTEP]
rw [intrinsicClosure, hs.closure_eq, image_preimage_eq_of_subset]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s t : Set P
x : P
hs : IsClosed (Subtype.val ⁻¹' s)
⊢ s ⊆ range Subtype.val
[PROOFSTEP]
exact (subset_affineSpan _ _).trans Subtype.range_coe.superset
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
⊢ intrinsicClosure 𝕜 (intrinsicClosure 𝕜 s) = intrinsicClosure 𝕜 s
[PROOFSTEP]
refine' IsClosed.intrinsicClosure _
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s)
[PROOFSTEP]
set t := affineSpan 𝕜 (intrinsicClosure 𝕜 s) with ht
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t✝ : Set P
x : P
s : Set P
t : AffineSubspace 𝕜 P := affineSpan 𝕜 (intrinsicClosure 𝕜 s)
ht : t = affineSpan 𝕜 (intrinsicClosure 𝕜 s)
⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s)
[PROOFSTEP]
clear_value t
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t✝ : Set P
x : P
s : Set P
t : AffineSubspace 𝕜 P
ht : t = affineSpan 𝕜 (intrinsicClosure 𝕜 s)
⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s)
[PROOFSTEP]
obtain rfl := ht.trans (affineSpan_intrinsicClosure _)
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
ht : affineSpan 𝕜 s = affineSpan 𝕜 (intrinsicClosure 𝕜 s)
⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s)
[PROOFSTEP]
rw [intrinsicClosure, preimage_image_eq _ Subtype.coe_injective]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁴ : Ring 𝕜
inst✝³ : AddCommGroup V
inst✝² : Module 𝕜 V
inst✝¹ : TopologicalSpace P
inst✝ : AddTorsor V P
s✝ t : Set P
x : P
s : Set P
ht : affineSpan 𝕜 s = affineSpan 𝕜 (intrinsicClosure 𝕜 s)
⊢ IsClosed (closure (Subtype.val ⁻¹' s))
[PROOFSTEP]
exact isClosed_closure
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
⊢ intrinsicInterior 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicInterior 𝕜 ∅
[PROOFSTEP]
simp only [intrinsicInterior_empty, image_empty]
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s
[PROOFSTEP]
haveI : Nonempty s := hs.to_subtype
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s
[PROOFSTEP]
let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s
[PROOFSTEP]
have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this✝ : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val
⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s
[PROOFSTEP]
rw [intrinsicInterior, intrinsicInterior, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ←
Function.comp.assoc, image_comp, image_comp, f.symm.image_interior, f.image_symm, ← preimage_comp,
Function.comp.assoc, f.symm_comp_self, AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp,
φ.injective.preimage_image]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
⊢ intrinsicFrontier 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicFrontier 𝕜 ∅
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s
[PROOFSTEP]
haveI : Nonempty s := hs.to_subtype
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s
[PROOFSTEP]
let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s
[PROOFSTEP]
have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this✝ : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val
⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s
[PROOFSTEP]
rw [intrinsicFrontier, intrinsicFrontier, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ←
Function.comp.assoc, image_comp, image_comp, f.symm.image_frontier, f.image_symm, ← preimage_comp,
Function.comp.assoc, f.symm_comp_self, AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp,
φ.injective.preimage_image]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
⊢ intrinsicClosure 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicClosure 𝕜 ∅
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s
[PROOFSTEP]
haveI : Nonempty s := hs.to_subtype
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s
[PROOFSTEP]
let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s
[PROOFSTEP]
have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply
[GOAL]
case inr
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁸ : NormedField 𝕜
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : SeminormedAddCommGroup W
inst✝⁵ : NormedSpace 𝕜 V
inst✝⁴ : NormedSpace 𝕜 W
inst✝³ : MetricSpace P
inst✝² : PseudoMetricSpace Q
inst✝¹ : NormedAddTorsor V P
inst✝ : NormedAddTorsor W Q
φ : P →ᵃⁱ[𝕜] Q
s : Set P
hs : Set.Nonempty s
this✝ : Nonempty ↑s
f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } :=
AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s))
this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val
⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s
[PROOFSTEP]
rw [intrinsicClosure, intrinsicClosure, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ← Function.comp.assoc,
image_comp, image_comp, f.symm.image_closure, f.image_symm, ← preimage_comp, Function.comp.assoc, f.symm_comp_self,
AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp, φ.injective.preimage_image]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
⊢ intrinsicClosure 𝕜 s = closure s
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
⊢ x ∈ intrinsicClosure 𝕜 s ↔ x ∈ closure s
[PROOFSTEP]
simp only [mem_closure_iff, mem_intrinsicClosure]
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
⊢ (∃ y, (∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → y ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)) ∧ ↑y = x) ↔
∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
[PROOFSTEP]
refine' ⟨_, fun h => ⟨⟨x, _⟩, _, Subtype.coe_mk _ _⟩⟩
[GOAL]
case h.refine'_1
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
⊢ (∃ y, (∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → y ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)) ∧ ↑y = x) →
∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
[PROOFSTEP]
rintro ⟨x, h, rfl⟩ t ht hx
[GOAL]
case h.refine'_1.intro.intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : { x // x ∈ affineSpan 𝕜 s }
h : ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → x ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)
t : Set P
ht : IsOpen t
hx : ↑x ∈ t
⊢ Set.Nonempty (t ∩ s)
[PROOFSTEP]
obtain ⟨z, hz₁, hz₂⟩ := h _ (continuous_induced_dom.isOpen_preimage t ht) hx
[GOAL]
case h.refine'_1.intro.intro.intro.intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : { x // x ∈ affineSpan 𝕜 s }
h : ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → x ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)
t : Set P
ht : IsOpen t
hx : ↑x ∈ t
z : { x // x ∈ affineSpan 𝕜 s }
hz₁ : z ∈ Subtype.val ⁻¹' t
hz₂ : z ∈ Subtype.val ⁻¹' s
⊢ Set.Nonempty (t ∩ s)
[PROOFSTEP]
exact ⟨z, hz₁, hz₂⟩
[GOAL]
case h.refine'_2
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
⊢ ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }),
IsOpen o → { val := x, property := ?h.refine'_3 } ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)
[PROOFSTEP]
rintro _ ⟨t, ht, rfl⟩ hx
[GOAL]
case h.refine'_2.intro.intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
t : Set P
ht : IsOpen t
hx : { val := x, property := ?h.refine'_3 } ∈ Subtype.val ⁻¹' t
⊢ Set.Nonempty (Subtype.val ⁻¹' t ∩ Subtype.val ⁻¹' s)
[PROOFSTEP]
obtain ⟨y, hyt, hys⟩ := h _ ht hx
[GOAL]
case h.refine'_2.intro.intro.intro.intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
t : Set P
ht : IsOpen t
hx : { val := x, property := ?h.refine'_3 } ∈ Subtype.val ⁻¹' t
y : P
hyt : y ∈ t
hys : y ∈ s
⊢ Set.Nonempty (Subtype.val ⁻¹' t ∩ Subtype.val ⁻¹' s)
[PROOFSTEP]
exact ⟨⟨_, subset_affineSpan 𝕜 s hys⟩, hyt, hys⟩
[GOAL]
case h.refine'_3
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
⊢ x ∈ ↑(affineSpan 𝕜 s)
[PROOFSTEP]
by_contra hc
[GOAL]
case h.refine'_3
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
hc : ¬x ∈ ↑(affineSpan 𝕜 s)
⊢ False
[PROOFSTEP]
obtain ⟨z, hz₁, hz₂⟩ := h _ (affineSpan 𝕜 s).closed_of_finiteDimensional.isOpen_compl hc
[GOAL]
case h.refine'_3.intro.intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : CompleteSpace 𝕜
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace 𝕜 V
inst✝² : FiniteDimensional 𝕜 V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s : Set P
x : P
h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s)
hc : ¬x ∈ ↑(affineSpan 𝕜 s)
z : P
hz₁ : z ∈ (↑(affineSpan 𝕜 s))ᶜ
hz₂ : z ∈ s
⊢ False
[PROOFSTEP]
exact hz₁ (subset_affineSpan 𝕜 s hz₂)
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
α : Type u_6
β : Type u_7
inst✝¹ : TopologicalSpace α
inst✝ : TopologicalSpace β
φ : α ≃ₜ β
s : Set β
⊢ Set.Nonempty (interior s) ↔ Set.Nonempty (interior (↑φ ⁻¹' s))
[PROOFSTEP]
rw [← φ.image_symm, ← φ.symm.image_interior, nonempty_image_iff]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hscv : Convex ℝ s
hsne : Set.Nonempty s
⊢ Set.Nonempty (intrinsicInterior ℝ s)
[PROOFSTEP]
haveI := hsne.coe_sort
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hscv : Convex ℝ s
hsne : Set.Nonempty s
this : Nonempty ↑s
⊢ Set.Nonempty (intrinsicInterior ℝ s)
[PROOFSTEP]
obtain ⟨p, hp⟩ := hsne
[GOAL]
case intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hscv : Convex ℝ s
this : Nonempty ↑s
p : V
hp : p ∈ s
⊢ Set.Nonempty (intrinsicInterior ℝ s)
[PROOFSTEP]
let p' : _root_.affineSpan ℝ s := ⟨p, subset_affineSpan _ _ hp⟩
[GOAL]
case intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hscv : Convex ℝ s
this : Nonempty ↑s
p : V
hp : p ∈ s
p' : { x // x ∈ _root_.affineSpan ℝ s } := { val := p, property := (_ : p ∈ ↑(_root_.affineSpan ℝ s)) }
⊢ Set.Nonempty (intrinsicInterior ℝ s)
[PROOFSTEP]
rw [intrinsicInterior, nonempty_image_iff, aux (AffineIsometryEquiv.constVSub ℝ p').symm.toHomeomorph,
Convex.interior_nonempty_iff_affineSpan_eq_top, AffineIsometryEquiv.coe_toHomeomorph, ←
AffineIsometryEquiv.coe_toAffineEquiv, ← comap_span, affineSpan_coe_preimage_eq_top, comap_top]
[GOAL]
case intro
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hscv : Convex ℝ s
this : Nonempty ↑s
p : V
hp : p ∈ s
p' : { x // x ∈ _root_.affineSpan ℝ s } := { val := p, property := (_ : p ∈ ↑(_root_.affineSpan ℝ s)) }
⊢ Convex ℝ
(↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.symm (AffineIsometryEquiv.constVSub ℝ p'))) ⁻¹'
(Subtype.val ⁻¹' s))
[PROOFSTEP]
exact
hscv.affine_preimage
((_root_.affineSpan ℝ s).subtype.comp (AffineIsometryEquiv.constVSub ℝ p').symm.toAffineEquiv.toAffineMap)
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hs : Convex ℝ s
⊢ Set.Nonempty (intrinsicInterior ℝ s) → Set.Nonempty s
[PROOFSTEP]
simp_rw [nonempty_iff_ne_empty]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set V
hs : Convex ℝ s
⊢ intrinsicInterior ℝ s ≠ ∅ → s ≠ ∅
[PROOFSTEP]
rintro h rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
Q : Type u_4
P : Type u_5
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
hs : Convex ℝ ∅
h : intrinsicInterior ℝ ∅ ≠ ∅
⊢ False
[PROOFSTEP]
exact h intrinsicInterior_empty
| {"mathlib_filename": "Mathlib.Analysis.Convex.Intrinsic", "llama_tokens": 14182} |
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
n : σ →₀ ℕ
⊢ monomial R n = LinearMap.stdBasis R (fun x => R) n
[PROOFSTEP]
rw [monomial]
-- unify the `Decidable` arguments
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
n : σ →₀ ℕ
⊢ LinearMap.stdBasis R (fun x => R) n = LinearMap.stdBasis R (fun x => R) n
[PROOFSTEP]
convert rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
m n : σ →₀ ℕ
a : R
⊢ ↑(coeff R m) (↑(monomial R n) a) = if m = n then a else 0
[PROOFSTEP]
rw [coeff, monomial_def, LinearMap.proj_apply]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
m n : σ →₀ ℕ
a : R
⊢ ↑(LinearMap.stdBasis R (fun x => R) n) a m = if m = n then a else 0
[PROOFSTEP]
dsimp only
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
m n : σ →₀ ℕ
a : R
⊢ ↑(LinearMap.stdBasis R (fun x => R) n) a m = if m = n then a else 0
[PROOFSTEP]
rw [LinearMap.stdBasis_apply, Function.update_apply, Pi.zero_apply]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
n : σ →₀ ℕ
a : R
⊢ ↑(coeff R n) (↑(monomial R n) a) = a
[PROOFSTEP]
rw [monomial_def]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
n : σ →₀ ℕ
a : R
⊢ ↑(coeff R n) (↑(LinearMap.stdBasis R (fun x => R) n) a) = a
[PROOFSTEP]
exact LinearMap.stdBasis_same R (fun _ ↦ R) n a
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
h : m ≠ n
a : R
⊢ ↑(coeff R m) (↑(monomial R n) a) = 0
[PROOFSTEP]
rw [monomial_def]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
h : m ≠ n
a : R
⊢ ↑(coeff R m) (↑(LinearMap.stdBasis R (fun x => R) n) a) = 0
[PROOFSTEP]
exact LinearMap.stdBasis_ne R (fun _ ↦ R) _ _ h a
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
⊢ AddMonoid (MvPowerSeries σ R)
[PROOFSTEP]
infer_instance
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
src✝ : AddMonoid (MvPowerSeries σ R) :=
let_fun this := inferInstance;
this
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp [Nat.cast]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
src✝ : AddMonoid (MvPowerSeries σ R) :=
let_fun this := inferInstance;
this
⊢ ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
[PROOFSTEP]
simp [Nat.cast, monomial_zero_one]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
inst✝ : DecidableEq σ
⊢ ↑(coeff R n) (φ * ψ) = ∑ p in antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ
[PROOFSTEP]
refine Finset.sum_congr ?_ fun _ _ => rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
inst✝ : DecidableEq σ
⊢ antidiagonal n = antidiagonal n
[PROOFSTEP]
rw [Subsingleton.elim (fun a b => propDecidable (a = b)) ‹DecidableEq σ›]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (0 * φ) = ↑(coeff R n) 0
[PROOFSTEP]
simp [coeff_mul]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (φ * 0) = ↑(coeff R n) 0
[PROOFSTEP]
simp [coeff_mul]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R m) (↑(monomial R n) a * φ) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0
[PROOFSTEP]
have : ∀ p ∈ antidiagonal m, coeff R (p : (σ →₀ ℕ) × (σ →₀ ℕ)).1 (monomial R n a) * coeff R p.2 φ ≠ 0 → p.1 = n :=
fun p _ hp => eq_of_coeff_monomial_ne_zero (left_ne_zero_of_mul hp)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
this :
∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)),
p ∈ antidiagonal m → ↑(coeff R p.fst) (↑(monomial R n) a) * ↑(coeff R p.snd) φ ≠ 0 → p.fst = n
⊢ ↑(coeff R m) (↑(monomial R n) a * φ) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0
[PROOFSTEP]
rw [coeff_mul, ← Finset.sum_filter_of_ne this, antidiagonal_filter_fst_eq, Finset.sum_ite_index]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
this :
∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)),
p ∈ antidiagonal m → ↑(coeff R p.fst) (↑(monomial R n) a) * ↑(coeff R p.snd) φ ≠ 0 → p.fst = n
⊢ (if n ≤ m then ∑ x in {(n, m - n)}, ↑(coeff R x.fst) (↑(monomial R n) a) * ↑(coeff R x.snd) φ
else ∑ x in ∅, ↑(coeff R x.fst) (↑(monomial R n) a) * ↑(coeff R x.snd) φ) =
if n ≤ m then a * ↑(coeff R (m - n)) φ else 0
[PROOFSTEP]
simp only [Finset.sum_singleton, coeff_monomial_same, Finset.sum_empty]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = if n ≤ m then ↑(coeff R (m - n)) φ * a else 0
[PROOFSTEP]
have : ∀ p ∈ antidiagonal m, coeff R (p : (σ →₀ ℕ) × (σ →₀ ℕ)).1 φ * coeff R p.2 (monomial R n a) ≠ 0 → p.2 = n :=
fun p _ hp => eq_of_coeff_monomial_ne_zero (right_ne_zero_of_mul hp)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
this :
∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)),
p ∈ antidiagonal m → ↑(coeff R p.fst) φ * ↑(coeff R p.snd) (↑(monomial R n) a) ≠ 0 → p.snd = n
⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = if n ≤ m then ↑(coeff R (m - n)) φ * a else 0
[PROOFSTEP]
rw [coeff_mul, ← Finset.sum_filter_of_ne this, antidiagonal_filter_snd_eq, Finset.sum_ite_index]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
this :
∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)),
p ∈ antidiagonal m → ↑(coeff R p.fst) φ * ↑(coeff R p.snd) (↑(monomial R n) a) ≠ 0 → p.snd = n
⊢ (if n ≤ m then ∑ x in {(m - n, n)}, ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (↑(monomial R n) a)
else ∑ x in ∅, ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (↑(monomial R n) a)) =
if n ≤ m then ↑(coeff R (m - n)) φ * a else 0
[PROOFSTEP]
simp only [Finset.sum_singleton, coeff_monomial_same, Finset.sum_empty]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R (m + n)) (↑(monomial R m) a * φ) = a * ↑(coeff R n) φ
[PROOFSTEP]
rw [coeff_monomial_mul, if_pos, add_tsub_cancel_left]
[GOAL]
case hc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ m ≤ m + n
[PROOFSTEP]
exact le_add_right le_rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R (m + n)) (φ * ↑(monomial R n) a) = ↑(coeff R m) φ * a
[PROOFSTEP]
rw [coeff_mul_monomial, if_pos, add_tsub_cancel_right]
[GOAL]
case hc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
⊢ n ≤ m + n
[PROOFSTEP]
exact le_add_left le_rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
⊢ Commute φ (↑(monomial R n) a) ↔ ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
[PROOFSTEP]
refine' ext_iff.trans ⟨fun h m => _, fun h m => _⟩
[GOAL]
case refine'_1
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (n_1 : σ →₀ ℕ), ↑(coeff R n_1) (φ * ↑(monomial R n) a) = ↑(coeff R n_1) (↑(monomial R n) a * φ)
m : σ →₀ ℕ
⊢ Commute (↑(coeff R m) φ) a
[PROOFSTEP]
have := h (m + n)
[GOAL]
case refine'_1
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (n_1 : σ →₀ ℕ), ↑(coeff R n_1) (φ * ↑(monomial R n) a) = ↑(coeff R n_1) (↑(monomial R n) a * φ)
m : σ →₀ ℕ
this : ↑(coeff R (m + n)) (φ * ↑(monomial R n) a) = ↑(coeff R (m + n)) (↑(monomial R n) a * φ)
⊢ Commute (↑(coeff R m) φ) a
[PROOFSTEP]
rwa [coeff_add_mul_monomial, add_comm, coeff_add_monomial_mul] at this
[GOAL]
case refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
m : σ →₀ ℕ
⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = ↑(coeff R m) (↑(monomial R n) a * φ)
[PROOFSTEP]
rw [coeff_mul_monomial, coeff_monomial_mul]
[GOAL]
case refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
m : σ →₀ ℕ
⊢ (if n ≤ m then ↑(coeff R (m - n)) φ * a else 0) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0
[PROOFSTEP]
split_ifs <;> [apply h; rfl]
[GOAL]
case refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
m : σ →₀ ℕ
⊢ (if n ≤ m then ↑(coeff R (m - n)) φ * a else 0) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
m : σ →₀ ℕ
h✝ : n ≤ m
⊢ ↑(coeff R (m - n)) φ * a = a * ↑(coeff R (m - n)) φ
[PROOFSTEP]
apply h
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m✝ n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
a : R
n : σ →₀ ℕ
h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a
m : σ →₀ ℕ
h✝ : ¬n ≤ m
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (1 * φ) = ↑(coeff R n) φ
[PROOFSTEP]
simpa using coeff_add_monomial_mul 0 n φ 1
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (φ * 1) = ↑(coeff R n) φ
[PROOFSTEP]
simpa using coeff_add_mul_monomial n 0 φ 1
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (φ₁ * (φ₂ + φ₃)) = ↑(coeff R n) (φ₁ * φ₂ + φ₁ * φ₃)
[PROOFSTEP]
simp only [coeff_mul, mul_add, Finset.sum_add_distrib, LinearMap.map_add]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) ((φ₁ + φ₂) * φ₃) = ↑(coeff R n) (φ₁ * φ₃ + φ₂ * φ₃)
[PROOFSTEP]
simp only [coeff_mul, add_mul, Finset.sum_add_distrib, LinearMap.map_add]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
⊢ φ₁ * φ₂ * φ₃ = φ₁ * (φ₂ * φ₃)
[PROOFSTEP]
ext1 n
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (φ₁ * φ₂ * φ₃) = ↑(coeff R n) (φ₁ * (φ₂ * φ₃))
[PROOFSTEP]
simp only [coeff_mul, Finset.sum_mul, Finset.mul_sum, Finset.sum_sigma']
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∑ x in Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst,
↑(coeff R x.snd.fst) φ₁ * ↑(coeff R x.snd.snd) φ₂ * ↑(coeff R x.fst.snd) φ₃ =
∑ x in Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd,
↑(coeff R x.fst.fst) φ₁ * (↑(coeff R x.snd.fst) φ₂ * ↑(coeff R x.snd.snd) φ₃)
[PROOFSTEP]
refine' Finset.sum_bij (fun p _ => ⟨(p.2.1, p.2.2 + p.1.2), (p.2.2, p.1.2)⟩) _ _ _ _
[GOAL]
case h.refine'_1
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ))
(ha : a ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst),
(fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha ∈
Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd
[PROOFSTEP]
simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop]
[GOAL]
case h.refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ))
(ha : a ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst),
↑(coeff R a.snd.fst) φ₁ * ↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃ =
↑(coeff R
((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha).fst.fst)
φ₁ *
(↑(coeff R
((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a
ha).snd.fst)
φ₂ *
↑(coeff R
((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a
ha).snd.snd)
φ₃)
[PROOFSTEP]
simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop]
[GOAL]
case h.refine'_3
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a₁ a₂ : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ))
(ha₁ : a₁ ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst)
(ha₂ : a₂ ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst),
(fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a₁ ha₁ =
(fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a₂ ha₂ →
a₁ = a₂
[PROOFSTEP]
simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop]
[GOAL]
case h.refine'_4
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (b : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)),
(b ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd) →
∃ a ha, b = (fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha
[PROOFSTEP]
simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop]
[GOAL]
case h.refine'_1
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)),
a.fst.fst + a.fst.snd = n → a.snd.fst + a.snd.snd = a.fst.fst → a.snd.fst + (a.snd.snd + a.fst.snd) = n ∧ True
[PROOFSTEP]
rintro ⟨⟨i, j⟩, ⟨k, l⟩⟩
[GOAL]
case h.refine'_1.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n i j k l : σ →₀ ℕ
⊢ { fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n →
{ fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd =
{ fst := (i, j), snd := (k, l) }.fst.fst →
{ fst := (i, j), snd := (k, l) }.snd.fst +
({ fst := (i, j), snd := (k, l) }.snd.snd + { fst := (i, j), snd := (k, l) }.fst.snd) =
n ∧
True
[PROOFSTEP]
dsimp only
[GOAL]
case h.refine'_1.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n i j k l : σ →₀ ℕ
⊢ i + j = n → k + l = i → k + (l + j) = n ∧ True
[PROOFSTEP]
rintro rfl rfl
[GOAL]
case h.refine'_1.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
j k l : σ →₀ ℕ
⊢ k + (l + j) = k + l + j ∧ True
[PROOFSTEP]
simp [add_assoc]
[GOAL]
case h.refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)),
a.fst.fst + a.fst.snd = n →
a.snd.fst + a.snd.snd = a.fst.fst →
↑(coeff R a.snd.fst) φ₁ * ↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃ =
↑(coeff R a.snd.fst) φ₁ * (↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃)
[PROOFSTEP]
rintro ⟨⟨a, b⟩, ⟨c, d⟩⟩
[GOAL]
case h.refine'_2.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n a b c d : σ →₀ ℕ
⊢ { fst := (a, b), snd := (c, d) }.fst.fst + { fst := (a, b), snd := (c, d) }.fst.snd = n →
{ fst := (a, b), snd := (c, d) }.snd.fst + { fst := (a, b), snd := (c, d) }.snd.snd =
{ fst := (a, b), snd := (c, d) }.fst.fst →
↑(coeff R { fst := (a, b), snd := (c, d) }.snd.fst) φ₁ * ↑(coeff R { fst := (a, b), snd := (c, d) }.snd.snd) φ₂ *
↑(coeff R { fst := (a, b), snd := (c, d) }.fst.snd) φ₃ =
↑(coeff R { fst := (a, b), snd := (c, d) }.snd.fst) φ₁ *
(↑(coeff R { fst := (a, b), snd := (c, d) }.snd.snd) φ₂ *
↑(coeff R { fst := (a, b), snd := (c, d) }.fst.snd) φ₃)
[PROOFSTEP]
dsimp only
[GOAL]
case h.refine'_2.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n a b c d : σ →₀ ℕ
⊢ a + b = n →
c + d = a →
↑(coeff R c) φ₁ * ↑(coeff R d) φ₂ * ↑(coeff R b) φ₃ = ↑(coeff R c) φ₁ * (↑(coeff R d) φ₂ * ↑(coeff R b) φ₃)
[PROOFSTEP]
rintro rfl rfl
[GOAL]
case h.refine'_2.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
b c d : σ →₀ ℕ
⊢ ↑(coeff R c) φ₁ * ↑(coeff R d) φ₂ * ↑(coeff R b) φ₃ = ↑(coeff R c) φ₁ * (↑(coeff R d) φ₂ * ↑(coeff R b) φ₃)
[PROOFSTEP]
apply mul_assoc
[GOAL]
case h.refine'_3
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (a₁ a₂ : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)),
a₁.fst.fst + a₁.fst.snd = n →
a₁.snd.fst + a₁.snd.snd = a₁.fst.fst →
a₂.fst.fst + a₂.fst.snd = n →
a₂.snd.fst + a₂.snd.snd = a₂.fst.fst →
{ fst := (a₁.snd.fst, a₁.snd.snd + a₁.fst.snd), snd := (a₁.snd.snd, a₁.fst.snd) } =
{ fst := (a₂.snd.fst, a₂.snd.snd + a₂.fst.snd), snd := (a₂.snd.snd, a₂.fst.snd) } →
a₁ = a₂
[PROOFSTEP]
rintro ⟨⟨a, b⟩, ⟨c, d⟩⟩ ⟨⟨i, j⟩, ⟨k, l⟩⟩
[GOAL]
case h.refine'_3.mk.mk.mk.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n a b c d i j k l : σ →₀ ℕ
⊢ { fst := (a, b), snd := (c, d) }.fst.fst + { fst := (a, b), snd := (c, d) }.fst.snd = n →
{ fst := (a, b), snd := (c, d) }.snd.fst + { fst := (a, b), snd := (c, d) }.snd.snd =
{ fst := (a, b), snd := (c, d) }.fst.fst →
{ fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n →
{ fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd =
{ fst := (i, j), snd := (k, l) }.fst.fst →
{
fst :=
({ fst := (a, b), snd := (c, d) }.snd.fst,
{ fst := (a, b), snd := (c, d) }.snd.snd + { fst := (a, b), snd := (c, d) }.fst.snd),
snd := ({ fst := (a, b), snd := (c, d) }.snd.snd, { fst := (a, b), snd := (c, d) }.fst.snd) } =
{
fst :=
({ fst := (i, j), snd := (k, l) }.snd.fst,
{ fst := (i, j), snd := (k, l) }.snd.snd + { fst := (i, j), snd := (k, l) }.fst.snd),
snd := ({ fst := (i, j), snd := (k, l) }.snd.snd, { fst := (i, j), snd := (k, l) }.fst.snd) } →
{ fst := (a, b), snd := (c, d) } = { fst := (i, j), snd := (k, l) }
[PROOFSTEP]
dsimp only
[GOAL]
case h.refine'_3.mk.mk.mk.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n a b c d i j k l : σ →₀ ℕ
⊢ a + b = n →
c + d = a →
i + j = n →
k + l = i →
{ fst := (c, d + b), snd := (d, b) } = { fst := (k, l + j), snd := (l, j) } →
{ fst := (a, b), snd := (c, d) } = { fst := (i, j), snd := (k, l) }
[PROOFSTEP]
rintro rfl rfl - rfl
[GOAL]
case h.refine'_3.mk.mk.mk.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
b c d j k l : σ →₀ ℕ
⊢ { fst := (c, d + b), snd := (d, b) } = { fst := (k, l + j), snd := (l, j) } →
{ fst := (c + d, b), snd := (c, d) } = { fst := (k + l, j), snd := (k, l) }
[PROOFSTEP]
simp only [Sigma.mk.inj_iff, Prod.mk.injEq, heq_iff_eq, and_imp]
[GOAL]
case h.refine'_3.mk.mk.mk.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
b c d j k l : σ →₀ ℕ
⊢ c = k → d + b = l + j → d = l → b = j → (c + d = k + l ∧ b = j) ∧ c = k ∧ d = l
[PROOFSTEP]
rintro rfl - rfl rfl
[GOAL]
case h.refine'_3.mk.mk.mk.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
b c d : σ →₀ ℕ
⊢ (c + d = c + d ∧ b = b) ∧ c = c ∧ d = d
[PROOFSTEP]
simp only [and_self]
[GOAL]
case h.refine'_4
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (b : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)),
b.fst.fst + b.fst.snd = n →
b.snd.fst + b.snd.snd = b.fst.snd →
∃ a,
(a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧
b = { fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) }
[PROOFSTEP]
rintro ⟨⟨i, j⟩, ⟨k, l⟩⟩
[GOAL]
case h.refine'_4.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n i j k l : σ →₀ ℕ
⊢ { fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n →
{ fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd =
{ fst := (i, j), snd := (k, l) }.fst.snd →
∃ a,
(a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧
{ fst := (i, j), snd := (k, l) } =
{ fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) }
[PROOFSTEP]
dsimp only
[GOAL]
case h.refine'_4.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n✝ : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
n i j k l : σ →₀ ℕ
⊢ i + j = n →
k + l = j →
∃ a,
(a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧
{ fst := (i, j), snd := (k, l) } =
{ fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) }
[PROOFSTEP]
rintro rfl rfl
[GOAL]
case h.refine'_4.mk.mk.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
i k l : σ →₀ ℕ
⊢ ∃ a,
(a.fst.fst + a.fst.snd = i + (k + l) ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧
{ fst := (i, k + l), snd := (k, l) } =
{ fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) }
[PROOFSTEP]
refine' ⟨⟨(i + k, l), (i, k)⟩, _, _⟩
[GOAL]
case h.refine'_4.mk.mk.mk.refine'_1
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
i k l : σ →₀ ℕ
⊢ { fst := (i + k, l), snd := (i, k) }.fst.fst + { fst := (i + k, l), snd := (i, k) }.fst.snd = i + (k + l) ∧
{ fst := (i + k, l), snd := (i, k) }.snd.fst + { fst := (i + k, l), snd := (i, k) }.snd.snd =
{ fst := (i + k, l), snd := (i, k) }.fst.fst
[PROOFSTEP]
simp [add_assoc]
[GOAL]
case h.refine'_4.mk.mk.mk.refine'_2
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R
i k l : σ →₀ ℕ
⊢ { fst := (i, k + l), snd := (k, l) } =
{
fst :=
({ fst := (i + k, l), snd := (i, k) }.snd.fst,
{ fst := (i + k, l), snd := (i, k) }.snd.snd + { fst := (i + k, l), snd := (i, k) }.fst.snd),
snd := ({ fst := (i + k, l), snd := (i, k) }.snd.snd, { fst := (i + k, l), snd := (i, k) }.fst.snd) }
[PROOFSTEP]
simp [add_assoc]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
⊢ Semiring (MvPowerSeries σ R)
[PROOFSTEP]
infer_instance
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
src✝ : Semiring (MvPowerSeries σ R) :=
let_fun this := inferInstance;
this
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑(coeff R n) (φ * ψ) = ↑(coeff R n) (ψ * φ)
[PROOFSTEP]
simpa only [coeff_mul, mul_comm] using sum_antidiagonal_swap n fun a b => coeff R a φ * coeff R b ψ
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
⊢ ↑(monomial R m) a * ↑(monomial R n) b = ↑(monomial R (m + n)) (a * b)
[PROOFSTEP]
ext k
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
⊢ ↑(coeff R k) (↑(monomial R m) a * ↑(monomial R n) b) = ↑(coeff R k) (↑(monomial R (m + n)) (a * b))
[PROOFSTEP]
simp only [coeff_mul_monomial, coeff_monomial]
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
⊢ (if n ≤ k then (if k - n = m then a else 0) * b else 0) = if k = m + n then a * b else 0
[PROOFSTEP]
split_ifs with h₁ h₂ h₃ h₃ h₂
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : k = m + n
⊢ a * b = a * b
[PROOFSTEP]
try rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : k = m + n
⊢ a * b = a * b
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : ¬k = m + n
⊢ a * b = 0
[PROOFSTEP]
try rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : ¬k = m + n
⊢ a * b = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : k = m + n
⊢ 0 * b = a * b
[PROOFSTEP]
try rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : k = m + n
⊢ 0 * b = a * b
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : ¬k = m + n
⊢ 0 * b = 0
[PROOFSTEP]
try rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : ¬k = m + n
⊢ 0 * b = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ k
h₂ : k = m + n
⊢ 0 = a * b
[PROOFSTEP]
try rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ k
h₂ : k = m + n
⊢ 0 = a * b
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ k
h₂ : ¬k = m + n
⊢ 0 = 0
[PROOFSTEP]
try rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ k
h₂ : ¬k = m + n
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : ¬k = m + n
⊢ a * b = 0
[PROOFSTEP]
rw [← h₂, tsub_add_cancel_of_le h₁] at h₃
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : k - n = m
h₃ : ¬k = k
⊢ a * b = 0
[PROOFSTEP]
exact (h₃ rfl).elim
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : k = m + n
⊢ 0 * b = a * b
[PROOFSTEP]
rw [h₃, add_tsub_cancel_right] at h₂
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬m = m
h₃ : k = m + n
⊢ 0 * b = a * b
[PROOFSTEP]
exact (h₂ rfl).elim
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : n ≤ k
h₂ : ¬k - n = m
h₃ : ¬k = m + n
⊢ 0 * b = 0
[PROOFSTEP]
exact zero_mul b
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ k
h₂ : k = m + n
⊢ 0 = a * b
[PROOFSTEP]
rw [h₂] at h₁
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
m n : σ →₀ ℕ
a b : R
k : σ →₀ ℕ
h₁ : ¬n ≤ m + n
h₂ : k = m + n
⊢ 0 = a * b
[PROOFSTEP]
exact (h₁ <| le_add_left le_rfl).elim
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
s t : σ
⊢ ↑(coeff R (single t 1)) (X s) = if t = s then 1 else 0
[PROOFSTEP]
simp only [coeff_X, single_left_inj (one_ne_zero : (1 : ℕ) ≠ 0)]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
⊢ ↑(coeff R 0) (X s) = 0
[PROOFSTEP]
rw [coeff_X, if_neg]
[GOAL]
case hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
⊢ ¬0 = single s 1
[PROOFSTEP]
intro h
[GOAL]
case hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
h : 0 = single s 1
⊢ False
[PROOFSTEP]
exact one_ne_zero (single_eq_zero.mp h.symm)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
⊢ X s ^ n = ↑(monomial R (single s n)) 1
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
⊢ X s ^ Nat.zero = ↑(monomial R (single s Nat.zero)) 1
[PROOFSTEP]
simp
[GOAL]
case succ
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
ih : X s ^ n = ↑(monomial R (single s n)) 1
⊢ X s ^ Nat.succ n = ↑(monomial R (single s (Nat.succ n))) 1
[PROOFSTEP]
rw [pow_succ', ih, Nat.succ_eq_add_one, Finsupp.single_add, X, monomial_mul_monomial, one_mul]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : DecidableEq σ
m : σ →₀ ℕ
s : σ
n : ℕ
⊢ ↑(coeff R m) (X s ^ n) = if m = single s n then 1 else 0
[PROOFSTEP]
rw [X_pow_eq s n, coeff_monomial]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
n : σ →₀ ℕ
φ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R n) (φ * ↑(C σ R) a) = ↑(coeff R n) φ * a
[PROOFSTEP]
simpa using coeff_add_mul_monomial n 0 φ a
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
n : σ →₀ ℕ
φ : MvPowerSeries σ R
a : R
⊢ ↑(coeff R n) (↑(C σ R) a * φ) = a * ↑(coeff R n) φ
[PROOFSTEP]
simpa using coeff_add_monomial_mul 0 n φ a
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
φ : MvPowerSeries σ R
s : σ
⊢ ↑(coeff R 0) (φ * X s) = 0
[PROOFSTEP]
have : ¬single s 1 ≤ 0 := fun h => by simpa using h s
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
φ : MvPowerSeries σ R
s : σ
h : single s 1 ≤ 0
⊢ False
[PROOFSTEP]
simpa using h s
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
φ : MvPowerSeries σ R
s : σ
this : ¬single s 1 ≤ 0
⊢ ↑(coeff R 0) (φ * X s) = 0
[PROOFSTEP]
simp only [X, coeff_mul_monomial, if_neg this]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
φ : MvPowerSeries σ R
s : σ
⊢ ↑(coeff R 0) (X s * φ) = 0
[PROOFSTEP]
rw [← (φ.commute_X s).eq, coeff_zero_mul_X]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
src✝ : MvPowerSeries σ R →ₗ[R] R := coeff R 0
φ ψ : MvPowerSeries σ R
⊢ OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } (φ * ψ) =
OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } φ *
OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } ψ
[PROOFSTEP]
simp [coeff_mul, support_single_ne_zero]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
f : MvPowerSeries σ R
a : R
⊢ a • f = ↑(C σ R) a * f
[PROOFSTEP]
ext
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
f : MvPowerSeries σ R
a : R
n✝ : σ →₀ ℕ
⊢ ↑(coeff R n✝) (a • f) = ↑(coeff R n✝) (↑(C σ R) a * f)
[PROOFSTEP]
simp
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
⊢ X s = X t → s = t
[PROOFSTEP]
intro h
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h : X s = X t
⊢ s = t
[PROOFSTEP]
replace h := congr_arg (coeff R (single s 1)) h
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
⊢ s = t
[PROOFSTEP]
rw [coeff_X, if_pos rfl, coeff_X] at h
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
h : 1 = if single s 1 = single t 1 then 1 else 0
⊢ s = t
[PROOFSTEP]
split_ifs at h with H
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
H : single s 1 = single t 1
h : 1 = 1
⊢ s = t
[PROOFSTEP]
rw [Finsupp.single_eq_single_iff] at H
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
H : s = t ∧ 1 = 1 ∨ 1 = 0 ∧ 1 = 0
h : 1 = 1
⊢ s = t
[PROOFSTEP]
cases' H with H H
[GOAL]
case pos.inl
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
h : 1 = 1
H : s = t ∧ 1 = 1
⊢ s = t
[PROOFSTEP]
exact H.1
[GOAL]
case pos.inr
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
h : 1 = 1
H : 1 = 0 ∧ 1 = 0
⊢ s = t
[PROOFSTEP]
exfalso
[GOAL]
case pos.inr.h
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
h : 1 = 1
H : 1 = 0 ∧ 1 = 0
⊢ False
[PROOFSTEP]
exact one_ne_zero H.1
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
H : ¬single s 1 = single t 1
h : 1 = 0
⊢ s = t
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
σ : Type u_1
R : Type u_2
inst✝¹ : Semiring R
inst✝ : Nontrivial R
s t : σ
h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t)
h✝ : 1 = ↑(coeff R (single s 1)) (X t)
H : ¬single s 1 = single t 1
h : 1 = 0
⊢ False
[PROOFSTEP]
exact one_ne_zero h
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
⊢ ↑f (↑(coeff R n) 1) = ↑(coeff S n) 1
[PROOFSTEP]
rw [coeff_one, coeff_one]
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
⊢ ↑f (if n = 0 then 1 else 0) = if n = 0 then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
h : n = 0
⊢ ↑f (if n = 0 then 1 else 0) = 1
[PROOFSTEP]
simp only [RingHom.map_ite_one_zero, ite_true, map_one, h]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
h : ¬n = 0
⊢ ↑f (if n = 0 then 1 else 0) = 0
[PROOFSTEP]
simp only [RingHom.map_ite_one_zero, ite_false, map_zero, h]
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑f (↑(coeff R n) (φ * ψ)) =
↑(coeff S n)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ *
OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ)
[PROOFSTEP]
rw [coeff_mul, map_sum, coeff_mul]
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∑ x in antidiagonal n, ↑f (↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ) =
∑ p in antidiagonal n,
↑(coeff S p.fst)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) *
↑(coeff S p.snd)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ)
[PROOFSTEP]
apply Finset.sum_congr rfl
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)),
x ∈ antidiagonal n →
↑f (↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ) =
↑(coeff S x.fst)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) *
↑(coeff S x.snd)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ)
[PROOFSTEP]
rintro ⟨i, j⟩ _
[GOAL]
case mk
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n i j : σ →₀ ℕ
a✝ : (i, j) ∈ antidiagonal n
⊢ ↑f (↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ) =
↑(coeff S (i, j).fst)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) *
↑(coeff S (i, j).snd)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ)
[PROOFSTEP]
rw [f.map_mul]
[GOAL]
case mk
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n i j : σ →₀ ℕ
a✝ : (i, j) ∈ antidiagonal n
⊢ ↑f (↑(coeff R (i, j).fst) φ) * ↑f (↑(coeff R (i, j).snd) ψ) =
↑(coeff S (i, j).fst)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) *
↑(coeff S (i, j).snd)
(OneHom.toFun
{ toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ)
[PROOFSTEP]
rfl
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
φ ψ : MvPowerSeries σ R
n : σ →₀ ℕ
⊢ ↑f (↑(coeff R n) (φ + ψ)) = ↑f (↑(coeff R n) φ) + ↑f (↑(coeff R n) ψ)
[PROOFSTEP]
simp
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
a : R
⊢ ↑(map σ f) (↑(monomial R n) a) = ↑(monomial S n) (↑f a)
[PROOFSTEP]
ext m
[GOAL]
case h
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
⊢ ↑(coeff S m) (↑(map σ f) (↑(monomial R n) a)) = ↑(coeff S m) (↑(monomial S n) (↑f a))
[PROOFSTEP]
simp [coeff_monomial, apply_ite f]
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
T : Type u_4
inst✝² : Semiring R
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
s : σ
⊢ ↑(map σ f) (X s) = X s
[PROOFSTEP]
simp [MvPowerSeries.X]
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ Module R (MvPowerSeries σ A)
[PROOFSTEP]
infer_instance
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : Module R (MvPowerSeries σ A) :=
let_fun this := inferInstance;
this
a : R
φ : (fun x => MvPowerSeries σ A) a
⊢ ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a * φ = φ * ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a
[PROOFSTEP]
ext n
[GOAL]
case h
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : Module R (MvPowerSeries σ A) :=
let_fun this := inferInstance;
this
a : R
φ : (fun x => MvPowerSeries σ A) a
n : σ →₀ ℕ
⊢ ↑(coeff A n) (↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a * φ) =
↑(coeff A n) (φ * ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a)
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
σ✝ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : Module R (MvPowerSeries σ✝ A) :=
let_fun this := inferInstance;
this
a : R
σ : (fun x => MvPowerSeries σ✝ A) a
⊢ a • σ = ↑(RingHom.comp (map σ✝ (algebraMap R A)) (C σ✝ R)) a * σ
[PROOFSTEP]
ext n
[GOAL]
case h
σ✝ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : Module R (MvPowerSeries σ✝ A) :=
let_fun this := inferInstance;
this
a : R
σ : (fun x => MvPowerSeries σ✝ A) a
n : σ✝ →₀ ℕ
⊢ ↑(coeff A n) (a • σ) = ↑(coeff A n) (↑(RingHom.comp (map σ✝ (algebraMap R A)) (C σ✝ R)) a * σ)
[PROOFSTEP]
simp [(coeff A n).map_smul_of_tower a, Algebra.smul_def]
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
r : R
⊢ ↑(algebraMap R (MvPowerSeries σ A)) r = ↑(C σ A) (↑(algebraMap R A) r)
[PROOFSTEP]
change (MvPowerSeries.map σ (algebraMap R A)).comp (C σ R) r = _
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
r : R
⊢ ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) r = ↑(C σ A) (↑(algebraMap R A) r)
[PROOFSTEP]
simp
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
rw [Ne.def, SetLike.ext_iff, not_forall]
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
⊢ ∃ x, ¬(x ∈ ⊥ ↔ x ∈ ⊤)
[PROOFSTEP]
inhabit σ
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
⊢ ∃ x, ¬(x ∈ ⊥ ↔ x ∈ ⊤)
[PROOFSTEP]
refine' ⟨X default, _⟩
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
⊢ ¬(X default ∈ ⊥ ↔ X default ∈ ⊤)
[PROOFSTEP]
simp only [Algebra.mem_bot, not_exists, Set.mem_range, iff_true_iff, Algebra.mem_top]
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
⊢ ∀ (x : R), ¬↑(algebraMap R (MvPowerSeries σ R)) x = X default
[PROOFSTEP]
intro x
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
x : R
⊢ ¬↑(algebraMap R (MvPowerSeries σ R)) x = X default
[PROOFSTEP]
rw [ext_iff, not_forall]
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
x : R
⊢ ∃ x_1, ¬↑(coeff R x_1) (↑(algebraMap R (MvPowerSeries σ R)) x) = ↑(coeff R x_1) (X default)
[PROOFSTEP]
refine' ⟨Finsupp.single default 1, _⟩
[GOAL]
σ : Type u_1
R : Type u_2
A : Type u_3
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Algebra R A
inst✝¹ : Nonempty σ
inst✝ : Nontrivial R
inhabited_h : Inhabited σ
x : R
⊢ ¬↑(coeff R (single default 1)) (↑(algebraMap R (MvPowerSeries σ R)) x) = ↑(coeff R (single default 1)) (X default)
[PROOFSTEP]
simp [algebraMap_apply, coeff_C]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n m : σ →₀ ℕ
φ : MvPowerSeries σ R
⊢ MvPolynomial.coeff m (truncFun n φ) = if m < n then ↑(coeff R m) φ else 0
[PROOFSTEP]
simp [truncFun, MvPolynomial.coeff_sum]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
⊢ truncFun n 0 = 0
[PROOFSTEP]
ext
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n m✝ : σ →₀ ℕ
⊢ MvPolynomial.coeff m✝ (truncFun n 0) = MvPolynomial.coeff m✝ 0
[PROOFSTEP]
simp [coeff_truncFun]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
⊢ ∀ (x y : MvPowerSeries σ R),
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y) =
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x +
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y
[PROOFSTEP]
intros x y
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
x y : MvPowerSeries σ R
⊢ ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y) =
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x +
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y
[PROOFSTEP]
ext m
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
x y : MvPowerSeries σ R
m : σ →₀ ℕ
⊢ MvPolynomial.coeff m (ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y)) =
MvPolynomial.coeff m
(ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x +
ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y)
[PROOFSTEP]
simp only [coeff_truncFun, MvPolynomial.coeff_add]
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
x y : MvPowerSeries σ R
m : σ →₀ ℕ
⊢ (if m < n then ↑(coeff R m) (x + y) else 0) =
(if m < n then ↑(coeff R m) x else 0) + if m < n then ↑(coeff R m) y else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
x y : MvPowerSeries σ R
m : σ →₀ ℕ
h✝ : m < n
⊢ ↑(coeff R m) (x + y) = ↑(coeff R m) x + ↑(coeff R m) y
[PROOFSTEP]
rw [map_add]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n : σ →₀ ℕ
x y : MvPowerSeries σ R
m : σ →₀ ℕ
h✝ : ¬m < n
⊢ 0 = 0 + 0
[PROOFSTEP]
rw [zero_add]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n m : σ →₀ ℕ
φ : MvPowerSeries σ R
⊢ MvPolynomial.coeff m (↑(trunc R n) φ) = if m < n then ↑(coeff R m) φ else 0
[PROOFSTEP]
simp [trunc, coeff_truncFun]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
⊢ MvPolynomial.coeff m (↑(trunc R n) 1) = MvPolynomial.coeff m 1
[PROOFSTEP]
rw [coeff_trunc, coeff_one]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
⊢ (if m < n then if m = 0 then 1 else 0 else 0) = MvPolynomial.coeff m 1
[PROOFSTEP]
split_ifs with H H'
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : m < n
H' : m = 0
⊢ 1 = MvPolynomial.coeff m 1
[PROOFSTEP]
subst m
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
H : 0 < n
⊢ 1 = MvPolynomial.coeff 0 1
[PROOFSTEP]
simp
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : m < n
H' : ¬m = 0
⊢ 0 = MvPolynomial.coeff m 1
[PROOFSTEP]
symm
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : m < n
H' : ¬m = 0
⊢ MvPolynomial.coeff m 1 = 0
[PROOFSTEP]
rw [MvPolynomial.coeff_one]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : m < n
H' : ¬m = 0
⊢ (if 0 = m then 1 else 0) = 0
[PROOFSTEP]
exact if_neg (Ne.symm H')
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : ¬m < n
⊢ 0 = MvPolynomial.coeff m 1
[PROOFSTEP]
symm
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : ¬m < n
⊢ MvPolynomial.coeff m 1 = 0
[PROOFSTEP]
rw [MvPolynomial.coeff_one]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : ¬m < n
⊢ (if 0 = m then 1 else 0) = 0
[PROOFSTEP]
refine' if_neg _
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
m : σ →₀ ℕ
H : ¬m < n
⊢ ¬0 = m
[PROOFSTEP]
rintro rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
H : ¬0 < n
⊢ False
[PROOFSTEP]
apply H
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
H : ¬0 < n
⊢ 0 < n
[PROOFSTEP]
exact Ne.bot_lt hnn
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
⊢ MvPolynomial.coeff m (↑(trunc R n) (↑(C σ R) a)) = MvPolynomial.coeff m (↑MvPolynomial.C a)
[PROOFSTEP]
rw [coeff_trunc, coeff_C, MvPolynomial.coeff_C]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
⊢ (if m < n then if m = 0 then a else 0 else 0) = if 0 = m then a else 0
[PROOFSTEP]
split_ifs with H
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : 0 = m
⊢ a = a
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : 0 = m
⊢ a = a
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : ¬0 = m
⊢ a = 0
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : ¬0 = m
⊢ a = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : ¬0 = m
⊢ a = 0
[PROOFSTEP]
try simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : m = 0
h✝ : ¬0 = m
⊢ a = 0
[PROOFSTEP]
simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
try simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : ¬0 = m
⊢ 0 = 0
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : m < n
h✝¹ : ¬m = 0
h✝ : ¬0 = m
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
try simp_all
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : ¬0 = m
⊢ 0 = 0
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
hnn : n ≠ 0
a : R
m : σ →₀ ℕ
H : ¬m < n
h✝ : ¬0 = m
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
hnn : ¬n = m
H : ¬m < n
h✝ : 0 = m
⊢ 0 = a
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
hnn : ¬n = m
H : ¬m < n
h✝ : 0 = m
⊢ False
[PROOFSTEP]
apply H
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
hnn : ¬n = m
H : ¬m < n
h✝ : 0 = m
⊢ m < n
[PROOFSTEP]
subst m
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
n✝ n : σ →₀ ℕ
a : R
hnn : ¬n = 0
H : ¬0 < n
⊢ 0 < n
[PROOFSTEP]
exact Ne.bot_lt hnn
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
⊢ X s ^ n ∣ φ ↔ ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
⊢ X s ^ n ∣ φ → ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
[PROOFSTEP]
rintro ⟨φ, rfl⟩ m h
[GOAL]
case mp.intro
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m : σ →₀ ℕ
h : ↑m s < n
⊢ ↑(coeff R m) (X s ^ n * φ) = 0
[PROOFSTEP]
rw [coeff_mul, Finset.sum_eq_zero]
[GOAL]
case mp.intro
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m : σ →₀ ℕ
h : ↑m s < n
⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)), x ∈ antidiagonal m → ↑(coeff R x.fst) (X s ^ n) * ↑(coeff R x.snd) φ = 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case mp.intro.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m : σ →₀ ℕ
h : ↑m s < n
i j : σ →₀ ℕ
hij : (i, j) ∈ antidiagonal m
⊢ ↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) φ = 0
[PROOFSTEP]
rw [coeff_X_pow, if_neg, zero_mul]
[GOAL]
case mp.intro.mk.hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m : σ →₀ ℕ
h : ↑m s < n
i j : σ →₀ ℕ
hij : (i, j) ∈ antidiagonal m
⊢ ¬(i, j).fst = single s n
[PROOFSTEP]
contrapose! h
[GOAL]
case mp.intro.mk.hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m i j : σ →₀ ℕ
hij : (i, j) ∈ antidiagonal m
h : i = single s n
⊢ n ≤ ↑m s
[PROOFSTEP]
subst i
[GOAL]
case mp.intro.mk.hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m j : σ →₀ ℕ
hij : (single s n, j) ∈ antidiagonal m
⊢ n ≤ ↑m s
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal] at hij
[GOAL]
case mp.intro.mk.hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m j : σ →₀ ℕ
hij : (single s n, j).fst + (single s n, j).snd = m
⊢ n ≤ ↑m s
[PROOFSTEP]
rw [← hij, Finsupp.add_apply, Finsupp.single_eq_same]
[GOAL]
case mp.intro.mk.hnc
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
m j : σ →₀ ℕ
hij : (single s n, j).fst + (single s n, j).snd = m
⊢ n ≤ n + ↑(single s n, j).snd s
[PROOFSTEP]
exact Nat.le_add_right n _
[GOAL]
case mpr
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
⊢ (∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0) → X s ^ n ∣ φ
[PROOFSTEP]
intro h
[GOAL]
case mpr
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
⊢ X s ^ n ∣ φ
[PROOFSTEP]
refine' ⟨fun m => coeff R (m + single s n) φ, _⟩
[GOAL]
case mpr
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
⊢ φ = X s ^ n * fun m => ↑(coeff R (m + single s n)) φ
[PROOFSTEP]
ext m
[GOAL]
case mpr.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ)
[PROOFSTEP]
by_cases H : m - single s n + single s n = m
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ)
[PROOFSTEP]
rw [coeff_mul, Finset.sum_eq_single (single s n, m - single s n)]
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
⊢ ↑(coeff R m) φ =
↑(coeff R (single s n, m - single s n).fst) (X s ^ n) *
↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ
[PROOFSTEP]
rw [coeff_X_pow, if_pos rfl, one_mul]
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
⊢ ↑(coeff R m) φ = ↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ
[PROOFSTEP]
simpa using congr_arg (fun m : σ →₀ ℕ => coeff R m φ) H.symm
[GOAL]
case pos.h₀
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
⊢ ∀ (b : (σ →₀ ℕ) × (σ →₀ ℕ)),
b ∈ antidiagonal m →
b ≠ (single s n, m - single s n) →
(↑(coeff R b.fst) (X s ^ n) * ↑(coeff R b.snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij hne
[GOAL]
case pos.h₀.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j) ∈ antidiagonal m
hne : (i, j) ≠ (single s n, m - single s n)
⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal] at hij
[GOAL]
case pos.h₀.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rw [coeff_X_pow]
[GOAL]
case pos.h₀.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
⊢ ((if (i, j).fst = single s n then 1 else 0) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
split_ifs with hi
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
⊢ (1 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
⊢ False
[PROOFSTEP]
apply hne
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
⊢ (i, j) = (single s n, m - single s n)
[PROOFSTEP]
rw [← hij, ← hi, Prod.mk.inj_iff]
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
⊢ i = (i, j).fst ∧ j = (i, j).fst + (i, j).snd - (i, j).fst
[PROOFSTEP]
refine' ⟨rfl, _⟩
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
⊢ j = (i, j).fst + (i, j).snd - (i, j).fst
[PROOFSTEP]
ext t
[GOAL]
case pos.h.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : (i, j).fst = single s n
t : σ
⊢ ↑j t = ↑((i, j).fst + (i, j).snd - (i, j).fst) t
[PROOFSTEP]
simp only [add_tsub_cancel_left, Finsupp.add_apply, Finsupp.tsub_apply]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hne : (i, j) ≠ (single s n, m - single s n)
hi : ¬(i, j).fst = single s n
⊢ (0 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
exact zero_mul _
[GOAL]
case pos.h₁
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
⊢ ¬(single s n, m - single s n) ∈ antidiagonal m →
(↑(coeff R (single s n, m - single s n).fst) (X s ^ n) *
↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ) =
0
[PROOFSTEP]
intro hni
[GOAL]
case pos.h₁
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
hni : ¬(single s n, m - single s n) ∈ antidiagonal m
⊢ (↑(coeff R (single s n, m - single s n).fst) (X s ^ n) *
↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ) =
0
[PROOFSTEP]
exfalso
[GOAL]
case pos.h₁.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
hni : ¬(single s n, m - single s n) ∈ antidiagonal m
⊢ False
[PROOFSTEP]
apply hni
[GOAL]
case pos.h₁.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : m - single s n + single s n = m
hni : ¬(single s n, m - single s n) ∈ antidiagonal m
⊢ (single s n, m - single s n) ∈ antidiagonal m
[PROOFSTEP]
rwa [Finsupp.mem_antidiagonal, add_comm]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ)
[PROOFSTEP]
rw [h, coeff_mul, Finset.sum_eq_zero]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)),
x ∈ antidiagonal m → (↑(coeff R x.fst) (X s ^ n) * ↑(coeff R x.snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case neg.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j) ∈ antidiagonal m
⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal] at hij
[GOAL]
case neg.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
rw [coeff_X_pow]
[GOAL]
case neg.mk
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
⊢ ((if (i, j).fst = single s n then 1 else 0) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
split_ifs with hi
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : (i, j).fst = single s n
⊢ (1 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : (i, j).fst = single s n
⊢ False
[PROOFSTEP]
apply H
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : (i, j).fst = single s n
⊢ m - single s n + single s n = m
[PROOFSTEP]
rw [← hij, hi]
[GOAL]
case pos.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : (i, j).fst = single s n
⊢ single s n + (i, j).snd - single s n + single s n = single s n + (i, j).snd
[PROOFSTEP]
ext
[GOAL]
case pos.h.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : (i, j).fst = single s n
a✝ : σ
⊢ ↑(single s n + (i, j).snd - single s n + single s n) a✝ = ↑(single s n + (i, j).snd) a✝
[PROOFSTEP]
rw [coe_add, coe_add, Pi.add_apply, Pi.add_apply, add_tsub_cancel_left, add_comm]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
i j : σ →₀ ℕ
hij : (i, j).fst + (i, j).snd = m
hi : ¬(i, j).fst = single s n
⊢ (0 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0
[PROOFSTEP]
exact zero_mul _
[GOAL]
case neg.a
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : ¬m - single s n + single s n = m
⊢ ↑m s < n
[PROOFSTEP]
contrapose! H
[GOAL]
case neg.a
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : n ≤ ↑m s
⊢ m - single s n + single s n = m
[PROOFSTEP]
ext t
[GOAL]
case neg.a.h
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : n ≤ ↑m s
t : σ
⊢ ↑(m - single s n + single s n) t = ↑m t
[PROOFSTEP]
by_cases hst : s = t
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : n ≤ ↑m s
t : σ
hst : s = t
⊢ ↑(m - single s n + single s n) t = ↑m t
[PROOFSTEP]
subst t
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : n ≤ ↑m s
⊢ ↑(m - single s n + single s n) s = ↑m s
[PROOFSTEP]
simpa using tsub_add_cancel_of_le H
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
n : ℕ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
H : n ≤ ↑m s
t : σ
hst : ¬s = t
⊢ ↑(m - single s n + single s n) t = ↑m t
[PROOFSTEP]
simp [Finsupp.single_apply, hst]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
⊢ X s ∣ φ ↔ ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0
[PROOFSTEP]
rw [← pow_one (X s : MvPowerSeries σ R), X_pow_dvd_iff]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
⊢ (∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0) ↔ ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
⊢ (∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0) → ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0
[PROOFSTEP]
intro h m hm
[GOAL]
case mpr
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
⊢ (∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0) → ∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0
[PROOFSTEP]
intro h m hm
[GOAL]
case mp
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
hm : ↑m s = 0
⊢ ↑(coeff R m) φ = 0
[PROOFSTEP]
exact h m (hm.symm ▸ zero_lt_one)
[GOAL]
case mpr
σ : Type u_1
R : Type u_2
inst✝ : Semiring R
s : σ
φ : MvPowerSeries σ R
h : ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0
m : σ →₀ ℕ
hm : ↑m s < 1
⊢ ↑(coeff R m) φ = 0
[PROOFSTEP]
exact h m (Nat.eq_zero_of_le_zero <| Nat.le_of_succ_le_succ hm)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Ring R
inst✝ : DecidableEq σ
n : σ →₀ ℕ
a : R
φ : MvPowerSeries σ R
⊢ inv.aux a φ n =
if n = 0 then a
else -a * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0
[PROOFSTEP]
rw [inv.aux]
-- unify `Decidable` instances
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Ring R
inst✝ : DecidableEq σ
n : σ →₀ ℕ
a : R
φ : MvPowerSeries σ R
⊢ (if n = 0 then a
else -a * ∑ x in antidiagonal n, if x_1 : x.snd < n then ↑(coeff R x.fst) φ * inv.aux a φ x.snd else 0) =
if n = 0 then a
else -a * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0
[PROOFSTEP]
convert rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : Ring R
inst✝ : DecidableEq σ
n : σ →₀ ℕ
φ : MvPowerSeries σ R
u : Rˣ
⊢ ↑(coeff R n) (invOfUnit φ u) =
if n = 0 then ↑u⁻¹
else -↑u⁻¹ * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) else 0
[PROOFSTEP]
convert coeff_inv_aux n (↑u⁻¹) φ
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
⊢ ↑(constantCoeff σ R) (invOfUnit φ u) = ↑u⁻¹
[PROOFSTEP]
rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : n = 0
⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1
[PROOFSTEP]
rw [H]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : n = 0
⊢ ↑(coeff R 0) (φ * invOfUnit φ u) = ↑(coeff R 0) 1
[PROOFSTEP]
simp [coeff_mul, support_single_ne_zero, h]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1
[PROOFSTEP]
have : ((0 : σ →₀ ℕ), n) ∈ n.antidiagonal := by rw [Finsupp.mem_antidiagonal, zero_add]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
⊢ (0, n) ∈ antidiagonal n
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal, zero_add]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
this : (0, n) ∈ antidiagonal n
⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1
[PROOFSTEP]
rw [coeff_one, if_neg H, coeff_mul, ← Finset.insert_erase this, Finset.sum_insert (Finset.not_mem_erase _ _),
coeff_zero_eq_constantCoeff_apply, h, coeff_invOfUnit, if_neg H, neg_mul, mul_neg, Units.mul_inv_cancel_left, ←
Finset.insert_erase this, Finset.sum_insert (Finset.not_mem_erase _ _), Finset.insert_erase this,
if_neg (not_lt_of_ge <| le_rfl), zero_add, add_comm, ← sub_eq_add_neg, sub_eq_zero, Finset.sum_congr rfl]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
this : (0, n) ∈ antidiagonal n
⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)),
x ∈ Finset.erase (antidiagonal n) (0, n) →
↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) =
if x.snd < (0, n).snd then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) else 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case mk
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
this : (0, n) ∈ antidiagonal n
i j : σ →₀ ℕ
hij : (i, j) ∈ Finset.erase (antidiagonal n) (0, n)
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) =
if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0
[PROOFSTEP]
rw [Finset.mem_erase, Finsupp.mem_antidiagonal] at hij
[GOAL]
case mk
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
this : (0, n) ∈ antidiagonal n
i j : σ →₀ ℕ
hij : (i, j) ≠ (0, n) ∧ (i, j).fst + (i, j).snd = n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) =
if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0
[PROOFSTEP]
cases' hij with h₁ h₂
[GOAL]
case mk.intro
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
n : σ →₀ ℕ
H : ¬n = 0
this : (0, n) ∈ antidiagonal n
i j : σ →₀ ℕ
h₁ : (i, j) ≠ (0, n)
h₂ : (i, j).fst + (i, j).snd = n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) =
if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0
[PROOFSTEP]
subst n
[GOAL]
case mk.intro
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) =
if (i, j).snd < (0, (i, j).fst + (i, j).snd).snd then
↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u)
else 0
[PROOFSTEP]
rw [if_pos]
[GOAL]
case mk.intro.hc
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ (i, j).snd < (0, (i, j).fst + (i, j).snd).snd
[PROOFSTEP]
suffices (0 : _) + j < i + j by simpa
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this✝ : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
this : 0 + j < i + j
⊢ (i, j).snd < (0, (i, j).fst + (i, j).snd).snd
[PROOFSTEP]
simpa
[GOAL]
case mk.intro.hc
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ 0 + j < i + j
[PROOFSTEP]
apply add_lt_add_right
[GOAL]
case mk.intro.hc.bc
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ 0 < i
[PROOFSTEP]
constructor
[GOAL]
case mk.intro.hc.bc.left
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑0 i_1) (↑i i_1)
[PROOFSTEP]
intro s
[GOAL]
case mk.intro.hc.bc.left
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
s : σ
⊢ PartialOrder.toPreorder.1.1 (↑0 s) (↑i s)
[PROOFSTEP]
exact Nat.zero_le _
[GOAL]
case mk.intro.hc.bc.right
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
⊢ ¬∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
[PROOFSTEP]
intro H
[GOAL]
case mk.intro.hc.bc.right
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H✝ : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
⊢ False
[PROOFSTEP]
apply h₁
[GOAL]
case mk.intro.hc.bc.right
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H✝ : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
⊢ (i, j) = (0, (i, j).fst + (i, j).snd)
[PROOFSTEP]
suffices i = 0 by simp [this]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H✝ : ¬(i, j).fst + (i, j).snd = 0
this✝ : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
this : i = 0
⊢ (i, j) = (0, (i, j).fst + (i, j).snd)
[PROOFSTEP]
simp [this]
[GOAL]
case mk.intro.hc.bc.right
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H✝ : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
⊢ i = 0
[PROOFSTEP]
ext1 s
[GOAL]
case mk.intro.hc.bc.right.h
σ : Type u_1
R : Type u_2
inst✝ : Ring R
φ : MvPowerSeries σ R
u : Rˣ
h : ↑(constantCoeff σ R) φ = ↑u
i j : σ →₀ ℕ
H✝ : ¬(i, j).fst + (i, j).snd = 0
this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd)
h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd)
H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1)
s : σ
⊢ ↑i s = ↑0 s
[PROOFSTEP]
exact Nat.eq_zero_of_le_zero (H s)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
⊢ ∀ (a : MvPowerSeries σ R), IsUnit a ∨ IsUnit (1 - a)
[PROOFSTEP]
intro φ
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
⊢ IsUnit φ ∨ IsUnit (1 - φ)
[PROOFSTEP]
rcases LocalRing.isUnit_or_isUnit_one_sub_self (constantCoeff σ R φ) with (⟨u, h⟩ | ⟨u, h⟩) <;> [left; right]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
⊢ IsUnit φ ∨ IsUnit (1 - φ)
[PROOFSTEP]
rcases LocalRing.isUnit_or_isUnit_one_sub_self (constantCoeff σ R φ) with (⟨u, h⟩ | ⟨u, h⟩)
[GOAL]
case inl.intro
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = ↑(constantCoeff σ R) φ
⊢ IsUnit φ ∨ IsUnit (1 - φ)
[PROOFSTEP]
left
[GOAL]
case inr.intro
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = 1 - ↑(constantCoeff σ R) φ
⊢ IsUnit φ ∨ IsUnit (1 - φ)
[PROOFSTEP]
right
[GOAL]
case inl.intro.h
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = ↑(constantCoeff σ R) φ
⊢ IsUnit φ
[PROOFSTEP]
refine' isUnit_of_mul_eq_one _ _ (mul_invOfUnit _ u _)
[GOAL]
case inl.intro.h
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = ↑(constantCoeff σ R) φ
⊢ ↑(constantCoeff σ ((fun x => R) φ)) φ = ↑u
[PROOFSTEP]
simpa using h.symm
[GOAL]
case inr.intro.h
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = 1 - ↑(constantCoeff σ R) φ
⊢ IsUnit (1 - φ)
[PROOFSTEP]
refine' isUnit_of_mul_eq_one _ _ (mul_invOfUnit _ u _)
[GOAL]
case inr.intro.h
σ : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LocalRing R
φ : MvPowerSeries σ R
u : ((fun x => R) φ)ˣ
h : ↑u = 1 - ↑(constantCoeff σ R) φ
⊢ ↑(constantCoeff σ ((fun x => R) φ)) (1 - φ) = ↑u
[PROOFSTEP]
simpa using h.symm
[GOAL]
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
⊢ ∀ (a : MvPowerSeries σ R), IsUnit (↑(map σ f) a) → IsUnit a
[PROOFSTEP]
rintro φ ⟨ψ, h⟩
[GOAL]
case intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑ψ = ↑(map σ f) φ
⊢ IsUnit φ
[PROOFSTEP]
replace h := congr_arg (constantCoeff σ S) h
[GOAL]
case intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑(constantCoeff σ S) ↑ψ = ↑(constantCoeff σ S) (↑(map σ f) φ)
⊢ IsUnit φ
[PROOFSTEP]
rw [constantCoeff_map] at h
[GOAL]
case intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ)
⊢ IsUnit φ
[PROOFSTEP]
have : IsUnit (constantCoeff σ S ↑ψ) := isUnit_constantCoeff (↑ψ) ψ.isUnit
[GOAL]
case intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ)
this : IsUnit (↑(constantCoeff σ S) ↑ψ)
⊢ IsUnit φ
[PROOFSTEP]
rw [h] at this
[GOAL]
case intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ)
this : IsUnit (↑f (↑(constantCoeff σ R) φ))
⊢ IsUnit φ
[PROOFSTEP]
rcases isUnit_of_map_unit f _ this with ⟨c, hc⟩
[GOAL]
case intro.intro
σ : Type u_1
R : Type u_2
S : Type u_3
inst✝² : CommRing R
inst✝¹ : CommRing S
f : R →+* S
inst✝ : IsLocalRingHom f
φ : MvPowerSeries σ R
ψ : ((fun x => MvPowerSeries σ S) φ)ˣ
h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ)
this : IsUnit (↑f (↑(constantCoeff σ R) φ))
c : Rˣ
hc : ↑c = ↑(constantCoeff σ R) φ
⊢ IsUnit φ
[PROOFSTEP]
exact isUnit_of_mul_eq_one φ (invOfUnit φ c) (mul_invOfUnit φ c hc.symm)
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
⊢ ↑(constantCoeff σ k) φ⁻¹ = (↑(constantCoeff σ k) φ)⁻¹
[PROOFSTEP]
rw [← coeff_zero_eq_constantCoeff_apply, coeff_inv, if_pos rfl]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : φ⁻¹ = 0
⊢ ↑(constantCoeff σ k) φ = 0
[PROOFSTEP]
simpa using congr_arg (constantCoeff σ k) h
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0
n : σ →₀ ℕ
⊢ ↑(coeff k n) φ⁻¹ = ↑(coeff k n) 0
[PROOFSTEP]
rw [coeff_inv]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0
n : σ →₀ ℕ
⊢ (if n = 0 then (↑(constantCoeff σ k) φ)⁻¹
else
-(↑(constantCoeff σ k) φ)⁻¹ *
∑ x in antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0) =
↑(coeff k n) 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0
n : σ →₀ ℕ
h✝ : n = 0
⊢ (↑(constantCoeff σ k) φ)⁻¹ = ↑(coeff k n) 0
[PROOFSTEP]
simp only [h, map_zero, zero_mul, inv_zero, neg_zero]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0
n : σ →₀ ℕ
h✝ : ¬n = 0
⊢ (-(↑(constantCoeff σ k) φ)⁻¹ *
∑ x in antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0) =
↑(coeff k n) 0
[PROOFSTEP]
simp only [h, map_zero, zero_mul, inv_zero, neg_zero]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
⊢ 0⁻¹ = 0
[PROOFSTEP]
rw [inv_eq_zero, constantCoeff_zero]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
u : kˣ
h : ↑(constantCoeff σ k) φ = ↑u
⊢ invOfUnit φ u = φ⁻¹
[PROOFSTEP]
rw [← invOfUnit_eq φ (h.symm ▸ u.ne_zero)]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
u : kˣ
h : ↑(constantCoeff σ k) φ = ↑u
⊢ invOfUnit φ u = invOfUnit φ (Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0))
[PROOFSTEP]
apply congrArg (invOfUnit φ)
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
u : kˣ
h : ↑(constantCoeff σ k) φ = ↑u
⊢ u = Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0)
[PROOFSTEP]
rw [Units.ext_iff]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
u : kˣ
h : ↑(constantCoeff σ k) φ = ↑u
⊢ ↑u = ↑(Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0))
[PROOFSTEP]
exact h.symm
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ ≠ 0
⊢ φ * φ⁻¹ = 1
[PROOFSTEP]
rw [← invOfUnit_eq φ h, mul_invOfUnit φ (Units.mk0 _ h) rfl]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ ≠ 0
⊢ φ⁻¹ * φ = 1
[PROOFSTEP]
rw [mul_comm, φ.mul_inv_cancel h]
[GOAL]
σ : Type u_1
R : Type u_2
k✝ : Type u_3
inst✝ : Field k✝
φ₁ φ₂ φ₃ : MvPowerSeries σ k✝
h : ↑(constantCoeff σ k✝) φ₃ ≠ 0
k : φ₁ = φ₂ * φ₃⁻¹
⊢ φ₁ * φ₃ = φ₂
[PROOFSTEP]
simp [k, mul_assoc, MvPowerSeries.inv_mul_cancel _ h]
[GOAL]
σ : Type u_1
R : Type u_2
k✝ : Type u_3
inst✝ : Field k✝
φ₁ φ₂ φ₃ : MvPowerSeries σ k✝
h : ↑(constantCoeff σ k✝) φ₃ ≠ 0
k : φ₁ * φ₃ = φ₂
⊢ φ₁ = φ₂ * φ₃⁻¹
[PROOFSTEP]
simp [← k, mul_assoc, MvPowerSeries.mul_inv_cancel _ h]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) ψ ≠ 0
⊢ φ = ψ⁻¹ ↔ φ * ψ = 1
[PROOFSTEP]
rw [← MvPowerSeries.eq_mul_inv_iff_mul_eq h, one_mul]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) ψ ≠ 0
⊢ ψ⁻¹ = φ ↔ φ * ψ = 1
[PROOFSTEP]
rw [eq_comm, MvPowerSeries.eq_inv_iff_mul_eq_one h]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
by_cases h : constantCoeff σ k (φ * ψ) = 0
[GOAL]
case pos
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) (φ * ψ) = 0
⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
rw [inv_eq_zero.mpr h]
[GOAL]
case pos
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) (φ * ψ) = 0
⊢ 0 = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
simp only [map_mul, mul_eq_zero] at h
[GOAL]
case pos
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0 ∨ ↑(constantCoeff σ k) ψ = 0
⊢ 0 = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
cases' h with h h
[GOAL]
case pos.inl
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) φ = 0
⊢ 0 = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
simp [inv_eq_zero.mpr h]
[GOAL]
case pos.inr
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ↑(constantCoeff σ k) ψ = 0
⊢ 0 = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
simp [inv_eq_zero.mpr h]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ¬↑(constantCoeff σ k) (φ * ψ) = 0
⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹
[PROOFSTEP]
rw [MvPowerSeries.inv_eq_iff_mul_eq_one h]
[GOAL]
case neg
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ¬↑(constantCoeff σ k) (φ * ψ) = 0
⊢ ψ⁻¹ * φ⁻¹ * (φ * ψ) = 1
[PROOFSTEP]
simp only [not_or, map_mul, mul_eq_zero] at h
[GOAL]
case neg
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
φ ψ : MvPowerSeries σ k
h : ¬↑(constantCoeff σ k) φ = 0 ∧ ¬↑(constantCoeff σ k) ψ = 0
⊢ ψ⁻¹ * φ⁻¹ * (φ * ψ) = 1
[PROOFSTEP]
rw [← mul_assoc, mul_assoc _⁻¹, MvPowerSeries.inv_mul_cancel _ h.left, mul_one, MvPowerSeries.inv_mul_cancel _ h.right]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
src✝¹ : One (MvPowerSeries σ k) := inferInstanceAs (One (MvPowerSeries σ k))
src✝ : Inv (MvPowerSeries σ k) := inferInstanceAs (Inv (MvPowerSeries σ k))
⊢ 1⁻¹ = 1
[PROOFSTEP]
rw [MvPowerSeries.inv_eq_iff_mul_eq_one, mul_one]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
src✝¹ : One (MvPowerSeries σ k) := inferInstanceAs (One (MvPowerSeries σ k))
src✝ : Inv (MvPowerSeries σ k) := inferInstanceAs (Inv (MvPowerSeries σ k))
⊢ ↑(constantCoeff σ k) 1 ≠ 0
[PROOFSTEP]
simp
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
r : k
⊢ (↑(C σ k) r)⁻¹ = ↑(C σ k) r⁻¹
[PROOFSTEP]
rcases eq_or_ne r 0 with (rfl | hr)
[GOAL]
case inl
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
⊢ (↑(C σ k) 0)⁻¹ = ↑(C σ k) 0⁻¹
[PROOFSTEP]
simp
[GOAL]
case inr
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
r : k
hr : r ≠ 0
⊢ (↑(C σ k) r)⁻¹ = ↑(C σ k) r⁻¹
[PROOFSTEP]
rw [MvPowerSeries.inv_eq_iff_mul_eq_one, ← map_mul, inv_mul_cancel hr, map_one]
[GOAL]
case inr
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
r : k
hr : r ≠ 0
⊢ ↑(constantCoeff σ k) (↑(C σ k) r) ≠ 0
[PROOFSTEP]
simpa using hr
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
s : σ
⊢ (X s)⁻¹ = 0
[PROOFSTEP]
rw [inv_eq_zero, constantCoeff_X]
[GOAL]
σ : Type u_1
R : Type u_2
k : Type u_3
inst✝ : Field k
r : k
φ : MvPowerSeries σ k
⊢ (r • φ)⁻¹ = r⁻¹ • φ⁻¹
[PROOFSTEP]
simp [smul_eq_C_mul, mul_comm]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
⊢ ↑(MvPowerSeries.coeff R m) ↑(↑(monomial n) a) = ↑(MvPowerSeries.coeff R m) (↑(MvPowerSeries.monomial R n) a)
[PROOFSTEP]
rw [coeff_coe, coeff_monomial, MvPowerSeries.coeff_monomial]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
⊢ (if n = m then a else 0) = if m = n then a else 0
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : n = m
h₂ : m = n
⊢ a = a
[PROOFSTEP]
first
| rfl
| subst m; contradiction
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : n = m
h₂ : m = n
⊢ a = a
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : n = m
h₂ : ¬m = n
⊢ a = 0
[PROOFSTEP]
first
| rfl
| subst m; contradiction
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : n = m
h₂ : ¬m = n
⊢ a = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : n = m
h₂ : ¬m = n
⊢ a = 0
[PROOFSTEP]
subst m
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
h₂ : ¬n = n
⊢ a = 0
[PROOFSTEP]
contradiction
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : ¬n = m
h✝ : m = n
⊢ 0 = a
[PROOFSTEP]
first
| rfl
| subst m; contradiction
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : ¬n = m
h✝ : m = n
⊢ 0 = a
[PROOFSTEP]
rfl
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : ¬n = m
h✝ : m = n
⊢ 0 = a
[PROOFSTEP]
subst m
[GOAL]
case pos
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
h₁ : ¬n = n
⊢ 0 = a
[PROOFSTEP]
contradiction
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : ¬n = m
h✝ : ¬m = n
⊢ 0 = 0
[PROOFSTEP]
first
| rfl
| subst m; contradiction
[GOAL]
case neg
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
a : R
m : σ →₀ ℕ
h₁ : ¬n = m
h✝ : ¬m = n
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
n : σ →₀ ℕ
⊢ ↑(MvPowerSeries.coeff R n) ↑(φ * ψ) = ↑(MvPowerSeries.coeff R n) (↑φ * ↑ψ)
[PROOFSTEP]
simp only [coeff_coe, MvPowerSeries.coeff_mul, coeff_mul]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
⊢ ↑(bit1 φ) = bit1 ↑φ
[PROOFSTEP]
rw [bit1, bit1, coe_add, coe_one, coe_bit0]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : MvPolynomial σ R
h : Coe.coe x = Coe.coe y
⊢ x = y
[PROOFSTEP]
ext
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : MvPolynomial σ R
h : Coe.coe x = Coe.coe y
m✝ : σ →₀ ℕ
⊢ coeff m✝ x = coeff m✝ y
[PROOFSTEP]
simp_rw [← coeff_coe]
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : MvPolynomial σ R
h : Coe.coe x = Coe.coe y
m✝ : σ →₀ ℕ
⊢ ↑(MvPowerSeries.coeff R m✝) ↑x = ↑(MvPowerSeries.coeff R m✝) ↑y
[PROOFSTEP]
congr
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
⊢ ↑φ = 0 ↔ φ = 0
[PROOFSTEP]
rw [← coe_zero, coe_inj]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : MvPolynomial σ R
⊢ ↑φ = 1 ↔ φ = 1
[PROOFSTEP]
rw [← coe_one, coe_inj]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝² : CommSemiring R
φ ψ : MvPolynomial σ R
A : Type u_3
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
src✝ : MvPolynomial σ R →+* MvPowerSeries σ A := RingHom.comp (MvPowerSeries.map σ (algebraMap R A)) ringHom
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : MvPolynomial σ R),
OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R (MvPolynomial σ R)) r) =
↑(algebraMap R (MvPowerSeries σ A)) r
[PROOFSTEP]
simp [algebraMap_apply, MvPowerSeries.algebraMap_apply]
[GOAL]
R : Type u_1
inst✝ : Inhabited R
⊢ Inhabited (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : Inhabited R
⊢ Inhabited (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : Zero R
⊢ Zero (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : Zero R
⊢ Zero (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : AddMonoid R
⊢ AddMonoid (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : AddMonoid R
⊢ AddMonoid (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : AddGroup R
⊢ AddGroup (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : AddGroup R
⊢ AddGroup (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : AddCommMonoid R
⊢ AddCommMonoid (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : AddCommMonoid R
⊢ AddCommMonoid (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : AddCommGroup R
⊢ AddCommGroup (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : AddCommGroup R
⊢ AddCommGroup (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ Semiring (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ Semiring (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ CommSemiring (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ CommSemiring (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : Ring R
⊢ Ring (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : Ring R
⊢ Ring (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ CommRing (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : CommRing R
⊢ CommRing (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : Nontrivial R
⊢ Nontrivial (PowerSeries R)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
inst✝ : Nontrivial R
⊢ Nontrivial (MvPowerSeries Unit R)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
A : Type ?u.2330286
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
⊢ Module R (PowerSeries A)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
A : Type ?u.2330286
inst✝² : Semiring R
inst✝¹ : AddCommMonoid A
inst✝ : Module R A
⊢ Module R (MvPowerSeries Unit A)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
A : Type ?u.2336032
inst✝² : Semiring A
inst✝¹ : CommSemiring R
inst✝ : Algebra R A
⊢ Algebra R (PowerSeries A)
[PROOFSTEP]
dsimp only [PowerSeries]
[GOAL]
R : Type u_1
A : Type ?u.2336032
inst✝² : Semiring A
inst✝¹ : CommSemiring R
inst✝ : Algebra R A
⊢ Algebra R (MvPowerSeries Unit A)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : Semiring R
s : Unit →₀ ℕ
n : ℕ
h : ↑s () = n
⊢ coeff R n = MvPowerSeries.coeff R s
[PROOFSTEP]
erw [coeff, ← h, ← Finsupp.unique_single s]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ ψ : PowerSeries R
h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ
n : Unit →₀ ℕ
⊢ ↑(MvPowerSeries.coeff R n) φ = ↑(MvPowerSeries.coeff R n) ψ
[PROOFSTEP]
rw [← coeff_def]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ ψ : PowerSeries R
h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ
n : Unit →₀ ℕ
⊢ ↑(coeff R ?m.2338627) φ = ↑(coeff R ?m.2338627) ψ
[PROOFSTEP]
apply h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ ψ : PowerSeries R
h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ
n : Unit →₀ ℕ
⊢ ↑n () = ?m.2338627
R : Type u_1 inst✝ : Semiring R φ ψ : PowerSeries R h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ n : Unit →₀ ℕ ⊢ ℕ
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : Semiring R
m n : ℕ
a : R
⊢ (if single () m = single () n then a else 0) = if m = n then a else 0
[PROOFSTEP]
simp only [Finsupp.unique_single_eq_iff]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
a : R
m : ℕ
⊢ ↑(coeff R m) (↑(monomial R n) a) = ↑(coeff R m) (mk fun m => if m = n then a else 0)
[PROOFSTEP]
rw [coeff_monomial, coeff_mk]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ ↑(coeff R 0) = ↑(constantCoeff R)
[PROOFSTEP]
rw [coeff, Finsupp.single_zero]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ ↑(MvPowerSeries.coeff R 0) = ↑(constantCoeff R)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R 0) φ = ↑(constantCoeff R) φ
[PROOFSTEP]
rw [coeff_zero_eq_constantCoeff]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ ↑(monomial R 0) = ↑(C R)
[PROOFSTEP]
rw [monomial, Finsupp.single_zero, MvPowerSeries.monomial_zero_eq_C, C]
[GOAL]
R : Type u_1
inst✝ : Semiring R
a : R
⊢ ↑(monomial R 0) a = ↑(C R) a
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
a : R
⊢ ↑(coeff R n) (↑(C R) a) = if n = 0 then a else 0
[PROOFSTEP]
rw [← monomial_zero_eq_C_apply, coeff_monomial]
[GOAL]
R : Type u_1
inst✝ : Semiring R
a : R
⊢ ↑(coeff R 0) (↑(C R) a) = a
[PROOFSTEP]
rw [← monomial_zero_eq_C_apply, coeff_monomial_same 0 a]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
⊢ ↑(coeff R n) X = if n = 1 then 1 else 0
[PROOFSTEP]
rw [X_eq, coeff_monomial]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ ↑(coeff R 0) X = 0
[PROOFSTEP]
rw [coeff, Finsupp.single_zero, X, MvPowerSeries.coeff_zero_X]
[GOAL]
R : Type u_1
inst✝ : Semiring R
⊢ ↑(coeff R 1) X = 1
[PROOFSTEP]
rw [coeff_X, if_pos rfl]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Nontrivial R
H : X = 0
⊢ False
[PROOFSTEP]
simpa only [coeff_one_X, one_ne_zero, map_zero] using congr_arg (coeff R 1) H
[GOAL]
R : Type u_1
inst✝ : Semiring R
m n : ℕ
⊢ ↑(coeff R m) (X ^ n) = if m = n then 1 else 0
[PROOFSTEP]
rw [X_pow_eq, coeff_monomial]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
⊢ ↑(coeff R n) (X ^ n) = 1
[PROOFSTEP]
rw [coeff_X_pow, if_pos rfl]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ ψ : PowerSeries R
⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ
[PROOFSTEP]
refine (MvPowerSeries.coeff_mul _ φ ψ).trans ?_
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ ψ : PowerSeries R
⊢ ∑ p in Finsupp.antidiagonal (single () n), ↑(MvPowerSeries.coeff R p.fst) φ * ↑(MvPowerSeries.coeff R p.snd) ψ =
∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ
[PROOFSTEP]
rw [Finsupp.antidiagonal_single, Finset.sum_map]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ ψ : PowerSeries R
⊢ ∑ x in Finset.Nat.antidiagonal n,
↑(MvPowerSeries.coeff R
(↑(Function.Embedding.prodMap { toFun := single (), inj' := (_ : Function.Injective (single ())) }
{ toFun := single (), inj' := (_ : Function.Injective (single ())) })
x).fst)
φ *
↑(MvPowerSeries.coeff R
(↑(Function.Embedding.prodMap { toFun := single (), inj' := (_ : Function.Injective (single ())) }
{ toFun := single (), inj' := (_ : Function.Injective (single ())) })
x).snd)
ψ =
∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : Semiring R
f : PowerSeries R
a : R
⊢ a • f = ↑(C R) a * f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
f : PowerSeries R
a : R
n✝ : ℕ
⊢ ↑(coeff R n✝) (a • f) = ↑(coeff R n✝) (↑(C R) a * f)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(coeff R (n + 1)) (φ * X) = ↑(coeff R n) φ
[PROOFSTEP]
simp only [coeff, Finsupp.single_add]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(MvPowerSeries.coeff R (single () n + single () 1)) (φ * X) = ↑(MvPowerSeries.coeff R (single () n)) φ
[PROOFSTEP]
convert φ.coeff_add_mul_monomial (single () n) (single () 1) _
[GOAL]
case h.e'_3
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(MvPowerSeries.coeff R (single () n)) φ = ↑(MvPowerSeries.coeff R (single () n)) φ * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(coeff R (n + 1)) (X * φ) = ↑(coeff R n) φ
[PROOFSTEP]
simp only [coeff, Finsupp.single_add, add_comm n 1]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(MvPowerSeries.coeff R (single () 1 + single () n)) (X * φ) = ↑(MvPowerSeries.coeff R (single () n)) φ
[PROOFSTEP]
convert φ.coeff_add_monomial_mul (single () 1) (single () n) _
[GOAL]
case h.e'_3
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ ↑(MvPowerSeries.coeff R (single () n)) φ = 1 * ↑(MvPowerSeries.coeff R (single () n)) φ
[PROOFSTEP]
rw [one_mul]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R 0) (φ * X) = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R 0) (X * φ) = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : Semiring R
x : R
k n : ℕ
⊢ ↑(coeff R n) (↑(C R) x * X ^ k) = if n = k then x else 0
[PROOFSTEP]
simp [X_pow_eq, coeff_monomial]
[GOAL]
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ↑(coeff R (d + n)) (p * X ^ n) = ↑(coeff R d) p
[PROOFSTEP]
rw [coeff_mul, Finset.sum_eq_single (d, n), coeff_X_pow, if_pos rfl, mul_one]
[GOAL]
case h₀
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (d + n) → b ≠ (d, n) → ↑(coeff R b.fst) p * ↑(coeff R b.snd) (X ^ n) = 0
[PROOFSTEP]
rintro ⟨i, j⟩ h1 h2
[GOAL]
case h₀.mk
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n)
h2 : (i, j) ≠ (d, n)
⊢ ↑(coeff R (i, j).fst) p * ↑(coeff R (i, j).snd) (X ^ n) = 0
[PROOFSTEP]
rw [coeff_X_pow, if_neg, mul_zero]
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n)
h2 : (i, j) ≠ (d, n)
⊢ ¬(i, j).snd = n
[PROOFSTEP]
rintro rfl
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).snd)
h2 : (i, j) ≠ (d, (i, j).snd)
⊢ False
[PROOFSTEP]
apply h2
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).snd)
h2 : (i, j) ≠ (d, (i, j).snd)
⊢ (i, j) = (d, (i, j).snd)
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal, add_right_cancel_iff] at h1
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j).fst = d
h2 : (i, j) ≠ (d, (i, j).snd)
⊢ (i, j) = (d, (i, j).snd)
[PROOFSTEP]
subst h1
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
i j : ℕ
h2 : (i, j) ≠ ((i, j).fst, (i, j).snd)
⊢ (i, j) = ((i, j).fst, (i, j).snd)
[PROOFSTEP]
rfl
[GOAL]
case h₁
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ¬(d, n) ∈ Finset.Nat.antidiagonal (d + n) → ↑(coeff R (d, n).fst) p * ↑(coeff R (d, n).snd) (X ^ n) = 0
[PROOFSTEP]
exact fun h1 => (h1 (Finset.Nat.mem_antidiagonal.2 rfl)).elim
[GOAL]
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ↑(coeff R (d + n)) (X ^ n * p) = ↑(coeff R d) p
[PROOFSTEP]
rw [coeff_mul, Finset.sum_eq_single (n, d), coeff_X_pow, if_pos rfl, one_mul]
[GOAL]
case h₀
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (d + n) → b ≠ (n, d) → ↑(coeff R b.fst) (X ^ n) * ↑(coeff R b.snd) p = 0
[PROOFSTEP]
rintro ⟨i, j⟩ h1 h2
[GOAL]
case h₀.mk
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n)
h2 : (i, j) ≠ (n, d)
⊢ ↑(coeff R (i, j).fst) (X ^ n) * ↑(coeff R (i, j).snd) p = 0
[PROOFSTEP]
rw [coeff_X_pow, if_neg, zero_mul]
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n)
h2 : (i, j) ≠ (n, d)
⊢ ¬(i, j).fst = n
[PROOFSTEP]
rintro rfl
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).fst)
h2 : (i, j) ≠ ((i, j).fst, d)
⊢ False
[PROOFSTEP]
apply h2
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).fst)
h2 : (i, j) ≠ ((i, j).fst, d)
⊢ (i, j) = ((i, j).fst, d)
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal, add_comm, add_right_cancel_iff] at h1
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
d i j : ℕ
h1 : (i, j).snd = d
h2 : (i, j) ≠ ((i, j).fst, d)
⊢ (i, j) = ((i, j).fst, d)
[PROOFSTEP]
subst h1
[GOAL]
case h₀.mk.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
i j : ℕ
h2 : (i, j) ≠ ((i, j).fst, (i, j).snd)
⊢ (i, j) = ((i, j).fst, (i, j).snd)
[PROOFSTEP]
rfl
[GOAL]
case h₁
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ¬(n, d) ∈ Finset.Nat.antidiagonal (d + n) → ↑(coeff R (n, d).fst) (X ^ n) * ↑(coeff R (n, d).snd) p = 0
[PROOFSTEP]
rw [add_comm]
[GOAL]
case h₁
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ¬(n, d) ∈ Finset.Nat.antidiagonal (n + d) → ↑(coeff R (n, d).fst) (X ^ n) * ↑(coeff R (n, d).snd) p = 0
[PROOFSTEP]
exact fun h1 => (h1 (Finset.Nat.mem_antidiagonal.2 rfl)).elim
[GOAL]
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ↑(coeff R d) (p * X ^ n) = if n ≤ d then ↑(coeff R (d - n)) p else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : n ≤ d
⊢ ↑(coeff R d) (p * X ^ n) = ↑(coeff R (d - n)) p
[PROOFSTEP]
rw [← tsub_add_cancel_of_le h, coeff_mul_X_pow, add_tsub_cancel_right]
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
⊢ ↑(coeff R d) (p * X ^ n) = 0
[PROOFSTEP]
refine' (coeff_mul _ _ _).trans (Finset.sum_eq_zero fun x hx => _)
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
⊢ ↑(coeff R x.fst) p * ↑(coeff R x.snd) (X ^ n) = 0
[PROOFSTEP]
rw [coeff_X_pow, if_neg, mul_zero]
[GOAL]
case neg.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
⊢ ¬x.snd = n
[PROOFSTEP]
exact ((le_of_add_le_right (Finset.Nat.mem_antidiagonal.mp hx).le).trans_lt <| not_le.mp h).ne
[GOAL]
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
⊢ ↑(coeff R d) (X ^ n * p) = if n ≤ d then ↑(coeff R (d - n)) p else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : n ≤ d
⊢ ↑(coeff R d) (X ^ n * p) = ↑(coeff R (d - n)) p
[PROOFSTEP]
rw [← tsub_add_cancel_of_le h, coeff_X_pow_mul]
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : n ≤ d
⊢ ↑(coeff R (d - n)) p = ↑(coeff R (d - n + n - n)) p
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
⊢ ↑(coeff R d) (X ^ n * p) = 0
[PROOFSTEP]
refine' (coeff_mul _ _ _).trans (Finset.sum_eq_zero fun x hx => _)
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
⊢ ↑(coeff R x.fst) (X ^ n) * ↑(coeff R x.snd) p = 0
[PROOFSTEP]
rw [coeff_X_pow, if_neg, zero_mul]
[GOAL]
case neg.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
⊢ ¬x.fst = n
[PROOFSTEP]
have := Finset.Nat.mem_antidiagonal.mp hx
[GOAL]
case neg.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
this : x.fst + x.snd = d
⊢ ¬x.fst = n
[PROOFSTEP]
rw [add_comm] at this
[GOAL]
case neg.hnc
R : Type u_1
inst✝ : Semiring R
p : PowerSeries R
n d : ℕ
h : ¬n ≤ d
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal d
this : x.snd + x.fst = d
⊢ ¬x.fst = n
[PROOFSTEP]
exact ((le_of_add_le_right this.le).trans_lt <| not_le.mp h).ne
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ φ = (mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ)
[PROOFSTEP]
ext (_ | n)
[GOAL]
case h.zero
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R Nat.zero) φ = ↑(coeff R Nat.zero) ((mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ))
[PROOFSTEP]
simp only [Nat.zero_eq, coeff_zero_eq_constantCoeff, map_add, map_mul, constantCoeff_X, mul_zero, coeff_zero_C,
zero_add]
[GOAL]
case h.succ
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
⊢ ↑(coeff R (Nat.succ n)) φ =
↑(coeff R (Nat.succ n)) ((mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ))
[PROOFSTEP]
simp only [coeff_succ_mul_X, coeff_mk, LinearMap.map_add, coeff_C, n.succ_ne_zero, sub_zero, if_false, add_zero]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ φ = (X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ)
[PROOFSTEP]
ext (_ | n)
[GOAL]
case h.zero
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R Nat.zero) φ = ↑(coeff R Nat.zero) ((X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ))
[PROOFSTEP]
simp only [Nat.zero_eq, coeff_zero_eq_constantCoeff, map_add, map_mul, constantCoeff_X, zero_mul, coeff_zero_C,
zero_add]
[GOAL]
case h.succ
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
⊢ ↑(coeff R (Nat.succ n)) φ =
↑(coeff R (Nat.succ n)) ((X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ))
[PROOFSTEP]
simp only [coeff_succ_X_mul, coeff_mk, LinearMap.map_add, coeff_C, n.succ_ne_zero, sub_zero, if_false, add_zero]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Type u_2
T : Type u_3
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
r : R
⊢ ↑(map f) (↑(C R) r) = ↑(C ((fun x => S) r)) (↑f r)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝² : Semiring R
S : Type u_2
T : Type u_3
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
r : R
n✝ : ℕ
⊢ ↑(coeff S n✝) (↑(map f) (↑(C R) r)) = ↑(coeff S n✝) (↑(C ((fun x => S) r)) (↑f r))
[PROOFSTEP]
simp [coeff_C, apply_ite f]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Type u_2
T : Type u_3
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
⊢ ↑(map f) X = X
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝² : Semiring R
S : Type u_2
T : Type u_3
inst✝¹ : Semiring S
inst✝ : Semiring T
f : R →+* S
g : S →+* T
n✝ : ℕ
⊢ ↑(coeff S n✝) (↑(map f) X) = ↑(coeff S n✝) X
[PROOFSTEP]
simp [coeff_X, apply_ite f]
[GOAL]
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ X ^ n ∣ φ ↔ ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0
[PROOFSTEP]
convert @MvPowerSeries.X_pow_dvd_iff Unit R _ () n φ
[GOAL]
case h.e'_2.a
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ (∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0) ↔ ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0
[PROOFSTEP]
constructor
[GOAL]
case h.e'_2.a.mp
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ (∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0) → ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0
[PROOFSTEP]
intro h m hm
[GOAL]
case h.e'_2.a.mpr
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
⊢ (∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0) → ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0
[PROOFSTEP]
intro h m hm
[GOAL]
case h.e'_2.a.mp
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
h : ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0
m : Unit →₀ ℕ
hm : ↑m () < n
⊢ ↑(MvPowerSeries.coeff R m) φ = 0
[PROOFSTEP]
rw [Finsupp.unique_single m]
[GOAL]
case h.e'_2.a.mp
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
h : ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0
m : Unit →₀ ℕ
hm : ↑m () < n
⊢ ↑(MvPowerSeries.coeff R (single default (↑m default))) φ = 0
[PROOFSTEP]
convert h _ hm
[GOAL]
case h.e'_2.a.mpr
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
h : ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0
m : ℕ
hm : m < n
⊢ ↑(coeff R m) φ = 0
[PROOFSTEP]
apply h
[GOAL]
case h.e'_2.a.mpr.a
R : Type u_1
inst✝ : Semiring R
n : ℕ
φ : PowerSeries R
h : ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0
m : ℕ
hm : m < n
⊢ ↑(single () m) () < n
[PROOFSTEP]
simpa only [Finsupp.single_eq_same] using hm
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ X ∣ φ ↔ ↑(constantCoeff R) φ = 0
[PROOFSTEP]
rw [← pow_one (X : PowerSeries R), X_pow_dvd_iff, ← coeff_zero_eq_constantCoeff_apply]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0) ↔ ↑(coeff R 0) φ = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0) → ↑(coeff R 0) φ = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ↑(coeff R 0) φ = 0 → ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0
⊢ ↑(coeff R 0) φ = 0
[PROOFSTEP]
exact h 0 zero_lt_one
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : ↑(coeff R 0) φ = 0
⊢ ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0
[PROOFSTEP]
intro m hm
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : ↑(coeff R 0) φ = 0
m : ℕ
hm : m < 1
⊢ ↑(coeff R m) φ = 0
[PROOFSTEP]
rwa [Nat.eq_zero_of_le_zero (Nat.le_of_succ_le_succ hm)]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a : R
⊢ (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1
[PROOFSTEP]
ext1
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
n✝ : ℕ
⊢ ↑(coeff R n✝) ((fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1) = ↑(coeff R n✝) 1
[PROOFSTEP]
simp only [mul_boole, PowerSeries.coeff_mk, PowerSeries.coeff_one]
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
n✝ : ℕ
⊢ (if n✝ = 0 then a ^ n✝ else 0) = if n✝ = 0 then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
a : R
n✝ : ℕ
h : n✝ = 0
⊢ a ^ n✝ = 1
[PROOFSTEP]
rw [h, pow_zero a]
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
a : R
n✝ : ℕ
h : ¬n✝ = 0
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
⊢ OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
n✝ : ℕ
⊢ ↑(coeff R n✝)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g)) =
↑(coeff R n✝)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g)
[PROOFSTEP]
rw [PowerSeries.coeff_mul, PowerSeries.coeff_mk, PowerSeries.coeff_mul, Finset.mul_sum]
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
n✝ : ℕ
⊢ ∑ x in antidiagonal n✝, a ^ n✝ * (↑(coeff R x.fst) f * ↑(coeff R x.snd) g) =
∑ p in antidiagonal n✝,
↑(coeff R p.fst)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f) *
↑(coeff R p.snd)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g)
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
n✝ : ℕ
⊢ ∀ (x : ℕ × ℕ),
x ∈ antidiagonal n✝ →
a ^ n✝ * (↑(coeff R x.fst) f * ↑(coeff R x.snd) g) =
↑(coeff R x.fst)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f) *
↑(coeff R x.snd)
(OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g)
[PROOFSTEP]
simp only [coeff_mk, Prod.forall, Nat.mem_antidiagonal]
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
n✝ : ℕ
⊢ ∀ (a_1 b : ℕ),
a_1 + b = n✝ → a ^ n✝ * (↑(coeff R a_1) f * ↑(coeff R b) g) = a ^ a_1 * ↑(coeff R a_1) f * (a ^ b * ↑(coeff R b) g)
[PROOFSTEP]
intro b c H
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
f g : PowerSeries R
n✝ b c : ℕ
H : b + c = n✝
⊢ a ^ n✝ * (↑(coeff R b) f * ↑(coeff R c) g) = a ^ b * ↑(coeff R b) f * (a ^ c * ↑(coeff R c) g)
[PROOFSTEP]
rw [← H, pow_add, mul_mul_mul_comm]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a : R
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
0 =
0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
n✝ : ℕ
⊢ ↑(coeff R n✝)
(OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
0) =
↑(coeff R n✝) 0
[PROOFSTEP]
simp only [LinearMap.map_zero, PowerSeries.coeff_mk, mul_zero]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a : R
⊢ ∀ (x y : PowerSeries R),
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
x +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
y
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a : R
x✝ y✝ : PowerSeries R
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
(x✝ + y✝) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
x✝ +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
y✝
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
x✝ y✝ : PowerSeries R
n✝ : ℕ
⊢ ↑(coeff R n✝)
(OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
(x✝ + y✝)) =
↑(coeff R n✝)
(OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
x✝ +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }
g) })
y✝)
[PROOFSTEP]
dsimp only
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
a : R
x✝ y✝ : PowerSeries R
n✝ : ℕ
⊢ ↑(coeff R n✝) (mk fun n => a ^ n * ↑(coeff R n) (x✝ + y✝)) =
↑(coeff R n✝) ((mk fun n => a ^ n * ↑(coeff R n) x✝) + mk fun n => a ^ n * ↑(coeff R n) y✝)
[PROOFSTEP]
exact mul_add _ _ _
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ rescale 0 = RingHom.comp (C R) (constantCoeff R)
[PROOFSTEP]
ext x n
[GOAL]
case a.h
R : Type u_1
inst✝ : CommSemiring R
x : PowerSeries R
n : ℕ
⊢ ↑(coeff R n) (↑(rescale 0) x) = ↑(coeff R n) (↑(RingHom.comp (C R) (constantCoeff R)) x)
[PROOFSTEP]
simp only [Function.comp_apply, RingHom.coe_comp, rescale, RingHom.coe_mk, PowerSeries.coeff_mk _ _, coeff_C]
[GOAL]
case a.h
R : Type u_1
inst✝ : CommSemiring R
x : PowerSeries R
n : ℕ
⊢ ↑(coeff R n)
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
g) }
x) =
if n = 0 then ↑(constantCoeff R) x else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
x : PowerSeries R
n : ℕ
h : n = 0
⊢ ↑(coeff R n)
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
g) }
x) =
↑(constantCoeff R) x
[PROOFSTEP]
simp [h]
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
x : PowerSeries R
n : ℕ
h : ¬n = 0
⊢ ↑(coeff R n)
(↑{
toOneHom :=
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) },
map_mul' :=
(_ :
∀ (f g : PowerSeries R),
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
(f * g) =
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
f *
OneHom.toFun
{ toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f,
map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }
g) }
x) =
0
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ ↑(rescale 0) X = ↑(C R) (↑(constantCoeff R) X)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ rescale 1 = RingHom.id (PowerSeries R)
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
inst✝ : CommSemiring R
x✝ : PowerSeries R
n✝ : ℕ
⊢ ↑(coeff R n✝) (↑(rescale 1) x✝) = ↑(coeff R n✝) (↑(RingHom.id (PowerSeries R)) x✝)
[PROOFSTEP]
simp only [coeff_rescale, one_pow, one_mul, RingHom.id_apply]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
f : ℕ → R
a : R
⊢ ↑(rescale a) (mk f) = mk fun n => a ^ n * f n
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
f : ℕ → R
a : R
n✝ : ℕ
⊢ ↑(coeff R n✝) (↑(rescale a) (mk f)) = ↑(coeff R n✝) (mk fun n => a ^ n * f n)
[PROOFSTEP]
rw [coeff_rescale, coeff_mk, coeff_mk]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
f : PowerSeries R
a b : R
⊢ ↑(rescale b) (↑(rescale a) f) = ↑(rescale (a * b)) f
[PROOFSTEP]
ext n
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
f : PowerSeries R
a b : R
n : ℕ
⊢ ↑(coeff R n) (↑(rescale b) (↑(rescale a) f)) = ↑(coeff R n) (↑(rescale (a * b)) f)
[PROOFSTEP]
simp_rw [coeff_rescale]
[GOAL]
case h
R : Type u_1
inst✝ : CommSemiring R
f : PowerSeries R
a b : R
n : ℕ
⊢ b ^ n * (a ^ n * ↑(coeff R n) f) = (a * b) ^ n * ↑(coeff R n) f
[PROOFSTEP]
rw [mul_pow, mul_comm _ (b ^ n), mul_assoc]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
a b : R
⊢ rescale (a * b) = RingHom.comp (rescale b) (rescale a)
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
inst✝ : CommSemiring R
a b : R
x✝ : PowerSeries R
n✝ : ℕ
⊢ ↑(coeff R n✝) (↑(rescale (a * b)) x✝) = ↑(coeff R n✝) (↑(RingHom.comp (rescale b) (rescale a)) x✝)
[PROOFSTEP]
simp [← rescale_rescale]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
m n : ℕ
φ : PowerSeries R
⊢ Polynomial.coeff (trunc n φ) m = if m < n then ↑(coeff R m) φ else 0
[PROOFSTEP]
simp [trunc, Polynomial.coeff_sum, Polynomial.coeff_monomial, Nat.lt_succ_iff]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
⊢ Polynomial.coeff (trunc n 0) m = Polynomial.coeff 0 m
[PROOFSTEP]
rw [coeff_trunc, LinearMap.map_zero, Polynomial.coeff_zero]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
⊢ (if m < n then 0 else 0) = 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
h✝ : m < n
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
h✝ : ¬m < n
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
⊢ Polynomial.coeff (trunc (n + 1) 1) m = Polynomial.coeff 1 m
[PROOFSTEP]
rw [coeff_trunc, coeff_one]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
⊢ (if m < n + 1 then if m = 0 then 1 else 0 else 0) = Polynomial.coeff 1 m
[PROOFSTEP]
split_ifs with H H'
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : m < n + 1
H' : m = 0
⊢ 1 = Polynomial.coeff 1 m
[PROOFSTEP]
rw [Polynomial.coeff_one]
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : m < n + 1
H' : ¬m = 0
⊢ 0 = Polynomial.coeff 1 m
[PROOFSTEP]
rw [Polynomial.coeff_one]
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : ¬m < n + 1
⊢ 0 = Polynomial.coeff 1 m
[PROOFSTEP]
rw [Polynomial.coeff_one]
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : m < n + 1
H' : m = 0
⊢ 1 = if 0 = m then 1 else 0
[PROOFSTEP]
subst m
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
H : 0 < n + 1
⊢ 1 = if 0 = 0 then 1 else 0
[PROOFSTEP]
rw [if_pos rfl]
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : m < n + 1
H' : ¬m = 0
⊢ 0 = if 0 = m then 1 else 0
[PROOFSTEP]
symm
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : m < n + 1
H' : ¬m = 0
⊢ (if 0 = m then 1 else 0) = 0
[PROOFSTEP]
exact if_neg (Ne.elim (Ne.symm H'))
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : ¬m < n + 1
⊢ 0 = if 0 = m then 1 else 0
[PROOFSTEP]
symm
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : ¬m < n + 1
⊢ (if 0 = m then 1 else 0) = 0
[PROOFSTEP]
refine' if_neg _
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n m : ℕ
H : ¬m < n + 1
⊢ ¬0 = m
[PROOFSTEP]
rintro rfl
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
H : ¬0 < n + 1
⊢ False
[PROOFSTEP]
apply H
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
H : ¬0 < n + 1
⊢ 0 < n + 1
[PROOFSTEP]
exact Nat.zero_lt_succ _
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
⊢ Polynomial.coeff (trunc (n + 1) (↑(C R) a)) m = Polynomial.coeff (↑Polynomial.C a) m
[PROOFSTEP]
rw [coeff_trunc, coeff_C, Polynomial.coeff_C]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
⊢ (if m < n + 1 then if m = 0 then a else 0 else 0) = if m = 0 then a else 0
[PROOFSTEP]
split_ifs with H
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : m < n + 1
h✝ : m = 0
⊢ a = a
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : m < n + 1
h✝ : m = 0
⊢ a = a
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : m < n + 1
h✝ : ¬m = 0
⊢ 0 = 0
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : m < n + 1
h✝ : ¬m = 0
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : m = 0
⊢ 0 = a
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : m = 0
⊢ 0 = a
[PROOFSTEP]
rfl
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : m = 0
⊢ 0 = a
[PROOFSTEP]
try simp_all
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : m = 0
⊢ 0 = a
[PROOFSTEP]
simp_all
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : ¬m = 0
⊢ 0 = 0
[PROOFSTEP]
first
| rfl
| try simp_all
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
a : R
m : ℕ
H : ¬m < n + 1
h✝ : ¬m = 0
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
φ ψ : PowerSeries R
m : ℕ
⊢ Polynomial.coeff (trunc n (φ + ψ)) m = Polynomial.coeff (trunc n φ + trunc n ψ) m
[PROOFSTEP]
simp only [coeff_trunc, AddMonoidHom.map_add, Polynomial.coeff_add]
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
φ ψ : PowerSeries R
m : ℕ
⊢ (if m < n then ↑(coeff R m) (φ + ψ) else 0) =
(if m < n then ↑(coeff R m) φ else 0) + if m < n then ↑(coeff R m) ψ else 0
[PROOFSTEP]
split_ifs with H
[GOAL]
case pos
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
φ ψ : PowerSeries R
m : ℕ
H : m < n
⊢ ↑(coeff R m) (φ + ψ) = ↑(coeff R m) φ + ↑(coeff R m) ψ
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝ : CommSemiring R
n : ℕ
φ ψ : PowerSeries R
m : ℕ
H : ¬m < n
⊢ 0 = 0 + 0
[PROOFSTEP]
rw [zero_add]
[GOAL]
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
⊢ ↑(coeff R n) (inv.aux a φ) =
if n = 0 then a
else
-a *
∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0
[PROOFSTEP]
rw [coeff, inv.aux, MvPowerSeries.coeff_inv_aux]
[GOAL]
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
⊢ (if single () n = 0 then a
else
-a *
∑ x in Finsupp.antidiagonal (single () n),
if x.snd < single () n then
↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ)
else 0) =
if n = 0 then a
else
-a *
∑ x in Finset.Nat.antidiagonal n,
if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0
[PROOFSTEP]
simp only [Finsupp.single_eq_zero]
[GOAL]
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
⊢ (if n = 0 then a
else
-a *
∑ x in Finsupp.antidiagonal (single () n),
if x.snd < single () n then
↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ)
else 0) =
if n = 0 then a
else
-a *
∑ x in Finset.Nat.antidiagonal n,
if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : n = 0
⊢ a = a
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ (-a *
∑ x in Finsupp.antidiagonal (single () n),
if x.snd < single () n then
↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ)
else 0) =
-a *
∑ x in Finset.Nat.antidiagonal n,
if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0
[PROOFSTEP]
congr 1
[GOAL]
case neg.e_a
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ (∑ x in Finsupp.antidiagonal (single () n),
if x.snd < single () n then
↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ)
else 0) =
∑ x in Finset.Nat.antidiagonal n,
if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0
[PROOFSTEP]
symm
[GOAL]
case neg.e_a
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ (∑ x in Finset.Nat.antidiagonal n,
if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) =
∑ x in Finsupp.antidiagonal (single () n),
if x.snd < single () n then
↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ)
else 0
[PROOFSTEP]
apply Finset.sum_bij fun (p : ℕ × ℕ) _h => (single () p.1, single () p.2)
[GOAL]
case neg.e_a.hi
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ ∀ (a : ℕ × ℕ), a ∈ Finset.Nat.antidiagonal n → (single () a.fst, single () a.snd) ∈ Finsupp.antidiagonal (single () n)
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case neg.e_a.hi.mk
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
⊢ (single () (i, j).fst, single () (i, j).snd) ∈ Finsupp.antidiagonal (single () n)
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal] at hij
[GOAL]
case neg.e_a.hi.mk
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = n
⊢ (single () (i, j).fst, single () (i, j).snd) ∈ Finsupp.antidiagonal (single () n)
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal, ← Finsupp.single_add, hij]
[GOAL]
case neg.e_a.h
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ ∀ (a_1 : ℕ × ℕ),
a_1 ∈ Finset.Nat.antidiagonal n →
(if a_1.snd < n then ↑(coeff R a_1.fst) φ * ↑(coeff R a_1.snd) (MvPowerSeries.inv.aux a φ) else 0) =
if (single () a_1.fst, single () a_1.snd).snd < single () n then
↑(MvPowerSeries.coeff R (single () a_1.fst, single () a_1.snd).fst) φ *
↑(MvPowerSeries.coeff R (single () a_1.fst, single () a_1.snd).snd) (MvPowerSeries.inv.aux a φ)
else 0
[PROOFSTEP]
rintro ⟨i, j⟩ _hij
[GOAL]
case neg.e_a.h.mk
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) =
if (single () (i, j).fst, single () (i, j).snd).snd < single () n then
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ *
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ)
else 0
[PROOFSTEP]
by_cases H : j < n
[GOAL]
case pos
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) =
if (single () (i, j).fst, single () (i, j).snd).snd < single () n then
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ *
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ)
else 0
[PROOFSTEP]
rw [if_pos H, if_pos]
[GOAL]
case pos
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) =
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ *
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ)
[PROOFSTEP]
rfl
[GOAL]
case pos.hc
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ (single () (i, j).fst, single () (i, j).snd).snd < single () n
[PROOFSTEP]
constructor
[GOAL]
case pos.hc.left
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ ∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1)
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case pos.hc.left.unit
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd PUnit.unit) (↑(single () n) PUnit.unit)
[PROOFSTEP]
simpa [Finsupp.single_eq_same] using le_of_lt H
[GOAL]
case pos.hc.right
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
⊢ ¬∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
[PROOFSTEP]
intro hh
[GOAL]
case pos.hc.right
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : j < n
hh :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ False
[PROOFSTEP]
rw [lt_iff_not_ge] at H
[GOAL]
case pos.hc.right
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j ≥ n
hh :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ False
[PROOFSTEP]
apply H
[GOAL]
case pos.hc.right
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j ≥ n
hh :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ j ≥ n
[PROOFSTEP]
simpa [Finsupp.single_eq_same] using hh ()
[GOAL]
case neg
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j < n
⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) =
if (single () (i, j).fst, single () (i, j).snd).snd < single () n then
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ *
↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ)
else 0
[PROOFSTEP]
rw [if_neg H, if_neg]
[GOAL]
case neg.hnc
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j < n
⊢ ¬(single () (i, j).fst, single () (i, j).snd).snd < single () n
[PROOFSTEP]
rintro ⟨_h₁, h₂⟩
[GOAL]
case neg.hnc.intro
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j < n
_h₁ :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1)
h₂ :
¬∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
case neg.hnc.intro
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j < n
_h₁ :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1)
h₂ :
¬∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ ∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case neg.hnc.intro.unit
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
H : ¬j < n
_h₁ :
∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1)
h₂ :
¬∀ (i_1 : Unit),
PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1)
⊢ PartialOrder.toPreorder.1.1 (↑(single () n) PUnit.unit) (↑(single () (i, j).fst, single () (i, j).snd).snd PUnit.unit)
[PROOFSTEP]
simpa [Finsupp.single_eq_same] using not_lt.1 H
[GOAL]
case neg.e_a.i_inj
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ ∀ (a₁ a₂ : ℕ × ℕ),
a₁ ∈ Finset.Nat.antidiagonal n →
a₂ ∈ Finset.Nat.antidiagonal n →
(single () a₁.fst, single () a₁.snd) = (single () a₂.fst, single () a₂.snd) → a₁ = a₂
[PROOFSTEP]
rintro ⟨i, j⟩ ⟨k, l⟩ _hij _hkl
[GOAL]
case neg.e_a.i_inj.mk.mk
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
i j k l : ℕ
_hij : (i, j) ∈ Finset.Nat.antidiagonal n
_hkl : (k, l) ∈ Finset.Nat.antidiagonal n
⊢ (single () (i, j).fst, single () (i, j).snd) = (single () (k, l).fst, single () (k, l).snd) → (i, j) = (k, l)
[PROOFSTEP]
simpa only [Prod.mk.inj_iff, Finsupp.unique_single_eq_iff] using id
[GOAL]
case neg.e_a.i_surj
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
⊢ ∀ (b : (Unit →₀ ℕ) × (Unit →₀ ℕ)),
b ∈ Finsupp.antidiagonal (single () n) → ∃ a ha, b = (single () a.fst, single () a.snd)
[PROOFSTEP]
rintro ⟨f, g⟩ hfg
[GOAL]
case neg.e_a.i_surj.mk
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g) ∈ Finsupp.antidiagonal (single () n)
⊢ ∃ a ha, (f, g) = (single () a.fst, single () a.snd)
[PROOFSTEP]
refine' ⟨(f (), g ()), _, _⟩
[GOAL]
case neg.e_a.i_surj.mk.refine'_1
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g) ∈ Finsupp.antidiagonal (single () n)
⊢ (↑f (), ↑g ()) ∈ Finset.Nat.antidiagonal n
[PROOFSTEP]
rw [Finsupp.mem_antidiagonal] at hfg
[GOAL]
case neg.e_a.i_surj.mk.refine'_1
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g).fst + (f, g).snd = single () n
⊢ (↑f (), ↑g ()) ∈ Finset.Nat.antidiagonal n
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal, ← Finsupp.add_apply, hfg, Finsupp.single_eq_same]
[GOAL]
case neg.e_a.i_surj.mk.refine'_2
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g) ∈ Finsupp.antidiagonal (single () n)
⊢ (f, g) = (single () (↑f (), ↑g ()).fst, single () (↑f (), ↑g ()).snd)
[PROOFSTEP]
rw [Prod.mk.inj_iff]
[GOAL]
case neg.e_a.i_surj.mk.refine'_2
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g) ∈ Finsupp.antidiagonal (single () n)
⊢ f = single () (↑f (), ↑g ()).fst ∧ g = single () (↑f (), ↑g ()).snd
[PROOFSTEP]
dsimp
[GOAL]
case neg.e_a.i_surj.mk.refine'_2
R : Type u_1
inst✝ : Ring R
n : ℕ
a : R
φ : PowerSeries R
h✝ : ¬n = 0
f g : Unit →₀ ℕ
hfg : (f, g) ∈ Finsupp.antidiagonal (single () n)
⊢ f = single () (↑f ()) ∧ g = single () (↑g ())
[PROOFSTEP]
exact ⟨Finsupp.unique_single f, Finsupp.unique_single g⟩
[GOAL]
R : Type u_1
inst✝ : Ring R
φ : PowerSeries R
u : Rˣ
⊢ ↑(constantCoeff R) (invOfUnit φ u) = ↑u⁻¹
[PROOFSTEP]
rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl]
[GOAL]
R : Type u_1
A : Type u_2
inst✝ : CommRing A
a : A
⊢ ↑(rescale a) X = ↑(C A) a * X
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝ : CommRing A
a : A
n✝ : ℕ
⊢ ↑(coeff A n✝) (↑(rescale a) X) = ↑(coeff A n✝) (↑(C A) a * X)
[PROOFSTEP]
simp only [coeff_rescale, coeff_C_mul, coeff_X]
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝ : CommRing A
a : A
n✝ : ℕ
⊢ (a ^ n✝ * if n✝ = 1 then 1 else 0) = a * if n✝ = 1 then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝ : CommRing A
a : A
n✝ : ℕ
h : n✝ = 1
⊢ a ^ n✝ * 1 = a * 1
[PROOFSTEP]
simp [h]
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝ : CommRing A
a : A
n✝ : ℕ
h : ¬n✝ = 1
⊢ a ^ n✝ * 0 = a * 0
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
A : Type u_2
inst✝ : CommRing A
⊢ ↑(rescale (-1)) X = -X
[PROOFSTEP]
rw [rescale_X, map_neg, map_one, neg_one_mul]
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
⊢ φ = 0 ∨ ψ = 0
[PROOFSTEP]
rw [or_iff_not_imp_left]
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
⊢ ¬φ = 0 → ψ = 0
[PROOFSTEP]
intro H
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
⊢ ψ = 0
[PROOFSTEP]
have ex : ∃ m, coeff R m φ ≠ 0 := by
contrapose! H
exact ext H
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
⊢ ∃ m, ↑(coeff R m) φ ≠ 0
[PROOFSTEP]
contrapose! H
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ∀ (m : ℕ), ↑(coeff R m) φ = 0
⊢ φ = 0
[PROOFSTEP]
exact ext H
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
⊢ ψ = 0
[PROOFSTEP]
let m := Nat.find ex
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
⊢ ψ = 0
[PROOFSTEP]
have hm₁ : coeff R m φ ≠ 0 := Nat.find_spec ex
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
⊢ ψ = 0
[PROOFSTEP]
have hm₂ : ∀ k < m, ¬coeff R k φ ≠ 0 := fun k => Nat.find_min ex
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
⊢ ψ = 0
[PROOFSTEP]
ext n
[GOAL]
case h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
⊢ ↑(coeff R n) ψ = ↑(coeff R n) 0
[PROOFSTEP]
rw [(coeff R n).map_zero]
[GOAL]
case h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
induction' n using Nat.strong_induction_on with n ih
[GOAL]
case h.h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
h : φ * ψ = 0
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
replace h := congr_arg (coeff R (m + n)) h
[GOAL]
case h.h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ↑(coeff R (m + n)) (φ * ψ) = ↑(coeff R (m + n)) 0
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
rw [LinearMap.map_zero, coeff_mul, Finset.sum_eq_single (m, n)] at h
[GOAL]
case h.h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ↑(coeff R (m, n).fst) φ * ↑(coeff R (m, n).snd) ψ = 0
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
replace h := NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero h
[GOAL]
case h.h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ↑(coeff R (m, n).fst) φ = 0 ∨ ↑(coeff R (m, n).snd) ψ = 0
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
rw [or_iff_not_imp_left] at h
[GOAL]
case h.h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ¬↑(coeff R (m, n).fst) φ = 0 → ↑(coeff R (m, n).snd) ψ = 0
⊢ ↑(coeff R n) ψ = 0
[PROOFSTEP]
exact h hm₁
[GOAL]
case h.h.h₀
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (m + n) → b ≠ (m, n) → ↑(coeff R b.fst) φ * ↑(coeff R b.snd) ψ = 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij hne
[GOAL]
case h.h.h₀.mk
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
by_cases hj : j < n
[GOAL]
case pos
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : j < n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [ih j hj, mul_zero]
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : ¬j < n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
by_cases hi : i < m
[GOAL]
case pos
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : ¬j < n
hi : i < m
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
specialize hm₂ _ hi
[GOAL]
case pos
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : ¬j < n
hi : i < m
hm₂ : ¬↑(coeff R i) φ ≠ 0
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
push_neg at hm₂
[GOAL]
case pos
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : ¬j < n
hi : i < m
hm₂ : ↑(coeff R i) φ = 0
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [hm₂, zero_mul]
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n)
hne : (i, j) ≠ (m, n)
hj : ¬j < n
hi : ¬i < m
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal] at hij
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hj : ¬j < n
hi : ¬i < m
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
push_neg at hi hj
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hi : Nat.find ex ≤ i
hj : n ≤ j
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
suffices m < i by
have : m + n < i + j := add_lt_add_of_lt_of_le this hj
exfalso
exact ne_of_lt this hij.symm
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hi : Nat.find ex ≤ i
hj : n ≤ j
this : m < i
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
have : m + n < i + j := add_lt_add_of_lt_of_le this hj
[GOAL]
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hi : Nat.find ex ≤ i
hj : n ≤ j
this✝ : m < i
this : m + n < i + j
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
exfalso
[GOAL]
case h
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hi : Nat.find ex ≤ i
hj : n ≤ j
this✝ : m < i
this : m + n < i + j
⊢ False
[PROOFSTEP]
exact ne_of_lt this hij.symm
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hne : (i, j) ≠ (m, n)
hi : Nat.find ex ≤ i
hj : n ≤ j
⊢ m < i
[PROOFSTEP]
contrapose! hne
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
i j : ℕ
hij : (i, j).fst + (i, j).snd = m + n
hi : Nat.find ex ≤ i
hj : n ≤ j
hne : i ≤ Nat.find ex
⊢ (i, j) = (Nat.find ex, n)
[PROOFSTEP]
obtain rfl := le_antisymm hi hne
[GOAL]
case neg
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
j : ℕ
hj : n ≤ j
hij : (Nat.find ex, j).fst + (Nat.find ex, j).snd = m + n
hi hne : Nat.find ex ≤ Nat.find ex
⊢ (Nat.find ex, j) = (Nat.find ex, n)
[PROOFSTEP]
simpa [Ne.def, Prod.mk.inj_iff] using (add_right_inj m).mp hij
[GOAL]
case h.h.h₁
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
⊢ ¬(m, n) ∈ Finset.Nat.antidiagonal (m + n) → ↑(coeff R (m, n).fst) φ * ↑(coeff R (m, n).snd) ψ = 0
[PROOFSTEP]
contrapose!
[GOAL]
case h.h.h₁
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
⊢ ↑(coeff R (Nat.find ex)) φ * ↑(coeff R n) ψ ≠ 0 → (Nat.find ex, n) ∈ Finset.Nat.antidiagonal (Nat.find ex + n)
[PROOFSTEP]
intro
[GOAL]
case h.h.h₁
R : Type u_1
inst✝¹ : Ring R
inst✝ : NoZeroDivisors R
φ ψ : PowerSeries R
H : ¬φ = 0
ex : ∃ m, ↑(coeff R m) φ ≠ 0
m : ℕ := Nat.find ex
hm₁ : ↑(coeff R m) φ ≠ 0
hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0
n : ℕ
ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0
h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0
a✝ : ↑(coeff R (Nat.find ex)) φ * ↑(coeff R n) ψ ≠ 0
⊢ (Nat.find ex, n) ∈ Finset.Nat.antidiagonal (Nat.find ex + n)
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Ideal.IsPrime (Ideal.span {X})
[PROOFSTEP]
suffices Ideal.span ({ X } : Set (PowerSeries R)) = RingHom.ker (constantCoeff R)
by
rw [this]
exact RingHom.ker_isPrime _
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
this : Ideal.span {X} = RingHom.ker (constantCoeff R)
⊢ Ideal.IsPrime (Ideal.span {X})
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
this : Ideal.span {X} = RingHom.ker (constantCoeff R)
⊢ Ideal.IsPrime (RingHom.ker (constantCoeff R))
[PROOFSTEP]
exact RingHom.ker_isPrime _
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Ideal.span {X} = RingHom.ker (constantCoeff R)
[PROOFSTEP]
apply Ideal.ext
[GOAL]
case h
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ ∀ (x : PowerSeries R), x ∈ Ideal.span {X} ↔ x ∈ RingHom.ker (constantCoeff R)
[PROOFSTEP]
intro φ
[GOAL]
case h
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
φ : PowerSeries R
⊢ φ ∈ Ideal.span {X} ↔ φ ∈ RingHom.ker (constantCoeff R)
[PROOFSTEP]
rw [RingHom.mem_ker, Ideal.mem_span_singleton, X_dvd_iff]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Prime X
[PROOFSTEP]
rw [← Ideal.span_singleton_prime]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Ideal.IsPrime (Ideal.span {X})
[PROOFSTEP]
exact span_X_isPrime
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ X ≠ 0
[PROOFSTEP]
intro h
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
h : X = 0
⊢ False
[PROOFSTEP]
simpa [map_zero (coeff R 1)] using congr_arg (coeff R 1) h
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
⊢ Function.Injective ↑(rescale a)
[PROOFSTEP]
intro p q h
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h : ↑(rescale a) p = ↑(rescale a) q
⊢ p = q
[PROOFSTEP]
rw [PowerSeries.ext_iff] at *
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
h : ∀ (n : ℕ), ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q)
⊢ ∀ (n : ℕ), ↑(coeff R n) p = ↑(coeff R n) q
[PROOFSTEP]
intro n
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
h : ∀ (n : ℕ), ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q)
n : ℕ
⊢ ↑(coeff R n) p = ↑(coeff R n) q
[PROOFSTEP]
specialize h n
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
n : ℕ
h : ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q)
⊢ ↑(coeff R n) p = ↑(coeff R n) q
[PROOFSTEP]
rw [coeff_rescale, coeff_rescale, mul_eq_mul_left_iff] at h
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
n : ℕ
h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0
⊢ ↑(coeff R n) p = ↑(coeff R n) q
[PROOFSTEP]
apply h.resolve_right
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
n : ℕ
h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0
⊢ ¬a ^ n = 0
[PROOFSTEP]
intro h'
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
a : R
ha : a ≠ 0
p q : PowerSeries R
h✝ : ↑(rescale a) p = ↑(rescale a) q
n : ℕ
h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0
h' : a ^ n = 0
⊢ False
[PROOFSTEP]
exact ha (pow_eq_zero h')
[GOAL]
R : Type u_1
k : Type u_2
inst✝ : Field k
n : ℕ
φ : PowerSeries k
⊢ ↑(coeff k n) φ⁻¹ =
if n = 0 then (↑(constantCoeff k) φ)⁻¹
else
-(↑(constantCoeff k) φ)⁻¹ *
∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0
[PROOFSTEP]
rw [inv_eq_inv_aux, coeff_inv_aux n (constantCoeff k φ)⁻¹ φ]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (∃ n, ↑(coeff R n) φ ≠ 0) ↔ φ ≠ 0
[PROOFSTEP]
refine' not_iff_not.mp _
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (¬∃ n, ↑(coeff R n) φ ≠ 0) ↔ ¬φ ≠ 0
[PROOFSTEP]
push_neg
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (∀ (n : ℕ), ↑(coeff R n) φ = 0) ↔ φ = 0
[PROOFSTEP]
simp [PowerSeries.ext_iff]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (order φ).Dom ↔ φ ≠ 0
[PROOFSTEP]
simp only [order]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom ↔ φ ≠ 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom → φ ≠ 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : φ = 0
⊢ ⊤.Dom → φ ≠ 0
[PROOFSTEP]
intro H
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : ¬φ = 0
⊢ (↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom → φ ≠ 0
[PROOFSTEP]
intro H
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : φ = 0
H : ⊤.Dom
⊢ φ ≠ 0
[PROOFSTEP]
contrapose! H
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h H : φ = 0
⊢ ¬⊤.Dom
[PROOFSTEP]
simp only [← Part.eq_none_iff']
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h H : φ = 0
⊢ ⊤ = Part.none
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : ¬φ = 0
H : (↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom
⊢ φ ≠ 0
[PROOFSTEP]
exact h
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ φ ≠ 0 → (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : φ ≠ 0
⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
⊢ ↑(coeff R (Part.get (order φ) h)) φ ≠ 0
[PROOFSTEP]
simp only [order, order_finite_iff_ne_zero.mp h, not_false_iff, dif_neg, PartENat.get_natCast']
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
⊢ ↑(coeff R (Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))) φ ≠ 0
[PROOFSTEP]
generalize_proofs h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h✝ : (order φ).Dom
h : ∃ n, ↑(coeff R n) φ ≠ 0
⊢ ↑(coeff R (Nat.find h)) φ ≠ 0
[PROOFSTEP]
exact Nat.find_spec h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
⊢ order φ ≤ ↑n
[PROOFSTEP]
have _ : ∃ n, coeff R n φ ≠ 0 := Exists.intro n h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
x✝ : ∃ n, ↑(coeff R n) φ ≠ 0
⊢ order φ ≤ ↑n
[PROOFSTEP]
rw [order, dif_neg]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
x✝ : ∃ n, ↑(coeff R n) φ ≠ 0
⊢ ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0)) ≤ ↑n
[PROOFSTEP]
simp only [PartENat.coe_le_coe, Nat.find_le_iff]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
x✝ : ∃ n, ↑(coeff R n) φ ≠ 0
⊢ ∃ m, m ≤ n ∧ ↑(coeff R m) φ ≠ 0
[PROOFSTEP]
exact ⟨n, le_rfl, h⟩
[GOAL]
case hnc
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
x✝ : ∃ n, ↑(coeff R n) φ ≠ 0
⊢ ¬φ = 0
[PROOFSTEP]
exact exists_coeff_ne_zero_iff_ne_zero.mp ⟨n, h⟩
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑n < order φ
⊢ ↑(coeff R n) φ = 0
[PROOFSTEP]
contrapose! h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
h : ↑(coeff R n) φ ≠ 0
⊢ order φ ≤ ↑n
[PROOFSTEP]
exact order_le _ h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ order φ = ⊤ ↔ φ = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ order φ = ⊤ → φ = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : order φ = ⊤
⊢ φ = 0
[PROOFSTEP]
ext n
[GOAL]
case mp.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : order φ = ⊤
n : ℕ
⊢ ↑(coeff R n) φ = ↑(coeff R n) 0
[PROOFSTEP]
rw [(coeff R n).map_zero, coeff_of_lt_order]
[GOAL]
case mp.h.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : order φ = ⊤
n : ℕ
⊢ ↑n < order φ
[PROOFSTEP]
simp [h]
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ φ = 0 → order φ = ⊤
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ order 0 = ⊤
[PROOFSTEP]
exact order_zero
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
⊢ ↑n ≤ order φ
[PROOFSTEP]
by_contra H
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
H : ¬↑n ≤ order φ
⊢ False
[PROOFSTEP]
rw [not_le] at H
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
H : order φ < ↑n
⊢ False
[PROOFSTEP]
have : (order φ).Dom := PartENat.dom_of_le_natCast H.le
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
H : order φ < ↑n
this : (order φ).Dom
⊢ False
[PROOFSTEP]
rw [← PartENat.natCast_get this, PartENat.coe_lt_coe] at H
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
this : (order φ).Dom
H : Part.get (order φ) this < n
⊢ False
[PROOFSTEP]
exact coeff_order this (h _ H)
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : PartENat
h : ∀ (i : ℕ), ↑i < n → ↑(coeff R i) φ = 0
⊢ n ≤ order φ
[PROOFSTEP]
induction n using PartENat.casesOn
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
⊢ ⊤ ≤ order φ
[PROOFSTEP]
show _ ≤ _
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
⊢ ⊤ ≤ order φ
[PROOFSTEP]
rw [top_le_iff, order_eq_top]
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
⊢ φ = 0
[PROOFSTEP]
ext i
[GOAL]
case a.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
i : ℕ
⊢ ↑(coeff R i) φ = ↑(coeff R i) 0
[PROOFSTEP]
exact h _ (PartENat.natCast_lt_top i)
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n✝ : ℕ
h : ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0
⊢ ↑n✝ ≤ order φ
[PROOFSTEP]
apply nat_le_order
[GOAL]
case a.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n✝ : ℕ
h : ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0
⊢ ∀ (i : ℕ), i < n✝ → ↑(coeff R i) φ = 0
[PROOFSTEP]
simpa only [PartENat.coe_lt_coe] using h
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
⊢ order φ = ↑n ↔ ↑(coeff R n) φ ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
[PROOFSTEP]
rcases eq_or_ne φ 0 with (rfl | hφ)
[GOAL]
case inl
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
⊢ order 0 = ↑n ↔ ↑(coeff R n) 0 ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) 0 = 0
[PROOFSTEP]
simpa using (PartENat.natCast_ne_top _).symm
[GOAL]
case inr
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : ℕ
hφ : φ ≠ 0
⊢ order φ = ↑n ↔ ↑(coeff R n) φ ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0
[PROOFSTEP]
simp [order, dif_neg hφ, Nat.find_eq_iff]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n : PartENat
⊢ order φ = n ↔ (∀ (i : ℕ), ↑i = n → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < n → ↑(coeff R i) φ = 0
[PROOFSTEP]
induction n using PartENat.casesOn
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ order φ = ⊤ ↔ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
[PROOFSTEP]
rw [order_eq_top]
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ φ = 0 ↔ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
[PROOFSTEP]
constructor
[GOAL]
case a.mp
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ φ = 0 → (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case a.mp
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) 0 ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) 0 = 0
[PROOFSTEP]
constructor
[GOAL]
case a.mp.left
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) 0 ≠ 0
[PROOFSTEP]
intros
[GOAL]
case a.mp.right
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
⊢ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) 0 = 0
[PROOFSTEP]
intros
[GOAL]
case a.mp.left
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
i✝ : ℕ
a✝ : ↑i✝ = ⊤
⊢ ↑(coeff R i✝) 0 ≠ 0
[PROOFSTEP]
exfalso
[GOAL]
case a.mp.left.h
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
i✝ : ℕ
a✝ : ↑i✝ = ⊤
⊢ False
[PROOFSTEP]
exact PartENat.natCast_ne_top ‹_› ‹_›
[GOAL]
case a.mp.right
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
i✝ : ℕ
a✝ : ↑i✝ < ⊤
⊢ ↑(coeff R i✝) 0 = 0
[PROOFSTEP]
exact (coeff _ _).map_zero
[GOAL]
case a.mpr
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
⊢ ((∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0) → φ = 0
[PROOFSTEP]
rintro ⟨_h₁, h₂⟩
[GOAL]
case a.mpr.intro
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
_h₁ : ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0
h₂ : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
⊢ φ = 0
[PROOFSTEP]
ext i
[GOAL]
case a.mpr.intro.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
_h₁ : ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0
h₂ : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0
i : ℕ
⊢ ↑(coeff R i) φ = ↑(coeff R i) 0
[PROOFSTEP]
exact h₂ i (PartENat.natCast_lt_top i)
[GOAL]
case a
R : Type u_1
inst✝ : Semiring R
φ✝ φ : PowerSeries R
n✝ : ℕ
⊢ order φ = ↑n✝ ↔ (∀ (i : ℕ), ↑i = ↑n✝ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0
[PROOFSTEP]
simpa [PartENat.natCast_inj] using order_eq_nat
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
⊢ min (order φ) (order ψ) ≤ order (φ + ψ)
[PROOFSTEP]
refine' le_order _ _ _
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
⊢ ∀ (i : ℕ), ↑i < min (order φ) (order ψ) → ↑(coeff R i) (φ + ψ) = 0
[PROOFSTEP]
simp (config := { contextual := true }) [coeff_of_lt_order]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
suffices order (φ + ψ) = order φ by
rw [le_inf_iff, this]
exact ⟨le_rfl, le_of_lt H⟩
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
this : order (φ + ψ) = order φ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
rw [le_inf_iff, this]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
this : order (φ + ψ) = order φ
⊢ order φ ≤ order φ ∧ order φ ≤ order ψ
[PROOFSTEP]
exact ⟨le_rfl, le_of_lt H⟩
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
⊢ order (φ + ψ) = order φ
[PROOFSTEP]
rw [order_eq]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
⊢ (∀ (i : ℕ), ↑i = order φ → ↑(coeff R i) (φ + ψ) ≠ 0) ∧ ∀ (i : ℕ), ↑i < order φ → ↑(coeff R i) (φ + ψ) = 0
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
⊢ ∀ (i : ℕ), ↑i = order φ → ↑(coeff R i) (φ + ψ) ≠ 0
[PROOFSTEP]
intro i hi
[GOAL]
case left
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
i : ℕ
hi : ↑i = order φ
⊢ ↑(coeff R i) (φ + ψ) ≠ 0
[PROOFSTEP]
rw [← hi] at H
[GOAL]
case left
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
i : ℕ
H : ↑i < order ψ
hi : ↑i = order φ
⊢ ↑(coeff R i) (φ + ψ) ≠ 0
[PROOFSTEP]
rw [(coeff _ _).map_add, coeff_of_lt_order i H, add_zero]
[GOAL]
case left
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
i : ℕ
H : ↑i < order ψ
hi : ↑i = order φ
⊢ ↑(coeff R i) φ ≠ 0
[PROOFSTEP]
exact (order_eq_nat.1 hi.symm).1
[GOAL]
case right
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
⊢ ∀ (i : ℕ), ↑i < order φ → ↑(coeff R i) (φ + ψ) = 0
[PROOFSTEP]
intro i hi
[GOAL]
case right
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
_h : order φ ≠ order ψ
H : order φ < order ψ
i : ℕ
hi : ↑i < order φ
⊢ ↑(coeff R i) (φ + ψ) = 0
[PROOFSTEP]
rw [(coeff _ _).map_add, coeff_of_lt_order i hi, coeff_of_lt_order i (lt_trans hi H), zero_add]
-- #align power_series.order_add_of_order_eq.aux power_series.order_add_of_order_eq.aux
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
⊢ order (φ + ψ) = order φ ⊓ order ψ
[PROOFSTEP]
refine' le_antisymm _ (le_order_add _ _)
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
by_cases H₁ : order φ < order ψ
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
H₁ : order φ < order ψ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
apply order_add_of_order_eq.aux _ _ h H₁
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
H₁ : ¬order φ < order ψ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
by_cases H₂ : order ψ < order φ
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
H₁ : ¬order φ < order ψ
H₂ : order ψ < order φ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
simpa only [add_comm, inf_comm] using order_add_of_order_eq.aux _ _ h.symm H₂
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
H₁ : ¬order φ < order ψ
H₂ : ¬order ψ < order φ
⊢ order (φ + ψ) ≤ order φ ⊓ order ψ
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
h : order φ ≠ order ψ
H₁ : ¬order φ < order ψ
H₂ : ¬order ψ < order φ
⊢ False
[PROOFSTEP]
exact h (le_antisymm (not_lt.1 H₂) (not_lt.1 H₁))
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
⊢ order φ + order ψ ≤ order (φ * ψ)
[PROOFSTEP]
apply le_order
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
⊢ ∀ (i : ℕ), ↑i < order φ + order ψ → ↑(coeff R i) (φ * ψ) = 0
[PROOFSTEP]
intro n hn
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
⊢ ↑(coeff R n) (φ * ψ) = 0
[PROOFSTEP]
rw [coeff_mul, Finset.sum_eq_zero]
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
⊢ ∀ (x : ℕ × ℕ), x ∈ Finset.Nat.antidiagonal n → ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case h.mk
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
by_cases hi : ↑i < order φ
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
hi : ↑i < order φ
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [coeff_of_lt_order i hi, zero_mul]
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
hi : ¬↑i < order φ
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
by_cases hj : ↑j < order ψ
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
hi : ¬↑i < order φ
hj : ↑j < order ψ
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [coeff_of_lt_order j hj, mul_zero]
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
hi : ¬↑i < order φ
hj : ¬↑j < order ψ
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [not_lt] at hi hj
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j) ∈ Finset.Nat.antidiagonal n
hi : order φ ≤ ↑i
hj : order ψ ≤ ↑j
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal] at hij
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j).fst + (i, j).snd = n
hi : order φ ≤ ↑i
hj : order ψ ≤ ↑j
⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j).fst + (i, j).snd = n
hi : order φ ≤ ↑i
hj : order ψ ≤ ↑j
⊢ False
[PROOFSTEP]
apply ne_of_lt (lt_of_lt_of_le hn <| add_le_add hi hj)
[GOAL]
case neg.h
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
hn : ↑n < order φ + order ψ
i j : ℕ
hij : (i, j).fst + (i, j).snd = n
hi : order φ ≤ ↑i
hj : order ψ ≤ ↑j
⊢ ↑n = ↑i + ↑j
[PROOFSTEP]
rw [← Nat.cast_add, hij]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
⊢ order (↑(monomial R n) a) = if a = 0 then ⊤ else ↑n
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : a = 0
⊢ order (↑(monomial R n) a) = ⊤
[PROOFSTEP]
rw [h, order_eq_top, LinearMap.map_zero]
[GOAL]
case neg
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
⊢ order (↑(monomial R n) a) = ↑n
[PROOFSTEP]
rw [order_eq]
[GOAL]
case neg
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
⊢ (∀ (i : ℕ), ↑i = ↑n → ↑(coeff R i) (↑(monomial R n) a) ≠ 0) ∧
∀ (i : ℕ), ↑i < ↑n → ↑(coeff R i) (↑(monomial R n) a) = 0
[PROOFSTEP]
constructor
[GOAL]
case neg.left
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
⊢ ∀ (i : ℕ), ↑i = ↑n → ↑(coeff R i) (↑(monomial R n) a) ≠ 0
[PROOFSTEP]
intro i hi
[GOAL]
case neg.right
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
⊢ ∀ (i : ℕ), ↑i < ↑n → ↑(coeff R i) (↑(monomial R n) a) = 0
[PROOFSTEP]
intro i hi
[GOAL]
case neg.left
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
i : ℕ
hi : ↑i = ↑n
⊢ ↑(coeff R i) (↑(monomial R n) a) ≠ 0
[PROOFSTEP]
rw [PartENat.natCast_inj] at hi
[GOAL]
case neg.left
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
i : ℕ
hi : i = n
⊢ ↑(coeff R i) (↑(monomial R n) a) ≠ 0
[PROOFSTEP]
rwa [hi, coeff_monomial_same]
[GOAL]
case neg.right
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
i : ℕ
hi : ↑i < ↑n
⊢ ↑(coeff R i) (↑(monomial R n) a) = 0
[PROOFSTEP]
rw [PartENat.coe_lt_coe] at hi
[GOAL]
case neg.right
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
i : ℕ
hi : i < n
⊢ ↑(coeff R i) (↑(monomial R n) a) = 0
[PROOFSTEP]
rw [coeff_monomial, if_neg]
[GOAL]
case neg.right.hnc
R : Type u_1
inst✝¹ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
inst✝ : Decidable (a = 0)
h : ¬a = 0
i : ℕ
hi : i < n
⊢ ¬i = n
[PROOFSTEP]
exact ne_of_lt hi
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
n : ℕ
a : R
h : a ≠ 0
⊢ order (↑(monomial R n) a) = ↑n
[PROOFSTEP]
rw [order_monomial, if_neg h]
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ↑(coeff R n) (φ * ψ) = 0
[PROOFSTEP]
suffices : coeff R n (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
this : ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0
⊢ ↑(coeff R n) (φ * ψ) = 0
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0
[PROOFSTEP]
rw [this, Finset.sum_const_zero]
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0
[PROOFSTEP]
rw [coeff_mul]
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = ∑ p in Finset.Nat.antidiagonal n, 0
[PROOFSTEP]
apply Finset.sum_congr rfl
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ∀ (x : ℕ × ℕ), x ∈ Finset.Nat.antidiagonal n → ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0
[PROOFSTEP]
intro x hx
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal n
⊢ ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0
[PROOFSTEP]
refine' mul_eq_zero_of_right (coeff R x.fst φ) (coeff_of_lt_order x.snd (lt_of_le_of_lt _ h))
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
x : ℕ × ℕ
hx : x ∈ Finset.Nat.antidiagonal n
⊢ ↑x.snd ≤ ↑n
[PROOFSTEP]
rw [Finset.Nat.mem_antidiagonal] at hx
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
x : ℕ × ℕ
hx : x.fst + x.snd = n
⊢ ↑x.snd ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case this
R : Type u_1
inst✝ : Semiring R
φ✝ φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
x : ℕ × ℕ
hx : x.fst + x.snd = n
⊢ x.snd ≤ n
[PROOFSTEP]
linarith
[GOAL]
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : CommRing R
φ ψ : PowerSeries R
n : ℕ
h : ↑n < order ψ
⊢ ↑(coeff R n) (φ * (1 - ψ)) = ↑(coeff R n) φ
[PROOFSTEP]
simp [coeff_mul_of_lt_order h, mul_sub]
[GOAL]
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
s : Finset ι
φ : PowerSeries R
f : ι → PowerSeries R
⊢ (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ
[PROOFSTEP]
induction' s using Finset.induction_on with a s ha ih t
[GOAL]
case empty
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
φ : PowerSeries R
f : ι → PowerSeries R
⊢ (∀ (i : ι), i ∈ ∅ → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in ∅, (1 - f i)) = ↑(coeff R k) φ
[PROOFSTEP]
simp
[GOAL]
case insert
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
φ : PowerSeries R
f : ι → PowerSeries R
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ
⊢ (∀ (i : ι), i ∈ insert a s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ
[PROOFSTEP]
intro t
[GOAL]
case insert
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
φ : PowerSeries R
f : ι → PowerSeries R
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ
t : ∀ (i : ι), i ∈ insert a s → ↑k < order (f i)
⊢ ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ
[PROOFSTEP]
simp only [Finset.mem_insert, forall_eq_or_imp] at t
[GOAL]
case insert
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
φ : PowerSeries R
f : ι → PowerSeries R
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ
t : ↑k < order (f a) ∧ ∀ (a : ι), a ∈ s → ↑k < order (f a)
⊢ ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ
[PROOFSTEP]
rw [Finset.prod_insert ha, ← mul_assoc, mul_right_comm, coeff_mul_one_sub_of_lt_order _ t.1]
[GOAL]
case insert
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
ι : Type u_3
inst✝ : CommRing R
k : ℕ
φ : PowerSeries R
f : ι → PowerSeries R
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ
t : ↑k < order (f a) ∧ ∀ (a : ι), a ∈ s → ↑k < order (f a)
⊢ ↑(coeff R k) (φ * ∏ x in s, (1 - f x)) = ↑(coeff R k) φ
[PROOFSTEP]
exact ih t.2
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
⊢ X ^ Part.get (order φ) h ∣ φ
[PROOFSTEP]
refine' ⟨PowerSeries.mk fun n => coeff R (n + (order φ).get h) φ, _⟩
[GOAL]
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
⊢ φ = X ^ Part.get (order φ) h * mk fun n => ↑(coeff R (n + Part.get (order φ) h)) φ
[PROOFSTEP]
ext n
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
⊢ ↑(coeff R n) φ = ↑(coeff R n) (X ^ Part.get (order φ) h * mk fun n => ↑(coeff R (n + Part.get (order φ) h)) φ)
[PROOFSTEP]
simp only [coeff_mul, coeff_X_pow, coeff_mk, boole_mul, Finset.sum_ite, Finset.Nat.filter_fst_eq_antidiagonal,
Finset.sum_const_zero, add_zero]
[GOAL]
case h
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
⊢ ↑(coeff R n) φ =
∑ x in if Part.get (order φ) h ≤ n then {(Part.get (order φ) h, n - Part.get (order φ) h)} else ∅,
↑(coeff R (x.snd + Part.get (order φ) h)) φ
[PROOFSTEP]
split_ifs with hn
[GOAL]
case pos
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
hn : Part.get (order φ) h ≤ n
⊢ ↑(coeff R n) φ =
∑ x in {(Part.get (order φ) h, n - Part.get (order φ) h)}, ↑(coeff R (x.snd + Part.get (order φ) h)) φ
[PROOFSTEP]
simp [tsub_add_cancel_of_le hn]
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
hn : ¬Part.get (order φ) h ≤ n
⊢ ↑(coeff R n) φ = ∑ x in ∅, ↑(coeff R (x.snd + Part.get (order φ) h)) φ
[PROOFSTEP]
simp only [Finset.sum_empty]
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
hn : ¬Part.get (order φ) h ≤ n
⊢ ↑(coeff R n) φ = 0
[PROOFSTEP]
refine' coeff_of_lt_order _ _
[GOAL]
case neg
R : Type u_1
inst✝ : Semiring R
φ : PowerSeries R
h : (order φ).Dom
n : ℕ
hn : ¬Part.get (order φ) h ≤ n
⊢ ↑n < order φ
[PROOFSTEP]
simpa [PartENat.coe_lt_iff] using fun _ => hn
[GOAL]
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
⊢ order φ = multiplicity X φ
[PROOFSTEP]
rcases eq_or_ne φ 0 with (rfl | hφ)
[GOAL]
case inl
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
⊢ order 0 = multiplicity X 0
[PROOFSTEP]
simp
[GOAL]
case inr
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
⊢ order φ = multiplicity X φ
[PROOFSTEP]
induction' ho : order φ using PartENat.casesOn with n
[GOAL]
case inr.a
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
ho : order φ = ⊤
⊢ ⊤ = multiplicity X φ
[PROOFSTEP]
simp [hφ] at ho
[GOAL]
case inr.a
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
⊢ ↑n = multiplicity X φ
[PROOFSTEP]
have hn : φ.order.get (order_finite_iff_ne_zero.mpr hφ) = n := by simp [ho]
[GOAL]
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
⊢ Part.get (order φ) (_ : (order φ).Dom) = n
[PROOFSTEP]
simp [ho]
[GOAL]
case inr.a
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
⊢ ↑n = multiplicity X φ
[PROOFSTEP]
rw [← hn]
[GOAL]
case inr.a
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
⊢ ↑(Part.get (order φ) (_ : (order φ).Dom)) = multiplicity X φ
[PROOFSTEP]
refine'
le_antisymm (le_multiplicity_of_pow_dvd <| X_pow_order_dvd (order_finite_iff_ne_zero.mpr hφ)) (PartENat.find_le _ _ _)
[GOAL]
case inr.a
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
⊢ ¬X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) ∣ φ
[PROOFSTEP]
rintro ⟨ψ, H⟩
[GOAL]
case inr.a.intro
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
⊢ False
[PROOFSTEP]
have := congr_arg (coeff R n) H
[GOAL]
case inr.a.intro
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ)
⊢ False
[PROOFSTEP]
rw [← (ψ.commute_X.pow_right _).eq, coeff_mul_of_lt_order, ← hn] at this
[GOAL]
case inr.a.intro
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R (Part.get (order φ) (_ : (order φ).Dom))) φ = 0
⊢ False
[PROOFSTEP]
exact coeff_order _ this
[GOAL]
case inr.a.intro
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
⊢ ↑n < order (X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
[PROOFSTEP]
rw [X_pow_eq, order_monomial]
[GOAL]
case inr.a.intro
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
⊢ ↑n < if 1 = 0 then ⊤ else ↑(Part.get (order φ) (_ : (order φ).Dom) + 1)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
h✝ : 1 = 0
⊢ ↑n < ⊤
[PROOFSTEP]
exact PartENat.natCast_lt_top _
[GOAL]
case neg
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
h✝ : ¬1 = 0
⊢ ↑n < ↑(Part.get (order φ) (_ : (order φ).Dom) + 1)
[PROOFSTEP]
rw [← hn, PartENat.coe_lt_coe]
[GOAL]
case neg
R✝ : Type u_1
inst✝¹ : Semiring R✝
φ✝ : PowerSeries R✝
R : Type u_2
inst✝ : Semiring R
φ : PowerSeries R
hφ : φ ≠ 0
x✝ : PartENat
ho✝ : order φ = x✝
n : ℕ
ho : order φ = ↑n
hn : Part.get (order φ) (_ : (order φ).Dom) = n
ψ : PowerSeries R
H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ
this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1))
h✝ : ¬1 = 0
⊢ Part.get (order φ) (_ : (order φ).Dom) < Part.get (order φ) (_ : (order φ).Dom) + 1
[PROOFSTEP]
exact Nat.lt_succ_self _
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Nontrivial R
⊢ order 1 = 0
[PROOFSTEP]
simpa using order_monomial_of_ne_zero 0 (1 : R) one_ne_zero
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Nontrivial R
⊢ order X = 1
[PROOFSTEP]
simpa only [Nat.cast_one] using order_monomial_of_ne_zero 1 (1 : R) one_ne_zero
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Nontrivial R
n : ℕ
⊢ order (X ^ n) = ↑n
[PROOFSTEP]
rw [X_pow_eq, order_monomial_of_ne_zero]
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
inst✝ : Nontrivial R
n : ℕ
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
φ ψ : PowerSeries R
⊢ order (φ * ψ) = order φ + order ψ
[PROOFSTEP]
simp_rw [order_eq_multiplicity_X]
[GOAL]
R : Type u_1
inst✝¹ : CommRing R
inst✝ : IsDomain R
φ ψ : PowerSeries R
⊢ multiplicity X (φ * ψ) = multiplicity X φ + multiplicity X ψ
[PROOFSTEP]
exact multiplicity.mul X_prime
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
n : ℕ
a : R
⊢ ↑(↑(monomial n) a) = ↑(PowerSeries.monomial R n) a
[PROOFSTEP]
ext
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
n : ℕ
a : R
n✝ : ℕ
⊢ ↑(PowerSeries.coeff R n✝) ↑(↑(monomial n) a) = ↑(PowerSeries.coeff R n✝) (↑(PowerSeries.monomial R n) a)
[PROOFSTEP]
simp [coeff_coe, PowerSeries.coeff_monomial, Polynomial.coeff_monomial, eq_comm]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
⊢ ↑1 = 1
[PROOFSTEP]
have := coe_monomial 0 (1 : R)
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
this : ↑(↑(monomial 0) 1) = ↑(PowerSeries.monomial R 0) 1
⊢ ↑1 = 1
[PROOFSTEP]
rwa [PowerSeries.monomial_zero_eq_C_apply] at this
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
⊢ ↑(φ + ψ) = ↑φ + ↑ψ
[PROOFSTEP]
ext
[GOAL]
case h
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
n✝ : ℕ
⊢ ↑(PowerSeries.coeff R n✝) ↑(φ + ψ) = ↑(PowerSeries.coeff R n✝) (↑φ + ↑ψ)
[PROOFSTEP]
simp
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
n : ℕ
⊢ ↑(PowerSeries.coeff R n) ↑(φ * ψ) = ↑(PowerSeries.coeff R n) (↑φ * ↑ψ)
[PROOFSTEP]
simp only [coeff_coe, PowerSeries.coeff_mul, coeff_mul]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
a : R
⊢ ↑(↑C a) = ↑(PowerSeries.C R) a
[PROOFSTEP]
have := coe_monomial 0 a
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
a : R
this : ↑(↑(monomial 0) a) = ↑(PowerSeries.monomial R 0) a
⊢ ↑(↑C a) = ↑(PowerSeries.C R) a
[PROOFSTEP]
rwa [PowerSeries.monomial_zero_eq_C_apply] at this
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
⊢ ↑(bit1 φ) = bit1 ↑φ
[PROOFSTEP]
rw [bit1, bit1, coe_add, coe_one, coe_bit0]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : R[X]
h : Coe.coe x = Coe.coe y
⊢ x = y
[PROOFSTEP]
ext
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : R[X]
h : Coe.coe x = Coe.coe y
n✝ : ℕ
⊢ coeff x n✝ = coeff y n✝
[PROOFSTEP]
simp_rw [← coeff_coe]
[GOAL]
case a
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ x y : R[X]
h : Coe.coe x = Coe.coe y
n✝ : ℕ
⊢ ↑(PowerSeries.coeff R n✝) ↑x = ↑(PowerSeries.coeff R n✝) ↑y
[PROOFSTEP]
congr
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
⊢ ↑φ = 0 ↔ φ = 0
[PROOFSTEP]
rw [← coe_zero, coe_inj]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝ : CommSemiring R
φ ψ : R[X]
⊢ ↑φ = 1 ↔ φ = 1
[PROOFSTEP]
rw [← coe_one, coe_inj]
[GOAL]
σ : Type u_1
R : Type u_2
inst✝² : CommSemiring R
φ ψ : R[X]
A : Type u_3
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : R[X] →+* PowerSeries A := RingHom.comp (PowerSeries.map (algebraMap R A)) ringHom
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R[X]), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R R[X]) r) =
↑(algebraMap R (PowerSeries A)) r
[PROOFSTEP]
simp [algebraMap_apply, PowerSeries.algebraMap_apply]
| {"mathlib_filename": "Mathlib.RingTheory.PowerSeries.Basic", "llama_tokens": 114521} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
x✝ : Set.Nonempty ∅
w✝ : E
hx : w✝ ∈ ∅
⊢ ∃ l, ∅ = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
exfalso
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
x✝ : Set.Nonempty ∅
w✝ : E
hx : w✝ ∈ ∅
⊢ False
[PROOFSTEP]
exact hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hAB : IsExposed 𝕜 A B
⊢ B ⊆ A
[PROOFSTEP]
rintro x hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x✝ : E
hAB : IsExposed 𝕜 A B
x : E
hx : x ∈ B
⊢ x ∈ A
[PROOFSTEP]
obtain ⟨_, rfl⟩ := hAB ⟨x, hx⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A C : Set E
X : Finset E
x✝ x : E
w✝ : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑w✝ y ≤ ↑w✝ x}
hx : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑w✝ y ≤ ↑w✝ x}
⊢ x ∈ A
[PROOFSTEP]
exact hx.1
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 A C
hBA : B ⊆ A
hCB : C ⊆ B
⊢ IsExposed 𝕜 B C
[PROOFSTEP]
rintro ⟨w, hw⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 A C
hBA : B ⊆ A
hCB : C ⊆ B
w : E
hw : w ∈ C
⊢ ∃ l, C = {x | x ∈ B ∧ ∀ (y : E), y ∈ B → ↑l y ≤ ↑l x}
[PROOFSTEP]
obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A B : Set E
X : Finset E
x : E
hBA : B ⊆ A
w : E
l : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hCB : {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊆ B
hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ ∃ l_1, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ B ∧ ∀ (y : E), y ∈ B → ↑l_1 y ≤ ↑l_1 x}
[PROOFSTEP]
exact
⟨l,
Subset.antisymm (fun x hx => ⟨hCB hx, fun y hy => hx.2 y (hBA hy)⟩) fun x hx =>
⟨hBA hx.1, fun y hy => (hw.2 y hy).trans (hx.2 w (hCB hw))⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C : Set E
X : Finset E
x : E
A B : Set E
hAB : IsExposed 𝕜 A B
hB : Set.Nonempty B
⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x}
[PROOFSTEP]
obtain ⟨l, rfl⟩ := hAB hB
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
A : Set E
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hB : Set.Nonempty {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ ∃ l_1 a, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∧ a ≤ ↑l_1 x}
[PROOFSTEP]
obtain ⟨w, hw⟩ := hB
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
A : Set E
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
w : E
hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ ∃ l_1 a, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∧ a ≤ ↑l_1 x}
[PROOFSTEP]
exact ⟨l, l w, Subset.antisymm (fun x hx => ⟨hx.1, hx.2 w hw.1⟩) fun x hx => ⟨hx.1, fun y hy => (hw.2 y hy).trans hx.2⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C : Set E
X : Finset E
x : E
inst✝ : Nontrivial 𝕜
A B : Set E
hAB : IsExposed 𝕜 A B
⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x}
[PROOFSTEP]
obtain rfl | hB := B.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
⊢ ∃ l a, ∅ = {x | x ∈ A ∧ a ≤ ↑l x}
[PROOFSTEP]
refine' ⟨0, 1, _⟩
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
⊢ ∅ = {x | x ∈ A ∧ 1 ≤ ↑0 x}
[PROOFSTEP]
rw [eq_comm, eq_empty_iff_forall_not_mem]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
⊢ ∀ (x : E), ¬x ∈ {x | x ∈ A ∧ 1 ≤ ↑0 x}
[PROOFSTEP]
rintro x ⟨-, h⟩
[GOAL]
case inl.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
x : E
h : 1 ≤ ↑0 x
⊢ False
[PROOFSTEP]
rw [ContinuousLinearMap.zero_apply] at h
[GOAL]
case inl.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
x : E
h : 1 ≤ 0
⊢ False
[PROOFSTEP]
have : ¬(1 : 𝕜) ≤ 0 := not_le_of_lt zero_lt_one
[GOAL]
case inl.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : Nontrivial 𝕜
A : Set E
hAB : IsExposed 𝕜 A ∅
x : E
h : 1 ≤ 0
this : ¬1 ≤ 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C : Set E
X : Finset E
x : E
inst✝ : Nontrivial 𝕜
A B : Set E
hAB : IsExposed 𝕜 A B
hB : Set.Nonempty B
⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x}
[PROOFSTEP]
exact hAB.eq_inter_halfspace' hB
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A B C : Set E
hB : IsExposed 𝕜 A B
hC : IsExposed 𝕜 A C
⊢ IsExposed 𝕜 A (B ∩ C)
[PROOFSTEP]
rintro ⟨w, hwB, hwC⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A B C : Set E
hB : IsExposed 𝕜 A B
hC : IsExposed 𝕜 A C
w : E
hwB : w ∈ B
hwC : w ∈ C
⊢ ∃ l, B ∩ C = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
obtain ⟨l₁, rfl⟩ := hB ⟨w, hwB⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A C : Set E
hC : IsExposed 𝕜 A C
w : E
hwC : w ∈ C
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
⊢ ∃ l, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ C = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
obtain ⟨l₂, rfl⟩ := hC ⟨w, hwC⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
⊢ ∃ l,
{x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} =
{x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
refine' ⟨l₁ + l₂, Subset.antisymm _ _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
⊢ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} ⊆
{x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x}
[PROOFSTEP]
rintro x ⟨⟨hxA, hxB⟩, ⟨-, hxC⟩⟩
[GOAL]
case intro.intro.intro.intro.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
x : E
hxA : x ∈ A
hxB : ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x
hxC : ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x
⊢ x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x}
[PROOFSTEP]
exact ⟨hxA, fun z hz => add_le_add (hxB z hz) (hxC z hz)⟩
[GOAL]
case intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
⊢ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x} ⊆
{x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
[PROOFSTEP]
rintro x ⟨hxA, hx⟩
[GOAL]
case intro.intro.intro.intro.refine'_2.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
x : E
hxA : x ∈ A
hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x
⊢ x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
[PROOFSTEP]
refine' ⟨⟨hxA, fun y hy => _⟩, hxA, fun y hy => _⟩
[GOAL]
case intro.intro.intro.intro.refine'_2.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
x : E
hxA : x ∈ A
hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x
y : E
hy : y ∈ A
⊢ ↑l₁ y ≤ ↑l₁ x
[PROOFSTEP]
exact (add_le_add_iff_right (l₂ x)).1 ((add_le_add (hwB.2 y hy) (hwC.2 x hxA)).trans (hx w hwB.1))
[GOAL]
case intro.intro.intro.intro.refine'_2.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x✝ : E
inst✝ : ContinuousAdd 𝕜
A : Set E
w : E
l₁ : E →L[𝕜] 𝕜
hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x}
l₂ : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x}
x : E
hxA : x ∈ A
hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x
y : E
hy : y ∈ A
⊢ ↑l₂ y ≤ ↑l₂ x
[PROOFSTEP]
exact (add_le_add_iff_left (l₁ x)).1 (le_trans (add_le_add (hwB.2 x hxA) (hwC.2 y hy)) (hx w hwB.1))
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
F : Finset (Set E)
hF : Finset.Nonempty F
hAF : ∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑F)
[PROOFSTEP]
induction F using Finset.induction with
| empty => exfalso; exact Finset.not_nonempty_empty hF
| @insert C F _ hF' =>
rw [Finset.coe_insert, sInter_insert]
obtain rfl | hFnemp := F.eq_empty_or_nonempty
· rw [Finset.coe_empty, sInter_empty, inter_univ]
exact hAF C (Finset.mem_singleton_self C)
· exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB))
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
F : Finset (Set E)
hF : Finset.Nonempty F
hAF : ∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑F)
[PROOFSTEP]
induction F using Finset.induction with
| empty => exfalso; exact Finset.not_nonempty_empty hF
| @insert C F _ hF' =>
rw [Finset.coe_insert, sInter_insert]
obtain rfl | hFnemp := F.eq_empty_or_nonempty
· rw [Finset.coe_empty, sInter_empty, inter_univ]
exact hAF C (Finset.mem_singleton_self C)
· exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB))
[GOAL]
case empty
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
hF : Finset.Nonempty ∅
hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑∅)
[PROOFSTEP]
| empty => exfalso; exact Finset.not_nonempty_empty hF
[GOAL]
case empty
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
hF : Finset.Nonempty ∅
hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑∅)
[PROOFSTEP]
exfalso
[GOAL]
case empty.h
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
hF : Finset.Nonempty ∅
hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B
⊢ False
[PROOFSTEP]
exact Finset.not_nonempty_empty hF
[GOAL]
case insert
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
F : Finset (Set E)
a✝ : ¬C ∈ F
hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F)
hF : Finset.Nonempty (insert C F)
hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑(insert C F))
[PROOFSTEP]
| @insert C F _ hF' =>
rw [Finset.coe_insert, sInter_insert]
obtain rfl | hFnemp := F.eq_empty_or_nonempty
· rw [Finset.coe_empty, sInter_empty, inter_univ]
exact hAF C (Finset.mem_singleton_self C)
· exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB))
[GOAL]
case insert
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
F : Finset (Set E)
a✝ : ¬C ∈ F
hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F)
hF : Finset.Nonempty (insert C F)
hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (⋂₀ ↑(insert C F))
[PROOFSTEP]
rw [Finset.coe_insert, sInter_insert]
[GOAL]
case insert
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
F : Finset (Set E)
a✝ : ¬C ∈ F
hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F)
hF : Finset.Nonempty (insert C F)
hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑F)
[PROOFSTEP]
obtain rfl | hFnemp := F.eq_empty_or_nonempty
[GOAL]
case insert.inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
a✝ : ¬C ∈ ∅
hF' : Finset.Nonempty ∅ → (∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑∅)
hF : Finset.Nonempty (insert C ∅)
hAF : ∀ (B : Set E), B ∈ insert C ∅ → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑∅)
[PROOFSTEP]
rw [Finset.coe_empty, sInter_empty, inter_univ]
[GOAL]
case insert.inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
a✝ : ¬C ∈ ∅
hF' : Finset.Nonempty ∅ → (∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑∅)
hF : Finset.Nonempty (insert C ∅)
hAF : ∀ (B : Set E), B ∈ insert C ∅ → IsExposed 𝕜 A B
⊢ IsExposed 𝕜 A C
[PROOFSTEP]
exact hAF C (Finset.mem_singleton_self C)
[GOAL]
case insert.inr
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C✝ : Set E
X : Finset E
x : E
inst✝ : ContinuousAdd 𝕜
C : Set E
F : Finset (Set E)
a✝ : ¬C ∈ F
hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F)
hF : Finset.Nonempty (insert C F)
hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B
hFnemp : Finset.Nonempty F
⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑F)
[PROOFSTEP]
exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB))
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 A C
hCB : C ⊆ B
⊢ IsExposed 𝕜 (A ∩ B) C
[PROOFSTEP]
rintro ⟨w, hw⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 A C
hCB : C ⊆ B
w : E
hw : w ∈ C
⊢ ∃ l, C = {x | x ∈ A ∩ B ∧ ∀ (y : E), y ∈ A ∩ B → ↑l y ≤ ↑l x}
[PROOFSTEP]
obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A B : Set E
X : Finset E
x w : E
l : E →L[𝕜] 𝕜
hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hCB : {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊆ B
hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ ∃ l_1, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∩ B ∧ ∀ (y : E), y ∈ A ∩ B → ↑l_1 y ≤ ↑l_1 x}
[PROOFSTEP]
exact
⟨l,
Subset.antisymm (fun x hx => ⟨⟨hx.1, hCB hx⟩, fun y hy => hx.2 y hy.1⟩) fun x ⟨⟨hxC, _⟩, hx⟩ =>
⟨hxC, fun y hy => (hw.2 y hy).trans (hx w ⟨hC.subset hw, hCB hw⟩)⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 B C
hCA : C ⊆ A
⊢ IsExposed 𝕜 (A ∩ B) C
[PROOFSTEP]
rw [inter_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
hC : IsExposed 𝕜 B C
hCA : C ⊆ A
⊢ IsExposed 𝕜 (B ∩ A) C
[PROOFSTEP]
exact hC.inter_left hCA
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C : Set E
X : Finset E
x : E
inst✝ : OrderClosedTopology 𝕜
A B : Set E
hAB : IsExposed 𝕜 A B
hA : IsClosed A
⊢ IsClosed B
[PROOFSTEP]
obtain rfl | hB := B.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : OrderClosedTopology 𝕜
A : Set E
hA : IsClosed A
hAB : IsExposed 𝕜 A ∅
⊢ IsClosed ∅
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A✝ B✝ C : Set E
X : Finset E
x : E
inst✝ : OrderClosedTopology 𝕜
A B : Set E
hAB : IsExposed 𝕜 A B
hA : IsClosed A
hB : Set.Nonempty B
⊢ IsClosed B
[PROOFSTEP]
obtain ⟨l, a, rfl⟩ := hAB.eq_inter_halfspace' hB
[GOAL]
case inr.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A✝ B C : Set E
X : Finset E
x : E
inst✝ : OrderClosedTopology 𝕜
A : Set E
hA : IsClosed A
l : E →L[𝕜] 𝕜
a : 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ a ≤ ↑l x}
hB : Set.Nonempty {x | x ∈ A ∧ a ≤ ↑l x}
⊢ IsClosed {x | x ∈ A ∧ a ≤ ↑l x}
[PROOFSTEP]
exact hA.isClosed_le continuousOn_const l.continuous.continuousOn
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
⊢ x ∈ exposedPoints 𝕜 A ↔ IsExposed 𝕜 A {x}
[PROOFSTEP]
use fun ⟨hxA, l, hl⟩ _ =>
⟨l, Eq.symm <| eq_singleton_iff_unique_mem.2 ⟨⟨hxA, fun y hy => (hl y hy).1⟩, fun z hz => (hl z hz.1).2 (hz.2 x hxA)⟩⟩
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
⊢ IsExposed 𝕜 A {x} → x ∈ exposedPoints 𝕜 A
[PROOFSTEP]
rintro h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
h : IsExposed 𝕜 A {x}
⊢ x ∈ exposedPoints 𝕜 A
[PROOFSTEP]
obtain ⟨l, hl⟩ := h ⟨x, mem_singleton _⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
h : IsExposed 𝕜 A {x}
l : E →L[𝕜] 𝕜
hl : {x} = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ x ∈ exposedPoints 𝕜 A
[PROOFSTEP]
rw [eq_comm, eq_singleton_iff_unique_mem] at hl
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : OrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
l✝ : E →L[𝕜] 𝕜
A B C : Set E
X : Finset E
x : E
h : IsExposed 𝕜 A {x}
l : E →L[𝕜] 𝕜
hl :
x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧
∀ (x_1 : E), x_1 ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} → x_1 = x
⊢ x ∈ exposedPoints 𝕜 A
[PROOFSTEP]
exact ⟨hl.1.1, l, fun y hy => ⟨hl.1.2 y hy, fun hxy => hl.2 y ⟨hy, fun z hz => (hl.1.2 z hz).trans hxy⟩⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A B C : Set E
hAB : IsExposed 𝕜 A B
hA : Convex 𝕜 A
⊢ Convex 𝕜 B
[PROOFSTEP]
obtain rfl | hB := B.eq_empty_or_nonempty
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
hA : Convex 𝕜 A
hAB : IsExposed 𝕜 A ∅
⊢ Convex 𝕜 ∅
[PROOFSTEP]
exact convex_empty
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A B C : Set E
hAB : IsExposed 𝕜 A B
hA : Convex 𝕜 A
hB : Set.Nonempty B
⊢ Convex 𝕜 B
[PROOFSTEP]
obtain ⟨l, rfl⟩ := hAB hB
[GOAL]
case inr.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
hA : Convex 𝕜 A
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hB : Set.Nonempty {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ Convex 𝕜 {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
exact fun x₁ hx₁ x₂ hx₂ a b ha hb hab =>
⟨hA hx₁.1 hx₂.1 ha hb hab, fun y hy =>
((l.toLinearMap.concaveOn convex_univ).convex_ge _ ⟨mem_univ _, hx₁.2 y hy⟩ ⟨mem_univ _, hx₂.2 y hy⟩ ha hb hab).2⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A B C : Set E
hAB : IsExposed 𝕜 A B
⊢ IsExtreme 𝕜 A B
[PROOFSTEP]
refine' ⟨hAB.subset, fun x₁ hx₁A x₂ hx₂A x hxB hx => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A B C : Set E
hAB : IsExposed 𝕜 A B
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxB : x ∈ B
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ ∈ B ∧ x₂ ∈ B
[PROOFSTEP]
obtain ⟨l, rfl⟩ := hAB ⟨x, hxB⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
have hl : ConvexOn 𝕜 univ l := l.toLinearMap.convexOn convex_univ
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
have hlx₁ := hxB.2 x₁ hx₁A
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
have hlx₂ := hxB.2 x₂ hx₂A
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
hlx₂ : ↑l x₂ ≤ ↑l x
⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
[PROOFSTEP]
refine' ⟨⟨hx₁A, fun y hy => _⟩, ⟨hx₂A, fun y hy => _⟩⟩
[GOAL]
case intro.refine'_1
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
hlx₂ : ↑l x₂ ≤ ↑l x
y : E
hy : y ∈ A
⊢ ↑l y ≤ ↑l x₁
[PROOFSTEP]
rw [hlx₁.antisymm (hl.le_left_of_right_le (mem_univ _) (mem_univ _) hx hlx₂)]
[GOAL]
case intro.refine'_1
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
hlx₂ : ↑l x₂ ≤ ↑l x
y : E
hy : y ∈ A
⊢ ↑l y ≤ ↑l x
[PROOFSTEP]
exact hxB.2 y hy
[GOAL]
case intro.refine'_2
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
hlx₂ : ↑l x₂ ≤ ↑l x
y : E
hy : y ∈ A
⊢ ↑l y ≤ ↑l x₂
[PROOFSTEP]
rw [hlx₂.antisymm (hl.le_right_of_left_le (mem_univ _) (mem_univ _) hx hlx₁)]
[GOAL]
case intro.refine'_2
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : Module 𝕜 E
A C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
l : E →L[𝕜] 𝕜
hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x}
hl : ConvexOn 𝕜 univ ↑l
hlx₁ : ↑l x₁ ≤ ↑l x
hlx₂ : ↑l x₂ ≤ ↑l x
y : E
hy : y ∈ A
⊢ ↑l y ≤ ↑l x
[PROOFSTEP]
exact hxB.2 y hy
| {"mathlib_filename": "Mathlib.Analysis.Convex.Exposed", "llama_tokens": 18358} |
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : x ≠ 0
⊢ intValuationDef v x ≠ 0
[PROOFSTEP]
rw [intValuationDef, if_neg hx]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : x ≠ 0
⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))))) ≠ 0
[PROOFSTEP]
exact WithZero.coe_ne_zero
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : { x // x ∈ nonZeroDivisors R }
⊢ 0 < intValuationDef v ↑x
[PROOFSTEP]
rw [v.intValuationDef_if_neg (nonZeroDivisors.coe_ne_zero x)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : { x // x ∈ nonZeroDivisors R }
⊢ 0 < ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {↑x}))))))
[PROOFSTEP]
exact WithZero.zero_lt_coe _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
⊢ intValuationDef v x ≤ 1
[PROOFSTEP]
rw [intValuationDef]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
⊢ (if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤
1
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : x = 0
⊢ (if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤
1
[PROOFSTEP]
rw [if_pos hx]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : x = 0
⊢ 0 ≤ 1
[PROOFSTEP]
exact WithZero.zero_le 1
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : ¬x = 0
⊢ (if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤
1
[PROOFSTEP]
rw [if_neg hx, ← WithZero.coe_one, ← ofAdd_zero, WithZero.coe_le_coe, ofAdd_le, Right.neg_nonpos_iff]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
hx : ¬x = 0
⊢ 0 ≤ ↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
[PROOFSTEP]
exact Int.coe_nat_nonneg _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ intValuationDef v r < 1 ↔ v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
rw [intValuationDef]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ (if r = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))))))) <
1 ↔
v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
split_ifs with hr
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : r = 0
⊢ 0 < 1 ↔ v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
simp [hr]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r})))))) < 1 ↔
v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
rw [← WithZero.coe_one, ← ofAdd_zero, WithZero.coe_lt_coe, ofAdd_lt, neg_lt_zero, ← Int.ofNat_zero, Int.ofNat_lt,
zero_lt_iff]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))) ≠ 0 ↔
v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
have h : (Ideal.span { r } : Ideal R) ≠ 0 :=
by
rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
exact hr
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
⊢ Ideal.span {r} ≠ 0
[PROOFSTEP]
rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
⊢ ¬r = 0
[PROOFSTEP]
exact hr
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
h : Ideal.span {r} ≠ 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))) ≠ 0 ↔
v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
apply Associates.count_ne_zero_iff_dvd h (by apply v.irreducible)
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : ¬r = 0
h : Ideal.span {r} ≠ 0
⊢ Irreducible v.asIdeal
[PROOFSTEP]
apply v.irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
n : ℕ
⊢ intValuationDef v r ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r}
[PROOFSTEP]
rw [intValuationDef]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
n : ℕ
⊢ (if r = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))))))) ≤
↑(↑ofAdd (-↑n)) ↔
v.asIdeal ^ n ∣ Ideal.span {r}
[PROOFSTEP]
split_ifs with hr
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
n : ℕ
hr : r = 0
⊢ 0 ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r}
[PROOFSTEP]
simp_rw [hr, Ideal.dvd_span_singleton, zero_le', Submodule.zero_mem]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
n : ℕ
hr : ¬r = 0
⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r})))))) ≤
↑(↑ofAdd (-↑n)) ↔
v.asIdeal ^ n ∣ Ideal.span {r}
[PROOFSTEP]
rw [WithZero.coe_le_coe, ofAdd_le, neg_le_neg_iff, Int.ofNat_le, Ideal.dvd_span_singleton, ←
Associates.le_singleton_iff,
Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hr) (by apply v.associates_irreducible)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
n : ℕ
hr : ¬r = 0
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ intValuationDef v 1 = 1
[PROOFSTEP]
rw [v.intValuationDef_if_neg (zero_ne_one.symm : (1 : R) ≠ 0), Ideal.span_singleton_one, ← Ideal.one_eq_top,
Associates.mk_one, Associates.factors_one, Associates.count_zero (by apply v.associates_irreducible), Int.ofNat_zero,
neg_zero, ofAdd_zero, WithZero.coe_one]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ intValuationDef v (x * y) = intValuationDef v x * intValuationDef v y
[PROOFSTEP]
simp only [intValuationDef]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ (if x * y = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) =
(if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) *
if y = 0 then 0
else
↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
⊢ (if x * y = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) =
(if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) *
if y = 0 then 0
else
↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
rw [hx, zero_mul, if_pos (Eq.refl _), zero_mul]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
⊢ (if x * y = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) =
(if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) *
if y = 0 then 0
else
↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
⊢ (if x * y = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) =
(if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) *
if y = 0 then 0
else
↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
rw [hy, mul_zero, if_pos (Eq.refl _), mul_zero]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ (if x * y = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) =
(if x = 0 then 0
else
↑(↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) *
if y = 0 then 0
else
↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy), ← WithZero.coe_mul, WithZero.coe_inj, ← ofAdd_add, ←
Ideal.span_singleton_mul_span_singleton, ← Associates.mk_mul_mk, ← neg_add,
Associates.count_mul (by apply Associates.mk_ne_zero'.mpr hx) (by apply Associates.mk_ne_zero'.mpr hy)
(by apply v.associates_irreducible)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ Associates.mk (Ideal.span {x}) ≠ 0
[PROOFSTEP]
apply Associates.mk_ne_zero'.mpr hx
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ Associates.mk (Ideal.span {y}) ≠ 0
[PROOFSTEP]
apply Associates.mk_ne_zero'.mpr hy
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ ↑ofAdd
(-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))) +
Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))) =
↑ofAdd
(-(↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) +
↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))))
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
a b c : ℕ
⊢ ↑ofAdd (-↑c) ≤ max (↑ofAdd (-↑a)) (↑ofAdd (-↑b)) ↔ min a b ≤ c
[PROOFSTEP]
rw [le_max_iff, ofAdd_le, ofAdd_le, neg_le_neg_iff, neg_le_neg_iff, Int.ofNat_le, Int.ofNat_le, ← min_le_iff]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
rw [hx, zero_add]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
⊢ intValuationDef v y ≤ max (intValuationDef v 0) (intValuationDef v y)
[PROOFSTEP]
conv_rhs => rw [intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
| max (intValuationDef v 0) (intValuationDef v y)
[PROOFSTEP]
rw [intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
| max (intValuationDef v 0) (intValuationDef v y)
[PROOFSTEP]
rw [intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
| max (intValuationDef v 0) (intValuationDef v y)
[PROOFSTEP]
rw [intValuationDef, if_pos (Eq.refl _)]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : x = 0
⊢ intValuationDef v y ≤ max 0 (intValuationDef v y)
[PROOFSTEP]
rw [max_eq_right (WithZero.zero_le (v.intValuationDef y))]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
rw [hy, add_zero]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
⊢ intValuationDef v x ≤ max (intValuationDef v x) (intValuationDef v 0)
[PROOFSTEP]
conv_rhs => rw [max_comm, intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
| max (intValuationDef v x) (intValuationDef v 0)
[PROOFSTEP]
rw [max_comm, intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
| max (intValuationDef v x) (intValuationDef v 0)
[PROOFSTEP]
rw [max_comm, intValuationDef, if_pos (Eq.refl _)]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
| max (intValuationDef v x) (intValuationDef v 0)
[PROOFSTEP]
rw [max_comm, intValuationDef, if_pos (Eq.refl _)]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : y = 0
⊢ intValuationDef v x ≤ max 0 (intValuationDef v x)
[PROOFSTEP]
rw [max_eq_right (WithZero.zero_le (v.intValuationDef x))]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
by_cases hxy : x + y = 0
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : x + y = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
rw [intValuationDef, if_pos hxy]
[GOAL]
case pos
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : x + y = 0
⊢ 0 ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
exact zero_le'
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y)
[PROOFSTEP]
rw [v.intValuationDef_if_neg hxy, v.intValuationDef_if_neg hx, v.intValuationDef_if_neg hy, WithZero.le_max_iff,
IntValuation.le_max_iff_min_le]
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
⊢ min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ≤
Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
[PROOFSTEP]
set nmin :=
min ((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span { x })).factors)
((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span { y })).factors)
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
[PROOFSTEP]
have h_dvd_x : x ∈ v.asIdeal ^ nmin :=
by
rw [← Associates.le_singleton_iff x nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hx) _]
exact min_le_left _ _
apply v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
⊢ x ∈ v.asIdeal ^ nmin
[PROOFSTEP]
rw [← Associates.le_singleton_iff x nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hx) _]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
exact min_le_left _ _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
[PROOFSTEP]
have h_dvd_y : y ∈ v.asIdeal ^ nmin :=
by
rw [← Associates.le_singleton_iff y nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hy) _]
exact min_le_right _ _
apply v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
⊢ y ∈ v.asIdeal ^ nmin
[PROOFSTEP]
rw [← Associates.le_singleton_iff y nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hy) _]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
exact min_le_right _ _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
[PROOFSTEP]
have h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) :=
by
rw [Associates.le_singleton_iff]
exact Ideal.add_mem (v.asIdeal ^ nmin) h_dvd_x h_dvd_y
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
⊢ Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y})
[PROOFSTEP]
rw [Associates.le_singleton_iff]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
⊢ x + y ∈ v.asIdeal ^ nmin
[PROOFSTEP]
exact Ideal.add_mem (v.asIdeal ^ nmin) h_dvd_x h_dvd_y
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y})
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
[PROOFSTEP]
rw [Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hxy) _] at h_dvd_xy
[GOAL]
case neg
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
h_dvd_xy : nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y})))
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y})
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
exact h_dvd_xy
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
hx : ¬x = 0
hy : ¬y = 0
hxy : ¬x + y = 0
nmin : ℕ :=
min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))
(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))
h_dvd_x : x ∈ v.asIdeal ^ nmin
h_dvd_y : y ∈ v.asIdeal ^ nmin
h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y})
⊢ Irreducible (Associates.mk v.asIdeal)
[PROOFSTEP]
apply v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
have hv : _root_.Irreducible (Associates.mk v.asIdeal) := v.associates_irreducible
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
have hlt : v.asIdeal ^ 2 < v.asIdeal := by
rw [← Ideal.dvdNotUnit_iff_lt]
exact ⟨v.ne_bot, v.asIdeal, (not_congr Ideal.isUnit_iff).mpr (Ideal.IsPrime.ne_top v.isPrime), sq v.asIdeal⟩
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
⊢ v.asIdeal ^ 2 < v.asIdeal
[PROOFSTEP]
rw [← Ideal.dvdNotUnit_iff_lt]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
⊢ DvdNotUnit v.asIdeal (v.asIdeal ^ 2)
[PROOFSTEP]
exact ⟨v.ne_bot, v.asIdeal, (not_congr Ideal.isUnit_iff).mpr (Ideal.IsPrime.ne_top v.isPrime), sq v.asIdeal⟩
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
obtain ⟨π, mem, nmem⟩ := SetLike.exists_of_lt hlt
[GOAL]
case intro.intro
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
have hπ : Associates.mk (Ideal.span { π }) ≠ 0 :=
by
rw [Associates.mk_ne_zero']
intro h
rw [h] at nmem
exact nmem (Submodule.zero_mem (v.asIdeal ^ 2))
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
⊢ Associates.mk (Ideal.span {π}) ≠ 0
[PROOFSTEP]
rw [Associates.mk_ne_zero']
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
⊢ π ≠ 0
[PROOFSTEP]
intro h
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
h : π = 0
⊢ False
[PROOFSTEP]
rw [h] at nmem
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬0 ∈ v.asIdeal ^ 2
h : π = 0
⊢ False
[PROOFSTEP]
exact nmem (Submodule.zero_mem (v.asIdeal ^ 2))
[GOAL]
case intro.intro
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
use π
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ intValuationDef v π = ↑(↑ofAdd (-1))
[PROOFSTEP]
rw [intValuationDef, if_neg (Associates.mk_ne_zero'.mp hπ), WithZero.coe_inj]
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ ↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))))) =
↑ofAdd (-1)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h.h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ -↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π})))) = -1
[PROOFSTEP]
rw [neg_inj, ← Int.ofNat_one, Int.coe_nat_inj']
[GOAL]
case h.h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : π ∈ v.asIdeal
nmem : ¬π ∈ v.asIdeal ^ 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1
[PROOFSTEP]
rw [← Ideal.dvd_span_singleton, ← Associates.mk_le_mk_iff_dvd_iff] at mem nmem
[GOAL]
case h.h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : Associates.mk v.asIdeal ≤ Associates.mk (Ideal.span {π})
nmem : ¬Associates.mk (v.asIdeal ^ 2) ≤ Associates.mk (Ideal.span {π})
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1
[PROOFSTEP]
rw [← pow_one (Associates.mk v.asIdeal), Associates.prime_pow_dvd_iff_le hπ hv] at mem
[GOAL]
case h.h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : 1 ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π})))
nmem : ¬Associates.mk (v.asIdeal ^ 2) ≤ Associates.mk (Ideal.span {π})
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1
[PROOFSTEP]
rw [Associates.mk_pow, Associates.prime_pow_dvd_iff_le hπ hv, not_le] at nmem
[GOAL]
case h.h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
hv : Irreducible (Associates.mk v.asIdeal)
hlt : v.asIdeal ^ 2 < v.asIdeal
π : R
mem : 1 ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π})))
nmem : Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) < 2
hπ : Associates.mk (Ideal.span {π}) ≠ 0
⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1
[PROOFSTEP]
exact Nat.eq_of_le_of_lt_succ mem nmem
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
s : { x // x ∈ nonZeroDivisors R }
⊢ ↑(valuation v) (IsLocalization.mk' K r s) = ↑(intValuation v) r / ↑(intValuation v) ↑s
[PROOFSTEP]
erw [valuation_def, (IsLocalization.toLocalizationMap (nonZeroDivisors R) K).lift_mk', div_eq_mul_inv,
mul_eq_mul_left_iff]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
s : { x // x ∈ nonZeroDivisors R }
⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R))
(_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s)))
s)⁻¹ =
(↑(intValuation v) ↑s)⁻¹ ∨
↑↑(intValuation v).toMonoidWithZeroHom r = 0
[PROOFSTEP]
left
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
s : { x // x ∈ nonZeroDivisors R }
⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R))
(_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s)))
s)⁻¹ =
(↑(intValuation v) ↑s)⁻¹
[PROOFSTEP]
rw [Units.val_inv_eq_inv_val, inv_inj]
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
s : { x // x ∈ nonZeroDivisors R }
⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R))
(_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s)))
s) =
↑(intValuation v) ↑s
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑(valuation v) (↑(algebraMap R K) r) = ↑(intValuation v) r
[PROOFSTEP]
rw [valuation_def, Valuation.extendToLocalization_apply_map_apply]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑(valuation v) (↑(algebraMap R K) r) ≤ 1
[PROOFSTEP]
rw [valuation_of_algebraMap]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑(intValuation v) r ≤ 1
[PROOFSTEP]
exact v.int_valuation_le_one r
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑(valuation v) (↑(algebraMap R K) r) < 1 ↔ v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
rw [valuation_of_algebraMap]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑(intValuation v) r < 1 ↔ v.asIdeal ∣ Ideal.span {r}
[PROOFSTEP]
exact v.int_valuation_lt_one_iff_dvd r
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ ∃ π, ↑(valuation v) π = ↑(↑ofAdd (-1))
[PROOFSTEP]
obtain ⟨r, hr⟩ := v.int_valuation_exists_uniformizer
[GOAL]
case intro
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : intValuationDef v r = ↑(↑ofAdd (-1))
⊢ ∃ π, ↑(valuation v) π = ↑(↑ofAdd (-1))
[PROOFSTEP]
use algebraMap R K r
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : intValuationDef v r = ↑(↑ofAdd (-1))
⊢ ↑(valuation v) (↑(algebraMap R K) r) = ↑(↑ofAdd (-1))
[PROOFSTEP]
rw [valuation_def, Valuation.extendToLocalization_apply_map_apply]
[GOAL]
case h
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
hr : intValuationDef v r = ↑(↑ofAdd (-1))
⊢ ↑(intValuation v) r = ↑(↑ofAdd (-1))
[PROOFSTEP]
exact hr
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
⊢ r • ↑x ∈ adicCompletionIntegers K v
[PROOFSTEP]
have h : (algebraMap R (adicCompletion K v)) r = (algebraMap R K r : adicCompletion K v) := rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r)
⊢ r • ↑x ∈ adicCompletionIntegers K v
[PROOFSTEP]
rw [Algebra.smul_def]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r)
⊢ ↑(algebraMap R (adicCompletion K v)) r * ↑x ∈ adicCompletionIntegers K v
[PROOFSTEP]
refine'
ValuationSubring.mul_mem _ _ _ _
x.2
--Porting note: added instance
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r)
⊢ ↑(algebraMap R (adicCompletion K v)) r ∈ adicCompletionIntegers K v
[PROOFSTEP]
letI : Valued K ℤₘ₀ := adicValued v
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r)
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑(algebraMap R (adicCompletion K v)) r ∈ adicCompletionIntegers K v
[PROOFSTEP]
rw [mem_adicCompletionIntegers, h, Valued.valuedCompletion_apply]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : { x // x ∈ adicCompletionIntegers K v }
h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r)
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑Valued.v (↑(algebraMap R K) r) ≤ 1
[PROOFSTEP]
exact v.valuation_le_one _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
⊢ ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v
[PROOFSTEP]
letI : Valued K ℤₘ₀ := adicValued v
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v
[PROOFSTEP]
rw [mem_adicCompletionIntegers, Valued.valuedCompletion_apply]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑Valued.v (↑(algebraMap R K) r) ≤ 1
[PROOFSTEP]
exact v.valuation_le_one _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ (fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1
[PROOFSTEP]
simp only [map_one]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ { val := ↑K 1, property := (_ : (fun x => x ∈ adicCompletionIntegers K v) (↑K 1)) } = 1
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y
[PROOFSTEP]
ext
--Porting note: added instance
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ ↑(OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y)) =
↑(OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y)
[PROOFSTEP]
letI : Valued K ℤₘ₀ := adicValued v
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑(OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y)) =
↑(OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y)
[PROOFSTEP]
simp_rw [RingHom.map_mul, Subring.coe_mul, UniformSpace.Completion.coe_mul]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
0 =
0
[PROOFSTEP]
simp only [map_zero]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
⊢ { val := ↑K 0, property := (_ : (fun x => x ∈ adicCompletionIntegers K v) (↑K 0)) } = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
y
[PROOFSTEP]
ext
--Porting note: added instance
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y)) =
↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
y)
[PROOFSTEP]
letI : Valued K ℤₘ₀ := adicValued v
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x y : R
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y)) =
↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) })
y)
[PROOFSTEP]
simp_rw [RingHom.map_add, Subring.coe_add, UniformSpace.Completion.coe_add]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
⊢ ↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : R),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
y) }
r *
x =
x *
↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : R),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
y) }
r
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
⊢ { val := ↑K (↑(algebraMap R K) r), property := (_ : ↑Valued.v (↑K (↑(algebraMap R K) r)) ≤ 1) } * x =
x * { val := ↑K (↑(algebraMap R K) r), property := (_ : ↑Valued.v (↑K (↑(algebraMap R K) r)) ≤ 1) }
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
⊢ r • x =
↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : R),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
y) }
r *
x
[PROOFSTEP]
ext
--Porting note: added `dsimp`
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
⊢ ↑(r • x) =
↑(↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : R),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) },
map_one' :=
(_ :
(fun r =>
{ val := ↑((fun x => K) r) (↑(algebraMap R K) r),
property :=
(_ :
↑((fun x => K) r) (↑(algebraMap R K) r) ∈
adicCompletionIntegers K v) })
1 =
1) }
y) })
y) }
r *
x)
[PROOFSTEP]
dsimp
--Porting note: added instance
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x
[PROOFSTEP]
letI : Valued K ℤₘ₀ := adicValued v
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x
[PROOFSTEP]
simp only [Subring.coe_mul, Algebra.smul_def]
[GOAL]
case a
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
r : R
x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r
this : Valued K ℤₘ₀ := adicValued v
⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
c : R
x : { x // x ∈ adicCompletionIntegers K v }
hcx : c • x = 0
⊢ c = 0 ∨ x = 0
[PROOFSTEP]
rw [Algebra.smul_def, mul_eq_zero] at hcx
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
c : R
x : { x // x ∈ adicCompletionIntegers K v }
hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0
⊢ c = 0 ∨ x = 0
[PROOFSTEP]
refine' hcx.imp_left fun hc => _
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
c : R
x : { x // x ∈ adicCompletionIntegers K v }
hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0
hc : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0
⊢ c = 0
[PROOFSTEP]
letI : UniformSpace K := v.adicValued.toUniformSpace
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
c : R
x : { x // x ∈ adicCompletionIntegers K v }
hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0
hc : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0
this : UniformSpace K := Valued.toUniformSpace
⊢ c = 0
[PROOFSTEP]
rw [← map_zero (algebraMap R (v.adicCompletionIntegers K))] at hc
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
c : R
x : { x // x ∈ adicCompletionIntegers K v }
hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0
hc :
↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) 0
this : UniformSpace K := Valued.toUniformSpace
⊢ c = 0
[PROOFSTEP]
exact IsFractionRing.injective R K (UniformSpace.Completion.coe_injective K (Subtype.ext_iff.mp hc))
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
y : { x // x ∈ adicCompletionIntegers K v }
z : adicCompletion K v
⊢ (x • y) • z = x • y • z
[PROOFSTEP]
simp only [Algebra.smul_def]
[GOAL]
R : Type u_1
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : IsDedekindDomain R
K : Type u_2
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
v : HeightOneSpectrum R
x : R
y : { x // x ∈ adicCompletionIntegers K v }
z : adicCompletion K v
⊢ ↑(algebraMap { x // x ∈ adicCompletionIntegers K v } (adicCompletion K v))
(↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) x * y) *
z =
↑(algebraMap R (adicCompletion K v)) x *
(↑(algebraMap { x // x ∈ adicCompletionIntegers K v } (adicCompletion K v)) y * z)
[PROOFSTEP]
apply mul_assoc
| {"mathlib_filename": "Mathlib.RingTheory.DedekindDomain.AdicValuation", "llama_tokens": 57049} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
hAB : IsExtreme 𝕜 A B
hBC : IsExtreme 𝕜 B C
⊢ IsExtreme 𝕜 A C
[PROOFSTEP]
refine' ⟨Subset.trans hBC.1 hAB.1, fun x₁ hx₁A x₂ hx₂A x hxC hx ↦ _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x✝ : E
hAB : IsExtreme 𝕜 A B
hBC : IsExtreme 𝕜 B C
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxC : x ∈ C
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ ∈ C ∧ x₂ ∈ C
[PROOFSTEP]
obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A (hBC.1 hxC) hx
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x✝ : E
hAB : IsExtreme 𝕜 A B
hBC : IsExtreme 𝕜 B C
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxC : x ∈ C
hx : x ∈ openSegment 𝕜 x₁ x₂
hx₁B : x₁ ∈ B
hx₂B : x₂ ∈ B
⊢ x₁ ∈ C ∧ x₂ ∈ C
[PROOFSTEP]
exact hBC.2 hx₁B hx₂B hxC hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
hAB : IsExtreme 𝕜 A B
hAC : IsExtreme 𝕜 A C
⊢ IsExtreme 𝕜 A (B ∩ C)
[PROOFSTEP]
use Subset.trans (inter_subset_left _ _) hAB.1
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
hAB : IsExtreme 𝕜 A B
hAC : IsExtreme 𝕜 A C
⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x : E⦄, x ∈ B ∩ C → x ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
[PROOFSTEP]
rintro x₁ hx₁A x₂ hx₂A x ⟨hxB, hxC⟩ hx
[GOAL]
case right.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x✝ : E
hAB : IsExtreme 𝕜 A B
hAC : IsExtreme 𝕜 A C
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxB : x ∈ B
hxC : x ∈ C
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
[PROOFSTEP]
obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A hxB hx
[GOAL]
case right.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x✝ : E
hAB : IsExtreme 𝕜 A B
hAC : IsExtreme 𝕜 A C
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxB : x ∈ B
hxC : x ∈ C
hx : x ∈ openSegment 𝕜 x₁ x₂
hx₁B : x₁ ∈ B
hx₂B : x₂ ∈ B
⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
[PROOFSTEP]
obtain ⟨hx₁C, hx₂C⟩ := hAC.2 hx₁A hx₂A hxC hx
[GOAL]
case right.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x✝ : E
hAB : IsExtreme 𝕜 A B
hAC : IsExtreme 𝕜 A C
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxB : x ∈ B
hxC : x ∈ C
hx : x ∈ openSegment 𝕜 x₁ x₂
hx₁B : x₁ ∈ B
hx₂B : x₂ ∈ B
hx₁C : x₁ ∈ C
hx₂C : x₂ ∈ C
⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
[PROOFSTEP]
exact ⟨⟨hx₁B, hx₁C⟩, hx₂B, hx₂C⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι✝ : Type u_4
π : ι✝ → Type u_5
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : SMul 𝕜 E
A B C : Set E
x : E
ι : Sort u_6
inst✝ : Nonempty ι
F : ι → Set E
hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i)
⊢ IsExtreme 𝕜 A (⋂ (i : ι), F i)
[PROOFSTEP]
obtain i := Classical.arbitrary ι
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι✝ : Type u_4
π : ι✝ → Type u_5
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : SMul 𝕜 E
A B C : Set E
x : E
ι : Sort u_6
inst✝ : Nonempty ι
F : ι → Set E
hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i)
i : ι
⊢ IsExtreme 𝕜 A (⋂ (i : ι), F i)
[PROOFSTEP]
refine' ⟨iInter_subset_of_subset i (hAF i).1, fun x₁ hx₁A x₂ hx₂A x hxF hx ↦ _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι✝ : Type u_4
π : ι✝ → Type u_5
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : SMul 𝕜 E
A B C : Set E
x✝ : E
ι : Sort u_6
inst✝ : Nonempty ι
F : ι → Set E
hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i)
i : ι
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxF : x ∈ ⋂ (i : ι), F i
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ ∈ ⋂ (i : ι), F i ∧ x₂ ∈ ⋂ (i : ι), F i
[PROOFSTEP]
simp_rw [mem_iInter] at hxF ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι✝ : Type u_4
π : ι✝ → Type u_5
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : SMul 𝕜 E
A B C : Set E
x✝ : E
ι : Sort u_6
inst✝ : Nonempty ι
F : ι → Set E
hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i)
i : ι
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
hxF : ∀ (i : ι), x ∈ F i
⊢ (∀ (i : ι), x₁ ∈ F i) ∧ ∀ (i : ι), x₂ ∈ F i
[PROOFSTEP]
have h := fun i ↦ (hAF i).2 hx₁A hx₂A (hxF i) hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι✝ : Type u_4
π : ι✝ → Type u_5
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommMonoid E
inst✝¹ : SMul 𝕜 E
A B C : Set E
x✝ : E
ι : Sort u_6
inst✝ : Nonempty ι
F : ι → Set E
hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i)
i : ι
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
hxF : ∀ (i : ι), x ∈ F i
h : ∀ (i : ι), x₁ ∈ F i ∧ x₂ ∈ F i
⊢ (∀ (i : ι), x₁ ∈ F i) ∧ ∀ (i : ι), x₂ ∈ F i
[PROOFSTEP]
exact ⟨fun i ↦ (h i).1, fun i ↦ (h i).2⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
F : Set (Set E)
hF : Set.Nonempty F
hA : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
⊢ IsExtreme 𝕜 A (⋂ (B : Set E) (_ : B ∈ F), B)
[PROOFSTEP]
haveI := hF.to_subtype
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
F : Set (Set E)
hF : Set.Nonempty F
hA : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
this : Nonempty ↑F
⊢ IsExtreme 𝕜 A (⋂ (B : Set E) (_ : B ∈ F), B)
[PROOFSTEP]
simpa only [iInter_subtype] using isExtreme_iInter fun i : F ↦ hA _ i.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
F : Set (Set E)
hF : Set.Nonempty F
hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
⊢ IsExtreme 𝕜 A (⋂₀ F)
[PROOFSTEP]
obtain ⟨B, hB⟩ := hF
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B✝ C : Set E
x : E
F : Set (Set E)
hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
B : Set E
hB : B ∈ F
⊢ IsExtreme 𝕜 A (⋂₀ F)
[PROOFSTEP]
refine' ⟨(sInter_subset_of_mem hB).trans (hAF B hB).1, fun x₁ hx₁A x₂ hx₂A x hxF hx ↦ _⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B✝ C : Set E
x✝ : E
F : Set (Set E)
hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
B : Set E
hB : B ∈ F
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hxF : x ∈ ⋂₀ F
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ ∈ ⋂₀ F ∧ x₂ ∈ ⋂₀ F
[PROOFSTEP]
simp_rw [mem_sInter] at hxF ⊢
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B✝ C : Set E
x✝ : E
F : Set (Set E)
hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
B : Set E
hB : B ∈ F
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
hxF : ∀ (t : Set E), t ∈ F → x ∈ t
⊢ (∀ (t : Set E), t ∈ F → x₁ ∈ t) ∧ ∀ (t : Set E), t ∈ F → x₂ ∈ t
[PROOFSTEP]
have h := fun B hB ↦ (hAF B hB).2 hx₁A hx₂A (hxF B hB) hx
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B✝ C : Set E
x✝ : E
F : Set (Set E)
hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B
B : Set E
hB : B ∈ F
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
x : E
hx : x ∈ openSegment 𝕜 x₁ x₂
hxF : ∀ (t : Set E), t ∈ F → x ∈ t
h : ∀ (B : Set E), B ∈ F → x₁ ∈ B ∧ x₂ ∈ B
⊢ (∀ (t : Set E), t ∈ F → x₁ ∈ t) ∧ ∀ (t : Set E), t ∈ F → x₂ ∈ t
[PROOFSTEP]
exact ⟨fun B hB ↦ (h B hB).1, fun B hB ↦ (h B hB).2⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
⊢ x ∈ extremePoints 𝕜 A ↔ IsExtreme 𝕜 A {x}
[PROOFSTEP]
refine' ⟨_, fun hx ↦ ⟨singleton_subset_iff.1 hx.1, fun x₁ hx₁ x₂ hx₂ ↦ hx.2 hx₁ hx₂ rfl⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
⊢ x ∈ extremePoints 𝕜 A → IsExtreme 𝕜 A {x}
[PROOFSTEP]
rintro ⟨hxA, hAx⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
hxA : x ∈ A
hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
⊢ IsExtreme 𝕜 A {x}
[PROOFSTEP]
use singleton_subset_iff.2 hxA
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x : E
hxA : x ∈ A
hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x_1 : E⦄, x_1 ∈ {x} → x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {x} ∧ x₂ ∈ {x}
[PROOFSTEP]
rintro x₁ hx₁A x₂ hx₂A y (rfl : y = x)
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
A B C : Set E
x₁ : E
hx₁A : x₁ ∈ A
x₂ : E
hx₂A : x₂ ∈ A
y : E
hxA : y ∈ A
hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → y ∈ openSegment 𝕜 x₁ x₂ → x₁ = y ∧ x₂ = y
⊢ y ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {y} ∧ x₂ ∈ {y}
[PROOFSTEP]
exact hAx hx₁A hx₂A
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
⊢ extremePoints 𝕜 (s ×ˢ t) = extremePoints 𝕜 s ×ˢ extremePoints 𝕜 t
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
⊢ x✝ ∈ extremePoints 𝕜 (s ×ˢ t) ↔ x✝ ∈ extremePoints 𝕜 s ×ˢ extremePoints 𝕜 t
[PROOFSTEP]
refine' (and_congr_right fun hx ↦ ⟨fun h ↦ _, fun h ↦ _⟩).trans and_and_and_comm
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
⊢ (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧
∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
case h.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h :
(∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧
∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
⊢ ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
[PROOFSTEP]
constructor
[GOAL]
case h.refine'_1.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst
[PROOFSTEP]
rintro x₁ hx₁ x₂ hx₂ hx_fst
[GOAL]
case h.refine'_1.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : E
hx₁ : x₁ ∈ s
x₂ : E
hx₂ : x₂ ∈ s
hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x✝.fst ∧ x₂ = x✝.fst
[PROOFSTEP]
refine' (h (mk_mem_prod hx₁ hx.2) (mk_mem_prod hx₂ hx.2) _).imp (congr_arg Prod.fst) (congr_arg Prod.fst)
[GOAL]
case h.refine'_1.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : E
hx₁ : x₁ ∈ s
x₂ : E
hx₂ : x₂ ∈ s
hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂
⊢ x✝ ∈ openSegment 𝕜 (x₁, x✝.snd) (x₂, x✝.snd)
[PROOFSTEP]
rw [← Prod.image_mk_openSegment_left]
[GOAL]
case h.refine'_1.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : E
hx₁ : x₁ ∈ s
x₂ : E
hx₂ : x₂ ∈ s
hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂
⊢ x✝ ∈ (fun x => (x, x✝.snd)) '' openSegment 𝕜 x₁ x₂
[PROOFSTEP]
exact ⟨_, hx_fst, Prod.mk.eta⟩
[GOAL]
case h.refine'_1.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
⊢ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
[PROOFSTEP]
rintro x₁ hx₁ x₂ hx₂ hx_snd
[GOAL]
case h.refine'_1.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : F
hx₁ : x₁ ∈ t
x₂ : F
hx₂ : x₂ ∈ t
hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x✝.snd ∧ x₂ = x✝.snd
[PROOFSTEP]
refine' (h (mk_mem_prod hx.1 hx₁) (mk_mem_prod hx.1 hx₂) _).imp (congr_arg Prod.snd) (congr_arg Prod.snd)
[GOAL]
case h.refine'_1.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : F
hx₁ : x₁ ∈ t
x₂ : F
hx₂ : x₂ ∈ t
hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂
⊢ x✝ ∈ openSegment 𝕜 (x✝.fst, x₁) (x✝.fst, x₂)
[PROOFSTEP]
rw [← Prod.image_mk_openSegment_right]
[GOAL]
case h.refine'_1.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
x₁ : F
hx₁ : x₁ ∈ t
x₂ : F
hx₂ : x₂ ∈ t
hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂
⊢ x✝ ∈ (fun y => (x✝.fst, y)) '' openSegment 𝕜 x₁ x₂
[PROOFSTEP]
exact ⟨_, hx_snd, Prod.mk.eta⟩
[GOAL]
case h.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h :
(∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧
∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
⊢ ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝
[PROOFSTEP]
rintro x₁ hx₁ x₂ hx₂ ⟨a, b, ha, hb, hab, hx'⟩
[GOAL]
case h.refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h :
(∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧
∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
x₁ : E × F
hx₁ : x₁ ∈ s ×ˢ t
x₂ : E × F
hx₂ : x₂ ∈ s ×ˢ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : a • x₁ + b • x₂ = x✝
⊢ x₁ = x✝ ∧ x₂ = x✝
[PROOFSTEP]
simp_rw [Prod.ext_iff]
[GOAL]
case h.refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : Set E
t : Set F
x✝ : E × F
hx : x✝ ∈ s ×ˢ t
h :
(∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧
∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd
x₁ : E × F
hx₁ : x₁ ∈ s ×ˢ t
x₂ : E × F
hx₂ : x₂ ∈ s ×ˢ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : a • x₁ + b • x₂ = x✝
⊢ (x₁.fst = x✝.fst ∧ x₁.snd = x✝.snd) ∧ x₂.fst = x✝.fst ∧ x₂.snd = x✝.snd
[PROOFSTEP]
exact
and_and_and_comm.1
⟨h.1 hx₁.1 hx₂.1 ⟨a, b, ha, hb, hab, congr_arg Prod.fst hx'⟩,
h.2 hx₁.2 hx₂.2 ⟨a, b, ha, hb, hab, congr_arg Prod.snd hx'⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x : E
s : (i : ι) → Set (π i)
⊢ extremePoints 𝕜 (pi univ s) = pi univ fun i => extremePoints 𝕜 (s i)
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
⊢ x ∈ extremePoints 𝕜 (pi univ s) ↔ x ∈ pi univ fun i => extremePoints 𝕜 (s i)
[PROOFSTEP]
simp only [mem_extremePoints, mem_pi, mem_univ, true_imp_iff, @forall_and ι]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
⊢ ((∀ (i : ι), x i ∈ s i) ∧
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) ↔
(∀ (i : ι), x i ∈ s i) ∧
∀ (x_1 : ι) (x₁ : π x_1),
x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1
[PROOFSTEP]
refine' and_congr_right fun hx ↦ ⟨fun h i ↦ _, fun h ↦ _⟩
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
⊢ ∀ (x₁ : π i), x₁ ∈ s i → ∀ (x₂ : π i), x₂ ∈ s i → x i ∈ openSegment 𝕜 x₁ x₂ → x₁ = x i ∧ x₂ = x i
[PROOFSTEP]
rintro x₁ hx₁ x₂ hx₂ hi
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x i ∧ x₂ = x i
[PROOFSTEP]
refine'
(h (update x i x₁) _ (update x i x₂) _ _).imp (fun h₁ ↦ by rw [← h₁, update_same]) fun h₂ ↦ by rw [← h₂, update_same]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
h₁ : update x i x₁ = x
⊢ x₁ = x i
[PROOFSTEP]
rw [← h₁, update_same]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
h₂ : update x i x₂ = x
⊢ x₂ = x i
[PROOFSTEP]
rw [← h₂, update_same]
[GOAL]
case h.refine'_1.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₁ i_1 ∈ s i_1
case h.refine'_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
iterate 2
rintro j
obtain rfl | hji := eq_or_ne j i
· rwa [update_same]
· rw [update_noteq hji]
exact hx _
[GOAL]
case h.refine'_1.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₁ i_1 ∈ s i_1
case h.refine'_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
rintro j
[GOAL]
case h.refine'_1.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
⊢ update x i x₁ j ∈ s j
case h.refine'_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
obtain rfl | hji := eq_or_ne j i
[GOAL]
case h.refine'_1.refine'_1.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
j : ι
x₁ : π j
hx₁ : x₁ ∈ s j
x₂ : π j
hx₂ : x₂ ∈ s j
hi : x j ∈ openSegment 𝕜 x₁ x₂
⊢ update x j x₁ j ∈ s j
[PROOFSTEP]
rwa [update_same]
[GOAL]
case h.refine'_1.refine'_1.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
hji : j ≠ i
⊢ update x i x₁ j ∈ s j
[PROOFSTEP]
rw [update_noteq hji]
[GOAL]
case h.refine'_1.refine'_1.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
hji : j ≠ i
⊢ x j ∈ s j
[PROOFSTEP]
exact hx _
[GOAL]
case h.refine'_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
rintro j
[GOAL]
case h.refine'_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
⊢ update x i x₂ j ∈ s j
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
obtain rfl | hji := eq_or_ne j i
[GOAL]
case h.refine'_1.refine'_2.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
j : ι
x₁ : π j
hx₁ : x₁ ∈ s j
x₂ : π j
hx₂ : x₂ ∈ s j
hi : x j ∈ openSegment 𝕜 x₁ x₂
⊢ update x j x₂ j ∈ s j
[PROOFSTEP]
rwa [update_same]
[GOAL]
case h.refine'_1.refine'_2.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
hji : j ≠ i
⊢ update x i x₂ j ∈ s j
[PROOFSTEP]
rw [update_noteq hji]
[GOAL]
case h.refine'_1.refine'_2.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
j : ι
hji : j ≠ i
⊢ x j ∈ s j
[PROOFSTEP]
exact hx _
[GOAL]
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂)
[PROOFSTEP]
rw [← Pi.image_update_openSegment]
[GOAL]
case h.refine'_1.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
i : ι
x₁ : π i
hx₁ : x₁ ∈ s i
x₂ : π i
hx₂ : x₂ ∈ s i
hi : x i ∈ openSegment 𝕜 x₁ x₂
⊢ x ∈ update x i '' openSegment 𝕜 x₁ x₂
[PROOFSTEP]
exact ⟨_, hi, update_eq_self _ _⟩
[GOAL]
case h.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x_1 : ι) (x₁ : π x_1),
x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1
⊢ ∀ (x₁ : (i : ι) → π i),
(∀ (i : ι), x₁ i ∈ s i) →
∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
[PROOFSTEP]
rintro x₁ hx₁ x₂ hx₂ ⟨a, b, ha, hb, hab, hx'⟩
[GOAL]
case h.refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x_1 : ι) (x₁ : π x_1),
x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1
x₁ : (i : ι) → π i
hx₁ : ∀ (i : ι), x₁ i ∈ s i
x₂ : (i : ι) → π i
hx₂ : ∀ (i : ι), x₂ i ∈ s i
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : a • x₁ + b • x₂ = x
⊢ x₁ = x ∧ x₂ = x
[PROOFSTEP]
simp_rw [funext_iff, ← forall_and]
[GOAL]
case h.refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : (i : ι) → AddCommGroup (π i)
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : (i : ι) → Module 𝕜 (π i)
A B : Set E
x✝ : E
s : (i : ι) → Set (π i)
x : (i : ι) → π i
hx : ∀ (i : ι), x i ∈ s i
h :
∀ (x_1 : ι) (x₁ : π x_1),
x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1
x₁ : (i : ι) → π i
hx₁ : ∀ (i : ι), x₁ i ∈ s i
x₂ : (i : ι) → π i
hx₂ : ∀ (i : ι), x₂ i ∈ s i
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : a • x₁ + b • x₂ = x
⊢ ∀ (x_1 : ι), x₁ x_1 = x x_1 ∧ x₂ x_1 = x x_1
[PROOFSTEP]
exact fun i ↦ h _ _ (hx₁ _) _ (hx₂ _) ⟨a, b, ha, hb, hab, congr_fun hx' _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A ∧ ∀ (x₁ : E), x₁ ∈ A → ∀ (x₂ : E), x₂ ∈ A → x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x
[PROOFSTEP]
refine' and_congr_right fun hxA ↦ forall₄_congr fun x₁ h₁ x₂ h₂ ↦ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
⊢ x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x ↔ x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
⊢ (x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) → x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x
[PROOFSTEP]
rw [← insert_endpoints_openSegment]
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
⊢ (x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) → x ∈ insert x₁ (insert x₂ (openSegment 𝕜 x₁ x₂)) → x₁ = x ∨ x₂ = x
[PROOFSTEP]
rintro H (rfl | rfl | hx)
[GOAL]
case mp.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₂ : E
h₂ : x₂ ∈ A
h₁ : x ∈ A
H : x ∈ openSegment 𝕜 x x₂ → x = x ∧ x₂ = x
⊢ x = x ∨ x₂ = x
case mp.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
h₂ : x ∈ A
H : x ∈ openSegment 𝕜 x₁ x → x₁ = x ∧ x = x
⊢ x₁ = x ∨ x = x
case mp.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
H : x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x ∨ x₂ = x
[PROOFSTEP]
exacts [Or.inl rfl, Or.inr rfl, Or.inl <| (H hx).1]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
⊢ (x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x
[PROOFSTEP]
intro H hx
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hxA : x ∈ A
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
H : x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x
hx : x ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x ∧ x₂ = x
[PROOFSTEP]
rcases H (openSegment_subset_segment _ _ _ hx) with (rfl | rfl)
[GOAL]
case mpr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ : x₂ ∈ A
hxA : x₁ ∈ A
H : x₁ ∈ segment 𝕜 x₁ x₂ → x₁ = x₁ ∨ x₂ = x₁
hx : x₁ ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x₁ ∧ x₂ = x₁
case mpr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x₁ : E
h₁ : x₁ ∈ A
x₂ : E
h₂ hxA : x₂ ∈ A
H : x₂ ∈ segment 𝕜 x₁ x₂ → x₁ = x₂ ∨ x₂ = x₂
hx : x₂ ∈ openSegment 𝕜 x₁ x₂
⊢ x₁ = x₂ ∧ x₂ = x₂
[PROOFSTEP]
exacts [⟨rfl, (left_mem_openSegment_iff.1 hx).symm⟩, ⟨right_mem_openSegment_iff.1 hx, rfl⟩]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A ∧ Convex 𝕜 (A \ {x})
[PROOFSTEP]
use fun hx ↦ ⟨hx.1, (mem_extremePoints_iff_extreme_singleton.1 hx).convex_diff hA⟩
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
⊢ x ∈ A ∧ Convex 𝕜 (A \ {x}) → x ∈ extremePoints 𝕜 A
[PROOFSTEP]
rintro ⟨hxA, hAx⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
hxA : x ∈ A
hAx : Convex 𝕜 (A \ {x})
⊢ x ∈ extremePoints 𝕜 A
[PROOFSTEP]
refine' mem_extremePoints_iff_forall_segment.2 ⟨hxA, fun x₁ hx₁ x₂ hx₂ hx ↦ _⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
hxA : x ∈ A
hAx : Convex 𝕜 (A \ {x})
x₁ : E
hx₁ : x₁ ∈ A
x₂ : E
hx₂ : x₂ ∈ A
hx : x ∈ [x₁-[𝕜]x₂]
⊢ x₁ = x ∨ x₂ = x
[PROOFSTEP]
rw [convex_iff_segment_subset] at hAx
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
hxA : x ∈ A
hAx : ∀ ⦃x_1 : E⦄, x_1 ∈ A \ {x} → ∀ ⦃y : E⦄, y ∈ A \ {x} → [x_1-[𝕜]y] ⊆ A \ {x}
x₁ : E
hx₁ : x₁ ∈ A
x₂ : E
hx₂ : x₂ ∈ A
hx : x ∈ [x₁-[𝕜]x₂]
⊢ x₁ = x ∨ x₂ = x
[PROOFSTEP]
by_contra' h
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
hxA : x ∈ A
hAx : ∀ ⦃x_1 : E⦄, x_1 ∈ A \ {x} → ∀ ⦃y : E⦄, y ∈ A \ {x} → [x_1-[𝕜]y] ⊆ A \ {x}
x₁ : E
hx₁ : x₁ ∈ A
x₂ : E
hx₂ : x₂ ∈ A
hx : x ∈ [x₁-[𝕜]x₂]
h : x₁ ≠ x ∧ x₂ ≠ x
⊢ False
[PROOFSTEP]
exact (hAx ⟨hx₁, fun hx₁ ↦ h.1 (mem_singleton_iff.2 hx₁)⟩ ⟨hx₂, fun hx₂ ↦ h.2 (mem_singleton_iff.2 hx₂)⟩ hx).2 rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
hA : Convex 𝕜 A
⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A \ ↑(convexHull 𝕜) (A \ {x})
[PROOFSTEP]
rw [hA.mem_extremePoints_iff_convex_diff, hA.convex_remove_iff_not_mem_convexHull_remove, mem_diff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x : E
⊢ extremePoints 𝕜 (↑(convexHull 𝕜) A) ⊆ A
[PROOFSTEP]
rintro x hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x✝ x : E
hx : x ∈ extremePoints 𝕜 (↑(convexHull 𝕜) A)
⊢ x ∈ A
[PROOFSTEP]
rw [(convex_convexHull 𝕜 _).mem_extremePoints_iff_convex_diff] at hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x✝ x : E
hx : x ∈ ↑(convexHull 𝕜) A ∧ Convex 𝕜 (↑(convexHull 𝕜) A \ {x})
⊢ x ∈ A
[PROOFSTEP]
by_contra h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
π : ι → Type u_5
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
A B : Set E
x✝ x : E
hx : x ∈ ↑(convexHull 𝕜) A ∧ Convex 𝕜 (↑(convexHull 𝕜) A \ {x})
h : ¬x ∈ A
⊢ False
[PROOFSTEP]
exact (convexHull_min (subset_diff.2 ⟨subset_convexHull 𝕜 _, disjoint_singleton_right.2 h⟩) hx.2 hx.1).2 rfl
| {"mathlib_filename": "Mathlib.Analysis.Convex.Extreme", "llama_tokens": 29451} |
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
h : degree f ≠ 0
⊢ span {f} ≠ ⊤
[PROOFSTEP]
simp_rw [Ne.def, span_singleton_eq_top, Polynomial.isUnit_iff, not_exists, not_and]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
h : degree f ≠ 0
⊢ ∀ (x : R), IsUnit x → ¬↑C x = f
[PROOFSTEP]
rintro x hx rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : IsUnit x
h : degree (↑C x) ≠ 0
⊢ False
[PROOFSTEP]
exact h (degree_C hx.ne_zero)
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : DistribSMul S R
inst✝ : IsScalarTower S R R
a : S
x : R
⊢ a • ↑(of f) x = ↑(of f) (a • x)
[PROOFSTEP]
rw [of, RingHom.comp_apply, RingHom.comp_apply, smul_mk, smul_C]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f g : R[X]
⊢ f ∣ g - 0 ↔ f ∣ g
[PROOFSTEP]
rw [sub_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f : R[X]
⊢ f ∣ -f + 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
x : R
⊢ ↑(aeval (root f)) (↑C x) = ↑(mk f) (↑C x)
[PROOFSTEP]
rw [aeval_C]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
x : R
⊢ ↑(algebraMap R (AdjoinRoot f)) x = ↑(mk f) (↑C x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p✝ p q : R[X]
ihp : ↑(aeval (root f)) p = ↑(mk f) p
ihq : ↑(aeval (root f)) q = ↑(mk f) q
⊢ ↑(aeval (root f)) (p + q) = ↑(mk f) (p + q)
[PROOFSTEP]
rw [AlgHom.map_add, RingHom.map_add, ihp, ihq]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
n : ℕ
x : R
x✝ : ↑(aeval (root f)) (↑C x * X ^ n) = ↑(mk f) (↑C x * X ^ n)
⊢ ↑(aeval (root f)) (↑C x * X ^ (n + 1)) = ↑(mk f) (↑C x * X ^ (n + 1))
[PROOFSTEP]
rw [AlgHom.map_mul, aeval_C, AlgHom.map_pow, aeval_X, RingHom.map_mul, mk_C, RingHom.map_pow, mk_X]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
n : ℕ
x : R
x✝ : ↑(aeval (root f)) (↑C x * X ^ n) = ↑(mk f) (↑C x * X ^ n)
⊢ ↑(algebraMap R (AdjoinRoot f)) x * root f ^ (n + 1) = ↑(of f) x * root f ^ (n + 1)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f : R[X]
⊢ Algebra.adjoin R {root f} = ⊤
[PROOFSTEP]
refine Algebra.eq_top_iff.2 fun x => ?_
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f : R[X]
x : AdjoinRoot f
⊢ x ∈ Algebra.adjoin R {root f}
[PROOFSTEP]
induction x using AdjoinRoot.induction_on with
| ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f : R[X]
x : AdjoinRoot f
⊢ x ∈ Algebra.adjoin R {root f}
[PROOFSTEP]
induction x using AdjoinRoot.induction_on with
| ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
⊢ ↑(mk f) p ∈ Algebra.adjoin R {root f}
[PROOFSTEP]
| ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f p : R[X]
⊢ ↑(mk f) p ∈ Algebra.adjoin R {root f}
[PROOFSTEP]
exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f✝ f : R[X]
⊢ eval₂ (of f) (root f) f = 0
[PROOFSTEP]
rw [← algebraMap_eq, ← aeval_def, aeval_eq, mk_self]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
f✝ f : R[X]
⊢ IsRoot (Polynomial.map (of f) f) (root f)
[PROOFSTEP]
rw [IsRoot, eval_map, eval₂_root]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
⊢ Function.Injective ↑(of f)
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
⊢ ∀ (a : R), ↑(of f) a = 0 → a = 0
[PROOFSTEP]
intro p hp
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
p : R
hp : ↑(of f) p = 0
⊢ p = 0
[PROOFSTEP]
rw [AdjoinRoot.of, RingHom.comp_apply, AdjoinRoot.mk_eq_zero] at hp
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
p : R
hp : f ∣ ↑C p
⊢ p = 0
[PROOFSTEP]
by_cases h : f = 0
[GOAL]
case pos
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
p : R
hp : f ∣ ↑C p
h : f = 0
⊢ p = 0
[PROOFSTEP]
exact C_eq_zero.mp (eq_zero_of_zero_dvd (by rwa [h] at hp ))
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
p : R
hp : f ∣ ↑C p
h : f = 0
⊢ 0 ∣ ↑C p
[PROOFSTEP]
rwa [h] at hp
[GOAL]
case neg
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
hf : degree f ≠ 0
p : R
hp : f ∣ ↑C p
h : ¬f = 0
⊢ p = 0
[PROOFSTEP]
contrapose! hf with h_contra
[GOAL]
case neg
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
p : R
hp : f ∣ ↑C p
h : ¬f = 0
h_contra : p ≠ 0
⊢ degree f = 0
[PROOFSTEP]
rw [← degree_C h_contra]
[GOAL]
case neg
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
p : R
hp : f ∣ ↑C p
h : ¬f = 0
h_contra : p ≠ 0
⊢ degree f = degree (↑C p)
[PROOFSTEP]
apply le_antisymm (degree_le_of_dvd hp (by rwa [Ne.def, C_eq_zero])) _
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
p : R
hp : f ∣ ↑C p
h : ¬f = 0
h_contra : p ≠ 0
⊢ ↑C p ≠ 0
[PROOFSTEP]
rwa [Ne.def, C_eq_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : IsDomain R
p : R
hp : f ∣ ↑C p
h : ¬f = 0
h_contra : p ≠ 0
⊢ degree (↑C p) ≤ degree f
[PROOFSTEP]
rwa [degree_C h_contra, zero_le_degree_iff]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
x : S
h : eval₂ i x f = 0
⊢ AdjoinRoot f →+* S
[PROOFSTEP]
apply Ideal.Quotient.lift _ (eval₂RingHom i x)
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
x : S
h : eval₂ i x f = 0
⊢ ∀ (a : R[X]), a ∈ span {f} → ↑(eval₂RingHom i x) a = 0
[PROOFSTEP]
intro g H
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
x : S
h : eval₂ i x f = 0
g : R[X]
H : g ∈ span {f}
⊢ ↑(eval₂RingHom i x) g = 0
[PROOFSTEP]
rcases mem_span_singleton.1 H with ⟨y, hy⟩
[GOAL]
case intro
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
x : S
h : eval₂ i x f = 0
g : R[X]
H : g ∈ span {f}
y : R[X]
hy : g = f * y
⊢ ↑(eval₂RingHom i x) g = 0
[PROOFSTEP]
rw [hy, RingHom.map_mul, coe_eval₂RingHom, h, zero_mul]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
⊢ ↑(lift i a h) (root f) = a
[PROOFSTEP]
rw [root, lift_mk, eval₂_X]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
f : R[X]
inst✝ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
x : R
⊢ ↑(lift i a h) (↑(of f) x) = ↑i x
[PROOFSTEP]
rw [← mk_C x, lift_mk, eval₂_C]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
inst✝ : Algebra R S
ϕ : AdjoinRoot f →ₐ[R] S
⊢ ↑(aeval (↑ϕ (root f))) f = 0
[PROOFSTEP]
have h : ϕ.toRingHom.comp (of f) = algebraMap R S := RingHom.ext_iff.mpr ϕ.commutes
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h✝ : eval₂ i a f = 0
inst✝ : Algebra R S
ϕ : AdjoinRoot f →ₐ[R] S
h : RingHom.comp (↑ϕ) (of f) = algebraMap R S
⊢ ↑(aeval (↑ϕ (root f))) f = 0
[PROOFSTEP]
rw [aeval_def, ← h, ← RingHom.map_zero ϕ.toRingHom, ← eval₂_root f, hom_eval₂]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h✝ : eval₂ i a f = 0
inst✝ : Algebra R S
ϕ : AdjoinRoot f →ₐ[R] S
h : RingHom.comp (↑ϕ) (of f) = algebraMap R S
⊢ eval₂ (RingHom.comp (↑ϕ) (of f)) (↑ϕ (root f)) f = eval₂ (RingHom.comp (↑ϕ) (of f)) (↑↑ϕ (root f)) f
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f✝ : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f✝ = 0
inst✝ : Algebra R S
f : R[X]
ϕ : AdjoinRoot f →ₐ[R] S
⊢ liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0) = ϕ
[PROOFSTEP]
suffices ϕ.equalizer (liftHom f (ϕ (root f)) (aeval_algHom_eq_zero f ϕ)) = ⊤ by
exact (AlgHom.ext fun x => (SetLike.ext_iff.mp this x).mpr Algebra.mem_top).symm
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f✝ : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f✝ = 0
inst✝ : Algebra R S
f : R[X]
ϕ : AdjoinRoot f →ₐ[R] S
this : AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0)) = ⊤
⊢ liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0) = ϕ
[PROOFSTEP]
exact (AlgHom.ext fun x => (SetLike.ext_iff.mp this x).mpr Algebra.mem_top).symm
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f✝ : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f✝ = 0
inst✝ : Algebra R S
f : R[X]
ϕ : AdjoinRoot f →ₐ[R] S
⊢ AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0)) = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← adjoinRoot_eq_top, Algebra.adjoin_le_iff, Set.singleton_subset_iff]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f✝ : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f✝ = 0
inst✝ : Algebra R S
f : R[X]
ϕ : AdjoinRoot f →ₐ[R] S
⊢ root f ∈ ↑(AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0)))
[PROOFSTEP]
exact (@lift_root _ _ _ _ _ _ _ (aeval_algHom_eq_zero f ϕ)).symm
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
inst✝ : Algebra R S
hfx : ↑(aeval a) f = 0
r : R
⊢ ↑(of (↑C r * X - 1)) r * root (↑C r * X - 1) = 1
[PROOFSTEP]
convert sub_eq_zero.1 ((eval₂_sub _).symm.trans <| eval₂_root <| C r * X - 1)
[GOAL]
case h.e'_2
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
inst✝ : Algebra R S
hfx : ↑(aeval a) f = 0
r : R
⊢ ↑(of (↑C r * X - 1)) r * root (↑C r * X - 1) = eval₂ (of (↑C r * X - 1)) (root (↑C r * X - 1)) (↑C r * X)
[PROOFSTEP]
simp only [eval₂_mul, eval₂_C, eval₂_X, eval₂_one]
[GOAL]
case h.e'_3
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
f : R[X]
inst✝¹ : CommRing S
i : R →+* S
a : S
h : eval₂ i a f = 0
inst✝ : Algebra R S
hfx : ↑(aeval a) f = 0
r : R
⊢ 1 = eval₂ (of (↑C r * X - 1)) (root (↑C r * X - 1)) 1
[PROOFSTEP]
simp only [eval₂_mul, eval₂_C, eval₂_X, eval₂_one]
[GOAL]
R : Type u
S✝ : Type v
K : Type w
inst✝⁴ : CommRing R
f✝ : R[X]
inst✝³ : CommRing S✝
i : R →+* S✝
a : S✝
h : eval₂ i a f✝ = 0
inst✝² : Algebra R S✝
hfx : ↑(aeval a) f✝ = 0
S : Type u_1
inst✝¹ : CommRing S
inst✝ : Algebra R S
r : R
f g : AdjoinRoot (↑C r * X - 1) →ₐ[R] S
⊢ ↑(algebraMap R S) r * ↑f (root (↑C r * X - 1)) = 1
[PROOFSTEP]
rw [← f.commutes, ← f.map_mul, algebraMap_eq, root_isInv, map_one]
[GOAL]
R : Type u
S✝ : Type v
K : Type w
inst✝⁴ : CommRing R
f✝ : R[X]
inst✝³ : CommRing S✝
i : R →+* S✝
a : S✝
h : eval₂ i a f✝ = 0
inst✝² : Algebra R S✝
hfx : ↑(aeval a) f✝ = 0
S : Type u_1
inst✝¹ : CommRing S
inst✝ : Algebra R S
r : R
f g : AdjoinRoot (↑C r * X - 1) →ₐ[R] S
⊢ ↑(algebraMap R S) r * ↑g (root (↑C r * X - 1)) = 1
[PROOFSTEP]
rw [← g.commutes, ← g.map_mul, algebraMap_eq, root_isInv, map_one]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : Field K
f : K[X]
inst✝ : Fact (Irreducible f)
src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f})
a : ℤ
b : ℕ
h1 : b ≠ 0
h2 : Nat.coprime (Int.natAbs a) b
⊢ ↑(Rat.mk' a b) = ↑a * (↑b)⁻¹
[PROOFSTEP]
letI : GroupWithZero (AdjoinRoot f) :=
Ideal.Quotient.groupWithZero
_
-- porting note: was
-- `rw [Rat.cast_mk' (K := ℚ), _root_.map_mul, _root_.map_intCast, map_inv₀, map_natCast]`
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : Field K
f : K[X]
inst✝ : Fact (Irreducible f)
src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f})
a : ℤ
b : ℕ
h1 : b ≠ 0
h2 : Nat.coprime (Int.natAbs a) b
this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f})
⊢ ↑(Rat.mk' a b) = ↑a * (↑b)⁻¹
[PROOFSTEP]
convert_to ((Rat.mk' a b h1 h2 : K) : AdjoinRoot f) = ((↑a * (↑b)⁻¹ : K) : AdjoinRoot f)
[GOAL]
case h.e'_3
R : Type u
S : Type v
K : Type w
inst✝¹ : Field K
f : K[X]
inst✝ : Fact (Irreducible f)
src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f})
a : ℤ
b : ℕ
h1 : b ≠ 0
h2 : Nat.coprime (Int.natAbs a) b
this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f})
⊢ ↑a * (↑b)⁻¹ = ↑(of f) (↑a * (↑b)⁻¹)
[PROOFSTEP]
simp only [_root_.map_mul, map_intCast, map_inv₀, map_natCast]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : Field K
f : K[X]
inst✝ : Fact (Irreducible f)
src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f})
a : ℤ
b : ℕ
h1 : b ≠ 0
h2 : Nat.coprime (Int.natAbs a) b
this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f})
⊢ ↑(of f) ↑(Rat.mk' a b) = ↑(of f) (↑a * (↑b)⁻¹)
[PROOFSTEP]
simp only [Rat.cast_mk', _root_.map_mul, map_intCast, map_inv₀, map_natCast]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : Field K
f : K[X]
inst✝ : Fact (Irreducible f)
src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f})
a : ℚ
x : AdjoinRoot f
p : K[X]
⊢ (fun y => a • y = ↑(of f) ↑a * y) (↑(mk f) p)
[PROOFSTEP]
simp only [smul_mk, of, RingHom.comp_apply, ← (mk f).map_mul, Polynomial.rat_smul_eq_C_mul]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
⊢ Function.LeftInverse ↑(mk g) ↑(modByMonicHom hg)
[PROOFSTEP]
intro f
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
f : AdjoinRoot g
⊢ ↑(mk g) (↑(modByMonicHom hg) f) = f
[PROOFSTEP]
induction f using AdjoinRoot.induction_on
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ ↑(mk g) (↑(modByMonicHom hg) (↑(mk g) p✝)) = ↑(mk g) p✝
[PROOFSTEP]
rw [modByMonicHom_mk hg, mk_eq_mk, modByMonic_eq_sub_mul_div _ hg, sub_sub_cancel_left, dvd_neg]
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ g ∣ g * (p✝ /ₘ g)
[PROOFSTEP]
apply dvd_mul_right
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
f₁ f₂ : AdjoinRoot g
i : Fin (natDegree g)
⊢ (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) i =
((fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) i
[PROOFSTEP]
simp only [(modByMonicHom hg).map_add, coeff_add, Pi.add_apply]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
f₁ : R
f₂ : AdjoinRoot g
i : Fin (natDegree g)
⊢ AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) i =
(↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂)
i
[PROOFSTEP]
simp only [(modByMonicHom hg).map_smul, coeff_smul, Pi.smul_apply, RingHom.id_apply]
-- porting note: another proof that I converted to tactic mode
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
⊢ Function.LeftInverse (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i)))
{
toAddHom :=
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) },
map_smul' :=
(_ :
∀ (f₁ : R) (f₂ : AdjoinRoot g),
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) =
↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂) }.toAddHom.toFun
[PROOFSTEP]
intro f
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
f : AdjoinRoot g
⊢ (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i)))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) },
map_smul' :=
(_ :
∀ (f₁ : R) (f₂ : AdjoinRoot g),
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) =
↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂) }.toAddHom
f) =
f
[PROOFSTEP]
induction f using AdjoinRoot.induction_on
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i)))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) },
map_smul' :=
(_ :
∀ (f₁ : R) (f₂ : AdjoinRoot g),
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) =
↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂) }.toAddHom
(↑(mk g) p✝)) =
↑(mk g) p✝
[PROOFSTEP]
simp only [modByMonicHom_mk, sum_modByMonic_coeff hg degree_le_natDegree]
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ ↑(mk g) (p✝ %ₘ g) = ↑(mk g) p✝
[PROOFSTEP]
refine (mk_eq_mk.mpr ?_).symm
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ g ∣ p✝ - p✝ %ₘ g
[PROOFSTEP]
rw [modByMonic_eq_sub_mul_div _ hg, sub_sub_cancel]
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
p✝ : R[X]
⊢ g ∣ g * (p✝ /ₘ g)
[PROOFSTEP]
exact dvd_mul_right _ _
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) },
map_smul' :=
(_ :
∀ (f₁ : R) (f₂ : AdjoinRoot g),
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) =
↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂) }.toAddHom
((fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) x) i =
x i
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
✝ : Nontrivial R
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) },
map_smul' :=
(_ :
∀ (f₁ : R) (f₂ : AdjoinRoot g),
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
(f₁ • f₂) =
↑(RingHom.id R) f₁ •
AddHom.toFun
{ toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i,
map_add' :=
(_ :
∀ (f₁ f₂ : AdjoinRoot g),
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) =
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ +
(fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }
f₂) }.toAddHom
((fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) x) i =
x i
[PROOFSTEP]
simp only [modByMonicHom_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
✝ : Nontrivial R
⊢ coeff ((∑ x_1 : Fin (natDegree g), ↑(monomial ↑x_1) (x x_1)) %ₘ g) ↑i = x i
[PROOFSTEP]
rw [(modByMonic_eq_self_iff hg).mpr, finset_sum_coeff]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
✝ : Nontrivial R
⊢ ∑ b : Fin (natDegree g), coeff (↑(monomial ↑b) (x b)) ↑i = x i
[PROOFSTEP]
simp_rw [coeff_monomial, Fin.val_eq_val, Finset.sum_ite_eq', if_pos (Finset.mem_univ _)]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
✝ : Nontrivial R
⊢ degree (∑ x_1 : Fin (natDegree g), ↑(monomial ↑x_1) (x x_1)) < degree g
[PROOFSTEP]
simp_rw [← C_mul_X_pow_eq_monomial]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
x : Fin (natDegree g) → R
i : Fin (natDegree g)
✝ : Nontrivial R
⊢ degree (∑ x_1 : Fin (natDegree g), ↑C (x x_1) * X ^ ↑x_1) < degree g
[PROOFSTEP]
exact (degree_eq_natDegree <| hg.ne_zero).symm ▸ degree_sum_fin_lt _
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
⊢ ↑(powerBasisAux' hg) i = root g ^ ↑i
[PROOFSTEP]
simp only [powerBasisAux', Basis.coe_ofEquivFun, LinearEquiv.coe_symm_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
⊢ ↑(mk g) (∑ x : Fin (natDegree g), ↑(monomial ↑x) (Function.update 0 i 1 x)) = root g ^ ↑i
[PROOFSTEP]
rw [Finset.sum_eq_single i]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
⊢ ↑(mk g) (↑(monomial ↑i) (Function.update 0 i 1 i)) = root g ^ ↑i
[PROOFSTEP]
rw [Function.update_same, monomial_one_right_eq_X_pow, (mk g).map_pow, mk_X]
[GOAL]
case h₀
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
⊢ ∀ (b : Fin (natDegree g)), b ∈ Finset.univ → b ≠ i → ↑(monomial ↑b) (Function.update 0 i 1 b) = 0
[PROOFSTEP]
intro j _ hj
[GOAL]
case h₀
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i j : Fin (natDegree g)
a✝ : j ∈ Finset.univ
hj : j ≠ i
⊢ ↑(monomial ↑j) (Function.update 0 i 1 j) = 0
[PROOFSTEP]
rw [← monomial_zero_right _]
[GOAL]
case h₀
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i j : Fin (natDegree g)
a✝ : j ∈ Finset.univ
hj : j ≠ i
⊢ ↑(monomial ↑j) (Function.update 0 i 1 j) = ↑(monomial ?m.1619036) 0
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i j : Fin (natDegree g)
a✝ : j ∈ Finset.univ
hj : j ≠ i
⊢ ℕ
[PROOFSTEP]
convert
congr_arg _
(Function.update_noteq hj _ _)
-- Fix `DecidableEq` mismatch
[GOAL]
case h₁
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
⊢ ¬i ∈ Finset.univ → ↑(monomial ↑i) (Function.update 0 i 1 i) = 0
[PROOFSTEP]
intros
[GOAL]
case h₁
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
a✝ : ¬i ∈ Finset.univ
⊢ ↑(monomial ↑i) (Function.update 0 i 1 i) = 0
[PROOFSTEP]
have := Finset.mem_univ i
[GOAL]
case h₁
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
g : R[X]
hg : Monic g
i : Fin (natDegree g)
a✝ : ¬i ∈ Finset.univ
this : i ∈ Finset.univ
⊢ ↑(monomial ↑i) (Function.update 0 i 1 i) = 0
[PROOFSTEP]
contradiction
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
⊢ minpoly K (root f) = f * ↑C (Polynomial.leadingCoeff f)⁻¹
[PROOFSTEP]
have f'_monic : Monic _ := monic_mul_leadingCoeff_inv hf
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
⊢ minpoly K (root f) = f * ↑C (Polynomial.leadingCoeff f)⁻¹
[PROOFSTEP]
refine' (minpoly.unique K _ f'_monic _ _).symm
[GOAL]
case refine'_1
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
⊢ ↑(aeval (root f)) (f * ↑C (Polynomial.leadingCoeff f)⁻¹) = 0
[PROOFSTEP]
rw [AlgHom.map_mul, aeval_eq, mk_self, zero_mul]
[GOAL]
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
⊢ ∀ (q : K[X]), Monic q → ↑(aeval (root f)) q = 0 → degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q
[PROOFSTEP]
intro q q_monic q_aeval
[GOAL]
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
⊢ degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q
[PROOFSTEP]
have commutes : (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval).comp (mk q) = mk f :=
by
ext
· simp only [RingHom.comp_apply, mk_C, lift_of]
rfl
· simp only [RingHom.comp_apply, mk_X, lift_root]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
⊢ RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
[PROOFSTEP]
ext
[GOAL]
case h₁.a
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
x✝ : K
⊢ ↑(RingHom.comp (RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q)) C) x✝ =
↑(RingHom.comp (mk f) C) x✝
[PROOFSTEP]
simp only [RingHom.comp_apply, mk_C, lift_of]
[GOAL]
case h₁.a
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
x✝ : K
⊢ ↑(algebraMap K (AdjoinRoot f)) x✝ = ↑(of f) x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
⊢ ↑(RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q)) X = ↑(mk f) X
[PROOFSTEP]
simp only [RingHom.comp_apply, mk_X, lift_root]
[GOAL]
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q
[PROOFSTEP]
rw [degree_eq_natDegree f'_monic.ne_zero, degree_eq_natDegree q_monic.ne_zero, Nat.cast_withBot, Nat.cast_withBot,
-- porting note: addedWithBot.coe_le_coe, natDegree_mul hf, natDegree_C, add_zero]
[GOAL]
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ natDegree f ≤ natDegree q
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0
[PROOFSTEP]
apply natDegree_le_of_dvd
[GOAL]
case refine'_2.h1
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ f ∣ q
[PROOFSTEP]
have : mk f q = 0 := by rw [← commutes, RingHom.comp_apply, mk_self, RingHom.map_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ ↑(mk f) q = 0
[PROOFSTEP]
rw [← commutes, RingHom.comp_apply, mk_self, RingHom.map_zero]
[GOAL]
case refine'_2.h1
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
this : ↑(mk f) q = 0
⊢ f ∣ q
[PROOFSTEP]
exact mk_eq_zero.1 this
[GOAL]
case refine'_2.h2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ q ≠ 0
[PROOFSTEP]
exact q_monic.ne_zero
[GOAL]
case refine'_2
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹)
q : K[X]
q_monic : Monic q
q_aeval : ↑(aeval (root f)) q = 0
commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f
⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0
[PROOFSTEP]
rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f)
[PROOFSTEP]
let f' := f * C f.leadingCoeff⁻¹
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f)
[PROOFSTEP]
have deg_f' : f'.natDegree = f.natDegree :=
by
rw [natDegree_mul hf, natDegree_C, add_zero]
· rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
⊢ natDegree f' = natDegree f
[PROOFSTEP]
rw [natDegree_mul hf, natDegree_C, add_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0
[PROOFSTEP]
rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f)
[PROOFSTEP]
have minpoly_eq : minpoly K (root f) = f' := minpoly_root hf
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f)
[PROOFSTEP]
apply @Basis.mk _ _ _ fun i : Fin f.natDegree => root f ^ i.val
[GOAL]
case hli
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
⊢ LinearIndependent K fun i => root f ^ ↑i
[PROOFSTEP]
rw [← deg_f', ← minpoly_eq]
[GOAL]
case hli
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
⊢ LinearIndependent K fun i => root f ^ ↑i
[PROOFSTEP]
exact linearIndependent_pow (root f)
[GOAL]
case hsp
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
⊢ ⊤ ≤ Submodule.span K (Set.range fun i => root f ^ ↑i)
[PROOFSTEP]
rintro y -
[GOAL]
case hsp
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
⊢ y ∈ Submodule.span K (Set.range fun i => root f ^ ↑i)
[PROOFSTEP]
rw [← deg_f', ← minpoly_eq]
[GOAL]
case hsp
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
⊢ y ∈ Submodule.span K (Set.range fun i => root f ^ ↑i)
[PROOFSTEP]
apply (isIntegral_root hf).mem_span_pow
[GOAL]
case hsp
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
⊢ ∃ f_1, y = ↑(aeval (root f)) f_1
[PROOFSTEP]
obtain ⟨g⟩ := y
[GOAL]
case hsp.mk
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g✝ : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
g : K[X]
⊢ ∃ f_1, Quot.mk Setoid.r g = ↑(aeval (root f)) f_1
[PROOFSTEP]
use g
[GOAL]
case h
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g✝ : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
g : K[X]
⊢ Quot.mk Setoid.r g = ↑(aeval (root f)) g
[PROOFSTEP]
rw [aeval_eq]
[GOAL]
case h
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g✝ : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹
deg_f' : natDegree f' = natDegree f
minpoly_eq : minpoly K (root f) = f'
y : AdjoinRoot f
g : K[X]
⊢ Quot.mk Setoid.r g = ↑(mk f) g
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
⊢ ∀ (i : Fin (natDegree f)), ↑(powerBasisAux hf) i = root f ^ ↑i
[PROOFSTEP]
simp [powerBasisAux]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : f ≠ 0
⊢ minpoly K (powerBasis hf).gen = f * ↑C (Polynomial.leadingCoeff f)⁻¹
[PROOFSTEP]
rw [powerBasis_gen, minpoly_root hf]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝¹ : CommRing R
g : R[X]
inst✝ : Field K
f : K[X]
hf : Monic f
hf' : optParam (f ≠ 0) (_ : f ≠ 0)
⊢ minpoly K (powerBasis hf').gen = f
[PROOFSTEP]
rw [minpoly_powerBasis_gen hf', hf.leadingCoeff, inv_one, C.map_one, mul_one]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ ↑(aeval { val := x, property := (_ : x ∈ adjoin R {x}) }) (minpoly R x) = 0
[PROOFSTEP]
simp [← Subalgebra.coe_eq_zero, aeval_subalgebra_coe]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
a : AdjoinRoot (minpoly R x)
⊢ ↑(aeval { val := x, property := (_ : x ∈ adjoin R {x}) }) (minpoly R x) = 0
[PROOFSTEP]
simp [← Subalgebra.coe_eq_zero, aeval_subalgebra_coe]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ ↑(toAdjoin R x) (↑(mk (minpoly R x)) X) = { val := x, property := (_ : x ∈ adjoin R {x}) }
[PROOFSTEP]
simp [toAdjoin]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ Function.Surjective ↑(toAdjoin R x)
[PROOFSTEP]
rw [← range_top_iff_surjective, _root_.eq_top_iff, ← adjoin_adjoin_coe_preimage]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ adjoin R (Subtype.val ⁻¹' {x}) ≤ AlgHom.range (toAdjoin R x)
[PROOFSTEP]
refine' adjoin_le _
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ Subtype.val ⁻¹' {x} ⊆ ↑(AlgHom.range (toAdjoin R x))
[PROOFSTEP]
simp only [AlgHom.coe_range, Set.mem_range]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x : S
⊢ Subtype.val ⁻¹' {x} ⊆ Set.range ↑(toAdjoin R x)
[PROOFSTEP]
rintro ⟨y₁, y₂⟩ h
[GOAL]
case mk
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x y₁ : S
y₂ : y₁ ∈ ↑(adjoin R {x})
h : { val := y₁, property := y₂ } ∈ Subtype.val ⁻¹' {x}
⊢ { val := y₁, property := y₂ } ∈ Set.range ↑(toAdjoin R x)
[PROOFSTEP]
refine' ⟨mk (minpoly R x) X, by simpa [toAdjoin] using h.symm⟩
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
x y₁ : S
y₂ : y₁ ∈ ↑(adjoin R {x})
h : { val := y₁, property := y₂ } ∈ Subtype.val ⁻¹' {x}
⊢ ↑(toAdjoin R x) (↑(mk (minpoly R x)) X) = { val := y₁, property := y₂ }
[PROOFSTEP]
simpa [toAdjoin] using h.symm
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
g : R[X]
pb : PowerBasis R S
h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0
h₂ : ↑(aeval pb.gen) g = 0
src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂
x : AdjoinRoot g
⊢ ↑(PowerBasis.lift pb (root g) h₁) (↑(liftHom g pb.gen h₂) x) = x
[PROOFSTEP]
induction x using AdjoinRoot.induction_on
[GOAL]
case ih
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
g : R[X]
pb : PowerBasis R S
h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0
h₂ : ↑(aeval pb.gen) g = 0
src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂
p✝ : R[X]
⊢ ↑(PowerBasis.lift pb (root g) h₁) (↑(liftHom g pb.gen h₂) (↑(mk g) p✝)) = ↑(mk g) p✝
[PROOFSTEP]
rw [liftHom_mk, pb.lift_aeval, aeval_eq]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
g : R[X]
pb : PowerBasis R S
h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0
h₂ : ↑(aeval pb.gen) g = 0
src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂
x : S
⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) x) = x
[PROOFSTEP]
nontriviality S
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
g : R[X]
pb : PowerBasis R S
h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0
h₂ : ↑(aeval pb.gen) g = 0
src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂
x : S
✝ : Nontrivial S
⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) x) = x
[PROOFSTEP]
obtain ⟨f, _hf, rfl⟩ := pb.exists_eq_aeval x
[GOAL]
case intro.intro
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
g : R[X]
pb : PowerBasis R S
h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0
h₂ : ↑(aeval pb.gen) g = 0
src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂
✝ : Nontrivial S
f : R[X]
_hf : natDegree f < pb.dim
⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) (↑(aeval pb.gen) f)) = ↑(aeval pb.gen) f
[PROOFSTEP]
rw [pb.lift_aeval, aeval_eq, liftHom_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
L : Type u_1
F : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra F K
inst✝ : Algebra F L
pb : PowerBasis F K
f : F[X]
hf : f ≠ 0
x : L
⊢ x ∈ roots (Polynomial.map (algebraMap F L) (minpoly F (powerBasis hf).gen)) ↔
↑(Equiv.refl L) x ∈ roots (Polynomial.map (algebraMap F L) f)
[PROOFSTEP]
rw [powerBasis_gen, minpoly_root hf, Polynomial.map_mul, roots_mul, Polynomial.map_C, roots_C, add_zero,
Equiv.refl_apply]
[GOAL]
R : Type u
S : Type v
K : Type w
L : Type u_1
F : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra F K
inst✝ : Algebra F L
pb : PowerBasis F K
f : F[X]
hf : f ≠ 0
x : L
⊢ Polynomial.map (algebraMap F L) f * Polynomial.map (algebraMap F L) (↑C (Polynomial.leadingCoeff f)⁻¹) ≠ 0
[PROOFSTEP]
rw [← Polynomial.map_mul]
[GOAL]
R : Type u
S : Type v
K : Type w
L : Type u_1
F : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra F K
inst✝ : Algebra F L
pb : PowerBasis F K
f : F[X]
hf : f ≠ 0
x : L
⊢ Polynomial.map (algebraMap F L) (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≠ 0
[PROOFSTEP]
exact map_monic_ne_zero (monic_mul_leadingCoeff_inv hf)
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f : R[X]
⊢ Ideal.map (of f) I = Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I)
[PROOFSTEP]
rw [of, AdjoinRoot.mk, Ideal.map_map]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f : R[X]
x : AdjoinRoot f
⊢ ↑(RingEquiv.symm (quotMapOfEquivQuotMapCMapSpanMk I f))
(↑(Ideal.Quotient.mk (Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I))) x) =
↑(Ideal.Quotient.mk (Ideal.map (of f) I)) x
[PROOFSTEP]
rw [quotMapOfEquivQuotMapCMapSpanMk, Ideal.quotEquivOfEq_symm]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f : R[X]
x : AdjoinRoot f
⊢ ↑(quotEquivOfEq (_ : Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I) = Ideal.map (of f) I))
(↑(Ideal.Quotient.mk (Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I))) x) =
↑(Ideal.Quotient.mk (Ideal.map (of f) I)) x
[PROOFSTEP]
exact Ideal.quotEquivOfEq_mk _ _
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f : R[X]
⊢ span {↑(Ideal.Quotient.mk (Ideal.map C I)) f} =
Ideal.map (↑(polynomialQuotientEquivQuotientPolynomial I)) (span {Polynomial.map (Ideal.Quotient.mk I) f})
[PROOFSTEP]
rw [map_span, Set.image_singleton, RingEquiv.coe_toRingHom, polynomialQuotientEquivQuotientPolynomial_map_mk I f]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f p : R[X]
⊢ ↑(quotQuotEquivComm I f)
(↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p)) =
↑(Ideal.Quotient.mk (span {↑(Ideal.Quotient.mk (Ideal.map C I)) f})) (↑(Ideal.Quotient.mk (Ideal.map C I)) p)
[PROOFSTEP]
simp only [Polynomial.quotQuotEquivComm, quotientEquiv_mk, polynomialQuotientEquivQuotientPolynomial_map_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f p : R[X]
⊢ ↑(RingEquiv.symm (quotQuotEquivComm I f))
(↑(Ideal.Quotient.mk (span {↑(Ideal.Quotient.mk (Ideal.map C I)) f})) (↑(Ideal.Quotient.mk (Ideal.map C I)) p)) =
↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p)
[PROOFSTEP]
simp only [Polynomial.quotQuotEquivComm, quotientEquiv_symm_mk, polynomialQuotientEquivQuotientPolynomial_symm_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f : R[X]
⊢ Ideal.map (Ideal.Quotient.mk (Ideal.map C I)) (span {f}) = span {↑(Ideal.Quotient.mk (Ideal.map C I)) f}
[PROOFSTEP]
rw [map_span, Set.image_singleton]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I : Ideal R
f p : R[X]
⊢ ↑(RingEquiv.symm (quotAdjoinRootEquivQuotPolynomialQuot I f))
(↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p)) =
↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) p)
[PROOFSTEP]
rw [quotAdjoinRootEquivQuotPolynomialQuot, RingEquiv.symm_trans_apply, RingEquiv.symm_trans_apply,
RingEquiv.symm_trans_apply, RingEquiv.symm_symm, Polynomial.quotQuotEquivComm_mk, Ideal.quotEquivOfEq_symm,
Ideal.quotEquivOfEq_mk, ← RingHom.comp_apply, ← DoubleQuot.quotQuotMk,
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, quotMapOfEquivQuotMapCMapSpanMk_symm_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I✝ : Ideal R
f✝ f : R[X]
I : Ideal R
x : R
⊢ ↑(quotAdjoinRootEquivQuotPolynomialQuot I f) (↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x) =
↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x
[PROOFSTEP]
have :
algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I) x =
Ideal.Quotient.mk (Ideal.map (AdjoinRoot.of f) I) ((mk f) (C x)) :=
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I✝ : Ideal R
f✝ f : R[X]
I : Ideal R
x : R
this :
↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) (↑C x))
⊢ ↑(quotAdjoinRootEquivQuotPolynomialQuot I f) (↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x) =
↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x
[PROOFSTEP]
rw [this, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, map_C]
-- Porting note: the following `rfl` was not needed
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I✝ : Ideal R
f✝ f : R[X]
I : Ideal R
x : R
this :
↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) (↑C x))
⊢ ↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (↑C (↑(Ideal.Quotient.mk I) x)) =
↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I✝ : Ideal R
f✝ f g : R[X]
I : Ideal R
⊢ ↑(quotEquivQuotMap f I) (↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) g)) =
↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) g)
[PROOFSTEP]
rw [AdjoinRoot.quotEquivQuotMap_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝ : CommRing R
I✝ : Ideal R
f✝ f g : R[X]
I : Ideal R
⊢ ↑(AlgEquiv.symm (quotEquivQuotMap f I))
(↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) g)) =
↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) g)
[PROOFSTEP]
rw [AdjoinRoot.quotEquivQuotMap_symm_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
x : R
⊢ ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0
[PROOFSTEP]
rw [AdjoinRoot.aeval_eq, AdjoinRoot.mk_self]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
x : R
⊢ Ideal.map (of (minpoly R pb.gen)) I =
Ideal.map
(↑(toRingEquiv
(AlgEquiv.symm
(equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0)
(_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0)))))
(Ideal.map (algebraMap R S) I)
[PROOFSTEP]
rw [Ideal.map_map, AlgEquiv.toRingEquiv_eq_coe, ← AlgEquiv.coe_ringHom_commutes, ← AdjoinRoot.algebraMap_eq,
AlgHom.comp_algebraMap]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
x : R
⊢ ↑(quotientEquiv (Ideal.map (algebraMap R S) I) (Ideal.map (of (minpoly R pb.gen)) I)
(toRingEquiv
(AlgEquiv.symm
(equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0)
(_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0))))
(_ :
Ideal.map (of (minpoly R pb.gen)) I =
Ideal.map
(↑(toRingEquiv
(AlgEquiv.symm
(equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0)
(_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0)))))
(Ideal.map (algebraMap R S) I)))
(↑(algebraMap R (S ⧸ Ideal.map (algebraMap R S) I)) x) =
↑(algebraMap R (AdjoinRoot (minpoly R pb.gen) ⧸ Ideal.map (of (minpoly R pb.gen)) I)) x
[PROOFSTEP]
rw [← Ideal.Quotient.mk_algebraMap, Ideal.quotientEquiv_apply, RingHom.toFun_eq_coe, Ideal.quotientMap_mk,
AlgEquiv.toRingEquiv_eq_coe, RingEquiv.coe_toRingHom, AlgEquiv.coe_ringEquiv, AlgEquiv.commutes,
Quotient.mk_algebraMap]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
x : R
⊢ ↑(Ideal.Quotient.mk (Ideal.map (of (minpoly R pb.gen)) I)) (↑(algebraMap R (AdjoinRoot (minpoly R pb.gen))) x) =
↑(algebraMap R (AdjoinRoot (minpoly R pb.gen) ⧸ Ideal.map (of (minpoly R pb.gen)) I)) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
g : R[X]
⊢ ↑(quotientEquivQuotientMinpolyMap pb I) (↑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) I)) (↑(aeval pb.gen) g)) =
↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) (minpoly R pb.gen)}))
(Polynomial.map (Ideal.Quotient.mk I) g)
[PROOFSTEP]
rw [PowerBasis.quotientEquivQuotientMinpolyMap, AlgEquiv.trans_apply, AlgEquiv.ofRingEquiv_apply, quotientEquiv_mk,
AlgEquiv.coe_ringEquiv', AdjoinRoot.equiv'_symm_apply, PowerBasis.lift_aeval, AdjoinRoot.aeval_eq,
AdjoinRoot.quotEquivQuotMap_apply_mk]
[GOAL]
R : Type u
S : Type v
K : Type w
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
pb : PowerBasis R S
I : Ideal R
g : R[X]
⊢ ↑(AlgEquiv.symm (quotientEquivQuotientMinpolyMap pb I))
(↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) (minpoly R pb.gen)}))
(Polynomial.map (Ideal.Quotient.mk I) g)) =
↑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) I)) (↑(aeval pb.gen) g)
[PROOFSTEP]
simp only [quotientEquivQuotientMinpolyMap, toRingEquiv_eq_coe, symm_trans_apply, quotEquivQuotMap_symm_apply_mk,
ofRingEquiv_symm_apply, quotientEquiv_symm_mk, toRingEquiv_symm, RingEquiv.symm_symm, AdjoinRoot.equiv'_apply,
coe_ringEquiv, liftHom_mk, symm_toRingEquiv]
| {"mathlib_filename": "Mathlib.RingTheory.AdjoinRoot", "llama_tokens": 27404} |
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
X Y : C
f : X ⟶ Y
⊢ d f ≫ f = 0
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
X Y : C
f : X ⟶ Y
⊢ π (kernel f) ≫ kernel.ι f ≫ cokernel.π (d f) = 0
[PROOFSTEP]
rw [← Category.assoc, cokernel.condition]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : Projective P
⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
[PROOFSTEP]
haveI := (projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj' P).mp hP
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : Projective P
this : Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P))
⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
[PROOFSTEP]
haveI := @Functor.preservesEpimorphisms_of_preserves_of_reflects _ _ _ _ _ _ _ _ this _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : Projective P
this✝ : Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P))
this : Functor.PreservesEpimorphisms (preadditiveCoyonedaObj (op P))
⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
[PROOFSTEP]
apply Functor.preservesFiniteColimitsOfPreservesEpisAndKernels
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
⊢ Projective P
[PROOFSTEP]
rw [projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj']
-- porting note: this next line wasn't necessary in Lean 3
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
⊢ Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P))
[PROOFSTEP]
dsimp only [preadditiveCoyoneda]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Abelian C
P : C
hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P))
⊢ Functor.PreservesEpimorphisms (preadditiveCoyonedaObj (op P) ⋙ forget₂ (ModuleCat (End (op P))) AddCommGroupCat)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) 1 0 =
HomologicalComplex.d (ofComplex Z) 1 0 ≫ Projective.π Z
[PROOFSTEP]
simp only [ofComplex_X, ChainComplex.single₀_obj_X_0, ChainComplex.single₀_obj_X_succ, ComplexShape.down_Rel, not_true,
ChainComplex.single₀_obj_X_d, comp_zero, ofComplex_d, eqToHom_refl, Category.id_comp, dite_eq_ite, ite_true]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ 0 =
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd :=
{ fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
0).d₀ ≫
Projective.π Z
[PROOFSTEP]
exact (exact_d_f (Projective.π Z)).w.symm
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n : ℕ
⊢ Exact (HomologicalComplex.d (ofComplex Z) (0 + 2) (0 + 1)) (HomologicalComplex.d (ofComplex Z) (0 + 1) 0)
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n : ℕ
⊢ Exact
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
(0 + 1)).d₀
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
0).d₀
[PROOFSTEP]
apply exact_d_f
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n m : ℕ
⊢ Exact (HomologicalComplex.d (ofComplex Z) (m + 1 + 2) (m + 1 + 1))
(HomologicalComplex.d (ofComplex Z) (m + 1 + 1) (m + 1))
[PROOFSTEP]
simp only [ofComplex_X, ComplexShape.down_Rel, ofComplex_d, eqToHom_refl, Category.id_comp, dite_eq_ite, not_true,
ite_true]
-- Porting note: this is probably required now due to
-- https://github.com/leanprover/lean4/pull/2146
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n m : ℕ
⊢ Exact
(if m + 1 + 2 = m + 1 + 1 + 1 then
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd :=
{ fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
(m + 1 + 1)).d₀
else 0)
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
(m + 1)).d₀
[PROOFSTEP]
erw [if_pos (c := m + 1 + 1 + 1 = m + 2 + 1) rfl]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n m : ℕ
⊢ Exact
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
(m + 1 + 1)).d₀
(ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z))
(d (d (Projective.π Z)))
(_ :
{
fst :=
syzygies
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
{
fst :=
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd,
snd :=
(_ :
d
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫
{ fst := over Z,
snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd =
0) } }.snd.fst ≫
{ fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd =
0)
(fun t =>
{ fst := syzygies t.snd.snd.snd.snd.fst,
snd :=
{ fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } })
(m + 1)).d₀
[PROOFSTEP]
apply exact_d_f
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n : ℕ
x✝ :
(f : HomologicalComplex.X (ofComplex Z) n ⟶ HomologicalComplex.X ((ChainComplex.single₀ C).obj Z) n) ×'
(f' : HomologicalComplex.X (ofComplex Z) (n + 1) ⟶ HomologicalComplex.X ((ChainComplex.single₀ C).obj Z) (n + 1)) ×'
f' ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 1) n =
HomologicalComplex.d (ofComplex Z) (n + 1) n ≫ f
⊢ 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 2) (n + 1) =
HomologicalComplex.d (ofComplex Z) (n + 2) (n + 1) ≫ x✝.snd.fst
[PROOFSTEP]
apply HasZeroObject.to_zero_ext
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ ∀ (n : ℕ), Projective (HomologicalComplex.X (ofComplex Z) n)
[PROOFSTEP]
rintro (_ | _ | _ | n)
[GOAL]
case zero
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ Projective (HomologicalComplex.X (ofComplex Z) Nat.zero)
[PROOFSTEP]
apply Projective.projective_over
[GOAL]
case succ.zero
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ Nat.zero))
[PROOFSTEP]
apply Projective.projective_over
[GOAL]
case succ.succ.zero
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ (Nat.succ Nat.zero)))
[PROOFSTEP]
apply Projective.projective_over
[GOAL]
case succ.succ.succ
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
n : ℕ
⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ (Nat.succ (Nat.succ n))))
[PROOFSTEP]
apply Projective.projective_over
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ Exact (HomologicalComplex.d (ofComplex Z) 1 0)
(HomologicalComplex.Hom.f
(ChainComplex.mkHom (ofComplex Z) ((ChainComplex.single₀ C).obj Z) (Projective.π Z) 0
(_ :
0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) 1 0 =
HomologicalComplex.d (ofComplex Z) 1 0 ≫ Projective.π Z)
fun n x =>
{ fst := 0,
snd :=
(_ :
0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 2) (n + 1) =
HomologicalComplex.d (ofComplex Z) (n + 2) (n + 1) ≫ x.snd.fst) })
0)
[PROOFSTEP]
simpa using exact_d_f (Projective.π Z)
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Abelian C
inst✝ : EnoughProjectives C
Z : C
⊢ HasProjectiveResolution Z
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.CategoryTheory.Abelian.Projective", "llama_tokens": 6581} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y z : E
hz : z ∈ segment 𝕜 x y
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
⊢ ¬Disjoint (segment 𝕜 u v) (↑(convexHull 𝕜) {p, q, z})
[PROOFSTEP]
rw [not_disjoint_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y z : E
hz : z ∈ segment 𝕜 x y
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
⊢ ∃ x, x ∈ segment 𝕜 u v ∧ x ∈ ↑(convexHull 𝕜) {p, q, z}
[PROOFSTEP]
obtain ⟨az, bz, haz, hbz, habz, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
obtain rfl | haz' := haz.eq_or_lt
[GOAL]
case intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : 0 + bz = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, 0 • x + bz • y}
[PROOFSTEP]
rw [zero_add] at habz
[GOAL]
case intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : bz = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, 0 • x + bz • y}
[PROOFSTEP]
rw [zero_smul, zero_add, habz, one_smul]
[GOAL]
case intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : bz = 1
⊢ ∃ x, x ∈ segment 𝕜 u v ∧ x ∈ ↑(convexHull 𝕜) {p, q, y}
[PROOFSTEP]
refine' ⟨v, by apply right_mem_segment, segment_subset_convexHull _ _ hv⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : bz = 1
⊢ v ∈ segment 𝕜 u v
[PROOFSTEP]
apply right_mem_segment
[GOAL]
case intro.intro.intro.intro.intro.inl.refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : bz = 1
⊢ y ∈ {p, q, y}
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.inl.refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
bz : 𝕜
hbz : 0 ≤ bz
haz : 0 ≤ 0
habz : bz = 1
⊢ q ∈ {p, q, y}
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u v x y : E
hu : u ∈ segment 𝕜 x p
hv : v ∈ segment 𝕜 y q
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
obtain ⟨av, bv, hav, hbv, habv, rfl⟩ := hv
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
obtain rfl | hav' := hav.eq_or_lt
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
bv : 𝕜
hbv : 0 ≤ bv
hav : 0 ≤ 0
habv : 0 + bv = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (0 • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
rw [zero_add] at habv
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
bv : 𝕜
hbv : 0 ≤ bv
hav : 0 ≤ 0
habv : bv = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (0 • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
rw [zero_smul, zero_add, habv, one_smul]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
bv : 𝕜
hbv : 0 ≤ bv
hav : 0 ≤ 0
habv : bv = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u q ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
exact ⟨q, right_mem_segment _ _ _, subset_convexHull _ _ <| by simp⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
bv : 𝕜
hbv : 0 ≤ bv
hav : 0 ≤ 0
habv : bv = 1
⊢ q ∈ {p, q, az • x + bz • y}
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q u x y : E
hu : u ∈ segment 𝕜 x p
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
obtain ⟨au, bu, hau, hbu, habu, rfl⟩ := hu
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
⊢ ∃ x_1, x_1 ∈ segment 𝕜 (au • x + bu • p) (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
have hab : 0 < az * av + bz * au := add_pos_of_pos_of_nonneg (mul_pos haz' hav') (mul_nonneg hbz hau)
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ ∃ x_1, x_1 ∈ segment 𝕜 (au • x + bu • p) (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
refine'
⟨(az * av / (az * av + bz * au)) • (au • x + bu • p) + (bz * au / (az * av + bz * au)) • (av • y + bv • q),
⟨_, _, _, _, _, rfl⟩, _⟩
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ 0 ≤ az * av / (az * av + bz * au)
[PROOFSTEP]
exact div_nonneg (mul_nonneg haz hav) hab.le
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ 0 ≤ bz * au / (az * av + bz * au)
[PROOFSTEP]
exact div_nonneg (mul_nonneg hbz hau) hab.le
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_3
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ az * av / (az * av + bz * au) + bz * au / (az * av + bz * au) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ (az * av / (az * av + bz * au)) • (au • x + bu • p) + (bz * au / (az * av + bz * au)) • (av • y + bv • q) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm, add_comm, ← mul_smul, ← mul_smul]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
classical
let w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
let z : Fin 3 → E := ![p, q, az • x + bz • y]
have hw₀ : ∀ i, 0 ≤ w i := by
rintro i
fin_cases i
· exact mul_nonneg (mul_nonneg haz hav) hbu
· exact mul_nonneg (mul_nonneg hbz hau) hbv
· exact mul_nonneg hau hav
have hw : ∑ i, w i = az * av + bz * au :=
by
trans az * av * bu + (bz * au * bv + au * av)
· simp [Fin.sum_univ_succ, Fin.sum_univ_zero]
rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add,
mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one]
have hz : ∀ i, z i ∈ ({p, q, az • x + bz • y} : Set E) := fun i => by fin_cases i <;> simp
convert Finset.centerMass_mem_convexHull (Finset.univ : Finset (Fin 3)) (fun i _ => hw₀ i) (by rwa [hw]) fun i _ => hz i
rw [Finset.centerMass]
simp_rw [div_eq_inv_mul, hw, mul_assoc, mul_smul (az * av + bz * au)⁻¹, ← smul_add, add_assoc, ← mul_assoc]
congr 3
rw [← mul_smul, ← mul_rotate, mul_right_comm, mul_smul, ← mul_smul _ av, mul_rotate, mul_smul _ bz, ← smul_add]
simp only [smul_add, List.foldr, Matrix.cons_val_succ', Fin.mk_one, Matrix.cons_val_one, Matrix.head_cons, add_zero]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
let w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
let z : Fin 3 → E := ![p, q, az • x + bz • y]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
have hw₀ : ∀ i, 0 ≤ w i := by
rintro i
fin_cases i
· exact mul_nonneg (mul_nonneg haz hav) hbu
· exact mul_nonneg (mul_nonneg hbz hau) hbv
· exact mul_nonneg hau hav
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
⊢ ∀ (i : Fin 3), 0 ≤ w i
[PROOFSTEP]
rintro i
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
i : Fin 3
⊢ 0 ≤ w i
[PROOFSTEP]
fin_cases i
[GOAL]
case head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
⊢ 0 ≤ w { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
exact mul_nonneg (mul_nonneg haz hav) hbu
[GOAL]
case tail.head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
⊢ 0 ≤ w { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
exact mul_nonneg (mul_nonneg hbz hau) hbv
[GOAL]
case tail.tail.head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
⊢ 0 ≤ w { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
exact mul_nonneg hau hav
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
have hw : ∑ i, w i = az * av + bz * au :=
by
trans az * av * bu + (bz * au * bv + au * av)
· simp [Fin.sum_univ_succ, Fin.sum_univ_zero]
rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add,
mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
⊢ ∑ i : Fin 3, w i = az * av + bz * au
[PROOFSTEP]
trans az * av * bu + (bz * au * bv + au * av)
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
⊢ ∑ i : Fin 3, w i = az * av * bu + (bz * au * bv + au * av)
[PROOFSTEP]
simp [Fin.sum_univ_succ, Fin.sum_univ_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
⊢ az * av * bu + (bz * au * bv + au * av) = az * av + bz * au
[PROOFSTEP]
rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add,
mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one]
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
have hz : ∀ i, z i ∈ ({p, q, az • x + bz • y} : Set E) := fun i => by fin_cases i <;> simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
i : Fin 3
⊢ z i ∈ {p, q, az • x + bz • y}
[PROOFSTEP]
fin_cases i
[GOAL]
case head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
⊢ z { val := 0, isLt := (_ : 0 < 3) } ∈ {p, q, az • x + bz • y}
[PROOFSTEP]
simp
[GOAL]
case tail.head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
⊢ z { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∈ {p, q, az • x + bz • y}
[PROOFSTEP]
simp
[GOAL]
case tail.tail.head
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
⊢ z { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∈ {p, q, az • x + bz • y}
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈
↑(convexHull 𝕜) {p, q, az • x + bz • y}
[PROOFSTEP]
convert Finset.centerMass_mem_convexHull (Finset.univ : Finset (Fin 3)) (fun i _ => hw₀ i) (by rwa [hw]) fun i _ => hz i
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ 0 < ∑ i : Fin 3, w i
[PROOFSTEP]
rwa [hw]
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) =
Finset.centerMass Finset.univ (fun i => w i) fun i => z i
[PROOFSTEP]
rw [Finset.centerMass]
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q +
((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) =
(∑ i : Fin 3, w i)⁻¹ • ∑ i : Fin 3, w i • z i
[PROOFSTEP]
simp_rw [div_eq_inv_mul, hw, mul_assoc, mul_smul (az * av + bz * au)⁻¹, ← smul_add, add_assoc, ← mul_assoc]
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (az * av + bz * au)⁻¹ • ((az * av * bu) • p + ((bz * au * bv) • q + ((az * av) • au • x + (bz * au) • av • y))) =
(az * av + bz * au)⁻¹ •
∑ x_1 : Fin 3,
Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1
[PROOFSTEP]
congr 3
[GOAL]
case h.e'_4.e_a.e_a.e_a
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (az * av) • au • x + (bz * au) • av • y =
List.foldr (fun x x_1 => x + x_1) 0
(List.map
(fun x_1 =>
Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1)
(List.pmap Fin.mk [2] (_ : ∀ (x : ℕ), x ∈ [2] → (fun a => a < 3) x)))
[PROOFSTEP]
rw [← mul_smul, ← mul_rotate, mul_right_comm, mul_smul, ← mul_smul _ av, mul_rotate, mul_smul _ bz, ← smul_add]
[GOAL]
case h.e'_4.e_a.e_a.e_a
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p q x y : E
az bz : 𝕜
haz : 0 ≤ az
hbz : 0 ≤ bz
habz : az + bz = 1
haz' : 0 < az
av bv : 𝕜
hav : 0 ≤ av
hbv : 0 ≤ bv
habv : av + bv = 1
hav' : 0 < av
au bu : 𝕜
hau : 0 ≤ au
hbu : 0 ≤ bu
habu : au + bu = 1
hab : 0 < az * av + bz * au
w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av]
z : Fin 3 → E := ![p, q, az • x + bz • y]
hw₀ : ∀ (i : Fin 3), 0 ≤ w i
hw : ∑ i : Fin 3, w i = az * av + bz * au
hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y}
⊢ (au * av) • (az • x + bz • y) =
List.foldr (fun x x_1 => x + x_1) 0
(List.map
(fun x_1 =>
Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1)
(List.pmap Fin.mk [2] (_ : ∀ (x : ℕ), x ∈ [2] → (fun a => a < 3) x)))
[PROOFSTEP]
simp only [smul_add, List.foldr, Matrix.cons_val_succ', Fin.mk_one, Matrix.cons_val_one, Matrix.head_cons, add_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ
[PROOFSTEP]
let S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ
[PROOFSTEP]
obtain ⟨C, hC, hsC, hCmax⟩ :=
zorn_subset_nonempty S
(fun c hcS hc ⟨_, _⟩ =>
⟨⋃₀ c, ⟨hc.directedOn.convex_sUnion fun s hs => (hcS hs).1, disjoint_sUnion_left.2 fun c hc => (hcS hc).2⟩,
fun s => subset_sUnion_of_mem⟩)
s ⟨hs, hst⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ
[PROOFSTEP]
refine' ⟨C, hC.1, convex_iff_segment_subset.2 fun x hx y hy z hz hzC => _, hsC, hC.2.subset_compl_left⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
⊢ False
[PROOFSTEP]
suffices h : ∀ c ∈ Cᶜ, ∃ a ∈ C, (segment 𝕜 c a ∩ t).Nonempty
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
⊢ False
[PROOFSTEP]
obtain ⟨p, hp, u, hu, hut⟩ := h x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
p : E
hp : p ∈ C
u : E
hu : u ∈ segment 𝕜 x p
hut : u ∈ t
⊢ False
[PROOFSTEP]
obtain ⟨q, hq, v, hv, hvt⟩ := h y hy
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
p : E
hp : p ∈ C
u : E
hu : u ∈ segment 𝕜 x p
hut : u ∈ t
q : E
hq : q ∈ C
v : E
hv : v ∈ segment 𝕜 y q
hvt : v ∈ t
⊢ False
[PROOFSTEP]
refine'
not_disjoint_segment_convexHull_triple hz hu hv (hC.2.symm.mono (ht.segment_subset hut hvt) <| convexHull_min _ hC.1)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
p : E
hp : p ∈ C
u : E
hu : u ∈ segment 𝕜 x p
hut : u ∈ t
q : E
hq : q ∈ C
v : E
hv : v ∈ segment 𝕜 y q
hvt : v ∈ t
⊢ {p, q, z} ⊆ C
[PROOFSTEP]
simpa [insert_subset_iff, hp, hq, singleton_subset_iff.2 hzC]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
⊢ ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
[PROOFSTEP]
rintro c hc
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
⊢ ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)
[PROOFSTEP]
by_contra' h
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
⊢ False
[PROOFSTEP]
suffices h : Disjoint (convexHull 𝕜 (insert c C)) t
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
h✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
h : Disjoint (↑(convexHull 𝕜) (insert c C)) t
⊢ False
[PROOFSTEP]
rw [← hCmax _ ⟨convex_convexHull _ _, h⟩ ((subset_insert _ _).trans <| subset_convexHull _ _)] at hc
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ (↑(convexHull 𝕜) (insert c C))ᶜ
h✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
h : Disjoint (↑(convexHull 𝕜) (insert c C)) t
⊢ False
[PROOFSTEP]
exact hc (subset_convexHull _ _ <| mem_insert _ _)
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
⊢ Disjoint (↑(convexHull 𝕜) (insert c C)) t
[PROOFSTEP]
rw [convexHull_insert ⟨z, hzC⟩, convexJoin_singleton_left]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
⊢ Disjoint (⋃ (y : E) (_ : y ∈ ↑(convexHull 𝕜) C), segment 𝕜 c y) t
[PROOFSTEP]
refine' disjoint_iUnion₂_left.2 fun a ha => disjoint_iff_inf_le.mpr fun b hb => h a _ ⟨b, hb⟩
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
hst : Disjoint s t
S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}
C : Set E
hC : C ∈ S
hsC : s ⊆ C
hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C
x : E
hx : x ∈ Cᶜ
y : E
hy : y ∈ Cᶜ
z : E
hz : z ∈ segment 𝕜 x y
hzC : z ∈ C
c : E
hc : c ∈ Cᶜ
h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)
a : E
ha : a ∈ ↑(convexHull 𝕜) C
b : E
hb : b ∈ segment 𝕜 c a ⊓ t
⊢ a ∈ C
[PROOFSTEP]
rwa [← hC.1.convexHull_eq]
| {"mathlib_filename": "Mathlib.Analysis.Convex.StoneSeparation", "llama_tokens": 21702} |
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
hs : Set.Nonempty s
⊢ Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
[PROOFSTEP]
obtain ⟨x, hx⟩ := hs
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
x : α
hx : x ∈ s
⊢ Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
[PROOFSTEP]
exact ⟨⟨fun _ => x, fun i j _ => le_rfl, fun _ => hx⟩⟩
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f f' : α → E
s : Set α
h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0
⊢ eVariationOn f s = eVariationOn f' s
[PROOFSTEP]
dsimp only [eVariationOn]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f f' : α → E
s : Set α
h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0
⊢ ⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }),
∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) =
⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }),
∑ i in Finset.range p.fst, edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i))
[PROOFSTEP]
congr 1 with p : 1
[GOAL]
case e_s.h
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f f' : α → E
s : Set α
h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0
p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
⊢ ∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) =
∑ i in Finset.range p.fst, edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i))
[PROOFSTEP]
congr 1 with i : 1
[GOAL]
case e_s.h.e_f.h
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f f' : α → E
s : Set α
h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0
p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
i : ℕ
⊢ edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) = edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i))
[PROOFSTEP]
rw [edist_congr_right (h <| p.snd.prop.2 (i + 1)), edist_congr_left (h <| p.snd.prop.2 i)]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f f' : α → E
s : Set α
h : EqOn f f' s
x : α
xs : x ∈ s
⊢ edist (f x) (f' x) = 0
[PROOFSTEP]
rw [h xs, edist_self]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
cases' le_total n m with hnm hmn
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hnm : n ≤ m
⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
simp [Finset.Ico_eq_empty_of_le hnm]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hmn : m ≤ n
⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
let π := projIcc m n hmn
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hmn : m ≤ n
π : ℕ → ↑(Icc m n) := projIcc m n hmn
⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
let v i := u (π i)
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hmn : m ≤ n
π : ℕ → ↑(Icc m n) := projIcc m n hmn
v : ℕ → α := fun i => u ↑(π i)
⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
calc
∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico m n, edist (f (v (i + 1))) (f (v i)) :=
Finset.sum_congr rfl fun i hi ↦ by
rw [Finset.mem_Ico] at hi
simp only [projIcc_of_mem hmn ⟨hi.1, hi.2.le⟩, projIcc_of_mem hmn ⟨hi.1.trans i.le_succ, hi.2⟩]
_ ≤ ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i)) :=
(Finset.sum_mono_set _ (Nat.Iio_eq_range ▸ Finset.Ico_subset_Iio_self))
_ ≤ eVariationOn f s := sum_le _ _ (fun i j h ↦ hu (π i).2 (π j).2 (monotone_projIcc hmn h)) fun i ↦ us _ (π i).2
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hmn : m ≤ n
π : ℕ → ↑(Icc m n) := projIcc m n hmn
v : ℕ → α := fun i => u ↑(π i)
i : ℕ
hi : i ∈ Finset.Ico m n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
rw [Finset.mem_Ico] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
m n : ℕ
u : ℕ → α
hu : MonotoneOn u (Icc m n)
us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s
hmn : m ≤ n
π : ℕ → ↑(Icc m n) := projIcc m n hmn
v : ℕ → α := fun i => u ↑(π i)
i : ℕ
hi : m ≤ i ∧ i < n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
simp only [projIcc_of_mem hmn ⟨hi.1, hi.2.le⟩, projIcc_of_mem hmn ⟨hi.1.trans i.le_succ, hi.2⟩]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
n : ℕ
u : ℕ → α
hu : MonotoneOn u (Iic n)
us : ∀ (i : ℕ), i ≤ n → u i ∈ s
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s
[PROOFSTEP]
simpa using sum_le_of_monotoneOn_Icc f (m := 0) (hu.mono Icc_subset_Iic_self) fun i hi ↦ us i hi.2
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
hst : t ⊆ s
⊢ eVariationOn f t ≤ eVariationOn f s
[PROOFSTEP]
apply iSup_le _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
hst : t ⊆ s
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }),
∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ eVariationOn f s
[PROOFSTEP]
rintro ⟨n, ⟨u, hu, ut⟩⟩
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
hst : t ⊆ s
n : ℕ
u : ℕ → α
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd i)) ≤
eVariationOn f s
[PROOFSTEP]
exact sum_le f n hu fun i => hst (ut i)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
wlog hxy : y ≤ x generalizing x y
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
this : ∀ {x y : α}, x ∈ s → y ∈ s → y ≤ x → edist (f x) (f y) ≤ eVariationOn f s
hxy : ¬y ≤ x
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
rw [edist_comm]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
this : ∀ {x y : α}, x ∈ s → y ∈ s → y ≤ x → edist (f x) (f y) ≤ eVariationOn f s
hxy : ¬y ≤ x
⊢ edist (f y) (f x) ≤ eVariationOn f s
[PROOFSTEP]
exact this hy hx (le_of_not_le hxy)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
hxy : y ≤ x
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
let u : ℕ → α := fun n => if n = 0 then y else x
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
hxy : y ≤ x
u : ℕ → α := fun n => if n = 0 then y else x
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
have hu : Monotone u :=
monotone_nat_of_le_succ fun
| 0 => hxy
| (_ + 1) => le_rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
hxy : y ≤ x
u : ℕ → α := fun n => if n = 0 then y else x
hu : Monotone u
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
have us : ∀ i, u i ∈ s := fun
| 0 => hy
| (_ + 1) => hx
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x y : α
hx : x ∈ s
hy : y ∈ s
hxy : y ≤ x
u : ℕ → α := fun n => if n = 0 then y else x
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
simpa only [Finset.sum_range_one] using sum_le f 1 hu us
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
⊢ eVariationOn f s = 0 ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
⊢ eVariationOn f s = 0 → ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
[PROOFSTEP]
rintro h x xs y ys
[GOAL]
case mp
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : eVariationOn f s = 0
x : α
xs : x ∈ s
y : α
ys : y ∈ s
⊢ edist (f x) (f y) = 0
[PROOFSTEP]
rw [← le_zero_iff, ← h]
[GOAL]
case mp
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : eVariationOn f s = 0
x : α
xs : x ∈ s
y : α
ys : y ∈ s
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
exact edist_le f xs ys
[GOAL]
case mpr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
⊢ (∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0) → eVariationOn f s = 0
[PROOFSTEP]
rintro h
[GOAL]
case mpr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
⊢ eVariationOn f s = 0
[PROOFSTEP]
dsimp only [eVariationOn]
[GOAL]
case mpr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
⊢ ⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }),
∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) =
0
[PROOFSTEP]
rw [ENNReal.iSup_eq_zero]
[GOAL]
case mpr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }),
∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) = 0
[PROOFSTEP]
rintro ⟨n, u, um, us⟩
[GOAL]
case mpr.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
n : ℕ
u : ℕ → α
um : Monotone u
us : ∀ (i : ℕ), u i ∈ s
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) =
0
[PROOFSTEP]
exact Finset.sum_eq_zero fun i _ => h _ (us i.succ) _ (us i)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : Set.Subsingleton (f '' s)
⊢ eVariationOn f s = 0
[PROOFSTEP]
rw [eq_zero_iff]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : Set.Subsingleton (f '' s)
⊢ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0
[PROOFSTEP]
rintro x xs y ys
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : Set.Subsingleton (f '' s)
x : α
xs : x ∈ s
y : α
ys : y ∈ s
⊢ edist (f x) (f y) = 0
[PROOFSTEP]
rw [hf ⟨x, xs, rfl⟩ ⟨y, ys, rfl⟩, edist_self]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
ι : Type u_3
F : ι → α → E
p : Filter ι
f : α → E
s : Set α
Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x))
v : ℝ≥0∞
hv : v < eVariationOn f s
⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s
[PROOFSTEP]
obtain ⟨⟨n, ⟨u, um, us⟩⟩, hlt⟩ :
∃ p : ℕ × { u : ℕ → α // Monotone u ∧ ∀ i, u i ∈ s },
v < ∑ i in Finset.range p.1, edist (f ((p.2 : ℕ → α) (i + 1))) (f ((p.2 : ℕ → α) i)) :=
lt_iSup_iff.mp hv
[GOAL]
case intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
ι : Type u_3
F : ι → α → E
p : Filter ι
f : α → E
s : Set α
Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x))
v : ℝ≥0∞
hv : v < eVariationOn f s
n : ℕ
u : ℕ → α
um : Monotone u
us : ∀ (i : ℕ), u i ∈ s
hlt :
v <
∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i))
⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s
[PROOFSTEP]
have :
Tendsto (fun j => ∑ i : ℕ in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p
(𝓝 (∑ i : ℕ in Finset.range n, edist (f (u (i + 1))) (f (u i)))) :=
by
apply tendsto_finset_sum
exact fun i _ => Tendsto.edist (Ffs (u i.succ) (us i.succ)) (Ffs (u i) (us i))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
ι : Type u_3
F : ι → α → E
p : Filter ι
f : α → E
s : Set α
Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x))
v : ℝ≥0∞
hv : v < eVariationOn f s
n : ℕ
u : ℕ → α
um : Monotone u
us : ∀ (i : ℕ), u i ∈ s
hlt :
v <
∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i))
⊢ Tendsto (fun j => ∑ i in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p
(𝓝 (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))))
[PROOFSTEP]
apply tendsto_finset_sum
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
ι : Type u_3
F : ι → α → E
p : Filter ι
f : α → E
s : Set α
Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x))
v : ℝ≥0∞
hv : v < eVariationOn f s
n : ℕ
u : ℕ → α
um : Monotone u
us : ∀ (i : ℕ), u i ∈ s
hlt :
v <
∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i))
⊢ ∀ (i : ℕ),
i ∈ Finset.range n → Tendsto (fun b => edist (F b (u (i + 1))) (F b (u i))) p (𝓝 (edist (f (u (i + 1))) (f (u i))))
[PROOFSTEP]
exact fun i _ => Tendsto.edist (Ffs (u i.succ) (us i.succ)) (Ffs (u i) (us i))
[GOAL]
case intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
ι : Type u_3
F : ι → α → E
p : Filter ι
f : α → E
s : Set α
Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x))
v : ℝ≥0∞
hv : v < eVariationOn f s
n : ℕ
u : ℕ → α
um : Monotone u
us : ∀ (i : ℕ), u i ∈ s
hlt :
v <
∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i))
this :
Tendsto (fun j => ∑ i in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p
(𝓝 (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))))
⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s
[PROOFSTEP]
exact (eventually_gt_of_tendsto_gt hlt this).mono fun i h => h.trans_le (sum_le (F i) n um us)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[singleton '' s] E
⊢ LowerSemicontinuousAt (fun f => eVariationOn f s) f
[PROOFSTEP]
apply @lowerSemicontinuous_aux _ _ _ _ (UniformOnFun α E (s.image singleton)) id (𝓝 f) f s _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[singleton '' s] E
⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x))
[PROOFSTEP]
simpa only [UniformOnFun.tendsto_iff_tendstoUniformlyOn, mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂, tendstoUniformlyOn_singleton_iff_tendsto] using @tendsto_id _ (𝓝 f)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[{s}] E
⊢ LowerSemicontinuousAt (fun f => eVariationOn f s) f
[PROOFSTEP]
apply @lowerSemicontinuous_aux _ _ _ _ (UniformOnFun α E { s }) id (𝓝 f) f s _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[{s}] E
⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x))
[PROOFSTEP]
have := @tendsto_id _ (𝓝 f)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[{s}] E
this : Tendsto id (𝓝 f) (𝓝 f)
⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x))
[PROOFSTEP]
rw [UniformOnFun.tendsto_iff_tendstoUniformlyOn] at this
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[{s}] E
this : ∀ (s_1 : Set α), s_1 ∈ {s} → TendstoUniformlyOn id f (𝓝 f) s_1
⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x))
[PROOFSTEP]
simp_rw [← tendstoUniformlyOn_singleton_iff_tendsto]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
s : Set α
f : α →ᵤ[{s}] E
this : ∀ (s_1 : Set α), s_1 ∈ {s} → TendstoUniformlyOn id f (𝓝 f) s_1
⊢ ∀ (x : α), x ∈ s → TendstoUniformlyOn (fun n => id n) f (𝓝 f) {x}
[PROOFSTEP]
exact fun x xs => (this s rfl).mono (singleton_subset_iff.mpr xs)
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E✝ : Type u_2
inst✝¹ : PseudoEMetricSpace E✝
E : Type u_3
inst✝ : PseudoMetricSpace E
f : α → E
s : Set α
h : BoundedVariationOn f s
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ dist (f x) (f y) ≤ ENNReal.toReal (eVariationOn f s)
[PROOFSTEP]
rw [← ENNReal.ofReal_le_ofReal_iff ENNReal.toReal_nonneg, ENNReal.ofReal_toReal h, ← edist_dist]
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E✝ : Type u_2
inst✝¹ : PseudoEMetricSpace E✝
E : Type u_3
inst✝ : PseudoMetricSpace E
f : α → E
s : Set α
h : BoundedVariationOn f s
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ edist (f x) (f y) ≤ eVariationOn f s
[PROOFSTEP]
exact edist_le f hx hy
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
h : BoundedVariationOn f s
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ f x - f y ≤ ENNReal.toReal (eVariationOn f s)
[PROOFSTEP]
apply (le_abs_self _).trans
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
h : BoundedVariationOn f s
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ |f x - f y| ≤ ENNReal.toReal (eVariationOn f s)
[PROOFSTEP]
rw [← Real.dist_eq]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
h : BoundedVariationOn f s
x y : α
hx : x ∈ s
hy : y ∈ s
⊢ dist (f x) (f y) ≤ ENNReal.toReal (eVariationOn f s)
[PROOFSTEP]
exact h.dist_le hx hy
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
rcases le_or_lt (u n) x with (h | h)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
let v i := if i ≤ n then u i else x
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have vs : ∀ i, v i ∈ s := fun i ↦ by
simp only
split_ifs
· exact us i
· exact hx
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
i : ℕ
⊢ v i ∈ s
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
i : ℕ
⊢ (if i ≤ n then u i else x) ∈ s
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
i : ℕ
h✝ : i ≤ n
⊢ u i ∈ s
[PROOFSTEP]
exact us i
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
i : ℕ
h✝ : ¬i ≤ n
⊢ x ∈ s
[PROOFSTEP]
exact hx
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have hv : Monotone v := by
refine monotone_nat_of_le_succ fun i => ?_
simp only
rcases lt_trichotomy i n with (hi | rfl | hi)
· have : i + 1 ≤ n := Nat.succ_le_of_lt hi
simp only [hi.le, this, if_true]
exact hu (Nat.le_succ i)
· simp only [le_refl, if_true, add_le_iff_nonpos_right, le_zero_iff, Nat.one_ne_zero, if_false, h]
· have A : ¬i ≤ n := hi.not_le
have B : ¬i + 1 ≤ n := fun h => A (i.le_succ.trans h)
simp only [A, B, if_false, le_rfl]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
⊢ Monotone v
[PROOFSTEP]
refine monotone_nat_of_le_succ fun i => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
⊢ v i ≤ v (i + 1)
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
rcases lt_trichotomy i n with (hi | rfl | hi)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : i < n
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
have : i + 1 ≤ n := Nat.succ_le_of_lt hi
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : i < n
this : i + 1 ≤ n
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
simp only [hi.le, this, if_true]
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : i < n
this : i + 1 ≤ n
⊢ u i ≤ u (i + 1)
[PROOFSTEP]
exact hu (Nat.le_succ i)
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
i : ℕ
h : u i ≤ x
v : ℕ → α := fun i_1 => if i_1 ≤ i then u i_1 else x
vs : ∀ (i : ℕ), v i ∈ s
⊢ (if i ≤ i then u i else x) ≤ if i + 1 ≤ i then u (i + 1) else x
[PROOFSTEP]
simp only [le_refl, if_true, add_le_iff_nonpos_right, le_zero_iff, Nat.one_ne_zero, if_false, h]
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : n < i
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
have A : ¬i ≤ n := hi.not_le
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : n < i
A : ¬i ≤ n
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
have B : ¬i + 1 ≤ n := fun h => A (i.le_succ.trans h)
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
i : ℕ
hi : n < i
A : ¬i ≤ n
B : ¬i + 1 ≤ n
⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x
[PROOFSTEP]
simp only [A, B, if_false, le_rfl]
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
refine' ⟨v, n + 2, hv, vs, (mem_image _ _ _).2 ⟨n + 1, _, _⟩, _⟩
[GOAL]
case inl.refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ n + 1 ∈ Iio (n + 2)
[PROOFSTEP]
rw [mem_Iio]
[GOAL]
case inl.refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ n + 1 < n + 2
[PROOFSTEP]
exact Nat.lt_succ_self (n + 1)
[GOAL]
case inl.refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ v (n + 1) = x
[PROOFSTEP]
have : ¬n + 1 ≤ n := Nat.not_succ_le_self n
[GOAL]
case inl.refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
this : ¬n + 1 ≤ n
⊢ v (n + 1) = x
[PROOFSTEP]
simp only [this, ite_eq_right_iff, IsEmpty.forall_iff]
[GOAL]
case inl.refine'_3
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 2), edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
calc
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) = ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i)) :=
by
apply Finset.sum_congr rfl fun i hi => ?_
simp only [Finset.mem_range] at hi
have : i + 1 ≤ n := Nat.succ_le_of_lt hi
simp only [hi.le, this, if_true]
_ ≤ ∑ j in Finset.range (n + 2), edist (f (v (j + 1))) (f (v j)) :=
Finset.sum_le_sum_of_subset (Finset.range_mono (Nat.le_add_right n 2))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
apply Finset.sum_congr rfl fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
i : ℕ
hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
simp only [Finset.mem_range] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
i : ℕ
hi : i < n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
have : i + 1 ≤ n := Nat.succ_le_of_lt hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : u n ≤ x
v : ℕ → α := fun i => if i ≤ n then u i else x
vs : ∀ (i : ℕ), v i ∈ s
hv : Monotone v
i : ℕ
hi : i < n
this : i + 1 ≤ n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i))
[PROOFSTEP]
simp only [hi.le, this, if_true]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have exists_N : ∃ N, N ≤ n ∧ x < u N := ⟨n, le_rfl, h⟩
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
let N := Nat.find exists_N
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have hN : N ≤ n ∧ x < u N := Nat.find_spec exists_N
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
let w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have ws : ∀ i, w i ∈ s := by
dsimp only
intro i
split_ifs
exacts [us _, hx, us _]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
⊢ ∀ (i : ℕ), w i ∈ s
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
⊢ ∀ (i : ℕ), (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ∈ s
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
i : ℕ
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ∈ s
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
i : ℕ
h✝ : i < Nat.find exists_N
⊢ u i ∈ s
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
i : ℕ
h✝¹ : ¬i < Nat.find exists_N
h✝ : i = Nat.find exists_N
⊢ x ∈ s
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
i : ℕ
h✝¹ : ¬i < Nat.find exists_N
h✝ : ¬i = Nat.find exists_N
⊢ u (i - 1) ∈ s
[PROOFSTEP]
exacts [us _, hx, us _]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
have hw : Monotone w := by
apply monotone_nat_of_le_succ fun i => ?_
dsimp only
rcases lt_trichotomy (i + 1) N with (hi | hi | hi)
· have : i < N := Nat.lt_of_le_of_lt (Nat.le_succ i) hi
simp only [hi, this, if_true]
exact hu (Nat.le_succ _)
· have A : i < N := hi ▸ i.lt_succ_self
have B : ¬i + 1 < N := by rw [← hi]; exact fun h => h.ne rfl
rw [if_pos A, if_neg B, if_pos hi]
have T := Nat.find_min exists_N A
push_neg at T
exact T (A.le.trans hN.1)
· have A : ¬i < N := (Nat.lt_succ_iff.mp hi).not_lt
have B : ¬i + 1 < N := hi.not_lt
have C : ¬i + 1 = N := hi.ne.symm
have D : i + 1 - 1 = i := Nat.pred_succ i
rw [if_neg A, if_neg B, if_neg C, D]
split_ifs
· exact hN.2.le.trans (hu (le_of_not_lt A))
· exact hu (Nat.pred_le _)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
⊢ Monotone w
[PROOFSTEP]
apply monotone_nat_of_le_succ fun i => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
⊢ w i ≤ w (i + 1)
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
rcases lt_trichotomy (i + 1) N with (hi | hi | hi)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have : i < N := Nat.lt_of_le_of_lt (Nat.le_succ i) hi
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 < N
this : i < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
simp only [hi, this, if_true]
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 < N
this : i < N
⊢ u i ≤ u (i + 1)
[PROOFSTEP]
exact hu (Nat.le_succ _)
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have A : i < N := hi ▸ i.lt_succ_self
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have B : ¬i + 1 < N := by rw [← hi]; exact fun h => h.ne rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
⊢ ¬i + 1 < N
[PROOFSTEP]
rw [← hi]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
⊢ ¬i + 1 < i + 1
[PROOFSTEP]
exact fun h => h.ne rfl
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
B : ¬i + 1 < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
rw [if_pos A, if_neg B, if_pos hi]
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
B : ¬i + 1 < N
⊢ u i ≤ x
[PROOFSTEP]
have T := Nat.find_min exists_N A
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
B : ¬i + 1 < N
T : ¬(i ≤ n ∧ x < u i)
⊢ u i ≤ x
[PROOFSTEP]
push_neg at T
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : i + 1 = N
A : i < N
B : ¬i + 1 < N
T : i ≤ n → u i ≤ x
⊢ u i ≤ x
[PROOFSTEP]
exact T (A.le.trans hN.1)
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have A : ¬i < N := (Nat.lt_succ_iff.mp hi).not_lt
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have B : ¬i + 1 < N := hi.not_lt
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have C : ¬i + 1 = N := hi.ne.symm
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
C : ¬i + 1 = N
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
have D : i + 1 - 1 = i := Nat.pred_succ i
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
C : ¬i + 1 = N
D : i + 1 - 1 = i
⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤
if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)
[PROOFSTEP]
rw [if_neg A, if_neg B, if_neg C, D]
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
C : ¬i + 1 = N
D : i + 1 - 1 = i
⊢ (if i = Nat.find exists_N then x else u (i - 1)) ≤ u i
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
C : ¬i + 1 = N
D : i + 1 - 1 = i
h✝ : i = Nat.find exists_N
⊢ x ≤ u i
[PROOFSTEP]
exact hN.2.le.trans (hu (le_of_not_lt A))
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
i : ℕ
hi : N < i + 1
A : ¬i < N
B : ¬i + 1 < N
C : ¬i + 1 = N
D : i + 1 - 1 = i
h✝ : ¬i = Nat.find exists_N
⊢ u (i - 1) ≤ u i
[PROOFSTEP]
exact hu (Nat.pred_le _)
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
refine' ⟨w, n + 1, hw, ws, (mem_image _ _ _).2 ⟨N, hN.1.trans_lt (Nat.lt_succ_self n), _⟩, _⟩
[GOAL]
case inr.refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
⊢ w N = x
[PROOFSTEP]
dsimp only
[GOAL]
case inr.refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
⊢ (if Nat.find exists_N < Nat.find exists_N then u (Nat.find exists_N)
else if Nat.find exists_N = Nat.find exists_N then x else u (Nat.find exists_N - 1)) =
x
[PROOFSTEP]
rw [if_neg (lt_irrefl N), if_pos rfl]
[GOAL]
case inr.refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
[PROOFSTEP]
rcases eq_or_lt_of_le (zero_le N) with (Npos | Npos)
[GOAL]
case inr.refine'_2.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
[PROOFSTEP]
calc
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) =
∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i))) :=
by
apply Finset.sum_congr rfl fun i _hi => ?_
dsimp only
simp only [← Npos, Nat.not_lt_zero, Nat.add_succ_sub_one, add_zero, if_false, add_eq_zero_iff, Nat.one_ne_zero,
false_and_iff, Nat.succ_add_sub_one, zero_add]
rw [add_comm 1 i]
_ = ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) :=
by
rw [Finset.range_eq_Ico]
exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) 0 n 1
_ ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) :=
by
apply Finset.sum_le_sum_of_subset _
rw [Finset.range_eq_Ico]
exact Finset.Ico_subset_Ico zero_le_one le_rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
apply Finset.sum_congr rfl fun i _hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
i : ℕ
_hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
i : ℕ
_hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
simp only [← Npos, Nat.not_lt_zero, Nat.add_succ_sub_one, add_zero, if_false, add_eq_zero_iff, Nat.one_ne_zero,
false_and_iff, Nat.succ_add_sub_one, zero_add]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
i : ℕ
_hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (u (1 + i))) (f (u i))
[PROOFSTEP]
rw [add_comm 1 i]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ ∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i))) =
∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
rw [Finset.range_eq_Ico]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ ∑ i in Finset.Ico 0 n, edist (f (w (1 + i + 1))) (f (w (1 + i))) =
∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) 0 n 1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) ≤
∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
[PROOFSTEP]
apply Finset.sum_le_sum_of_subset _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ Finset.Ico 1 (n + 1) ⊆ Finset.range (n + 1)
[PROOFSTEP]
rw [Finset.range_eq_Ico]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 = N
⊢ Finset.Ico 1 (n + 1) ⊆ Finset.Ico 0 (n + 1)
[PROOFSTEP]
exact Finset.Ico_subset_Ico zero_le_one le_rfl
[GOAL]
case inr.refine'_2.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
[PROOFSTEP]
calc
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) =
((∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i))) +
∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i))) +
∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) :=
by
rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico]
· exact zero_le _
· exact hN.1
· exact zero_le _
· exact Nat.pred_le _
_ =
(∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) + edist (f (u N)) (f (u (N - 1))) +
∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) :=
by
congr 1; congr 1
· apply Finset.sum_congr rfl fun i hi => ?_
simp only [Finset.mem_Ico, zero_le', true_and_iff] at hi
dsimp only
have A : i + 1 < N := Nat.lt_pred_iff.1 hi
have B : i < N := Nat.lt_of_succ_lt A
rw [if_pos A, if_pos B]
· have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have : Finset.Ico (N - 1) N = {N - 1} := by rw [← Nat.Ico_succ_singleton, A]
simp only [this, A, Finset.sum_singleton]
· apply Finset.sum_congr rfl fun i hi => ?_
rw [Finset.mem_Ico] at hi
dsimp only
have A : ¬1 + i + 1 < N := fun h => by
rw [add_assoc, add_comm] at h
exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h))
have B : ¬1 + i + 1 = N := fun h => by
rw [← h, add_assoc, add_comm] at hi
exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left)
have C : ¬1 + i < N := fun h => by
rw [add_comm] at h
exact hi.left.not_lt (i.lt_succ_self.trans h)
have D : ¬1 + i = N := fun h => by
rw [← h, add_comm, Nat.succ_le_iff] at hi
exact hi.left.ne rfl
rw [if_neg A, if_neg B, if_neg C, if_neg D]
congr 3 <;> · rw [add_comm, Nat.sub_one]; apply Nat.pred_succ
_ =
(∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) + edist (f (w (N + 1))) (f (w (N - 1))) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) :=
by
congr 1; congr 1
· dsimp only
have A : ¬N + 1 < N := Nat.not_succ_lt_self
have B : N - 1 < N := Nat.pred_lt Npos.ne'
simp only [A, not_and, not_lt, Nat.succ_ne_self, Nat.add_succ_sub_one, add_zero, if_false, B, if_true]
· exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) N n 1
_ ≤
((∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) +
∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) :=
by
refine' add_le_add (add_le_add le_rfl _) le_rfl
have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have B : N - 1 + 1 < N + 1 := A.symm ▸ N.lt_succ_self
have C : N - 1 < N + 1 := lt_of_le_of_lt N.pred_le N.lt_succ_self
rw [Finset.sum_eq_sum_Ico_succ_bot C, Finset.sum_eq_sum_Ico_succ_bot B, A, Finset.Ico_self, Finset.sum_empty,
add_zero, add_comm (edist _ _)]
exact edist_triangle _ _ _
_ = ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) :=
by
rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico]
· exact zero_le _
· exact Nat.succ_le_succ hN.left
· exact zero_le _
· exact N.pred_le.trans N.le_succ
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) +
∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) +
∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i))
[PROOFSTEP]
rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico]
[GOAL]
case hmn
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ 0 ≤ N
[PROOFSTEP]
exact zero_le _
[GOAL]
case hnk
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ N ≤ n
[PROOFSTEP]
exact hN.1
[GOAL]
case hmn
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ 0 ≤ N - 1
[PROOFSTEP]
exact zero_le _
[GOAL]
case hnk
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ N - 1 ≤ N
[PROOFSTEP]
exact Nat.pred_le _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) +
∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) +
∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) +
∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) +
∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1)))
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
congr 1
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
apply Finset.sum_congr rfl fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i ∈ Finset.Ico 0 (N - 1)
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
simp only [Finset.mem_Ico, zero_le', true_and_iff] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i < Nat.find exists_N - 1
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i < Nat.find exists_N - 1
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)))
(f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)))
[PROOFSTEP]
have A : i + 1 < N := Nat.lt_pred_iff.1 hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i < Nat.find exists_N - 1
A : i + 1 < N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)))
(f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)))
[PROOFSTEP]
have B : i < N := Nat.lt_of_succ_lt A
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i < Nat.find exists_N - 1
A : i + 1 < N
B : i < N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1)))
(f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)))
[PROOFSTEP]
rw [if_pos A, if_pos B]
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1)))
[PROOFSTEP]
have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1)))
[PROOFSTEP]
have : Finset.Ico (N - 1) N = {N - 1} := by rw [← Nat.Ico_succ_singleton, A]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
⊢ Finset.Ico (N - 1) N = {N - 1}
[PROOFSTEP]
rw [← Nat.Ico_succ_singleton, A]
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
this : Finset.Ico (N - 1) N = {N - 1}
⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1)))
[PROOFSTEP]
simp only [this, A, Finset.sum_singleton]
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
apply Finset.sum_congr rfl fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i ∈ Finset.Ico N n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
rw [Finset.mem_Ico] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i)))
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
have A : ¬1 + i + 1 < N := fun h => by
rw [add_assoc, add_comm] at h
exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
h : 1 + i + 1 < N
⊢ False
[PROOFSTEP]
rw [add_assoc, add_comm] at h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
h : i + 1 + 1 < N
⊢ False
[PROOFSTEP]
exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
have B : ¬1 + i + 1 = N := fun h => by
rw [← h, add_assoc, add_comm] at hi
exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
h : 1 + i + 1 = N
⊢ False
[PROOFSTEP]
rw [← h, add_assoc, add_comm] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i + 1 + 1 ≤ i ∧ i < n
A : ¬1 + i + 1 < N
h : 1 + i + 1 = N
⊢ False
[PROOFSTEP]
exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
have C : ¬1 + i < N := fun h => by
rw [add_comm] at h
exact hi.left.not_lt (i.lt_succ_self.trans h)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
h : 1 + i < N
⊢ False
[PROOFSTEP]
rw [add_comm] at h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
h : i + 1 < N
⊢ False
[PROOFSTEP]
exact hi.left.not_lt (i.lt_succ_self.trans h)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
have D : ¬1 + i = N := fun h => by
rw [← h, add_comm, Nat.succ_le_iff] at hi
exact hi.left.ne rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
h : 1 + i = N
⊢ False
[PROOFSTEP]
rw [← h, add_comm, Nat.succ_le_iff] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h✝ : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : i < i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
h : 1 + i = N
⊢ False
[PROOFSTEP]
exact hi.left.ne rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ edist (f (u (i + 1))) (f (u i)) =
edist
(f
(if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1)
else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1)))
(f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1)))
[PROOFSTEP]
rw [if_neg A, if_neg B, if_neg C, if_neg D]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (u (1 + i + 1 - 1))) (f (u (1 + i - 1)))
[PROOFSTEP]
congr 3
[GOAL]
case e_a.e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ i + 1 = 1 + i + 1 - 1
[PROOFSTEP]
rw [add_comm, Nat.sub_one]
[GOAL]
case e_a.e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ 1 + i = Nat.pred (1 + i + 1)
[PROOFSTEP]
apply Nat.pred_succ
[GOAL]
case e_a.e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ i = 1 + i - 1
[PROOFSTEP]
rw [add_comm, Nat.sub_one]
[GOAL]
case e_a.e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
i : ℕ
hi : N ≤ i ∧ i < n
A : ¬1 + i + 1 < N
B : ¬1 + i + 1 = N
C : ¬1 + i < N
D : ¬1 + i = N
⊢ i = Nat.pred (i + 1)
[PROOFSTEP]
apply Nat.pred_succ
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) +
∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) =
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1))) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) =
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1)))
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) =
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
congr 1
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ edist (f (u N)) (f (u (N - 1))) = edist (f (w (N + 1))) (f (w (N - 1)))
[PROOFSTEP]
dsimp only
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) =
edist
(f
(if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1)
else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1)))
(f
(if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1)
else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1)))
[PROOFSTEP]
have A : ¬N + 1 < N := Nat.not_succ_lt_self
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : ¬N + 1 < N
⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) =
edist
(f
(if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1)
else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1)))
(f
(if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1)
else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1)))
[PROOFSTEP]
have B : N - 1 < N := Nat.pred_lt Npos.ne'
[GOAL]
case e_a.e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : ¬N + 1 < N
B : N - 1 < N
⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) =
edist
(f
(if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1)
else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1)))
(f
(if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1)
else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1)))
[PROOFSTEP]
simp only [A, not_and, not_lt, Nat.succ_ne_self, Nat.add_succ_sub_one, add_zero, if_false, B, if_true]
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) =
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) N n 1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1))) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) ≤
∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
refine' add_le_add (add_le_add le_rfl _) le_rfl
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
have B : N - 1 + 1 < N + 1 := A.symm ▸ N.lt_succ_self
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
B : N - 1 + 1 < N + 1
⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
have C : N - 1 < N + 1 := lt_of_le_of_lt N.pred_le N.lt_succ_self
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
B : N - 1 + 1 < N + 1
C : N - 1 < N + 1
⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
rw [Finset.sum_eq_sum_Ico_succ_bot C, Finset.sum_eq_sum_Ico_succ_bot B, A, Finset.Ico_self, Finset.sum_empty, add_zero,
add_comm (edist _ _)]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
A : N - 1 + 1 = N
B : N - 1 + 1 < N + 1
C : N - 1 < N + 1
⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ edist (f (w (N + 1))) (f (w N)) + edist (f (w N)) (f (w (N - 1)))
[PROOFSTEP]
exact edist_triangle _ _ _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) =
∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
[PROOFSTEP]
rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico]
[GOAL]
case hmn
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ 0 ≤ N + 1
[PROOFSTEP]
exact zero_le _
[GOAL]
case hnk
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ N + 1 ≤ n + 1
[PROOFSTEP]
exact Nat.succ_le_succ hN.left
[GOAL]
case hmn
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ 0 ≤ N - 1
[PROOFSTEP]
exact zero_le _
[GOAL]
case hnk
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
x : α
hx : x ∈ s
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
n : ℕ
h : x < u n
exists_N : ∃ N, N ≤ n ∧ x < u N
N : ℕ := Nat.find exists_N
hN : N ≤ n ∧ x < u N
w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1)
ws : ∀ (i : ℕ), w i ∈ s
hw : Monotone w
Npos : 0 < N
⊢ N - 1 ≤ N + 1
[PROOFSTEP]
exact N.pred_le.trans N.le_succ
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
by_cases hs : s = ∅
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : s = ∅
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
simp [hs]
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
have : Nonempty { u // Monotone u ∧ ∀ i : ℕ, u i ∈ s } := nonempty_monotone_mem (nonempty_iff_ne_empty.2 hs)
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
by_cases ht : t = ∅
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : t = ∅
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
simp [ht]
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
have : Nonempty { u // Monotone u ∧ ∀ i : ℕ, u i ∈ t } := nonempty_monotone_mem (nonempty_iff_ne_empty.2 ht)
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t)
[PROOFSTEP]
refine'
ENNReal.iSup_add_iSup_le
_
/- We start from two sequences `u` and `v` along `s` and `t` respectively, and we build a new
sequence `w` along `s ∪ t` by juxtaposing them. Its variation is larger than the sum of the
variations. -/
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }) (j : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }),
∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) +
∑ i in Finset.range j.fst, edist (f (↑j.snd (i + 1))) (f (↑j.snd i)) ≤
eVariationOn f (s ∪ t)
[PROOFSTEP]
rintro ⟨n, ⟨u, hu, us⟩⟩ ⟨m, ⟨v, hv, vt⟩⟩
[GOAL]
case neg.mk.mk.intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) +
∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst,
edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1)))
(f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤
eVariationOn f (s ∪ t)
[PROOFSTEP]
let w i := if i ≤ n then u i else v (i - (n + 1))
[GOAL]
case neg.mk.mk.intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) +
∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst,
edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1)))
(f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤
eVariationOn f (s ∪ t)
[PROOFSTEP]
have wst : ∀ i, w i ∈ s ∪ t := by
intro i
by_cases hi : i ≤ n
· simp [hi, us]
· simp [hi, vt]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
⊢ ∀ (i : ℕ), w i ∈ s ∪ t
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
i : ℕ
⊢ w i ∈ s ∪ t
[PROOFSTEP]
by_cases hi : i ≤ n
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
i : ℕ
hi : i ≤ n
⊢ w i ∈ s ∪ t
[PROOFSTEP]
simp [hi, us]
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
i : ℕ
hi : ¬i ≤ n
⊢ w i ∈ s ∪ t
[PROOFSTEP]
simp [hi, vt]
[GOAL]
case neg.mk.mk.intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) +
∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst,
edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1)))
(f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤
eVariationOn f (s ∪ t)
[PROOFSTEP]
have hw : Monotone w := by
intro i j hij
dsimp only
split_ifs with h_1 h_2 h_2
· exact hu hij
· apply h _ (us _) _ (vt _)
· exfalso; exact h_1 (hij.trans h_2)
· apply hv (tsub_le_tsub hij le_rfl)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
⊢ Monotone w
[PROOFSTEP]
intro i j hij
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
⊢ w i ≤ w j
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
⊢ (if i ≤ n then u i else v (i - (n + 1))) ≤ if j ≤ n then u j else v (j - (n + 1))
[PROOFSTEP]
split_ifs with h_1 h_2 h_2
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
h_1 : i ≤ n
h_2 : j ≤ n
⊢ u i ≤ u j
[PROOFSTEP]
exact hu hij
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
h_1 : i ≤ n
h_2 : ¬j ≤ n
⊢ u i ≤ v (j - (n + 1))
[PROOFSTEP]
apply h _ (us _) _ (vt _)
[GOAL]
case pos
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
h_1 : ¬i ≤ n
h_2 : j ≤ n
⊢ v (i - (n + 1)) ≤ u j
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
h_1 : ¬i ≤ n
h_2 : j ≤ n
⊢ False
[PROOFSTEP]
exact h_1 (hij.trans h_2)
[GOAL]
case neg
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
i j : ℕ
hij : i ≤ j
h_1 : ¬i ≤ n
h_2 : ¬j ≤ n
⊢ v (i - (n + 1)) ≤ v (j - (n + 1))
[PROOFSTEP]
apply hv (tsub_le_tsub hij le_rfl)
[GOAL]
case neg.mk.mk.intro.mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) +
∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst,
edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1)))
(f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤
eVariationOn f (s ∪ t)
[PROOFSTEP]
calc
((∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) +
∑ i : ℕ in Finset.range m, edist (f (v (i + 1))) (f (v i))) =
(∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i))) +
∑ i : ℕ in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) :=
by
dsimp only
congr 1
· refine Finset.sum_congr rfl fun i hi => ?_
simp only [Finset.mem_range] at hi
have : i + 1 ≤ n := Nat.succ_le_of_lt hi
simp [hi.le, this]
· refine Finset.sum_congr rfl fun i hi => ?_
simp only [Finset.mem_range] at hi
have B : ¬n + 1 + i ≤ n := by linarith
have A : ¬n + 1 + i + 1 ≤ n := fun h => B ((n + 1 + i).le_succ.trans h)
have C : n + 1 + i - n = i + 1 := by
rw [tsub_eq_iff_eq_add_of_le]
· abel
· exact n.le_succ.trans (n.succ.le_add_right i)
simp only [A, B, C, Nat.succ_sub_succ_eq_sub, if_false, add_tsub_cancel_left]
_ =
(∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i))) +
∑ i : ℕ in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) :=
by
congr 1
rw [Finset.range_eq_Ico]
convert Finset.sum_Ico_add (fun i : ℕ => edist (f (w (i + 1))) (f (w i))) 0 m (n + 1) using 3 <;> abel
_ ≤ ∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i)) :=
by
rw [← Finset.sum_union]
· apply Finset.sum_le_sum_of_subset _
rintro i hi
simp only [Finset.mem_union, Finset.mem_range, Finset.mem_Ico] at hi ⊢
cases' hi with hi hi
· exact lt_of_lt_of_le hi (n.le_succ.trans (n.succ.le_add_right m))
· exact hi.2
· refine Finset.disjoint_left.2 fun i hi h'i => ?_
simp only [Finset.mem_Ico, Finset.mem_range] at hi h'i
exact hi.not_lt (Nat.lt_of_succ_le h'i.left)
_ ≤ eVariationOn f (s ∪ t) := sum_le f _ hw wst
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) =
∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i)))
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) =
∑ i in Finset.range n,
edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) +
∑ i in Finset.range m,
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.range n,
edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1))))
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1))))
[PROOFSTEP]
simp only [Finset.mem_range] at hi
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < n
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1))))
[PROOFSTEP]
have : i + 1 ≤ n := Nat.succ_le_of_lt hi
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝¹ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < n
this : i + 1 ≤ n
⊢ edist (f (u (i + 1))) (f (u i)) =
edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1))))
[PROOFSTEP]
simp [hi.le, this]
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) =
∑ i in Finset.range m,
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i ∈ Finset.range m
⊢ edist (f (v (i + 1))) (f (v i)) =
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
simp only [Finset.mem_range] at hi
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
⊢ edist (f (v (i + 1))) (f (v i)) =
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
have B : ¬n + 1 + i ≤ n := by linarith
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
⊢ ¬n + 1 + i ≤ n
[PROOFSTEP]
linarith
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
⊢ edist (f (v (i + 1))) (f (v i)) =
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
have A : ¬n + 1 + i + 1 ≤ n := fun h => B ((n + 1 + i).le_succ.trans h)
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
⊢ edist (f (v (i + 1))) (f (v i)) =
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
have C : n + 1 + i - n = i + 1 := by
rw [tsub_eq_iff_eq_add_of_le]
· abel
· exact n.le_succ.trans (n.succ.le_add_right i)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
⊢ n + 1 + i - n = i + 1
[PROOFSTEP]
rw [tsub_eq_iff_eq_add_of_le]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
⊢ n + 1 + i = i + 1 + n
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
⊢ n + 1 + i = i + 1 + n
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
⊢ n ≤ n + 1 + i
[PROOFSTEP]
exact n.le_succ.trans (n.succ.le_add_right i)
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < m
B : ¬n + 1 + i ≤ n
A : ¬n + 1 + i + 1 ≤ n
C : n + 1 + i - n = i + 1
⊢ edist (f (v (i + 1))) (f (v i)) =
edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1))))
(f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1))))
[PROOFSTEP]
simp only [A, B, C, Nat.succ_sub_succ_eq_sub, if_false, add_tsub_cancel_left]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) =
∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) =
∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
rw [Finset.range_eq_Ico]
[GOAL]
case e_a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.Ico 0 m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) =
∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
convert Finset.sum_Ico_add (fun i : ℕ => edist (f (w (i + 1))) (f (w i))) 0 m (n + 1) using 3
[GOAL]
case h.e'_3.h.h.e'_4
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ n + 1 = 0 + (n + 1)
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.h.h.e'_4
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ n + 1 = 0 + (n + 1)
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.h.h.e'_5
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ n + 1 + m = m + (n + 1)
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.h.h.e'_5
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ n + 1 + m = m + (n + 1)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) +
∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) ≤
∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
rw [← Finset.sum_union]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ ∑ x in Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m), edist (f (w (x + 1))) (f (w x)) ≤
∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i))
[PROOFSTEP]
apply Finset.sum_le_sum_of_subset _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m) ⊆ Finset.range (n + 1 + m)
[PROOFSTEP]
rintro i hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i ∈ Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m)
⊢ i ∈ Finset.range (n + 1 + m)
[PROOFSTEP]
simp only [Finset.mem_union, Finset.mem_range, Finset.mem_Ico] at hi ⊢
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < n ∨ n + 1 ≤ i ∧ i < n + 1 + m
⊢ i < n + 1 + m
[PROOFSTEP]
cases' hi with hi hi
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < n
⊢ i < n + 1 + m
[PROOFSTEP]
exact lt_of_lt_of_le hi (n.le_succ.trans (n.succ.le_add_right m))
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : n + 1 ≤ i ∧ i < n + 1 + m
⊢ i < n + 1 + m
[PROOFSTEP]
exact hi.2
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
⊢ Disjoint (Finset.range n) (Finset.Ico (n + 1) (n + 1 + m))
[PROOFSTEP]
refine Finset.disjoint_left.2 fun i hi h'i => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i ∈ Finset.range n
h'i : i ∈ Finset.Ico (n + 1) (n + 1 + m)
⊢ False
[PROOFSTEP]
simp only [Finset.mem_Ico, Finset.mem_range] at hi h'i
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y
hs : ¬s = ∅
this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }
ht : ¬t = ∅
this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
m : ℕ
v : ℕ → α
hv : Monotone v
vt : ∀ (i : ℕ), v i ∈ t
w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1))
wst : ∀ (i : ℕ), w i ∈ s ∪ t
hw : Monotone w
i : ℕ
hi : i < n
h'i : n + 1 ≤ i ∧ i < n + 1 + m
⊢ False
[PROOFSTEP]
exact hi.not_lt (Nat.lt_of_succ_le h'i.left)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
⊢ eVariationOn f (s ∪ t) = eVariationOn f s + eVariationOn f t
[PROOFSTEP]
classical
apply le_antisymm _ (eVariationOn.add_le_union f fun a ha b hb => le_trans (hs.2 ha) (ht.2 hb))
apply iSup_le _
rintro ⟨n, ⟨u, hu, ust⟩⟩
obtain ⟨v, m, hv, vst, xv, huv⟩ :
∃ (v : ℕ → α) (m : ℕ),
Monotone v ∧
(∀ i, v i ∈ s ∪ t) ∧
x ∈ v '' Iio m ∧
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
exact eVariationOn.add_point f (mem_union_left t hs.1) u hu ust n
obtain ⟨N, hN, Nx⟩ : ∃ N, N < m ∧ v N = x
exact xv
calc
(∑ j in Finset.range n, edist (f (u (j + 1))) (f (u j))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) :=
huv
_ =
(∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j))) +
∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) :=
by rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le]
_ ≤ eVariationOn f s + eVariationOn f t := by
refine' add_le_add _ _
· apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
rcases vst i with (h | h); · exact h
have : v i = x := by
apply le_antisymm
· rw [← Nx]; exact hv hi.2
· exact ht.2 h
rw [this]
exact hs.1
· apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
rcases vst i with (h | h); swap; · exact h
have : v i = x := by
apply le_antisymm
· exact hs.2 h
· rw [← Nx]; exact hv hi.1
rw [this]
exact ht.1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
⊢ eVariationOn f (s ∪ t) = eVariationOn f s + eVariationOn f t
[PROOFSTEP]
apply le_antisymm _ (eVariationOn.add_le_union f fun a ha b hb => le_trans (hs.2 ha) (ht.2 hb))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
⊢ eVariationOn f (s ∪ t) ≤ eVariationOn f s + eVariationOn f t
[PROOFSTEP]
apply iSup_le _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t }),
∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ eVariationOn f s + eVariationOn f t
[PROOFSTEP]
rintro ⟨n, ⟨u, hu, ust⟩⟩
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
obtain ⟨v, m, hv, vst, xv, huv⟩ :
∃ (v : ℕ → α) (m : ℕ),
Monotone v ∧
(∀ i, v i ∈ s ∪ t) ∧
x ∈ v '' Iio m ∧
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
⊢ ∃ v m,
Monotone v ∧
(∀ (i : ℕ), v i ∈ s ∪ t) ∧
x ∈ v '' Iio m ∧
∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤
∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
case mk.mk.intro.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
exact eVariationOn.add_point f (mem_union_left t hs.1) u hu ust n
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
obtain ⟨N, hN, Nx⟩ : ∃ N, N < m ∧ v N = x
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
⊢ ∃ N, N < m ∧ v N = x
case mk.mk.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
exact xv
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
calc
(∑ j in Finset.range n, edist (f (u (j + 1))) (f (u j))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) :=
huv
_ =
(∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j))) +
∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) :=
by rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le]
_ ≤ eVariationOn f s + eVariationOn f t := by
refine' add_le_add _ _
· apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
rcases vst i with (h | h); · exact h
have : v i = x := by
apply le_antisymm
· rw [← Nx]; exact hv hi.2
· exact ht.2 h
rw [this]
exact hs.1
· apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
rcases vst i with (h | h); swap; · exact h
have : v i = x := by
apply le_antisymm
· exact hs.2 h
· rw [← Nx]; exact hv hi.1
rw [this]
exact ht.1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) =
∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j))
[PROOFSTEP]
rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) ≤
eVariationOn f s + eVariationOn f t
[PROOFSTEP]
refine' add_le_add _ _
[GOAL]
case refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) ≤ eVariationOn f s
[PROOFSTEP]
apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
⊢ v i ∈ s
[PROOFSTEP]
rcases vst i with (h | h)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ s
⊢ v i ∈ s
[PROOFSTEP]
exact h
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
⊢ v i ∈ s
[PROOFSTEP]
have : v i = x := by
apply le_antisymm
· rw [← Nx]; exact hv hi.2
· exact ht.2 h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
⊢ v i = x
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
⊢ v i ≤ x
[PROOFSTEP]
rw [← Nx]
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
⊢ v i ≤ v N
[PROOFSTEP]
exact hv hi.2
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
⊢ x ≤ v i
[PROOFSTEP]
exact ht.2 h
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
this : v i = x
⊢ v i ∈ s
[PROOFSTEP]
rw [this]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc 0 N
h : v i ∈ t
this : v i = x
⊢ x ∈ s
[PROOFSTEP]
exact hs.1
[GOAL]
case refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
⊢ ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) ≤ eVariationOn f t
[PROOFSTEP]
apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
⊢ v i ∈ t
[PROOFSTEP]
rcases vst i with (h | h)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ v i ∈ t
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ t
⊢ v i ∈ t
[PROOFSTEP]
swap
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ t
⊢ v i ∈ t
[PROOFSTEP]
exact h
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ v i ∈ t
[PROOFSTEP]
have : v i = x := by
apply le_antisymm
· exact hs.2 h
· rw [← Nx]; exact hv hi.1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ v i = x
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ v i ≤ x
[PROOFSTEP]
exact hs.2 h
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ x ≤ v i
[PROOFSTEP]
rw [← Nx]
[GOAL]
case a
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
⊢ v N ≤ v i
[PROOFSTEP]
exact hv hi.1
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
this : v i = x
⊢ v i ∈ t
[PROOFSTEP]
rw [this]
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s t : Set α
x : α
hs : IsGreatest s x
ht : IsLeast t x
n : ℕ
u : ℕ → α
hu : Monotone u
ust : ∀ (i : ℕ), u i ∈ s ∪ t
v : ℕ → α
m : ℕ
hv : Monotone v
vst : ∀ (i : ℕ), v i ∈ s ∪ t
xv : x ∈ v '' Iio m
huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j))
N : ℕ
hN : N < m
Nx : v N = x
i : ℕ
hi : i ∈ Icc N m
h : v i ∈ s
this : v i = x
⊢ x ∈ t
[PROOFSTEP]
exact ht.1
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hb : b ∈ s
⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c)
[PROOFSTEP]
have A : IsGreatest (s ∩ Icc a b) b := ⟨⟨hb, hab, le_rfl⟩, (inter_subset_right _ _).trans Icc_subset_Iic_self⟩
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hb : b ∈ s
A : IsGreatest (s ∩ Icc a b) b
⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c)
[PROOFSTEP]
have B : IsLeast (s ∩ Icc b c) b := ⟨⟨hb, le_rfl, hbc⟩, (inter_subset_right _ _).trans Icc_subset_Ici_self⟩
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hb : b ∈ s
A : IsGreatest (s ∩ Icc a b) b
B : IsLeast (s ∩ Icc b c) b
⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c)
[PROOFSTEP]
rw [← eVariationOn.union f A B, ← inter_union_distrib_left, Icc_union_Icc_eq_Icc hab hbc]
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
⊢ eVariationOn (f ∘ φ) t ≤ eVariationOn f s
[PROOFSTEP]
refine' iSup_le _
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }),
∑ i_1 in Finset.range i.fst, edist ((f ∘ φ) (↑i.snd (i_1 + 1))) ((f ∘ φ) (↑i.snd i_1)) ≤ eVariationOn f s
[PROOFSTEP]
rintro ⟨n, u, hu, ut⟩
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst,
edist ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd (i + 1)))
((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd i)) ≤
eVariationOn f s
[PROOFSTEP]
rw [← Finset.sum_range_reflect]
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
⊢ ∑ j in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst,
edist
((f ∘ φ)
(↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd
((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - j + 1)))
((f ∘ φ)
(↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd
((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - j))) ≤
eVariationOn f s
[PROOFSTEP]
refine'
(Finset.sum_congr rfl fun x hx => _).trans_le <|
le_iSup_of_le
⟨n, fun i => φ (u <| n - i), fun x y xy => hφ (ut _) (ut _) (hu <| Nat.sub_le_sub_left n xy), fun i => φst (ut _)⟩
le_rfl
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
x : ℕ
hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst
⊢ edist
((f ∘ φ)
(↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd
((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - x + 1)))
((f ∘ φ)
(↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd
((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - x))) =
edist
(f
(↑(n,
{ val := fun i => φ (u (n - i)),
property := (_ : (Monotone fun i => φ (u (n - i))) ∧ ∀ (i : ℕ), (fun i => φ (u (n - i))) i ∈ s) }).snd
(x + 1)))
(f
(↑(n,
{ val := fun i => φ (u (n - i)),
property := (_ : (Monotone fun i => φ (u (n - i))) ∧ ∀ (i : ℕ), (fun i => φ (u (n - i))) i ∈ s) }).snd
x))
[PROOFSTEP]
dsimp only [Subtype.coe_mk]
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
x : ℕ
hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst
⊢ edist ((f ∘ φ) (u (n - 1 - x + 1))) ((f ∘ φ) (u (n - 1 - x))) = edist (f (φ (u (n - (x + 1))))) (f (φ (u (n - x))))
[PROOFSTEP]
rw [edist_comm, Nat.sub_sub, add_comm, Nat.sub_succ, Nat.add_one, Nat.succ_pred_eq_of_pos]
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
x : ℕ
hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst
⊢ edist ((f ∘ φ) (u (Nat.pred (n - x)))) ((f ∘ φ) (u (n - x))) =
edist (f (φ (u (Nat.pred (n - x))))) (f (φ (u (n - x))))
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
x : ℕ
hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst
⊢ 0 < n - x
[PROOFSTEP]
simp only [Function.comp_apply]
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
t : Set β
φ : β → α
hφ : AntitoneOn φ t
φst : MapsTo φ t s
n : ℕ
u : ℕ → β
hu : Monotone u
ut : ∀ (i : ℕ), u i ∈ t
x : ℕ
hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst
⊢ 0 < n - x
[PROOFSTEP]
simpa only [tsub_pos_iff_lt, Finset.mem_range] using hx
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
⊢ eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t)
[PROOFSTEP]
apply le_antisymm (comp_le_of_monotoneOn f φ hφ (mapsTo_image φ t))
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
cases isEmpty_or_nonempty β
[GOAL]
case inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : IsEmpty β
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
convert zero_le (_ : ℝ≥0∞)
[GOAL]
case h.e'_3
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : IsEmpty β
⊢ eVariationOn f (φ '' t) = 0
[PROOFSTEP]
exact eVariationOn.subsingleton f <| (subsingleton_of_subsingleton.image _).anti (surjOn_image φ t)
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
let ψ := φ.invFunOn t
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have ψφs : EqOn (φ ∘ ψ) id (φ '' t) := (surjOn_image φ t).rightInvOn_invFunOn
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have ψts : MapsTo ψ (φ '' t) t := (surjOn_image φ t).mapsTo_invFunOn
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo ψ (φ '' t) t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have hψ : MonotoneOn ψ (φ '' t) := Function.monotoneOn_of_rightInvOn_of_mapsTo hφ ψφs ψts
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo ψ (φ '' t) t
hψ : MonotoneOn ψ (φ '' t)
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
change eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo ψ (φ '' t) t
hψ : MonotoneOn ψ (φ '' t)
⊢ eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
rw [← eq_of_eqOn (ψφs.comp_left : EqOn (f ∘ φ ∘ ψ) (f ∘ id) (φ '' t))]
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo ψ (φ '' t) t
hψ : MonotoneOn ψ (φ '' t)
⊢ eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
exact comp_le_of_monotoneOn _ ψ hψ ψts
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y))
[PROOFSTEP]
rcases le_total x y with (h | h)
[GOAL]
case inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y))
[PROOFSTEP]
convert comp_eq_of_monotoneOn f φ (hφ.mono (Set.inter_subset_left t (Icc x y)))
[GOAL]
case h.e'_3.h.e'_6
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
⊢ φ '' t ∩ Icc (φ x) (φ y) = φ '' (t ∩ Icc x y)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case h.e'_3.h.e'_6.a
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
⊢ φ '' t ∩ Icc (φ x) (φ y) ≤ φ '' (t ∩ Icc x y)
[PROOFSTEP]
rintro _ ⟨⟨u, us, rfl⟩, vφx, vφy⟩
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
⊢ φ u ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
rcases le_total x u with (xu | ux)
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
xu : x ≤ u
⊢ φ u ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
rcases le_total u y with (uy | yu)
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
xu : x ≤ u
uy : u ≤ y
⊢ φ u ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
exact ⟨u, ⟨us, ⟨xu, uy⟩⟩, rfl⟩
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
xu : x ≤ u
yu : y ≤ u
⊢ φ u ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
rw [le_antisymm vφy (hφ hy us yu)]
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
xu : x ≤ u
yu : y ≤ u
⊢ φ y ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
exact ⟨y, ⟨hy, ⟨h, le_rfl⟩⟩, rfl⟩
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
ux : u ≤ x
⊢ φ u ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
rw [← le_antisymm vφx (hφ us hx ux)]
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
us : u ∈ t
vφx : φ x ≤ φ u
vφy : φ u ≤ φ y
ux : u ≤ x
⊢ φ x ∈ φ '' (t ∩ Icc x y)
[PROOFSTEP]
exact ⟨x, ⟨hx, ⟨le_rfl, h⟩⟩, rfl⟩
[GOAL]
case h.e'_3.h.e'_6.a
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
⊢ φ '' (t ∩ Icc x y) ≤ φ '' t ∩ Icc (φ x) (φ y)
[PROOFSTEP]
rintro _ ⟨u, ⟨⟨hu, xu, uy⟩, rfl⟩⟩
[GOAL]
case h.e'_3.h.e'_6.a.intro.intro.intro.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
u : β
hu : u ∈ t
xu : x ≤ u
uy : u ≤ y
⊢ φ u ∈ φ '' t ∩ Icc (φ x) (φ y)
[PROOFSTEP]
refine' ⟨⟨u, hu, rfl⟩, ⟨hφ hx hu xu, hφ hu hy uy⟩⟩
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : y ≤ x
⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y))
[PROOFSTEP]
rw [eVariationOn.subsingleton, eVariationOn.subsingleton]
[GOAL]
case inr.hs
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : y ≤ x
⊢ Set.Subsingleton (φ '' t ∩ Icc (φ x) (φ y))
case inr.hs
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : y ≤ x
⊢ Set.Subsingleton (t ∩ Icc x y)
[PROOFSTEP]
exacts [(Set.subsingleton_Icc_of_ge (hφ hy hx h)).anti (Set.inter_subset_right _ _),
(Set.subsingleton_Icc_of_ge h).anti (Set.inter_subset_right _ _)]
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
⊢ eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t)
[PROOFSTEP]
apply le_antisymm (comp_le_of_antitoneOn f φ hφ (mapsTo_image φ t))
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
cases isEmpty_or_nonempty β
[GOAL]
case inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : IsEmpty β
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
convert zero_le (_ : ℝ≥0∞)
[GOAL]
case h.e'_3
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : IsEmpty β
⊢ eVariationOn f (φ '' t) = 0
[PROOFSTEP]
exact eVariationOn.subsingleton f <| (subsingleton_of_subsingleton.image _).anti (surjOn_image φ t)
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
let ψ := φ.invFunOn t
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have ψφs : EqOn (φ ∘ ψ) id (φ '' t) := (surjOn_image φ t).rightInvOn_invFunOn
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have ψts := (surjOn_image φ t).mapsTo_invFunOn
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
have hψ : AntitoneOn ψ (φ '' t) := Function.antitoneOn_of_rightInvOn_of_mapsTo hφ ψφs ψts
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t
hψ : AntitoneOn ψ (φ '' t)
⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
change eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t
hψ : AntitoneOn ψ (φ '' t)
⊢ eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
rw [← eq_of_eqOn (ψφs.comp_left : EqOn (f ∘ φ ∘ ψ) (f ∘ id) (φ '' t))]
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : AntitoneOn φ t
h✝ : Nonempty β
ψ : α → β := Function.invFunOn φ t
ψφs : EqOn (φ ∘ ψ) id (φ '' t)
ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t
hψ : AntitoneOn ψ (φ '' t)
⊢ eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t
[PROOFSTEP]
exact comp_le_of_antitoneOn _ ψ hψ ψts
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
⊢ eVariationOn (f ∘ ↑ofDual) (↑ofDual ⁻¹' s) = eVariationOn f s
[PROOFSTEP]
convert comp_eq_of_antitoneOn f ofDual fun _ _ _ _ => id
[GOAL]
case h.e'_3.h.e'_6
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
β : Type u_3
inst✝ : LinearOrder β
f : α → E
s : Set α
⊢ s = ↑ofDual '' (↑ofDual ⁻¹' s)
[PROOFSTEP]
simp only [Equiv.image_preimage]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
⊢ eVariationOn f (s ∩ Icc a b) ≤ ENNReal.ofReal (f b - f a)
[PROOFSTEP]
apply iSup_le _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b }),
∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ ENNReal.ofReal (f b - f a)
[PROOFSTEP]
rintro ⟨n, ⟨u, hu, us⟩⟩
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).fst,
edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).snd (i + 1)))
(f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).snd i)) ≤
ENNReal.ofReal (f b - f a)
[PROOFSTEP]
calc
(∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) =
∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i)) :=
by
refine Finset.sum_congr rfl fun i hi => ?_
simp only [Finset.mem_range] at hi
rw [edist_dist, Real.dist_eq, abs_of_nonneg]
exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _)))
_ = ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i))) :=
by
rw [ENNReal.ofReal_sum_of_nonneg]
intro i _
exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _)))
_ = ENNReal.ofReal (f (u n) - f (u 0)) := by rw [Finset.sum_range_sub fun i => f (u i)]
_ ≤ ENNReal.ofReal (f b - f a) := by
apply ENNReal.ofReal_le_ofReal
exact sub_le_sub (hf (us n).1 bs (us n).2.2) (hf as (us 0).1 (us 0).2.1)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) =
∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i))
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
i : ℕ
hi : i ∈ Finset.range n
⊢ edist (f (u (i + 1))) (f (u i)) = ENNReal.ofReal (f (u (i + 1)) - f (u i))
[PROOFSTEP]
simp only [Finset.mem_range] at hi
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
i : ℕ
hi : i < n
⊢ edist (f (u (i + 1))) (f (u i)) = ENNReal.ofReal (f (u (i + 1)) - f (u i))
[PROOFSTEP]
rw [edist_dist, Real.dist_eq, abs_of_nonneg]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
i : ℕ
hi : i < n
⊢ 0 ≤ f (u (i + 1)) - f (u i)
[PROOFSTEP]
exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _)))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i)) =
ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i)))
[PROOFSTEP]
rw [ENNReal.ofReal_sum_of_nonneg]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ∀ (i : ℕ), i ∈ Finset.range n → 0 ≤ f (u (i + 1)) - f (u i)
[PROOFSTEP]
intro i _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
i : ℕ
a✝ : i ∈ Finset.range n
⊢ 0 ≤ f (u (i + 1)) - f (u i)
[PROOFSTEP]
exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _)))
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i))) = ENNReal.ofReal (f (u n) - f (u 0))
[PROOFSTEP]
rw [Finset.sum_range_sub fun i => f (u i)]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ ENNReal.ofReal (f (u n) - f (u 0)) ≤ ENNReal.ofReal (f b - f a)
[PROOFSTEP]
apply ENNReal.ofReal_le_ofReal
[GOAL]
case h
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
hf : MonotoneOn f s
a b : α
as : a ∈ s
bs : b ∈ s
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b
⊢ f (u n) - f (u 0) ≤ f b - f a
[PROOFSTEP]
exact sub_le_sub (hf (us n).1 bs (us n).2.2) (hf as (us 0).1 (us 0).2.1)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a : α
⊢ variationOnFromTo f s a a = 0
[PROOFSTEP]
dsimp only [variationOnFromTo]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a : α
⊢ (if a ≤ a then ENNReal.toReal (eVariationOn f (s ∩ Icc a a)) else -ENNReal.toReal (eVariationOn f (s ∩ Icc a a))) = 0
[PROOFSTEP]
rw [if_pos le_rfl, Icc_self, eVariationOn.subsingleton, ENNReal.zero_toReal]
[GOAL]
case hs
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a : α
⊢ Set.Subsingleton (s ∩ {a})
[PROOFSTEP]
exact fun x hx y hy => hx.2.trans hy.2.symm
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
h : a ≤ b
⊢ 0 ≤ variationOnFromTo f s a b
[PROOFSTEP]
simp only [variationOnFromTo, if_pos h, ENNReal.toReal_nonneg]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a
[PROOFSTEP]
rcases lt_trichotomy a b with (ab | rfl | ba)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
ab : a < b
⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a
[PROOFSTEP]
simp only [variationOnFromTo, if_pos ab.le, if_neg ab.not_le, neg_neg]
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a : α
⊢ variationOnFromTo f s a a = -variationOnFromTo f s a a
[PROOFSTEP]
simp only [variationOnFromTo.self, neg_zero]
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
ba : b < a
⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a
[PROOFSTEP]
simp only [variationOnFromTo, if_pos ba.le, if_neg ba.not_le, neg_neg]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
h : b ≤ a
⊢ variationOnFromTo f s a b ≤ 0
[PROOFSTEP]
rw [variationOnFromTo.eq_neg_swap]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
h : b ≤ a
⊢ -variationOnFromTo f s b a ≤ 0
[PROOFSTEP]
exact neg_nonpos_of_nonneg (variationOnFromTo.nonneg_of_le f s h)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
a b : α
h : b ≤ a
⊢ variationOnFromTo f s a b = -ENNReal.toReal (eVariationOn f (s ∩ Icc b a))
[PROOFSTEP]
rw [variationOnFromTo.eq_neg_swap, neg_inj, variationOnFromTo.eq_of_le f s h]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
⊢ variationOnFromTo f s a b + variationOnFromTo f s b c = variationOnFromTo f s a c
[PROOFSTEP]
symm
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
⊢ variationOnFromTo f s a c = variationOnFromTo f s a b + variationOnFromTo f s b c
[PROOFSTEP]
refine' additive_of_isTotal ((· : α) ≤ ·) (variationOnFromTo f s) (· ∈ s) _ _ ha hb hc
[GOAL]
case refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
⊢ ∀ {a b : α}, (fun x => x ∈ s) a → (fun x => x ∈ s) b → variationOnFromTo f s a b + variationOnFromTo f s b a = 0
[PROOFSTEP]
rintro x y _xs _ys
[GOAL]
case refine'_1
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
x y : α
_xs : x ∈ s
_ys : y ∈ s
⊢ variationOnFromTo f s x y + variationOnFromTo f s y x = 0
[PROOFSTEP]
simp only [variationOnFromTo.eq_neg_swap f s y x, Subtype.coe_mk, add_right_neg, forall_true_left]
[GOAL]
case refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
⊢ ∀ {a b c : α},
(fun x x_1 => x ≤ x_1) a b →
(fun x x_1 => x ≤ x_1) b c →
(fun x => x ∈ s) a →
(fun x => x ∈ s) b →
(fun x => x ∈ s) c → variationOnFromTo f s a c = variationOnFromTo f s a b + variationOnFromTo f s b c
[PROOFSTEP]
rintro x y z xy yz xs ys zs
[GOAL]
case refine'_2
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
x y z : α
xy : x ≤ y
yz : y ≤ z
xs : x ∈ s
ys : y ∈ s
zs : z ∈ s
⊢ variationOnFromTo f s x z = variationOnFromTo f s x y + variationOnFromTo f s y z
[PROOFSTEP]
rw [variationOnFromTo.eq_of_le f s xy, variationOnFromTo.eq_of_le f s yz, variationOnFromTo.eq_of_le f s (xy.trans yz),
← ENNReal.toReal_add (hf x y xs ys) (hf y z ys zs), eVariationOn.Icc_add_Icc f xy yz ys]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
⊢ edist (f a) (f b) = 0
[PROOFSTEP]
wlog h' : a ≤ b
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
this :
∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E],
(α → E) →
Set α →
∀ {f : α → E} {s : Set α},
LocallyBoundedVariationOn f s →
∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0
h' : ¬a ≤ b
⊢ edist (f a) (f b) = 0
[PROOFSTEP]
rw [edist_comm]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
this :
∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E],
(α → E) →
Set α →
∀ {f : α → E} {s : Set α},
LocallyBoundedVariationOn f s →
∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0
h' : ¬a ≤ b
⊢ edist (f b) (f a) = 0
[PROOFSTEP]
apply this f s hf hb ha _ (le_of_not_le h')
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
this :
∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E],
(α → E) →
Set α →
∀ {f : α → E} {s : Set α},
LocallyBoundedVariationOn f s →
∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0
h' : ¬a ≤ b
⊢ variationOnFromTo f s b a = 0
[PROOFSTEP]
rw [variationOnFromTo.eq_neg_swap, h, neg_zero]
[GOAL]
α✝ : Type u_1
inst✝³ : LinearOrder α✝
E✝ : Type u_2
inst✝² : PseudoEMetricSpace E✝
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
h' : a ≤ b
⊢ edist (f a) (f b) = 0
[PROOFSTEP]
apply le_antisymm _ (zero_le _)
[GOAL]
α✝ : Type u_1
inst✝³ : LinearOrder α✝
E✝ : Type u_2
inst✝² : PseudoEMetricSpace E✝
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
h' : a ≤ b
⊢ edist (f a) (f b) ≤ 0
[PROOFSTEP]
rw [← ENNReal.ofReal_zero, ← h, variationOnFromTo.eq_of_le f s h', ENNReal.ofReal_toReal (hf a b ha hb)]
[GOAL]
α✝ : Type u_1
inst✝³ : LinearOrder α✝
E✝ : Type u_2
inst✝² : PseudoEMetricSpace E✝
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
h' : a ≤ b
⊢ edist (f a) (f b) ≤ eVariationOn f (s ∩ Icc a b)
[PROOFSTEP]
apply eVariationOn.edist_le
[GOAL]
case hx
α✝ : Type u_1
inst✝³ : LinearOrder α✝
E✝ : Type u_2
inst✝² : PseudoEMetricSpace E✝
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
h' : a ≤ b
⊢ a ∈ s ∩ Icc a b
case hy
α✝ : Type u_1
inst✝³ : LinearOrder α✝
E✝ : Type u_2
inst✝² : PseudoEMetricSpace E✝
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
h : variationOnFromTo f s a b = 0
h' : a ≤ b
⊢ b ∈ s ∩ Icc a b
[PROOFSTEP]
exacts [⟨ha, ⟨le_rfl, h'⟩⟩, ⟨hb, ⟨h', le_rfl⟩⟩]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b c : α
ha : a ∈ s
hb : b ∈ s
hc : c ∈ s
⊢ variationOnFromTo f s a b = variationOnFromTo f s a c ↔ variationOnFromTo f s b c = 0
[PROOFSTEP]
simp only [← variationOnFromTo.add hf ha hb hc, self_eq_add_right]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ab : a ≤ b
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc a b → ∀ ⦃y : α⦄, y ∈ s ∩ Icc a b → edist (f x) (f y) = 0
[PROOFSTEP]
rw [variationOnFromTo.eq_of_le _ _ ab, ENNReal.toReal_eq_zero_iff, or_iff_left (hf a b ha hb), eVariationOn.eq_zero_iff]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ba : b ≤ a
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc b a → ∀ ⦃y : α⦄, y ∈ s ∩ Icc b a → edist (f x) (f y) = 0
[PROOFSTEP]
rw [variationOnFromTo.eq_of_ge _ _ ba, neg_eq_zero, ENNReal.toReal_eq_zero_iff, or_iff_left (hf b a hb ha),
eVariationOn.eq_zero_iff]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0
[PROOFSTEP]
rcases le_total a b with (ab | ba)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ab : a ≤ b
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0
[PROOFSTEP]
rw [uIcc_of_le ab]
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ab : a ≤ b
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc a b → ∀ ⦃y : α⦄, y ∈ s ∩ Icc a b → edist (f x) (f y) = 0
[PROOFSTEP]
exact variationOnFromTo.eq_zero_iff_of_le hf ha hb ab
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ba : b ≤ a
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0
[PROOFSTEP]
rw [uIcc_of_ge ba]
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
ba : b ≤ a
⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc b a → ∀ ⦃y : α⦄, y ∈ s ∩ Icc b a → edist (f x) (f y) = 0
[PROOFSTEP]
exact variationOnFromTo.eq_zero_iff_of_ge hf ha hb ba
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
⊢ MonotoneOn (variationOnFromTo f s a) s
[PROOFSTEP]
rintro b bs c cs bc
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ variationOnFromTo f s a b ≤ variationOnFromTo f s a c
[PROOFSTEP]
rw [← variationOnFromTo.add hf as bs cs]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ variationOnFromTo f s a b ≤ variationOnFromTo f s a b + variationOnFromTo f s b c
[PROOFSTEP]
exact le_add_of_nonneg_right (variationOnFromTo.nonneg_of_le f s bc)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
b : α
bs : b ∈ s
⊢ AntitoneOn (fun a => variationOnFromTo f s a b) s
[PROOFSTEP]
rintro a as c cs ac
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
b : α
bs : b ∈ s
a : α
as : a ∈ s
c : α
cs : c ∈ s
ac : a ≤ c
⊢ (fun a => variationOnFromTo f s a b) c ≤ (fun a => variationOnFromTo f s a b) a
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
b : α
bs : b ∈ s
a : α
as : a ∈ s
c : α
cs : c ∈ s
ac : a ≤ c
⊢ variationOnFromTo f s c b ≤ variationOnFromTo f s a b
[PROOFSTEP]
rw [← variationOnFromTo.add hf as cs bs]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → E
s : Set α
hf : LocallyBoundedVariationOn f s
b : α
bs : b ∈ s
a : α
as : a ∈ s
c : α
cs : c ∈ s
ac : a ≤ c
⊢ variationOnFromTo f s c b ≤ variationOnFromTo f s a c + variationOnFromTo f s c b
[PROOFSTEP]
exact le_add_of_nonneg_left (variationOnFromTo.nonneg_of_le f s ac)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
⊢ MonotoneOn (variationOnFromTo f s a - f) s
[PROOFSTEP]
rintro b bs c cs bc
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ (variationOnFromTo f s a - f) b ≤ (variationOnFromTo f s a - f) c
[PROOFSTEP]
rw [Pi.sub_apply, Pi.sub_apply, le_sub_iff_add_le, add_comm_sub, ← le_sub_iff_add_le']
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ f c - f b ≤ variationOnFromTo f s a c - variationOnFromTo f s a b
[PROOFSTEP]
calc
f c - f b ≤ |f c - f b| := le_abs_self _
_ = dist (f b) (f c) := by rw [dist_comm, Real.dist_eq]
_ ≤ variationOnFromTo f s b c := by
rw [variationOnFromTo.eq_of_le f s bc, dist_edist]
apply ENNReal.toReal_mono (hf b c bs cs)
apply eVariationOn.edist_le f
exacts [⟨bs, le_rfl, bc⟩, ⟨cs, bc, le_rfl⟩]
_ = variationOnFromTo f s a c - variationOnFromTo f s a b := by
rw [← variationOnFromTo.add hf as bs cs, add_sub_cancel']
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ |f c - f b| = dist (f b) (f c)
[PROOFSTEP]
rw [dist_comm, Real.dist_eq]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ dist (f b) (f c) ≤ variationOnFromTo f s b c
[PROOFSTEP]
rw [variationOnFromTo.eq_of_le f s bc, dist_edist]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ ENNReal.toReal (edist (f b) (f c)) ≤ ENNReal.toReal (eVariationOn f (s ∩ Icc b c))
[PROOFSTEP]
apply ENNReal.toReal_mono (hf b c bs cs)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ edist (f b) (f c) ≤ eVariationOn f (s ∩ Icc b c)
[PROOFSTEP]
apply eVariationOn.edist_le f
[GOAL]
case hx
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ b ∈ s ∩ Icc b c
case hy
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ c ∈ s ∩ Icc b c
[PROOFSTEP]
exacts [⟨bs, le_rfl, bc⟩, ⟨cs, bc, le_rfl⟩]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f✝ : α → E
s✝ : Set α
f : α → ℝ
s : Set α
hf : LocallyBoundedVariationOn f s
a : α
as : a ∈ s
b : α
bs : b ∈ s
c : α
cs : c ∈ s
bc : b ≤ c
⊢ variationOnFromTo f s b c = variationOnFromTo f s a c - variationOnFromTo f s a b
[PROOFSTEP]
rw [← variationOnFromTo.add hf as bs cs, add_sub_cancel']
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
f✝ : α → E
s : Set α
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y)
[PROOFSTEP]
rcases le_total x y with (h | h)
[GOAL]
case inl
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
f✝ : α → E
s : Set α
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : x ≤ y
⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y)
[PROOFSTEP]
rw [variationOnFromTo.eq_of_le _ _ h, variationOnFromTo.eq_of_le _ _ (hφ hx hy h),
eVariationOn.comp_inter_Icc_eq_of_monotoneOn f φ hφ hx hy]
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
f✝ : α → E
s : Set α
β : Type u_3
inst✝ : LinearOrder β
f : α → E
t : Set β
φ : β → α
hφ : MonotoneOn φ t
x y : β
hx : x ∈ t
hy : y ∈ t
h : y ≤ x
⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y)
[PROOFSTEP]
rw [variationOnFromTo.eq_of_ge _ _ h, variationOnFromTo.eq_of_ge _ _ (hφ hy hx h),
eVariationOn.comp_inter_Icc_eq_of_monotoneOn f φ hφ hy hx]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
h : LocallyBoundedVariationOn f s
⊢ ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q
[PROOFSTEP]
rcases eq_empty_or_nonempty s with (rfl | ⟨c, cs⟩)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
h : LocallyBoundedVariationOn f ∅
⊢ ∃ p q, MonotoneOn p ∅ ∧ MonotoneOn q ∅ ∧ f = p - q
[PROOFSTEP]
exact ⟨f, 0, subsingleton_empty.monotoneOn _, subsingleton_empty.monotoneOn _, (sub_zero f).symm⟩
[GOAL]
case inr.intro
α : Type u_1
inst✝¹ : LinearOrder α
E : Type u_2
inst✝ : PseudoEMetricSpace E
f : α → ℝ
s : Set α
h : LocallyBoundedVariationOn f s
c : α
cs : c ∈ s
⊢ ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q
[PROOFSTEP]
exact ⟨_, _, variationOnFromTo.monotoneOn h cs, variationOnFromTo.sub_self_monotoneOn h cs, (sub_sub_cancel _ _).symm⟩
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
F : Type u_3
inst✝ : PseudoEMetricSpace F
f : E → F
C : ℝ≥0
t : Set E
h : LipschitzOnWith C f t
g : α → E
s : Set α
hg : MapsTo g s t
⊢ eVariationOn (f ∘ g) s ≤ ↑C * eVariationOn g s
[PROOFSTEP]
apply iSup_le _
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
F : Type u_3
inst✝ : PseudoEMetricSpace F
f : E → F
C : ℝ≥0
t : Set E
h : LipschitzOnWith C f t
g : α → E
s : Set α
hg : MapsTo g s t
⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }),
∑ i_1 in Finset.range i.fst, edist ((f ∘ g) (↑i.snd (i_1 + 1))) ((f ∘ g) (↑i.snd i_1)) ≤ ↑C * eVariationOn g s
[PROOFSTEP]
rintro ⟨n, ⟨u, hu, us⟩⟩
[GOAL]
case mk.mk.intro
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
F : Type u_3
inst✝ : PseudoEMetricSpace F
f : E → F
C : ℝ≥0
t : Set E
h : LipschitzOnWith C f t
g : α → E
s : Set α
hg : MapsTo g s t
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst,
edist ((f ∘ g) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1)))
((f ∘ g) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) ≤
↑C * eVariationOn g s
[PROOFSTEP]
calc
(∑ i in Finset.range n, edist (f (g (u (i + 1)))) (f (g (u i)))) ≤
∑ i in Finset.range n, C * edist (g (u (i + 1))) (g (u i)) :=
Finset.sum_le_sum fun i _ => h (hg (us _)) (hg (us _))
_ = C * ∑ i in Finset.range n, edist (g (u (i + 1))) (g (u i)) := by rw [Finset.mul_sum]
_ ≤ C * eVariationOn g s := mul_le_mul_left' (eVariationOn.sum_le _ _ hu us) _
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
E : Type u_2
inst✝¹ : PseudoEMetricSpace E
F : Type u_3
inst✝ : PseudoEMetricSpace F
f : E → F
C : ℝ≥0
t : Set E
h : LipschitzOnWith C f t
g : α → E
s : Set α
hg : MapsTo g s t
n : ℕ
u : ℕ → α
hu : Monotone u
us : ∀ (i : ℕ), u i ∈ s
⊢ ∑ i in Finset.range n, ↑C * edist (g (u (i + 1))) (g (u i)) =
↑C * ∑ i in Finset.range n, edist (g (u (i + 1))) (g (u i))
[PROOFSTEP]
rw [Finset.mul_sum]
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
obtain ⟨p, q, hp, hq, fpq⟩ : ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q := h.exists_monotoneOn_sub_monotoneOn
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
p q : ℝ → ℝ
hp : MonotoneOn p s
hq : MonotoneOn q s
fpq : f = p - q
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
subst f
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set ℝ
p q : ℝ → ℝ
hp : MonotoneOn p s
hq : MonotoneOn q s
h : LocallyBoundedVariationOn (p - q) s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (p - q) s x
[PROOFSTEP]
filter_upwards [hp.ae_differentiableWithinAt_of_mem, hq.ae_differentiableWithinAt_of_mem] with x hxp hxq xs
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
s : Set ℝ
p q : ℝ → ℝ
hp : MonotoneOn p s
hq : MonotoneOn q s
h : LocallyBoundedVariationOn (p - q) s
x : ℝ
hxp : x ∈ s → DifferentiableWithinAt ℝ p s x
hxq : x ∈ s → DifferentiableWithinAt ℝ q s x
xs : x ∈ s
⊢ DifferentiableWithinAt ℝ (p - q) s x
[PROOFSTEP]
exact (hxp xs).sub (hxq xs)
[GOAL]
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
have A : ∀ i : ι, LipschitzWith 1 fun x : ι → ℝ => x i := fun i => LipschitzWith.eval i
[GOAL]
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : ∀ (i : ι), LipschitzWith 1 fun x => x i
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
have : ∀ i : ι, ∀ᵐ x, x ∈ s → DifferentiableWithinAt ℝ (fun x : ℝ => f x i) s x := fun i ↦
by
apply ae_differentiableWithinAt_of_mem_real
exact LipschitzWith.comp_locallyBoundedVariationOn (A i) h
[GOAL]
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : ∀ (i : ι), LipschitzWith 1 fun x => x i
i : ι
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x
[PROOFSTEP]
apply ae_differentiableWithinAt_of_mem_real
[GOAL]
case h
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : ∀ (i : ι), LipschitzWith 1 fun x => x i
i : ι
⊢ LocallyBoundedVariationOn (fun x => f x i) s
[PROOFSTEP]
exact LipschitzWith.comp_locallyBoundedVariationOn (A i) h
[GOAL]
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : ∀ (i : ι), LipschitzWith 1 fun x => x i
this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
filter_upwards [ae_all_iff.2 this] with x hx xs
[GOAL]
case h
α : Type u_1
inst✝⁵ : LinearOrder α
E : Type u_2
inst✝⁴ : PseudoEMetricSpace E
V : Type u_3
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
ι : Type u_4
inst✝ : Fintype ι
f : ℝ → ι → ℝ
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : ∀ (i : ι), LipschitzWith 1 fun x => x i
this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x
x : ℝ
hx : ∀ (i : ι), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x
xs : x ∈ s
⊢ DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
exact differentiableWithinAt_pi.2 fun i => hx i xs
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
let A := (Basis.ofVectorSpace ℝ V).equivFun.toContinuousLinearEquiv
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
suffices H : ∀ᵐ x, x ∈ s → DifferentiableWithinAt ℝ (A ∘ f) s x
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
filter_upwards [H] with x hx xs
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
x : ℝ
hx :
x ∈ s →
DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x
xs : x ∈ s
⊢ DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
have : f = (A.symm ∘ A) ∘ f := by simp only [ContinuousLinearEquiv.symm_comp_self, Function.comp.left_id]
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
x : ℝ
hx :
x ∈ s →
DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x
xs : x ∈ s
⊢ f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f
[PROOFSTEP]
simp only [ContinuousLinearEquiv.symm_comp_self, Function.comp.left_id]
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
x : ℝ
hx :
x ∈ s →
DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x
xs : x ∈ s
this : f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f
⊢ DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
rw [this]
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
x : ℝ
hx :
x ∈ s →
DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x
xs : x ∈ s
this : f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f
⊢ DifferentiableWithinAt ℝ ((↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f) s x
[PROOFSTEP]
exact A.symm.differentiableAt.comp_differentiableWithinAt x (hx xs)
[GOAL]
case H
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x
[PROOFSTEP]
apply ae_differentiableWithinAt_of_mem_pi
[GOAL]
case H.h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ :=
LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))
⊢ LocallyBoundedVariationOn (↑A ∘ f) s
[PROOFSTEP]
exact A.lipschitz.comp_locallyBoundedVariationOn h
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
hs : MeasurableSet s
⊢ ∀ᵐ (x : ℝ) ∂Measure.restrict volume s, DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
rw [ae_restrict_iff' hs]
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
s : Set ℝ
h : LocallyBoundedVariationOn f s
hs : MeasurableSet s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
exact h.ae_differentiableWithinAt_of_mem
[GOAL]
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
h : LocallyBoundedVariationOn f univ
⊢ ∀ᵐ (x : ℝ), DifferentiableAt ℝ f x
[PROOFSTEP]
filter_upwards [h.ae_differentiableWithinAt_of_mem] with x hx
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
h : LocallyBoundedVariationOn f univ
x : ℝ
hx : x ∈ univ → DifferentiableWithinAt ℝ f univ x
⊢ DifferentiableAt ℝ f x
[PROOFSTEP]
rw [differentiableWithinAt_univ] at hx
[GOAL]
case h
α : Type u_1
inst✝⁴ : LinearOrder α
E : Type u_2
inst✝³ : PseudoEMetricSpace E
V : Type u_3
inst✝² : NormedAddCommGroup V
inst✝¹ : NormedSpace ℝ V
inst✝ : FiniteDimensional ℝ V
f : ℝ → V
h : LocallyBoundedVariationOn f univ
x : ℝ
hx : x ∈ univ → DifferentiableAt ℝ f x
⊢ DifferentiableAt ℝ f x
[PROOFSTEP]
exact hx (mem_univ _)
| {"mathlib_filename": "Mathlib.Analysis.BoundedVariation", "llama_tokens": 119388} |
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
by_cases A : ∃ i ∈ s, z i = 0 ∧ w i ≠ 0
[GOAL]
case pos
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∃ i, i ∈ s ∧ z i = 0 ∧ w i ≠ 0
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
rcases A with ⟨i, his, hzi, hwi⟩
[GOAL]
case pos.intro.intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
i : ι
his : i ∈ s
hzi : z i = 0
hwi : w i ≠ 0
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
rw [prod_eq_zero his]
[GOAL]
case pos.intro.intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
i : ι
his : i ∈ s
hzi : z i = 0
hwi : w i ≠ 0
⊢ 0 ≤ ∑ i in s, w i * z i
[PROOFSTEP]
exact sum_nonneg fun j hj => mul_nonneg (hw j hj) (hz j hj)
[GOAL]
case pos.intro.intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
i : ι
his : i ∈ s
hzi : z i = 0
hwi : w i ≠ 0
⊢ z i ^ w i = 0
[PROOFSTEP]
rw [hzi]
[GOAL]
case pos.intro.intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
i : ι
his : i ∈ s
hzi : z i = 0
hwi : w i ≠ 0
⊢ 0 ^ w i = 0
[PROOFSTEP]
exact zero_rpow hwi
[GOAL]
case neg
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ¬∃ i, i ∈ s ∧ z i = 0 ∧ w i ≠ 0
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
simp only [not_exists, not_and, Ne.def, Classical.not_not] at A
[GOAL]
case neg
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
have := convexOn_exp.map_sum_le hw hw' fun i _ => Set.mem_univ <| log (z i)
[GOAL]
case neg
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : exp (∑ i in s, w i • log (z i)) ≤ ∑ i in s, w i • exp (log (z i))
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
simp only [exp_sum, (· ∘ ·), smul_eq_mul, mul_comm (w _) (log _)] at this
[GOAL]
case neg
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
convert this using 1 <;> [apply prod_congr rfl; apply sum_congr rfl]
[GOAL]
case neg
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∏ i in s, z i ^ w i = ∏ x in s, exp (log (z x) * w x)
[PROOFSTEP]
apply prod_congr rfl
[GOAL]
case h.e'_4
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∑ i in s, w i * z i = ∑ x in s, w x * exp (log (z x))
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∀ (x : ι), x ∈ s → z x ^ w x = exp (log (z x) * w x)
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
⊢ ∀ (x : ι), x ∈ s → w x * z x = w x * exp (log (z x))
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
⊢ z i ^ w i = exp (log (z i) * w i)
[PROOFSTEP]
cases' eq_or_lt_of_le (hz i hi) with hz hz
[GOAL]
case h.e'_3.inl
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
hz : 0 = z i
⊢ z i ^ w i = exp (log (z i) * w i)
[PROOFSTEP]
simp [A i hi hz.symm]
[GOAL]
case h.e'_3.inr
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
hz : 0 < z i
⊢ z i ^ w i = exp (log (z i) * w i)
[PROOFSTEP]
exact rpow_def_of_pos hz _
[GOAL]
case h.e'_4
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
⊢ w i * z i = w i * exp (log (z i))
[PROOFSTEP]
cases' eq_or_lt_of_le (hz i hi) with hz hz
[GOAL]
case h.e'_4.inl
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
hz : 0 = z i
⊢ w i * z i = w i * exp (log (z i))
[PROOFSTEP]
simp [A i hi hz.symm]
[GOAL]
case h.e'_4.inr
ι : Type u
s : Finset ι
w z : ι → ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i
A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0
this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x))
i : ι
hi : i ∈ s
hz : 0 < z i
⊢ w i * z i = w i * exp (log (z i))
[PROOFSTEP]
rw [exp_log hz]
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∏ i in s, z i ^ w i = ∏ i in s, x ^ w i
[PROOFSTEP]
refine' prod_congr rfl fun i hi => _
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
⊢ z i ^ w i = x ^ w i
[PROOFSTEP]
cases' eq_or_ne (w i) 0 with h₀ h₀
[GOAL]
case inl
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
h₀ : w i = 0
⊢ z i ^ w i = x ^ w i
[PROOFSTEP]
rw [h₀, rpow_zero, rpow_zero]
[GOAL]
case inr
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
h₀ : w i ≠ 0
⊢ z i ^ w i = x ^ w i
[PROOFSTEP]
rw [hx i hi h₀]
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∏ i in s, x ^ w i = x
[PROOFSTEP]
rw [← rpow_sum_of_nonneg _ hw, hw', rpow_one]
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ 0 ≤ x
[PROOFSTEP]
have : (∑ i in s, w i) ≠ 0 := by
rw [hw']
exact one_ne_zero
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∑ i in s, w i ≠ 0
[PROOFSTEP]
rw [hw']
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
this : ∑ i in s, w i ≠ 0
⊢ 0 ≤ x
[PROOFSTEP]
obtain ⟨i, his, hi⟩ := exists_ne_zero_of_sum_ne_zero this
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
this : ∑ i in s, w i ≠ 0
i : ι
his : i ∈ s
hi : w i ≠ 0
⊢ 0 ≤ x
[PROOFSTEP]
rw [← hx i his hi]
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
this : ∑ i in s, w i ≠ 0
i : ι
his : i ∈ s
hi : w i ≠ 0
⊢ 0 ≤ z i
[PROOFSTEP]
exact hz i his
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw' : ∑ i in s, w i = 1
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∑ i in s, w i * z i = ∑ i in s, w i * x
[PROOFSTEP]
refine' sum_congr rfl fun i hi => _
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw' : ∑ i in s, w i = 1
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
⊢ w i * z i = w i * x
[PROOFSTEP]
cases' eq_or_ne (w i) 0 with hwi hwi
[GOAL]
case inl
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw' : ∑ i in s, w i = 1
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
hwi : w i = 0
⊢ w i * z i = w i * x
[PROOFSTEP]
rw [hwi, zero_mul, zero_mul]
[GOAL]
case inr
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw' : ∑ i in s, w i = 1
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
i : ι
hi : i ∈ s
hwi : w i ≠ 0
⊢ w i * z i = w i * x
[PROOFSTEP]
rw [hx i hi hwi]
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw' : ∑ i in s, w i = 1
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∑ i in s, w i * x = x
[PROOFSTEP]
rw [← sum_mul, hw', one_mul]
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∏ i in s, z i ^ w i = ∑ i in s, w i * z i
[PROOFSTEP]
rw [geom_mean_weighted_of_constant, arith_mean_weighted_of_constant]
[GOAL]
case x
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ℝ
[PROOFSTEP]
assumption
[GOAL]
case hw'
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∑ i in s, w i = 1
[PROOFSTEP]
assumption
[GOAL]
case hx
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
[PROOFSTEP]
assumption
[GOAL]
case hw
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∀ (i : ι), i ∈ s → 0 ≤ w i
[PROOFSTEP]
assumption
[GOAL]
case hw'
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∑ i in s, w i = 1
[PROOFSTEP]
assumption
[GOAL]
case hz
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∀ (i : ι), i ∈ s → 0 ≤ z i
[PROOFSTEP]
assumption
[GOAL]
case hx
ι : Type u
s : Finset ι
w z : ι → ℝ
x : ℝ
hw : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw' : ∑ i in s, w i = 1
hz : ∀ (i : ι), i ∈ s → 0 ≤ z i
hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
⊢ ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x
[PROOFSTEP]
assumption
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ≥0
hw' : ∑ i in s, w i = 1
⊢ ∏ i in s, z i ^ ↑(w i) ≤ ∑ i in s, w i * z i
[PROOFSTEP]
exact_mod_cast
Real.geom_mean_le_arith_mean_weighted _ _ _ (fun i _ => (w i).coe_nonneg) (by assumption_mod_cast) fun i _ =>
(z i).coe_nonneg
[GOAL]
ι : Type u
s : Finset ι
w z : ι → ℝ≥0
hw' : ∑ i in s, w i = 1
⊢ ∑ i in s, ↑(w i) = 1
[PROOFSTEP]
assumption_mod_cast
[GOAL]
ι : Type u
s : Finset ι
w₁ w₂ p₁ p₂ : ℝ≥0
⊢ w₁ + w₂ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ ≤ w₁ * p₁ + w₂ * p₂
[PROOFSTEP]
simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty,
Fin.cons_succ, Fin.cons_zero, add_zero, mul_one] using geom_mean_le_arith_mean_weighted univ ![w₁, w₂] ![p₁, p₂]
[GOAL]
ι : Type u
s : Finset ι
w₁ w₂ w₃ p₁ p₂ p₃ : ℝ≥0
⊢ w₁ + w₂ + w₃ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ * p₃ ^ ↑w₃ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃
[PROOFSTEP]
simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty,
Fin.cons_succ, Fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc] using
geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃] ![p₁, p₂, p₃]
[GOAL]
ι : Type u
s : Finset ι
w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ≥0
⊢ w₁ + w₂ + w₃ + w₄ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ * p₃ ^ ↑w₃ * p₄ ^ ↑w₄ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄
[PROOFSTEP]
simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty,
Fin.cons_succ, Fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc] using
geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃, w₄] ![p₁, p₂, p₃, p₄]
[GOAL]
ι : Type u
s : Finset ι
w₁ w₂ p₁ p₂ : ℝ
hw₁ : 0 ≤ w₁
hw₂ : 0 ≤ w₂
hp₁ : 0 ≤ p₁
hp₂ : 0 ≤ p₂
hw : w₁ + w₂ = 1
⊢ ↑({ val := w₁, property := hw₁ } + { val := w₂, property := hw₂ }) = ↑1
[PROOFSTEP]
assumption
[GOAL]
ι : Type u
s : Finset ι
w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ
hw₁ : 0 ≤ w₁
hw₂ : 0 ≤ w₂
hw₃ : 0 ≤ w₃
hw₄ : 0 ≤ w₄
hp₁ : 0 ≤ p₁
hp₂ : 0 ≤ p₂
hp₃ : 0 ≤ p₃
hp₄ : 0 ≤ p₄
hw : w₁ + w₂ + w₃ + w₄ = 1
⊢ ↑({ val := w₁, property := hw₁ } + { val := w₂, property := hw₂ } + { val := w₃, property := hw₃ } +
{ val := w₄, property := hw₄ }) =
↑1
[PROOFSTEP]
assumption
[GOAL]
ι : Type u
s : Finset ι
a b p q : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hpq : IsConjugateExponent p q
⊢ a * b ≤ a ^ p / p + b ^ q / q
[PROOFSTEP]
simpa [← rpow_mul, ha, hb, hpq.ne_zero, hpq.symm.ne_zero, _root_.div_eq_inv_mul] using
geom_mean_le_arith_mean2_weighted hpq.one_div_nonneg hpq.symm.one_div_nonneg (rpow_nonneg_of_nonneg ha p)
(rpow_nonneg_of_nonneg hb q) hpq.inv_add_inv_conj
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ a * b ≤ a ^ p / Real.toNNReal p + b ^ q / Real.toNNReal q
[PROOFSTEP]
nth_rw 1 [← Real.coe_toNNReal p hpq.nonneg]
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ a * b ≤ a ^ ↑(Real.toNNReal p) / Real.toNNReal p + b ^ q / Real.toNNReal q
[PROOFSTEP]
nth_rw 1 [← Real.coe_toNNReal q hpq.symm.nonneg]
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ a * b ≤ a ^ ↑(Real.toNNReal p) / Real.toNNReal p + b ^ ↑(Real.toNNReal q) / Real.toNNReal q
[PROOFSTEP]
exact young_inequality a b hpq.one_lt_nnreal hpq.inv_add_inv_conj_nnreal
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
by_cases h : a = ⊤ ∨ b = ⊤
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
refine' le_trans le_top (le_of_eq _)
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ ⊤ = a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
repeat rw [div_eq_mul_inv]
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ ⊤ = a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
case pos
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤ ∨ b = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
cases' h with h h
[GOAL]
case pos.inl
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
rw [h]
[GOAL]
case pos.inr
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : b = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
rw [h]
[GOAL]
case pos.inl
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a = ⊤
⊢ ⊤ = ⊤ ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
simp [h, hpq.pos, hpq.symm.pos]
[GOAL]
case pos.inr
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : b = ⊤
⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + ⊤ ^ q * (ENNReal.ofReal q)⁻¹
[PROOFSTEP]
simp [h, hpq.pos, hpq.symm.pos]
[GOAL]
case neg
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : ¬(a = ⊤ ∨ b = ⊤)
⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a ≠ ⊤ ∧ b ≠ ⊤
⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q
[PROOFSTEP]
rw [← coe_toNNReal h.left, ← coe_toNNReal h.right, ← coe_mul, coe_rpow_of_nonneg _ hpq.nonneg,
coe_rpow_of_nonneg _ hpq.symm.nonneg, ENNReal.ofReal, ENNReal.ofReal, ←
@coe_div (Real.toNNReal p) _ (by simp [hpq.pos]), ← @coe_div (Real.toNNReal q) _ (by simp [hpq.symm.pos]), ← coe_add,
coe_le_coe]
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a ≠ ⊤ ∧ b ≠ ⊤
⊢ Real.toNNReal p ≠ 0
[PROOFSTEP]
simp [hpq.pos]
[GOAL]
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a ≠ ⊤ ∧ b ≠ ⊤
⊢ Real.toNNReal q ≠ 0
[PROOFSTEP]
simp [hpq.symm.pos]
[GOAL]
case neg
ι : Type u
s : Finset ι
a b : ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
h : a ≠ ⊤ ∧ b ≠ ⊤
⊢ ENNReal.toNNReal a * ENNReal.toNNReal b ≤
ENNReal.toNNReal a ^ p / Real.toNNReal p + ENNReal.toNNReal b ^ q / Real.toNNReal q
[PROOFSTEP]
exact NNReal.young_inequality_real a.toNNReal b.toNNReal hpq
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
⊢ ∑ i in s, f i * g i ≤ 1
[PROOFSTEP]
have hp_ne_zero : Real.toNNReal p ≠ 0 := (zero_lt_one.trans hpq.one_lt_nnreal).ne.symm
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
⊢ ∑ i in s, f i * g i ≤ 1
[PROOFSTEP]
have hq_ne_zero : Real.toNNReal q ≠ 0 := (zero_lt_one.trans hpq.symm.one_lt_nnreal).ne.symm
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
hq_ne_zero : Real.toNNReal q ≠ 0
⊢ ∑ i in s, f i * g i ≤ 1
[PROOFSTEP]
calc
∑ i in s, f i * g i ≤ ∑ i in s, (f i ^ p / Real.toNNReal p + g i ^ q / Real.toNNReal q) :=
Finset.sum_le_sum fun i _ => young_inequality_real (f i) (g i) hpq
_ = (∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q := by
rw [sum_add_distrib, sum_div, sum_div]
_ ≤ 1 / Real.toNNReal p + 1 / Real.toNNReal q :=
by
refine' add_le_add _ _
· rwa [div_le_iff hp_ne_zero, div_mul_cancel _ hp_ne_zero]
· rwa [div_le_iff hq_ne_zero, div_mul_cancel _ hq_ne_zero]
_ = 1 := hpq.inv_add_inv_conj_nnreal
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
hq_ne_zero : Real.toNNReal q ≠ 0
⊢ ∑ i in s, (f i ^ p / Real.toNNReal p + g i ^ q / Real.toNNReal q) =
(∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q
[PROOFSTEP]
rw [sum_add_distrib, sum_div, sum_div]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
hq_ne_zero : Real.toNNReal q ≠ 0
⊢ (∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q ≤
1 / Real.toNNReal p + 1 / Real.toNNReal q
[PROOFSTEP]
refine' add_le_add _ _
[GOAL]
case refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
hq_ne_zero : Real.toNNReal q ≠ 0
⊢ (∑ i in s, f i ^ p) / Real.toNNReal p ≤ 1 / Real.toNNReal p
[PROOFSTEP]
rwa [div_le_iff hp_ne_zero, div_mul_cancel _ hp_ne_zero]
[GOAL]
case refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p ≤ 1
hg : ∑ i in s, g i ^ q ≤ 1
hp_ne_zero : Real.toNNReal p ≠ 0
hq_ne_zero : Real.toNNReal q ≠ 0
⊢ (∑ i in s, g i ^ q) / Real.toNNReal q ≤ 1 / Real.toNNReal q
[PROOFSTEP]
rwa [div_le_iff hq_ne_zero, div_mul_cancel _ hq_ne_zero]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp only [hf, hpq.ne_zero, one_div, sum_eq_zero_iff, zero_rpow, zero_mul, inv_eq_zero, Ne.def, not_false_iff,
le_zero_iff, mul_eq_zero]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p = 0
⊢ ∀ (x : ι), x ∈ s → f x = 0 ∨ g x = 0
[PROOFSTEP]
intro i his
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p = 0
i : ι
his : i ∈ s
⊢ f i = 0 ∨ g i = 0
[PROOFSTEP]
left
[GOAL]
case h
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p = 0
i : ι
his : i ∈ s
⊢ f i = 0
[PROOFSTEP]
rw [sum_eq_zero_iff] at hf
[GOAL]
case h
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∀ (x : ι), x ∈ s → f x ^ p = 0
i : ι
his : i ∈ s
⊢ f i = 0
[PROOFSTEP]
exact (rpow_eq_zero_iff.mp (hf i his)).left
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
by_cases hF_zero : ∑ i in s, f i ^ p = 0
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : ∑ i in s, f i ^ p = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
exact inner_le_Lp_mul_Lp_of_norm_eq_zero s f g hpq hF_zero
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
by_cases hG_zero : ∑ i in s, g i ^ q = 0
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : ∑ i in s, g i ^ q = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
calc
∑ i in s, f i * g i = ∑ i in s, g i * f i := by
congr with i
rw [mul_comm]
_ ≤ (∑ i in s, g i ^ q) ^ (1 / q) * (∑ i in s, f i ^ p) ^ (1 / p) :=
(inner_le_Lp_mul_Lp_of_norm_eq_zero s g f hpq.symm hG_zero)
_ = (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) := mul_comm _ _
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : ∑ i in s, g i ^ q = 0
⊢ ∑ i in s, f i * g i = ∑ i in s, g i * f i
[PROOFSTEP]
congr with i
[GOAL]
case e_f.h.a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : ∑ i in s, g i ^ q = 0
i : ι
⊢ ↑(f i * g i) = ↑(g i * f i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
let f' i := f i / (∑ i in s, f i ^ p) ^ (1 / p)
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
let g' i := g i / (∑ i in s, g i ^ q) ^ (1 / q)
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
suffices (∑ i in s, f' i * g' i) ≤ 1
by
simp_rw [div_mul_div_comm, ← sum_div] at this
rwa [div_le_iff, one_mul] at this
refine' mul_ne_zero _ _
· rw [Ne.def, rpow_eq_zero_iff, not_and_or]
exact Or.inl hF_zero
· rw [Ne.def, rpow_eq_zero_iff, not_and_or]
exact Or.inl hG_zero
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : ∑ i in s, f' i * g' i ≤ 1
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp_rw [div_mul_div_comm, ← sum_div] at this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
rwa [div_le_iff, one_mul] at this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
[PROOFSTEP]
refine' mul_ne_zero _ _
[GOAL]
case refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0
[PROOFSTEP]
rw [Ne.def, rpow_eq_zero_iff, not_and_or]
[GOAL]
case refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ ¬∑ i in s, f i ^ p = 0 ∨ ¬1 / p ≠ 0
[PROOFSTEP]
exact Or.inl hF_zero
[GOAL]
case refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
[PROOFSTEP]
rw [Ne.def, rpow_eq_zero_iff, not_and_or]
[GOAL]
case refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1
⊢ ¬∑ i in s, g i ^ q = 0 ∨ ¬1 / q ≠ 0
[PROOFSTEP]
exact Or.inl hG_zero
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
⊢ ∑ i in s, f' i * g' i ≤ 1
[PROOFSTEP]
refine' inner_le_Lp_mul_Lp_of_norm_le_one s f' g' hpq (le_of_eq _) (le_of_eq _)
[GOAL]
case neg.refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
⊢ ∑ i in s, f' i ^ p = 1
[PROOFSTEP]
simp_rw [div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.ne_zero, rpow_one, div_self hF_zero]
[GOAL]
case neg.refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hF_zero : · i in s, f i ^ p = 0
hG_zero : · i in s, g i ^ q = 0
f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p)
g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q)
⊢ ∑ i in s, g' i ^ q = 1
[PROOFSTEP]
simp_rw [div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.symm.ne_zero, rpow_one, div_self hG_zero]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
⊢ (Summable fun i => f i * g i) ∧
∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
have H₁ : ∀ s : Finset ι, ∑ i in s, f i * g i ≤ (∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q) :=
by
intro s
refine' le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le)
· rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos)]
exact sum_le_tsum _ (fun _ _ => zero_le _) hf
· rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos)]
exact sum_le_tsum _ (fun _ _ => zero_le _) hg
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
⊢ ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
intro s
[GOAL]
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
s : Finset ι
⊢ ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
refine' le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le)
[GOAL]
case refine'_1
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
s : Finset ι
⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos)]
[GOAL]
case refine'_1
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
s : Finset ι
⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p
[PROOFSTEP]
exact sum_le_tsum _ (fun _ _ => zero_le _) hf
[GOAL]
case refine'_2
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
s : Finset ι
⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos)]
[GOAL]
case refine'_2
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
s : Finset ι
⊢ ∑ i in s, g i ^ q ≤ ∑' (i : ι), g i ^ q
[PROOFSTEP]
exact sum_le_tsum _ (fun _ _ => zero_le _) hg
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ (Summable fun i => f i * g i) ∧
∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
have bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i) :=
by
refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩
rintro a ⟨s, rfl⟩
exact H₁ s
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ BddAbove (Set.range fun s => ∑ i in s, f i * g i)
[PROOFSTEP]
refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ∈
upperBounds (Set.range fun s => ∑ i in s, f i * g i)
[PROOFSTEP]
rintro a ⟨s, rfl⟩
[GOAL]
case intro
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
s : Finset ι
⊢ (fun s => ∑ i in s, f i * g i) s ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
exact H₁ s
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)
⊢ (Summable fun i => f i * g i) ∧
∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
have H₂ : Summable _ := (hasSum_of_isLUB _ (isLUB_ciSup bdd)).summable
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ q
H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)
H₂ : Summable fun i => f i * g i
⊢ (Summable fun i => f i * g i) ∧
∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
exact ⟨H₂, tsum_le_of_sum_le H₂ H₁⟩
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C
[PROOFSTEP]
obtain ⟨H₁, H₂⟩ := inner_le_Lp_mul_Lq_tsum hpq hf.summable hg.summable
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C
[PROOFSTEP]
have hA : A = (∑' i : ι, f i ^ p) ^ (1 / p) := by rw [hf.tsum_eq, rpow_inv_rpow_self hpq.ne_zero]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ A = (∑' (i : ι), f i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [hf.tsum_eq, rpow_inv_rpow_self hpq.ne_zero]
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C
[PROOFSTEP]
have hB : B = (∑' i : ι, g i ^ q) ^ (1 / q) := by rw [hg.tsum_eq, rpow_inv_rpow_self hpq.symm.ne_zero]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
⊢ B = (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
rw [hg.tsum_eq, rpow_inv_rpow_self hpq.symm.ne_zero]
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C
[PROOFSTEP]
refine' ⟨∑' i, f i * g i, _, _⟩
[GOAL]
case intro.refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ ∑' (i : ι), f i * g i ≤ A * B
[PROOFSTEP]
simpa [hA, hB] using H₂
[GOAL]
case intro.refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ q) (B ^ q)
H₁ : Summable fun i => f i * g i
H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q)
⊢ HasSum (fun i => f i * g i) (∑' (i : ι), f i * g i)
[PROOFSTEP]
simpa only [rpow_self_rpow_inv hpq.ne_zero] using H₁.hasSum
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
cases' eq_or_lt_of_le hp with hp hp
[GOAL]
case inl
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 = p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
simp [← hp]
[GOAL]
case inr
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
let q : ℝ := p / (p - 1)
[GOAL]
case inr
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hpq : p.IsConjugateExponent q := by rw [Real.isConjugateExponent_iff hp]
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
⊢ Real.IsConjugateExponent p q
[PROOFSTEP]
rw [Real.isConjugateExponent_iff hp]
[GOAL]
case inr
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero
[GOAL]
case inr
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hq : 1 / q * p = p - 1 := by
rw [← hpq.div_conj_eq_sub_one]
ring
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ 1 / q * p = p - 1
[PROOFSTEP]
rw [← hpq.div_conj_eq_sub_one]
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ 1 / q * p = p / q
[PROOFSTEP]
ring
[GOAL]
case inr
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
hq : 1 / q * p = p - 1
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
simpa only [NNReal.mul_rpow, ← NNReal.rpow_mul, hp₁, hq, one_mul, one_rpow, rpow_one, Pi.one_apply, sum_const,
Nat.smul_one_eq_coe] using NNReal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ IsGreatest ((fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1}) ((∑ i in s, f i ^ p) ^ (1 / p))
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ (∑ i in s, f i ^ p) ^ (1 / p) ∈ (fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1}
[PROOFSTEP]
use fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)
[GOAL]
case h
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧
((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) =
(∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
by_cases hf : ∑ i in s, f i ^ p = 0
[GOAL]
case pos
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : ∑ i in s, f i ^ p = 0
⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧
((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) =
(∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
simp [hf, hpq.ne_zero, hpq.symm.ne_zero]
[GOAL]
case neg
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧
((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) =
(∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
have A : p + q - q ≠ 0 := by simp [hpq.ne_zero]
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
⊢ p + q - q ≠ 0
[PROOFSTEP]
simp [hpq.ne_zero]
[GOAL]
case neg
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧
((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) =
(∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
have B : ∀ y : ℝ≥0, y * y ^ p / y = y ^ p :=
by
refine' fun y => mul_div_cancel_left_of_imp fun h => _
simp [h, hpq.ne_zero]
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
⊢ ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p
[PROOFSTEP]
refine' fun y => mul_div_cancel_left_of_imp fun h => _
[GOAL]
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
y : ℝ≥0
h : y = 0
⊢ y ^ p = 0
[PROOFSTEP]
simp [h, hpq.ne_zero]
[GOAL]
case neg
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p
⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧
((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) =
(∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
simp only [Set.mem_setOf_eq, div_rpow, ← sum_div, ← rpow_mul, div_mul_cancel _ hpq.symm.ne_zero, rpow_one,
div_le_iff hf, one_mul, hpq.mul_eq_add, ← rpow_sub' _ A, _root_.add_sub_cancel, le_refl, true_and_iff, ←
mul_div_assoc, B]
[GOAL]
case neg
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p
⊢ (∑ i in s, f i ^ p) / (∑ i in s, f i ^ p) ^ (1 / q) = (∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [div_eq_iff, ← rpow_add hf, hpq.inv_add_inv_conj, rpow_one]
[GOAL]
case neg
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
hf : · i in s, f i ^ p = 0
A : p + q - q ≠ 0
B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p
⊢ (∑ i in s, f i ^ p) ^ (1 / q) ≠ 0
[PROOFSTEP]
simpa [hpq.symm.ne_zero] using hf
[GOAL]
case right
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ (∑ i in s, f i ^ p) ^ (1 / p) ∈ upperBounds ((fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1})
[PROOFSTEP]
rintro _ ⟨g, hg, rfl⟩
[GOAL]
case right.intro.intro
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
g : ι → ℝ≥0
hg : g ∈ {g | ∑ i in s, g i ^ q ≤ 1}
⊢ (fun g => ∑ i in s, f i * g i) g ≤ (∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
apply le_trans (inner_le_Lp_mul_Lq s f g hpq)
[GOAL]
case right.intro.intro
ι : Type u
s : Finset ι
f : ι → ℝ≥0
p q : ℝ
hpq : Real.IsConjugateExponent p q
g : ι → ℝ≥0
hg : g ∈ {g | ∑ i in s, g i ^ q ≤ 1}
⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑ i in s, f i ^ p) ^ (1 / p)
[PROOFSTEP]
simpa only [mul_one] using mul_le_mul_left' (NNReal.rpow_le_one hg (le_of_lt hpq.symm.one_div_pos)) _
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
rcases eq_or_lt_of_le hp with (rfl | hp)
[GOAL]
case inl
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
hp : 1 ≤ 1
⊢ (∑ i in s, (f i + g i) ^ 1) ^ (1 / 1) ≤ (∑ i in s, f i ^ 1) ^ (1 / 1) + (∑ i in s, g i ^ 1) ^ (1 / 1)
[PROOFSTEP]
simp [Finset.sum_add_distrib]
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
have hpq := Real.isConjugateExponent_conjugateExponent hp
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hpq : Real.IsConjugateExponent p (Real.conjugateExponent p)
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
have := isGreatest_Lp s (f + g) hpq
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hpq : Real.IsConjugateExponent p (Real.conjugateExponent p)
this :
IsGreatest ((fun g_1 => ∑ i in s, (f + g) i * g_1 i) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1})
((∑ i in s, (f + g) i ^ p) ^ (1 / p))
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
simp only [Pi.add_apply, add_mul, sum_add_distrib] at this
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hpq : Real.IsConjugateExponent p (Real.conjugateExponent p)
this :
IsGreatest
((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1})
((∑ x in s, (f x + g x) ^ p) ^ (1 / p))
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
rcases this.1 with ⟨φ, hφ, H⟩
[GOAL]
case inr.intro.intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hpq : Real.IsConjugateExponent p (Real.conjugateExponent p)
this :
IsGreatest
((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1})
((∑ x in s, (f x + g x) ^ p) ^ (1 / p))
φ : ι → ℝ≥0
hφ : φ ∈ {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}
H : (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ = (∑ x in s, (f x + g x) ^ p) ^ (1 / p)
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [← H]
[GOAL]
case inr.intro.intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hpq : Real.IsConjugateExponent p (Real.conjugateExponent p)
this :
IsGreatest
((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1})
((∑ x in s, (f x + g x) ^ p) ^ (1 / p))
φ : ι → ℝ≥0
hφ : φ ∈ {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}
H : (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ = (∑ x in s, (f x + g x) ^ p) ^ (1 / p)
⊢ (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
exact add_le_add ((isGreatest_Lp s f hpq).2 ⟨φ, hφ, rfl⟩) ((isGreatest_Lp s g hpq).2 ⟨φ, hφ, rfl⟩)
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
have H₁ : ∀ s : Finset ι, (∑ i in s, (f i + g i) ^ p) ≤ ((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p :=
by
intro s
rw [← NNReal.rpow_one_div_le_iff pos]
refine' le_trans (Lp_add_le s f g hp) (add_le_add _ _) <;> rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)] <;>
refine' sum_le_tsum _ (fun _ _ => zero_le _) _
exacts [hf, hg]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
⊢ ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
[PROOFSTEP]
intro s
[GOAL]
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
[PROOFSTEP]
rw [← NNReal.rpow_one_div_le_iff pos]
[GOAL]
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
refine' le_trans (Lp_add_le s f g hp) (add_le_add _ _)
[GOAL]
case refine'_1
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)]
[GOAL]
case refine'_2
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ (∑ i in s, g i ^ p) ^ (1 / p) ≤ (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)]
[GOAL]
case refine'_1
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p
[PROOFSTEP]
refine' sum_le_tsum _ (fun _ _ => zero_le _) _
[GOAL]
case refine'_2
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ ∑ i in s, g i ^ p ≤ ∑' (i : ι), g i ^ p
[PROOFSTEP]
refine' sum_le_tsum _ (fun _ _ => zero_le _) _
[GOAL]
case refine'_1
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ Summable fun i => f i ^ p
case refine'_2
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
s : Finset ι
⊢ Summable fun i => g i ^ p
[PROOFSTEP]
exacts [hf, hg]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
have bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) :=
by
refine' ⟨((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p, _⟩
rintro a ⟨s, rfl⟩
exact H₁ s
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
⊢ BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
[PROOFSTEP]
refine' ⟨((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p, _⟩
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
⊢ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p ∈
upperBounds (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
[PROOFSTEP]
rintro a ⟨s, rfl⟩
[GOAL]
case intro
ι : Type u
s✝ : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
s : Finset ι
⊢ (fun s => ∑ i in s, (f i + g i) ^ p) s ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
[PROOFSTEP]
exact H₁ s
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
have H₂ : Summable _ := (hasSum_of_isLUB _ (isLUB_ciSup bdd)).summable
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
H₂ : Summable fun i => (f i + g i) ^ p
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
refine' ⟨H₂, _⟩
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
H₂ : Summable fun i => (f i + g i) ^ p
⊢ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [NNReal.rpow_one_div_le_iff pos]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : Summable fun i => f i ^ p
hg : Summable fun i => g i ^ p
pos : 0 < p
H₁ :
∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p)
H₂ : Summable fun i => (f i + g i) ^ p
⊢ ∑' (i : ι), (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p
[PROOFSTEP]
refine' tsum_le_of_sum_le H₂ H₁
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
have hp' : p ≠ 0 := (lt_of_lt_of_le zero_lt_one hp).ne'
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
obtain ⟨H₁, H₂⟩ := Lp_add_le_tsum hp hf.summable hg.summable
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
have hA : A = (∑' i : ι, f i ^ p) ^ (1 / p) := by rw [hf.tsum_eq, rpow_inv_rpow_self hp']
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
⊢ A = (∑' (i : ι), f i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [hf.tsum_eq, rpow_inv_rpow_self hp']
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
have hB : B = (∑' i : ι, g i ^ p) ^ (1 / p) := by rw [hg.tsum_eq, rpow_inv_rpow_self hp']
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
⊢ B = (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
rw [hg.tsum_eq, rpow_inv_rpow_self hp']
[GOAL]
case intro
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p)
⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
refine' ⟨(∑' i, (f i + g i) ^ p) ^ (1 / p), _, _⟩
[GOAL]
case intro.refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p)
⊢ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ A + B
[PROOFSTEP]
simpa [hA, hB] using H₂
[GOAL]
case intro.refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ≥0
A B : ℝ≥0
p : ℝ
hp : 1 ≤ p
hf : HasSum (fun i => f i ^ p) (A ^ p)
hg : HasSum (fun i => g i ^ p) (B ^ p)
hp' : p ≠ 0
H₁ : Summable fun i => (f i + g i) ^ p
H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p)
hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p)
⊢ HasSum (fun i => (f i + g i) ^ p) (((∑' (i : ι), (f i + g i) ^ p) ^ (1 / p)) ^ p)
[PROOFSTEP]
simpa only [rpow_self_rpow_inv hp'] using H₁.hasSum
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q)
[PROOFSTEP]
have :=
NNReal.coe_le_coe.2
(NNReal.inner_le_Lp_mul_Lq s (fun i => ⟨_, abs_nonneg (f i)⟩) (fun i => ⟨_, abs_nonneg (g i)⟩) hpq)
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
this :
↑(∑ i in s,
(fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i *
(fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i) ≤
↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p) ^ (1 / p) *
(∑ i in s, (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i ^ q) ^ (1 / q))
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q)
[PROOFSTEP]
push_cast at this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
this : ∑ x in s, |f x| * |g x| ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) * (∑ x in s, |g x| ^ q) ^ (1 / q)
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q)
[PROOFSTEP]
refine' le_trans (sum_le_sum fun i _ => _) this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
this : ∑ x in s, |f x| * |g x| ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) * (∑ x in s, |g x| ^ q) ^ (1 / q)
i : ι
x✝ : i ∈ s
⊢ f i * g i ≤ |f i| * |g i|
[PROOFSTEP]
simp only [← abs_mul, le_abs_self]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p
[PROOFSTEP]
have := NNReal.coe_le_coe.2 (NNReal.rpow_sum_le_const_mul_sum_rpow s (fun i => ⟨_, abs_nonneg (f i)⟩) hp)
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this :
↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i) ^ p) ≤
↑(↑(card s) ^ (p - 1) * ∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p)
⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p
[PROOFSTEP]
push_cast at this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this : (∑ x in s, |f x|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ x in s, |f x| ^ p
⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p
[PROOFSTEP]
exact this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p)
[PROOFSTEP]
have := NNReal.coe_le_coe.2 (NNReal.Lp_add_le s (fun i => ⟨_, abs_nonneg (f i)⟩) (fun i => ⟨_, abs_nonneg (g i)⟩) hp)
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this :
↑((∑ i in s,
((fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i +
(fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i) ^
p) ^
(1 / p)) ≤
↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p) ^ (1 / p) +
(∑ i in s, (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i ^ p) ^ (1 / p))
⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p)
[PROOFSTEP]
push_cast at this
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p)
⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p)
[PROOFSTEP]
refine' le_trans (rpow_le_rpow _ (sum_le_sum fun i _ => _) _) this
[GOAL]
case refine'_1
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p)
⊢ 0 ≤ ∑ i in s, |f i + g i| ^ p
[PROOFSTEP]
simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow]
[GOAL]
case refine'_2
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p)
i : ι
x✝ : i ∈ s
⊢ |f i + g i| ^ p ≤ (|f i| + |g i|) ^ p
[PROOFSTEP]
simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow]
[GOAL]
case refine'_3
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p)
⊢ 0 ≤ 1 / p
[PROOFSTEP]
simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
convert inner_le_Lp_mul_Lq s f g hpq using 3
[GOAL]
case h.e'_4.h.e'_5.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, g i ^ q = ∑ i in s, |g i| ^ q
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_4.h.e'_5.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∀ (x : ι), x ∈ s → g x ^ q = |g x| ^ q
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4.h.e'_5.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
i : ι
hi : i ∈ s
⊢ f i ^ p = |f i| ^ p
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi, hg i hi]
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
i : ι
hi : i ∈ s
⊢ g i ^ q = |g i| ^ q
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi, hg i hi]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hf : ∀ (i : ι), 0 ≤ f i
hg : ∀ (i : ι), 0 ≤ g i
hf_sum : Summable fun i => f i ^ p
hg_sum : Summable fun i => g i ^ q
⊢ (Summable fun i => f i * g i) ∧
∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
lift f to ι → ℝ≥0 using hf
[GOAL]
case intro
ι : Type u
s : Finset ι
g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
hg : ∀ (i : ι), 0 ≤ g i
hg_sum : Summable fun i => g i ^ q
f : ι → ℝ≥0
hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p
⊢ (Summable fun i => (fun i => ↑(f i)) i * g i) ∧
∑' (i : ι), (fun i => ↑(f i)) i * g i ≤
(∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
[PROOFSTEP]
lift g to ι → ℝ≥0 using hg
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f : ι → ℝ≥0
hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p
g : ι → ℝ≥0
hg_sum : Summable fun i => (fun i => ↑(g i)) i ^ q
⊢ (Summable fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) ∧
∑' (i : ι), (fun i => ↑(f i)) i * (fun i => ↑(g i)) i ≤
(∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) * (∑' (i : ι), (fun i => ↑(g i)) i ^ q) ^ (1 / q)
[PROOFSTEP]
norm_cast at *
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f g : ι → ℝ≥0
hf_sum : Summable fun a => f a ^ p
hg_sum : Summable fun a => g a ^ q
⊢ (Summable fun a => f a * g a) ∧
∑' (a : ι), f a * g a ≤ (∑' (a : ι), f a ^ p) ^ (1 / p) * (∑' (a : ι), g a ^ q) ^ (1 / q)
[PROOFSTEP]
exact NNReal.inner_le_Lp_mul_Lq_tsum hpq hf_sum hg_sum
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
hf : ∀ (i : ι), 0 ≤ f i
hg : ∀ (i : ι), 0 ≤ g i
hf_sum : HasSum (fun i => f i ^ p) (A ^ p)
hg_sum : HasSum (fun i => g i ^ q) (B ^ q)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => f i * g i) C
[PROOFSTEP]
lift f to ι → ℝ≥0 using hf
[GOAL]
case intro
ι : Type u
s : Finset ι
g : ι → ℝ
p q : ℝ
hpq : IsConjugateExponent p q
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
hg : ∀ (i : ι), 0 ≤ g i
hg_sum : HasSum (fun i => g i ^ q) (B ^ q)
f : ι → ℝ≥0
hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * g i) C
[PROOFSTEP]
lift g to ι → ℝ≥0 using hg
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
f : ι → ℝ≥0
hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p)
g : ι → ℝ≥0
hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (B ^ q)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C
[PROOFSTEP]
lift A to ℝ≥0 using hA
[GOAL]
case intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
B : ℝ
hB : 0 ≤ B
f g : ι → ℝ≥0
hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (B ^ q)
A : ℝ≥0
hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C
[PROOFSTEP]
lift B to ℝ≥0 using hB
[GOAL]
case intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f g : ι → ℝ≥0
A : ℝ≥0
hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p)
B : ℝ≥0
hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (↑B ^ q)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C
[PROOFSTEP]
norm_cast at hf_sum hg_sum
[GOAL]
case intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f g : ι → ℝ≥0
A B : ℝ≥0
hf_sum : HasSum (fun a => f a ^ p) (A ^ p)
hg_sum : HasSum (fun a => g a ^ q) (B ^ q)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C
[PROOFSTEP]
obtain ⟨C, hC, H⟩ := NNReal.inner_le_Lp_mul_Lq_hasSum hpq hf_sum hg_sum
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f g : ι → ℝ≥0
A B : ℝ≥0
hf_sum : HasSum (fun a => f a ^ p) (A ^ p)
hg_sum : HasSum (fun a => g a ^ q) (B ^ q)
C : ℝ≥0
hC : C ≤ A * B
H : HasSum (fun i => f i * g i) C
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C
[PROOFSTEP]
refine' ⟨C, C.prop, hC, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hpq : IsConjugateExponent p q
f g : ι → ℝ≥0
A B : ℝ≥0
hf_sum : HasSum (fun a => f a ^ p) (A ^ p)
hg_sum : HasSum (fun a => g a ^ q) (B ^ q)
C : ℝ≥0
hC : C ≤ A * B
H : HasSum (fun i => f i * g i) C
⊢ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) ↑C
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
convert rpow_sum_le_const_mul_sum_rpow s f hp using 2
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ ∑ i in s, f i = ∑ i in s, |f i|
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_4.h.e'_6
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ ∀ (x : ι), x ∈ s → f x = |f x|
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4.h.e'_6
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
i : ι
hi : i ∈ s
⊢ f i = |f i|
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi]
[GOAL]
case h.e'_4.h.e'_6
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
i : ι
hi : i ∈ s
⊢ f i ^ p = |f i| ^ p
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
convert Lp_add_le s f g hp using 2 <;> [skip; congr 1; congr 1]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
convert Lp_add_le s f g hp using 2
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, (f i + g i) ^ p = ∑ i in s, |f i + g i| ^ p
[PROOFSTEP]
skip
[GOAL]
case h.e'_4.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ (∑ i in s, f i ^ p) ^ (1 / p) = (∑ i in s, |f i| ^ p) ^ (1 / p)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_4.h.e'_6
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ (∑ i in s, g i ^ p) ^ (1 / p) = (∑ i in s, |g i| ^ p) ^ (1 / p)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, (f i + g i) ^ p = ∑ i in s, |f i + g i| ^ p
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_4.h.e'_5.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_4.h.e'_6.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∑ i in s, g i ^ p = ∑ i in s, |g i| ^ p
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∀ (x : ι), x ∈ s → (f x + g x) ^ p = |f x + g x| ^ p
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4.h.e'_5.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_4.h.e'_6.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
⊢ ∀ (x : ι), x ∈ s → g x ^ p = |g x| ^ p
[PROOFSTEP]
intro i hi
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
i : ι
hi : i ∈ s
⊢ (f i + g i) ^ p = |f i + g i| ^ p
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg]
[GOAL]
case h.e'_4.h.e'_5.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
i : ι
hi : i ∈ s
⊢ f i ^ p = |f i| ^ p
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg]
[GOAL]
case h.e'_4.h.e'_6.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
i : ι
hi : i ∈ s
⊢ g i ^ p = |g i| ^ p
[PROOFSTEP]
simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), 0 ≤ f i
hg : ∀ (i : ι), 0 ≤ g i
hf_sum : Summable fun i => f i ^ p
hg_sum : Summable fun i => g i ^ p
⊢ (Summable fun i => (f i + g i) ^ p) ∧
(∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
lift f to ι → ℝ≥0 using hf
[GOAL]
case intro
ι : Type u
s : Finset ι
g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hg : ∀ (i : ι), 0 ≤ g i
hg_sum : Summable fun i => g i ^ p
f : ι → ℝ≥0
hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p
⊢ (Summable fun i => ((fun i => ↑(f i)) i + g i) ^ p) ∧
(∑' (i : ι), ((fun i => ↑(f i)) i + g i) ^ p) ^ (1 / p) ≤
(∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)
[PROOFSTEP]
lift g to ι → ℝ≥0 using hg
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f : ι → ℝ≥0
hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p
g : ι → ℝ≥0
hg_sum : Summable fun i => (fun i => ↑(g i)) i ^ p
⊢ (Summable fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) ∧
(∑' (i : ι), ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) ^ (1 / p) ≤
(∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) + (∑' (i : ι), (fun i => ↑(g i)) i ^ p) ^ (1 / p)
[PROOFSTEP]
norm_cast0 at *
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
f g : ι → ℝ≥0
hp : 1 ≤ p
hf_sum : Summable fun a => f a ^ p
hg_sum : Summable fun a => g a ^ p
⊢ (Summable fun a => (f a + g a) ^ p) ∧
(∑' (a : ι), (f a + g a) ^ p) ^ (1 / p) ≤ (∑' (a : ι), f a ^ p) ^ (1 / p) + (∑' (a : ι), g a ^ p) ^ (1 / p)
[PROOFSTEP]
exact NNReal.Lp_add_le_tsum hp hf_sum hg_sum
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hf : ∀ (i : ι), 0 ≤ f i
hg : ∀ (i : ι), 0 ≤ g i
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
hfA : HasSum (fun i => f i ^ p) (A ^ p)
hgB : HasSum (fun i => g i ^ p) (B ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p)
[PROOFSTEP]
lift f to ι → ℝ≥0 using hf
[GOAL]
case intro
ι : Type u
s : Finset ι
g : ι → ℝ
p q : ℝ
hp : 1 ≤ p
hg : ∀ (i : ι), 0 ≤ g i
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
hgB : HasSum (fun i => g i ^ p) (B ^ p)
f : ι → ℝ≥0
hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + g i) ^ p) (C ^ p)
[PROOFSTEP]
lift g to ι → ℝ≥0 using hg
[GOAL]
case intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
A B : ℝ
hA : 0 ≤ A
hB : 0 ≤ B
f : ι → ℝ≥0
hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p)
g : ι → ℝ≥0
hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (B ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p)
[PROOFSTEP]
lift A to ℝ≥0 using hA
[GOAL]
case intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
B : ℝ
hB : 0 ≤ B
f g : ι → ℝ≥0
hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (B ^ p)
A : ℝ≥0
hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p)
[PROOFSTEP]
lift B to ℝ≥0 using hB
[GOAL]
case intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f g : ι → ℝ≥0
A : ℝ≥0
hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p)
B : ℝ≥0
hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (↑B ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p)
[PROOFSTEP]
norm_cast at hfA hgB
[GOAL]
case intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f g : ι → ℝ≥0
A B : ℝ≥0
hfA : HasSum (fun a => f a ^ p) (A ^ p)
hgB : HasSum (fun a => g a ^ p) (B ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p)
[PROOFSTEP]
obtain ⟨C, hC₁, hC₂⟩ := NNReal.Lp_add_le_hasSum hp hfA hgB
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f g : ι → ℝ≥0
A B : ℝ≥0
hfA : HasSum (fun a => f a ^ p) (A ^ p)
hgB : HasSum (fun a => g a ^ p) (B ^ p)
C : ℝ≥0
hC₁ : C ≤ A + B
hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p)
⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p)
[PROOFSTEP]
use C
[GOAL]
case h
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f g : ι → ℝ≥0
A B : ℝ≥0
hfA : HasSum (fun a => f a ^ p) (A ^ p)
hgB : HasSum (fun a => g a ^ p) (B ^ p)
C : ℝ≥0
hC₁ : C ≤ A + B
hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p)
⊢ 0 ≤ ↑C ∧ ↑C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (↑C ^ p)
[PROOFSTEP]
norm_cast
[GOAL]
case h
ι : Type u
s : Finset ι
p q : ℝ
hp : 1 ≤ p
f g : ι → ℝ≥0
A B : ℝ≥0
hfA : HasSum (fun a => f a ^ p) (A ^ p)
hgB : HasSum (fun a => g a ^ p) (B ^ p)
C : ℝ≥0
hC₁ : C ≤ A + B
hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p)
⊢ 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun a => (f a + g a) ^ p) (C ^ p)
[PROOFSTEP]
exact ⟨zero_le _, hC₁, hC₂⟩
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
by_cases H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
replace H : (∀ i ∈ s, f i = 0) ∨ ∀ i ∈ s, g i = 0
[GOAL]
case H
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0
⊢ (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0
[PROOFSTEP]
simpa [ENNReal.rpow_eq_zero_iff, hpq.pos, hpq.symm.pos, asymm hpq.pos, asymm hpq.symm.pos,
sum_eq_zero_iff_of_nonneg] using H
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
have : ∀ i ∈ s, f i * g i = 0 := fun i hi => by cases' H with H H <;> simp [H i hi]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0
i : ι
hi : i ∈ s
⊢ f i * g i = 0
[PROOFSTEP]
cases' H with H H
[GOAL]
case inl
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
i : ι
hi : i ∈ s
H : ∀ (i : ι), i ∈ s → f i = 0
⊢ f i * g i = 0
[PROOFSTEP]
simp [H i hi]
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
i : ι
hi : i ∈ s
H : ∀ (i : ι), i ∈ s → g i = 0
⊢ f i * g i = 0
[PROOFSTEP]
simp [H i hi]
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0
this : ∀ (i : ι), i ∈ s → f i * g i = 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
have : ∑ i in s, f i * g i = ∑ i in s, 0 := sum_congr rfl this
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0
this✝ : ∀ (i : ι), i ∈ s → f i * g i = 0
this : ∑ i in s, f i * g i = ∑ i in s, 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp [this]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : ¬((∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0)
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
push_neg at H
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
by_cases H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
cases' H' with H' H'
[GOAL]
case pos.inl
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp [H', -one_div, -sum_eq_zero_iff, -rpow_eq_zero_iff, H]
[GOAL]
case pos.inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∑ i in s, g i ^ q) ^ (1 / q) = ⊤
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp [H', -one_div, -sum_eq_zero_iff, -rpow_eq_zero_iff, H]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤)
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤
[GOAL]
case H'
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤)
⊢ (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
[PROOFSTEP]
simpa [ENNReal.rpow_eq_top_iff, asymm hpq.pos, asymm hpq.symm.pos, hpq.pos, hpq.symm.pos, ENNReal.sum_eq_top_iff,
not_or] using H'
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
have :=
ENNReal.coe_le_coe.2
(@NNReal.inner_le_Lp_mul_Lq _ s (fun i => ENNReal.toNNReal (f i)) (fun i => ENNReal.toNNReal (g i)) _ _ hpq)
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
↑(∑ i in s, (fun i => ENNReal.toNNReal (f i)) i * (fun i => ENNReal.toNNReal (g i)) i) ≤
↑((∑ i in s, (fun i => ENNReal.toNNReal (f i)) i ^ p) ^ (1 / p) *
(∑ i in s, (fun i => ENNReal.toNNReal (g i)) i ^ q) ^ (1 / q))
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
simp [← ENNReal.coe_rpow_of_nonneg, le_of_lt hpq.pos, le_of_lt hpq.one_div_pos, le_of_lt hpq.symm.pos,
le_of_lt hpq.symm.one_div_pos] at this
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
convert this using 1 <;> [skip; congr 2] <;> [skip; skip; simp; skip; simp]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
convert this using 1 <;> [skip; congr 2]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x))
[PROOFSTEP]
skip
[GOAL]
case h.e'_4
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) =
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x))
[PROOFSTEP]
skip
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p
[PROOFSTEP]
skip
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ 1 / p = p⁻¹
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, g i ^ q = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q
[PROOFSTEP]
skip
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ 1 / q = q⁻¹
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x))
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_3
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
i : ι
hi : i ∈ s
⊢ f i * g i = ↑(ENNReal.toNNReal (f i)) * ↑(ENNReal.toNNReal (g i))
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm]
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
i : ι
hi : i ∈ s
⊢ f i ^ p = ↑(ENNReal.toNNReal (f i)) ^ p
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm]
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
⊢ ∑ i in s, g i ^ q = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_4.e_a.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hpq : Real.IsConjugateExponent p q
H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹
i : ι
hi : i ∈ s
⊢ g i ^ q = ↑(ENNReal.toNNReal (g i)) ^ q
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
cases' eq_or_lt_of_le hp with hp hp
[GOAL]
case inl
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp✝ : 1 ≤ p
hp : 1 = p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
simp [← hp]
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
let q : ℝ := p / (p - 1)
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hpq : p.IsConjugateExponent q := by rw [Real.isConjugateExponent_iff hp]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
⊢ Real.IsConjugateExponent p q
[PROOFSTEP]
rw [Real.isConjugateExponent_iff hp]
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
have hq : 1 / q * p = p - 1 := by
rw [← hpq.div_conj_eq_sub_one]
ring
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ 1 / q * p = p - 1
[PROOFSTEP]
rw [← hpq.div_conj_eq_sub_one]
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
⊢ 1 / q * p = p / q
[PROOFSTEP]
ring
[GOAL]
case inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q✝ : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
q : ℝ := p / (p - 1)
hpq : Real.IsConjugateExponent p q
hp₁ : 1 / p * p = 1
hq : 1 / q * p = p - 1
⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p
[PROOFSTEP]
simpa only [ENNReal.mul_rpow_of_nonneg _ _ hpq.nonneg, ← ENNReal.rpow_mul, hp₁, hq, coe_one, one_mul, one_rpow,
rpow_one, Pi.one_apply, sum_const, Nat.smul_one_eq_coe] using
ENNReal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg
[GOAL]
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
by_cases H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤
[GOAL]
case pos
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
cases' H' with H' H'
[GOAL]
case pos.inl
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
simp [H', -one_div]
[GOAL]
case pos.inr
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : (∑ i in s, g i ^ p) ^ (1 / p) = ⊤
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
simp [H', -one_div]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤)
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤)
pos : 0 < p
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤
[GOAL]
case H'
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤)
pos : 0 < p
⊢ (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
[PROOFSTEP]
simpa [ENNReal.rpow_eq_top_iff, asymm pos, pos, ENNReal.sum_eq_top_iff, not_or] using H'
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
have :=
ENNReal.coe_le_coe.2 (@NNReal.Lp_add_le _ s (fun i => ENNReal.toNNReal (f i)) (fun i => ENNReal.toNNReal (g i)) _ hp)
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
↑((∑ i in s, ((fun i => ENNReal.toNNReal (f i)) i + (fun i => ENNReal.toNNReal (g i)) i) ^ p) ^ (1 / p)) ≤
↑((∑ i in s, (fun i => ENNReal.toNNReal (f i)) i ^ p) ^ (1 / p) +
(∑ i in s, (fun i => ENNReal.toNNReal (g i)) i ^ p) ^ (1 / p))
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
push_cast [← ENNReal.coe_rpow_of_nonneg, le_of_lt pos, le_of_lt (one_div_pos.2 pos)] at this
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
convert this using 2 <;> [skip; congr 1; congr 1]
[GOAL]
case neg
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p)
[PROOFSTEP]
convert this using 2
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ ∑ i in s, (f i + g i) ^ p = ∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p
[PROOFSTEP]
skip
[GOAL]
case h.e'_4.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ (∑ i in s, f i ^ p) ^ (1 / p) = (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_4.h.e'_6
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ (∑ i in s, g i ^ p) ^ (1 / p) = (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ ∑ i in s, (f i + g i) ^ p = ∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_3.h.e'_5
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
i : ι
hi : i ∈ s
⊢ (f i + g i) ^ p = (↑(ENNReal.toNNReal (f i)) + ↑(ENNReal.toNNReal (g i))) ^ p
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi]
[GOAL]
case h.e'_4.h.e'_5.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_4.h.e'_5.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
i : ι
hi : i ∈ s
⊢ f i ^ p = ↑(ENNReal.toNNReal (f i)) ^ p
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi]
[GOAL]
case h.e'_4.h.e'_6.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
⊢ ∑ i in s, g i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p
[PROOFSTEP]
refine Finset.sum_congr rfl fun i hi => ?_
[GOAL]
case h.e'_4.h.e'_6.e_a
ι : Type u
s : Finset ι
f g : ι → ℝ≥0∞
p q : ℝ
hp : 1 ≤ p
pos : 0 < p
H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤
this :
(∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤
(∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p)
i : ι
hi : i ∈ s
⊢ g i ^ p = ↑(ENNReal.toNNReal (g i)) ^ p
[PROOFSTEP]
simp [H'.1 i hi, H'.2 i hi]
| {"mathlib_filename": "Mathlib.Analysis.MeanInequalities", "llama_tokens": 62944} |
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
x : E
x✝² : x ∈ s
y : E
x✝¹ : y ∈ s
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
x✝ : a + b = 1
⊢ ‖a • x‖ + ‖b • y‖ = a * ‖x‖ + b * ‖y‖
[PROOFSTEP]
rw [norm_smul, norm_smul, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
z : E
hs : Convex ℝ s
⊢ ConvexOn ℝ s fun z' => dist z' z
[PROOFSTEP]
simpa [dist_eq_norm, preimage_preimage] using
(convexOn_norm (hs.translate (-z))).comp_affineMap (AffineMap.id ℝ E - AffineMap.const ℝ E z)
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
a : E
r : ℝ
⊢ Convex ℝ (ball a r)
[PROOFSTEP]
simpa only [Metric.ball, sep_univ] using (convexOn_univ_dist a).convex_lt r
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
a : E
r : ℝ
⊢ Convex ℝ (closedBall a r)
[PROOFSTEP]
simpa only [Metric.closedBall, sep_univ] using (convexOn_univ_dist a).convex_le r
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
⊢ Convex ℝ (Metric.thickening δ s)
[PROOFSTEP]
rw [← add_ball_zero]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
⊢ Convex ℝ (s + ball 0 δ)
[PROOFSTEP]
exact hs.add (convex_ball 0 _)
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
⊢ Convex ℝ (Metric.cthickening δ s)
[PROOFSTEP]
obtain hδ | hδ := le_total 0 δ
[GOAL]
case inl
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
hδ : 0 ≤ δ
⊢ Convex ℝ (Metric.cthickening δ s)
[PROOFSTEP]
rw [cthickening_eq_iInter_thickening hδ]
[GOAL]
case inl
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
hδ : 0 ≤ δ
⊢ Convex ℝ (⋂ (ε : ℝ) (_ : δ < ε), Metric.thickening ε s)
[PROOFSTEP]
exact convex_iInter₂ fun _ _ => hs.thickening _
[GOAL]
case inr
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
hδ : δ ≤ 0
⊢ Convex ℝ (Metric.cthickening δ s)
[PROOFSTEP]
rw [cthickening_of_nonpos hδ]
[GOAL]
case inr
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
hs : Convex ℝ s
δ : ℝ
hδ : δ ≤ 0
⊢ Convex ℝ (closure s)
[PROOFSTEP]
exact hs.closure
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t✝ s t : Set E
x y : E
hx : x ∈ ↑(convexHull ℝ) s
hy : y ∈ ↑(convexHull ℝ) t
⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y'
[PROOFSTEP]
rcases convexHull_exists_dist_ge hx y with ⟨x', hx', Hx'⟩
[GOAL]
case intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t✝ s t : Set E
x y : E
hx : x ∈ ↑(convexHull ℝ) s
hy : y ∈ ↑(convexHull ℝ) t
x' : E
hx' : x' ∈ s
Hx' : dist x y ≤ dist x' y
⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y'
[PROOFSTEP]
rcases convexHull_exists_dist_ge hy x' with ⟨y', hy', Hy'⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t✝ s t : Set E
x y : E
hx : x ∈ ↑(convexHull ℝ) s
hy : y ∈ ↑(convexHull ℝ) t
x' : E
hx' : x' ∈ s
Hx' : dist x y ≤ dist x' y
y' : E
hy' : y' ∈ t
Hy' : dist y x' ≤ dist y' x'
⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y'
[PROOFSTEP]
use x', hx', y', hy'
[GOAL]
case right
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t✝ s t : Set E
x y : E
hx : x ∈ ↑(convexHull ℝ) s
hy : y ∈ ↑(convexHull ℝ) t
x' : E
hx' : x' ∈ s
Hx' : dist x y ≤ dist x' y
y' : E
hy' : y' ∈ t
Hy' : dist y x' ≤ dist y' x'
⊢ dist x y ≤ dist x' y'
[PROOFSTEP]
exact le_trans Hx' (dist_comm y x' ▸ dist_comm y' x' ▸ Hy')
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
⊢ EMetric.diam (↑(convexHull ℝ) s) = EMetric.diam s
[PROOFSTEP]
refine' (EMetric.diam_le fun x hx y hy => _).antisymm (EMetric.diam_mono <| subset_convexHull ℝ s)
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
x : E
hx : x ∈ ↑(convexHull ℝ) s
y : E
hy : y ∈ ↑(convexHull ℝ) s
⊢ edist x y ≤ EMetric.diam s
[PROOFSTEP]
rcases convexHull_exists_dist_ge2 hx hy with ⟨x', hx', y', hy', H⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
x : E
hx : x ∈ ↑(convexHull ℝ) s
y : E
hy : y ∈ ↑(convexHull ℝ) s
x' : E
hx' : x' ∈ s
y' : E
hy' : y' ∈ s
H : dist x y ≤ dist x' y'
⊢ edist x y ≤ EMetric.diam s
[PROOFSTEP]
rw [edist_dist]
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
x : E
hx : x ∈ ↑(convexHull ℝ) s
y : E
hy : y ∈ ↑(convexHull ℝ) s
x' : E
hx' : x' ∈ s
y' : E
hy' : y' ∈ s
H : dist x y ≤ dist x' y'
⊢ ENNReal.ofReal (dist x y) ≤ EMetric.diam s
[PROOFSTEP]
apply le_trans (ENNReal.ofReal_le_ofReal H)
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
x : E
hx : x ∈ ↑(convexHull ℝ) s
y : E
hy : y ∈ ↑(convexHull ℝ) s
x' : E
hx' : x' ∈ s
y' : E
hy' : y' ∈ s
H : dist x y ≤ dist x' y'
⊢ ENNReal.ofReal (dist x' y') ≤ EMetric.diam s
[PROOFSTEP]
rw [← edist_dist]
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
x : E
hx : x ∈ ↑(convexHull ℝ) s
y : E
hy : y ∈ ↑(convexHull ℝ) s
x' : E
hx' : x' ∈ s
y' : E
hy' : y' ∈ s
H : dist x y ≤ dist x' y'
⊢ edist x' y' ≤ EMetric.diam s
[PROOFSTEP]
exact EMetric.edist_le_diam_of_mem hx' hy'
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
⊢ diam (↑(convexHull ℝ) s) = diam s
[PROOFSTEP]
simp only [Metric.diam, convexHull_ediam]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s✝ t s : Set E
⊢ Metric.Bounded (↑(convexHull ℝ) s) ↔ Metric.Bounded s
[PROOFSTEP]
simp only [Metric.bounded_iff_ediam_ne_top, convexHull_ediam]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
r : ℝ
r_pos : 0 < r
⊢ Set.Nonempty (ball x r)
[PROOFSTEP]
simp [r_pos]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x y z : E
h : y ∈ [x-[ℝ]z]
⊢ dist x y + dist y z = dist x z
[PROOFSTEP]
simp only [dist_eq_norm, mem_segment_iff_sameRay] at *
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x y z : E
h : SameRay ℝ (y - x) (z - y)
⊢ ‖x - y‖ + ‖y - z‖ = ‖x - z‖
[PROOFSTEP]
simpa only [sub_add_sub_cancel', norm_sub_rev] using h.norm_add.symm
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
⊢ IsConnected {y | SameRay ℝ x y}
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
hx : x = 0
⊢ IsConnected {y | SameRay ℝ x y}
[PROOFSTEP]
simpa [hx] using isConnected_univ (α := E)
[GOAL]
case neg
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
hx : ¬x = 0
⊢ IsConnected {y | SameRay ℝ x y}
[PROOFSTEP]
simp_rw [← exists_nonneg_left_iff_sameRay hx]
[GOAL]
case neg
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
hx : ¬x = 0
⊢ IsConnected {y | ∃ r, 0 ≤ r ∧ r • x = y}
[PROOFSTEP]
exact isConnected_Ici.image _ (continuous_id.smul continuous_const).continuousOn
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
hx : x ≠ 0
⊢ IsConnected {y | SameRay ℝ x y ∧ y ≠ 0}
[PROOFSTEP]
simp_rw [← exists_pos_left_iff_sameRay_and_ne_zero hx]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s t : Set E
x : E
hx : x ≠ 0
⊢ IsConnected {y | ∃ r, 0 < r ∧ r • x = y}
[PROOFSTEP]
exact isConnected_Ioi.image _ (continuous_id.smul continuous_const).continuousOn
| {"mathlib_filename": "Mathlib.Analysis.Convex.Normed", "llama_tokens": 4445} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ gauge s x = sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
rw [gauge]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ sInf {r | 0 < r ∧ x ∈ r • s} = sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ {r | 0 < r ∧ x ∈ r • s} = {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
ext
[GOAL]
case h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
x✝ : ℝ
⊢ x✝ ∈ {r | 0 < r ∧ x ∈ r • s} ↔ x✝ ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
simp only [mem_setOf, mem_Ioi]
[GOAL]
case h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
x✝ : ℝ
⊢ 0 < x✝ ∧ x ∈ x✝ • s ↔ 0 < x✝ ∧ x✝⁻¹ • x ∈ s
[PROOFSTEP]
exact and_congr_right fun hr => mem_smul_set_iff_inv_smul_mem₀ hr.ne' _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
absorbs : Absorbent ℝ s
h : gauge s x < a
⊢ ∃ b, 0 < b ∧ b < a ∧ x ∈ b • s
[PROOFSTEP]
obtain ⟨b, ⟨hb, hx⟩, hba⟩ := exists_lt_of_csInf_lt absorbs.gauge_set_nonempty h
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
absorbs : Absorbent ℝ s
h : gauge s x < a
b : ℝ
hba : b < a
hb : 0 < b
hx : x ∈ b • s
⊢ ∃ b, 0 < b ∧ b < a ∧ x ∈ b • s
[PROOFSTEP]
exact ⟨b, hb, hba, hx⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
⊢ gauge s 0 = 0
[PROOFSTEP]
rw [gauge_def']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0
[PROOFSTEP]
by_cases h : (0 : E) ∈ s
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
h : 0 ∈ s
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0
[PROOFSTEP]
simp only [smul_zero, sep_true, h, csInf_Ioi]
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
h : ¬0 ∈ s
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0
[PROOFSTEP]
simp only [smul_zero, sep_false, h, Real.sInf_empty]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
⊢ gauge 0 = 0
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ gauge 0 x = OfNat.ofNat 0 x
[PROOFSTEP]
rw [gauge_def']
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ 0} = OfNat.ofNat 0 x
[PROOFSTEP]
obtain rfl | hx := eq_or_ne x 0
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ 0} = OfNat.ofNat 0 0
[PROOFSTEP]
simp only [csInf_Ioi, mem_zero, Pi.zero_apply, eq_self_iff_true, sep_true, smul_zero]
[GOAL]
case h.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hx : x ≠ 0
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ 0} = OfNat.ofNat 0 x
[PROOFSTEP]
simp only [mem_zero, Pi.zero_apply, inv_eq_zero, smul_eq_zero]
[GOAL]
case h.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hx : x ≠ 0
⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ x = 0)} = 0
[PROOFSTEP]
convert Real.sInf_empty
[GOAL]
case h.e'_2.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hx : x ≠ 0
⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ x = 0)} = ∅
[PROOFSTEP]
exact eq_empty_iff_forall_not_mem.2 fun r hr => hr.2.elim (ne_of_gt hr.1) hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
⊢ gauge ∅ = 0
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x✝ : E
⊢ gauge ∅ x✝ = OfNat.ofNat 0 x✝
[PROOFSTEP]
simp only [gauge_def', Real.sInf_empty, mem_empty_iff_false, Pi.zero_apply, sep_false]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
h : s ⊆ 0
⊢ gauge s = 0
[PROOFSTEP]
obtain rfl | rfl := subset_singleton_iff_eq.1 h
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
t : Set E
a : ℝ
h : ∅ ⊆ 0
⊢ gauge ∅ = 0
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
t : Set E
a : ℝ
h : {0} ⊆ 0
⊢ gauge {0} = 0
[PROOFSTEP]
exacts [gauge_empty, gauge_zero']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
x : E
⊢ gauge s (-x) = gauge s x
[PROOFSTEP]
have : ∀ x, -x ∈ s ↔ x ∈ s := fun x => ⟨fun h => by simpa using symmetric _ h, symmetric x⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
x✝ x : E
h : -x ∈ s
⊢ x ∈ s
[PROOFSTEP]
simpa using symmetric _ h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
x : E
this : ∀ (x : E), -x ∈ s ↔ x ∈ s
⊢ gauge s (-x) = gauge s x
[PROOFSTEP]
simp_rw [gauge_def', smul_neg, this]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ gauge (-s) (-x) = gauge s x
[PROOFSTEP]
simp_rw [gauge_def', smul_neg, neg_mem_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
⊢ gauge (-s) x = gauge s (-x)
[PROOFSTEP]
rw [← gauge_neg_set_neg, neg_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
ha : 0 ≤ a
hx : x ∈ a • s
⊢ gauge s x ≤ a
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
x : E
ha : 0 ≤ 0
hx : x ∈ 0 • s
⊢ gauge s x ≤ 0
[PROOFSTEP]
rw [mem_singleton_iff.1 (zero_smul_set_subset _ hx), gauge_zero]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
ha : 0 ≤ a
hx : x ∈ a • s
ha' : 0 < a
⊢ gauge s x ≤ a
[PROOFSTEP]
exact csInf_le gauge_set_bddBelow ⟨ha', hx⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
⊢ {x | gauge s x ≤ a} = ⋂ (r : ℝ) (_ : a < r), r • s
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
⊢ x ∈ {x | gauge s x ≤ a} ↔ x ∈ ⋂ (r : ℝ) (_ : a < r), r • s
[PROOFSTEP]
simp_rw [Set.mem_iInter, Set.mem_setOf_eq]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
⊢ gauge s x ≤ a ↔ ∀ (i : ℝ), a < i → x ∈ i • s
[PROOFSTEP]
refine' ⟨fun h r hr => _, fun h => le_of_forall_pos_lt_add fun ε hε => _⟩
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
⊢ x ∈ r • s
[PROOFSTEP]
have hr' := ha.trans_lt hr
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
⊢ x ∈ r • s
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ hr'.ne']
[GOAL]
case h.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
⊢ r⁻¹ • x ∈ s
[PROOFSTEP]
obtain ⟨δ, δ_pos, hδr, hδ⟩ := exists_lt_of_gauge_lt hs₂ (h.trans_lt hr)
[GOAL]
case h.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : x ∈ δ • s
⊢ r⁻¹ • x ∈ s
[PROOFSTEP]
suffices (r⁻¹ * δ) • δ⁻¹ • x ∈ s by rwa [smul_smul, mul_inv_cancel_right₀ δ_pos.ne'] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : x ∈ δ • s
this : (r⁻¹ * δ) • δ⁻¹ • x ∈ s
⊢ r⁻¹ • x ∈ s
[PROOFSTEP]
rwa [smul_smul, mul_inv_cancel_right₀ δ_pos.ne'] at this
[GOAL]
case h.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : x ∈ δ • s
⊢ (r⁻¹ * δ) • δ⁻¹ • x ∈ s
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ δ_pos.ne'] at hδ
[GOAL]
case h.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : δ⁻¹ • x ∈ s
⊢ (r⁻¹ * δ) • δ⁻¹ • x ∈ s
[PROOFSTEP]
refine' hs₁.smul_mem_of_zero_mem hs₀ hδ ⟨by positivity, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : δ⁻¹ • x ∈ s
⊢ 0 ≤ r⁻¹ * δ
[PROOFSTEP]
positivity
[GOAL]
case h.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : δ⁻¹ • x ∈ s
⊢ r⁻¹ * δ ≤ 1
[PROOFSTEP]
rw [inv_mul_le_iff hr', mul_one]
[GOAL]
case h.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : gauge s x ≤ a
r : ℝ
hr : a < r
hr' : 0 < r
δ : ℝ
δ_pos : 0 < δ
hδr : δ < r
hδ : δ⁻¹ • x ∈ s
⊢ δ ≤ r
[PROOFSTEP]
exact hδr.le
[GOAL]
case h.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : ∀ (i : ℝ), a < i → x ∈ i • s
ε : ℝ
hε : 0 < ε
⊢ gauge s x < a + ε
[PROOFSTEP]
have hε' := (lt_add_iff_pos_right a).2 (half_pos hε)
[GOAL]
case h.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : Absorbent ℝ s
ha : 0 ≤ a
x : E
h : ∀ (i : ℝ), a < i → x ∈ i • s
ε : ℝ
hε : 0 < ε
hε' : a < a + ε / 2
⊢ gauge s x < a + ε
[PROOFSTEP]
exact (gauge_le_of_mem (ha.trans hε'.le) <| h _ hε').trans_lt (add_lt_add_left (half_lt_self hε) _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
⊢ {x | gauge s x < a} = ⋃ (r : ℝ) (_ : 0 < r) (_ : r < a), r • s
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
x✝ : E
⊢ x✝ ∈ {x | gauge s x < a} ↔ x✝ ∈ ⋃ (r : ℝ) (_ : 0 < r) (_ : r < a), r • s
[PROOFSTEP]
simp_rw [mem_setOf, mem_iUnion, exists_prop]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
x✝ : E
⊢ gauge s x✝ < a ↔ ∃ i, 0 < i ∧ i < a ∧ x✝ ∈ i • s
[PROOFSTEP]
exact ⟨exists_lt_of_gauge_lt absorbs, fun ⟨r, hr₀, hr₁, hx⟩ => (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
⊢ {x | gauge s x < a} = ⋃ (r : ℝ) (_ : r ∈ Ioo 0 a), r • s
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
x✝ : E
⊢ x✝ ∈ {x | gauge s x < a} ↔ x✝ ∈ ⋃ (r : ℝ) (_ : r ∈ Ioo 0 a), r • s
[PROOFSTEP]
simp_rw [mem_setOf, mem_iUnion, exists_prop, mem_Ioo, and_assoc]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
absorbs : Absorbent ℝ s
a : ℝ
x✝ : E
⊢ gauge s x✝ < a ↔ ∃ i, 0 < i ∧ i < a ∧ x✝ ∈ i • s
[PROOFSTEP]
exact ⟨exists_lt_of_gauge_lt absorbs, fun ⟨r, hr₀, hr₁, hx⟩ => (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
absorbs : Absorbent ℝ s
hgauge : gauge s x < 1
⊢ ∃ y, y ∈ s ∧ x ∈ openSegment ℝ 0 y
[PROOFSTEP]
rcases exists_lt_of_gauge_lt absorbs hgauge with ⟨r, hr₀, hr₁, y, hy, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
absorbs : Absorbent ℝ s
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
y : E
hy : y ∈ s
hgauge : gauge s ((fun x => r • x) y) < 1
⊢ ∃ y_1, y_1 ∈ s ∧ (fun x => r • x) y ∈ openSegment ℝ 0 y_1
[PROOFSTEP]
refine ⟨y, hy, 1 - r, r, ?_⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
absorbs : Absorbent ℝ s
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
y : E
hy : y ∈ s
hgauge : gauge s ((fun x => r • x) y) < 1
⊢ ∃ x x x, (1 - r) • 0 + r • y = (fun x => r • x) y
[PROOFSTEP]
simp [*]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hx : x ∈ s
⊢ x ∈ 1 • s
[PROOFSTEP]
rwa [one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
x y : E
⊢ gauge s (x + y) ≤ gauge s x + gauge s y
[PROOFSTEP]
refine' le_of_forall_pos_lt_add fun ε hε => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
x y : E
ε : ℝ
hε : 0 < ε
⊢ gauge s (x + y) < gauge s x + gauge s y + ε
[PROOFSTEP]
obtain ⟨a, ha, ha', x, hx, rfl⟩ := exists_lt_of_gauge_lt absorbs (lt_add_of_pos_right (gauge s x) (half_pos hε))
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
y : E
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
⊢ gauge s ((fun x => a • x) x + y) < gauge s ((fun x => a • x) x) + gauge s y + ε
[PROOFSTEP]
obtain ⟨b, hb, hb', y, hy, rfl⟩ := exists_lt_of_gauge_lt absorbs (lt_add_of_pos_right (gauge s y) (half_pos hε))
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
b : ℝ
hb : 0 < b
y : E
hy : y ∈ s
hb' : b < gauge s ((fun x => b • x) y) + ε / 2
⊢ gauge s ((fun x => a • x) x + (fun x => b • x) y) < gauge s ((fun x => a • x) x) + gauge s ((fun x => b • x) y) + ε
[PROOFSTEP]
calc
gauge s (a • x + b • y) ≤ a + b :=
gauge_le_of_mem (by positivity) <| by
rw [hs.add_smul ha.le hb.le]
exact add_mem_add (smul_mem_smul_set hx) (smul_mem_smul_set hy)
_ < gauge s (a • x) + gauge s (b • y) + ε := by linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
b : ℝ
hb : 0 < b
y : E
hy : y ∈ s
hb' : b < gauge s ((fun x => b • x) y) + ε / 2
⊢ 0 ≤ a + b
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
b : ℝ
hb : 0 < b
y : E
hy : y ∈ s
hb' : b < gauge s ((fun x => b • x) y) + ε / 2
⊢ a • x + b • y ∈ (a + b) • s
[PROOFSTEP]
rw [hs.add_smul ha.le hb.le]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
b : ℝ
hb : 0 < b
y : E
hy : y ∈ s
hb' : b < gauge s ((fun x => b • x) y) + ε / 2
⊢ a • x + b • y ∈ a • s + b • s
[PROOFSTEP]
exact add_mem_add (smul_mem_smul_set hx) (smul_mem_smul_set hy)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
absorbs : Absorbent ℝ s
ε : ℝ
hε : 0 < ε
a : ℝ
ha : 0 < a
x : E
hx : x ∈ s
ha' : a < gauge s ((fun x => a • x) x) + ε / 2
b : ℝ
hb : 0 < b
y : E
hy : y ∈ s
hb' : b < gauge s ((fun x => b • x) y) + ε / 2
⊢ a + b < gauge s (a • x) + gauge s (b • y) + ε
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
h₀ : 0 ∈ s
absorbs : Absorbent ℝ s
a : ℝ
⊢ Convex ℝ {x | gauge s x ≤ a}
[PROOFSTEP]
by_cases ha : 0 ≤ a
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
h₀ : 0 ∈ s
absorbs : Absorbent ℝ s
a : ℝ
ha : 0 ≤ a
⊢ Convex ℝ {x | gauge s x ≤ a}
[PROOFSTEP]
rw [gauge_le_eq hs h₀ absorbs ha]
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
h₀ : 0 ∈ s
absorbs : Absorbent ℝ s
a : ℝ
ha : 0 ≤ a
⊢ Convex ℝ (⋂ (r : ℝ) (_ : a < r), r • s)
[PROOFSTEP]
exact convex_iInter fun i => convex_iInter fun _ => hs.smul _
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
h₀ : 0 ∈ s
absorbs : Absorbent ℝ s
a : ℝ
ha : ¬0 ≤ a
⊢ Convex ℝ {x | gauge s x ≤ a}
[PROOFSTEP]
convert convex_empty (𝕜 := ℝ) (E := E)
[GOAL]
case h.e'_6
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Convex ℝ s
h₀ : 0 ∈ s
absorbs : Absorbent ℝ s
a : ℝ
ha : ¬0 ≤ a
⊢ {x | gauge s x ≤ a} = ∅
[PROOFSTEP]
exact eq_empty_iff_forall_not_mem.2 fun x hx => ha <| (gauge_nonneg _).trans hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a✝ : ℝ
hs : Balanced ℝ s
x : E
hx : x ∈ s
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a ≤ 1
⊢ ‖a‖ ≤ 1
[PROOFSTEP]
rwa [Real.norm_of_nonneg ha₀]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hs₀ : StarConvex ℝ 0 s
hs₂ : Absorbs ℝ s {x}
hx : ¬x ∈ a • s
⊢ a ≤ gauge s x
[PROOFSTEP]
rw [starConvex_zero_iff] at hs₀
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
hs₂ : Absorbs ℝ s {x}
hx : ¬x ∈ a • s
⊢ a ≤ gauge s x
[PROOFSTEP]
obtain ⟨r, hr, h⟩ := hs₂
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
hx : ¬x ∈ a • s
r : ℝ
hr : 0 < r
h : ∀ (a : ℝ), r ≤ ‖a‖ → {x} ⊆ a • s
⊢ a ≤ gauge s x
[PROOFSTEP]
refine' le_csInf ⟨r, hr, singleton_subset_iff.1 <| h _ (Real.norm_of_nonneg hr.le).ge⟩ _
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
hx : ¬x ∈ a • s
r : ℝ
hr : 0 < r
h : ∀ (a : ℝ), r ≤ ‖a‖ → {x} ⊆ a • s
⊢ ∀ (b : ℝ), b ∈ {r | 0 < r ∧ x ∈ r • s} → a ≤ b
[PROOFSTEP]
rintro b ⟨hb, x, hx', rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
⊢ a ≤ b
[PROOFSTEP]
refine' not_lt.1 fun hba => hx _
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
⊢ (fun x => b • x) x ∈ a • s
[PROOFSTEP]
have ha := hb.trans hba
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ (fun x => b • x) x ∈ a • s
[PROOFSTEP]
refine' ⟨(a⁻¹ * b) • x, hs₀ hx' (by positivity) _, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ 0 ≤ a⁻¹ * b
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ a⁻¹ * b ≤ 1
[PROOFSTEP]
rw [← div_eq_inv_mul]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ b / a ≤ 1
[PROOFSTEP]
exact div_le_one_of_le hba.le ha.le
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ (fun x => a • x) ((a⁻¹ * b) • x) = (fun x => b • x) x
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
r : ℝ
hr : 0 < r
b : ℝ
hb : 0 < b
x : E
hx' : x ∈ s
hx : ¬(fun x => b • x) x ∈ a • s
h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s
hba : b < a
ha : 0 < a
⊢ a • (a⁻¹ * b) • x = b • x
[PROOFSTEP]
rw [← mul_smul, mul_inv_cancel_left₀ ha.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
x : E
hs₁ : StarConvex ℝ 0 s
hs₂ : Absorbs ℝ s {x}
hx : ¬x ∈ s
⊢ ¬x ∈ 1 • s
[PROOFSTEP]
rwa [one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
⊢ gauge s (a • x) = a • gauge s x
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
x : E
ha : 0 ≤ 0
⊢ gauge s (0 • x) = 0 • gauge s x
[PROOFSTEP]
rw [zero_smul, gauge_zero, zero_smul]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
⊢ gauge s (a • x) = a • gauge s x
[PROOFSTEP]
rw [gauge_def', gauge_def', ← Real.sInf_smul_of_nonneg ha]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} = sInf (a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s})
[PROOFSTEP]
congr 1
[GOAL]
case inr.e_a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
⊢ {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} = a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
ext r
[GOAL]
case inr.e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
⊢ r ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} ↔ r ∈ a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
simp_rw [Set.mem_smul_set, Set.mem_sep_iff]
[GOAL]
case inr.e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
⊢ r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s ↔ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
constructor
[GOAL]
case inr.e_a.h.mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
⊢ r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s → ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
rintro ⟨hr, hx⟩
[GOAL]
case inr.e_a.h.mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : r ∈ Ioi 0
hx : r⁻¹ • a • x ∈ s
⊢ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
simp_rw [mem_Ioi] at hr ⊢
[GOAL]
case inr.e_a.h.mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hx : r⁻¹ • a • x ∈ s
hr : 0 < r
⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
rw [← mem_smul_set_iff_inv_smul_mem₀ hr.ne'] at hx
[GOAL]
case inr.e_a.h.mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hx : a • x ∈ r • s
hr : 0 < r
⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
have := smul_pos (inv_pos.2 ha') hr
[GOAL]
case inr.e_a.h.mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hx : a • x ∈ r • s
hr : 0 < r
this : 0 < a⁻¹ • r
⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r
[PROOFSTEP]
refine' ⟨a⁻¹ • r, ⟨this, _⟩, smul_inv_smul₀ ha'.ne' _⟩
[GOAL]
case inr.e_a.h.mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hx : a • x ∈ r • s
hr : 0 < r
this : 0 < a⁻¹ • r
⊢ (a⁻¹ • r)⁻¹ • x ∈ s
[PROOFSTEP]
rwa [← mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc, mem_smul_set_iff_inv_smul_mem₀ (inv_ne_zero ha'.ne'),
inv_inv]
[GOAL]
case inr.e_a.h.mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
⊢ (∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r) → r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s
[PROOFSTEP]
rintro ⟨r, ⟨hr, hx⟩, rfl⟩
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : r ∈ Ioi 0
hx : r⁻¹ • x ∈ s
⊢ a • r ∈ Ioi 0 ∧ (a • r)⁻¹ • a • x ∈ s
[PROOFSTEP]
rw [mem_Ioi] at hr ⊢
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : 0 < r
hx : r⁻¹ • x ∈ s
⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s
[PROOFSTEP]
rw [← mem_smul_set_iff_inv_smul_mem₀ hr.ne'] at hx
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : 0 < r
hx : x ∈ r • s
⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s
[PROOFSTEP]
have := smul_pos ha' hr
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : 0 < r
hx : x ∈ r • s
this : 0 < a • r
⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s
[PROOFSTEP]
refine' ⟨this, _⟩
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : 0 < r
hx : x ∈ r • s
this : 0 < a • r
⊢ (a • r)⁻¹ • a • x ∈ s
[PROOFSTEP]
rw [← mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc]
[GOAL]
case inr.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁴ : LinearOrderedField α
inst✝³ : MulActionWithZero α ℝ
inst✝² : OrderedSMul α ℝ
inst✝¹ : MulActionWithZero α E
inst✝ : IsScalarTower α ℝ (Set E)
s : Set E
a : α
ha : 0 ≤ a
x : E
ha' : 0 < a
r : ℝ
hr : 0 < r
hx : x ∈ r • s
this : 0 < a • r
⊢ a • x ∈ a • r • s
[PROOFSTEP]
exact smul_mem_smul_set hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
⊢ gauge (a • s) = a⁻¹ • gauge s
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
ha : 0 ≤ 0
⊢ gauge (0 • s) = 0⁻¹ • gauge s
[PROOFSTEP]
rw [inv_zero, zero_smul, gauge_of_subset_zero (zero_smul_set_subset _)]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
⊢ gauge (a • s) = a⁻¹ • gauge s
[PROOFSTEP]
ext x
[GOAL]
case inr.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
⊢ gauge (a • s) x = (a⁻¹ • gauge s) x
[PROOFSTEP]
rw [gauge_def', Pi.smul_apply, gauge_def', ← Real.sInf_smul_of_nonneg (inv_nonneg.2 ha)]
[GOAL]
case inr.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} = sInf (a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s})
[PROOFSTEP]
congr 1
[GOAL]
case inr.h.e_a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
⊢ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} = a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
ext r
[GOAL]
case inr.h.e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
⊢ r ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} ↔ r ∈ a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}
[PROOFSTEP]
simp_rw [Set.mem_smul_set, Set.mem_sep_iff]
[GOAL]
case inr.h.e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
⊢ (r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x) ↔ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r
[PROOFSTEP]
constructor
[GOAL]
case inr.h.e_a.h.mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
⊢ (r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x) → ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r
[PROOFSTEP]
rintro ⟨hr, y, hy, h⟩
[GOAL]
case inr.h.e_a.h.mp.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
hr : r ∈ Ioi 0
y : E
hy : y ∈ s
h : a • y = r⁻¹ • x
⊢ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r
[PROOFSTEP]
simp_rw [mem_Ioi] at hr ⊢
[GOAL]
case inr.h.e_a.h.mp.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
y : E
hy : y ∈ s
h : a • y = r⁻¹ • x
hr : 0 < r
⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r
[PROOFSTEP]
refine' ⟨a • r, ⟨smul_pos ha' hr, _⟩, inv_smul_smul₀ ha'.ne' _⟩
[GOAL]
case inr.h.e_a.h.mp.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
y : E
hy : y ∈ s
h : a • y = r⁻¹ • x
hr : 0 < r
⊢ (a • r)⁻¹ • x ∈ s
[PROOFSTEP]
rwa [smul_inv₀, smul_assoc, ← h, inv_smul_smul₀ ha'.ne']
[GOAL]
case inr.h.e_a.h.mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
⊢ (∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r) → r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x
[PROOFSTEP]
rintro ⟨r, ⟨hr, hx⟩, rfl⟩
[GOAL]
case inr.h.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
hr : r ∈ Ioi 0
hx : r⁻¹ • x ∈ s
⊢ a⁻¹ • r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = (a⁻¹ • r)⁻¹ • x
[PROOFSTEP]
rw [mem_Ioi] at hr ⊢
[GOAL]
case inr.h.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
hr : 0 < r
hx : r⁻¹ • x ∈ s
⊢ 0 < a⁻¹ • r ∧ ∃ y, y ∈ s ∧ a • y = (a⁻¹ • r)⁻¹ • x
[PROOFSTEP]
refine' ⟨smul_pos (inv_pos.2 ha') hr, r⁻¹ • x, hx, _⟩
[GOAL]
case inr.h.e_a.h.mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : MulActionWithZero α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
a : α
ha : 0 ≤ a
ha' : 0 < a
x : E
r : ℝ
hr : 0 < r
hx : r⁻¹ • x ∈ s
⊢ a • r⁻¹ • x = (a⁻¹ • r)⁻¹ • x
[PROOFSTEP]
rw [smul_inv₀, smul_assoc, inv_inv]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
⊢ gauge (a • s) = |a|⁻¹ • gauge s
[PROOFSTEP]
rw [← gauge_smul_left_of_nonneg (abs_nonneg a)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
⊢ gauge (a • s) = gauge (|a| • s)
[PROOFSTEP]
obtain h | h := abs_choice a
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = a
⊢ gauge (a • s) = gauge (|a| • s)
[PROOFSTEP]
rw [h]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
⊢ gauge (a • s) = gauge (|a| • s)
[PROOFSTEP]
rw [h, Set.neg_smul_set, ← Set.smul_set_neg]
-- Porting note: was congr
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
⊢ gauge (a • s) = gauge (a • -s)
[PROOFSTEP]
apply congr_arg
[GOAL]
case inr.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
⊢ a • s = a • -s
[PROOFSTEP]
apply congr_arg
[GOAL]
case inr.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
⊢ s = -s
[PROOFSTEP]
ext y
[GOAL]
case inr.h.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
y : E
⊢ y ∈ s ↔ y ∈ -s
[PROOFSTEP]
refine' ⟨symmetric _, fun hy => _⟩
[GOAL]
case inr.h.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
y : E
hy : y ∈ -s
⊢ y ∈ s
[PROOFSTEP]
rw [← neg_neg y]
[GOAL]
case inr.h.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : AddCommGroup E
inst✝⁷ : Module ℝ E
s✝ t : Set E
a✝ : ℝ
α : Type u_4
inst✝⁶ : LinearOrderedField α
inst✝⁵ : MulActionWithZero α ℝ
inst✝⁴ : OrderedSMul α ℝ
inst✝³ : Module α E
inst✝² : SMulCommClass α ℝ ℝ
inst✝¹ : IsScalarTower α ℝ ℝ
inst✝ : IsScalarTower α ℝ E
s : Set E
symmetric : ∀ (x : E), x ∈ s → -x ∈ s
a : α
h : |a| = -a
y : E
hy : y ∈ -s
⊢ - -y ∈ s
[PROOFSTEP]
exact symmetric _ hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
⊢ gauge s (‖r‖ • x) = gauge s (r • x)
[PROOFSTEP]
unfold gauge
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
⊢ sInf {r_1 | 0 < r_1 ∧ ‖r‖ • x ∈ r_1 • s} = sInf {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s}
[PROOFSTEP]
congr with θ
[GOAL]
case e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
θ : ℝ
⊢ θ ∈ {r_1 | 0 < r_1 ∧ ‖r‖ • x ∈ r_1 • s} ↔ θ ∈ {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s}
[PROOFSTEP]
rw [@IsROrC.real_smul_eq_coe_smul 𝕜]
[GOAL]
case e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
θ : ℝ
⊢ θ ∈ {r_1 | 0 < r_1 ∧ ↑‖r‖ • x ∈ r_1 • s} ↔ θ ∈ {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s}
[PROOFSTEP]
refine' and_congr_right fun hθ => (hs.smul _).mem_smul_iff _
[GOAL]
case e_a.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
θ : ℝ
hθ : 0 < θ
⊢ ‖↑‖r‖‖ = ‖r‖
[PROOFSTEP]
rw [IsROrC.norm_ofReal, abs_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : IsROrC 𝕜
inst✝¹ : Module 𝕜 E
inst✝ : IsScalarTower ℝ 𝕜 E
hs : Balanced 𝕜 s
r : 𝕜
x : E
⊢ gauge s (r • x) = ‖r‖ * gauge s x
[PROOFSTEP]
rw [← smul_eq_mul, ← gauge_smul_of_nonneg (norm_nonneg r), gauge_norm_smul hs]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
⊢ interior s ⊆ {x | gauge s x < 1}
[PROOFSTEP]
intro x hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
⊢ x ∈ {x | gauge s x < 1}
[PROOFSTEP]
have H₁ : Tendsto (fun r : ℝ ↦ r⁻¹ • x) (𝓝[<] 1) (𝓝 ((1 : ℝ)⁻¹ • x)) :=
((tendsto_id.inv₀ one_ne_zero).smul tendsto_const_nhds).mono_left inf_le_left
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 (1⁻¹ • x))
⊢ x ∈ {x | gauge s x < 1}
[PROOFSTEP]
rw [inv_one, one_smul] at H₁
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
⊢ x ∈ {x | gauge s x < 1}
[PROOFSTEP]
have H₂ : ∀ᶠ r in 𝓝[<] (1 : ℝ), x ∈ r • s ∧ 0 < r ∧ r < 1
[GOAL]
case H₂
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
⊢ ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1
[PROOFSTEP]
filter_upwards [H₁ (mem_interior_iff_mem_nhds.1 hx), Ioo_mem_nhdsWithin_Iio' one_pos]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
⊢ ∀ (a : ℝ), a ∈ (fun r => r⁻¹ • x) ⁻¹' s → a ∈ Ioo 0 1 → x ∈ a • s ∧ 0 < a ∧ a < 1
[PROOFSTEP]
intro r h₁ h₂
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
r : ℝ
h₁ : r ∈ (fun r => r⁻¹ • x) ⁻¹' s
h₂ : r ∈ Ioo 0 1
⊢ x ∈ r • s ∧ 0 < r ∧ r < 1
[PROOFSTEP]
exact ⟨(mem_smul_set_iff_inv_smul_mem₀ h₂.1.ne' _ _).2 h₁, h₂⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
H₂ : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1
⊢ x ∈ {x | gauge s x < 1}
[PROOFSTEP]
rcases H₂.exists with ⟨r, hxr, hr₀, hr₁⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s✝ t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
hx : x ∈ interior s
H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x)
H₂ : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1
r : ℝ
hxr : x ∈ r • s
hr₀ : 0 < r
hr₁ : r < 1
⊢ x ∈ {x | gauge s x < 1}
[PROOFSTEP]
exact (gauge_le_of_mem hr₀.le hxr).trans_lt hr₁
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : IsOpen s
⊢ {x | gauge s x < 1} = s
[PROOFSTEP]
refine' (gauge_lt_one_subset_self hs₁ ‹_› <| absorbent_nhds_zero <| hs₂.mem_nhds hs₀).antisymm _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : IsOpen s
⊢ s ⊆ {x | gauge s x < 1}
[PROOFSTEP]
convert interior_subset_gauge_lt_one s
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs₁ : Convex ℝ s
hs₀ : 0 ∈ s
hs₂ : IsOpen s
⊢ s = interior s
[PROOFSTEP]
exact hs₂.interior_eq.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs₂ : IsOpen s
x : E
hx : x ∈ s
⊢ x ∈ interior s
[PROOFSTEP]
rwa [hs₂.interior_eq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
ε : ℝ
hε : 0 < ε
hs₂ : IsOpen s
hx : x ∈ ε • s
⊢ gauge s x < ε
[PROOFSTEP]
have : ε⁻¹ • x ∈ s := by rwa [← mem_smul_set_iff_inv_smul_mem₀ hε.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
ε : ℝ
hε : 0 < ε
hs₂ : IsOpen s
hx : x ∈ ε • s
⊢ ε⁻¹ • x ∈ s
[PROOFSTEP]
rwa [← mem_smul_set_iff_inv_smul_mem₀ hε.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
ε : ℝ
hε : 0 < ε
hs₂ : IsOpen s
hx : x ∈ ε • s
this : ε⁻¹ • x ∈ s
⊢ gauge s x < ε
[PROOFSTEP]
have h_gauge_lt := gauge_lt_one_of_mem_of_open hs₂ this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
ε : ℝ
hε : 0 < ε
hs₂ : IsOpen s
hx : x ∈ ε • s
this : ε⁻¹ • x ∈ s
h_gauge_lt : gauge s (ε⁻¹ • x) < 1
⊢ gauge s x < ε
[PROOFSTEP]
rwa [gauge_smul_of_nonneg (inv_nonneg.2 hε.le), smul_eq_mul, inv_mul_lt_iff hε, mul_one] at h_gauge_lt
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
⊢ x ∈ closure s
[PROOFSTEP]
have : ∀ᶠ r : ℝ in 𝓝[<] 1, r • x ∈ s
[GOAL]
case this
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
⊢ ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s
[PROOFSTEP]
filter_upwards [Ico_mem_nhdsWithin_Iio' one_pos] with r ⟨hr₀, hr₁⟩
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
r : ℝ
hr₀ : 0 ≤ r
hr₁ : r < 1
⊢ r • x ∈ s
[PROOFSTEP]
apply gauge_lt_one_subset_self hc hs₀ ha
[GOAL]
case h.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
r : ℝ
hr₀ : 0 ≤ r
hr₁ : r < 1
⊢ r • x ∈ {x | gauge s x < 1}
[PROOFSTEP]
rw [mem_setOf_eq, gauge_smul_of_nonneg hr₀]
[GOAL]
case h.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
r : ℝ
hr₀ : 0 ≤ r
hr₁ : r < 1
⊢ r • gauge s x < 1
[PROOFSTEP]
exact mul_lt_one_of_nonneg_of_lt_one_left hr₀ hr₁ h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s
⊢ x ∈ closure s
[PROOFSTEP]
refine mem_closure_of_tendsto ?_ this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s
⊢ Filter.Tendsto (fun x_1 => x_1 • x) (𝓝[Iio 1] 1) (𝓝 x)
[PROOFSTEP]
exact Filter.Tendsto.mono_left (Continuous.tendsto' (by continuity) _ _ (one_smul _ _)) inf_le_left
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : AddCommGroup E
inst✝² : Module ℝ E
s t : Set E
a : ℝ
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : 0 ∈ s
ha : Absorbent ℝ s
h : gauge s x ≤ 1
this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s
⊢ Continuous fun x_1 => x_1 • x
[PROOFSTEP]
continuity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
⊢ Continuous (gauge s)
[PROOFSTEP]
have ha : Absorbent ℝ s := absorbent_nhds_zero hs₀
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
⊢ Continuous (gauge s)
[PROOFSTEP]
simp only [continuous_iff_continuousAt, ContinuousAt, (nhds_basis_Icc_pos _).tendsto_right_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
⊢ ∀ (x : E) (i : ℝ), 0 < i → ∀ᶠ (x_1 : E) in 𝓝 x, gauge s x_1 ∈ Icc (gauge s x - i) (gauge s x + i)
[PROOFSTEP]
intro x ε hε₀
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝 x, gauge s x_1 ∈ Icc (gauge s x - ε) (gauge s x + ε)
[PROOFSTEP]
rw [← map_add_left_nhds_zero, eventually_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
⊢ ∀ᶠ (a : E) in 𝓝 0, gauge s ((fun x x_1 => x + x_1) x a) ∈ Icc (gauge s x - ε) (gauge s x + ε)
[PROOFSTEP]
have : ε • s ∩ -(ε • s) ∈ 𝓝 0
[GOAL]
case this
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
⊢ ε • s ∩ -(ε • s) ∈ 𝓝 0
[PROOFSTEP]
exact
inter_mem ((set_smul_mem_nhds_zero_iff hε₀.ne').2 hs₀)
(neg_mem_nhds_zero _ ((set_smul_mem_nhds_zero_iff hε₀.ne').2 hs₀))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
⊢ ∀ᶠ (a : E) in 𝓝 0, gauge s ((fun x x_1 => x + x_1) x a) ∈ Icc (gauge s x - ε) (gauge s x + ε)
[PROOFSTEP]
filter_upwards [this] with y hy
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
y : E
hy : y ∈ ε • s ∩ -(ε • s)
⊢ gauge s (x + y) ∈ Icc (gauge s x - ε) (gauge s x + ε)
[PROOFSTEP]
constructor
[GOAL]
case h.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
y : E
hy : y ∈ ε • s ∩ -(ε • s)
⊢ gauge s x - ε ≤ gauge s (x + y)
[PROOFSTEP]
rw [sub_le_iff_le_add]
[GOAL]
case h.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
y : E
hy : y ∈ ε • s ∩ -(ε • s)
⊢ gauge s x ≤ gauge s (x + y) + ε
[PROOFSTEP]
calc
gauge s x = gauge s (x + y + (-y)) := by simp
_ ≤ gauge s (x + y) + gauge s (-y) := (gauge_add_le hc ha _ _)
_ ≤ gauge s (x + y) + ε := add_le_add_left (gauge_le_of_mem hε₀.le (mem_neg.1 hy.2)) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
y : E
hy : y ∈ ε • s ∩ -(ε • s)
⊢ gauge s x = gauge s (x + y + -y)
[PROOFSTEP]
simp
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
ha : Absorbent ℝ s
x : E
ε : ℝ
hε₀ : 0 < ε
this : ε • s ∩ -(ε • s) ∈ 𝓝 0
y : E
hy : y ∈ ε • s ∩ -(ε • s)
⊢ gauge s (x + y) ≤ gauge s x + ε
[PROOFSTEP]
calc
gauge s (x + y) ≤ gauge s x + gauge s y := gauge_add_le hc ha _ _
_ ≤ gauge s x + ε := add_le_add_left (gauge_le_of_mem hε₀.le hy.1) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
⊢ {x | gauge s x < 1} = interior s
[PROOFSTEP]
refine Subset.antisymm (fun x hx ↦ ?_) (interior_subset_gauge_lt_one s)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
x : E
hx : x ∈ {x | gauge s x < 1}
⊢ x ∈ interior s
[PROOFSTEP]
rcases mem_openSegment_of_gauge_lt_one (absorbent_nhds_zero hs₀) hx with ⟨y, hys, hxy⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
x : E
hx : x ∈ {x | gauge s x < 1}
y : E
hys : y ∈ s
hxy : x ∈ openSegment ℝ 0 y
⊢ x ∈ interior s
[PROOFSTEP]
exact hc.openSegment_interior_self_subset_interior (mem_interior_iff_mem_nhds.2 hs₀) hys hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
⊢ gauge s x = 1 ↔ x ∈ frontier s
[PROOFSTEP]
rw [eq_iff_le_not_lt, gauge_le_one_iff_mem_closure hc hs₀, gauge_lt_one_iff_mem_interior hc hs₀]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
s t : Set E
a : ℝ
inst✝² : TopologicalSpace E
inst✝¹ : TopologicalAddGroup E
inst✝ : ContinuousSMul ℝ E
x : E
hc : Convex ℝ s
hs₀ : s ∈ 𝓝 0
⊢ x ∈ closure s ∧ ¬x ∈ interior s ↔ x ∈ frontier s
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
x : E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
⊢ gauge s x = 0 ↔ x = 0
[PROOFSTEP]
refine ⟨not_imp_not.1 fun (h : x ≠ 0) ↦ ne_of_gt ?_, fun h ↦ h.symm ▸ gauge_zero⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
x : E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
h : x ≠ 0
⊢ 0 < gauge s x
[PROOFSTEP]
rcases hb (isOpen_compl_singleton.mem_nhds h.symm) with ⟨c, hc₀, hc⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
x : E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
h : x ≠ 0
c : ℝ
hc₀ : 0 < c
hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {x}ᶜ
⊢ 0 < gauge s x
[PROOFSTEP]
refine (inv_pos.2 hc₀).trans_le <| le_csInf hs.gauge_set_nonempty ?_
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
x : E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
h : x ≠ 0
c : ℝ
hc₀ : 0 < c
hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {x}ᶜ
⊢ ∀ (b : ℝ), b ∈ {r | 0 < r ∧ x ∈ r • s} → c⁻¹ ≤ b
[PROOFSTEP]
rintro r ⟨hr₀, x, hx, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
x : E
hx : x ∈ s
h : (fun x => r • x) x ≠ 0
hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {(fun x => r • x) x}ᶜ
⊢ c⁻¹ ≤ r
[PROOFSTEP]
contrapose! hc
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
x : E
hx : x ∈ s
h : (fun x => r • x) x ≠ 0
hc : r < c⁻¹
⊢ ∃ a, c ≤ ‖a‖ ∧ ¬s ⊆ a • {r • x}ᶜ
[PROOFSTEP]
refine ⟨r⁻¹, ?_, fun h ↦ ?_⟩
[GOAL]
case intro.intro.intro.intro.intro.refine_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
x : E
hx : x ∈ s
h : (fun x => r • x) x ≠ 0
hc : r < c⁻¹
⊢ c ≤ ‖r⁻¹‖
[PROOFSTEP]
rw [norm_inv, Real.norm_of_nonneg hr₀.le, le_inv hc₀ hr₀]
[GOAL]
case intro.intro.intro.intro.intro.refine_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
x : E
hx : x ∈ s
h : (fun x => r • x) x ≠ 0
hc : r < c⁻¹
⊢ r ≤ c⁻¹
[PROOFSTEP]
exact hc.le
[GOAL]
case intro.intro.intro.intro.intro.refine_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
x : E
hx : x ∈ s
h✝ : (fun x => r • x) x ≠ 0
hc : r < c⁻¹
h : s ⊆ r⁻¹ • {r • x}ᶜ
⊢ False
[PROOFSTEP]
rcases h hx with ⟨y, hy, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.refine_2.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
c : ℝ
hc₀ : 0 < c
r : ℝ
hr₀ : 0 < r
hc : r < c⁻¹
y : E
hx : (fun x => r⁻¹ • x) y ∈ s
h✝ : (fun x => r • x) ((fun x => r⁻¹ • x) y) ≠ 0
h : s ⊆ r⁻¹ • {r • (fun x => r⁻¹ • x) y}ᶜ
hy : y ∈ {r • (fun x => r⁻¹ • x) y}ᶜ
⊢ False
[PROOFSTEP]
simp [hr₀.ne'] at hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module ℝ E
s t : Set E
a : ℝ
inst✝³ : TopologicalSpace E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
x : E
inst✝ : T1Space E
hs : Absorbent ℝ s
hb : Bornology.IsVonNBounded ℝ s
⊢ 0 < gauge s x ↔ x ≠ 0
[PROOFSTEP]
simp only [(gauge_nonneg _).gt_iff_ne, Ne.def, gauge_eq_zero hs hb]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s t : Set E
a : ℝ
inst✝⁴ : IsROrC 𝕜
inst✝³ : Module 𝕜 E
inst✝² : IsScalarTower ℝ 𝕜 E
hs₀ : Balanced 𝕜 s
hs₁ : Convex ℝ s
hs₂ : Absorbent ℝ s
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs : IsOpen s
⊢ Seminorm.ball (gaugeSeminorm hs₀ hs₁ hs₂) 0 1 = s
[PROOFSTEP]
rw [Seminorm.ball_zero_eq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
s t : Set E
a : ℝ
inst✝⁴ : IsROrC 𝕜
inst✝³ : Module 𝕜 E
inst✝² : IsScalarTower ℝ 𝕜 E
hs₀ : Balanced 𝕜 s
hs₁ : Convex ℝ s
hs₂ : Absorbent ℝ s
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousSMul ℝ E
hs : IsOpen s
⊢ {y | ↑(gaugeSeminorm hs₀ hs₁ hs₂) y < 1} = s
[PROOFSTEP]
exact gauge_lt_one_eq_self_of_open hs₁ hs₂.zero_mem hs
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
⊢ gauge (ball p 0 1) = ↑p
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
⊢ gauge (ball p 0 1) x = ↑p x
[PROOFSTEP]
obtain hp | hp := {r : ℝ | 0 < r ∧ x ∈ r • p.ball 0 1}.eq_empty_or_nonempty
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
⊢ gauge (ball p 0 1) x = ↑p x
[PROOFSTEP]
rw [gauge, hp, Real.sInf_empty]
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
⊢ 0 = ↑p x
[PROOFSTEP]
by_contra h
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
h : ¬0 = ↑p x
⊢ False
[PROOFSTEP]
have hpx : 0 < p x := (map_nonneg _ _).lt_of_ne h
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
h : ¬0 = ↑p x
hpx : 0 < ↑p x
⊢ False
[PROOFSTEP]
have hpx₂ : 0 < 2 * p x := mul_pos zero_lt_two hpx
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
h : ¬0 = ↑p x
hpx : 0 < ↑p x
hpx₂ : 0 < 2 * ↑p x
⊢ False
[PROOFSTEP]
refine' hp.subset ⟨hpx₂, (2 * p x)⁻¹ • x, _, smul_inv_smul₀ hpx₂.ne' _⟩
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
h : ¬0 = ↑p x
hpx : 0 < ↑p x
hpx₂ : 0 < 2 * ↑p x
⊢ (2 * ↑p x)⁻¹ • x ∈ ball p 0 1
[PROOFSTEP]
rw [p.mem_ball_zero, map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos (inv_pos.2 hpx₂), inv_mul_lt_iff hpx₂, mul_one]
[GOAL]
case h.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅
h : ¬0 = ↑p x
hpx : 0 < ↑p x
hpx₂ : 0 < 2 * ↑p x
⊢ ↑p x < 2 * ↑p x
[PROOFSTEP]
exact lt_mul_of_one_lt_left hpx one_lt_two
[GOAL]
case h.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
⊢ gauge (ball p 0 1) x = ↑p x
[PROOFSTEP]
refine' IsGLB.csInf_eq ⟨fun r => _, fun r hr => le_of_forall_pos_le_add fun ε hε => _⟩ hp
[GOAL]
case h.inr.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
r : ℝ
⊢ r ∈ {r | 0 < r ∧ x ∈ r • ball p 0 1} → ↑p x ≤ r
[PROOFSTEP]
rintro ⟨hr, y, hy, rfl⟩
[GOAL]
case h.inr.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
r : ℝ
hr : 0 < r
y : E
hy : y ∈ ball p 0 1
hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1}
⊢ ↑p ((fun x => r • x) y) ≤ r
[PROOFSTEP]
rw [p.mem_ball_zero] at hy
[GOAL]
case h.inr.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
r : ℝ
hr : 0 < r
y : E
hy : ↑p y < 1
hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1}
⊢ ↑p ((fun x => r • x) y) ≤ r
[PROOFSTEP]
rw [map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos hr]
[GOAL]
case h.inr.refine'_1.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
r : ℝ
hr : 0 < r
y : E
hy : ↑p y < 1
hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1}
⊢ r * ↑p y ≤ r
[PROOFSTEP]
exact mul_le_of_le_one_right hr.le hy.le
[GOAL]
case h.inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
r : ℝ
hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1}
ε : ℝ
hε : 0 < ε
⊢ r ≤ ↑p x + ε
[PROOFSTEP]
have hpε : 0 < p x + ε :=
-- Porting note: was `by positivity`add_pos_of_nonneg_of_pos (map_nonneg _ _) hε
[GOAL]
case h.inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
r : ℝ
hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1}
ε : ℝ
hε : 0 < ε
hpε : 0 < ↑p x + ε
⊢ r ≤ ↑p x + ε
[PROOFSTEP]
refine' hr ⟨hpε, (p x + ε)⁻¹ • x, _, smul_inv_smul₀ hpε.ne' _⟩
[GOAL]
case h.inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
r : ℝ
hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1}
ε : ℝ
hε : 0 < ε
hpε : 0 < ↑p x + ε
⊢ (↑p x + ε)⁻¹ • x ∈ ball p 0 1
[PROOFSTEP]
rw [p.mem_ball_zero, map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos (inv_pos.2 hpε), inv_mul_lt_iff hpε, mul_one]
[GOAL]
case h.inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s t : Set E
a : ℝ
p : Seminorm ℝ E
x : E
hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1}
r : ℝ
hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1}
ε : ℝ
hε : 0 < ε
hpε : 0 < ↑p x + ε
⊢ ↑p x < ↑p x + ε
[PROOFSTEP]
exact lt_add_of_pos_right _ hε
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
⊢ gauge (ball 0 1) x = ‖x‖
[PROOFSTEP]
rw [← ball_normSeminorm ℝ, Seminorm.gauge_ball, coe_normSeminorm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
⊢ gauge (ball 0 r) x = ‖x‖ / r
[PROOFSTEP]
rcases hr.eq_or_lt with rfl | hr
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
x✝ x : E
hr : 0 ≤ 0
⊢ gauge (ball 0 0) x = ‖x‖ / 0
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr✝ : 0 ≤ r
x : E
hr : 0 < r
⊢ gauge (ball 0 r) x = ‖x‖ / r
[PROOFSTEP]
rw [← smul_unitBall_of_pos hr, gauge_smul_left, Pi.smul_apply, gauge_unit_ball, smul_eq_mul, abs_of_nonneg hr.le,
div_eq_inv_mul]
[GOAL]
case inr.symmetric
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr✝ : 0 ≤ r
x : E
hr : 0 < r
⊢ ∀ (x : E), x ∈ ball 0 1 → -x ∈ ball 0 1
[PROOFSTEP]
simp_rw [mem_ball_zero_iff, norm_neg]
[GOAL]
case inr.symmetric
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr✝ : 0 ≤ r
x : E
hr : 0 < r
⊢ ∀ (x : E), ‖x‖ < 1 → ‖x‖ < 1
[PROOFSTEP]
exact fun _ => id
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
⊢ gauge (closure 0) x = OfNat.ofNat 0 x
[PROOFSTEP]
simp only [← singleton_zero, gauge_def', mem_closure_zero_iff_norm, norm_smul, mul_eq_zero, norm_eq_zero, inv_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x
[PROOFSTEP]
rcases(norm_nonneg x).eq_or_gt with hx | hx
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
hx : ‖x‖ = 0
⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x
[PROOFSTEP]
convert csInf_Ioi (a := (0 : ℝ))
[GOAL]
case h.e'_2.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
hx : ‖x‖ = 0
⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = Ioi 0
[PROOFSTEP]
exact Set.ext fun r ↦ and_iff_left (.inr hx)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
hx : 0 < ‖x‖
⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x
[PROOFSTEP]
convert Real.sInf_empty
[GOAL]
case h.e'_2.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ x : E
hx : 0 < ‖x‖
⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = ∅
[PROOFSTEP]
exact eq_empty_of_forall_not_mem fun r ⟨hr₀, hr⟩ ↦ hx.ne' <| hr.resolve_left hr₀.out.ne'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
⊢ gauge (closedBall 0 r) x = ‖x‖ / r
[PROOFSTEP]
rcases hr.eq_or_lt with rfl | hr'
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
x✝ x : E
hr : 0 ≤ 0
⊢ gauge (closedBall 0 0) x = ‖x‖ / 0
[PROOFSTEP]
rw [div_zero, closedBall_zero', singleton_zero, gauge_closure_zero]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
x✝ x : E
hr : 0 ≤ 0
⊢ OfNat.ofNat 0 x = 0
[PROOFSTEP]
rfl
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
⊢ gauge (closedBall 0 r) x = ‖x‖ / r
[PROOFSTEP]
apply le_antisymm
[GOAL]
case inr.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
⊢ gauge (closedBall 0 r) x ≤ ‖x‖ / r
[PROOFSTEP]
rw [← gauge_ball hr]
[GOAL]
case inr.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
⊢ gauge (closedBall 0 r) x ≤ gauge (ball 0 r) x
[PROOFSTEP]
exact gauge_mono (absorbent_ball_zero hr') ball_subset_closedBall x
[GOAL]
case inr.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
⊢ ‖x‖ / r ≤ gauge (closedBall 0 r) x
[PROOFSTEP]
suffices : ∀ᶠ R in 𝓝[>] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x
[GOAL]
case inr.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
this : ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x
⊢ ‖x‖ / r ≤ gauge (closedBall 0 r) x
[PROOFSTEP]
refine le_of_tendsto ?_ this
[GOAL]
case inr.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
this : ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x
⊢ Filter.Tendsto (fun c => ‖x‖ / c) (𝓝[Ioi r] r) (𝓝 (‖x‖ / r))
[PROOFSTEP]
exact tendsto_const_nhds.div inf_le_left hr'.ne'
[GOAL]
case this
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
⊢ ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin] with R hR
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
R : ℝ
hR : R ∈ Ioi r
⊢ ‖x‖ / R ≤ gauge (closedBall 0 r) x
[PROOFSTEP]
rw [← gauge_ball (hr.trans hR.out.le)]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
R : ℝ
hR : R ∈ Ioi r
⊢ gauge (ball 0 R) x ≤ gauge (closedBall 0 r) x
[PROOFSTEP]
refine gauge_mono ?_ (closedBall_subset_ball hR) _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x✝ : E
hr : 0 ≤ r
x : E
hr' : 0 < r
R : ℝ
hR : R ∈ Ioi r
⊢ Absorbent ℝ (closedBall 0 r)
[PROOFSTEP]
exact (absorbent_ball_zero hr').subset ball_subset_closedBall
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : ball 0 r ⊆ s
⊢ r * gauge s x ≤ ‖x‖
[PROOFSTEP]
obtain hr | hr := le_or_lt r 0
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : ball 0 r ⊆ s
hr : r ≤ 0
⊢ r * gauge s x ≤ ‖x‖
[PROOFSTEP]
exact (mul_nonpos_of_nonpos_of_nonneg hr <| gauge_nonneg _).trans (norm_nonneg _)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : ball 0 r ⊆ s
hr : 0 < r
⊢ r * gauge s x ≤ ‖x‖
[PROOFSTEP]
rw [mul_comm, ← le_div_iff hr, ← gauge_ball hr.le]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : ball 0 r ⊆ s
hr : 0 < r
⊢ gauge s x ≤ gauge (ball 0 r) x
[PROOFSTEP]
exact gauge_mono (absorbent_ball_zero hr) hs x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r✝ : ℝ
x✝ : E
r : ℝ≥0
hc : Convex ℝ s
hr : 0 < r
hs : ball 0 ↑r ⊆ s
this : Absorbent ℝ (ball 0 ↑r)
x y : E
⊢ gauge s x = gauge s (y + (x - y))
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r✝ : ℝ
x✝ : E
r : ℝ≥0
hc : Convex ℝ s
hr : 0 < r
hs : ball 0 ↑r ⊆ s
this : Absorbent ℝ (ball 0 ↑r)
x y : E
⊢ gauge s y + ‖x - y‖ / ↑r = gauge s y + ↑r⁻¹ * dist x y
[PROOFSTEP]
rw [dist_eq_norm, div_eq_inv_mul, NNReal.coe_inv]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : Absorbent ℝ s
hr : 0 ≤ r
hsr : s ⊆ closedBall 0 r
⊢ ‖x‖ / r ≤ gauge s x
[PROOFSTEP]
rw [← gauge_closedBall hr]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
s : Set E
r : ℝ
x : E
hs : Absorbent ℝ s
hr : 0 ≤ r
hsr : s ⊆ closedBall 0 r
⊢ gauge (closedBall 0 r) x ≤ gauge s x
[PROOFSTEP]
exact gauge_mono hs hsr _
| {"mathlib_filename": "Mathlib.Analysis.Convex.Gauge", "llama_tokens": 47012} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
⊢ StarConvex 𝕜 x s → ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s
[PROOFSTEP]
rintro h y hy z ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h hy ha hb hab
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
⊢ (∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s) → StarConvex 𝕜 x s
[PROOFSTEP]
rintro h y hy a b ha hb hab
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
h : ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h hy ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
⊢ StarConvex 𝕜 x s ↔ ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • {x} + b • s ⊆ s
[PROOFSTEP]
refine' ⟨_, fun h y hy a b ha hb hab => h ha hb hab (add_mem_add (smul_mem_smul_set <| mem_singleton _) ⟨_, hy, rfl⟩)⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
⊢ StarConvex 𝕜 x s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • {x} + b • s ⊆ s
[PROOFSTEP]
rintro hA a b ha hb hab w ⟨au, bv, ⟨u, rfl : u = x, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s t : Set E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
u : E
hA : StarConvex 𝕜 u s
v : E
hv : v ∈ s
⊢ (fun x x_1 => x + x_1) ((fun x => a • x) u) ((fun x => b • x) v) ∈ s
[PROOFSTEP]
exact hA hv ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 x t
⊢ StarConvex 𝕜 x (s ∪ t)
[PROOFSTEP]
rintro y (hy | hy) a b ha hb hab
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 x t
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s ∪ t
[PROOFSTEP]
exact Or.inl (hs hy ha hb hab)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 x t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s ∪ t
[PROOFSTEP]
exact Or.inr (ht hy ha hb hab)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s✝ t : Set E
ι : Sort u_4
s : ι → Set E
hs : ∀ (i : ι), StarConvex 𝕜 x (s i)
⊢ StarConvex 𝕜 x (⋃ (i : ι), s i)
[PROOFSTEP]
rintro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s✝ t : Set E
ι : Sort u_4
s : ι → Set E
hs : ∀ (i : ι), StarConvex 𝕜 x (s i)
y : E
hy : y ∈ ⋃ (i : ι), s i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ⋃ (i : ι), s i
[PROOFSTEP]
rw [mem_iUnion] at hy ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s✝ t : Set E
ι : Sort u_4
s : ι → Set E
hs : ∀ (i : ι), StarConvex 𝕜 x (s i)
y : E
hy : ∃ i, y ∈ s i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
obtain ⟨i, hy⟩ := hy
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s✝ t : Set E
ι : Sort u_4
s : ι → Set E
hs : ∀ (i : ι), StarConvex 𝕜 x (s i)
y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι
hy : y ∈ s i
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
exact ⟨i, hs i hy ha hb hab⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
S : Set (Set E)
hS : ∀ (s : Set E), s ∈ S → StarConvex 𝕜 x s
⊢ StarConvex 𝕜 x (⋃₀ S)
[PROOFSTEP]
rw [sUnion_eq_iUnion]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
x : E
s t : Set E
S : Set (Set E)
hS : ∀ (s : Set E), s ∈ S → StarConvex 𝕜 x s
⊢ StarConvex 𝕜 x (⋃ (i : ↑S), ↑i)
[PROOFSTEP]
exact starConvex_iUnion fun s => hS _ s.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 x s
h : Set.Nonempty s
⊢ x ∈ s
[PROOFSTEP]
obtain ⟨y, hy⟩ := h
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hs : StarConvex 𝕜 x s
y : E
hy : y ∈ s
⊢ x ∈ s
[PROOFSTEP]
convert hs hy zero_le_one le_rfl (add_zero 1)
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hs : StarConvex 𝕜 x s
y : E
hy : y ∈ s
⊢ x = 1 • x + 0 • y
[PROOFSTEP]
rw [one_smul, zero_smul, add_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hx : x ∈ s
⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
[PROOFSTEP]
refine' ⟨fun h y hy a b ha hb hab => h hy ha.le hb.le hab, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hx : x ∈ s
⊢ (∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) → StarConvex 𝕜 x s
[PROOFSTEP]
intro h y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | ha := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ 0 • x + b • y ∈ s
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
⊢ 0 • x + b • y ∈ s
[PROOFSTEP]
rwa [hab, one_smul, zero_smul, zero_add]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha✝ : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha : 0 < a
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | hb := hb.eq_or_lt
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha✝ : 0 ≤ a
ha : 0 < a
hb : 0 ≤ 0
hab : a + 0 = 1
⊢ a • x + 0 • y ∈ s
[PROOFSTEP]
rw [add_zero] at hab
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha✝ : 0 ≤ a
ha : 0 < a
hb : 0 ≤ 0
hab : a = 1
⊢ a • x + 0 • y ∈ s
[PROOFSTEP]
rwa [hab, one_smul, zero_smul, add_zero]
[GOAL]
case inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha✝ : 0 ≤ a
hb✝ : 0 ≤ b
hab : a + b = 1
ha : 0 < a
hb : 0 < b
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hx : x ∈ s
⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
[PROOFSTEP]
refine' ⟨fun h y hy _ a b ha hb hab => h hy ha.le hb.le hab, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hx : x ∈ s
⊢ (∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) → StarConvex 𝕜 x s
[PROOFSTEP]
intro h y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ 0 • x + b • y ∈ s
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
⊢ 0 • x + b • y ∈ s
[PROOFSTEP]
rwa [hab, zero_smul, one_smul, zero_add]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | hb' := hb.eq_or_lt
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha : 0 ≤ a
ha' : 0 < a
hb : 0 ≤ 0
hab : a + 0 = 1
⊢ a • x + 0 • y ∈ s
[PROOFSTEP]
rw [add_zero] at hab
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha : 0 ≤ a
ha' : 0 < a
hb : 0 ≤ 0
hab : a = 1
⊢ a • x + 0 • y ∈ s
[PROOFSTEP]
rwa [hab, zero_smul, one_smul, add_zero]
[GOAL]
case inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
hb' : 0 < b
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | hxy := eq_or_ne x y
[GOAL]
case inr.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
hb' : 0 < b
hy : x ∈ s
⊢ a • x + b • x ∈ s
[PROOFSTEP]
rwa [Convex.combo_self hab]
[GOAL]
case inr.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hx : x ∈ s
h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
hb' : 0 < b
hxy : x ≠ y
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h hy hxy ha' hb' hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x✝ y z : E
s : Set E
x : E
⊢ StarConvex 𝕜 x {x}
[PROOFSTEP]
rintro y (rfl : y = x) a b _ _ hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
y : E
a b : 𝕜
a✝¹ : 0 ≤ a
a✝ : 0 ≤ b
hab : a + b = 1
⊢ a • y + b • y ∈ {y}
[PROOFSTEP]
exact Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 x s
f : E →ₗ[𝕜] F
⊢ StarConvex 𝕜 (↑f x) (↑f '' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hs : StarConvex 𝕜 x s
f : E →ₗ[𝕜] F
y : F
hy : y ∈ ↑f '' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑f x + b • y ∈ ↑f '' s
[PROOFSTEP]
obtain ⟨y', hy', rfl⟩ := hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 x s
f : E →ₗ[𝕜] F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ a • ↑f x + b • ↑f y' ∈ ↑f '' s
[PROOFSTEP]
exact ⟨a • x + b • y', hs hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 x s
f : E →ₗ[𝕜] F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ ↑f (a • x + b • y') = a • ↑f x + b • ↑f y'
[PROOFSTEP]
rw [f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s✝ : Set E
s : Set F
f : E →ₗ[𝕜] F
hs : StarConvex 𝕜 (↑f x) s
⊢ StarConvex 𝕜 x (↑f ⁻¹' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s✝ : Set E
s : Set F
f : E →ₗ[𝕜] F
hs : StarConvex 𝕜 (↑f x) s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f ⁻¹' s
[PROOFSTEP]
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s✝ : Set E
s : Set F
f : E →ₗ[𝕜] F
hs : StarConvex 𝕜 (↑f x) s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ s
[PROOFSTEP]
exact hs hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 y t
⊢ StarConvex 𝕜 (x + y) (s + t)
[PROOFSTEP]
rw [← add_image_prod]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 y t
⊢ StarConvex 𝕜 (x + y) ((fun x => x.fst + x.snd) '' s ×ˢ t)
[PROOFSTEP]
exact (hs.prod ht).is_linear_image IsLinearMap.isLinearMap_add
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
⊢ StarConvex 𝕜 (z + x) ((fun x => z + x) '' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z y : E
hy : y ∈ (fun x => z + x) '' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • (z + x) + b • y ∈ (fun x => z + x) '' s
[PROOFSTEP]
obtain ⟨y', hy', rfl⟩ := hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ a • (z + x) + b • (fun x => z + x) y' ∈ (fun x => z + x) '' s
[PROOFSTEP]
refine' ⟨a • x + b • y', hs hy' ha hb hab, _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ (fun x => z + x) (a • x + b • y') = a • (z + x) + b • (fun x => z + x) y'
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
⊢ StarConvex 𝕜 (x + z) ((fun x => x + z) '' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z y : E
hy : y ∈ (fun x => x + z) '' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • (x + z) + b • y ∈ (fun x => x + z) '' s
[PROOFSTEP]
obtain ⟨y', hy', rfl⟩ := hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ a • (x + z) + b • (fun x => x + z) y' ∈ (fun x => x + z) '' s
[PROOFSTEP]
refine' ⟨a • x + b • y', hs hy' ha hb hab, _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z✝ : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
y' : E
hy' : y' ∈ s
⊢ (fun x => x + z) (a • x + b • y') = a • (x + z) + b • (fun x => x + z) y'
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 (z + x) s
⊢ StarConvex 𝕜 x ((fun x => z + x) ⁻¹' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hs : StarConvex 𝕜 (z + x) s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s
[PROOFSTEP]
have h := hs hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ z : E
s : Set E
hs : StarConvex 𝕜 (z + x) s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h : a • (z + x) + b • (fun x => z + x) y ∈ s
⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s
[PROOFSTEP]
rwa [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 (x + z) s
⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s)
[PROOFSTEP]
rw [add_comm] at hs
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
s : Set E
hs : StarConvex 𝕜 (z + x) s
⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s)
[PROOFSTEP]
simpa only [add_comm] using hs.preimage_add_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedCommSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
c : 𝕜
⊢ StarConvex 𝕜 (z + c • x) ((fun x => z + c • x) '' s)
[PROOFSTEP]
have h := (hs.smul c).add_left z
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedCommSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
s : Set E
hs : StarConvex 𝕜 x s
z : E
c : 𝕜
h : StarConvex 𝕜 (z + c • x) ((fun x => z + x) '' (c • s))
⊢ StarConvex 𝕜 (z + c • x) ((fun x => z + c • x) '' s)
[PROOFSTEP]
rwa [← image_smul, image_image] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
⊢ StarConvex 𝕜 0 s ↔ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
[PROOFSTEP]
refine' forall_congr' fun x => forall_congr' fun _ => ⟨fun h a ha₀ ha₁ => _, fun h a b ha hb hab => _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
x : E
x✝ : x ∈ s
h : ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • 0 + b • x ∈ s
a : 𝕜
ha₀ : 0 ≤ a
ha₁ : a ≤ 1
⊢ a • x ∈ s
[PROOFSTEP]
simpa only [sub_add_cancel, eq_self_iff_true, forall_true_left, zero_add, smul_zero] using h (sub_nonneg_of_le ha₁) ha₀
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
x : E
x✝ : x ∈ s
h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • 0 + b • x ∈ s
[PROOFSTEP]
rw [smul_zero, zero_add]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
x : E
x✝ : x ∈ s
h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ b • x ∈ s
[PROOFSTEP]
exact h hb (by rw [← hab]; exact le_add_of_nonneg_left ha)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
x : E
x✝ : x ∈ s
h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ b ≤ 1
[PROOFSTEP]
rw [← hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMulWithZero 𝕜 E
s : Set E
x : E
x✝ : x ∈ s
h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ b ≤ a + b
[PROOFSTEP]
exact le_add_of_nonneg_left ha
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : x + y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ x + t • y ∈ s
[PROOFSTEP]
have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : x + y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ x + t • y = (1 - t) • x + t • (x + y)
[PROOFSTEP]
rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : x + y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x + t • y ∈ s
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : x + y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ (1 - t) • x + t • (x + y) ∈ s
[PROOFSTEP]
exact hs hy (sub_nonneg_of_le ht₁) ht₀ (sub_add_cancel _ _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 0 s
hx : x ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ t • x ∈ s
[PROOFSTEP]
simpa using hs.add_smul_mem (by simpa using hx) ht₀ ht₁
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 0 s
hx : x ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ 0 + x ∈ s
[PROOFSTEP]
simpa using hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ x + t • (y - x) ∈ s
[PROOFSTEP]
apply hs.segment_subset hy
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ x + t • (y - x) ∈ [x-[𝕜]y]
[PROOFSTEP]
rw [segment_eq_image']
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t✝ : Set E
hs : StarConvex 𝕜 x s
hy : y ∈ s
t : 𝕜
ht₀ : 0 ≤ t
ht₁ : t ≤ 1
⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Icc 0 1
[PROOFSTEP]
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set F
hs : StarConvex 𝕜 (↑f x) s
⊢ StarConvex 𝕜 x (↑f ⁻¹' s)
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set F
hs : StarConvex 𝕜 (↑f x) s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f ⁻¹' s
[PROOFSTEP]
rw [mem_preimage, Convex.combo_affine_apply hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set F
hs : StarConvex 𝕜 (↑f x) s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ s
[PROOFSTEP]
exact hs hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set E
hs : StarConvex 𝕜 x s
⊢ StarConvex 𝕜 (↑f x) (↑f '' s)
[PROOFSTEP]
rintro y ⟨y', ⟨hy', hy'f⟩⟩ a b ha hb hab
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set E
hs : StarConvex 𝕜 x s
y : F
y' : E
hy' : y' ∈ s
hy'f : ↑f y' = y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑f x + b • y ∈ ↑f '' s
[PROOFSTEP]
refine' ⟨a • x + b • y', ⟨hs hy' ha hb hab, _⟩⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y✝ : E
s✝ t : Set E
f : E →ᵃ[𝕜] F
s : Set E
hs : StarConvex 𝕜 x s
y : F
y' : E
hy' : y' ∈ s
hy'f : ↑f y' = y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ↑f (a • x + b • y') = a • ↑f x + b • y
[PROOFSTEP]
rw [Convex.combo_affine_apply hab, hy'f]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t : Set E
hs : StarConvex 𝕜 x s
⊢ StarConvex 𝕜 (-x) (-s)
[PROOFSTEP]
rw [← image_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t : Set E
hs : StarConvex 𝕜 x s
⊢ StarConvex 𝕜 (-x) (Neg.neg '' s)
[PROOFSTEP]
exact hs.is_linear_image IsLinearMap.isLinearMap_neg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 y t
⊢ StarConvex 𝕜 (x - y) (s - t)
[PROOFSTEP]
simp_rw [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
s t : Set E
hs : StarConvex 𝕜 x s
ht : StarConvex 𝕜 y t
⊢ StarConvex 𝕜 (x + -y) (s + -t)
[PROOFSTEP]
exact hs.add ht.neg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ s
[PROOFSTEP]
apply h hy
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ 0 ≤ a / (a + b)
[PROOFSTEP]
positivity
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ 0 ≤ b / (a + b)
[PROOFSTEP]
positivity
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div]
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : StarConvex 𝕜 x s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ (a + b) / (a + b) = 1
[PROOFSTEP]
exact div_self hab.ne'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
have h' := h hy ha hb
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h' : 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s
⊢ a • x + b • y ∈ s
[PROOFSTEP]
rw [hab, div_one, div_one] at h'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h' : 0 < 1 → a • x + b • y ∈ s
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h' zero_lt_one
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
hs : StarConvex 𝕜 0 s
hx : x ∈ s
t : 𝕜
ht : 1 ≤ t
⊢ x ∈ t • s
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
hs : StarConvex 𝕜 0 s
hx : x ∈ s
t : 𝕜
ht : 1 ≤ t
⊢ t⁻¹ • x ∈ s
[PROOFSTEP]
exact hs.smul_mem hx (by positivity) (inv_le_one ht)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x : E
s : Set E
hs : StarConvex 𝕜 0 s
hx : x ∈ s
t : 𝕜
ht : 1 ≤ t
⊢ 0 ≤ t⁻¹
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
⊢ StarConvex 𝕜 x s
[PROOFSTEP]
intro y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain hxy | hyx := h _ hy
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ a • x + b • y ∈ s
[PROOFSTEP]
refine' hs.out hx hy (mem_Icc.2 ⟨_, _⟩)
[GOAL]
case inl.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ x ≤ a • x + b • y
case inl.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ a • x + b • y ≤ y
[PROOFSTEP]
calc
x = a • x + b • x := (Convex.combo_self hab _).symm
_ ≤ a • x + b • y := by gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ a • x + b • x ≤ a • x + b • y
[PROOFSTEP]
gcongr
[GOAL]
case inl.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ a • x + b • y ≤ y
[PROOFSTEP]
calc
a • x + b • y ≤ a • y + b • y := by gcongr
_ = y := Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x ≤ y
⊢ a • x + b • y ≤ a • y + b • y
[PROOFSTEP]
gcongr
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ a • x + b • y ∈ s
[PROOFSTEP]
refine' hs.out hy hx (mem_Icc.2 ⟨_, _⟩)
[GOAL]
case inr.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ y ≤ a • x + b • y
case inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ a • x + b • y ≤ x
[PROOFSTEP]
calc
y = a • y + b • y := (Convex.combo_self hab _).symm
_ ≤ a • x + b • y := by gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ a • y + b • y ≤ a • x + b • y
[PROOFSTEP]
gcongr
[GOAL]
case inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ a • x + b • y ≤ x
[PROOFSTEP]
calc
a • x + b • y ≤ a • x + b • x := by gcongr
_ = x := Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x : E
s : Set E
hs : OrdConnected s
hx : x ∈ s
h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hyx : y ≤ x
⊢ a • x + b • y ≤ a • x + b • x
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝ : LinearOrderedField 𝕜
x : 𝕜
s : Set 𝕜
hx : x ∈ s
⊢ StarConvex 𝕜 x s ↔ OrdConnected s
[PROOFSTEP]
simp_rw [ordConnected_iff_uIcc_subset_left hx, starConvex_iff_segment_subset, segment_eq_uIcc]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Star", "llama_tokens": 23614} |
[GOAL]
V : Type u_1
inst✝² : TopologicalSpace V
inst✝¹ : AddCommGroup V
inst✝ : Module ℝ V
K L : ConvexBody V
h : K.carrier = L.carrier
⊢ K = L
[PROOFSTEP]
cases K
[GOAL]
case mk
V : Type u_1
inst✝² : TopologicalSpace V
inst✝¹ : AddCommGroup V
inst✝ : Module ℝ V
L : ConvexBody V
carrier✝ : Set V
convex'✝ : Convex ℝ carrier✝
isCompact'✝ : IsCompact carrier✝
nonempty'✝ : Set.Nonempty carrier✝
h : { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ }.carrier = L.carrier
⊢ { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ } = L
[PROOFSTEP]
cases L
[GOAL]
case mk.mk
V : Type u_1
inst✝² : TopologicalSpace V
inst✝¹ : AddCommGroup V
inst✝ : Module ℝ V
carrier✝¹ : Set V
convex'✝¹ : Convex ℝ carrier✝¹
isCompact'✝¹ : IsCompact carrier✝¹
nonempty'✝¹ : Set.Nonempty carrier✝¹
carrier✝ : Set V
convex'✝ : Convex ℝ carrier✝
isCompact'✝ : IsCompact carrier✝
nonempty'✝ : Set.Nonempty carrier✝
h :
{ carrier := carrier✝¹, convex' := convex'✝¹, isCompact' := isCompact'✝¹, nonempty' := nonempty'✝¹ }.carrier =
{ carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ }.carrier
⊢ { carrier := carrier✝¹, convex' := convex'✝¹, isCompact' := isCompact'✝¹, nonempty' := nonempty'✝¹ } =
{ carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ }
[PROOFSTEP]
congr
[GOAL]
V : Type u_1
inst✝¹ : SeminormedAddCommGroup V
inst✝ : NormedSpace ℝ V
K✝ L✝ K L : ConvexBody V
⊢ EMetric.hausdorffEdist ↑K ↑L ≠ ⊤
[PROOFSTEP]
apply_rules [Metric.hausdorffEdist_ne_top_of_nonempty_of_bounded, ConvexBody.nonempty, ConvexBody.bounded]
[GOAL]
V : Type u_1
inst✝¹ : SeminormedAddCommGroup V
inst✝ : NormedSpace ℝ V
K L x✝¹ x✝ : ConvexBody V
⊢ (fun x y => ↑{ val := Metric.hausdorffDist ↑x ↑y, property := (_ : 0 ≤ Metric.hausdorffDist ↑x ↑y) }) x✝¹ x✝ =
ENNReal.ofReal (dist x✝¹ x✝)
[PROOFSTEP]
exact ENNReal.coe_nnreal_eq _
[GOAL]
V : Type u_1
inst✝¹ : SeminormedAddCommGroup V
inst✝ : NormedSpace ℝ V
K L : ConvexBody V
⊢ EMetric.hausdorffEdist ↑K ↑L = edist K L
[PROOFSTEP]
rw [edist_dist]
[GOAL]
V : Type u_1
inst✝¹ : SeminormedAddCommGroup V
inst✝ : NormedSpace ℝ V
K L : ConvexBody V
⊢ EMetric.hausdorffEdist ↑K ↑L = ENNReal.ofReal (dist K L)
[PROOFSTEP]
exact (ENNReal.ofReal_toReal hausdorffEdist_ne_top).symm
| {"mathlib_filename": "Mathlib.Analysis.Convex.Body", "llama_tokens": 1162} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
s t : Set E
inst✝ : Subsingleton ι
p : ι → E
⊢ ConvexIndependent 𝕜 p
[PROOFSTEP]
intro s x hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
s✝ t : Set E
inst✝ : Subsingleton ι
p : ι → E
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
⊢ x ∈ s
[PROOFSTEP]
have : (convexHull 𝕜 (p '' s)).Nonempty := ⟨p x, hx⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
s✝ t : Set E
inst✝ : Subsingleton ι
p : ι → E
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
this : Set.Nonempty (↑(convexHull 𝕜) (p '' s))
⊢ x ∈ s
[PROOFSTEP]
rw [convexHull_nonempty_iff, Set.nonempty_image_iff] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : OrderedSemiring 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
s✝ t : Set E
inst✝ : Subsingleton ι
p : ι → E
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
this : Set.Nonempty s
⊢ x ∈ s
[PROOFSTEP]
rwa [Subsingleton.mem_iff_nonempty]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
⊢ Injective p
[PROOFSTEP]
refine' fun i j hij => hc { j } i _
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
i j : ι
hij : p i = p j
⊢ p i ∈ ↑(convexHull 𝕜) (p '' {j})
[PROOFSTEP]
rw [hij, Set.image_singleton, convexHull_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
i j : ι
hij : p i = p j
⊢ p j ∈ {p j}
[PROOFSTEP]
exact Set.mem_singleton _
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
ι' : Type u_4
f : ι' ↪ ι
p : ι → E
hc : ConvexIndependent 𝕜 p
⊢ ConvexIndependent 𝕜 (p ∘ ↑f)
[PROOFSTEP]
intro s x hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
ι' : Type u_4
f : ι' ↪ ι
p : ι → E
hc : ConvexIndependent 𝕜 p
s : Set ι'
x : ι'
hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s)
⊢ x ∈ s
[PROOFSTEP]
rw [← f.injective.mem_set_image]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
ι' : Type u_4
f : ι' ↪ ι
p : ι → E
hc : ConvexIndependent 𝕜 p
s : Set ι'
x : ι'
hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s)
⊢ ↑f x ∈ ↑f '' s
[PROOFSTEP]
exact hc _ _ (by rwa [Set.image_image])
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
ι' : Type u_4
f : ι' ↪ ι
p : ι → E
hc : ConvexIndependent 𝕜 p
s : Set ι'
x : ι'
hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s)
⊢ p (↑f x) ∈ ↑(convexHull 𝕜) (p '' (↑f '' s))
[PROOFSTEP]
rwa [Set.image_image]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
⊢ ConvexIndependent 𝕜 Subtype.val
[PROOFSTEP]
let f : Set.range p → ι := fun x => x.property.choose
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p)
⊢ ConvexIndependent 𝕜 Subtype.val
[PROOFSTEP]
have hf : ∀ x, p (f x) = x := fun x => x.property.choose_spec
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p)
hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x
⊢ ConvexIndependent 𝕜 Subtype.val
[PROOFSTEP]
let fe : Set.range p ↪ ι := ⟨f, fun x₁ x₂ he => Subtype.ext (hf x₁ ▸ hf x₂ ▸ he ▸ rfl)⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p)
hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x
fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) }
⊢ ConvexIndependent 𝕜 Subtype.val
[PROOFSTEP]
convert hc.comp_embedding fe
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p)
hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x
fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) }
⊢ Subtype.val = p ∘ ↑fe
[PROOFSTEP]
ext
[GOAL]
case h.e'_7.h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p)
hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x
fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) }
x✝ : { x // x ∈ Set.range p }
⊢ ↑x✝ = (p ∘ ↑fe) x✝
[PROOFSTEP]
rw [Embedding.coeFn_mk, comp_apply, hf]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
p : ι → E
⊢ ConvexIndependent 𝕜 p ↔ ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
[PROOFSTEP]
refine' ⟨fun hc i s h => _, fun h s i hi => _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
i : ι
s : Set ι
h : p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
⊢ False
[PROOFSTEP]
rw [hc.mem_convexHull_iff] at h
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
i : ι
s : Set ι
h : i ∈ s \ {i}
⊢ False
[PROOFSTEP]
exact h.2 (Set.mem_singleton _)
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
s : Set ι
i : ι
hi : p i ∈ ↑(convexHull 𝕜) (p '' s)
⊢ i ∈ s
[PROOFSTEP]
by_contra H
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
s : Set ι
i : ι
hi : p i ∈ ↑(convexHull 𝕜) (p '' s)
H : ¬i ∈ s
⊢ False
[PROOFSTEP]
refine' h i s _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
s : Set ι
i : ι
hi : p i ∈ ↑(convexHull 𝕜) (p '' s)
H : ¬i ∈ s
⊢ p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
[PROOFSTEP]
rw [Set.diff_singleton_eq_self H]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t : Set E
p : ι → E
h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i}))
s : Set ι
i : ι
hi : p i ∈ ↑(convexHull 𝕜) (p '' s)
H : ¬i ∈ s
⊢ p i ∈ ↑(convexHull 𝕜) (p '' s)
[PROOFSTEP]
exact hi
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ ConvexIndependent 𝕜 Subtype.val ↔ ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ ConvexIndependent 𝕜 Subtype.val → ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
[PROOFSTEP]
rintro hc t h x ⟨hxs, hxt⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hc : ConvexIndependent 𝕜 Subtype.val
t : Set E
h : t ⊆ s
x : E
hxs : x ∈ s
hxt : x ∈ ↑(convexHull 𝕜) t
⊢ x ∈ t
[PROOFSTEP]
refine' hc {x | ↑x ∈ t} ⟨x, hxs⟩ _
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hc : ConvexIndependent 𝕜 Subtype.val
t : Set E
h : t ⊆ s
x : E
hxs : x ∈ s
hxt : x ∈ ↑(convexHull 𝕜) t
⊢ ↑{ val := x, property := hxs } ∈ ↑(convexHull 𝕜) (Subtype.val '' {x | ↑x ∈ t})
[PROOFSTEP]
rw [Subtype.coe_image_of_subset h]
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hc : ConvexIndependent 𝕜 Subtype.val
t : Set E
h : t ⊆ s
x : E
hxs : x ∈ s
hxt : x ∈ ↑(convexHull 𝕜) t
⊢ ↑{ val := x, property := hxs } ∈ ↑(convexHull 𝕜) t
[PROOFSTEP]
exact hxt
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) → ConvexIndependent 𝕜 Subtype.val
[PROOFSTEP]
intro hc t x h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hc : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
t : Set { x // x ∈ s }
x : { x // x ∈ s }
h : ↑x ∈ ↑(convexHull 𝕜) (Subtype.val '' t)
⊢ x ∈ t
[PROOFSTEP]
rw [← Subtype.coe_injective.mem_set_image]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hc : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
t : Set { x // x ∈ s }
x : { x // x ∈ s }
h : ↑x ∈ ↑(convexHull 𝕜) (Subtype.val '' t)
⊢ ↑x ∈ (fun a => ↑a) '' t
[PROOFSTEP]
exact hc (t.image ((↑) : s → E)) (Subtype.coe_image_subset s t) ⟨x.prop, h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ ConvexIndependent 𝕜 Subtype.val ↔ ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
rw [convexIndependent_set_iff_inter_convexHull_subset]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) ↔ ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) → ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
[PROOFSTEP]
rintro hs x hxs hx
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
hs : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
x : E
hxs : x ∈ s
hx : x ∈ ↑(convexHull 𝕜) (s \ {x})
⊢ False
[PROOFSTEP]
exact (hs _ (Set.diff_subset _ _) ⟨hxs, hx⟩).2 (Set.mem_singleton _)
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t s : Set E
⊢ (∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})) → ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t
[PROOFSTEP]
rintro hs t ht x ⟨hxs, hxt⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hs : ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
t : Set E
ht : t ⊆ s
x : E
hxs : x ∈ s
hxt : x ∈ ↑(convexHull 𝕜) t
⊢ x ∈ t
[PROOFSTEP]
by_contra h
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ s : Set E
hs : ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})
t : Set E
ht : t ⊆ s
x : E
hxs : x ∈ s
hxt : x ∈ ↑(convexHull 𝕜) t
h : ¬x ∈ t
⊢ False
[PROOFSTEP]
exact hs _ hxs (convexHull_mono (Set.subset_diff_singleton ht h) hxt)
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
p : ι → E
⊢ ConvexIndependent 𝕜 p ↔ ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
[PROOFSTEP]
refine' ⟨fun hc s x hx => hc s x _, fun h s x hx => _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
hc : ConvexIndependent 𝕜 p
s : Finset ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) ↑(image p s)
⊢ p x ∈ ↑(convexHull 𝕜) (p '' ↑s)
[PROOFSTEP]
rwa [Finset.coe_image] at hx
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
⊢ x ∈ s
[PROOFSTEP]
have hp : Injective p := by
rintro a b hab
rw [← mem_singleton]
refine' h { b } a _
rw [hab, image_singleton, coe_singleton, convexHull_singleton]
exact Set.mem_singleton _
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
⊢ Injective p
[PROOFSTEP]
rintro a b hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
a b : ι
hab : p a = p b
⊢ a = b
[PROOFSTEP]
rw [← mem_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
a b : ι
hab : p a = p b
⊢ a ∈ {b}
[PROOFSTEP]
refine' h { b } a _
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
a b : ι
hab : p a = p b
⊢ p a ∈ ↑(convexHull 𝕜) ↑(image p {b})
[PROOFSTEP]
rw [hab, image_singleton, coe_singleton, convexHull_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
a b : ι
hab : p a = p b
⊢ p b ∈ {p b}
[PROOFSTEP]
exact Set.mem_singleton _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ↑(convexHull 𝕜) (p '' s)
hp : Injective p
⊢ x ∈ s
[PROOFSTEP]
rw [convexHull_eq_union_convexHull_finite_subsets] at hx
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hx : p x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ p '' s), ↑(convexHull 𝕜) ↑t
hp : Injective p
⊢ x ∈ s
[PROOFSTEP]
simp_rw [Set.mem_iUnion] at hx
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
hx : ∃ i i_1, p x ∈ ↑(convexHull 𝕜) ↑i
⊢ x ∈ s
[PROOFSTEP]
obtain ⟨t, ht, hx⟩ := hx
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ x ∈ s
[PROOFSTEP]
rw [← hp.mem_set_image]
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ p x ∈ p '' s
[PROOFSTEP]
refine' ht _
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ p x ∈ ↑t
[PROOFSTEP]
suffices x ∈ t.preimage p (hp.injOn _) by rwa [mem_preimage, ← mem_coe] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
this : x ∈ preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t))
⊢ p x ∈ ↑t
[PROOFSTEP]
rwa [mem_preimage, ← mem_coe] at this
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ x ∈ preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t))
[PROOFSTEP]
refine' h _ x _
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ p x ∈ ↑(convexHull 𝕜) ↑(image p (preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t))))
[PROOFSTEP]
rwa [t.image_preimage p (hp.injOn _), filter_true_of_mem]
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ : Set E
p : ι → E
h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s
s : Set ι
x : ι
hp : Injective p
t : Finset E
ht : ↑t ⊆ p '' s
hx : p x ∈ ↑(convexHull 𝕜) ↑t
⊢ ∀ (x : E), x ∈ t → x ∈ Set.range p
[PROOFSTEP]
exact fun y hy => s.image_subset_range p (ht <| mem_coe.2 hy)
| {"mathlib_filename": "Mathlib.Analysis.Convex.Independent", "llama_tokens": 10533} |
[GOAL]
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
h : StarConvex ℝ x s
hne : Set.Nonempty s
⊢ ContractibleSpace ↑s
[PROOFSTEP]
refine'
(contractible_iff_id_nullhomotopic s).2
⟨⟨x, h.mem hne⟩, ⟨⟨⟨fun p => ⟨p.1.1 • x + (1 - p.1.1) • (p.2 : E), _⟩, _⟩, fun x => _, fun x => _⟩⟩⟩
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
h : StarConvex ℝ x s
hne : Set.Nonempty s
p : ↑unitInterval × ↑s
⊢ ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd ∈ s
[PROOFSTEP]
exact h p.2.2 p.1.2.1 (sub_nonneg.2 p.1.2.2) (add_sub_cancel'_right _ _)
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x : E
h : StarConvex ℝ x s
hne : Set.Nonempty s
⊢ Continuous fun p =>
{ val := ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd ∈ s) }
[PROOFSTEP]
exact
((continuous_subtype_val.fst'.smul continuous_const).add
((continuous_const.sub continuous_subtype_val.fst').smul continuous_subtype_val.snd')).subtype_mk
_
[GOAL]
case refine'_3
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x✝ : E
h : StarConvex ℝ x✝ s
hne : Set.Nonempty s
x : ↑s
⊢ ContinuousMap.toFun
(ContinuousMap.mk fun p =>
{ val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) })
(0, x) =
↑(ContinuousMap.id ↑s) x
[PROOFSTEP]
ext1
[GOAL]
case refine'_3.a
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x✝ : E
h : StarConvex ℝ x✝ s
hne : Set.Nonempty s
x : ↑s
⊢ ↑(ContinuousMap.toFun
(ContinuousMap.mk fun p =>
{ val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) })
(0, x)) =
↑(↑(ContinuousMap.id ↑s) x)
[PROOFSTEP]
simp
[GOAL]
case refine'_4
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x✝ : E
h : StarConvex ℝ x✝ s
hne : Set.Nonempty s
x : ↑s
⊢ ContinuousMap.toFun
(ContinuousMap.mk fun p =>
{ val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) })
(1, x) =
↑(ContinuousMap.const ↑s { val := x✝, property := (_ : x✝ ∈ s) }) x
[PROOFSTEP]
ext1
[GOAL]
case refine'_4.a
E : Type u_1
inst✝⁴ : AddCommGroup E
inst✝³ : Module ℝ E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousAdd E
inst✝ : ContinuousSMul ℝ E
s : Set E
x✝ : E
h : StarConvex ℝ x✝ s
hne : Set.Nonempty s
x : ↑s
⊢ ↑(ContinuousMap.toFun
(ContinuousMap.mk fun p =>
{ val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) })
(1, x)) =
↑(↑(ContinuousMap.const ↑s { val := x✝, property := (_ : x✝ ∈ s) }) x)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.Convex.Contractible", "llama_tokens": 1678} |
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
h : ¬AffineIndependent 𝕜 Subtype.val
x : E
m : x ∈ ↑(convexHull 𝕜) ↑t
⊢ ∃ y, x ∈ ↑(convexHull 𝕜) ↑(erase t ↑y)
[PROOFSTEP]
simp only [Finset.convexHull_eq, mem_setOf_eq] at m ⊢
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
h : ¬AffineIndependent 𝕜 Subtype.val
x : E
m : ∃ w x_1 x_2, centerMass t w id = x
⊢ ∃ y w x_1 x_2, centerMass (erase t ↑y) w id = x
[PROOFSTEP]
obtain ⟨f, fpos, fsum, rfl⟩ := m
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
h : ¬AffineIndependent 𝕜 Subtype.val
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
obtain ⟨g, gcombo, gsum, gpos⟩ := exists_nontrivial_relation_sum_zero_of_not_affine_ind h
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
h : ¬AffineIndependent 𝕜 Subtype.val
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ x, x ∈ t ∧ g x ≠ 0
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
replace gpos := exists_pos_of_sum_zero_of_exists_nonzero g gsum gpos
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
h : ¬AffineIndependent 𝕜 Subtype.val
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
clear h
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
let s := @Finset.filter _ (fun z => 0 < g z) (fun _ => LinearOrder.decidableLT _ _) t
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
obtain ⟨i₀, mem, w⟩ : ∃ i₀ ∈ s, ∀ i ∈ s, f i₀ / g i₀ ≤ f i / g i :=
by
apply s.exists_min_image fun z => f z / g z
obtain ⟨x, hx, hgx⟩ : ∃ x ∈ t, 0 < g x := gpos
exact ⟨x, mem_filter.mpr ⟨hx, hgx⟩⟩
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
⊢ ∃ i₀, i₀ ∈ s ∧ ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
[PROOFSTEP]
apply s.exists_min_image fun z => f z / g z
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
⊢ Finset.Nonempty s
[PROOFSTEP]
obtain ⟨x, hx, hgx⟩ : ∃ x ∈ t, 0 < g x := gpos
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
s : Finset E := filter (fun z => 0 < g z) t
x : E
hx : x ∈ t
hgx : 0 < g x
⊢ Finset.Nonempty s
[PROOFSTEP]
exact ⟨x, mem_filter.mpr ⟨hx, hgx⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
have hg : 0 < g i₀ := by
rw [mem_filter] at mem
exact mem.2
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
⊢ 0 < g i₀
[PROOFSTEP]
rw [mem_filter] at mem
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ t ∧ 0 < g i₀
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
⊢ 0 < g i₀
[PROOFSTEP]
exact mem.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
have hi₀ : i₀ ∈ t := filter_subset _ _ mem
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
let k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
have hk : k i₀ = 0 := by field_simp [ne_of_gt hg]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
⊢ k i₀ = 0
[PROOFSTEP]
field_simp [ne_of_gt hg]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
have ksum : ∑ e in t.erase i₀, k e = 1 := by
calc
∑ e in t.erase i₀, k e = ∑ e in t, k e := by
conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
_ = ∑ e in t, (f e - f i₀ / g i₀ * g e) := rfl
_ = 1 := by rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
⊢ ∑ e in erase t i₀, k e = 1
[PROOFSTEP]
calc
∑ e in t.erase i₀, k e = ∑ e in t, k e := by
conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
_ = ∑ e in t, (f e - f i₀ / g i₀ * g e) := rfl
_ = 1 := by rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
⊢ ∑ e in erase t i₀, k e = ∑ e in t, k e
[PROOFSTEP]
conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
| ∑ e in t, k e
[PROOFSTEP]
rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
| ∑ e in t, k e
[PROOFSTEP]
rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
| ∑ e in t, k e
[PROOFSTEP]
rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
⊢ ∑ e in t, (f e - f i₀ / g i₀ * g e) = 1
[PROOFSTEP]
rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id
[PROOFSTEP]
refine' ⟨⟨i₀, hi₀⟩, k, _, by convert ksum, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∑ y in erase t ↑{ val := i₀, property := hi₀ }, k y = 1
[PROOFSTEP]
convert ksum
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∀ (y : E), y ∈ erase t ↑{ val := i₀, property := hi₀ } → 0 ≤ k y
[PROOFSTEP]
simp only [and_imp, sub_nonneg, mem_erase, Ne.def, Subtype.coe_mk]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∀ (y : E), ¬y = i₀ → y ∈ t → f i₀ / g i₀ * g y ≤ f y
[PROOFSTEP]
intro e _ het
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
⊢ f i₀ / g i₀ * g e ≤ f e
[PROOFSTEP]
by_cases hes : e ∈ s
[GOAL]
case pos
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : e ∈ s
⊢ f i₀ / g i₀ * g e ≤ f e
[PROOFSTEP]
have hge : 0 < g e := by
rw [mem_filter] at hes
exact hes.2
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : e ∈ s
⊢ 0 < g e
[PROOFSTEP]
rw [mem_filter] at hes
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : e ∈ t ∧ 0 < g e
⊢ 0 < g e
[PROOFSTEP]
exact hes.2
[GOAL]
case pos
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : e ∈ s
hge : 0 < g e
⊢ f i₀ / g i₀ * g e ≤ f e
[PROOFSTEP]
rw [← le_div_iff hge]
[GOAL]
case pos
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : e ∈ s
hge : 0 < g e
⊢ f i₀ / g i₀ ≤ f e / g e
[PROOFSTEP]
exact w _ hes
[GOAL]
case neg
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : ¬e ∈ s
⊢ f i₀ / g i₀ * g e ≤ f e
[PROOFSTEP]
calc
_ ≤ 0 := by
apply mul_nonpos_of_nonneg_of_nonpos
· apply div_nonneg (fpos i₀ (mem_of_subset (filter_subset _ t) mem)) (le_of_lt hg)
· simpa only [mem_filter, het, true_and_iff, not_lt] using hes
_ ≤ f e := fpos e het
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : ¬e ∈ s
⊢ f i₀ / g i₀ * g e ≤ 0
[PROOFSTEP]
apply mul_nonpos_of_nonneg_of_nonpos
[GOAL]
case ha
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : ¬e ∈ s
⊢ 0 ≤ f i₀ / g i₀
[PROOFSTEP]
apply div_nonneg (fpos i₀ (mem_of_subset (filter_subset _ t) mem)) (le_of_lt hg)
[GOAL]
case hb
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
e : E
a✝ : ¬e = i₀
het : e ∈ t
hes : ¬e ∈ s
⊢ g e ≤ 0
[PROOFSTEP]
simpa only [mem_filter, het, true_and_iff, not_lt] using hes
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ centerMass (erase t ↑{ val := i₀, property := hi₀ }) k id = centerMass t f id
[PROOFSTEP]
rw [Subtype.coe_mk, centerMass_eq_of_sum_1 _ id ksum]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∑ i in erase t i₀, k i • id i = centerMass t f id
[PROOFSTEP]
calc
∑ e in t.erase i₀, k e • e = ∑ e in t, k e • e := sum_erase _ (by rw [hk, zero_smul])
_ = ∑ e in t, (f e - f i₀ / g i₀ * g e) • e := rfl
_ = t.centerMass f id := by
simp only [sub_smul, mul_smul, sum_sub_distrib, ← smul_sum, gcombo, smul_zero, sub_zero, centerMass, fsum, inv_one,
one_smul, id.def]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ k i₀ • i₀ = 0
[PROOFSTEP]
rw [hk, zero_smul]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝³ : LinearOrderedField 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : DecidableEq E
t : Finset E
f : E → 𝕜
fpos : ∀ (y : E), y ∈ t → 0 ≤ f y
fsum : ∑ y in t, f y = 1
g : E → 𝕜
gcombo : ∑ e in t, g e • e = 0
gsum : ∑ e in t, g e = 0
gpos : ∃ i, i ∈ t ∧ 0 < g i
s : Finset E := filter (fun z => 0 < g z) t
i₀ : E
mem : i₀ ∈ s
w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i
hg : 0 < g i₀
hi₀ : i₀ ∈ t
k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z
hk : k i₀ = 0
ksum : ∑ e in erase t i₀, k e = 1
⊢ ∑ e in t, (f e - f i₀ / g i₀ * g e) • e = centerMass t f id
[PROOFSTEP]
simp only [sub_smul, mul_smul, sum_sub_distrib, ← smul_sum, gcombo, smul_zero, sub_zero, centerMass, fsum, inv_one,
one_smul, id.def]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ Set.Nonempty {t | ↑t ⊆ s ∧ x ∈ ↑(convexHull 𝕜) ↑t}
[PROOFSTEP]
simpa only [convexHull_eq_union_convexHull_finite_subsets s, exists_prop, mem_iUnion] using hx
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ Finset.Nonempty (minCardFinsetOfMemConvexHull hx)
[PROOFSTEP]
rw [← Finset.coe_nonempty, ← @convexHull_nonempty_iff 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ Set.Nonempty (↑(convexHull 𝕜) ↑(minCardFinsetOfMemConvexHull hx))
[PROOFSTEP]
exact ⟨x, mem_minCardFinsetOfMemConvexHull hx⟩
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : x ∈ ↑(convexHull 𝕜) ↑t
⊢ t ∈ {t | ↑t ⊆ s ∧ x ∈ ↑(convexHull 𝕜) ↑t}
[PROOFSTEP]
exact ⟨ht₁, ht₂⟩
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ AffineIndependent 𝕜 Subtype.val
[PROOFSTEP]
let k := (minCardFinsetOfMemConvexHull hx).card - 1
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
⊢ AffineIndependent 𝕜 Subtype.val
[PROOFSTEP]
have hk : (minCardFinsetOfMemConvexHull hx).card = k + 1 :=
(Nat.succ_pred_eq_of_pos (Finset.card_pos.mpr (minCardFinsetOfMemConvexHull_nonempty hx))).symm
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
⊢ AffineIndependent 𝕜 Subtype.val
[PROOFSTEP]
classical
by_contra h
obtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx)
have contra :=
minCardFinsetOfMemConvexHull_card_le_card hx
(Set.Subset.trans (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx))
(minCardFinsetOfMemConvexHull_subseteq hx))
hp
rw [← not_lt] at contra
apply contra
erw [card_erase_of_mem p.2, hk]
exact lt_add_one _
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
⊢ AffineIndependent 𝕜 Subtype.val
[PROOFSTEP]
by_contra h
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
⊢ False
[PROOFSTEP]
obtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx)
[GOAL]
case intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
p : ↑↑(minCardFinsetOfMemConvexHull hx)
hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)
⊢ False
[PROOFSTEP]
have contra :=
minCardFinsetOfMemConvexHull_card_le_card hx
(Set.Subset.trans (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx))
(minCardFinsetOfMemConvexHull_subseteq hx))
hp
[GOAL]
case intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
p : ↑↑(minCardFinsetOfMemConvexHull hx)
hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)
contra : card (minCardFinsetOfMemConvexHull hx) ≤ card (erase (minCardFinsetOfMemConvexHull hx) ↑p)
⊢ False
[PROOFSTEP]
rw [← not_lt] at contra
[GOAL]
case intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
p : ↑↑(minCardFinsetOfMemConvexHull hx)
hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)
contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)
⊢ False
[PROOFSTEP]
apply contra
[GOAL]
case intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
p : ↑↑(minCardFinsetOfMemConvexHull hx)
hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)
contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)
⊢ card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)
[PROOFSTEP]
erw [card_erase_of_mem p.2, hk]
[GOAL]
case intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1
hk : card (minCardFinsetOfMemConvexHull hx) = k + 1
h : ¬AffineIndependent 𝕜 Subtype.val
p : ↑↑(minCardFinsetOfMemConvexHull hx)
hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)
contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)
⊢ k + 1 - 1 < k + 1
[PROOFSTEP]
exact lt_add_one _
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ ↑(convexHull 𝕜) s = ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t
[PROOFSTEP]
apply Set.Subset.antisymm
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ ↑(convexHull 𝕜) s ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t
[PROOFSTEP]
intro x hx
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t
[PROOFSTEP]
simp only [exists_prop, Set.mem_iUnion]
[GOAL]
case h₁
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ ∃ i, ↑i ⊆ s ∧ AffineIndependent 𝕜 Subtype.val ∧ x ∈ ↑(convexHull 𝕜) ↑i
[PROOFSTEP]
exact
⟨Caratheodory.minCardFinsetOfMemConvexHull hx, Caratheodory.minCardFinsetOfMemConvexHull_subseteq hx,
Caratheodory.affineIndependent_minCardFinsetOfMemConvexHull hx, Caratheodory.mem_minCardFinsetOfMemConvexHull hx⟩
[GOAL]
case h₂
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
iterate 3 convert Set.iUnion_subset _; intro
[GOAL]
case h₂
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
convert Set.iUnion_subset _
[GOAL]
case h₂.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ ∀ (i : Finset E), ⋃ (_ : ↑i ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
intro
[GOAL]
case h₂.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
i✝ : Finset E
⊢ ⋃ (_ : ↑i✝ ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝ ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
convert Set.iUnion_subset _
[GOAL]
case h₂.convert_5.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
i✝ : Finset E
⊢ ↑i✝ ⊆ s → ⋃ (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝ ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
intro
[GOAL]
case h₂.convert_5.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
i✝¹ : Finset E
i✝ : ↑i✝¹ ⊆ s
⊢ ⋃ (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝¹ ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
convert Set.iUnion_subset _
[GOAL]
case h₂.convert_5.convert_5.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
i✝¹ : Finset E
i✝ : ↑i✝¹ ⊆ s
⊢ AffineIndependent 𝕜 Subtype.val → ↑(convexHull 𝕜) ↑i✝¹ ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
intro
[GOAL]
case h₂.convert_5.convert_5.convert_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
i✝² : Finset E
i✝¹ : ↑i✝² ⊆ s
i✝ : AffineIndependent 𝕜 Subtype.val
⊢ ↑(convexHull 𝕜) ↑i✝² ⊆ ↑(convexHull 𝕜) s
[PROOFSTEP]
exact convexHull_mono ‹_›
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ↑(convexHull 𝕜) s
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
rw [convexHull_eq_union] at hx
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
simp only [exists_prop, Set.mem_iUnion] at hx
[GOAL]
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
hx : ∃ i, ↑i ⊆ s ∧ AffineIndependent 𝕜 Subtype.val ∧ x ∈ ↑(convexHull 𝕜) ↑i
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
obtain ⟨t, ht₁, ht₂, ht₃⟩ := hx
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
ht₃ : x ∈ ↑(convexHull 𝕜) ↑t
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
simp only [t.convexHull_eq, exists_prop, Set.mem_setOf_eq] at ht₃
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
ht₃ : ∃ w, (∀ (y : E), y ∈ t → 0 ≤ w y) ∧ ∑ y in t, w y = 1 ∧ centerMass t w id = x
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
obtain ⟨w, hw₁, hw₂, hw₃⟩ := ht₃
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
let t' := t.filter fun i => w i ≠ 0
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x
[PROOFSTEP]
refine' ⟨t', t'.fintypeCoeSort, ((↑) : t' → E), w ∘ ((↑) : t' → E), _, _, _, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ Set.range Subtype.val ⊆ s
[PROOFSTEP]
rw [Subtype.range_coe_subtype]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ {x | x ∈ t'} ⊆ s
[PROOFSTEP]
exact Subset.trans (Finset.filter_subset _ t) ht₁
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ AffineIndependent 𝕜 Subtype.val
[PROOFSTEP]
exact ht₂.comp_embedding ⟨_, inclusion_injective (Finset.filter_subset (fun i => w i ≠ 0) t)⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_3
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∀ (i : { x // x ∈ t' }), 0 < (w ∘ Subtype.val) i
[PROOFSTEP]
exact fun i => (hw₁ _ (Finset.mem_filter.mp i.2).1).lt_of_ne (Finset.mem_filter.mp i.property).2.symm
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_4
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∑ i : { x // x ∈ t' }, (w ∘ Subtype.val) i = 1
[PROOFSTEP]
erw [Finset.sum_attach, Finset.sum_filter_ne_zero, hw₂]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∑ i : { x // x ∈ t' }, (w ∘ Subtype.val) i • ↑i = x
[PROOFSTEP]
change (∑ i : t' in t'.attach, (fun e => w e • e) ↑i) = x
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∑ i in attach t', (fun e => w e • e) ↑i = x
[PROOFSTEP]
erw [Finset.sum_attach (f := fun e => w e • e), Finset.sum_filter_of_ne]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∑ x in t, w x • x = x
[PROOFSTEP]
rw [t.centerMass_eq_of_sum_1 id hw₂] at hw₃
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : ∑ i in t, w i • id i = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∑ x in t, w x • x = x
[PROOFSTEP]
exact hw₃
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
⊢ ∀ (x : E), x ∈ t → w x • x ≠ 0 → w x ≠ 0
[PROOFSTEP]
intro e _ hwe contra
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
e : E
a✝ : e ∈ t
hwe : w e • e ≠ 0
contra : w e = 0
⊢ False
[PROOFSTEP]
apply hwe
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_5
𝕜 : Type u_1
E : Type u
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x : E
t : Finset E
ht₁ : ↑t ⊆ s
ht₂ : AffineIndependent 𝕜 Subtype.val
w : E → 𝕜
hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y
hw₂ : ∑ y in t, w y = 1
hw₃ : centerMass t w id = x
t' : Finset E := filter (fun i => w i ≠ 0) t
e : E
a✝ : e ∈ t
hwe : w e • e ≠ 0
contra : w e = 0
⊢ w e • e = 0
[PROOFSTEP]
rw [contra, zero_smul]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Caratheodory", "llama_tokens": 23345} |
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
⊢ Set.Nonempty (extremePoints ℝ s)
[PROOFSTEP]
let S : Set (Set E) := {t | t.Nonempty ∧ IsClosed t ∧ IsExtreme ℝ s t}
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
⊢ Set.Nonempty (extremePoints ℝ s)
[PROOFSTEP]
rsuffices ⟨t, ⟨⟨x, hxt⟩, htclos, hst⟩, hBmin⟩ : ∃ t ∈ S, ∀ u ∈ S, u ⊆ t → u = t
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
⊢ Set.Nonempty (extremePoints ℝ s)
[PROOFSTEP]
refine' ⟨x, mem_extremePoints_iff_extreme_singleton.2 _⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
⊢ IsExtreme ℝ s {x}
[PROOFSTEP]
rwa [← eq_singleton_iff_unique_mem.2 ⟨hxt, fun y hyB => ?_⟩]
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyB : y ∈ t
⊢ y = x
[PROOFSTEP]
by_contra hyx
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyB : y ∈ t
hyx : ¬y = x
⊢ False
[PROOFSTEP]
obtain ⟨l, hl⟩ := geometric_hahn_banach_point_point hyx
[GOAL]
case intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyB : y ∈ t
hyx : ¬y = x
l : E →L[ℝ] ℝ
hl : ↑l y < ↑l x
⊢ False
[PROOFSTEP]
obtain ⟨z, hzt, hz⟩ :=
(isCompact_of_isClosed_subset hscomp htclos hst.1).exists_forall_ge ⟨x, hxt⟩ l.continuous.continuousOn
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyB : y ∈ t
hyx : ¬y = x
l : E →L[ℝ] ℝ
hl : ↑l y < ↑l x
z : E
hzt : z ∈ t
hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z
⊢ False
[PROOFSTEP]
have h : IsExposed ℝ t ({z ∈ t | ∀ w ∈ t, l w ≤ l z}) := fun _ => ⟨l, rfl⟩
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyB : y ∈ t
hyx : ¬y = x
l : E →L[ℝ] ℝ
hl : ↑l y < ↑l x
z : E
hzt : z ∈ t
hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z
h : IsExposed ℝ t {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z}
⊢ False
[PROOFSTEP]
rw [← hBmin ({z ∈ t | ∀ w ∈ t, l w ≤ l z}) ⟨⟨z, hzt, hz⟩, h.isClosed htclos, hst.trans h.isExtreme⟩ (t.sep_subset _)] at
hyB
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
t : Set E
hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
x : E
hxt : x ∈ t
htclos : IsClosed t
hst : IsExtreme ℝ s t
y : E
hyx : ¬y = x
l : E →L[ℝ] ℝ
hyB : y ∈ {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z}
hl : ↑l y < ↑l x
z : E
hzt : z ∈ t
hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z
h : IsExposed ℝ t {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z}
⊢ False
[PROOFSTEP]
exact hl.not_le (hyB.2 x hxt)
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
⊢ ∃ t, t ∈ S ∧ ∀ (u : Set E), u ∈ S → u ⊆ t → u = t
[PROOFSTEP]
refine' zorn_superset _ fun F hFS hF => _
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ F → lb ⊆ s
[PROOFSTEP]
obtain rfl | hFnemp := F.eq_empty_or_nonempty
[GOAL]
case inl
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
hFS : ∅ ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) ∅
⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ ∅ → lb ⊆ s
[PROOFSTEP]
exact ⟨s, ⟨hsnemp, hscomp.isClosed, IsExtreme.rfl⟩, fun _ => False.elim⟩
[GOAL]
case inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ F → lb ⊆ s
[PROOFSTEP]
refine'
⟨⋂₀ F, ⟨_, isClosed_sInter fun t ht => (hFS ht).2.1, isExtreme_sInter hFnemp fun t ht => (hFS ht).2.2⟩, fun t ht =>
sInter_subset_of_mem ht⟩
[GOAL]
case inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
⊢ Set.Nonempty (⋂₀ F)
[PROOFSTEP]
haveI : Nonempty (↥F) := hFnemp.to_subtype
[GOAL]
case inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
this : Nonempty ↑F
⊢ Set.Nonempty (⋂₀ F)
[PROOFSTEP]
rw [sInter_eq_iInter]
[GOAL]
case inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
this : Nonempty ↑F
⊢ Set.Nonempty (⋂ (i : ↑F), ↑i)
[PROOFSTEP]
refine'
IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed _ (fun t u => _) (fun t => (hFS t.mem).1)
(fun t => isCompact_of_isClosed_subset hscomp (hFS t.mem).2.1 (hFS t.mem).2.2.1) fun t => (hFS t.mem).2.1
[GOAL]
case inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
this : Nonempty ↑F
t u : ↑F
⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z
[PROOFSTEP]
obtain htu | hut := hF.total t.mem u.mem
[GOAL]
case inr.inl
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
this : Nonempty ↑F
t u : ↑F
htu : ↑t ⊆ ↑u
⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z
case inr.inr
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hsnemp : Set.Nonempty s
S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t}
F : Set (Set E)
hFS : F ⊆ S
hF : IsChain (fun x x_1 => x ⊆ x_1) F
hFnemp : Set.Nonempty F
this : Nonempty ↑F
t u : ↑F
hut : ↑u ⊆ ↑t
⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z
[PROOFSTEP]
exacts [⟨t, Subset.rfl, htu⟩, ⟨u, hut, Subset.rfl⟩]
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
⊢ closure (↑(convexHull ℝ) (extremePoints ℝ s)) = s
[PROOFSTEP]
apply (closure_minimal (convexHull_min extremePoints_subset hAconv) hscomp.isClosed).antisymm
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
⊢ s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
[PROOFSTEP]
by_contra hs
[GOAL]
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
⊢ False
[PROOFSTEP]
obtain ⟨x, hxA, hxt⟩ := not_subset.1 hs
[GOAL]
case intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
x : E
hxA : x ∈ s
hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s))
⊢ False
[PROOFSTEP]
obtain ⟨l, r, hlr, hrx⟩ := geometric_hahn_banach_closed_point (convex_convexHull _ _).closure isClosed_closure hxt
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
x : E
hxA : x ∈ s
hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s))
l : E →L[ℝ] ℝ
r : ℝ
hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r
hrx : r < ↑l x
⊢ False
[PROOFSTEP]
have h : IsExposed ℝ s ({y ∈ s | ∀ z ∈ s, l z ≤ l y}) := fun _ => ⟨l, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
x : E
hxA : x ∈ s
hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s))
l : E →L[ℝ] ℝ
r : ℝ
hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r
hrx : r < ↑l x
h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y}
⊢ False
[PROOFSTEP]
obtain ⟨z, hzA, hz⟩ := hscomp.exists_forall_ge ⟨x, hxA⟩ l.continuous.continuousOn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
x : E
hxA : x ∈ s
hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s))
l : E →L[ℝ] ℝ
r : ℝ
hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r
hrx : r < ↑l x
h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y}
z : E
hzA : z ∈ s
hz : ∀ (y : E), y ∈ s → ↑l y ≤ ↑l z
⊢ False
[PROOFSTEP]
obtain ⟨y, hy⟩ := (h.isCompact hscomp).has_extreme_point ⟨z, hzA, hz⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝⁶ : AddCommGroup E
inst✝⁵ : Module ℝ E
inst✝⁴ : TopologicalSpace E
inst✝³ : T2Space E
inst✝² : TopologicalAddGroup E
inst✝¹ : ContinuousSMul ℝ E
inst✝ : LocallyConvexSpace ℝ E
s : Set E
hscomp : IsCompact s
hAconv : Convex ℝ s
hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s))
x : E
hxA : x ∈ s
hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s))
l : E →L[ℝ] ℝ
r : ℝ
hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r
hrx : r < ↑l x
h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y}
z : E
hzA : z ∈ s
hz : ∀ (y : E), y ∈ s → ↑l y ≤ ↑l z
y : E
hy : y ∈ extremePoints ℝ {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y}
⊢ False
[PROOFSTEP]
linarith [hlr _ (subset_closure <| subset_convexHull _ _ <| h.isExtreme.extremePoints_subset_extremePoints hy),
hy.1.2 x hxA]
| {"mathlib_filename": "Mathlib.Analysis.Convex.KreinMilman", "llama_tokens": 8046} |
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
⊢ ∫ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
borelize E
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ ∫ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
rcases hfi.aestronglyMeasurable with ⟨g, hgm, hfg⟩
[GOAL]
case intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
⊢ ∫ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
haveI : SeparableSpace (range g ∩ s : Set E) := (hgm.isSeparable_range.mono (inter_subset_left _ _)).separableSpace
[GOAL]
case intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
⊢ ∫ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
obtain ⟨y₀, h₀⟩ : (range g ∩ s).Nonempty :=
by
rcases(hf.and hfg).exists with ⟨x₀, h₀⟩
exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
⊢ Set.Nonempty (range g ∩ s)
[PROOFSTEP]
rcases(hf.and hfg).exists with ⟨x₀, h₀⟩
[GOAL]
case intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
x₀ : α
h₀ : f x₀ ∈ s ∧ f x₀ = g x₀
⊢ Set.Nonempty (range g ∩ s)
[PROOFSTEP]
exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
x₀ : α
h₀ : f x₀ ∈ s ∧ f x₀ = g x₀
⊢ f x₀ ∈ range g
[PROOFSTEP]
simp only [h₀.2, mem_range_self]
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
⊢ ∫ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
rw [integral_congr_ae hfg]
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
⊢ ∫ (a : α), g a ∂μ ∈ s
[PROOFSTEP]
rw [integrable_congr hfg] at hfi
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
⊢ ∫ (a : α), g a ∂μ ∈ s
[PROOFSTEP]
have hg : ∀ᵐ x ∂μ, g x ∈ closure (range g ∩ s) :=
by
filter_upwards [hfg.rw (fun _ y => y ∈ s) hf] with x hx
apply subset_closure
exact ⟨mem_range_self _, hx⟩
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
⊢ ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
[PROOFSTEP]
filter_upwards [hfg.rw (fun _ y => y ∈ s) hf] with x hx
[GOAL]
case h
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
x : α
hx : g x ∈ s
⊢ g x ∈ closure (range g ∩ s)
[PROOFSTEP]
apply subset_closure
[GOAL]
case h.a
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
x : α
hx : g x ∈ s
⊢ g x ∈ range g ∩ s
[PROOFSTEP]
exact ⟨mem_range_self _, hx⟩
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
⊢ ∫ (a : α), g a ∂μ ∈ s
[PROOFSTEP]
set G : ℕ → SimpleFunc α E := SimpleFunc.approxOn _ hgm.measurable (range g ∩ s) y₀ h₀
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
⊢ ∫ (a : α), g a ∂μ ∈ s
[PROOFSTEP]
have : Tendsto (fun n => (G n).integral μ) atTop (𝓝 <| ∫ x, g x ∂μ) :=
tendsto_integral_approxOn_of_measurable hfi _ hg _ (integrable_const _)
[GOAL]
case intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
⊢ ∫ (a : α), g a ∂μ ∈ s
[PROOFSTEP]
refine' hsc.mem_of_tendsto this (eventually_of_forall fun n => hs.sum_mem _ _ _)
[GOAL]
case intro.intro.intro.refine'_1
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
⊢ ∀ (i : E), i ∈ SimpleFunc.range (G n) → 0 ≤ ENNReal.toReal (↑↑μ (↑(G n) ⁻¹' {i}))
[PROOFSTEP]
exact fun _ _ => ENNReal.toReal_nonneg
[GOAL]
case intro.intro.intro.refine'_2
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
⊢ ∑ i in SimpleFunc.range (G n), ENNReal.toReal (↑↑μ (↑(G n) ⁻¹' {i})) = 1
[PROOFSTEP]
rw [← ENNReal.toReal_sum, (G n).sum_range_measure_preimage_singleton, measure_univ, ENNReal.one_toReal]
[GOAL]
case intro.intro.intro.refine'_2
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
⊢ ∀ (a : E), a ∈ SimpleFunc.range (G n) → ↑↑μ (↑(G n) ⁻¹' {a}) ≠ ⊤
[PROOFSTEP]
exact fun _ _ => measure_ne_top _ _
[GOAL]
case intro.intro.intro.refine'_3
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
⊢ ∀ (i : E), i ∈ SimpleFunc.range (G n) → ↑↑(ContinuousLinearMap.id ℝ E) i ∈ s
[PROOFSTEP]
simp only [SimpleFunc.mem_range, forall_range_iff]
[GOAL]
case intro.intro.intro.refine'_3
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
⊢ ∀ (i : α), ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) i) ∈ s
[PROOFSTEP]
intro x
[GOAL]
case intro.intro.intro.refine'_3
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
x : α
⊢ ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) x) ∈ s
[PROOFSTEP]
apply inter_subset_right (range g)
[GOAL]
case intro.intro.intro.refine'_3.a
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g✝ : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hs : Convex ℝ s
hsc : IsClosed s
hf : ∀ᵐ (x : α) ∂μ, f x ∈ s
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : α → E
hfi : Integrable g
hgm : StronglyMeasurable g
hfg : f =ᶠ[ae μ] g
this✝ : SeparableSpace ↑(range g ∩ s)
y₀ : E
h₀ : y₀ ∈ range g ∩ s
hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s)
G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀
this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ))
n : ℕ
x : α
⊢ ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) x) ∈ range g ∩ s
[PROOFSTEP]
exact SimpleFunc.approxOn_mem hgm.measurable h₀ _ _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : NeZero μ
hs : Convex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
⊢ ⨍ (x : α), f x ∂μ ∈ s
[PROOFSTEP]
refine' hs.integral_mem hsc (ae_mono' _ hfs) hfi.to_average
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : NeZero μ
hs : Convex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
⊢ (↑↑μ univ)⁻¹ • μ ≪ μ
[PROOFSTEP]
exact AbsolutelyContinuous.smul (refl _) _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : NeZero μ
hg : ConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}
[PROOFSTEP]
have ht_mem : ∀ᵐ x ∂μ, (f x, g (f x)) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := hfs.mono fun x hx => ⟨hx, le_rfl⟩
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : NeZero μ
hg : ConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
ht_mem : ∀ᵐ (x : α) ∂μ, (f x, g (f x)) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}
⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}
[PROOFSTEP]
exact average_pair hfi hgi ▸ hg.convex_epigraph.average_mem (hsc.epigraph hgc) ht_mem (hfi.prod_mk hgi)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : NeZero μ
hg : ConcaveOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ p.snd ≤ g p.fst}
[PROOFSTEP]
simpa only [mem_setOf_eq, Pi.neg_apply, average_neg, neg_le_neg_iff] using
hg.neg.average_mem_epigraph hgc.neg hsc hfs hfi hgi.neg
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
hg : ConcaveOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
h0 : ↑↑μ t ≠ 0
ht : ↑↑μ t ≠ ⊤
hfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s
hfi : IntegrableOn f t
hgi : IntegrableOn (g ∘ f) t
⊢ (⨍ (x : α) in t, f x ∂μ, ⨍ (x : α) in t, g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ p.snd ≤ g p.fst}
[PROOFSTEP]
simpa only [mem_setOf_eq, Pi.neg_apply, average_neg, neg_le_neg_iff] using
hg.neg.set_average_mem_epigraph hgc.neg hsc h0 ht hfs hfi hgi.neg
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hg : ConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ g (∫ (x : α), f x ∂μ) ≤ ∫ (x : α), g (f x) ∂μ
[PROOFSTEP]
simpa only [average_eq_integral] using hg.map_average_le hgc hsc hfs hfi hgi
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsProbabilityMeasure μ
hg : ConcaveOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ ∫ (x : α), g (f x) ∂μ ≤ g (∫ (x : α), f x ∂μ)
[PROOFSTEP]
simpa only [average_eq_integral] using hg.le_map_average hgc hsc hfs hfi hgi
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨
∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
[PROOFSTEP]
refine' or_iff_not_imp_right.mpr fun H => _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ¬∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ)
[PROOFSTEP]
push_neg at H
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ)
[PROOFSTEP]
refine' hfi.ae_eq_of_forall_set_integral_eq _ _ (integrable_const _) fun t ht ht' => _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
ht' : ↑↑μ t < ⊤
⊢ ∫ (x : α) in t, f x ∂μ = ∫ (x : α) in t, const α (⨍ (x : α), f x ∂μ) x ∂μ
[PROOFSTEP]
clear ht'
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
⊢ ∫ (x : α) in t, f x ∂μ = ∫ (x : α) in t, const α (⨍ (x : α), f x ∂μ) x ∂μ
[PROOFSTEP]
simp only [const_apply, set_integral_const]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
by_cases h₀ : μ t = 0
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ↑↑μ t = 0
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
rw [restrict_eq_zero.2 h₀, integral_zero_measure, h₀, ENNReal.zero_toReal, zero_smul]
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
by_cases h₀' : μ tᶜ = 0
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
h₀' : ↑↑μ tᶜ = 0
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
rw [← ae_eq_univ] at h₀'
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
h₀' : t =ᶠ[ae μ] univ
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
rw [restrict_congr_set h₀', restrict_univ, measure_congr h₀', measure_smul_average]
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
h₀' : ¬↑↑μ tᶜ = 0
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
have := average_mem_openSegment_compl_self ht.nullMeasurableSet h₀ h₀' hfi
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
h₀' : ¬↑↑μ tᶜ = 0
this : ⨍ (x : α), f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in t, f x ∂μ) (⨍ (x : α) in tᶜ, f x ∂μ)
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
rw [← H t ht h₀ h₀', openSegment_same, mem_singleton_iff] at this
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hfi : Integrable f
H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ
t : Set α
ht : MeasurableSet t
h₀ : ¬↑↑μ t = 0
h₀' : ¬↑↑μ tᶜ = 0
this : ⨍ (x : α), f x ∂μ = ⨍ (x : α) in t, f x ∂μ
⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ
[PROOFSTEP]
rw [this, measure_smul_setAverage _ (measure_ne_top μ _)]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ t ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in t, f x ∂μ ∈ interior s
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
rw [← measure_toMeasurable] at h0
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ (toMeasurable μ t) ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in t, f x ∂μ ∈ interior s
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
rw [← restrict_toMeasurable (measure_ne_top μ t)] at ht
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ (toMeasurable μ t) ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
by_cases h0' : μ (toMeasurable μ t)ᶜ = 0
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ (toMeasurable μ t) ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s
h0' : ↑↑μ (toMeasurable μ t)ᶜ = 0
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
rw [← ae_eq_univ] at h0'
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ (toMeasurable μ t) ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s
h0' : toMeasurable μ t =ᶠ[ae μ] univ
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
rwa [restrict_congr_set h0', restrict_univ] at ht
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : Convex ℝ s
h0 : ↑↑μ (toMeasurable μ t) ≠ 0
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s
h0' : ¬↑↑μ (toMeasurable μ t)ᶜ = 0
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
exact
hs.openSegment_interior_closure_subset_interior ht
(hs.set_average_mem_closure h0' (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn)
(average_mem_openSegment_compl_self (measurableSet_toMeasurable μ t).nullMeasurableSet h0 h0' hfi)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : StrictConvex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
have : ∀ {t}, μ t ≠ 0 → (⨍ x in t, f x ∂μ) ∈ s := fun ht =>
hs.convex.set_average_mem hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : StrictConvex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
refine' (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : StrictConvex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s
⊢ (∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ) →
⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
rintro ⟨t, hm, h₀, h₀', hne⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hs : StrictConvex ℝ s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
⊢ ⨍ (x : α), f x ∂μ ∈ interior s
[PROOFSTEP]
exact
hs.openSegment_subset (this h₀) (this h₀') hne (average_mem_openSegment_compl_self hm.nullMeasurableSet h₀ h₀' hfi)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
have : ∀ {t}, μ t ≠ 0 → (⨍ x in t, f x ∂μ) ∈ s ∧ g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ := fun ht =>
hg.convexOn.set_average_mem_epigraph hgc hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn
hgi.integrableOn
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
refine' (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
⊢ (∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ) →
g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
rintro ⟨t, hm, h₀, h₀', hne⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
rcases average_mem_openSegment_compl_self hm.nullMeasurableSet h₀ h₀' (hfi.prod_mk hgi) with ⟨a, b, ha, hb, hab, h_avg⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h_avg :
a • ⨍ (x : α) in t, (f x, (g ∘ f) x) ∂μ + b • ⨍ (x : α) in tᶜ, (f x, (g ∘ f) x) ∂μ = ⨍ (x : α), (f x, (g ∘ f) x) ∂μ
⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
rw [average_pair hfi hgi, average_pair hfi.integrableOn hgi.integrableOn,
average_pair hfi.integrableOn hgi.integrableOn, Prod.smul_mk, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff] at h_avg
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h_avg :
a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧
a • ⨍ (x : α) in t, (g ∘ f) x ∂μ + b • ⨍ (x : α) in tᶜ, (g ∘ f) x ∂μ = ⨍ (x : α), (g ∘ f) x ∂μ
⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
simp only [Function.comp] at h_avg
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h_avg :
a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧
a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ = ⨍ (x : α), g (f x) ∂μ
⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ
[PROOFSTEP]
rw [← h_avg.1, ← h_avg.2]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t✝ : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConvexOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ
t : Set α
hm : MeasurableSet t
h₀ : ↑↑μ t ≠ 0
h₀' : ↑↑μ tᶜ ≠ 0
hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h_avg :
a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧
a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ = ⨍ (x : α), g (f x) ∂μ
⊢ g (a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ) <
a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ
[PROOFSTEP]
calc
g ((a • ⨍ x in t, f x ∂μ) + b • ⨍ x in tᶜ, f x ∂μ) < a * g (⨍ x in t, f x ∂μ) + b * g (⨍ x in tᶜ, f x ∂μ) :=
hg.2 (this h₀).1 (this h₀').1 hne ha hb hab
_ ≤ (a * ⨍ x in t, g (f x) ∂μ) + b * ⨍ x in tᶜ, g (f x) ∂μ :=
add_le_add (mul_le_mul_of_nonneg_left (this h₀).2 ha.le) (mul_le_mul_of_nonneg_left (this h₀').2 hb.le)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : IsFiniteMeasure μ
hg : StrictConcaveOn ℝ s g
hgc : ContinuousOn g s
hsc : IsClosed s
hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s
hfi : Integrable f
hgi : Integrable (g ∘ f)
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), g (f x) ∂μ < g (⨍ (x : α), f x ∂μ)
[PROOFSTEP]
simpa only [Pi.neg_apply, average_neg, neg_lt_neg_iff] using
hg.neg.ae_eq_const_or_map_average_lt hgc.neg hsc hfs hfi hgi.neg
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
cases' le_or_lt C 0 with hC0 hC0
[GOAL]
case inl
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : C ≤ 0
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
have : f =ᵐ[μ] 0 := h_le.mono fun x hx => norm_le_zero_iff.1 (hx.trans hC0)
[GOAL]
case inl
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : C ≤ 0
this : f =ᶠ[ae μ] 0
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
simp only [average_congr this, Pi.zero_apply, average_zero]
[GOAL]
case inl
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : C ≤ 0
this : f =ᶠ[ae μ] 0
⊢ f =ᶠ[ae μ] const α 0 ∨ ‖0‖ < C
[PROOFSTEP]
exact Or.inl this
[GOAL]
case inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
by_cases hfi : Integrable f μ
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : ¬Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : ¬Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
simp [average_eq, integral_undef hfi, hC0, ENNReal.toReal_pos_iff]
[GOAL]
case pos
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
cases' (le_top : μ univ ≤ ∞).eq_or_lt with hμt hμt
[GOAL]
case pos.inl
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
hμt : ↑↑μ univ = ⊤
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
simp [average_eq, hμt, hC0]
[GOAL]
case pos.inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
hμt : ↑↑μ univ < ⊤
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
haveI : IsFiniteMeasure μ := ⟨hμt⟩
[GOAL]
case pos.inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
hμt : ↑↑μ univ < ⊤
this : IsFiniteMeasure μ
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
replace h_le : ∀ᵐ x ∂μ, f x ∈ closedBall (0 : E) C
[GOAL]
case h_le
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
hC0 : 0 < C
hfi : Integrable f
hμt : ↑↑μ univ < ⊤
this : IsFiniteMeasure μ
⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C
[PROOFSTEP]
simpa only [mem_closedBall_zero_iff]
[GOAL]
case pos.inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
hC0 : 0 < C
hfi : Integrable f
hμt : ↑↑μ univ < ⊤
this : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C
[PROOFSTEP]
simpa only [interior_closedBall _ hC0.ne', mem_ball_zero_iff] using
(strictConvex_closedBall ℝ (0 : E) C).ae_eq_const_or_average_mem_interior isClosed_ball h_le hfi
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C
[PROOFSTEP]
cases' eq_or_ne μ 0 with h₀ h₀
[GOAL]
case inl
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ = 0
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C
[PROOFSTEP]
left
[GOAL]
case inl.h
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ = 0
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ)
[PROOFSTEP]
simp [h₀, EventuallyEq]
[GOAL]
case inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ ≠ 0
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C
[PROOFSTEP]
have hμ : 0 < (μ univ).toReal := by simp [ENNReal.toReal_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ ≠ 0
⊢ 0 < ENNReal.toReal (↑↑μ univ)
[PROOFSTEP]
simp [ENNReal.toReal_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top]
[GOAL]
case inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ ≠ 0
hμ : 0 < ENNReal.toReal (↑↑μ univ)
⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C
[PROOFSTEP]
refine' (ae_eq_const_or_norm_average_lt_of_norm_le_const h_le).imp_right fun H => _
[GOAL]
case inr
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
inst✝² : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝¹ : StrictConvexSpace ℝ E
inst✝ : IsFiniteMeasure μ
h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C
h₀ : μ ≠ 0
hμ : 0 < ENNReal.toReal (↑↑μ univ)
H : ‖⨍ (x : α), f x ∂μ‖ < C
⊢ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C
[PROOFSTEP]
rwa [average_eq, norm_smul, norm_inv, Real.norm_eq_abs, abs_of_pos hμ, ← div_eq_inv_mul, div_lt_iff' hμ] at H
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
ht : ↑↑μ t ≠ ⊤
h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C
⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨
‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑μ t) * C
[PROOFSTEP]
haveI := Fact.mk ht.lt_top
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
ht : ↑↑μ t ≠ ⊤
h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C
this : Fact (↑↑μ t < ⊤)
⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨
‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑μ t) * C
[PROOFSTEP]
rw [← restrict_apply_univ]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
m0 : MeasurableSpace α
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
μ : Measure α
s : Set E
t : Set α
f : α → E
g : E → ℝ
C : ℝ
inst✝ : StrictConvexSpace ℝ E
ht : ↑↑μ t ≠ ⊤
h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C
this : Fact (↑↑μ t < ⊤)
⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨
‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑(Measure.restrict μ t) univ) * C
[PROOFSTEP]
exact ae_eq_const_or_norm_integral_lt_of_norm_le_const h_le
| {"mathlib_filename": "Mathlib.Analysis.Convex.Integral", "llama_tokens": 31864} |
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s t s₁ s₂ t₁ t₂ u : Set E
x y : E
⊢ x ∈ convexJoin 𝕜 s t ↔ ∃ a, a ∈ s ∧ ∃ b, b ∈ t ∧ x ∈ segment 𝕜 a b
[PROOFSTEP]
simp [convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t✝ s₁ s₂ t₁ t₂ u : Set E
x y : E
s t : Set E
⊢ ⋃ (i₂ : E) (_ : i₂ ∈ t) (i₁ : E) (_ : i₁ ∈ s), segment 𝕜 i₁ i₂ = convexJoin 𝕜 t s
[PROOFSTEP]
simp_rw [convexJoin, segment_symm]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s t✝ s₁ s₂ t₁ t₂ u : Set E
x y : E
t : Set E
⊢ convexJoin 𝕜 ∅ t = ∅
[PROOFSTEP]
simp [convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t s₁ s₂ t₁ t₂ u : Set E
x y : E
s : Set E
⊢ convexJoin 𝕜 s ∅ = ∅
[PROOFSTEP]
simp [convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s t✝ s₁ s₂ t₁ t₂ u : Set E
x✝ y : E
t : Set E
x : E
⊢ convexJoin 𝕜 {x} t = ⋃ (y : E) (_ : y ∈ t), segment 𝕜 x y
[PROOFSTEP]
simp [convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t s₁ s₂ t₁ t₂ u : Set E
x y✝ : E
s : Set E
y : E
⊢ convexJoin 𝕜 s {y} = ⋃ (x : E) (_ : x ∈ s), segment 𝕜 x y
[PROOFSTEP]
simp [convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s t s₁ s₂ t₁ t₂ u : Set E
x✝ y x : E
⊢ convexJoin 𝕜 {x} {y} = segment 𝕜 x y
[PROOFSTEP]
simp
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s t✝ s₁✝ s₂✝ t₁ t₂ u : Set E
x y : E
s₁ s₂ t : Set E
⊢ convexJoin 𝕜 (s₁ ∪ s₂) t = convexJoin 𝕜 s₁ t ∪ convexJoin 𝕜 s₂ t
[PROOFSTEP]
simp_rw [convexJoin, mem_union, iUnion_or, iUnion_union_distrib]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t s₁ s₂ t₁✝ t₂✝ u : Set E
x y : E
s t₁ t₂ : Set E
⊢ convexJoin 𝕜 s (t₁ ∪ t₂) = convexJoin 𝕜 s t₁ ∪ convexJoin 𝕜 s t₂
[PROOFSTEP]
simp_rw [convexJoin_comm s, convexJoin_union_left]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t✝ s₁ s₂ t₁ t₂ u : Set E
x y : E
s : ι → Set E
t : Set E
⊢ convexJoin 𝕜 (⋃ (i : ι), s i) t = ⋃ (i : ι), convexJoin 𝕜 (s i) t
[PROOFSTEP]
simp_rw [convexJoin, mem_iUnion, iUnion_exists]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t✝ s₁ s₂ t₁ t₂ u : Set E
x y : E
s : ι → Set E
t : Set E
⊢ ⋃ (x : E) (i : ι) (_ : x ∈ s i) (y : E) (_ : y ∈ t), segment 𝕜 x y =
⋃ (i : ι) (x : E) (_ : x ∈ s i) (y : E) (_ : y ∈ t), segment 𝕜 x y
[PROOFSTEP]
exact iUnion_comm _
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s✝ t✝ s₁ s₂ t₁ t₂ u : Set E
x y : E
s : Set E
t : ι → Set E
⊢ convexJoin 𝕜 s (⋃ (i : ι), t i) = ⋃ (i : ι), convexJoin 𝕜 s (t i)
[PROOFSTEP]
simp_rw [convexJoin_comm s, convexJoin_iUnion_left]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u ⊆ convexJoin 𝕜 s (convexJoin 𝕜 t u)
[PROOFSTEP]
simp_rw [subset_def, mem_convexJoin]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ ∀ (x : E),
(∃ a, (∃ a_1, a_1 ∈ s ∧ ∃ b, b ∈ t ∧ a ∈ segment 𝕜 a_1 b) ∧ ∃ b, b ∈ u ∧ x ∈ segment 𝕜 a b) →
∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ x ∈ segment 𝕜 a b
[PROOFSTEP]
rintro _ ⟨z, ⟨x, hx, y, hy, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩, z, hz, a₂, b₂, ha₂, hb₂, hab₂, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
⊢ ∃ a,
a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b
[PROOFSTEP]
obtain rfl | hb₂ := hb₂.eq_or_lt
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ 0
hab₂ : a₂ + 0 = 1
⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + 0 • z ∈ segment 𝕜 a b
[PROOFSTEP]
refine' ⟨x, hx, y, ⟨y, hy, z, hz, left_mem_segment 𝕜 _ _⟩, a₁, b₁, ha₁, hb₁, hab₁, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ 0
hab₂ : a₂ + 0 = 1
⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z
[PROOFSTEP]
rw [add_zero] at hab₂
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ 0
hab₂ : a₂ = 1
⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z
[PROOFSTEP]
rw [hab₂, one_smul, zero_smul, add_zero]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
⊢ ∃ a,
a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b
[PROOFSTEP]
have ha₂b₁ : 0 ≤ a₂ * b₁ := mul_nonneg ha₂ hb₁
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
⊢ ∃ a,
a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b
[PROOFSTEP]
have hab : 0 < a₂ * b₁ + b₂ := add_pos_of_nonneg_of_pos ha₂b₁ hb₂
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ ∃ a,
a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b
[PROOFSTEP]
refine'
⟨x, hx, (a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z, ⟨y, hy, z, hz, _, _, _, _, _, rfl⟩, a₂ * a₁,
a₂ * b₁ + b₂, mul_nonneg ha₂ ha₁, hab.le, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_1
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ 0 ≤ a₂ * b₁ / (a₂ * b₁ + b₂)
[PROOFSTEP]
exact div_nonneg ha₂b₁ hab.le
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_2
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ 0 ≤ b₂ / (a₂ * b₁ + b₂)
[PROOFSTEP]
exact div_nonneg hb₂.le hab.le
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_3
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ a₂ * b₁ / (a₂ * b₁ + b₂) + b₂ / (a₂ * b₁ + b₂) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_4
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ a₂ * a₁ + (a₂ * b₁ + b₂) = 1
[PROOFSTEP]
rw [← add_assoc, ← mul_add, hab₁, mul_one, hab₂]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_5
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x✝ y✝ : E
s t u : Set E
x : E
hx : x ∈ s
y : E
hy : y ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
z : E
hz : z ∈ u
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂✝ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
hb₂ : 0 < b₂
ha₂b₁ : 0 ≤ a₂ * b₁
hab : 0 < a₂ * b₁ + b₂
⊢ (a₂ * a₁) • x + (a₂ * b₁ + b₂) • ((a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z) =
a₂ • (a₁ • x + b₁ • y) + b₂ • z
[PROOFSTEP]
simp_rw [smul_add, ← mul_smul, mul_div_cancel' _ hab.ne', add_assoc]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 s (convexJoin 𝕜 t u)
[PROOFSTEP]
refine' (convexJoin_assoc_aux _ _ _).antisymm _
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 s (convexJoin 𝕜 t u) ⊆ convexJoin 𝕜 (convexJoin 𝕜 s t) u
[PROOFSTEP]
simp_rw [convexJoin_comm s, convexJoin_comm _ u]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 u t) s ⊆ convexJoin 𝕜 u (convexJoin 𝕜 t s)
[PROOFSTEP]
exact convexJoin_assoc_aux _ _ _
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 s (convexJoin 𝕜 t u) = convexJoin 𝕜 t (convexJoin 𝕜 s u)
[PROOFSTEP]
simp_rw [← convexJoin_assoc, convexJoin_comm]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 (convexJoin 𝕜 s u) t
[PROOFSTEP]
simp_rw [convexJoin_assoc, convexJoin_comm]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s✝ t✝ u✝ : Set E
x y : E
s t u v : Set E
⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) (convexJoin 𝕜 u v) = convexJoin 𝕜 (convexJoin 𝕜 s u) (convexJoin 𝕜 t v)
[PROOFSTEP]
simp_rw [← convexJoin_assoc, convexJoin_right_comm]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ Convex 𝕜 (convexJoin 𝕜 s t)
[PROOFSTEP]
simp only [Convex, StarConvex, convexJoin, mem_iUnion]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ ∀ ⦃x : E⦄,
(∃ i h i_1 i_2, x ∈ [i-[𝕜]i_1]) →
∀ ⦃y : E⦄,
(∃ i h i_1 i_2, y ∈ [i-[𝕜]i_1]) →
∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → ∃ i h i_1 i_2, a • x + b • y ∈ [i-[𝕜]i_1]
[PROOFSTEP]
rintro _ ⟨x₁, hx₁, y₁, hy₁, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩ _ ⟨x₂, hx₂, y₂, hy₂, a₂, b₂, ha₂, hb₂, hab₂, rfl⟩ p q hp hq hpq
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1]
[PROOFSTEP]
rcases hs.exists_mem_add_smul_eq hx₁ hx₂ (mul_nonneg hp ha₁) (mul_nonneg hq ha₂) with ⟨x, hxs, hx⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1]
[PROOFSTEP]
rcases ht.exists_mem_add_smul_eq hy₁ hy₂ (mul_nonneg hp hb₁) (mul_nonneg hq hb₂) with ⟨y, hyt, hy⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1]
[PROOFSTEP]
refine ⟨_, hxs, _, hyt, p * a₁ + q * a₂, p * b₁ + q * b₂, ?_, ?_, ?_, ?_⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ 0 ≤ p * a₁ + q * a₂
[PROOFSTEP]
try positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ 0 ≤ p * a₁ + q * a₂
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ 0 ≤ p * b₁ + q * b₂
[PROOFSTEP]
try positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ 0 ≤ p * b₁ + q * b₂
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1
[PROOFSTEP]
try positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂)
[PROOFSTEP]
try positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂)
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1
[PROOFSTEP]
rwa [add_add_add_comm, ← mul_add, ← mul_add, hab₁, hab₂, mul_one, mul_one]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂)
[PROOFSTEP]
rw [hx, hy, add_add_add_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x✝ y✝ : E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
x₁ : E
hx₁ : x₁ ∈ s
y₁ : E
hy₁ : y₁ ∈ t
a₁ b₁ : 𝕜
ha₁ : 0 ≤ a₁
hb₁ : 0 ≤ b₁
hab₁ : a₁ + b₁ = 1
x₂ : E
hx₂ : x₂ ∈ s
y₂ : E
hy₂ : y₂ ∈ t
a₂ b₂ : 𝕜
ha₂ : 0 ≤ a₂
hb₂ : 0 ≤ b₂
hab₂ : a₂ + b₂ = 1
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
hpq : p + q = 1
x : E
hxs : x ∈ s
hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂
y : E
hyt : y ∈ t
hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂
⊢ (p * a₁) • x₁ + (p * b₁) • y₁ + ((q * a₂) • x₂ + (q * b₂) • y₂) = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂)
[PROOFSTEP]
simp only [smul_add, smul_smul]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Set.Nonempty s
ht : Set.Nonempty t
⊢ ↑(convexHull 𝕜) (s ∪ t) = convexJoin 𝕜 (↑(convexHull 𝕜) s) (↑(convexHull 𝕜) t)
[PROOFSTEP]
rw [← convexHull_convexHull_union_left, ← convexHull_convexHull_union_right]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Set.Nonempty s
ht : Set.Nonempty t
⊢ ↑(convexHull 𝕜) (↑(convexHull 𝕜) s ∪ ↑(convexHull 𝕜) t) = convexJoin 𝕜 (↑(convexHull 𝕜) s) (↑(convexHull 𝕜) t)
[PROOFSTEP]
exact (convex_convexHull 𝕜 s).convexHull_union (convex_convexHull 𝕜 t) hs.convexHull ht.convexHull
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y : E
hs : Set.Nonempty s
⊢ ↑(convexHull 𝕜) (insert x s) = convexJoin 𝕜 {x} (↑(convexHull 𝕜) s)
[PROOFSTEP]
rw [insert_eq, convexHull_union (singleton_nonempty _) hs, convexHull_singleton]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y a b c d : E
⊢ convexJoin 𝕜 (segment 𝕜 a b) (segment 𝕜 c d) = ↑(convexHull 𝕜) {a, b, c, d}
[PROOFSTEP]
simp_rw [← convexHull_pair, convexHull_insert (insert_nonempty _ _), convexHull_insert (singleton_nonempty _),
convexJoin_assoc, convexHull_singleton]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y a b c : E
⊢ convexJoin 𝕜 (segment 𝕜 a b) {c} = ↑(convexHull 𝕜) {a, b, c}
[PROOFSTEP]
rw [← pair_eq_singleton, ← convexJoin_segments, segment_same, pair_eq_singleton]
[GOAL]
ι : Sort u_1
𝕜 : Type u_2
E : Type u_3
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t u : Set E
x y a b c : E
⊢ convexJoin 𝕜 {a} (segment 𝕜 b c) = ↑(convexHull 𝕜) {a, b, c}
[PROOFSTEP]
rw [← segment_same 𝕜, convexJoin_segments, insert_idem]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Join", "llama_tokens": 15486} |
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
⊢ Equivalence fun rs rs' => ∃ u v, rs'.fst * ↑u = rs.fst * v ∧ ↑rs'.snd * ↑u = ↑rs.snd * v
[PROOFSTEP]
refine ⟨fun _ => ⟨1, 1, by simp⟩, ?_, ?_⟩
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
x✝ : R × { x // x ∈ S }
⊢ x✝.fst * ↑1 = x✝.fst * 1 ∧ ↑x✝.snd * ↑1 = ↑x✝.snd * 1
[PROOFSTEP]
simp
[GOAL]
case refine_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
⊢ ∀ {x y : R × { x // x ∈ S }},
(∃ u v, y.fst * ↑u = x.fst * v ∧ ↑y.snd * ↑u = ↑x.snd * v) →
∃ u v, x.fst * ↑u = y.fst * v ∧ ↑x.snd * ↑u = ↑y.snd * v
[PROOFSTEP]
rintro ⟨r, s⟩ ⟨r', s'⟩ ⟨u, v, hru, hsu⟩
[GOAL]
case refine_1.mk.mk.intro.intro.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : (r', s').fst * ↑u = (r, s).fst * v
hsu : ↑(r', s').snd * ↑u = ↑(r, s).snd * v
⊢ ∃ u v, (r, s).fst * ↑u = (r', s').fst * v ∧ ↑(r, s).snd * ↑u = ↑(r', s').snd * v
[PROOFSTEP]
dsimp only at *
[GOAL]
case refine_1.mk.mk.intro.intro.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v
[PROOFSTEP]
rcases oreCondition (s : R) s' with ⟨r₂, s₂, h₁⟩
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v
[PROOFSTEP]
rcases oreCondition r₂ u with ⟨r₃, s₃, h₂⟩
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v
[PROOFSTEP]
have : (s : R) * ((v : R) * r₃) = (s : R) * (s₂ * s₃) := by
-- porting note: the proof used `assoc_rw`rw [← mul_assoc _ (s₂ : R), h₁, mul_assoc, h₂, ← mul_assoc, ← hsu,
mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
⊢ ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
[PROOFSTEP]
rw [← mul_assoc _ (s₂ : R), h₁, mul_assoc, h₂, ← mul_assoc, ← hsu, mul_assoc]
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v
[PROOFSTEP]
rcases ore_left_cancel (v * r₃) (s₂ * s₃) s this with ⟨w, hw⟩
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
w : { x // x ∈ S }
hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w
⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v
[PROOFSTEP]
refine ⟨s₂ * s₃ * w, u * r₃ * w, ?_, ?_⟩
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
w : { x // x ∈ S }
hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w
⊢ r * ↑(s₂ * s₃ * w) = r' * (↑u * r₃ * ↑w)
[PROOFSTEP]
simp only [Submonoid.coe_mul, ← hw]
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
w : { x // x ∈ S }
hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w
⊢ ↑s * ↑(s₂ * s₃ * w) = ↑s' * (↑u * r₃ * ↑w)
[PROOFSTEP]
simp only [Submonoid.coe_mul, ← hw]
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
w : { x // x ∈ S }
hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w
⊢ r * (v * r₃ * ↑w) = r' * (↑u * r₃ * ↑w)
[PROOFSTEP]
simp only [← mul_assoc, hru]
[GOAL]
case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
r' : R
s' u : { x // x ∈ S }
v : R
hru : r' * ↑u = r * v
hsu : ↑s' * ↑u = ↑s * v
r₂ : R
s₂ : { x // x ∈ S }
h₁ : ↑s * ↑s₂ = ↑s' * r₂
r₃ : R
s₃ : { x // x ∈ S }
h₂ : r₂ * ↑s₃ = ↑u * r₃
this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃)
w : { x // x ∈ S }
hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w
⊢ ↑s * (v * r₃ * ↑w) = ↑s' * (↑u * r₃ * ↑w)
[PROOFSTEP]
simp only [← mul_assoc, hsu]
[GOAL]
case refine_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
⊢ ∀ {x y z : R × { x // x ∈ S }},
(∃ u v, y.fst * ↑u = x.fst * v ∧ ↑y.snd * ↑u = ↑x.snd * v) →
(∃ u v, z.fst * ↑u = y.fst * v ∧ ↑z.snd * ↑u = ↑y.snd * v) →
∃ u v, z.fst * ↑u = x.fst * v ∧ ↑z.snd * ↑u = ↑x.snd * v
[PROOFSTEP]
rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ ⟨r₃, s₃⟩ ⟨u, v, hur₁, hs₁u⟩ ⟨u', v', hur₂, hs₂u⟩
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v
hs₁u : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v
u' : { x // x ∈ S }
v' : R
hur₂ : (r₃, s₃).fst * ↑u' = (r₂, s₂).fst * v'
hs₂u : ↑(r₃, s₃).snd * ↑u' = ↑(r₂, s₂).snd * v'
⊢ ∃ u v, (r₃, s₃).fst * ↑u = (r₁, s₁).fst * v ∧ ↑(r₃, s₃).snd * ↑u = ↑(r₁, s₁).snd * v
[PROOFSTEP]
rcases oreCondition v' u with ⟨r', s', h⟩
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v
hs₁u : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v
u' : { x // x ∈ S }
v' : R
hur₂ : (r₃, s₃).fst * ↑u' = (r₂, s₂).fst * v'
hs₂u : ↑(r₃, s₃).snd * ↑u' = ↑(r₂, s₂).snd * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ ∃ u v, (r₃, s₃).fst * ↑u = (r₁, s₁).fst * v ∧ ↑(r₃, s₃).snd * ↑u = ↑(r₁, s₁).snd * v
[PROOFSTEP]
dsimp only at *
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : r₂ * ↑u = r₁ * v
hs₁u : ↑s₂ * ↑u = ↑s₁ * v
u' : { x // x ∈ S }
v' : R
hur₂ : r₃ * ↑u' = r₂ * v'
hs₂u : ↑s₃ * ↑u' = ↑s₂ * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ ∃ u v, r₃ * ↑u = r₁ * v ∧ ↑s₃ * ↑u = ↑s₁ * v
[PROOFSTEP]
refine ⟨u' * s', v * r', ?_, ?_⟩
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : r₂ * ↑u = r₁ * v
hs₁u : ↑s₂ * ↑u = ↑s₁ * v
u' : { x // x ∈ S }
v' : R
hur₂ : r₃ * ↑u' = r₂ * v'
hs₂u : ↑s₃ * ↑u' = ↑s₂ * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ r₃ * ↑(u' * s') = r₁ * (v * r')
[PROOFSTEP]
simp only [Submonoid.coe_mul, ← mul_assoc]
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : r₂ * ↑u = r₁ * v
hs₁u : ↑s₂ * ↑u = ↑s₁ * v
u' : { x // x ∈ S }
v' : R
hur₂ : r₃ * ↑u' = r₂ * v'
hs₂u : ↑s₃ * ↑u' = ↑s₂ * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ ↑s₃ * ↑(u' * s') = ↑s₁ * (v * r')
[PROOFSTEP]
simp only [Submonoid.coe_mul, ← mul_assoc]
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : r₂ * ↑u = r₁ * v
hs₁u : ↑s₂ * ↑u = ↑s₁ * v
u' : { x // x ∈ S }
v' : R
hur₂ : r₃ * ↑u' = r₂ * v'
hs₂u : ↑s₃ * ↑u' = ↑s₂ * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ r₃ * ↑u' * ↑s' = r₁ * v * r'
[PROOFSTEP]
rw [hur₂, mul_assoc, h, ← mul_assoc, hur₁]
[GOAL]
case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ u : { x // x ∈ S }
v : R
hur₁ : r₂ * ↑u = r₁ * v
hs₁u : ↑s₂ * ↑u = ↑s₁ * v
u' : { x // x ∈ S }
v' : R
hur₂ : r₃ * ↑u' = r₂ * v'
hs₂u : ↑s₃ * ↑u' = ↑s₂ * v'
r' : R
s' : { x // x ∈ S }
h : v' * ↑s' = ↑u * r'
⊢ ↑s₃ * ↑u' * ↑s' = ↑s₁ * v * r'
[PROOFSTEP]
rw [hs₂u, mul_assoc, h, ← mul_assoc, hs₁u]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
β : OreLocalization R S → Prop
c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s)
⊢ ∀ (q : OreLocalization R S), β q
[PROOFSTEP]
apply Quotient.ind
[GOAL]
case a
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
β : OreLocalization R S → Prop
c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s)
⊢ ∀ (a : R × { x // x ∈ S }), β (Quotient.mk (oreEqv R S) a)
[PROOFSTEP]
rintro ⟨r, s⟩
[GOAL]
case a.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
β : OreLocalization R S → Prop
c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s)
r : R
s : { x // x ∈ S }
⊢ β (Quotient.mk (oreEqv R S) (r, s))
[PROOFSTEP]
exact c r s
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ r /ₒ s = r * t /ₒ { val := ↑s * t, property := hst }
[PROOFSTEP]
apply Quotient.sound
[GOAL]
case a
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ (r, s) ≈ (r * t, { val := ↑s * t, property := hst })
[PROOFSTEP]
refine' ⟨s, t * s, _, _⟩
[GOAL]
case a.refine'_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ (r * t, { val := ↑s * t, property := hst }).fst * ↑s = (r, s).fst * (t * ↑s)
[PROOFSTEP]
dsimp
[GOAL]
case a.refine'_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ ↑(r * t, { val := ↑s * t, property := hst }).snd * ↑s = ↑(r, s).snd * (t * ↑s)
[PROOFSTEP]
dsimp
[GOAL]
case a.refine'_1
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ r * t * ↑s = r * (t * ↑s)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case a.refine'_2
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
t : R
hst : ↑s * t ∈ S
⊢ ↑s * t * ↑s = ↑s * (t * ↑s)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s s' : { x // x ∈ S }
⊢ ↑s * ↑s' ∈ S
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s s' : { x // x ∈ S }
⊢ ↑(s * s') ∈ S
[PROOFSTEP]
apply SetLike.coe_mem
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
⊢ r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s
[PROOFSTEP]
rcases oreCondition r₂ t with
⟨r₂', t', hr₂⟩
-- porting note: todo: use `assoc_rw`?
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s
[PROOFSTEP]
calc
r₁ * r * r₂ /ₒ s = r₁ * r * r₂ * t' /ₒ (s * t') := OreLocalization.expand (r₁ * r * r₂) s t' _
_ = r₁ * r * (r₂ * t') /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r * (t * r₂') /ₒ (s * t') := by rw [hr₂]
_ = r₁ * (r * t) * r₂' /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * (r' * t) * r₂' /ₒ (s * t') := by rw [h]
_ = r₁ * r' * (t * r₂') /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r' * (r₂ * t') /ₒ (s * t') := by rw [hr₂]
_ = r₁ * r' * r₂ * t' /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r' * r₂ /ₒ s := (OreLocalization.expand _ _ _ _).symm
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r * r₂ * ↑t' /ₒ (s * t') = r₁ * r * (r₂ * ↑t') /ₒ (s * t')
[PROOFSTEP]
simp [← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r * (r₂ * ↑t') /ₒ (s * t') = r₁ * r * (↑t * r₂') /ₒ (s * t')
[PROOFSTEP]
rw [hr₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r * (↑t * r₂') /ₒ (s * t') = r₁ * (r * ↑t) * r₂' /ₒ (s * t')
[PROOFSTEP]
simp [← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * (r * ↑t) * r₂' /ₒ (s * t') = r₁ * (r' * ↑t) * r₂' /ₒ (s * t')
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * (r' * ↑t) * r₂' /ₒ (s * t') = r₁ * r' * (↑t * r₂') /ₒ (s * t')
[PROOFSTEP]
simp [← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r' * (↑t * r₂') /ₒ (s * t') = r₁ * r' * (r₂ * ↑t') /ₒ (s * t')
[PROOFSTEP]
rw [hr₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r r' r₁ r₂ : R
s t : { x // x ∈ S }
h : r * ↑t = r' * ↑t
r₂' : R
t' : { x // x ∈ S }
hr₂ : r₂ * ↑t' = ↑t * r₂'
⊢ r₁ * r' * (r₂ * ↑t') /ₒ (s * t') = r₁ * r' * r₂ * ↑t' /ₒ (s * t')
[PROOFSTEP]
simp [← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v
hs₂ : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v
⊢ (fun p => P p.fst p.snd) (r₁, s₁) = (fun p => P p.fst p.snd) (r₂, s₂)
[PROOFSTEP]
dsimp at *
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
⊢ P r₁ s₁ = P r₂ s₂
[PROOFSTEP]
have s₁vS : (s₁ : R) * v ∈ S := by
rw [← hs₂, ← S.coe_mul]
exact SetLike.coe_mem (s₂ * u)
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
⊢ ↑s₁ * v ∈ S
[PROOFSTEP]
rw [← hs₂, ← S.coe_mul]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
⊢ ↑(s₂ * u) ∈ S
[PROOFSTEP]
exact SetLike.coe_mem (s₂ * u)
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
s₁vS : ↑s₁ * v ∈ S
⊢ P r₁ s₁ = P r₂ s₂
[PROOFSTEP]
replace hs₂ : s₂ * u = ⟨(s₁ : R) * v, s₁vS⟩
[GOAL]
case hs₂
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
s₁vS : ↑s₁ * v ∈ S
⊢ s₂ * u = { val := ↑s₁ * v, property := s₁vS }
[PROOFSTEP]
ext
[GOAL]
case hs₂.a
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
hs₂ : ↑s₂ * ↑u = ↑s₁ * v
s₁vS : ↑s₁ * v ∈ S
⊢ ↑(s₂ * u) = ↑{ val := ↑s₁ * v, property := s₁vS }
[PROOFSTEP]
simp [hs₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
s₁vS : ↑s₁ * v ∈ S
hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS }
⊢ P r₁ s₁ = P r₂ s₂
[PROOFSTEP]
rw [hP r₁ v s₁ s₁vS, hP r₂ u s₂ (by norm_cast; rwa [hs₂]), hr₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
s₁vS : ↑s₁ * v ∈ S
hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS }
⊢ ↑s₂ * ↑u ∈ S
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
s₁vS : ↑s₁ * v ∈ S
hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS }
⊢ ↑(s₂ * u) ∈ S
[PROOFSTEP]
rwa [hs₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
s₁vS : ↑s₁ * v ∈ S
hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS }
⊢ P (r₁ * v) { val := ↑s₁ * v, property := s₁vS } = P (r₁ * v) { val := ↑s₂ * ↑u, property := (_ : ↑s₂ * ↑u ∈ S) }
[PROOFSTEP]
simp only [← hs₂]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → C
hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht }
x✝² x✝¹ : R × { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
x✝ : (r₁, s₁) ≈ (r₂, s₂)
u : { x // x ∈ S }
v : R
hr₂ : r₂ * ↑u = r₁ * v
s₁vS : ↑s₁ * v ∈ S
hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS }
⊢ P (r₁ * v) (s₂ * u) = P (r₁ * v) { val := ↑s₂ * ↑u, property := (_ : ↑s₂ * ↑u ∈ S) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ : R
s₁ : { x // x ∈ S }
r₂ t₂ : R
s₂ : { x // x ∈ S }
ht₂ : ↑s₂ * t₂ ∈ S
⊢ P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
[PROOFSTEP]
have := hP r₁ 1 s₁ (by simp) r₂ t₂ s₂ ht₂
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ : R
s₁ : { x // x ∈ S }
r₂ t₂ : R
s₂ : { x // x ∈ S }
ht₂ : ↑s₂ * t₂ ∈ S
⊢ ↑s₁ * 1 ∈ S
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ : R
s₁ : { x // x ∈ S }
r₂ t₂ : R
s₂ : { x // x ∈ S }
ht₂ : ↑s₂ * t₂ ∈ S
this :
P r₁ s₁ r₂ s₂ =
P (r₁ * 1) { val := ↑s₁ * 1, property := (_ : ↑s₁ * 1 ∈ S) } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
⊢ P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
[PROOFSTEP]
simp [this]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
⊢ (fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
r₁ s₁ =
(fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
(r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ }
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
x : OreLocalization R S
⊢ (fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
r₁ s₁ x =
(fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
(r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } x
[PROOFSTEP]
induction' x using OreLocalization.ind with r₂ s₂
[GOAL]
case h.c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
r₂ : R
s₂ : { x // x ∈ S }
⊢ (fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
r₁ s₁ (r₂ /ₒ s₂) =
(fun r₁ s₁ =>
liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }))
(r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ /ₒ s₂)
[PROOFSTEP]
dsimp only
[GOAL]
case h.c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
r₂ : R
s₂ : { x // x ∈ S }
⊢ liftExpand (P r₁ s₁)
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })
(r₂ /ₒ s₂) =
liftExpand (P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ })
(_ :
∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } r₂ s₂ =
P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })
(r₂ /ₒ s₂)
[PROOFSTEP]
rw [liftExpand_of, liftExpand_of, hP r₁ t₁ s₁ ht₁ r₂ 1 s₂ (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
r₂ : R
s₂ : { x // x ∈ S }
⊢ ↑s₂ * 1 ∈ S
[PROOFSTEP]
simp
[GOAL]
case h.c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
C : Sort u_2
P : R → { x // x ∈ S } → R → { x // x ∈ S } → C
hP :
∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }
r₁ t₁ : R
s₁ : { x // x ∈ S }
ht₁ : ↑s₁ * t₁ ∈ S
r₂ : R
s₂ : { x // x ∈ S }
⊢ P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * 1) { val := ↑s₂ * 1, property := (_ : ↑s₂ * 1 ∈ S) } =
P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } r₂ s₂
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
⊢ OreLocalization.mul' r₁ s₁ r₂ s₂ = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
simp only [mul']
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
have h₀ := ore_eq r₂ s₁
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
h₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * oreNum r₂ s₁
⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
set v₀ := oreNum r₂ s₁
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
h₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * v₀
⊢ r₁ * v₀ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
set u₀ := oreDenom r₂ s₁
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
rcases oreCondition (u₀ : R) u with ⟨r₃, s₃, h₃⟩
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
have :=
calc
(s₁ : R) * (v * r₃) = r₂ * u * r₃ := by rw [← mul_assoc, ← huv]
_ = r₂ * u₀ * s₃ := by rw [mul_assoc, mul_assoc, h₃]
_ = s₁ * (v₀ * s₃) := by rw [← mul_assoc, h₀]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
⊢ ↑s₁ * (v * r₃) = r₂ * ↑u * r₃
[PROOFSTEP]
rw [← mul_assoc, ← huv]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
⊢ r₂ * ↑u * r₃ = r₂ * ↑u₀ * ↑s₃
[PROOFSTEP]
rw [mul_assoc, mul_assoc, h₃]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
⊢ r₂ * ↑u₀ * ↑s₃ = ↑s₁ * (v₀ * ↑s₃)
[PROOFSTEP]
rw [← mul_assoc, h₀]
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
rcases ore_left_cancel _ _ _ this with ⟨s₄, hs₄⟩
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)
[PROOFSTEP]
symm
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * v /ₒ (s₂ * u) = r₁ * v₀ /ₒ (s₂ * u₀)
[PROOFSTEP]
rw [oreDiv_eq_iff]
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ ∃ u_1 v_1, r₁ * v₀ * ↑u_1 = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑u_1 = ↑(s₂ * u) * v_1
[PROOFSTEP]
use s₃ * s₄
[GOAL]
case h
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ ∃ v_1, r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * v_1
[PROOFSTEP]
use r₃ * s₄
[GOAL]
case h
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * (r₃ * ↑s₄)
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case h
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)
[PROOFSTEP]
rw [mul_assoc (b := v₀), ← mul_assoc (a := v₀), ← hs₄]
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ r₁ * (v * r₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)
[PROOFSTEP]
rw [mul_assoc (b := (u₀ : R)), ← mul_assoc (a := (u₀ : R)), h₃]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ u : { x // x ∈ S }
v : R
huv : r₂ * ↑u = ↑s₁ * v
v₀ : R := oreNum r₂ s₁
u₀ : { x // x ∈ S } := oreDenom r₂ s₁
h₀ : r₂ * ↑u₀ = ↑s₁ * v₀
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑u₀ * ↑s₃ = ↑u * r₃
this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)
s₄ : { x // x ∈ S }
hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄
⊢ ↑s₂ * (↑u * r₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
have h₁ := ore_eq r₁ s₂
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
h₁ : r₁ * ↑(oreDenom r₁ s₂) = ↑s₂ * oreNum r₁ s₂
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
set r₁' := oreNum r₁ s₂
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
h₁ : r₁ * ↑(oreDenom r₁ s₂) = ↑s₂ * r₁'
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
set s₂' := oreDenom r₁ s₂
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
rcases oreCondition (↑s₂ * r₁') ⟨s₂ * p, hp⟩ with ⟨p', s_star, h₂⟩
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * r₁' * ↑s_star = ↑{ val := ↑s₂ * p, property := hp } * p'
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
dsimp at h₂
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
rcases oreCondition r (s₂' * s_star) with ⟨p_flat, s_flat, h₃⟩
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(s₂' * s_star) * p_flat
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
simp only [S.coe_mul] at h₃
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
have : r₁ * r * s_flat = s₂ * p * (p' * p_flat) :=
by
rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃]
simp only [mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat)
[PROOFSTEP]
rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ r₁ * (↑(oreDenom r₁ s₂) * ↑s_star * p_flat) = r₁ * ↑s₂' * ↑s_star * p_flat
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
this : r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat)
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr }
[PROOFSTEP]
rw [mul'_char (r₂ * p) (r₁ * r) ⟨↑s₂ * p, hp⟩ ⟨↑s₁ * r, hr⟩ _ _ this]
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
this : r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat)
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat)
[PROOFSTEP]
clear this
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat)
[PROOFSTEP]
have hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S :=
by
rw [mul_assoc, mul_assoc, ← mul_assoc (s₂' : R), ← h₃, ← mul_assoc]
exact S.mul_mem hr (SetLike.coe_mem s_flat)
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
[PROOFSTEP]
rw [mul_assoc, mul_assoc, ← mul_assoc (s₂' : R), ← h₃, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
⊢ ↑s₁ * r * ↑s_flat ∈ S
[PROOFSTEP]
exact S.mul_mem hr (SetLike.coe_mem s_flat)
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat)
[PROOFSTEP]
have : (⟨↑s₁ * r, hr⟩ : S) * s_flat = ⟨s₁ * s₂' * s_star * p_flat, hsssp⟩ :=
by
ext
simp only [Submonoid.coe_mul]
rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ ↑({ val := ↑s₁ * r, property := hr } * s_flat) = ↑{ val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case a
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ ↑s₁ * r * ↑s_flat = ↑s₁ * ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
[PROOFSTEP]
rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc]
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
this : { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat)
[PROOFSTEP]
rw [this]
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
this : { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
clear this
[GOAL]
case mk.mk.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
rcases ore_left_cancel (p * p') (r₁' * (s_star : R)) s₂ (by simp [← mul_assoc, h₂]) with ⟨s₂'', h₂''⟩
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
⊢ ↑s₂ * (p * p') = ↑s₂ * (r₁' * ↑s_star)
[PROOFSTEP]
simp [← mul_assoc, h₂]
[GOAL]
case mk.mk.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
s₂'' : { x // x ∈ S }
h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂''
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
rw [← mul_assoc, mul_assoc r₂, OreLocalization.eq_of_num_factor_eq h₂'']
[GOAL]
case mk.mk.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S
s₂'' : { x // x ∈ S }
h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂''
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
r₂ * (r₁' * ↑s_star) * p_flat /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp }
[PROOFSTEP]
norm_cast at hsssp ⊢
[GOAL]
case mk.mk.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑(s₁ * s₂' * s_star) * p_flat ∈ S
s₂'' : { x // x ∈ S }
h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂''
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ =
r₂ * (r₁' * ↑s_star) * p_flat /ₒ
{ val := ↑(s₁ * s₂' * s_star) * p_flat, property := (_ : (fun x => x ∈ S) (↑(s₁ * s₂' * s_star) * p_flat)) }
[PROOFSTEP]
rw [← OreLocalization.expand _ _ _ hsssp, ← mul_assoc]
[GOAL]
case mk.mk.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₂ p : R
s₂ : { x // x ∈ S }
hp : ↑s₂ * p ∈ S
r₁ r : R
s₁ : { x // x ∈ S }
hr : ↑s₁ * r ∈ S
r₁' : R := oreNum r₁ s₂
s₂' : { x // x ∈ S } := oreDenom r₁ s₂
h₁ : r₁ * ↑s₂' = ↑s₂ * r₁'
p' : R
s_star : { x // x ∈ S }
h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p'
p_flat : R
s_flat : { x // x ∈ S }
h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat
hsssp : ↑(s₁ * s₂' * s_star) * p_flat ∈ S
s₂'' : { x // x ∈ S }
h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂''
⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * r₁' * ↑s_star /ₒ (s₁ * s₂' * s_star)
[PROOFSTEP]
apply OreLocalization.expand
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
hr : r ∈ S
⊢ r /ₒ { val := r, property := hr } = 1
[PROOFSTEP]
rw [OreLocalization.one_def, oreDiv_eq_iff]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
hr : r ∈ S
⊢ ∃ u v, 1 * ↑u = r * v ∧ ↑1 * ↑u = ↑{ val := r, property := hr } * v
[PROOFSTEP]
exact ⟨⟨r, hr⟩, 1, by simp, by simp⟩
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
hr : r ∈ S
⊢ 1 * ↑{ val := r, property := hr } = r * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
hr : r ∈ S
⊢ ↑1 * ↑{ val := r, property := hr } = ↑{ val := r, property := hr } * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ 1 * x = x
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ 1 * (r /ₒ s) = r /ₒ s
[PROOFSTEP]
simp [OreLocalization.one_def, oreDiv_mul_char (1 : R) r (1 : S) s r 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r * ↑1 = ↑1 * r
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ x * 1 = x
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r /ₒ s * 1 = r /ₒ s
[PROOFSTEP]
simp [OreLocalization.one_def, oreDiv_mul_char r 1 s 1 1 s (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ 1 * ↑s = ↑s * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
x y z : OreLocalization R S
⊢ x * y * z = x * (y * z)
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
y z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * y * z = r₁ /ₒ s₁ * (y * z)
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * z = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * z)
[PROOFSTEP]
induction' z using OreLocalization.ind with r₃ s₃
[GOAL]
case c.c.c
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃))
[PROOFSTEP]
rcases oreDivMulChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa)
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃))
[PROOFSTEP]
rw [ha']
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa)
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃))
[PROOFSTEP]
clear ha'
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃))
[PROOFSTEP]
rcases oreDivMulChar' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
hb' : r₂ /ₒ s₂ * (r₃ /ₒ s₃) = r₂ * rb /ₒ (s₃ * sb)
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃))
[PROOFSTEP]
rw [hb']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
hb' : r₂ /ₒ s₂ * (r₃ /ₒ s₃) = r₂ * rb /ₒ (s₃ * sb)
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb))
[PROOFSTEP]
clear hb'
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb))
[PROOFSTEP]
rcases oreCondition rb sa with ⟨rc, sc, hc⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb))
[PROOFSTEP]
rw [oreDiv_mul_char (r₁ * ra) r₃ (s₂ * sa) s₃ rc (sb * sc)
(by
simp only [Submonoid.coe_mul]
rw [← mul_assoc, hb, mul_assoc, hc, ← mul_assoc])]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₃ * ↑(sb * sc) = ↑(s₂ * sa) * rc
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₃ * (↑sb * ↑sc) = ↑s₂ * ↑sa * rc
[PROOFSTEP]
rw [← mul_assoc, hb, mul_assoc, hc, ← mul_assoc]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₁ * ra * rc /ₒ (s₃ * (sb * sc)) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb))
[PROOFSTEP]
rw [mul_assoc, ← mul_assoc s₃]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₁ * (ra * rc) /ₒ (s₃ * sb * sc) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb))
[PROOFSTEP]
symm
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) = r₁ * (ra * rc) /ₒ (s₃ * sb * sc)
[PROOFSTEP]
apply oreDiv_mul_char
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.huv
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
rb : R
sb : { x // x ∈ S }
hb : r₃ * ↑sb = ↑s₂ * rb
rc : R
sc : { x // x ∈ S }
hc : rb * ↑sc = ↑sa * rc
⊢ r₂ * rb * ↑sc = ↑s₁ * (ra * rc)
[PROOFSTEP]
rw [mul_assoc, hc, ← mul_assoc (b := ra), ← ha, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
s s' : { x // x ∈ S }
⊢ ↑s /ₒ s' * (↑s' /ₒ s) = 1
[PROOFSTEP]
simp [oreDiv_mul_char (s : R) s' s' s 1 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
s s' : { x // x ∈ S }
⊢ ↑s' * ↑1 = ↑s' * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s t : { x // x ∈ S }
⊢ r /ₒ s * (1 /ₒ t) = r /ₒ (t * s)
[PROOFSTEP]
simp [oreDiv_mul_char r 1 s t 1 s (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s t : { x // x ∈ S }
⊢ 1 * ↑s = ↑s * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s t : { x // x ∈ S }
⊢ r /ₒ s * (↑s /ₒ t) = r /ₒ t
[PROOFSTEP]
simp [oreDiv_mul_char r s s t 1 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s t : { x // x ∈ S }
⊢ ↑s * ↑1 = ↑s * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s t : { x // x ∈ S }
⊢ r₁ /ₒ s * (↑s * r₂ /ₒ t) = r₁ * r₂ /ₒ t
[PROOFSTEP]
simp [oreDiv_mul_char r₁ (s * r₂) s t r₂ 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s t : { x // x ∈ S }
⊢ ↑s * r₂ * ↑1 = ↑s * r₂
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
p r : R
s : { x // x ∈ S }
⊢ r /ₒ 1 * (p /ₒ s) = r * p /ₒ s
[PROOFSTEP]
simp [oreDiv_mul_char r p 1 s p 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Monoid R
S : Submonoid R
inst✝ : OreSet S
p r : R
s : { x // x ∈ S }
⊢ p * ↑1 = ↑1 * p
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
⊢ (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }
[PROOFSTEP]
simp only []
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
⊢ ↑f r * ↑(↑fS s)⁻¹ = ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
have : (fS ⟨s * t, ht⟩ : T) = fS s * f t := by simp only [← hf, MonoidHom.map_mul]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
⊢ ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
[PROOFSTEP]
simp only [← hf, MonoidHom.map_mul]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
⊢ ↑f r * ↑(↑fS s)⁻¹ = ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
conv_rhs =>
rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)]
rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
| ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)]
rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
| ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)]
rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
| ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
| ↑f r * ↑((↑fS s)⁻¹ * ↑fS s) * ↑f t * ↑(↑fS { val := ↑s * t, property := ht })⁻¹
[PROOFSTEP]
rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x : OreLocalization R S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t
⊢ ↑f r * ↑(↑fS s)⁻¹ =
↑f r * ↑(↑fS s)⁻¹ * (↑(↑fS { val := ↑s * t, property := ht }) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹)
[PROOFSTEP]
simp only [mul_one, Units.mul_inv]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
⊢ (fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x)
1 =
1
[PROOFSTEP]
simp only []
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
1 =
1
[PROOFSTEP]
rw [OreLocalization.one_def, liftExpand_of]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
⊢ ↑f 1 * ↑(↑fS 1)⁻¹ = 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x y : OreLocalization R S
⊢ OneHom.toFun
{
toFun := fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x,
map_one' :=
(_ :
(fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x)
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x,
map_one' :=
(_ :
(fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x)
1 =
1) }
x *
OneHom.toFun
{
toFun := fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x,
map_one' :=
(_ :
(fun x =>
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x)
1 =
1) }
y
[PROOFSTEP]
simp only []
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
x y : OreLocalization R S
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(x * y) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
x *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
y
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
y : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁ * y) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁) *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
y
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁ * (r₂ /ₒ s₂)) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁) *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₂ /ₒ s₂)
[PROOFSTEP]
rcases oreDivMulChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa)
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁ * (r₂ /ₒ s₂)) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁) *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₂ /ₒ s₂)
[PROOFSTEP]
rw [ha']
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa)
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ * ra /ₒ (s₂ * sa)) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁) *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₂ /ₒ s₂)
[PROOFSTEP]
clear ha'
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ * ra /ₒ (s₂ * sa)) =
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₁ /ₒ s₁) *
liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹)
(_ :
∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S),
(fun r s => ↑f r * ↑(↑fS s)⁻¹) r s =
(fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht })
(r₂ /ₒ s₂)
[PROOFSTEP]
rw [liftExpand_of, liftExpand_of, liftExpand_of]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
⊢ ↑f (r₁ * ra) * ↑(↑fS (s₂ * sa))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹)
[PROOFSTEP]
conv_rhs =>
congr
·skip
congr
rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹)
[PROOFSTEP]
congr
·skip
congr
rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹)
[PROOFSTEP]
congr
·skip
congr
rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹)
[PROOFSTEP]
congr
[GOAL]
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
·skip
[GOAL]
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₁ * ↑(↑fS s₁)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
congr
[GOAL]
case a.a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑f r₂
case a.a
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
| ↑(↑fS s₂)⁻¹
[PROOFSTEP]
rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
⊢ ↑f (r₁ * ra) * ↑(↑fS (s₂ * sa))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f ↑s₁ * ↑f ra * ↑(↑fS sa)⁻¹ * ↑(↑fS s₂)⁻¹)
[PROOFSTEP]
rw [mul_assoc, mul_assoc, mul_assoc, ← mul_assoc _ (f s₁), hf s₁, (fS s₁).inv_mul, one_mul, f.map_mul, mul_assoc,
fS.map_mul, ← Units.val_mul]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : r₂ * ↑sa = ↑s₁ * ra
⊢ ↑f r₁ * (↑f ra * ↑(↑fS s₂ * ↑fS sa)⁻¹) = ↑f r₁ * (↑f ra * ↑((↑fS sa)⁻¹ * (↑fS s₂)⁻¹))
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r : R
⊢ ↑(universalMulHom f fS hf) (↑numeratorHom r) = ↑f r
[PROOFSTEP]
simp [numeratorHom_apply, universalMulHom_apply]
[GOAL]
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
φ : OreLocalization R S →* T
huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r
⊢ φ = universalMulHom f fS hf
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
φ : OreLocalization R S →* T
huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r
x : OreLocalization R S
⊢ ↑φ x = ↑(universalMulHom f fS hf) x
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case h.c
R : Type u_1
inst✝² : Monoid R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Monoid T
f : R →* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
φ : OreLocalization R S →* T
huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r
r : R
s : { x // x ∈ S }
⊢ ↑φ (r /ₒ s) = ↑(universalMulHom f fS hf) (r /ₒ s)
[PROOFSTEP]
rw [universalMulHom_apply, ← huniv r, numeratorHom_apply, ← mul_one (φ (r /ₒ s)), ← Units.val_one, ←
mul_right_inv (fS s), Units.val_mul, ← mul_assoc, ← hf, ← huniv, ← φ.map_mul, numeratorHom_apply,
OreLocalization.mul_cancel]
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r₂ /ₒ (s₁ * s₂)
[PROOFSTEP]
rw [oreDiv_mul_char r₁ r₂ s₁ s₂ r₂ s₁ (by simp [mul_comm]), mul_comm s₂]
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
⊢ r₂ * ↑s₁ = ↑s₁ * r₂
[PROOFSTEP]
simp [mul_comm]
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization
x y : OreLocalization R S
⊢ x * y = y * x
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization
y : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * y = y * (r₁ /ₒ s₁)
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₂ /ₒ s₂ * (r₁ /ₒ s₁)
[PROOFSTEP]
rw [oreDiv_mul_oreDiv_comm, oreDiv_mul_oreDiv_comm, mul_comm r₁, mul_comm s₁]
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
⊢ OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } (r₁ * r₂) =
OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } r₁ *
OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } r₂
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
z : OreLocalization R S
⊢ ∃ x,
z *
OneHom.toFun
↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }
↑x.snd =
OneHom.toFun
(↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) })
x.fst
[PROOFSTEP]
induction' z using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ ∃ x,
r /ₒ s *
OneHom.toFun
↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }
↑x.snd =
OneHom.toFun
(↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) })
x.fst
[PROOFSTEP]
use(r, s)
[GOAL]
case h
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r /ₒ s *
OneHom.toFun
↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }
↑(r, s).snd =
OneHom.toFun
↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }
(r, s).fst
[PROOFSTEP]
dsimp
[GOAL]
case h
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r /ₒ s * ↑numeratorHom ↑s = ↑numeratorHom r
[PROOFSTEP]
rw [numeratorHom_apply, numeratorHom_apply]
[GOAL]
case h
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r /ₒ s * (↑s /ₒ 1) = r /ₒ 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) })
r₁ =
OneHom.toFun
(↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) },
map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) })
r₂ ↔
∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂ ↔ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂ → ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
h : ↑numeratorHom r₁ = ↑numeratorHom r₂
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h
[GOAL]
case mp
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
h : ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
rcases h with ⟨u, v, h₁, h₂⟩
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
u : { x // x ∈ S }
v : R
h₁ : r₂ * ↑u = r₁ * v
h₂ : ↑1 * ↑u = ↑1 * v
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
dsimp at h₂
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
u : { x // x ∈ S }
v : R
h₁ : r₂ * ↑u = r₁ * v
h₂ : 1 * ↑u = 1 * v
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
rw [one_mul, one_mul] at h₂
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
u : { x // x ∈ S }
v : R
h₁ : r₂ * ↑u = r₁ * v
h₂ : ↑u = v
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
subst h₂
[GOAL]
case mp.intro.intro.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
u : { x // x ∈ S }
h₁ : r₂ * ↑u = r₁ * ↑u
⊢ ∃ c, ↑c * r₁ = ↑c * r₂
[PROOFSTEP]
use u
[GOAL]
case h
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
u : { x // x ∈ S }
h₁ : r₂ * ↑u = r₁ * ↑u
⊢ ↑u * r₁ = ↑u * r₂
[PROOFSTEP]
simpa only [mul_comm] using h₁.symm
[GOAL]
case mpr
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
⊢ (∃ c, ↑c * r₁ = ↑c * r₂) → ↑numeratorHom r₁ = ↑numeratorHom r₂
[PROOFSTEP]
rintro ⟨s, h⟩
[GOAL]
case mpr.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s : { x // x ∈ S }
h : ↑s * r₁ = ↑s * r₂
⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂
[PROOFSTEP]
rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff]
[GOAL]
case mpr.intro
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s : { x // x ∈ S }
h : ↑s * r₁ = ↑s * r₂
⊢ ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v
[PROOFSTEP]
refine' ⟨s, s, _, _⟩
[GOAL]
case mpr.intro.refine'_1
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s : { x // x ∈ S }
h : ↑s * r₁ = ↑s * r₂
⊢ r₂ * ↑s = r₁ * ↑s
[PROOFSTEP]
simpa [mul_comm] using h.symm
[GOAL]
case mpr.intro.refine'_2
R : Type u_1
inst✝¹ : CommMonoid R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s : { x // x ∈ S }
h : ↑s * r₁ = ↑s * r₂
⊢ ↑1 * ↑s = ↑1 * ↑s
[PROOFSTEP]
simp [one_mul]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
⊢ OreLocalization.add'' r₁ s₁ r₂ s₂ = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
simp only [add'']
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
have ha := ore_eq (s₁ : R) s₂
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
set! ra := oreNum (s₁ : R) s₂ with h
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
h : ra = oreNum (↑s₁) s₂
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
rw [← h] at *
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
h : ra = ra
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
clear h
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
set! sa := oreDenom (s₁ : R) s₂ with h
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
h : sa = oreDenom (↑s₁) s₂
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
rw [← h] at *
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
h : sa = sa
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
clear h
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
rcases oreCondition (sa : R) sb with
⟨rc, sc, hc⟩
-- s*, r*
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
have : (s₂ : R) * (rb * rc) = s₂ * (ra * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
⊢ ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
[PROOFSTEP]
rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha]
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
rcases ore_left_cancel _ _ s₂ this with
⟨sd, hd⟩
-- s#
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb)
[PROOFSTEP]
symm
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa)
[PROOFSTEP]
rw [oreDiv_eq_iff]
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ ∃ u v, (r₁ * ↑sa + r₂ * ra) * ↑u = (r₁ * ↑sb + r₂ * rb) * v ∧ ↑(s₁ * sa) * ↑u = ↑(s₁ * sb) * v
[PROOFSTEP]
use sc * sd
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ ∃ v, (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * v ∧ ↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * v
[PROOFSTEP]
use rc * sd
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd) ∧
↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * (rc * ↑sd)
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd)
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ ↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * (rc * ↑sd)
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd)
[PROOFSTEP]
noncomm_ring
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ r₁ * (↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd)) + r₂ * (oreNum (↑s₁) s₂ * (↑sc * ↑sd)) =
r₁ * (↑sb * (rc * ↑sd)) + r₂ * (rb * (rc * ↑sd))
[PROOFSTEP]
rw [← mul_assoc (a := rb), hd, ← mul_assoc (a := (sa : R)), hc]
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ r₁ * (↑sb * rc * ↑sd) + r₂ * (oreNum (↑s₁) s₂ * (↑sc * ↑sd)) = r₁ * (↑sb * (rc * ↑sd)) + r₂ * (ra * ↑sc * ↑sd)
[PROOFSTEP]
noncomm_ring
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ ↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₁ * ↑sb * (rc * ↑sd)
[PROOFSTEP]
rw [mul_assoc (a := (s₁ : R)), ← mul_assoc (a := (sa : R)), hc]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
rb : R
sb : { x // x ∈ S }
hb : ↑s₁ * ↑sb = ↑s₂ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
rc : R
sc : { x // x ∈ S }
hc : ↑sa * ↑sc = ↑sb * rc
this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ra * ↑sc * ↑sd
⊢ ↑s₁ * (↑sb * rc * ↑sd) = ↑s₁ * ↑sb * (rc * ↑sd)
[PROOFSTEP]
noncomm_ring
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
⊢ ∀ (a b : R × { x // x ∈ S }),
a ≈ b → OreLocalization.add'' a.fst a.snd r₂ s₂ = OreLocalization.add'' b.fst b.snd r₂ s₂
[PROOFSTEP]
rintro ⟨r₁', s₁'⟩ ⟨r₁, s₁⟩
⟨sb, rb, hb, hb'⟩
-- s*, r*
[GOAL]
case mk.mk.intro.intro.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb
hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb
⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂
[PROOFSTEP]
rcases oreCondition (s₁' : R) s₂ with
⟨rc, sc, hc⟩
--s~~, r~~
[GOAL]
case mk.mk.intro.intro.intro.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb
hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂
[PROOFSTEP]
rcases oreCondition rb sc with
⟨rd, sd, hd⟩
-- s#, r#
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb
hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂
[PROOFSTEP]
dsimp at *
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
⊢ OreLocalization.add'' r₁' s₁' r₂ s₂ = OreLocalization.add'' r₁ s₁ r₂ s₂
[PROOFSTEP]
rw [add''_char _ _ _ _ rc sc hc]
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = OreLocalization.add'' r₁ s₁ r₂ s₂
[PROOFSTEP]
have : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) := by
simp only [Submonoid.coe_mul]
rw [← mul_assoc, hb', mul_assoc, hd, ← mul_assoc, hc, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
⊢ ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
⊢ ↑s₁ * (↑sb * ↑sd) = ↑s₂ * (rc * rd)
[PROOFSTEP]
rw [← mul_assoc, hb', mul_assoc, hd, ← mul_assoc, hc, mul_assoc]
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = OreLocalization.add'' r₁ s₁ r₂ s₂
[PROOFSTEP]
rw [add''_char _ _ _ _ (rc * rd : R) (sb * sd : S) this]
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = (r₁ * ↑(sb * sd) + r₂ * (rc * rd)) /ₒ (s₁ * (sb * sd))
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = (r₁ * (↑sb * ↑sd) + r₂ * (rc * rd)) /ₒ (s₁ * (sb * sd))
[PROOFSTEP]
rw [← mul_assoc (a := r₁) (b := (sb : R)), hb, mul_assoc (a := r₁') (b := (rb : R)), hd, ← mul_assoc, ← mul_assoc, ←
add_mul, oreDiv_eq_iff]
[GOAL]
case mk.mk.intro.intro.intro.mk.mk.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ ∃ u v, (r₁' * ↑sc + r₂ * rc) * rd * ↑u = (r₁' * ↑sc + r₂ * rc) * v ∧ ↑(s₁ * (sb * sd)) * ↑u = ↑(s₁' * sc) * v
[PROOFSTEP]
use 1
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ ∃ v, (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * v ∧ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * v
[PROOFSTEP]
use rd
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * rd ∧ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * rd
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * rd
[PROOFSTEP]
simp
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd)
⊢ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * rd
[PROOFSTEP]
simp only [mul_one, Submonoid.coe_one, Submonoid.coe_mul] at this ⊢
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₂ : R
s₂ : { x // x ∈ S }
r₁' : R
s₁' : { x // x ∈ S }
r₁ : R
s₁ : { x // x ∈ S }
sb : { x // x ∈ S }
rb : R
hb : r₁ * ↑sb = r₁' * rb
hb' : ↑s₁ * ↑sb = ↑s₁' * rb
rc : R
sc : { x // x ∈ S }
hc : ↑s₁' * ↑sc = ↑s₂ * rc
rd : R
sd : { x // x ∈ S }
hd : rb * ↑sd = ↑sc * rd
this : ↑s₁ * (↑sb * ↑sd) = ↑s₂ * (rc * rd)
⊢ ↑s₁ * (↑sb * ↑sd) = ↑s₁' * ↑sc * rd
[PROOFSTEP]
rw [hc, this, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
⊢ OreLocalization.add' r₁ s₁ (r₂ /ₒ s₂) = OreLocalization.add' r₂ s₂ (r₁ /ₒ s₁)
[PROOFSTEP]
simp only [add', oreDiv, add'', Quotient.mk', Quotient.lift_mk]
-- Porting note: `Quotient.eq` should be used in `rw` instead of `simp`
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
⊢ Quotient.mk (oreEqv R S) (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) =
Quotient.mk (oreEqv R S) (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
rw [Quotient.eq]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) ≈
(r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
have hb := ore_eq (↑s₂) s₁
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
hb : ↑s₂ * ↑(oreDenom (↑s₂) s₁) = ↑s₁ * oreNum (↑s₂) s₁
⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) ≈
(r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
set rb := oreNum (↑s₂) s₁
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
hb : ↑s₂ * ↑(oreDenom (↑s₂) s₁) = ↑s₁ * rb
⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * rb, s₂ * oreDenom (↑s₂) s₁) ≈
(r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
set sb := oreDenom (↑s₂) s₁
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
have ha := ore_eq (↑s₁) s₂
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
set ra := oreNum (↑s₁) s₂
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * ra
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra, s₁ * oreDenom (↑s₁) s₂)
[PROOFSTEP]
set sa := oreDenom (↑s₁) s₂
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa)
[PROOFSTEP]
rcases oreCondition ra sb with
⟨rc, sc, hc⟩
-- r#, s#
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa)
[PROOFSTEP]
have : (s₁ : R) * (rb * rc) = s₁ * (sa * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
⊢ ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
[PROOFSTEP]
rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc]
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa)
[PROOFSTEP]
rcases ore_left_cancel _ _ s₁ this with
⟨sd, hd⟩
-- s+
[GOAL]
case mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa)
[PROOFSTEP]
use sc * sd
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ ∃ v,
(r₁ * ↑sa + r₂ * ra, s₁ * sa).fst * ↑(sc * sd) = (r₂ * ↑sb + r₁ * rb, s₂ * sb).fst * v ∧
↑(r₁ * ↑sa + r₂ * ra, s₁ * sa).snd * ↑(sc * sd) = ↑(r₂ * ↑sb + r₁ * rb, s₂ * sb).snd * v
[PROOFSTEP]
use rc * sd
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ (r₁ * ↑sa + r₂ * ra, s₁ * sa).fst * ↑(sc * sd) = (r₂ * ↑sb + r₁ * rb, s₂ * sb).fst * (rc * ↑sd) ∧
↑(r₁ * ↑sa + r₂ * ra, s₁ * sa).snd * ↑(sc * sd) = ↑(r₂ * ↑sb + r₁ * rb, s₂ * sb).snd * (rc * ↑sd)
[PROOFSTEP]
dsimp
[GOAL]
case h
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) =
(r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁) * (rc * ↑sd) ∧
↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd)
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) =
(r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁) * (rc * ↑sd)
[PROOFSTEP]
rw [add_mul, add_mul, add_comm, mul_assoc (a := r₁) (b := (sa : R)), ← mul_assoc (a := (sa : R)), ← hd,
mul_assoc (a := r₂) (b := ra), ← mul_assoc (a := ra) (b := (sc : R)), hc]
[GOAL]
case h.left
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ r₂ * (↑sb * rc * ↑sd) + r₁ * (rb * rc * ↑sd) =
r₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd) + r₁ * oreNum (↑s₂) s₁ * (rc * ↑sd)
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ ↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd)
[PROOFSTEP]
rw [mul_assoc, ← mul_assoc (sa : R), ← hd, hb]
[GOAL]
case h.right
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ r₂ : R
s₁ s₂ : { x // x ∈ S }
rb : R := oreNum (↑s₂) s₁
sb : { x // x ∈ S } := oreDenom (↑s₂) s₁
hb : ↑s₂ * ↑sb = ↑s₁ * rb
ra : R := oreNum (↑s₁) s₂
sa : { x // x ∈ S } := oreDenom (↑s₁) s₂
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rc : R
sc : { x // x ∈ S }
hc : ra * ↑sc = ↑sb * rc
this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc)
sd : { x // x ∈ S }
hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd
⊢ ↑s₁ * (rb * rc * ↑sd) = ↑s₁ * rb * (rc * ↑sd)
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ ∀ (a b : R × { x // x ∈ S }),
a ≈ b → (fun rs => OreLocalization.add' rs.fst rs.snd x) a = (fun rs => OreLocalization.add' rs.fst rs.snd x) b
[PROOFSTEP]
rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ hyz
[GOAL]
case mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
hyz : (r₁, s₁) ≈ (r₂, s₂)
⊢ (fun rs => OreLocalization.add' rs.fst rs.snd x) (r₁, s₁) = (fun rs => OreLocalization.add' rs.fst rs.snd x) (r₂, s₂)
[PROOFSTEP]
induction' x using OreLocalization.ind with r₃ s₃
[GOAL]
case mk.mk.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
hyz : (r₁, s₁) ≈ (r₂, s₂)
r₃ : R
s₃ : { x // x ∈ S }
⊢ (fun rs => OreLocalization.add' rs.fst rs.snd (r₃ /ₒ s₃)) (r₁, s₁) =
(fun rs => OreLocalization.add' rs.fst rs.snd (r₃ /ₒ s₃)) (r₂, s₂)
[PROOFSTEP]
dsimp
[GOAL]
case mk.mk.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
hyz : (r₁, s₁) ≈ (r₂, s₂)
r₃ : R
s₃ : { x // x ∈ S }
⊢ OreLocalization.add' r₁ s₁ (r₃ /ₒ s₃) = OreLocalization.add' r₂ s₂ (r₃ /ₒ s₃)
[PROOFSTEP]
rw [add'_comm, add'_comm r₂]
-- Porting note: `Quotient.mk'` required
[GOAL]
case mk.mk.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
hyz : (r₁, s₁) ≈ (r₂, s₂)
r₃ : R
s₃ : { x // x ∈ S }
⊢ OreLocalization.add' r₃ s₃ (r₁ /ₒ s₁) = OreLocalization.add' r₃ s₃ (r₂ /ₒ s₂)
[PROOFSTEP]
simp [(· /ₒ ·), Quotient.mk', Quotient.sound hyz]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r r' : R
s : { x // x ∈ S }
⊢ r /ₒ s + r' /ₒ s = (r + r') /ₒ s
[PROOFSTEP]
simp [oreDiv_add_char s s 1 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r r' : R
s : { x // x ∈ S }
⊢ ↑s * ↑1 = ↑s * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x y z : OreLocalization R S
⊢ x + y + z = x + (y + z)
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
y z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ + y + z = r₁ /ₒ s₁ + (y + z)
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + z = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + z)
[PROOFSTEP]
induction' z using OreLocalization.ind with r₃ s₃
[GOAL]
case c.c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃)
[PROOFSTEP]
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa)
⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃)
[PROOFSTEP]
rw [ha']
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃)
[PROOFSTEP]
clear ha'
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃)
[PROOFSTEP]
rcases oreDivAddChar' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
hb' : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃)
[PROOFSTEP]
rw [hb']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
hb' : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
clear hb'
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
rcases oreDivAddChar' (r₁ * sa + r₂ * ra) r₃ (s₁ * sa) s₃ with ⟨rc, sc, hc, q⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
q : (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
rw [q]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
q : (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc)
⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
clear q
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
rcases oreDivAddChar' r₁ (r₂ * sb + r₃ * rb) s₁ (s₂ * sb) with ⟨rd, sd, hd, q⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
q : r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd)
⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb)
[PROOFSTEP]
rw [q]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
q : r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd)
⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
clear q
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
simp only [right_distrib, mul_assoc, add_assoc]
-- Porting note: `simp` required because `repeat' rw` behaves differently
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ (r₁ * (↑sa * ↑sc) + (r₂ * (ra * ↑sc) + r₃ * rc)) /ₒ (s₁ * (sa * sc)) =
(r₁ * ↑sd + (r₂ * (↑sb * rd) + r₃ * (rb * rd))) /ₒ (s₁ * sd)
[PROOFSTEP]
simp only [← add_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ r₁ * (↑sa * ↑sc) /ₒ (s₁ * (sa * sc)) + (r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) + r₃ * rc /ₒ (s₁ * (sa * sc))) =
r₁ * ↑sd /ₒ (s₁ * sd) + (r₂ * (↑sb * rd) /ₒ (s₁ * sd) + r₃ * (rb * rd) /ₒ (s₁ * sd))
[PROOFSTEP]
congr 1
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ r₁ * (↑sa * ↑sc) /ₒ (s₁ * (sa * sc)) = r₁ * ↑sd /ₒ (s₁ * sd)
[PROOFSTEP]
rw [← OreLocalization.expand', ← mul_assoc, ← mul_assoc, ← OreLocalization.expand', ← OreLocalization.expand']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) + r₃ * rc /ₒ (s₁ * (sa * sc)) =
r₂ * (↑sb * rd) /ₒ (s₁ * sd) + r₃ * (rb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
congr 1
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) = r₂ * (↑sb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
simp_rw [← Submonoid.coe_mul] at ha hd
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd
⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) = r₂ * (↑sb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
rw [Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← OreLocalization.expand, ←
OreLocalization.expand', Subtype.coe_eq_of_eq_mk ha, ← OreLocalization.expand]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd
⊢ r₂ /ₒ s₂ = r₂ * ↑sb /ₒ (s₂ * sb)
[PROOFSTEP]
apply OreLocalization.expand'
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
rcases oreCondition (sd : R) (sa * sc) with ⟨re, _, _⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑s₂ * ↑sb = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd
re : R
fst✝ : { x // x ∈ S }
snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re
⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
simp_rw [← Submonoid.coe_mul] at hb hc hd
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑(s₂ * sb) = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa * sc) = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd
re : R
fst✝ : { x // x ∈ S }
snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re
⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
rw [← mul_assoc, Subtype.coe_eq_of_eq_mk hc]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑(s₂ * sb) = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa * sc) = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd
re : R
fst✝ : { x // x ∈ S }
snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re
⊢ r₃ * rc /ₒ { val := ↑s₃ * rc, property := (_ : ↑s₃ * rc ∈ ↑S) } = r₃ * (rb * rd) /ₒ (s₁ * sd)
[PROOFSTEP]
rw [← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← OreLocalization.expand,
Subtype.coe_eq_of_eq_mk hb]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
rb : R
sb : { x // x ∈ S }
hb : ↑(s₂ * sb) = ↑s₃ * rb
rc : R
sc : { x // x ∈ S }
hc : ↑(s₁ * sa * sc) = ↑s₃ * rc
rd : R
sd : { x // x ∈ S }
hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd
re : R
fst✝ : { x // x ∈ S }
snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re
⊢ r₃ /ₒ s₃ = r₃ * rb /ₒ { val := ↑s₃ * rb, property := (_ : ↑s₃ * rb ∈ ↑S) }
[PROOFSTEP]
apply OreLocalization.expand
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
s : { x // x ∈ S }
⊢ 0 /ₒ s = 0
[PROOFSTEP]
rw [OreLocalization.zero_def, oreDiv_eq_iff]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
s : { x // x ∈ S }
⊢ ∃ u v, 0 * ↑u = 0 * v ∧ ↑1 * ↑u = ↑s * v
[PROOFSTEP]
exact ⟨s, 1, by simp⟩
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
s : { x // x ∈ S }
⊢ 0 * ↑s = 0 * 1 ∧ ↑1 * ↑s = ↑s * 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ 0 + x = x
[PROOFSTEP]
induction x using OreLocalization.ind
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r✝ : R
s✝ : { x // x ∈ S }
⊢ 0 + r✝ /ₒ s✝ = r✝ /ₒ s✝
[PROOFSTEP]
rw [← zero_div_eq_zero, add_oreDiv]
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r✝ : R
s✝ : { x // x ∈ S }
⊢ (0 + r✝) /ₒ s✝ = r✝ /ₒ s✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x y : OreLocalization R S
⊢ x + y = y + x
[PROOFSTEP]
induction x using OreLocalization.ind
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
y : OreLocalization R S
r✝ : R
s✝ : { x // x ∈ S }
⊢ r✝ /ₒ s✝ + y = y + r✝ /ₒ s✝
[PROOFSTEP]
induction y using OreLocalization.ind
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r✝¹ : R
s✝¹ : { x // x ∈ S }
r✝ : R
s✝ : { x // x ∈ S }
⊢ r✝¹ /ₒ s✝¹ + r✝ /ₒ s✝ = r✝ /ₒ s✝ + r✝¹ /ₒ s✝¹
[PROOFSTEP]
change add' _ _ (_ /ₒ _) = _
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r✝¹ : R
s✝¹ : { x // x ∈ S }
r✝ : R
s✝ : { x // x ∈ S }
⊢ OreLocalization.add' (r✝, s✝).fst (r✝, s✝).snd (r✝¹ /ₒ s✝¹) = r✝ /ₒ s✝ + r✝¹ /ₒ s✝¹
[PROOFSTEP]
apply add'_comm
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
src✝ : Add (OreLocalization R S) := instAddOreLocalization
x : OreLocalization R S
⊢ x + 0 = x
[PROOFSTEP]
rw [OreLocalization.add_comm, OreLocalization.zero_add]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ 0 * x = 0
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ 0 * (r /ₒ s) = 0
[PROOFSTEP]
rw [OreLocalization.zero_def, oreDiv_mul_char 0 r 1 s r 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r * ↑1 = ↑1 * r
[PROOFSTEP]
simp
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ 0 * r /ₒ (s * 1) = 0 /ₒ 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ x * 0 = 0
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r /ₒ s * 0 = 0
[PROOFSTEP]
rw [OreLocalization.zero_def, oreDiv_mul_char r 0 s 1 0 1 (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ 0 * ↑1 = ↑s * 0
[PROOFSTEP]
simp
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ r * 0 /ₒ (1 * 1) = 0 /ₒ 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x y z : OreLocalization R S
⊢ x * (y + z) = x * y + x * z
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
y z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (y + z) = r₁ /ₒ s₁ * y + r₁ /ₒ s₁ * z
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + z) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * z
[PROOFSTEP]
induction' z using OreLocalization.ind with r₃ s₃
[GOAL]
case c.c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rcases oreDivAddChar' r₂ r₃ s₂ s₃ with ⟨ra, sa, ha, q⟩
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
q : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)
⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [q]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
q : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
clear q
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [OreLocalization.expand' r₂ s₂ sa]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rcases oreDivMulChar' r₁ (r₂ * sa) s₁ (s₂ * sa) with ⟨rb, sb, hb, q⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
q : r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [q]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
q : r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
clear q
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
have hs₃rasb : ↑s₃ * (ra * sb) ∈ S := by
rw [← mul_assoc, ← ha]
norm_cast
apply SetLike.coe_mem
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
⊢ ↑s₃ * (ra * ↑sb) ∈ S
[PROOFSTEP]
rw [← mul_assoc, ← ha]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
⊢ ↑s₂ * ↑sa * ↑sb ∈ S
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
⊢ ↑(s₂ * sa * sb) ∈ S
[PROOFSTEP]
apply SetLike.coe_mem
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [OreLocalization.expand _ _ _ hs₃rasb]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) =
r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ { val := ↑s₃ * (ra * ↑sb), property := hs₃rasb })
[PROOFSTEP]
have ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * sb) := by simp [ha, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
⊢ ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
[PROOFSTEP]
simp [ha, ← mul_assoc]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) =
r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ { val := ↑s₃ * (ra * ↑sb), property := hs₃rasb })
[PROOFSTEP]
rw [← Subtype.coe_eq_of_eq_mk ha']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) =
r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb))
[PROOFSTEP]
rcases oreDivMulChar' r₁ (r₃ * (ra * sb)) s₁ (s₂ * sa * sb) with ⟨rc, sc, hc, hc'⟩
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) =
r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb))
[PROOFSTEP]
rw [hc']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ * rc /ₒ (s₂ * sa * sb * sc)
[PROOFSTEP]
rw [oreDiv_add_char (s₂ * sa * sb) (s₂ * sa * sb * sc) 1 sc (by simp)]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ ↑(s₂ * sa * sb) * ↑sc = ↑(s₂ * sa * sb * sc) * 1
[PROOFSTEP]
simp
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc)
[PROOFSTEP]
rw [OreLocalization.expand' (r₂ * ↑sa + r₃ * ra) (s₂ * sa) (sb * sc)]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))) =
(r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc)
[PROOFSTEP]
conv_lhs =>
congr
·skip
congr
rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc)))
[PROOFSTEP]
congr
·skip
congr
rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc)))
[PROOFSTEP]
congr
·skip
congr
rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc)))
[PROOFSTEP]
congr
[GOAL]
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))
[PROOFSTEP]
·skip
[GOAL]
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| r₁ /ₒ s₁
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))
[PROOFSTEP]
congr
[GOAL]
case a.r
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc)
case a.s
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
| s₂ * sa * (sb * sc)
[PROOFSTEP]
rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add]
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ /ₒ s₁ * (↑s₁ * (rb * ↑sc + rc) /ₒ (s₂ * sa * (sb * sc))) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc)
[PROOFSTEP]
rw [OreLocalization.mul_cancel']
[GOAL]
case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₂ * ↑sa = ↑s₃ * ra
rb : R
sb : { x // x ∈ S }
hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb
hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S
ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb)
rc : R
sc : { x // x ∈ S }
hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc
hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc)
⊢ r₁ * (rb * ↑sc + rc) /ₒ (s₂ * sa * (sb * sc)) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc)
[PROOFSTEP]
simp only [mul_one, Submonoid.coe_mul, mul_add, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
x y z : OreLocalization R S
⊢ (x + y) * z = x * z + y * z
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
y z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ (r₁ /ₒ s₁ + y) * z = r₁ /ₒ s₁ * z + y * z
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
z : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * z = r₁ /ₒ s₁ * z + r₂ /ₒ s₂ * z
[PROOFSTEP]
induction' z using OreLocalization.ind with r₃ s₃
[GOAL]
case c.c.c
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa)
⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [ha']
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa)
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
clear ha'
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑s₁ * ↑sa = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
norm_cast at ha
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [OreLocalization.expand' r₁ s₁ sa]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [OreLocalization.expand r₂ s₂ ra (by rw [← ha]; apply SetLike.coe_mem)]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ ↑s₂ * ra ∈ S
[PROOFSTEP]
rw [← ha]
[GOAL]
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ ↑(s₁ * sa) ∈ S
[PROOFSTEP]
apply SetLike.coe_mem
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) =
r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ { val := ↑s₂ * ra, property := (_ : ↑s₂ * ra ∈ S) } * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [← Subtype.coe_eq_of_eq_mk ha]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) =
r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃)
[PROOFSTEP]
repeat rw [oreDiv_mul_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) =
r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [oreDiv_mul_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) =
r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [oreDiv_mul_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) =
r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃)
[PROOFSTEP]
rw [oreDiv_mul_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) =
r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) +
r₂ * ra * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa))
[PROOFSTEP]
rw [oreDiv_mul_oreDiv]
[GOAL]
case c.c.c.mk.mk.intro
R : Type u_1
inst✝¹ : Semiring R
S : Submonoid R
inst✝ : OreSet S
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
ra : R
sa : { x // x ∈ S }
ha : ↑(s₁ * sa) = ↑s₂ * ra
⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) =
r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) +
r₂ * ra * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa))
[PROOFSTEP]
simp only [add_mul, add_oreDiv]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
⊢ OneHom.toFun
(↑{ toOneHom := ↑src✝,
map_mul' :=
(_ :
∀ (x y : OreLocalization R S),
OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) })
0 =
0
[PROOFSTEP]
change (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) 0 = 0
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
⊢ ↑(universalMulHom (↑f) fS hf) 0 = 0
[PROOFSTEP]
rw [OreLocalization.zero_def, universalMulHom_apply]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
⊢ ↑↑f 0 * ↑(↑fS 1)⁻¹ = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
x y : OreLocalization R S
⊢ OneHom.toFun
(↑{ toOneHom := ↑src✝,
map_mul' :=
(_ :
∀ (x y : OreLocalization R S),
OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := ↑src✝,
map_mul' :=
(_ :
∀ (x y : OreLocalization R S),
OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) })
x +
OneHom.toFun
(↑{ toOneHom := ↑src✝,
map_mul' :=
(_ :
∀ (x y : OreLocalization R S),
OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) })
y
[PROOFSTEP]
change
(universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) (x + y) =
(universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) x + (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) y
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
x y : OreLocalization R S
⊢ ↑(universalMulHom (↑f) fS hf) (x + y) = ↑(universalMulHom (↑f) fS hf) x + ↑(universalMulHom (↑f) fS hf) y
[PROOFSTEP]
induction' x using OreLocalization.ind with r₁ s₁
[GOAL]
case c
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
y : OreLocalization R S
r₁ : R
s₁ : { x // x ∈ S }
⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + y) =
↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) y
[PROOFSTEP]
induction' y using OreLocalization.ind with r₂ s₂
[GOAL]
case c.c
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + r₂ /ₒ s₂) =
↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂)
[PROOFSTEP]
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨r₃, s₃, h₃, h₃'⟩
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
h₃' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)
⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + r₂ /ₒ s₂) =
↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂)
[PROOFSTEP]
rw [h₃']
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
h₃' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)
⊢ ↑(universalMulHom (↑f) fS hf) ((r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)) =
↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂)
[PROOFSTEP]
clear h₃'
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑(universalMulHom (↑f) fS hf) ((r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)) =
↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂)
[PROOFSTEP]
simp only [universalMulHom_apply, RingHom.toMonoidHom_eq_coe, MonoidHom.coe_coe]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f (r₁ * ↑s₃ + r₂ * r₃) * ↑(↑fS (s₁ * s₃))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
simp only [mul_inv_rev, MonoidHom.map_mul, RingHom.map_add, RingHom.map_mul, Units.val_mul]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ (↑f r₁ * ↑f ↑s₃ + ↑f r₂ * ↑f r₃) * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
rw [add_mul, ← mul_assoc, mul_assoc (f r₁), hf, ← Units.val_mul]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f r₁ * ↑(↑fS s₃ * (↑fS s₃)⁻¹) * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) =
↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
simp only [mul_one, mul_right_inv, Units.val_one]
[GOAL]
case c.c.mk.mk.intro
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
congr 1
[GOAL]
case c.c.mk.mk.intro.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case c.c.mk.mk.intro.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f r₂ * (↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹)) = ↑f r₂ * ↑(↑fS s₂)⁻¹
[PROOFSTEP]
congr 1
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃
⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
norm_cast at h₃
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
have h₃' := Subtype.coe_eq_of_eq_mk h₃
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
rw [← Units.val_mul, ← mul_inv_rev, ← fS.map_mul, h₃']
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
⊢ ↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
have hs₂r₃ : ↑s₂ * r₃ ∈ S := by
rw [← h₃]
exact SetLike.coe_mem (s₁ * s₃)
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
⊢ ↑s₂ * r₃ ∈ S
[PROOFSTEP]
rw [← h₃]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
⊢ ↑(s₁ * s₃) ∈ S
[PROOFSTEP]
exact SetLike.coe_mem (s₁ * s₃)
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
⊢ ↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
apply (Units.inv_mul_cancel_left (fS s₂) _).symm.trans
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
⊢ ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
conv_lhs =>
congr
·skip
rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc]
congr
·skip
rw [← hf, ← mul_assoc (f s₂), ← f.map_mul]
conv =>
congr
·skip
congr
rw [← h₃]
rw [hf, ← mul_assoc, ← h₃', Units.inv_mul]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))
[PROOFSTEP]
congr
·skip
rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc]
congr
·skip
rw [← hf, ← mul_assoc (f s₂), ← f.map_mul]
conv =>
congr
·skip
congr
rw [← h₃]
rw [hf, ← mul_assoc, ← h₃', Units.inv_mul]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))
[PROOFSTEP]
congr
·skip
rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc]
congr
·skip
rw [← hf, ← mul_assoc (f s₂), ← f.map_mul]
conv =>
congr
·skip
congr
rw [← h₃]
rw [hf, ← mul_assoc, ← h₃', Units.inv_mul]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))
[PROOFSTEP]
congr
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
·skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂)⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc]
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) *
(↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)))
[PROOFSTEP]
congr
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))
[PROOFSTEP]
·skip
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })
[PROOFSTEP]
skip
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })
[PROOFSTEP]
skip
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })
[PROOFSTEP]
skip
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))
[PROOFSTEP]
rw [← hf, ← mul_assoc (f s₂), ← f.map_mul]
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
conv =>
congr
·skip
congr
rw [← h₃]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
congr
·skip
congr
rw [← h₃]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
congr
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹
[PROOFSTEP]
·skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹
[PROOFSTEP]
skip
[GOAL]
case a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹
[PROOFSTEP]
congr
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑f (↑s₂ * r₃)
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹
[PROOFSTEP]
rw [← h₃]
[GOAL]
case a.a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
| ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ *
(↑f ↑(s₁ * s₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)
[PROOFSTEP]
rw [hf, ← mul_assoc, ← h₃', Units.inv_mul]
[GOAL]
case c.c.mk.mk.intro.e_a.e_a
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf
r₁ : R
s₁ : { x // x ∈ S }
r₂ : R
s₂ : { x // x ∈ S }
r₃ : R
s₃ : { x // x ∈ S }
h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃
h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) }
hs₂r₃ : ↑s₂ * r₃ ∈ S
⊢ ↑(↑fS s₂)⁻¹ * (↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) * (1 * ↑(↑fS (s₁ * s₃))⁻¹)) = ↑(↑fS s₂)⁻¹
[PROOFSTEP]
rw [one_mul, ← h₃', Units.mul_inv, mul_one]
[GOAL]
R : Type u_1
inst✝² : Semiring R
S : Submonoid R
inst✝¹ : OreSet S
T : Type u_2
inst✝ : Semiring T
f : R →+* T
fS : { x // x ∈ S } →* Tˣ
hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s)
r : R
⊢ ↑(universalHom f fS hf) (↑numeratorHom r) = ↑f r
[PROOFSTEP]
simp [numeratorHom_apply, universalHom_apply]
[GOAL]
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
⊢ (fun r s => -r /ₒ s) r s = (fun r s => -r /ₒ s) (r * t) { val := ↑s * t, property := ht }
[PROOFSTEP]
simp only []
[GOAL]
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
r t : R
s : { x // x ∈ S }
ht : ↑s * t ∈ S
⊢ -r /ₒ s = -(r * t) /ₒ { val := ↑s * t, property := ht }
[PROOFSTEP]
rw [neg_mul_eq_neg_mul, ← OreLocalization.expand]
[GOAL]
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
x : OreLocalization R S
⊢ -x + x = 0
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
r : R
s : { x // x ∈ S }
⊢ -(r /ₒ s) + r /ₒ s = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
hS : S ≤ R⁰
r₁ r₂ : R
h : ↑numeratorHom r₁ = ↑numeratorHom r₂
⊢ r₁ = r₂
[PROOFSTEP]
rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h
[GOAL]
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
hS : S ≤ R⁰
r₁ r₂ : R
h : ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v
⊢ r₁ = r₂
[PROOFSTEP]
rcases h with ⟨u, v, h₁, h₂⟩
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
hS : S ≤ R⁰
r₁ r₂ : R
u : { x // x ∈ S }
v : R
h₁ : r₂ * ↑u = r₁ * v
h₂ : ↑1 * ↑u = ↑1 * v
⊢ r₁ = r₂
[PROOFSTEP]
simp only [S.coe_one, one_mul] at h₂
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝¹ : Ring R
S : Submonoid R
inst✝ : OreSet S
hS : S ≤ R⁰
r₁ r₂ : R
u : { x // x ∈ S }
v : R
h₁ : r₂ * ↑u = r₁ * v
h₂ : ↑u = v
⊢ r₁ = r₂
[PROOFSTEP]
rwa [← h₂, mul_cancel_right_mem_nonZeroDivisors (hS (SetLike.coe_mem u)), eq_comm] at h₁
[GOAL]
R : Type u_1
inst✝² : Ring R
S : Submonoid R
inst✝¹ : OreSet S
inst✝ : Nontrivial R
hS : S ≤ R⁰
h : 0 = 1
⊢ False
[PROOFSTEP]
rw [OreLocalization.one_def, OreLocalization.zero_def] at h
[GOAL]
R : Type u_1
inst✝² : Ring R
S : Submonoid R
inst✝¹ : OreSet S
inst✝ : Nontrivial R
hS : S ≤ R⁰
h : 0 /ₒ 1 = 1 /ₒ 1
⊢ False
[PROOFSTEP]
apply nonZeroDivisors.coe_ne_zero 1 (numeratorHom_inj hS h).symm
[GOAL]
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
⊢ ∀ (r t : R) (s : { x // x ∈ R⁰ }) (ht : ↑s * t ∈ R⁰),
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := ht }
[PROOFSTEP]
intro r t s hst
[GOAL]
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := hst }
[PROOFSTEP]
by_cases hr : r = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : r = 0
⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := hst }
[PROOFSTEP]
simp [hr]
[GOAL]
case neg
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := hst }
[PROOFSTEP]
by_cases ht : t = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
ht : t = 0
⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := hst }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
ht : t = 0
⊢ False
[PROOFSTEP]
apply nonZeroDivisors.coe_ne_zero ⟨_, hst⟩
[GOAL]
case pos.h
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
ht : t = 0
⊢ ↑{ val := ↑s * t, property := hst } = 0
[PROOFSTEP]
simp [ht, mul_zero]
[GOAL]
case neg
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
ht : ¬t = 0
⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s =
(fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t)
{ val := ↑s * t, property := hst }
[PROOFSTEP]
simp only [hr, ht, dif_neg, not_false_iff, or_self_iff, mul_eq_zero]
[GOAL]
case neg
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
r t : R
s : { x // x ∈ R⁰ }
hst : ↑s * t ∈ R⁰
hr : ¬r = 0
ht : ¬t = 0
⊢ ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) } =
↑s * t /ₒ { val := r * t, property := (_ : ∀ (x : R), x * (r * t) = 0 → x = 0) }
[PROOFSTEP]
apply OreLocalization.expand
[GOAL]
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h : x ≠ 0
⊢ x * x⁻¹ = 1
[PROOFSTEP]
induction' x using OreLocalization.ind with r s
[GOAL]
case c
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
⊢ r /ₒ s * (r /ₒ s)⁻¹ = 1
[PROOFSTEP]
rw [OreLocalization.inv_def, OreLocalization.one_def]
[GOAL]
case c
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1
[PROOFSTEP]
by_cases hr : r = 0
[GOAL]
case pos
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
hr : r = 0
⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
hr : r = 0
⊢ False
[PROOFSTEP]
apply h
[GOAL]
case pos.h
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
hr : r = 0
⊢ r /ₒ s = 0
[PROOFSTEP]
simp [hr]
[GOAL]
case neg
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
hr : ¬r = 0
⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1
[PROOFSTEP]
simp [hr]
[GOAL]
case neg
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
x : OreLocalization R R⁰
h✝ : x ≠ 0
r : R
s : { x // x ∈ R⁰ }
h : r /ₒ s ≠ 0
hr : ¬r = 0
⊢ 1 = 1 /ₒ 1
[PROOFSTEP]
apply OreLocalization.div_eq_one'
[GOAL]
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
⊢ 0⁻¹ = 0
[PROOFSTEP]
rw [OreLocalization.zero_def, OreLocalization.inv_def]
[GOAL]
R : Type u_1
inst✝³ : Ring R
inst✝² : Nontrivial R
inst✝¹ : OreSet R⁰
inst✝ : NoZeroDivisors R
⊢ (if hr : 0 = 0 then 0 else ↑1 /ₒ { val := 0, property := (_ : ∀ (x : R), x * 0 = 0 → x = 0) }) = 0 /ₒ 1
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.RingTheory.OreLocalization.Basic", "llama_tokens": 122969} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x : E
⊢ Convex 𝕜 s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • s + b • s ⊆ s
[PROOFSTEP]
rintro hA a b ha hb hab w ⟨au, bv, ⟨u, hu, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x : E
hA : Convex 𝕜 s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
u : E
hu : u ∈ s
v : E
hv : v ∈ s
⊢ (fun x x_1 => x + x_1) ((fun x => a • x) u) ((fun x => b • x) v) ∈ s
[PROOFSTEP]
exact hA hu hv ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
⊢ Convex 𝕜 (⋃ (i : ι), s i)
[PROOFSTEP]
rintro x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
x : E
hx : x ∈ ⋃ (i : ι), s i
y : E
hy : y ∈ ⋃ (i : ι), s i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ⋃ (i : ι), s i
[PROOFSTEP]
rw [mem_iUnion] at hx hy ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
x : E
hx : ∃ i, x ∈ s i
y : E
hy : ∃ i, y ∈ s i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
obtain ⟨i, hx⟩ := hx
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
x y : E
hy : ∃ i, y ∈ s i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι
hx : x ∈ s i
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
obtain ⟨j, hy⟩ := hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
obtain ⟨k, hik, hjk⟩ := hdir i j
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ : E
ι : Sort u_5
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i)
x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
k : ι
hik : s i ⊆ s k
hjk : s j ⊆ s k
⊢ ∃ i, a • x + b • y ∈ s i
[PROOFSTEP]
exact ⟨k, hc (hik hx) (hjk hy) ha hb hab⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x : E
c : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) c
hc : ∀ ⦃A : Set E⦄, A ∈ c → Convex 𝕜 A
⊢ Convex 𝕜 (⋃₀ c)
[PROOFSTEP]
rw [sUnion_eq_iUnion]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x : E
c : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) c
hc : ∀ ⦃A : Set E⦄, A ∈ c → Convex 𝕜 A
⊢ Convex 𝕜 (⋃ (i : ↑c), ↑i)
[PROOFSTEP]
exact (directedOn_iff_directed.1 hdir).convex_iUnion fun A => hc A.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
⊢ Convex 𝕜 s ↔ Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
[PROOFSTEP]
refine' convex_iff_forall_pos.trans ⟨fun h x hx y hy _ => h hx hy, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
⊢ (Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) →
∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
[PROOFSTEP]
intro h x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
obtain rfl | hxy := eq_or_ne x y
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
x : E
hx : x ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hy : x ∈ s
⊢ a • x + b • x ∈ s
[PROOFSTEP]
rwa [Convex.combo_self hab]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hxy : x ≠ y
⊢ a • x + b • y ∈ s
[PROOFSTEP]
exact h hx hy hxy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ x y : E
⊢ Convex 𝕜 [x-[𝕜]y]
[PROOFSTEP]
rintro p ⟨ap, bp, hap, hbp, habp, rfl⟩ q ⟨aq, bq, haq, hbq, habq, rfl⟩ a b ha hb hab
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ x y : E
ap bp : 𝕜
hap : 0 ≤ ap
hbp : 0 ≤ bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 ≤ aq
hbq : 0 ≤ bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • (ap • x + bp • y) + b • (aq • x + bq • y) ∈ [x-[𝕜]y]
[PROOFSTEP]
refine'
⟨a * ap + b * aq, a * bp + b * bq, add_nonneg (mul_nonneg ha hap) (mul_nonneg hb haq),
add_nonneg (mul_nonneg ha hbp) (mul_nonneg hb hbq), _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ x y : E
ap bp : 𝕜
hap : 0 ≤ ap
hbp : 0 ≤ bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 ≤ aq
hbq : 0 ≤ bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a * ap + b * aq + (a * bp + b * bq) = 1
[PROOFSTEP]
rw [add_add_add_comm, ← mul_add, ← mul_add, habp, habq, mul_one, mul_one, hab]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ x y : E
ap bp : 𝕜
hap : 0 ≤ ap
hbp : 0 ≤ bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 ≤ aq
hbq : 0 ≤ bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ (a * ap + b * aq) • x + (a * bp + b * bq) • y = a • (ap • x + bp • y) + b • (aq • x + bq • y)
[PROOFSTEP]
simp_rw [add_smul, mul_smul, smul_add]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ x y : E
ap bp : 𝕜
hap : 0 ≤ ap
hbp : 0 ≤ bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 ≤ aq
hbq : 0 ≤ bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ap • x + b • aq • x + (a • bp • y + b • bq • y) = a • ap • x + a • bp • y + (b • aq • x + b • bq • y)
[PROOFSTEP]
exact add_add_add_comm _ _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
⊢ Convex 𝕜 (↑f '' s)
[PROOFSTEP]
intro x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
x : F
hx : x ∈ ↑f '' s
y : F
hy : y ∈ ↑f '' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f '' s
[PROOFSTEP]
obtain ⟨x', hx', rfl⟩ := mem_image_iff_bex.1 hx
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
y : F
hy : y ∈ ↑f '' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : E
hx' : x' ∈ s
hx : ↑f x' ∈ ↑f '' s
⊢ a • ↑f x' + b • y ∈ ↑f '' s
[PROOFSTEP]
obtain ⟨y', hy', rfl⟩ := mem_image_iff_bex.1 hy
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : E
hx' : x' ∈ s
hx : ↑f x' ∈ ↑f '' s
y' : E
hy' : y' ∈ s
hy : ↑f y' ∈ ↑f '' s
⊢ a • ↑f x' + b • ↑f y' ∈ ↑f '' s
[PROOFSTEP]
exact ⟨a • x' + b • y', hs hx' hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : E
hx' : x' ∈ s
hx : ↑f x' ∈ ↑f '' s
y' : E
hy' : y' ∈ s
hy : ↑f y' ∈ ↑f '' s
⊢ ↑f (a • x' + b • y') = a • ↑f x' + b • ↑f y'
[PROOFSTEP]
rw [f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
x : E
s : Set F
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
⊢ Convex 𝕜 (↑f ⁻¹' s)
[PROOFSTEP]
intro x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
x✝ : E
s : Set F
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f ⁻¹' s
[PROOFSTEP]
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
x✝ : E
s : Set F
hs : Convex 𝕜 s
f : E →ₗ[𝕜] F
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ s
[PROOFSTEP]
exact hs hx hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ Convex 𝕜 (s + t)
[PROOFSTEP]
rw [← add_image_prod]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ Convex 𝕜 ((fun x => x.fst + x.snd) '' s ×ˢ t)
[PROOFSTEP]
exact (hs.prod ht).is_linear_image IsLinearMap.isLinearMap_add
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
z : E
⊢ Convex 𝕜 (z +ᵥ s)
[PROOFSTEP]
simp_rw [← image_vadd, vadd_eq_add, ← singleton_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
z : E
⊢ Convex 𝕜 ({z} + s)
[PROOFSTEP]
exact (convex_singleton _).add hs
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
z : E
⊢ Convex 𝕜 ((fun x => z + x) ⁻¹' s)
[PROOFSTEP]
intro x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
hs : Convex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s
[PROOFSTEP]
have h := hs hx hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
hs : Convex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ s
⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s
[PROOFSTEP]
rwa [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : Convex 𝕜 s
z : E
⊢ Convex 𝕜 ((fun x => x + z) ⁻¹' s)
[PROOFSTEP]
simpa only [add_comm] using hs.translate_preimage_right z
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x : E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
f : E → β
h : IsLinearMap 𝕜 f
r : β
⊢ Convex 𝕜 {w | f w = r}
[PROOFSTEP]
simp_rw [le_antisymm_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x : E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
f : E → β
h : IsLinearMap 𝕜 f
r : β
⊢ Convex 𝕜 {w | f w ≤ r ∧ r ≤ f w}
[PROOFSTEP]
exact (convex_halfspace_le h r).inter (convex_halfspace_ge h r)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r : β
⊢ Convex 𝕜 (Iio r)
[PROOFSTEP]
intro x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x✝ : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r x : β
hx : x ∈ Iio r
y : β
hy : y ∈ Iio r
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ Iio r
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x✝ : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r x : β
hx : x ∈ Iio r
y : β
hy : y ∈ Iio r
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ 0 • x + b • y ∈ Iio r
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x✝ : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r x : β
hx : x ∈ Iio r
y : β
hy : y ∈ Iio r
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
⊢ 0 • x + b • y ∈ Iio r
[PROOFSTEP]
rwa [zero_smul, zero_add, hab, one_smul]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x✝ : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r x : β
hx : x ∈ Iio r
y : β
hy : y ∈ Iio r
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
⊢ a • x + b • y ∈ Iio r
[PROOFSTEP]
rw [mem_Iio] at hx hy
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : Module 𝕜 E
inst✝³ : Module 𝕜 F
s : Set E
x✝ : E
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
r x : β
hx : x < r
y : β
hy : y < r
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
⊢ a • x + b • y ∈ Iio r
[PROOFSTEP]
calc
a • x + b • y < a • r + b • r := add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hx ha') (smul_le_smul_of_nonneg hy.le hb)
_ = r := Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedCommSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
hs : Convex 𝕜 s
z : E
c : 𝕜
⊢ Convex 𝕜 ((fun x => z + c • x) '' s)
[PROOFSTEP]
simpa only [← image_smul, ← image_vadd, image_image] using (hs.smul c).vadd z
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a b : E
⊢ Convex 𝕜 (openSegment 𝕜 a b)
[PROOFSTEP]
rw [convex_iff_openSegment_subset]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a b : E
⊢ ∀ ⦃x : E⦄, x ∈ openSegment 𝕜 a b → ∀ ⦃y : E⦄, y ∈ openSegment 𝕜 a b → openSegment 𝕜 x y ⊆ openSegment 𝕜 a b
[PROOFSTEP]
rintro p ⟨ap, bp, hap, hbp, habp, rfl⟩ q ⟨aq, bq, haq, hbq, habq, rfl⟩ z ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a✝ b✝ : E
ap bp : 𝕜
hap : 0 < ap
hbp : 0 < bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 < aq
hbq : 0 < bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • (ap • a✝ + bp • b✝) + b • (aq • a✝ + bq • b✝) ∈ openSegment 𝕜 a✝ b✝
[PROOFSTEP]
refine' ⟨a * ap + b * aq, a * bp + b * bq, by positivity, by positivity, _, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a✝ b✝ : E
ap bp : 𝕜
hap : 0 < ap
hbp : 0 < bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 < aq
hbq : 0 < bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ 0 < a * ap + b * aq
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a✝ b✝ : E
ap bp : 𝕜
hap : 0 < ap
hbp : 0 < bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 < aq
hbq : 0 < bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ 0 < a * bp + b * bq
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a✝ b✝ : E
ap bp : 𝕜
hap : 0 < ap
hbp : 0 < bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 < aq
hbq : 0 < bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a * ap + b * aq + (a * bp + b * bq) = 1
[PROOFSTEP]
rw [add_add_add_comm, ← mul_add, ← mul_add, habp, habq, mul_one, mul_one, hab]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : StrictOrderedCommSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
a✝ b✝ : E
ap bp : 𝕜
hap : 0 < ap
hbp : 0 < bp
habp : ap + bp = 1
aq bq : 𝕜
haq : 0 < aq
hbq : 0 < bq
habq : aq + bq = 1
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (a * ap + b * aq) • a✝ + (a * bp + b * bq) • b✝ = a • (ap • a✝ + bp • b✝) + b • (aq • a✝ + bq • b✝)
[PROOFSTEP]
simp_rw [add_smul, mul_smul, smul_add, add_add_add_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : x + y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ x + t • y ∈ s
[PROOFSTEP]
have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : x + y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ x + t • y = (1 - t) • x + t • (x + y)
[PROOFSTEP]
rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : x + y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x + t • y ∈ s
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : x + y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ (1 - t) • x + t • (x + y) ∈ s
[PROOFSTEP]
exact hs hx hy (sub_nonneg_of_le ht.2) ht.1 (sub_add_cancel _ _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x : E
zero_mem : 0 ∈ s
hx : x ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ t • x ∈ s
[PROOFSTEP]
simpa using hs.add_smul_mem zero_mem (by simpa using hx) ht
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
hs : Convex 𝕜 s
x : E
zero_mem : 0 ∈ s
hx : x ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ 0 + x ∈ s
[PROOFSTEP]
simpa using hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
h : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : y ∈ s
⊢ MapsTo (↑(AffineMap.lineMap x y)) (Icc 0 1) s
[PROOFSTEP]
simpa only [mapsTo', segment_eq_image_lineMap] using h.segment_subset hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
h : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ x + t • (y - x) ∈ s
[PROOFSTEP]
rw [add_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
h : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : y ∈ s
t : 𝕜
ht : t ∈ Icc 0 1
⊢ t • (y - x) + x ∈ s
[PROOFSTEP]
exact h.lineMap_mem hx hy ht
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
Q : AffineSubspace 𝕜 E
⊢ Convex 𝕜 ↑Q
[PROOFSTEP]
intro x hx y hy a b _ _ hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
Q : AffineSubspace 𝕜 E
x : E
hx : x ∈ ↑Q
y : E
hy : y ∈ ↑Q
a b : 𝕜
a✝¹ : 0 ≤ a
a✝ : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑Q
[PROOFSTEP]
rw [eq_sub_of_add_eq hab, ← AffineMap.lineMap_apply_module]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
Q : AffineSubspace 𝕜 E
x : E
hx : x ∈ ↑Q
y : E
hy : y ∈ ↑Q
a b : 𝕜
a✝¹ : 0 ≤ a
a✝ : 0 ≤ b
hab : a + b = 1
⊢ ↑(AffineMap.lineMap x y) b ∈ ↑Q
[PROOFSTEP]
exact AffineMap.lineMap_mem b hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
f : E →ᵃ[𝕜] F
hs : Convex 𝕜 s
⊢ Convex 𝕜 (↑f '' s)
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
f : E →ᵃ[𝕜] F
hs : Convex 𝕜 s
x : E
hx : x ∈ s
⊢ StarConvex 𝕜 (↑f x) (↑f '' s)
[PROOFSTEP]
exact (hs hx).affine_image _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ Convex 𝕜 (s - t)
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : OrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
hs : Convex 𝕜 s
ht : Convex 𝕜 t
⊢ Convex 𝕜 (s + -t)
[PROOFSTEP]
exact hs.add ht.neg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x : E
zero_mem : 0 ∈ s
hx : x ∈ s
t : 𝕜
ht : 1 ≤ t
⊢ x ∈ t • s
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x : E
zero_mem : 0 ∈ s
hx : x ∈ s
t : 𝕜
ht : 1 ≤ t
⊢ t⁻¹ • x ∈ s
[PROOFSTEP]
exact h.smul_mem_of_zero_mem zero_mem hx ⟨inv_nonneg.2 (zero_le_one.trans ht), inv_le_one ht⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
p q : 𝕜
hx : x ∈ s
hy : y ∈ s
hp : 0 ≤ p
hq : 0 ≤ q
⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y
[PROOFSTEP]
rcases _root_.em (p = 0 ∧ q = 0) with (⟨rfl, rfl⟩ | hpq)
[GOAL]
case inl.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : y ∈ s
hp hq : 0 ≤ 0
⊢ ∃ z, z ∈ s ∧ (0 + 0) • z = 0 • x + 0 • y
[PROOFSTEP]
use x, hx
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
hx : x ∈ s
hy : y ∈ s
hp hq : 0 ≤ 0
⊢ (0 + 0) • x = 0 • x + 0 • y
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
p q : 𝕜
hx : x ∈ s
hy : y ∈ s
hp : 0 ≤ p
hq : 0 ≤ q
hpq : ¬(p = 0 ∧ q = 0)
⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y
[PROOFSTEP]
replace hpq : 0 < p + q := (add_nonneg hp hq).lt_of_ne' (mt (add_eq_zero_iff' hp hq).1 hpq)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
p q : 𝕜
hx : x ∈ s
hy : y ∈ s
hp : 0 ≤ p
hq : 0 ≤ q
hpq : 0 < p + q
⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y
[PROOFSTEP]
refine ⟨_, convex_iff_div.1 h hx hy hp hq hpq, ?_⟩
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h : Convex 𝕜 s
x y : E
p q : 𝕜
hx : x ∈ s
hy : y ∈ s
hp : 0 ≤ p
hq : 0 ≤ q
hpq : 0 < p + q
⊢ (p + q) • ((p / (p + q)) • x + (q / (p + q)) • y) = p • x + q • y
[PROOFSTEP]
simp only [smul_add, smul_smul, mul_div_cancel' _ hpq.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h_conv : Convex 𝕜 s
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
⊢ p • s + q • s ⊆ (p + q) • s
[PROOFSTEP]
rintro _ ⟨_, _, ⟨v₁, h₁, rfl⟩, ⟨v₂, h₂, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
h_conv : Convex 𝕜 s
p q : 𝕜
hp : 0 ≤ p
hq : 0 ≤ q
v₁ : E
h₁ : v₁ ∈ s
v₂ : E
h₂ : v₂ ∈ s
⊢ (fun x x_1 => x + x_1) ((fun x => p • x) v₁) ((fun x => q • x) v₂) ∈ (p + q) • s
[PROOFSTEP]
exact h_conv.exists_mem_add_smul_eq h₁ h₂ hp hq
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
s : Set E
hs : OrdConnected s
h : IsChain (fun x x_1 => x ≤ x_1) s
⊢ Convex 𝕜 s
[PROOFSTEP]
refine' convex_iff_segment_subset.mpr fun x hx y hy => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
s : Set E
hs : OrdConnected s
h : IsChain (fun x x_1 => x ≤ x_1) s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
⊢ [x-[𝕜]y] ⊆ s
[PROOFSTEP]
obtain hxy | hyx := h.total hx hy
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
s : Set E
hs : OrdConnected s
h : IsChain (fun x x_1 => x ≤ x_1) s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≤ y
⊢ [x-[𝕜]y] ⊆ s
[PROOFSTEP]
exact (segment_subset_Icc hxy).trans (hs.out hx hy)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
s : Set E
hs : OrdConnected s
h : IsChain (fun x x_1 => x ≤ x_1) s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hyx : y ≤ x
⊢ [x-[𝕜]y] ⊆ s
[PROOFSTEP]
rw [segment_symm]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
s : Set E
hs : OrdConnected s
h : IsChain (fun x x_1 => x ≤ x_1) s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hyx : y ≤ x
⊢ [y-[𝕜]x] ⊆ s
[PROOFSTEP]
exact (segment_subset_Icc hyx).trans (hs.out hy hx)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
⊢ Convex 𝕜 s ↔ OrdConnected s
[PROOFSTEP]
simp_rw [convex_iff_segment_subset, segment_eq_uIcc, ordConnected_iff_uIcc_subset]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
⊢ Convex 𝕜 ↑K
[PROOFSTEP]
repeat' intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
⊢ Convex 𝕜 ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
⊢ x✝ ∈ ↑K → StarConvex 𝕜 x✝ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝ : x✝ ∈ ↑K
⊢ StarConvex 𝕜 x✝ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝ : x✝ ∈ ↑K
y✝ : E
⊢ y✝ ∈ ↑K → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x✝ + b • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝¹ : x✝ ∈ ↑K
y✝ : E
a✝ : y✝ ∈ ↑K
⊢ ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x✝ + b • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝² : x✝ ∈ ↑K
y✝ : E
a✝¹ : y✝ ∈ ↑K
a✝ : 𝕜
⊢ ∀ ⦃b : 𝕜⦄, 0 ≤ a✝ → 0 ≤ b → a✝ + b = 1 → a✝ • x✝ + b • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝² : x✝ ∈ ↑K
y✝ : E
a✝¹ : y✝ ∈ ↑K
a✝ b✝ : 𝕜
⊢ 0 ≤ a✝ → 0 ≤ b✝ → a✝ + b✝ = 1 → a✝ • x✝ + b✝ • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝³ : x✝ ∈ ↑K
y✝ : E
a✝² : y✝ ∈ ↑K
a✝¹ b✝ : 𝕜
a✝ : 0 ≤ a✝¹
⊢ 0 ≤ b✝ → a✝¹ + b✝ = 1 → a✝¹ • x✝ + b✝ • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝⁴ : x✝ ∈ ↑K
y✝ : E
a✝³ : y✝ ∈ ↑K
a✝² b✝ : 𝕜
a✝¹ : 0 ≤ a✝²
a✝ : 0 ≤ b✝
⊢ a✝² + b✝ = 1 → a✝² • x✝ + b✝ • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝⁵ : x✝ ∈ ↑K
y✝ : E
a✝⁴ : y✝ ∈ ↑K
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ a✝³ • x✝ + b✝ • y✝ ∈ ↑K
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝⁵ : x✝ ∈ ↑K
y✝ : E
a✝⁴ : y✝ ∈ ↑K
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ a✝³ • x✝ + b✝ • y✝ ∈ ↑K
[PROOFSTEP]
refine' add_mem (smul_mem _ _ _) (smul_mem _ _ _)
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝⁵ : x✝ ∈ ↑K
y✝ : E
a✝⁴ : y✝ ∈ ↑K
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ x✝ ∈ K
[PROOFSTEP]
assumption
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K : Submodule 𝕜 E
x✝ : E
a✝⁵ : x✝ ∈ ↑K
y✝ : E
a✝⁴ : y✝ ∈ ↑K
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ y✝ ∈ K
[PROOFSTEP]
assumption
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
⊢ stdSimplex 𝕜 ι = (⋂ (x : ι), {f | 0 ≤ f x}) ∩ {f | ∑ x : ι, f x = 1}
[PROOFSTEP]
ext f
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
⊢ f ∈ stdSimplex 𝕜 ι ↔ f ∈ (⋂ (x : ι), {f | 0 ≤ f x}) ∩ {f | ∑ x : ι, f x = 1}
[PROOFSTEP]
simp only [stdSimplex, Set.mem_inter_iff, Set.mem_iInter, Set.mem_setOf_eq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
⊢ Convex 𝕜 (stdSimplex 𝕜 ι)
[PROOFSTEP]
refine' fun f hf g hg a b ha hb hab => ⟨fun x => _, _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
hf : f ∈ stdSimplex 𝕜 ι
g : ι → 𝕜
hg : g ∈ stdSimplex 𝕜 ι
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x : ι
⊢ 0 ≤ (a • f + b • g) x
[PROOFSTEP]
apply_rules [add_nonneg, mul_nonneg, hf.1, hg.1]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
hf : f ∈ stdSimplex 𝕜 ι
g : ι → 𝕜
hg : g ∈ stdSimplex 𝕜 ι
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∑ x : ι, (a • f + b • g) x = 1
[PROOFSTEP]
erw [Finset.sum_add_distrib]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
hf : f ∈ stdSimplex 𝕜 ι
g : ι → 𝕜
hg : g ∈ stdSimplex 𝕜 ι
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∑ x : ι, (a • f) x + ∑ x : ι, (b • g) x = 1
[PROOFSTEP]
simp only [Pi.smul_apply]
-- Porting note: `erw` failed to rewrite with `← Finset.smul_sum`
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
hf : f ∈ stdSimplex 𝕜 ι
g : ι → 𝕜
hg : g ∈ stdSimplex 𝕜 ι
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∑ x : ι, a • f x + ∑ x : ι, b • g x = 1
[PROOFSTEP]
rw [← Finset.smul_sum, ← Finset.smul_sum, hf.2, hg.2, smul_eq_mul, smul_eq_mul, mul_one, mul_one]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
f : ι → 𝕜
hf : f ∈ stdSimplex 𝕜 ι
g : ι → 𝕜
hg : g ∈ stdSimplex 𝕜 ι
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a + b = 1
[PROOFSTEP]
exact hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
i j : ι
⊢ 0 ≤ (fun j => if i = j then 1 else 0) j
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
i j : ι
⊢ 0 ≤ if i = j then 1 else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
i j : ι
h✝ : i = j
⊢ 0 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
i j : ι
h✝ : ¬i = j
⊢ 0 ≤ 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
β : Type u_4
ι : Type u_5
inst✝¹ : OrderedSemiring 𝕜
inst✝ : Fintype ι
i : ι
⊢ ∑ x : ι, (fun j => if i = j then 1 else 0) x = 1
[PROOFSTEP]
rw [Finset.sum_ite_eq, if_pos (Finset.mem_univ _)]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Basic", "llama_tokens": 22802} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : StrictConvexSpace 𝕜 E
x : E
r : ℝ
⊢ StrictConvex 𝕜 (closedBall x r)
[PROOFSTEP]
cases' le_or_lt r 0 with hr hr
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : StrictConvexSpace 𝕜 E
x : E
r : ℝ
hr : r ≤ 0
⊢ StrictConvex 𝕜 (closedBall x r)
[PROOFSTEP]
exact (subsingleton_closedBall x hr).strictConvex
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : StrictConvexSpace 𝕜 E
x : E
r : ℝ
hr : 0 < r
⊢ StrictConvex 𝕜 (closedBall x r)
[PROOFSTEP]
rw [← vadd_closedBall_zero]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : StrictConvexSpace 𝕜 E
x : E
r : ℝ
hr : 0 < r
⊢ StrictConvex 𝕜 (x +ᵥ closedBall 0 r)
[PROOFSTEP]
exact (StrictConvexSpace.strictConvex_closedBall r hr).vadd _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 ℝ
h : StrictConvex 𝕜 (closedBall 0 1)
r : ℝ
hr : 0 < r
⊢ StrictConvex 𝕜 (closedBall 0 r)
[PROOFSTEP]
simpa only [smul_closedUnitBall_of_nonneg hr.le] using h.smul r
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1
⊢ StrictConvexSpace ℝ E
[PROOFSTEP]
refine'
StrictConvexSpace.of_strictConvex_closed_unit_ball ℝ ((convex_closedBall _ _).strictConvex' fun x hx y hy hne => _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1
x : E
hx : x ∈ closedBall 0 1 \ interior (closedBall 0 1)
y : E
hy : y ∈ closedBall 0 1 \ interior (closedBall 0 1)
hne : x ≠ y
⊢ (fun x y => ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1)) x y
[PROOFSTEP]
rw [interior_closedBall (0 : E) one_ne_zero, closedBall_diff_ball, mem_sphere_zero_iff_norm] at hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
hne : x ≠ y
⊢ ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1)
[PROOFSTEP]
rcases h x y hx hy hne with ⟨a, b, hab, hlt⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
hne : x ≠ y
a b : ℝ
hab : a + b = 1
hlt : ‖a • x + b • y‖ < 1
⊢ ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1)
[PROOFSTEP]
use b
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
hne : x ≠ y
a b : ℝ
hab : a + b = 1
hlt : ‖a • x + b • y‖ < 1
⊢ ↑(AffineMap.lineMap x y) b ∈ interior (closedBall 0 1)
[PROOFSTEP]
rwa [AffineMap.lineMap_apply_module, interior_closedBall (0 : E) one_ne_zero, mem_ball_zero_iff,
sub_eq_iff_eq_add.2 hab.symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1
⊢ StrictConvexSpace ℝ E
[PROOFSTEP]
refine' StrictConvexSpace.of_strictConvex_closed_unit_ball ℝ ((convex_closedBall _ _).strictConvex _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1
⊢ Set.Pairwise (closedBall 0 1 \ interior (closedBall 0 1)) fun x y =>
Set.Nonempty ([x-[ℝ]y] \ frontier (closedBall 0 1))
[PROOFSTEP]
simp only [interior_closedBall _ one_ne_zero, closedBall_diff_ball, Set.Pairwise, frontier_closedBall _ one_ne_zero,
mem_sphere_zero_iff_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1
⊢ ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → x ≠ y → Set.Nonempty ([x-[ℝ]y] \ sphere 0 1)
[PROOFSTEP]
intro x hx y hy hne
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
hne : x ≠ y
⊢ Set.Nonempty ([x-[ℝ]y] \ sphere 0 1)
[PROOFSTEP]
rcases h x y hx hy hne with ⟨a, b, ha, hb, hab, hne'⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
hne : x ≠ y
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hne' : ‖a • x + b • y‖ ≠ 1
⊢ Set.Nonempty ([x-[ℝ]y] \ sphere 0 1)
[PROOFSTEP]
exact ⟨_, ⟨a, b, ha, hb, hab, rfl⟩, mt mem_sphere_zero_iff_norm.1 hne'⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2
⊢ StrictConvexSpace ℝ E
[PROOFSTEP]
refine'
StrictConvexSpace.of_norm_combo_ne_one fun x y hx hy hne =>
⟨1 / 2, 1 / 2, one_half_pos.le, one_half_pos.le, add_halves _, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
hne : x ≠ y
⊢ ‖(1 / 2) • x + (1 / 2) • y‖ ≠ 1
[PROOFSTEP]
rw [← smul_add, norm_smul, Real.norm_of_nonneg one_half_pos.le, one_div, ← div_eq_inv_mul, Ne.def,
div_eq_one_iff_eq (two_ne_zero' ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
hne : x ≠ y
⊢ ¬‖x + y‖ = 2
[PROOFSTEP]
exact h hx hy hne
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y
⊢ StrictConvexSpace ℝ E
[PROOFSTEP]
refine' StrictConvexSpace.of_pairwise_sphere_norm_ne_two fun x hx y hy => mt fun h₂ => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y
x : E
hx : x ∈ sphere 0 1
y : E
hy : y ∈ sphere 0 1
h₂ : ‖x + y‖ = 2
⊢ x = y
[PROOFSTEP]
rw [mem_sphere_zero_iff_norm] at hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedLinearOrderedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y
x : E
hx : ‖x‖ = 1
y : E
hy : ‖y‖ = 1
h₂ : ‖x + y‖ = 2
⊢ x = y
[PROOFSTEP]
exact (sameRay_iff_of_norm_eq (hx.trans hy.symm)).1 (h x y hx hy h₂)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : x ∈ closedBall z r
hy : y ∈ closedBall z r
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ ball z r
[PROOFSTEP]
rcases eq_or_ne r 0 with (rfl | hr)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b : ℝ
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : x ∈ closedBall z 0
hy : y ∈ closedBall z 0
⊢ a • x + b • y ∈ ball z 0
[PROOFSTEP]
rw [closedBall_zero, mem_singleton_iff] at hx hy
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b : ℝ
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : x = z
hy : y = z
⊢ a • x + b • y ∈ ball z 0
[PROOFSTEP]
exact (hne (hx.trans hy.symm)).elim
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : x ∈ closedBall z r
hy : y ∈ closedBall z r
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hr : r ≠ 0
⊢ a • x + b • y ∈ ball z r
[PROOFSTEP]
simp only [← interior_closedBall _ hr] at hx hy ⊢
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : x ∈ closedBall z r
hy : y ∈ closedBall z r
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hr : r ≠ 0
⊢ a • x + b • y ∈ interior (closedBall z r)
[PROOFSTEP]
exact strictConvex_closedBall ℝ z r hx hy hne ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : ‖x‖ ≤ r
hy : ‖y‖ ≤ r
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ‖a • x + b • y‖ < r
[PROOFSTEP]
simp only [← mem_ball_zero_iff, ← mem_closedBall_zero_iff] at hx hy ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hne : x ≠ y
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : x ∈ closedBall 0 r
hy : y ∈ closedBall 0 r
⊢ a • x + b • y ∈ ball 0 r
[PROOFSTEP]
exact combo_mem_ball_of_ne hx hy hne ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ x y
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
simp only [sameRay_iff_inv_norm_smul_eq, not_or, ← Ne.def] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : x ≠ 0 ∧ y ≠ 0 ∧ ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
rcases h with ⟨hx, hy, hne⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : x ≠ 0
hy : y ≠ 0
hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
rw [← norm_pos_iff] at hx hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : 0 < ‖x‖
hy : 0 < ‖y‖
hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
have hxy : 0 < ‖x‖ + ‖y‖ := add_pos hx hy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : 0 < ‖x‖
hy : 0 < ‖y‖
hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
hxy : 0 < ‖x‖ + ‖y‖
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
have :=
combo_mem_ball_of_ne (inv_norm_smul_mem_closed_unit_ball x) (inv_norm_smul_mem_closed_unit_ball y) hne
(div_pos hx hxy) (div_pos hy hxy) (by rw [← add_div, div_self hxy.ne'])
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : 0 < ‖x‖
hy : 0 < ‖y‖
hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
hxy : 0 < ‖x‖ + ‖y‖
⊢ ‖x‖ / (‖x‖ + ‖y‖) + ‖y‖ / (‖x‖ + ‖y‖) = 1
[PROOFSTEP]
rw [← add_div, div_self hxy.ne']
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
hx : 0 < ‖x‖
hy : 0 < ‖y‖
hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y
hxy : 0 < ‖x‖ + ‖y‖
this : (‖x‖ / (‖x‖ + ‖y‖)) • ‖x‖⁻¹ • x + (‖y‖ / (‖x‖ + ‖y‖)) • ‖y‖⁻¹ • y ∈ ball 0 1
⊢ ‖x + y‖ < ‖x‖ + ‖y‖
[PROOFSTEP]
rwa [mem_ball_zero_iff, div_eq_inv_mul, div_eq_inv_mul, mul_smul, mul_smul, smul_inv_smul₀ hx.ne',
smul_inv_smul₀ hy.ne', ← smul_add, norm_smul, Real.norm_of_nonneg (inv_pos.2 hxy).le, ← div_eq_inv_mul,
div_lt_one hxy] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ x y
⊢ ‖x‖ - ‖y‖ < ‖x - y‖
[PROOFSTEP]
nth_rw 1 [← sub_add_cancel x y] at h ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ (x - y + y) y
⊢ ‖x - y + y‖ - ‖y‖ < ‖x - y‖
[PROOFSTEP]
exact sub_lt_iff_lt_add.2 (norm_add_lt_of_not_sameRay fun H' => h <| H'.add_left SameRay.rfl)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ x y
⊢ |‖x‖ - ‖y‖| < ‖x - y‖
[PROOFSTEP]
refine' abs_sub_lt_iff.2 ⟨lt_norm_sub_of_not_sameRay h, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ x y
⊢ ‖y‖ - ‖x‖ < ‖x - y‖
[PROOFSTEP]
rw [norm_sub_rev]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ¬SameRay ℝ x y
⊢ ‖y‖ - ‖x‖ < ‖y - x‖
[PROOFSTEP]
exact lt_norm_sub_of_not_sameRay (mt SameRay.symm h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
⊢ dist x y + dist y z = dist x z ↔ y ∈ [x-[ℝ]z]
[PROOFSTEP]
simp only [mem_segment_iff_sameRay, sameRay_iff_norm_add, dist_eq_norm', sub_add_sub_cancel', eq_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedLinearOrderedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : StrictConvexSpace ℝ E
x y z : E
a b r : ℝ
h : ‖x‖ = ‖y‖
⊢ ‖(1 / 2) • (x + y)‖ < ‖x‖ ↔ x ≠ y
[PROOFSTEP]
rw [norm_smul, Real.norm_of_nonneg (one_div_nonneg.2 zero_le_two), ← inv_eq_one_div, ← div_eq_inv_mul,
div_lt_iff (zero_lt_two' ℝ), mul_two, ← not_sameRay_iff_of_norm_eq h, not_sameRay_iff_norm_add_lt, h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
have : y -ᵥ x ∈ [(0 : E)-[ℝ]z -ᵥ x] := by
rw [← dist_add_dist_eq_iff, dist_zero_left, dist_vsub_cancel_right, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy,
hyz, ← add_mul, add_sub_cancel'_right, one_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
⊢ y -ᵥ x ∈ [0-[ℝ]z -ᵥ x]
[PROOFSTEP]
rw [← dist_add_dist_eq_iff, dist_zero_left, dist_vsub_cancel_right, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy,
hyz, ← add_mul, add_sub_cancel'_right, one_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x]
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rcases eq_or_ne x z with (rfl | hne)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y : PE
hxy : dist x y = r * dist x x
hyz : dist y x = (1 - r) * dist x x
this : y -ᵥ x ∈ [0-[ℝ]x -ᵥ x]
⊢ y = ↑(AffineMap.lineMap x x) r
[PROOFSTEP]
obtain rfl : y = x := by simpa
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y : PE
hxy : dist x y = r * dist x x
hyz : dist y x = (1 - r) * dist x x
this : y -ᵥ x ∈ [0-[ℝ]x -ᵥ x]
⊢ y = x
[PROOFSTEP]
simpa
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
y : PE
hxy : dist y y = r * dist y y
hyz : dist y y = (1 - r) * dist y y
this : y -ᵥ y ∈ [0-[ℝ]y -ᵥ y]
⊢ y = ↑(AffineMap.lineMap y y) r
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x]
hne : x ≠ z
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rw [← dist_ne_zero] at hne
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x]
hne✝ : x ≠ z
hne : dist x z ≠ 0
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rcases this with ⟨a, b, _, hb, _, H⟩
[GOAL]
case inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a✝ b✝ r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
hne✝ : x ≠ z
hne : dist x z ≠ 0
a b : ℝ
w✝¹ : 0 ≤ a
hb : 0 ≤ b
w✝ : a + b = 1
H : a • 0 + b • (z -ᵥ x) = y -ᵥ x
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rw [smul_zero, zero_add] at H
[GOAL]
case inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a✝ b✝ r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
hne✝ : x ≠ z
hne : dist x z ≠ 0
a b : ℝ
w✝¹ : 0 ≤ a
hb : 0 ≤ b
w✝ : a + b = 1
H : b • (z -ᵥ x) = y -ᵥ x
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
have H' := congr_arg norm H
[GOAL]
case inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a✝ b✝ r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
hne✝ : x ≠ z
hne : dist x z ≠ 0
a b : ℝ
w✝¹ : 0 ≤ a
hb : 0 ≤ b
w✝ : a + b = 1
H : b • (z -ᵥ x) = y -ᵥ x
H' : ‖b • (z -ᵥ x)‖ = ‖y -ᵥ x‖
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rw [norm_smul, Real.norm_of_nonneg hb, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy, mul_left_inj' hne] at H'
[GOAL]
case inr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a✝ b✝ r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hxy : dist x y = r * dist x z
hyz : dist y z = (1 - r) * dist x z
hne✝ : x ≠ z
hne : dist x z ≠ 0
a b : ℝ
w✝¹ : 0 ≤ a
hb : 0 ≤ b
w✝ : a + b = 1
H : b • (z -ᵥ x) = y -ᵥ x
H' : b = r
⊢ y = ↑(AffineMap.lineMap x z) r
[PROOFSTEP]
rw [AffineMap.lineMap_apply, ← H', H, vsub_vadd]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hx : dist x y = dist x z / 2
hy : dist y z = dist x z / 2
⊢ y = midpoint ℝ x z
[PROOFSTEP]
apply eq_lineMap_of_dist_eq_mul_of_dist_eq_mul
[GOAL]
case hxy
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hx : dist x y = dist x z / 2
hy : dist y z = dist x z / 2
⊢ dist x y = ⅟2 * dist x z
[PROOFSTEP]
rwa [invOf_eq_inv, ← div_eq_inv_mul]
[GOAL]
case hyz
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z✝ : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
x y z : PE
hx : dist x y = dist x z / 2
hy : dist y z = dist x z / 2
⊢ dist y z = (1 - ⅟2) * dist x z
[PROOFSTEP]
rwa [invOf_eq_inv, ← one_div, sub_half, one_div, ← div_eq_inv_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
x y : PF
⊢ f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
[PROOFSTEP]
apply eq_midpoint_of_dist_eq_half
[GOAL]
case hx
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
x y : PF
⊢ dist (f x) (f (midpoint ℝ x y)) = dist (f x) (f y) / 2
[PROOFSTEP]
rw [hi.dist_eq, hi.dist_eq]
[GOAL]
case hx
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
x y : PF
⊢ dist x (midpoint ℝ x y) = dist x y / 2
[PROOFSTEP]
simp only [dist_left_midpoint, Real.norm_of_nonneg zero_le_two, div_eq_inv_mul]
[GOAL]
case hy
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
x y : PF
⊢ dist (f (midpoint ℝ x y)) (f y) = dist (f x) (f y) / 2
[PROOFSTEP]
rw [hi.dist_eq, hi.dist_eq]
[GOAL]
case hy
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y✝ z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
x y : PF
⊢ dist (midpoint ℝ x y) y = dist x y / 2
[PROOFSTEP]
simp only [dist_midpoint_right, Real.norm_of_nonneg zero_le_two, div_eq_inv_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝¹⁰ : NormedLinearOrderedField 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : StrictConvexSpace ℝ E
x✝ y z : E
a b r : ℝ
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
PF : Type u
PE : Type u_4
inst✝³ : MetricSpace PF
inst✝² : MetricSpace PE
inst✝¹ : NormedAddTorsor F PF
inst✝ : NormedAddTorsor E PE
f : PF → PE
hi : Isometry f
src✝ : PF →ᵃ[ℝ] PE :=
AffineMap.ofMapMidpoint f (_ : ∀ (x y : PF), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)) (_ : Continuous f)
x : F
⊢ ‖↑{ toFun := src✝.toFun, linear := src✝.linear,
map_vadd' :=
(_ :
∀ (p : PF) (v : F), AffineMap.toFun src✝ (v +ᵥ p) = ↑src✝.linear v +ᵥ AffineMap.toFun src✝ p) }.linear
x‖ =
‖x‖
[PROOFSTEP]
simp [AffineMap.ofMapMidpoint, ← dist_eq_norm_vsub E, hi.dist_eq]
| {"mathlib_filename": "Mathlib.Analysis.Convex.StrictConvexSpace", "llama_tokens": 15662} |
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hxz := hxy.trans hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxz : x < z
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
rw [← sub_pos] at hxy hxz hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
suffices f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
by
ring_nf at this ⊢
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
this : f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
ring_nf at this ⊢
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ ≤ (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z
⊢ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x ≤ -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
set a := (z - y) / (z - x)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
set b := (y - x) / (z - x)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
have hy : a • x + b • z = y := by
field_simp
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ a • x + b • z = y
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ ((z - y) * x + (y - x) * z) / (z - x) = y
[PROOFSTEP]
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ ((z - y) * x + (y - x) * z) / (z - x) = y
[PROOFSTEP]
rw [div_eq_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ (z - y) * x + (y - x) * z = y * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ z - x ≠ 0
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
have key :=
hf.2 hx hz (show 0 ≤ a by apply div_nonneg <;> linarith) (show 0 ≤ b by apply div_nonneg <;> linarith)
(show a + b = 1 by
field_simp
rw [div_eq_iff] <;> [ring; linarith])
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ a
[PROOFSTEP]
apply div_nonneg
[GOAL]
case ha
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ z - y
[PROOFSTEP]
linarith
[GOAL]
case hb
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ b
[PROOFSTEP]
apply div_nonneg
[GOAL]
case ha
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ y - x
[PROOFSTEP]
linarith
[GOAL]
case hb
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ 0 ≤ z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ a + b = 1
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ (z - x) / (z - x) = 1
[PROOFSTEP]
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ (z - x) / (z - x) = 1
[PROOFSTEP]
rw [div_eq_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ z - x = 1 * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ z - x ≠ 0
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f (a • x + b • z) ≤ a • f x + b • f z
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
rw [hy] at key
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y ≤ a • f x + b • f z
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
replace key := mul_le_mul_of_nonneg_left key hxz.le
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : (z - x) * f y ≤ (z - x) * (a • f x + b • f z)
⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y)
[PROOFSTEP]
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z
⊢ (f y * (z - y) + f y * (y - x)) / ((y - x) * (z - y)) ≤ (f x * (z - y) + f z * (y - x)) / ((y - x) * (z - y))
[PROOFSTEP]
rw [div_le_div_right]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z
⊢ f y * (z - y) + f y * (y - x) ≤ f x * (z - y) + f z * (y - x)
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z
⊢ 0 < (y - x) * (z - y)
[PROOFSTEP]
nlinarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
this : -(((-f) z - (-f) y) / (z - y)) ≤ -(((-f) y - (-f) x) / (y - x))
⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
this : (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
exact this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxz := hxy.trans hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxz : x < z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxz' := hxz.ne
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxz : x < z
hxz' : x ≠ z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
rw [← sub_pos] at hxy hxz hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
by
ring_nf at this ⊢
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
this : f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
ring_nf at this ⊢
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ < (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z
⊢ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x < -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
set a := (z - y) / (z - x)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
set b := (y - x) / (z - x)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
have hy : a • x + b • z = y := by
field_simp
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ a • x + b • z = y
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ ((z - y) * x + (y - x) * z) / (z - x) = y
[PROOFSTEP]
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ ((z - y) * x + (y - x) * z) / (z - x) = y
[PROOFSTEP]
rw [div_eq_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ (z - y) * x + (y - x) * z = y * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
⊢ z - x ≠ 0
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
have key :=
hf.2 hx hz hxz' (div_pos hyz hxz) (div_pos hxy hxz)
(show a + b = 1 by
field_simp
rw [div_eq_iff] <;> [ring; linarith])
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ a + b = 1
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ (z - x) / (z - x) = 1
[PROOFSTEP]
rw [div_eq_iff] <;> [ring; linarith]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ (z - x) / (z - x) = 1
[PROOFSTEP]
rw [div_eq_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ z - x = 1 * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
⊢ z - x ≠ 0
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f (((z - y) / (z - x)) • x + ((y - x) / (z - x)) • z) < ((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
rw [hy] at key
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y < ((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
replace key := mul_lt_mul_of_pos_left key hxz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : (z - x) * f y < (z - x) * (((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z)
⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
[PROOFSTEP]
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) < (z - y) * f x + (y - x) * f z
⊢ (f y * (z - y) + f y * (y - x)) / ((y - x) * (z - y)) < (f x * (z - y) + f z * (y - x)) / ((y - x) * (z - y))
[PROOFSTEP]
rw [div_lt_div_right]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) < (z - y) * f x + (y - x) * f z
⊢ f y * (z - y) + f y * (y - x) < f x * (z - y) + f z * (y - x)
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy✝ : x < y
hxy : 0 < y - x
hyz✝ : y < z
hyz : 0 < z - y
hxz✝ : x < z
hxz : 0 < z - x
hxz' : x ≠ z
a : 𝕜 := (z - y) / (z - x)
b : 𝕜 := (y - x) / (z - x)
hy : a • x + b • z = y
key : f y * (z - x) < (z - y) * f x + (y - x) * f z
⊢ 0 < (y - x) * (z - y)
[PROOFSTEP]
nlinarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x)
[PROOFSTEP]
have := neg_lt_neg (StrictConvexOn.slope_strict_mono_adjacent hf.neg hx hz hxy hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
this : -(((-f) z - (-f) y) / (z - y)) < -(((-f) y - (-f) x) / (y - x))
⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x)
[PROOFSTEP]
simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
this : (f z - f y) / (z - y) < (f y - f x) / (y - x)
⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x)
[PROOFSTEP]
exact this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
let y := a * x + b * z
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have hxy : x < y := by
rw [← one_mul x, ← hab, add_mul]
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ x < y
[PROOFSTEP]
rw [← one_mul x, ← hab, add_mul]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ a * x + b * x < y
[PROOFSTEP]
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have hyz : y < z := by
rw [← one_mul z, ← hab, add_mul]
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ y < z
[PROOFSTEP]
rw [← one_mul z, ← hab, add_mul]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ y < a * z + b * z
[PROOFSTEP]
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) :=
(div_le_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have hxz : 0 < z - x := sub_pos.2 (hxy.trans hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have ha : (z - y) / (z - x) = a := by
rw [eq_comm, ← sub_eq_iff_eq_add'] at hab
simp_rw [div_eq_iff hxz.ne', ← hab]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ (z - y) / (z - x) = a
[PROOFSTEP]
rw [eq_comm, ← sub_eq_iff_eq_add'] at hab
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 1 - a = b
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ (z - y) / (z - x) = a
[PROOFSTEP]
simp_rw [div_eq_iff hxz.ne', ← hab]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 1 - a = b
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ z - (a * x + (1 - a) * z) = a * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
have hb : (y - x) / (z - x) = b := by
rw [eq_comm, ← sub_eq_iff_eq_add] at hab
simp_rw [div_eq_iff hxz.ne', ← hab]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (y - x) / (z - x) = b
[PROOFSTEP]
rw [eq_comm, ← sub_eq_iff_eq_add] at hab
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : 1 - b = a
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (y - x) / (z - x) = b
[PROOFSTEP]
simp_rw [div_eq_iff hxz.ne', ← hab]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : 1 - b = a
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (1 - b) * x + b * z - x = b * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb✝ : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
hb : (y - x) / (z - x) = b
⊢ f (a • x + b • z) ≤ a • f x + b • f z
[PROOFSTEP]
rwa [sub_mul, sub_mul, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le, ← mul_add, sub_add_sub_cancel, ←
le_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
⊢ ConcaveOn 𝕜 s f
[PROOFSTEP]
rw [← neg_convexOn_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
⊢ ConvexOn 𝕜 s (-f)
[PROOFSTEP]
refine' convexOn_of_slope_mono_adjacent hs fun hx hz hxy hyz => _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ ((-f) y✝ - (-f) x✝) / (y✝ - x✝) ≤ ((-f) z✝ - (-f) y✝) / (z✝ - y✝)
[PROOFSTEP]
rw [← neg_le_neg_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ -(((-f) z✝ - (-f) y✝) / (z✝ - y✝)) ≤ -(((-f) y✝ - (-f) x✝) / (y✝ - x✝))
[PROOFSTEP]
simp_rw [← neg_div, neg_sub, Pi.neg_apply, neg_sub_neg]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ (f z✝ - f y✝) / (z✝ - y✝) ≤ (f y✝ - f x✝) / (y✝ - x✝)
[PROOFSTEP]
exact hf hx hz hxy hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
let y := a * x + b * z
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have hxy : x < y := by
rw [← one_mul x, ← hab, add_mul]
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ x < y
[PROOFSTEP]
rw [← one_mul x, ← hab, add_mul]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
⊢ a * x + b * x < y
[PROOFSTEP]
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have hyz : y < z := by
rw [← one_mul z, ← hab, add_mul]
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ y < z
[PROOFSTEP]
rw [← one_mul z, ← hab, add_mul]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
⊢ y < a * z + b * z
[PROOFSTEP]
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have : (f y - f x) * (z - y) < (f z - f y) * (y - x) :=
(div_lt_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have hxz : 0 < z - x := sub_pos.2 (hxy.trans hyz)
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have ha : (z - y) / (z - x) = a := by
rw [eq_comm, ← sub_eq_iff_eq_add'] at hab
simp_rw [div_eq_iff hxz.ne', ← hab]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ (z - y) / (z - x) = a
[PROOFSTEP]
rw [eq_comm, ← sub_eq_iff_eq_add'] at hab
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 1 - a = b
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ (z - y) / (z - x) = a
[PROOFSTEP]
simp_rw [div_eq_iff hxz.ne', ← hab]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 1 - a = b
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
⊢ z - (a * x + (1 - a) * z) = a * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
have hb : (y - x) / (z - x) = b := by
rw [eq_comm, ← sub_eq_iff_eq_add] at hab
simp_rw [div_eq_iff hxz.ne', ← hab]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (y - x) / (z - x) = b
[PROOFSTEP]
rw [eq_comm, ← sub_eq_iff_eq_add] at hab
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : 1 - b = a
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (y - x) / (z - x) = b
[PROOFSTEP]
simp_rw [div_eq_iff hxz.ne', ← hab]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb : 0 < b
hab : 1 - b = a
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
⊢ (1 - b) * x + b * z - x = b * (z - x)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y)
x : 𝕜
hx : x ∈ s
z : 𝕜
hz : z ∈ s
hxz✝ : x < z
a b : 𝕜
ha✝ : 0 < a
hb✝ : 0 < b
hab : a + b = 1
y : 𝕜 := a * x + b * z
hxy : x < y
hyz : y < z
this : (f y - f x) * (z - y) < (f z - f y) * (y - x)
hxz : 0 < z - x
ha : (z - y) / (z - x) = a
hb : (y - x) / (z - x) = b
⊢ f (a • x + b • z) < a • f x + b • f z
[PROOFSTEP]
rwa [sub_mul, sub_mul, sub_lt_iff_lt_add', ← add_sub_assoc, lt_sub_iff_add_lt, ← mul_add, sub_add_sub_cancel, ←
lt_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x)
⊢ StrictConcaveOn 𝕜 s f
[PROOFSTEP]
rw [← neg_strictConvexOn_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x)
⊢ StrictConvexOn 𝕜 s (-f)
[PROOFSTEP]
refine' strictConvexOn_of_slope_strict_mono_adjacent hs fun hx hz hxy hyz => _
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ ((-f) y✝ - (-f) x✝) / (y✝ - x✝) < ((-f) z✝ - (-f) y✝) / (z✝ - y✝)
[PROOFSTEP]
rw [← neg_lt_neg_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ -(((-f) z✝ - (-f) y✝) / (z✝ - y✝)) < -(((-f) y✝ - (-f) x✝) / (y✝ - x✝))
[PROOFSTEP]
simp_rw [← neg_div, neg_sub, Pi.neg_apply, neg_sub_neg]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hs : Convex 𝕜 s
hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x)
x✝ y✝ z✝ : 𝕜
hx : x✝ ∈ s
hz : z✝ ∈ s
hxy : x✝ < y✝
hyz : y✝ < z✝
⊢ (f z✝ - f y✝) / (z✝ - y✝) < (f y✝ - f x✝) / (y✝ - x✝)
[PROOFSTEP]
exact hf hx hz hxy hyz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hxy' : 0 < y - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hyz' : 0 < z - y := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z
[PROOFSTEP]
rw [← le_div_iff' hxz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
have ha : 0 ≤ (z - y) / (z - x) := by positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ 0 ≤ (z - y) / (z - x)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
have hb : 0 ≤ (y - x) / (z - x) := by positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
⊢ 0 ≤ (y - x) / (z - x)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
calc
f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) := ?_
_ ≤ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := (hf.2 hx hz ha hb ?_)
_ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_
[GOAL]
case calc_1
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z)
[PROOFSTEP]
congr 1
[GOAL]
case calc_1.e_a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ y = (z - y) / (z - x) * x + (y - x) / (z - x) * z
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
case calc_1.e_a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ y * (z - x) = (z - y) * x + (y - x) * z
[PROOFSTEP]
ring
[GOAL]
case calc_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ Div.div (z - y) (z - x) + Div.div (y - x) (z - x) = 1
[PROOFSTEP]
show (z - y) / (z - x) + (y - x) / (z - x) = 1
[GOAL]
case calc_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ (z - y) / (z - x) + (y - x) / (z - x) = 1
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
case calc_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 ≤ (z - y) / (z - x)
hb : 0 ≤ (y - x) / (z - x)
⊢ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z = ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x)
[PROOFSTEP]
have hxy' : 0 < y - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x)
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hxz' : 0 < z - x
⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x)
[PROOFSTEP]
rw [div_le_div_iff hxy' hxz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hxz' : 0 < z - x
⊢ (f y - f x) * (z - x) ≤ (f z - f x) * (y - x)
[PROOFSTEP]
linarith only [hf.secant_mono_aux1 hx hz hxy hyz]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hyz' : 0 < z - y := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
rw [div_le_div_iff hxz' hyz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (f z - f x) * (z - y) ≤ (f z - f y) * (z - x)
[PROOFSTEP]
linarith only [hf.secant_mono_aux1 hx hz hxy hyz]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x ≤ y
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
rcases eq_or_lt_of_le hxy with (rfl | hxy)
[GOAL]
case inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x : 𝕜
ha : a ∈ s
hx : x ∈ s
hxa : x ≠ a
hy : x ∈ s
hya : x ≠ a
hxy : x ≤ x
⊢ (f x - f a) / (x - a) ≤ (f x - f a) / (x - a)
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
cases' lt_or_gt_of_ne hxa with hxa hxa
[GOAL]
case inr.inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
cases' lt_or_gt_of_ne hya with hya hya
[GOAL]
case inr.inl.inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
convert hf.secant_mono_aux3 hx ha hxy hya using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f y - f a) / (y - a) = (f a - f y) / (a - y)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y < a
⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y < a
⊢ -(f y - f a) / -(y - a) = (f a - f y) / (a - y)
[PROOFSTEP]
field_simp
[GOAL]
case inr.inl.inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y > a
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
convert hf.slope_mono_adjacent hx hy hxa hya using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y > a
⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x < a
hya : y > a
⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
field_simp
[GOAL]
case inr.inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya : y ≠ a
hxy✝ : x ≤ y
hxy : x < y
hxa : x > a
⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)
[PROOFSTEP]
exact hf.secant_mono_aux2 ha hy hxa hxy
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hxy' : 0 < y - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hyz' : 0 < z - y := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z
[PROOFSTEP]
rw [← lt_div_iff' hxz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
have ha : 0 < (z - y) / (z - x) := by positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ 0 < (z - y) / (z - x)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
have hb : 0 < (y - x) / (z - x) := by positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
⊢ 0 < (y - x) / (z - x)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
calc
f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) := ?_
_ < (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := (hf.2 hx hz (by linarith) ha hb ?_)
_ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ x ≠ z
[PROOFSTEP]
linarith
[GOAL]
case calc_1
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z)
[PROOFSTEP]
congr 1
[GOAL]
case calc_1.e_a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ y = (z - y) / (z - x) * x + (y - x) / (z - x) * z
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
case calc_1.e_a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ y * (z - x) = (z - y) * x + (y - x) * z
[PROOFSTEP]
ring
[GOAL]
case calc_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ Div.div (z - y) (z - x) + Div.div (y - x) (z - x) = 1
[PROOFSTEP]
show (z - y) / (z - x) + (y - x) / (z - x) = 1
[GOAL]
case calc_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ (z - y) / (z - x) + (y - x) / (z - x) = 1
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
case calc_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hyz' : 0 < z - y
hxz' : 0 < z - x
ha : 0 < (z - y) / (z - x)
hb : 0 < (y - x) / (z - x)
⊢ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z = ((z - y) * f x + (y - x) * f z) / (z - x)
[PROOFSTEP]
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x)
[PROOFSTEP]
have hxy' : 0 < y - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x)
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hxz' : 0 < z - x
⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x)
[PROOFSTEP]
rw [div_lt_div_iff hxy' hxz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hxy' : 0 < y - x
hxz' : 0 < z - x
⊢ (f y - f x) * (z - x) < (f z - f x) * (y - x)
[PROOFSTEP]
linarith only [hf.secant_strict_mono_aux1 hx hz hxy hyz]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hyz' : 0 < z - y := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxz' : 0 < z - x := by linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
⊢ 0 < z - x
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y)
[PROOFSTEP]
rw [div_lt_div_iff hxz' hyz']
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
x y z : 𝕜
hx : x ∈ s
hz : z ∈ s
hxy : x < y
hyz : y < z
hyz' : 0 < z - y
hxz' : 0 < z - x
⊢ (f z - f x) * (z - y) < (f z - f y) * (z - x)
[PROOFSTEP]
linarith only [hf.secant_strict_mono_aux1 hx hz hxy hyz]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a)
[PROOFSTEP]
cases' lt_or_gt_of_ne hxa with hxa hxa
[GOAL]
case inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya : y ≠ a
hxy : x < y
hxa : x < a
⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a)
[PROOFSTEP]
cases' lt_or_gt_of_ne hya with hya hya
[GOAL]
case inl.inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a)
[PROOFSTEP]
convert hf.secant_strict_mono_aux3 hx ha hxy hya using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y < a
⊢ (f y - f a) / (y - a) = (f a - f y) / (a - y)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y < a
⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y < a
⊢ -(f y - f a) / -(y - a) = (f a - f y) / (a - y)
[PROOFSTEP]
field_simp
[GOAL]
case inl.inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y > a
⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a)
[PROOFSTEP]
convert hf.slope_strict_mono_adjacent hx hy hxa hya using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y > a
⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
rw [← neg_div_neg_eq]
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya✝ : y ≠ a
hxy : x < y
hxa : x < a
hya : y > a
⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)
[PROOFSTEP]
field_simp
[GOAL]
case inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConvexOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa✝ : x ≠ a
hya : y ≠ a
hxy : x < y
hxa : x > a
⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a)
[PROOFSTEP]
exact hf.secant_strict_mono_aux2 ha hy hxa hxy
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a)
[PROOFSTEP]
have key := hf.neg.secant_strict_mono ha hx hy hxa hya hxy
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : ((-f) x - (-f) a) / (x - a) < ((-f) y - (-f) a) / (y - a)
⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a)
[PROOFSTEP]
simp only [Pi.neg_apply] at key
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a)
[PROOFSTEP]
rw [← neg_lt_neg_iff]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ -((f x - f a) / (x - a)) < -((f y - f a) / (y - a))
[PROOFSTEP]
convert key using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ -((f x - f a) / (x - a)) = (-f x - -f a) / (x - a)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ -((f y - f a) / (y - a)) = (-f y - -f a) / (y - a)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_3
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ (f a - f x) / (x - a) = (-f x + f a) / (x - a)
[PROOFSTEP]
ring
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : StrictConcaveOn 𝕜 s f
a x y : 𝕜
ha : a ∈ s
hx : x ∈ s
hy : y ∈ s
hxa : x ≠ a
hya : y ≠ a
hxy : x < y
key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a)
⊢ (f a - f y) / (y - a) = (-f y + f a) / (y - a)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
⊢ StrictMonoOn f (s ∩ Set.Ici y)
[PROOFSTEP]
intro u hu v hv huv
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
⊢ f u < f v
[PROOFSTEP]
have step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z :=
by
intros z hz
refine hf.lt_right_of_left_lt hx hz.1 ?_ hxy'
rw [openSegment_eq_Ioo (hxy.trans hz.2)]
exact ⟨hxy, hz.2⟩
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
⊢ ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
[PROOFSTEP]
intros z hz
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
z : 𝕜
hz : z ∈ s ∩ Set.Ioi y
⊢ f y < f z
[PROOFSTEP]
refine hf.lt_right_of_left_lt hx hz.1 ?_ hxy'
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
z : 𝕜
hz : z ∈ s ∩ Set.Ioi y
⊢ y ∈ openSegment 𝕜 x z
[PROOFSTEP]
rw [openSegment_eq_Ioo (hxy.trans hz.2)]
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
z : 𝕜
hz : z ∈ s ∩ Set.Ioi y
⊢ y ∈ Set.Ioo x z
[PROOFSTEP]
exact ⟨hxy, hz.2⟩
[GOAL]
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
⊢ f u < f v
[PROOFSTEP]
rcases eq_or_lt_of_le hu.2 with (rfl | hu2)
[GOAL]
case inl
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu : y ∈ s ∩ Set.Ici y
huv : y < v
⊢ f y < f v
[PROOFSTEP]
exact step1 ⟨hv.1, huv⟩
[GOAL]
case inr
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ f u < f v
[PROOFSTEP]
refine' hf.lt_right_of_left_lt _ hv.1 _ (step1 ⟨hu.1, hu2⟩)
[GOAL]
case inr.refine'_1
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ y ∈ s
[PROOFSTEP]
apply hf.1.segment_subset hx hu.1
[GOAL]
case inr.refine'_1.a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ y ∈ segment 𝕜 x u
[PROOFSTEP]
rw [segment_eq_Icc (hxy.le.trans hu.2)]
[GOAL]
case inr.refine'_1.a
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ y ∈ Set.Icc x u
[PROOFSTEP]
exact ⟨hxy.le, hu.2⟩
[GOAL]
case inr.refine'_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ u ∈ openSegment 𝕜 y v
[PROOFSTEP]
rw [openSegment_eq_Ioo (hu2.trans huv)]
[GOAL]
case inr.refine'_2
𝕜 : Type u_1
inst✝ : LinearOrderedField 𝕜
s : Set 𝕜
f : 𝕜 → 𝕜
hf : ConvexOn 𝕜 s f
x y : 𝕜
hx : x ∈ s
hxy : x < y
hxy' : f x < f y
u : 𝕜
hu : u ∈ s ∩ Set.Ici y
v : 𝕜
hv : v ∈ s ∩ Set.Ici y
huv : u < v
step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z
hu2 : y < u
⊢ u ∈ Set.Ioo y v
[PROOFSTEP]
exact ⟨hu2, huv⟩
| {"mathlib_filename": "Mathlib.Analysis.Convex.Slope", "llama_tokens": 44727} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s✝ t s : Set H
c : ℝ
hc : 0 < c
y : H
hy : y ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
x : H
hx : x ∈ s
⊢ 0 ≤ inner x (c • y)
[PROOFSTEP]
rw [real_inner_smul_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s✝ t s : Set H
c : ℝ
hc : 0 < c
y : H
hy : y ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
x : H
hx : x ∈ s
⊢ 0 ≤ c * inner x y
[PROOFSTEP]
exact mul_nonneg hc.le (hy x hx)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s✝ t s : Set H
u : H
hu : u ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
v : H
hv : v ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
x : H
hx : x ∈ s
⊢ 0 ≤ inner x (u + v)
[PROOFSTEP]
rw [inner_add_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s✝ t s : Set H
u : H
hu : u ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
v : H
hv : v ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y}
x : H
hx : x ∈ s
⊢ 0 ≤ inner x u + inner x v
[PROOFSTEP]
exact add_nonneg (hu x hx) (hv x hx)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ innerDualCone univ = 0
[PROOFSTEP]
suffices ∀ x : H, x ∈ (univ : Set H).innerDualCone → x = 0
by
apply SetLike.coe_injective
exact eq_singleton_iff_unique_mem.mpr ⟨fun x _ => (inner_zero_right _).ge, this⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
this : ∀ (x : H), x ∈ innerDualCone univ → x = 0
⊢ innerDualCone univ = 0
[PROOFSTEP]
apply SetLike.coe_injective
[GOAL]
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
this : ∀ (x : H), x ∈ innerDualCone univ → x = 0
⊢ ↑(innerDualCone univ) = ↑0
[PROOFSTEP]
exact eq_singleton_iff_unique_mem.mpr ⟨fun x _ => (inner_zero_right _).ge, this⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ ∀ (x : H), x ∈ innerDualCone univ → x = 0
[PROOFSTEP]
exact fun x hx => by simpa [← real_inner_self_nonpos] using hx (-x) (mem_univ _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : H
hx : x ∈ innerDualCone univ
⊢ x = 0
[PROOFSTEP]
simpa [← real_inner_self_nonpos] using hx (-x) (mem_univ _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : H
x✝ : x ∈ s
⊢ 0 ≤ inner x 0
[PROOFSTEP]
rw [inner_zero_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s✝ t : Set H
x : H
s : Set H
⊢ innerDualCone (insert x s) = innerDualCone {x} ⊓ innerDualCone s
[PROOFSTEP]
rw [insert_eq, innerDualCone_union]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
ι : Sort u_6
f : ι → Set H
⊢ innerDualCone (⋃ (i : ι), f i) = ⨅ (i : ι), innerDualCone (f i)
[PROOFSTEP]
refine' le_antisymm (le_iInf fun i x hx y hy => hx _ <| mem_iUnion_of_mem _ hy) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
ι : Sort u_6
f : ι → Set H
⊢ ⨅ (i : ι), innerDualCone (f i) ≤ innerDualCone (⋃ (i : ι), f i)
[PROOFSTEP]
intro x hx y hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
ι : Sort u_6
f : ι → Set H
x : H
hx : x ∈ ⨅ (i : ι), innerDualCone (f i)
y : H
hy : y ∈ ⋃ (i : ι), f i
⊢ 0 ≤ inner y x
[PROOFSTEP]
rw [ConvexCone.mem_iInf] at hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
ι : Sort u_6
f : ι → Set H
x : H
hx : ∀ (i : ι), x ∈ innerDualCone (f i)
y : H
hy : y ∈ ⋃ (i : ι), f i
⊢ 0 ≤ inner y x
[PROOFSTEP]
obtain ⟨j, hj⟩ := mem_iUnion.mp hy
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
ι : Sort u_6
f : ι → Set H
x : H
hx : ∀ (i : ι), x ∈ innerDualCone (f i)
y : H
hy : y ∈ ⋃ (i : ι), f i
j : ι
hj : y ∈ f j
⊢ 0 ≤ inner y x
[PROOFSTEP]
exact hx _ _ hj
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
S : Set (Set H)
⊢ innerDualCone (⋃₀ S) = sInf (innerDualCone '' S)
[PROOFSTEP]
simp_rw [sInf_image, sUnion_eq_biUnion, innerDualCone_iUnion]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ ↑(innerDualCone s) = ⋂ (i : ↑s), ↑(innerDualCone {↑i})
[PROOFSTEP]
rw [← ConvexCone.coe_iInf, ← innerDualCone_iUnion, iUnion_of_singleton_coe]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ IsClosed ↑(innerDualCone s)
[PROOFSTEP]
rw [innerDualCone_eq_iInter_innerDualCone_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ IsClosed (⋂ (i : ↑s), ↑(innerDualCone {↑i}))
[PROOFSTEP]
apply isClosed_iInter
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
⊢ ∀ (i : ↑s), IsClosed ↑(innerDualCone {↑i})
[PROOFSTEP]
intro x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : ↑s
⊢ IsClosed ↑(innerDualCone {↑x})
[PROOFSTEP]
have h : ({↑x} : Set H).innerDualCone = (inner x : H → ℝ) ⁻¹' Set.Ici 0 := by
rw [innerDualCone_singleton, ConvexCone.coe_comap, ConvexCone.coe_positive, innerₛₗ_apply_coe]
-- the preimage is closed as `inner x` is continuous and `[0, ∞)` is closed
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : ↑s
⊢ ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0
[PROOFSTEP]
rw [innerDualCone_singleton, ConvexCone.coe_comap, ConvexCone.coe_positive, innerₛₗ_apply_coe]
-- the preimage is closed as `inner x` is continuous and `[0, ∞)` is closed
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : ↑s
h : ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0
⊢ IsClosed ↑(innerDualCone {↑x})
[PROOFSTEP]
rw [h]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
x : ↑s
h : ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0
⊢ IsClosed (inner ↑x ⁻¹' Ici 0)
[PROOFSTEP]
exact isClosed_Ici.preimage (continuous_const.inner continuous_id')
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
⊢ Pointed K
[PROOFSTEP]
obtain ⟨x, hx⟩ := ne
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
⊢ Pointed K
[PROOFSTEP]
let f : ℝ → H :=
(· • x)
-- f (0, ∞) is a subset of K
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
⊢ Pointed K
[PROOFSTEP]
have fI : f '' Set.Ioi 0 ⊆ (K : Set H) := by
rintro _ ⟨_, h, rfl⟩
exact K.smul_mem (Set.mem_Ioi.1 h) hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
⊢ f '' Ioi 0 ⊆ ↑K
[PROOFSTEP]
rintro _ ⟨_, h, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
w✝ : ℝ
h : w✝ ∈ Ioi 0
⊢ f w✝ ∈ ↑K
[PROOFSTEP]
exact K.smul_mem (Set.mem_Ioi.1 h) hx
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
⊢ Pointed K
[PROOFSTEP]
have clf : closure (f '' Set.Ioi 0) ⊆ (K : Set H) := hc.closure_subset_iff.2 fI
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
clf : closure (f '' Ioi 0) ⊆ ↑K
⊢ Pointed K
[PROOFSTEP]
have fc : ContinuousWithinAt f (Set.Ioi (0 : ℝ)) 0 := (continuous_id.smul continuous_const).continuousWithinAt
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
clf : closure (f '' Ioi 0) ⊆ ↑K
fc : ContinuousWithinAt f (Ioi 0) 0
⊢ Pointed K
[PROOFSTEP]
have mem₀ :=
fc.mem_closure_image
(by rw [closure_Ioi (0 : ℝ), mem_Ici])
-- as 0 ∈ closure f (0, ∞) and closure f (0, ∞) ⊆ K, 0 ∈ K.
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
clf : closure (f '' Ioi 0) ⊆ ↑K
fc : ContinuousWithinAt f (Ioi 0) 0
⊢ 0 ∈ closure (Ioi 0)
[PROOFSTEP]
rw [closure_Ioi (0 : ℝ), mem_Ici]
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
clf : closure (f '' Ioi 0) ⊆ ↑K
fc : ContinuousWithinAt f (Ioi 0) 0
mem₀ : f 0 ∈ closure (f '' Ioi 0)
⊢ Pointed K
[PROOFSTEP]
have f₀ : f 0 = 0 := zero_smul ℝ x
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace ℝ H
s t : Set H
K : ConvexCone ℝ H
hc : IsClosed ↑K
x : H
hx : x ∈ ↑K
f : ℝ → H := fun x_1 => x_1 • x
fI : f '' Ioi 0 ⊆ ↑K
clf : closure (f '' Ioi 0) ⊆ ↑K
fc : ContinuousWithinAt f (Ioi 0) 0
mem₀ : f 0 ∈ closure (f '' Ioi 0)
f₀ : f 0 = 0
⊢ Pointed K
[PROOFSTEP]
simpa only [f₀, ConvexCone.Pointed, ← SetLike.mem_coe] using mem_of_subset_of_mem clf mem₀
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0
[PROOFSTEP]
obtain ⟨z, hzK, infi⟩ := exists_norm_eq_iInf_of_complete_convex ne hc.isComplete K.convex b
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0
[PROOFSTEP]
have hinner := (norm_eq_iInf_iff_real_inner_le_zero K.convex hzK).1 infi
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0
[PROOFSTEP]
use z - b
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
⊢ (∀ (x : H), x ∈ K → 0 ≤ inner x (z - b)) ∧ inner (z - b) b < 0
[PROOFSTEP]
constructor
[GOAL]
case h.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
⊢ ∀ (x : H), x ∈ K → 0 ≤ inner x (z - b)
[PROOFSTEP]
rintro x hxK
[GOAL]
case h.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
x : H
hxK : x ∈ K
⊢ 0 ≤ inner x (z - b)
[PROOFSTEP]
specialize hinner _ (K.add_mem hxK hzK)
[GOAL]
case h.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
x : H
hxK : x ∈ K
hinner : inner (b - z) (x + z - z) ≤ 0
⊢ 0 ≤ inner x (z - b)
[PROOFSTEP]
rwa [add_sub_cancel, real_inner_comm, ← neg_nonneg, neg_eq_neg_one_mul, ← real_inner_smul_right, neg_smul, one_smul,
neg_sub] at hinner
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
⊢ inner (z - b) b < 0
[PROOFSTEP]
have hinner₀ :=
hinner 0
(K.pointed_of_nonempty_of_isClosed ne hc)
-- the rest of the proof is a straightforward calculation
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : inner (b - z) (0 - z) ≤ 0
⊢ inner (z - b) b < 0
[PROOFSTEP]
rw [zero_sub, inner_neg_right, Right.neg_nonpos_iff] at hinner₀
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
⊢ inner (z - b) b < 0
[PROOFSTEP]
have hbz : b - z ≠ 0 := by
rw [sub_ne_zero]
contrapose! hzK
rwa [← hzK]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
⊢ b - z ≠ 0
[PROOFSTEP]
rw [sub_ne_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
⊢ b ≠ z
[PROOFSTEP]
contrapose! hzK
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
hzK : b = z
⊢ ¬z ∈ ↑K
[PROOFSTEP]
rwa [← hzK]
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
hbz : b - z ≠ 0
⊢ inner (z - b) b < 0
[PROOFSTEP]
rw [← neg_zero, lt_neg, ← neg_one_mul, ← real_inner_smul_left, smul_sub, neg_smul, one_smul, neg_smul, neg_sub_neg,
one_smul]
[GOAL]
case h.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
hbz : b - z ≠ 0
⊢ 0 < inner (b - z) b
[PROOFSTEP]
calc
0 < ⟪b - z, b - z⟫_ℝ := lt_of_not_le ((Iff.not real_inner_self_nonpos).2 hbz)
_ = ⟪b - z, b - z⟫_ℝ + 0 := (add_zero _).symm
_ ≤ ⟪b - z, b - z⟫_ℝ + ⟪b - z, z⟫_ℝ := (add_le_add rfl.ge hinner₀)
_ = ⟪b - z, b - z + z⟫_ℝ := (inner_add_right _ _ _).symm
_ = ⟪b - z, b⟫_ℝ := by rw [sub_add_cancel]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
b : H
disj : ¬b ∈ K
z : H
hzK : z ∈ ↑K
infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖
hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0
hinner₀ : 0 ≤ inner (b - z) z
hbz : b - z ≠ 0
⊢ inner (b - z) (b - z + z) = inner (b - z) b
[PROOFSTEP]
rw [sub_add_cancel]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
⊢ innerDualCone ↑(innerDualCone ↑K) = K
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
⊢ x ∈ innerDualCone ↑(innerDualCone ↑K) ↔ x ∈ K
[PROOFSTEP]
constructor
[GOAL]
case h.mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
⊢ x ∈ innerDualCone ↑(innerDualCone ↑K) → x ∈ K
[PROOFSTEP]
rw [mem_innerDualCone, ← SetLike.mem_coe]
[GOAL]
case h.mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
⊢ (∀ (x_1 : H), x_1 ∈ ↑(innerDualCone ↑K) → 0 ≤ inner x_1 x) → x ∈ ↑K
[PROOFSTEP]
contrapose!
[GOAL]
case h.mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
⊢ ¬x ∈ ↑K → ∃ x_1, x_1 ∈ ↑(innerDualCone ↑K) ∧ inner x_1 x < 0
[PROOFSTEP]
exact K.hyperplane_separation_of_nonempty_of_isClosed_of_nmem ne hc
[GOAL]
case h.mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
⊢ x ∈ K → x ∈ innerDualCone ↑(innerDualCone ↑K)
[PROOFSTEP]
rintro hxK y h
[GOAL]
case h.mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
hxK : x ∈ K
y : H
h : y ∈ ↑(innerDualCone ↑K)
⊢ 0 ≤ inner y x
[PROOFSTEP]
specialize h x hxK
[GOAL]
case h.mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
H : Type u_5
inst✝² : NormedAddCommGroup H
inst✝¹ : InnerProductSpace ℝ H
s t : Set H
inst✝ : CompleteSpace H
K : ConvexCone ℝ H
ne : Set.Nonempty ↑K
hc : IsClosed ↑K
x : H
hxK : x ∈ K
y : H
h : 0 ≤ inner x y
⊢ 0 ≤ inner y x
[PROOFSTEP]
rwa [real_inner_comm]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Dual", "llama_tokens": 11741} |
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => eval x p / exp x) atTop (𝓝 0)
[PROOFSTEP]
induction p using Polynomial.induction_on' with
| h_monomial n c =>
simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => simpa [add_div] using hp.add hq
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => eval x p / exp x) atTop (𝓝 0)
[PROOFSTEP]
induction p using Polynomial.induction_on' with
| h_monomial n c =>
simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => simpa [add_div] using hp.add hq
[GOAL]
case h_monomial
n : ℕ
c : ℝ
⊢ Tendsto (fun x => eval x (↑(monomial n) c) / exp x) atTop (𝓝 0)
[PROOFSTEP]
| h_monomial n c =>
simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
[GOAL]
case h_monomial
n : ℕ
c : ℝ
⊢ Tendsto (fun x => eval x (↑(monomial n) c) / exp x) atTop (𝓝 0)
[PROOFSTEP]
simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
[GOAL]
case h_add
p q : ℝ[X]
hp : Tendsto (fun x => eval x p / exp x) atTop (𝓝 0)
hq : Tendsto (fun x => eval x q / exp x) atTop (𝓝 0)
⊢ Tendsto (fun x => eval x (p + q) / exp x) atTop (𝓝 0)
[PROOFSTEP]
| h_add p q hp hq => simpa [add_div] using hp.add hq
[GOAL]
case h_add
p q : ℝ[X]
hp : Tendsto (fun x => eval x p / exp x) atTop (𝓝 0)
hq : Tendsto (fun x => eval x q / exp x) atTop (𝓝 0)
⊢ Tendsto (fun x => eval x (p + q) / exp x) atTop (𝓝 0)
[PROOFSTEP]
simpa [add_div] using hp.add hq
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.PolynomialExp", "llama_tokens": 777} |
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J✝ J : FractionalIdeal R₁⁰ K
h : J ≠ 0
⊢ ↑J⁻¹ = IsLocalization.coeSubmodule K ⊤ / ↑J
[PROOFSTEP]
rw [inv_nonzero]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J✝ J : FractionalIdeal R₁⁰ K
h : J ≠ 0
⊢ ↑{ val := ↑1 / ↑J, property := (_ : IsFractional R₁⁰ (↑1 / ↑J)) } = IsLocalization.coeSubmodule K ⊤ / ↑J
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J✝ J : FractionalIdeal R₁⁰ K
h : J ≠ 0
⊢ J ≠ 0
[PROOFSTEP]
rfl
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J✝ J : FractionalIdeal R₁⁰ K
h : J ≠ 0
⊢ J ≠ 0
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
hI : I ≠ 0
hJ : J ≠ 0
hIJ : I ≤ J
⊢ J⁻¹ ≤ I⁻¹
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
hI : I ≠ 0
hJ : J ≠ 0
hIJ : I ≤ J
x : K
⊢ x ∈ (fun a => ↑a) J⁻¹ → x ∈ (fun a => ↑a) I⁻¹
[PROOFSTEP]
simp only [val_eq_coe, mem_coe, mem_inv_iff hJ, mem_inv_iff hI]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
hI : I ≠ 0
hJ : J ≠ 0
hIJ : I ≤ J
x : K
⊢ (∀ (y : K), y ∈ J → x * y ∈ 1) → ∀ (y : K), y ∈ I → x * y ∈ 1
[PROOFSTEP]
exact fun h y hy => h y (hIJ hy)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
⊢ J = I⁻¹
[PROOFSTEP]
have hI : I ≠ 0 := ne_zero_of_mul_eq_one I J h
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ J = I⁻¹
[PROOFSTEP]
suffices h' : I * (1 / I) = 1
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
h' : I * (1 / I) = 1
⊢ J = I⁻¹
[PROOFSTEP]
exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl
[GOAL]
case h'
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ I * (1 / I) = 1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case h'.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ I * (1 / I) ≤ 1
[PROOFSTEP]
apply mul_le.mpr _
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ ∀ (i : K), i ∈ I → ∀ (j : K), j ∈ 1 / I → i * j ∈ 1
[PROOFSTEP]
intro x hx y hy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
x : K
hx : x ∈ I
y : K
hy : y ∈ 1 / I
⊢ x * y ∈ 1
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
x : K
hx : x ∈ I
y : K
hy : y ∈ 1 / I
⊢ y * x ∈ 1
[PROOFSTEP]
exact (mem_div_iff_of_nonzero hI).mp hy x hx
[GOAL]
case h'.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ 1 ≤ I * (1 / I)
[PROOFSTEP]
rw [← h]
[GOAL]
case h'.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ I * J ≤ I * (I * J / I)
[PROOFSTEP]
apply mul_left_mono I
[GOAL]
case h'.a.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ J ≤ I * J / I
[PROOFSTEP]
apply (le_div_iff_of_nonzero hI).mpr _
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
⊢ ∀ (x : K), x ∈ J → ∀ (y : K), y ∈ I → x * y ∈ I * J
[PROOFSTEP]
intro y hy x hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
y : K
hy : y ∈ J
x : K
hx : x ∈ I
⊢ y * x ∈ I * J
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I J : FractionalIdeal R₁⁰ K
h : I * J = 1
hI : I ≠ 0
y : K
hy : y ∈ J
x : K
hx : x ∈ I
⊢ x * y ∈ I * J
[PROOFSTEP]
exact mul_mem_mul hx hy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
R₁ : Type u_4
inst✝³ : CommRing R₁
inst✝² : IsDomain R₁
inst✝¹ : Algebra R₁ K
inst✝ : IsFractionRing R₁ K
I✝ J✝ I : FractionalIdeal R₁⁰ K
x✝ : ∃ J, I * J = 1
J : FractionalIdeal R₁⁰ K
hJ : I * J = 1
⊢ I * I⁻¹ = 1
[PROOFSTEP]
rwa [← right_inverse_eq K I J hJ]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
h : K ≃ₐ[R₁] K'
⊢ map (↑h) I⁻¹ = (map (↑h) I)⁻¹
[PROOFSTEP]
rw [inv_eq, map_div, map_one, inv_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x y : K
⊢ spanSingleton R₁⁰ x / spanSingleton R₁⁰ y = spanSingleton R₁⁰ (x / y)
[PROOFSTEP]
rw [div_spanSingleton, mul_comm, spanSingleton_mul_spanSingleton, div_eq_mul_inv]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : K
hx : x ≠ 0
⊢ spanSingleton R₁⁰ x / spanSingleton R₁⁰ x = 1
[PROOFSTEP]
rw [spanSingleton_div_spanSingleton, div_self hx, spanSingleton_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : R₁
hx : x ≠ 0
⊢ ↑(Ideal.span {x}) / ↑(Ideal.span {x}) = 1
[PROOFSTEP]
rw [coeIdeal_span_singleton,
spanSingleton_div_self K <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R₁ K).mpr hx]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : K
hx : x ≠ 0
⊢ spanSingleton R₁⁰ x * (spanSingleton R₁⁰ x)⁻¹ = 1
[PROOFSTEP]
rw [spanSingleton_inv, spanSingleton_mul_spanSingleton, mul_inv_cancel hx, spanSingleton_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : R₁
hx : x ≠ 0
⊢ ↑(Ideal.span {x}) * (↑(Ideal.span {x}))⁻¹ = 1
[PROOFSTEP]
rw [coeIdeal_span_singleton,
spanSingleton_mul_inv K <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R₁ K).mpr hx]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : K
hx : x ≠ 0
⊢ (spanSingleton R₁⁰ x)⁻¹ * spanSingleton R₁⁰ x = 1
[PROOFSTEP]
rw [mul_comm, spanSingleton_mul_inv K hx]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
R₁ : Type u_4
inst✝⁶ : CommRing R₁
inst✝⁵ : IsDomain R₁
inst✝⁴ : Algebra R₁ K
inst✝³ : IsFractionRing R₁ K
I J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝² : Field K'
inst✝¹ : Algebra R₁ K'
inst✝ : IsFractionRing R₁ K'
x : R₁
hx : x ≠ 0
⊢ (↑(Ideal.span {x}))⁻¹ * ↑(Ideal.span {x}) = 1
[PROOFSTEP]
rw [mul_comm, coe_ideal_span_singleton_mul_inv K hx]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1
[PROOFSTEP]
conv_lhs => congr; rw [eq_spanSingleton_of_principal I]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
| I * spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
congr; rw [eq_spanSingleton_of_principal I]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
| I * spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
congr; rw [eq_spanSingleton_of_principal I]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
| I * spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
congr
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
| I
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
| spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
rw [eq_spanSingleton_of_principal I]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ spanSingleton R₁⁰ (generator ↑I) * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1
[PROOFSTEP]
rw [spanSingleton_mul_spanSingleton, mul_inv_cancel, spanSingleton_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ generator ↑I ≠ 0
[PROOFSTEP]
intro generator_I_eq_zero
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
generator_I_eq_zero : generator ↑I = 0
⊢ False
[PROOFSTEP]
apply h
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing A
inst✝¹² : Field K
inst✝¹¹ : IsDomain A
R₁✝ : Type u_4
inst✝¹⁰ : CommRing R₁✝
inst✝⁹ : IsDomain R₁✝
inst✝⁸ : Algebra R₁✝ K
inst✝⁷ : IsFractionRing R₁✝ K
I✝ J : FractionalIdeal R₁✝⁰ K
K' : Type u_5
inst✝⁶ : Field K'
inst✝⁵ : Algebra R₁✝ K'
inst✝⁴ : IsFractionRing R₁✝ K'
R₁ : Type u_6
inst✝³ : CommRing R₁
inst✝² : Algebra R₁ K
inst✝¹ : IsLocalization R₁⁰ K
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
generator_I_eq_zero : generator ↑I = 0
⊢ I = 0
[PROOFSTEP]
rw [eq_spanSingleton_of_principal I, generator_I_eq_zero, spanSingleton_zero]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
⊢ I * I⁻¹ = 1 ↔ generator ↑I ≠ 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
⊢ I * I⁻¹ = 1 → generator ↑I ≠ 0
[PROOFSTEP]
intro hI hg
[GOAL]
case mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hI : I * I⁻¹ = 1
hg : generator ↑I = 0
⊢ False
[PROOFSTEP]
apply ne_zero_of_mul_eq_one _ _ hI
[GOAL]
case mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hI : I * I⁻¹ = 1
hg : generator ↑I = 0
⊢ I = 0
[PROOFSTEP]
rw [eq_spanSingleton_of_principal I, hg, spanSingleton_zero]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
⊢ generator ↑I ≠ 0 → I * I⁻¹ = 1
[PROOFSTEP]
intro hg
[GOAL]
case mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
⊢ I * I⁻¹ = 1
[PROOFSTEP]
apply invertible_of_principal
[GOAL]
case mpr.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
⊢ I ≠ 0
[PROOFSTEP]
rw [eq_spanSingleton_of_principal I]
[GOAL]
case mpr.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
⊢ spanSingleton R₁⁰ (generator ↑I) ≠ 0
[PROOFSTEP]
intro hI
[GOAL]
case mpr.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
hI : spanSingleton R₁⁰ (generator ↑I) = 0
⊢ False
[PROOFSTEP]
have := mem_spanSingleton_self R₁⁰ (generator (I : Submodule R₁ K))
[GOAL]
case mpr.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
hI : spanSingleton R₁⁰ (generator ↑I) = 0
this : generator ↑I ∈ spanSingleton R₁⁰ (generator ↑I)
⊢ False
[PROOFSTEP]
rw [hI, mem_zero_iff] at this
[GOAL]
case mpr.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
hg : generator ↑I ≠ 0
hI : spanSingleton R₁⁰ (generator ↑I) = 0
this : generator ↑I = 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ IsPrincipal ↑I⁻¹
[PROOFSTEP]
rw [val_eq_coe, isPrincipal_iff]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ ∃ x, I⁻¹ = spanSingleton R₁⁰ x
[PROOFSTEP]
use(generator (I : Submodule R₁ K))⁻¹
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
have hI : I * spanSingleton _ (generator (I : Submodule R₁ K))⁻¹ = 1
[GOAL]
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
⊢ I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
hI : I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1
⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
apply mul_generator_self_inv _ I h
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
R₁ : Type u_4
inst✝⁷ : CommRing R₁
inst✝⁶ : IsDomain R₁
inst✝⁵ : Algebra R₁ K
inst✝⁴ : IsFractionRing R₁ K
I✝ J : FractionalIdeal R₁⁰ K
K' : Type u_5
inst✝³ : Field K'
inst✝² : Algebra R₁ K'
inst✝¹ : IsFractionRing R₁ K'
I : FractionalIdeal R₁⁰ K
inst✝ : IsPrincipal ↑I
h : I ≠ 0
hI : I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1
⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹
[PROOFSTEP]
exact (right_inverse_eq _ I (spanSingleton _ (generator (I : Submodule R₁ K))⁻¹) hI).symm
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
⊢ IsDedekindDomainInv A ↔ ∀ (I : FractionalIdeal A⁰ K), I ≠ ⊥ → I * I⁻¹ = 1
[PROOFSTEP]
let h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K :=
FractionalIdeal.mapEquiv (FractionRing.algEquiv A K)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K)
⊢ IsDedekindDomainInv A ↔ ∀ (I : FractionalIdeal A⁰ K), I ≠ ⊥ → I * I⁻¹ = 1
[PROOFSTEP]
refine h.toEquiv.forall_congr (fun {x} => ?_)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K)
x : FractionalIdeal A⁰ (FractionRing A)
⊢ x ≠ ⊥ → x * x⁻¹ = 1 ↔ ↑h.toEquiv x ≠ ⊥ → ↑h.toEquiv x * (↑h.toEquiv x)⁻¹ = 1
[PROOFSTEP]
rw [← h.toEquiv.apply_eq_iff_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K)
x : FractionalIdeal A⁰ (FractionRing A)
⊢ x ≠ ⊥ → ↑h.toEquiv (x * x⁻¹) = ↑h.toEquiv 1 ↔ ↑h.toEquiv x ≠ ⊥ → ↑h.toEquiv x * (↑h.toEquiv x)⁻¹ = 1
[PROOFSTEP]
simp [IsDedekindDomainInv]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
hI : IsUnit (adjoinIntegral A⁰ x hx)
⊢ adjoinIntegral A⁰ x hx = 1
[PROOFSTEP]
set I := adjoinIntegral A⁰ x hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
⊢ I = 1
[PROOFSTEP]
have mul_self : I * I = I := by apply coeToSubmodule_injective; simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
⊢ I * I = I
[PROOFSTEP]
apply coeToSubmodule_injective
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
⊢ (fun I => ↑I) (I * I) = (fun I => ↑I) I
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
mul_self : I * I = I
⊢ I = 1
[PROOFSTEP]
convert congr_arg (· * I⁻¹) mul_self
[GOAL]
case h.e'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
mul_self : I * I = I
⊢ I = I * I * I⁻¹
[PROOFSTEP]
simp only [(mul_inv_cancel_iff_isUnit K).mpr hI, mul_assoc, mul_one]
[GOAL]
case h.e'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : K
hx : IsIntegral A x
I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx
hI : IsUnit I
mul_self : I * I = I
⊢ 1 = I * I⁻¹
[PROOFSTEP]
simp only [(mul_inv_cancel_iff_isUnit K).mpr hI, mul_assoc, mul_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
⊢ IsNoetherianRing A
[PROOFSTEP]
refine' isNoetherianRing_iff.mpr ⟨fun I : Ideal A => _⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
I : Ideal A
⊢ Submodule.FG I
[PROOFSTEP]
by_cases hI : I = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
I : Ideal A
hI : I = ⊥
⊢ Submodule.FG I
[PROOFSTEP]
rw [hI]
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
I : Ideal A
hI : I = ⊥
⊢ Submodule.FG ⊥
[PROOFSTEP]
apply Submodule.fg_bot
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
I : Ideal A
hI : ¬I = ⊥
⊢ Submodule.FG I
[PROOFSTEP]
have hI : (I : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr hI
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
I : Ideal A
hI✝ : ¬I = ⊥
hI : ↑I ≠ 0
⊢ Submodule.FG I
[PROOFSTEP]
exact I.fg_of_isUnit (IsFractionRing.injective A (FractionRing A)) (h.isUnit hI)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
⊢ IsIntegrallyClosed A
[PROOFSTEP]
refine ⟨fun {x hx} => ?_⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
x : FractionRing A
hx : IsIntegral A x
⊢ ∃ y, ↑(algebraMap A (FractionRing A)) y = x
[PROOFSTEP]
rw [← Set.mem_range, ← Algebra.mem_bot, ← Subalgebra.mem_toSubmodule, Algebra.toSubmodule_bot, ←
coe_spanSingleton A⁰ (1 : FractionRing A), spanSingleton_one, ←
FractionalIdeal.adjoinIntegral_eq_one_of_isUnit x hx (h.isUnit _)]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
x : FractionRing A
hx : IsIntegral A x
⊢ x ∈ ↑(adjoinIntegral A⁰ x hx)
[PROOFSTEP]
exact mem_adjoinIntegral_self A⁰ x hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
x : FractionRing A
hx : IsIntegral A x
⊢ adjoinIntegral A⁰ x hx ≠ 0
[PROOFSTEP]
exact fun h => one_ne_zero (eq_zero_iff.mp h 1 (Algebra.adjoin A { x }).one_mem)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
⊢ ∀ {p : Ideal A}, p ≠ ⊥ → Ideal.IsPrime p → Ideal.IsMaximal p
[PROOFSTEP]
rintro P P_ne hP
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
⊢ Ideal.IsMaximal P
[PROOFSTEP]
refine
Ideal.isMaximal_def.mpr
⟨hP.ne_top, fun M hM => ?_⟩
-- We may assume `P` and `M` (as fractional ideals) are nonzero.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
⊢ M = ⊤
[PROOFSTEP]
have P'_ne : (P : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr P_ne
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
⊢ M = ⊤
[PROOFSTEP]
have M'_ne : (M : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr (lt_of_le_of_lt bot_le hM).ne'
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
⊢ M = ⊤
[PROOFSTEP]
suffices (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ P
by
rw [eq_top_iff, ← coeIdeal_le_coeIdeal (FractionRing A), coeIdeal_top]
calc
(1 : FractionalIdeal A⁰ (FractionRing A)) = _ * _ * _ := ?_
_ ≤ _ * _ :=
(mul_right_mono ((P : FractionalIdeal A⁰ (FractionRing A))⁻¹ * M : FractionalIdeal A⁰ (FractionRing A)) this)
_ = M := ?_
·
rw [mul_assoc, ← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul,
h.inv_mul_eq_one M'_ne]
·
rw [← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul]
-- Suppose we have `x ∈ M⁻¹ * P`, then in fact `x = algebraMap _ _ y` for some `y`.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
this : (↑M)⁻¹ * ↑P ≤ ↑P
⊢ M = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← coeIdeal_le_coeIdeal (FractionRing A), coeIdeal_top]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
this : (↑M)⁻¹ * ↑P ≤ ↑P
⊢ 1 ≤ ↑M
[PROOFSTEP]
calc
(1 : FractionalIdeal A⁰ (FractionRing A)) = _ * _ * _ := ?_
_ ≤ _ * _ :=
(mul_right_mono ((P : FractionalIdeal A⁰ (FractionRing A))⁻¹ * M : FractionalIdeal A⁰ (FractionRing A)) this)
_ = M := ?_
[GOAL]
case calc_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
this : (↑M)⁻¹ * ↑P ≤ ↑P
⊢ 1 = (↑M)⁻¹ * ↑P * ((↑P)⁻¹ * ↑M)
[PROOFSTEP]
rw [mul_assoc, ← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul,
h.inv_mul_eq_one M'_ne]
[GOAL]
case calc_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
this : (↑M)⁻¹ * ↑P ≤ ↑P
⊢ ↑P * ((↑P)⁻¹ * ↑M) = ↑M
[PROOFSTEP]
rw [← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul]
-- Suppose we have `x ∈ M⁻¹ * P`, then in fact `x = algebraMap _ _ y` for some `y`.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
⊢ (↑M)⁻¹ * ↑P ≤ ↑P
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
x : FractionRing A
hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
⊢ x ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
have le_one : (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ 1 :=
by
rw [← h.inv_mul_eq_one M'_ne]
exact mul_left_mono _ ((coeIdeal_le_coeIdeal (FractionRing A)).mpr hM.le)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
x : FractionRing A
hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
⊢ (↑M)⁻¹ * ↑P ≤ 1
[PROOFSTEP]
rw [← h.inv_mul_eq_one M'_ne]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
x : FractionRing A
hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
⊢ (↑M)⁻¹ * ↑P ≤ (↑M)⁻¹ * ↑M
[PROOFSTEP]
exact mul_left_mono _ ((coeIdeal_le_coeIdeal (FractionRing A)).mpr hM.le)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
x : FractionRing A
hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
le_one : (↑M)⁻¹ * ↑P ≤ 1
⊢ x ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
obtain ⟨y, _hy, rfl⟩ :=
(mem_coeIdeal _).mp
(le_one hx)
-- Since `M` is strictly greater than `P`, let `z ∈ M \ P`.
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
obtain ⟨z, hzM, hzp⟩ := SetLike.exists_of_lt hM
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
z : A
hzM : z ∈ M
hzp : ¬z ∈ P
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
have zy_mem := mul_mem_mul (mem_coeIdeal_of_mem A⁰ hzM) hx
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
z : A
hzM : z ∈ M
hzp : ¬z ∈ P
zy_mem : ↑(algebraMap A (FractionRing A)) z * ↑(algebraMap A (FractionRing A)) y ∈ ↑M * ((↑M)⁻¹ * ↑P)
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
rw [← RingHom.map_mul, ← mul_assoc, h.mul_inv_eq_one M'_ne, one_mul] at zy_mem
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
z : A
hzM : z ∈ M
hzp : ¬z ∈ P
zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
obtain ⟨zy, hzy, zy_eq⟩ := (mem_coeIdeal A⁰).mp zy_mem
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
z : A
hzM : z ∈ M
hzp : ¬z ∈ P
zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P
zy : A
hzy : zy ∈ P
zy_eq : ↑(algebraMap A ((fun x => FractionRing A) z)) zy = ↑(algebraMap A (FractionRing A)) (z * y)
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
rw [IsFractionRing.injective A (FractionRing A) zy_eq] at hzy
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomainInv A
P : Ideal A
P_ne : P ≠ ⊥
hP : Ideal.IsPrime P
M : Ideal A
hM : P < M
P'_ne : ↑P ≠ 0
M'_ne : ↑M ≠ 0
le_one : (↑M)⁻¹ * ↑P ≤ 1
y : A
_hy : y ∈ ⊤
hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P)
z : A
hzM : z ∈ M
hzp : ¬z ∈ P
zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P
zy : A
hzy : z * y ∈ P
zy_eq : ↑(algebraMap A ((fun x => FractionRing A) z)) zy = ↑(algebraMap A (FractionRing A)) (z * y)
⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P
[PROOFSTEP]
exact mem_coeIdeal_of_mem A⁰ (Or.resolve_left (hP.mem_or_mem hzy) hzp)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
obtain ⟨Z₀, hZ₀⟩ := PrimeSpectrum.exists_primeSpectrum_prod_le_and_ne_bot_of_domain hNF hI0
[GOAL]
case intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
obtain ⟨Z, ⟨hZI, hprodZ⟩, h_eraseZ⟩ :=
Multiset.wellFounded_lt.has_min
(fun Z => (Z.map PrimeSpectrum.asIdeal).prod ≤ I ∧ (Z.map PrimeSpectrum.asIdeal).prod ≠ ⊥) ⟨Z₀, hZ₀⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
have hZM : Multiset.prod (Z.map PrimeSpectrum.asIdeal) ≤ M := le_trans hZI hIM
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
have hZ0 : Z ≠ 0 := by rintro rfl; simp [hM.ne_top] at hZM
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
⊢ Z ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < 0
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≤ M
⊢ False
[PROOFSTEP]
simp [hM.ne_top] at hZM
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
obtain ⟨_, hPZ', hPM⟩ := (hM.isPrime.multiset_prod_le (mt Multiset.map_eq_zero.mp hZ0)).mp hZM
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
w✝ : Ideal A
hPZ' : w✝ ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : w✝ ≤ M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
obtain ⟨P, hPZ, rfl⟩ := Multiset.mem_map.mp hPZ'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
classical
have := Multiset.map_erase PrimeSpectrum.asIdeal PrimeSpectrum.ext P Z
obtain ⟨hP0, hZP0⟩ : P.asIdeal ≠ ⊥ ∧ ((Z.erase P).map PrimeSpectrum.asIdeal).prod ≠ ⊥ := by
rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ
have hPM' := (P.IsPrime.isMaximal hP0).eq_of_le hM.ne_top hPM
subst hPM'
refine ⟨Z.erase P, ?_, ?_⟩
· convert hZI
rw [this, Multiset.cons_erase hPZ']
· refine fun h => h_eraseZ (Z.erase P) ⟨h, ?_⟩ (Multiset.erase_lt.mpr hPZ)
exact hZP0
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
have := Multiset.map_erase PrimeSpectrum.asIdeal PrimeSpectrum.ext P Z
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
obtain ⟨hP0, hZP0⟩ : P.asIdeal ≠ ⊥ ∧ ((Z.erase P).map PrimeSpectrum.asIdeal).prod ≠ ⊥ := by
rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
⊢ P.asIdeal ≠ ⊥ ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
[PROOFSTEP]
rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
have hPM' := (P.IsPrime.isMaximal hP0).eq_of_le hM.ne_top hPM
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I M : Ideal A
hI0 : I ≠ ⊥
hIM : I ≤ M
hM : Ideal.IsMaximal M
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
hPM : P.asIdeal ≤ M
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hPM' : P.asIdeal = M
⊢ ∃ Z,
Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
subst hPM'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hIM : I ≤ P.asIdeal
hM : Ideal.IsMaximal P.asIdeal
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal
hPM : P.asIdeal ≤ P.asIdeal
⊢ ∃ Z,
Multiset.prod (P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
[PROOFSTEP]
refine ⟨Z.erase P, ?_, ?_⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hIM : I ≤ P.asIdeal
hM : Ideal.IsMaximal P.asIdeal
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal
hPM : P.asIdeal ≤ P.asIdeal
⊢ Multiset.prod (P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I
[PROOFSTEP]
convert hZI
[GOAL]
case h.e'_3.h.e'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hIM : I ≤ P.asIdeal
hM : Ideal.IsMaximal P.asIdeal
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal
hPM : P.asIdeal ≤ P.asIdeal
⊢ P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.map PrimeSpectrum.asIdeal Z
[PROOFSTEP]
rw [this, Multiset.cons_erase hPZ']
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hIM : I ≤ P.asIdeal
hM : Ideal.IsMaximal P.asIdeal
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal
hPM : P.asIdeal ≤ P.asIdeal
⊢ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I
[PROOFSTEP]
refine fun h => h_eraseZ (Z.erase P) ⟨h, ?_⟩ (Multiset.erase_lt.mpr hPZ)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
Z₀ : Multiset (PrimeSpectrum A)
hZ₀ :
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥
Z : Multiset (PrimeSpectrum A)
h_eraseZ :
∀ (x : Multiset (PrimeSpectrum A)),
(x ∈ fun Z =>
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) →
¬x < Z
hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
hZ0 : Z ≠ 0
P : PrimeSpectrum A
hPZ : P ∈ Z
hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z
this :
Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) =
Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal
hP0 : P.asIdeal ≠ ⊥
hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
hIM : I ≤ P.asIdeal
hM : Ideal.IsMaximal P.asIdeal
hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal
hPM : P.asIdeal ≤ P.asIdeal
h : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I
⊢ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥
[PROOFSTEP]
exact hZP0
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
suffices ∀ {M : Ideal A} (_hM : M.IsMaximal), ∃ x : K, x ∈ (M⁻¹ : FractionalIdeal A⁰ K) ∧ x ∉ (1 : FractionalIdeal A⁰ K)
by
obtain ⟨M, hM, hIM⟩ : ∃ M : Ideal A, IsMaximal M ∧ I ≤ M := Ideal.exists_le_maximal I hI1
skip
have hM0 := (M.bot_lt_of_maximal hNF).ne'
obtain ⟨x, hxM, hx1⟩ := this hM
refine ⟨x, inv_anti_mono ?_ ?_ ((coeIdeal_le_coeIdeal _).mpr hIM) hxM, hx1⟩ <;> rw [coeIdeal_ne_zero] <;>
assumption
-- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
obtain ⟨M, hM, hIM⟩ : ∃ M : Ideal A, IsMaximal M ∧ I ≤ M := Ideal.exists_le_maximal I hI1
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
skip
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have hM0 := (M.bot_lt_of_maximal hNF).ne'
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
obtain ⟨x, hxM, hx1⟩ := this hM
[GOAL]
case intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
x : K
hxM : x ∈ (↑M)⁻¹
hx1 : ¬x ∈ 1
⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
refine ⟨x, inv_anti_mono ?_ ?_ ((coeIdeal_le_coeIdeal _).mpr hIM) hxM, hx1⟩
[GOAL]
case intro.intro.intro.intro.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
x : K
hxM : x ∈ (↑M)⁻¹
hx1 : ¬x ∈ 1
⊢ ↑I ≠ 0
[PROOFSTEP]
rw [coeIdeal_ne_zero]
[GOAL]
case intro.intro.intro.intro.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
x : K
hxM : x ∈ (↑M)⁻¹
hx1 : ¬x ∈ 1
⊢ ↑M ≠ 0
[PROOFSTEP]
rw [coeIdeal_ne_zero]
[GOAL]
case intro.intro.intro.intro.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
x : K
hxM : x ∈ (↑M)⁻¹
hx1 : ¬x ∈ 1
⊢ I ≠ ⊥
[PROOFSTEP]
assumption
-- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`.
[GOAL]
case intro.intro.intro.intro.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
M : Ideal A
hM : IsMaximal M
hIM : I ≤ M
hM0 : M ≠ ⊥
x : K
hxM : x ∈ (↑M)⁻¹
hx1 : ¬x ∈ 1
⊢ M ≠ ⊥
[PROOFSTEP]
assumption
-- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
⊢ ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
intro M hM
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
skip
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
obtain ⟨⟨a, haM⟩, ha0⟩ := Submodule.nonzero_mem_of_bot_lt (M.bot_lt_of_maximal hNF)
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : { val := a, property := haM } ≠ 0
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
replace ha0 : a ≠ 0 := Subtype.coe_injective.ne ha0
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
let J : Ideal A := Ideal.span { a }
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have hJ0 : J ≠ ⊥ := mt Ideal.span_singleton_eq_bot.mp ha0
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have hJM : J ≤ M := Ideal.span_le.mpr (Set.singleton_subset_iff.mpr haM)
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have hM0 : ⊥ < M := M.bot_lt_of_maximal hNF
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
obtain ⟨Z, hle, hnle⟩ := exists_multiset_prod_cons_le_and_prod_not_le hNF hJ0 hJM
[GOAL]
case intro.mk.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
obtain ⟨b, hbZ, hbJ⟩ := SetLike.not_le_iff_exists.mp hnle
[GOAL]
case intro.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have hnz_fa : algebraMap A K a ≠ 0 := mt ((injective_iff_map_eq_zero _).mp (IsFractionRing.injective A K) a) ha0
[GOAL]
case intro.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
have _hb0 : algebraMap A K b ≠ 0 :=
mt ((injective_iff_map_eq_zero _).mp (IsFractionRing.injective A K) b) fun h => hbJ <| h.symm ▸ J.zero_mem
[GOAL]
case intro.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1
[PROOFSTEP]
refine' ⟨algebraMap A K b * (algebraMap A K a)⁻¹, (mem_inv_iff _).mpr _, _⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
⊢ ↑M ≠ 0
[PROOFSTEP]
exact coeIdeal_ne_zero.mpr hM0.ne'
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
⊢ ∀ (y : K), y ∈ ↑M → ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * y ∈ 1
[PROOFSTEP]
rintro y₀ hy₀
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y₀ : K
hy₀ : y₀ ∈ ↑M
⊢ ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * y₀ ∈ 1
[PROOFSTEP]
obtain ⟨y, h_Iy, rfl⟩ := (mem_coeIdeal _).mp hy₀
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
⊢ ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * ↑(algebraMap A K) y ∈ 1
[PROOFSTEP]
rw [mul_comm, ← mul_assoc, ← RingHom.map_mul]
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1
[PROOFSTEP]
have h_yb : y * b ∈ J := by
apply hle
rw [Multiset.prod_cons]
exact Submodule.smul_mem_smul h_Iy hbZ
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
⊢ y * b ∈ J
[PROOFSTEP]
apply hle
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
⊢ y * b ∈ Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z)
[PROOFSTEP]
rw [Multiset.prod_cons]
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
⊢ y * b ∈ M * Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
[PROOFSTEP]
exact Submodule.smul_mem_smul h_Iy hbZ
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
h_yb : y * b ∈ J
⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1
[PROOFSTEP]
rw [Ideal.mem_span_singleton'] at h_yb
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
h_yb : ∃ a_1, a_1 * a = y * b
⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1
[PROOFSTEP]
rcases h_yb with ⟨c, hc⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
c : A
hc : c * a = y * b
⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1
[PROOFSTEP]
rw [← hc, RingHom.map_mul, mul_assoc, mul_inv_cancel hnz_fa, mul_one]
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
y : A
h_Iy : y ∈ M
hy₀ : ↑(algebraMap A K) y ∈ ↑M
c : A
hc : c * a = y * b
⊢ ↑(algebraMap A K) c ∈ 1
[PROOFSTEP]
apply coe_mem_one
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
⊢ ¬↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ ∈ 1
[PROOFSTEP]
refine' mt (mem_one_iff _).mp _
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
⊢ ¬∃ x', ↑(algebraMap A K) x' = ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹
[PROOFSTEP]
rintro ⟨x', h₂_abs⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_3.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
x' : A
h₂_abs : ↑(algebraMap A K) x' = ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹
⊢ False
[PROOFSTEP]
rw [← div_eq_mul_inv, eq_div_iff_mul_eq hnz_fa, ← RingHom.map_mul] at h₂_abs
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_3.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
x' : A
h₂_abs : ↑(algebraMap A K) (x' * a) = ↑(algebraMap A K) b
⊢ False
[PROOFSTEP]
have := Ideal.mem_span_singleton'.mpr ⟨x', IsFractionRing.injective A K h₂_abs⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.refine'_3.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
hNF : ¬IsField A
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
M : Ideal A
hM : IsMaximal M
a : A
haM : a ∈ M
ha0 : a ≠ 0
J : Ideal A := span {a}
hJ0 : J ≠ ⊥
hJM : J ≤ M
hM0 : ⊥ < M
Z : Multiset (PrimeSpectrum A)
hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J
b : A
hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z)
hbJ : ¬b ∈ J
hnz_fa : ↑(algebraMap A K) a ≠ 0
_hb0 : ↑(algebraMap A K) b ≠ 0
x' : A
h₂_abs : ↑(algebraMap A K) (x' * a) = ↑(algebraMap A K) b
this : b ∈ span {a}
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI : I ≠ ⊥
⊢ 1 ∈ (↑I)⁻¹
[PROOFSTEP]
rw [mem_inv_iff (coeIdeal_ne_zero.mpr hI)]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI : I ≠ ⊥
⊢ ∀ (y : K), y ∈ ↑I → 1 * y ∈ 1
[PROOFSTEP]
intro y hy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI : I ≠ ⊥
y : K
hy : y ∈ ↑I
⊢ 1 * y ∈ 1
[PROOFSTEP]
rw [one_mul]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI : I ≠ ⊥
y : K
hy : y ∈ ↑I
⊢ y ∈ 1
[PROOFSTEP]
exact coeIdeal_le_one hy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
by_cases hI1 : I = ⊤
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : I = ⊤
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
rw [hI1, coeIdeal_top, one_mul, inv_one]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
by_cases hNF : IsField A
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : IsField A
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
letI := hNF.toField
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : IsField A
this : Field A := IsField.toField hNF
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
rcases hI1 (I.eq_bot_or_top.resolve_left hI0) with
⟨⟩
-- We'll show a contradiction with `exists_not_mem_one_of_ne_bot`:
-- `J⁻¹ = (I * I⁻¹)⁻¹` cannot have an element `x ∉ 1`, so it must equal `1`.
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
obtain ⟨J, hJ⟩ : ∃ J : Ideal A, (J : FractionalIdeal A⁰ K) = I * (I : FractionalIdeal A⁰ K)⁻¹ :=
le_one_iff_exists_coeIdeal.mp mul_one_div_le_one
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
by_cases hJ0 : J = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : J = ⊥
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
subst hJ0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
hJ : ↑⊥ = ↑I * (↑I)⁻¹
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
refine' absurd _ hI0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
hJ : ↑⊥ = ↑I * (↑I)⁻¹
⊢ I = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← coeIdeal_le_coeIdeal K, hJ]
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
hJ : ↑⊥ = ↑I * (↑I)⁻¹
⊢ ↑I ≤ ↑I * (↑I)⁻¹
[PROOFSTEP]
exact coe_ideal_le_self_mul_inv K I
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
by_cases hJ1 : J = ⊤
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
hJ1 : J = ⊤
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
rw [← hJ, hJ1, coeIdeal_top]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
hJ1 : ¬J = ⊤
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
obtain ⟨x, hx, hx1⟩ : ∃ x : K, x ∈ (J : FractionalIdeal A⁰ K)⁻¹ ∧ x ∉ (1 : FractionalIdeal A⁰ K) :=
exists_not_mem_one_of_ne_bot hNF hJ0 hJ1
[GOAL]
case neg.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
hJ1 : ¬J = ⊤
x : K
hx : x ∈ (↑J)⁻¹
hx1 : ¬x ∈ 1
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
contrapose! hx1 with h_abs
[GOAL]
case neg.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
hJ1 : ¬J = ⊤
x : K
hx : x ∈ (↑J)⁻¹
h_abs : ↑I * (↑I)⁻¹ ≠ 1
⊢ x ∈ 1
[PROOFSTEP]
rw [hJ] at hx
[GOAL]
case neg.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1
hI1 : ¬I = ⊤
hNF : ¬IsField A
J : Ideal A
hJ : ↑J = ↑I * (↑I)⁻¹
hJ0 : ¬J = ⊥
hJ1 : ¬J = ⊤
x : K
hx : x ∈ (↑I * (↑I)⁻¹)⁻¹
h_abs : ↑I * (↑I)⁻¹ ≠ 1
⊢ x ∈ 1
[PROOFSTEP]
exact hI hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
⊢ ↑I * (↑I)⁻¹ = 1
[PROOFSTEP]
apply mul_inv_cancel_of_le_one hI0
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1
[PROOFSTEP]
by_cases hJ0 : I * (I : FractionalIdeal A⁰ K)⁻¹ = 0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ↑I * (↑I)⁻¹ = 0
⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1
[PROOFSTEP]
rw [hJ0, inv_zero']
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ↑I * (↑I)⁻¹ = 0
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le _
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1
[PROOFSTEP]
intro x hx
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
⊢ x ∈ (fun a => ↑a) 1
[PROOFSTEP]
suffices x ∈ integralClosure A K by
rwa [IsIntegrallyClosed.integralClosure_eq_bot, Algebra.mem_bot, Set.mem_range, ← mem_one_iff] at this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
this : x ∈ integralClosure A K
⊢ x ∈ (fun a => ↑a) 1
[PROOFSTEP]
rwa [IsIntegrallyClosed.integralClosure_eq_bot, Algebra.mem_bot, Set.mem_range, ← mem_one_iff] at this
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
⊢ x ∈ integralClosure A K
[PROOFSTEP]
rw [mem_integralClosure_iff_mem_FG]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
⊢ ∃ M, Submodule.FG (↑Subalgebra.toSubmodule M) ∧ x ∈ M
[PROOFSTEP]
have x_mul_mem : ∀ b ∈ (I⁻¹ : FractionalIdeal A⁰ K), x * b ∈ (I⁻¹ : FractionalIdeal A⁰ K) :=
by
intro b hb
rw [mem_inv_iff]
dsimp only at hx
rw [val_eq_coe, mem_coe, mem_inv_iff] at hx
swap; · exact hJ0
swap; · exact coeIdeal_ne_zero.mpr hI0
simp only [mul_assoc, mul_comm b] at hx ⊢
intro y hy
exact
hx _
(mul_mem_mul hy hb)
-- It turns out the subalgebra consisting of all `p(x)` for `p : A[X]` works.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
⊢ ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
[PROOFSTEP]
intro b hb
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ x * b ∈ (↑I)⁻¹
[PROOFSTEP]
rw [mem_inv_iff]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I ≠ 0
[PROOFSTEP]
dsimp only at hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ ↑(↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I ≠ 0
[PROOFSTEP]
rw [val_eq_coe, mem_coe, mem_inv_iff] at hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I * (↑I)⁻¹ ≠ 0
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I ≠ 0
[PROOFSTEP]
swap
[GOAL]
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I * (↑I)⁻¹ ≠ 0
[PROOFSTEP]
exact hJ0
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I ≠ 0
[PROOFSTEP]
swap
[GOAL]
case hI
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
b : K
hb : b ∈ (↑I)⁻¹
⊢ ↑I ≠ 0
[PROOFSTEP]
exact coeIdeal_ne_zero.mpr hI0
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1
[PROOFSTEP]
simp only [mul_assoc, mul_comm b] at hx ⊢
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1
b : K
hb : b ∈ (↑I)⁻¹
⊢ ∀ (y : K), y ∈ ↑I → x * (y * b) ∈ 1
[PROOFSTEP]
intro y hy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1
b : K
hb : b ∈ (↑I)⁻¹
y : K
hy : y ∈ ↑I
⊢ x * (y * b) ∈ 1
[PROOFSTEP]
exact
hx _
(mul_mem_mul hy hb)
-- It turns out the subalgebra consisting of all `p(x)` for `p : A[X]` works.
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
⊢ ∃ M, Submodule.FG (↑Subalgebra.toSubmodule M) ∧ x ∈ M
[PROOFSTEP]
refine
⟨AlgHom.range (Polynomial.aeval x : A[X] →ₐ[A] K),
isNoetherian_submodule.mp (isNoetherian (I : FractionalIdeal A⁰ K)⁻¹) _ fun y hy => ?_,
⟨Polynomial.X, Polynomial.aeval_X x⟩⟩
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
y : K
hy : y ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
⊢ y ∈ ↑(↑I)⁻¹
[PROOFSTEP]
obtain ⟨p, rfl⟩ := (AlgHom.mem_range _).mp hy
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
⊢ ↑(Polynomial.aeval x) p ∈ ↑(↑I)⁻¹
[PROOFSTEP]
rw [Polynomial.aeval_eq_sum_range]
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
⊢ (Finset.sum (Finset.range (Polynomial.natDegree p + 1)) fun i => Polynomial.coeff p i • x ^ i) ∈ ↑(↑I)⁻¹
[PROOFSTEP]
refine Submodule.sum_mem _ fun i hi => Submodule.smul_mem _ _ ?_
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
i : ℕ
hi : i ∈ Finset.range (Polynomial.natDegree p + 1)
⊢ x ^ i ∈ ↑(↑I)⁻¹
[PROOFSTEP]
clear hi
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
i : ℕ
⊢ x ^ i ∈ ↑(↑I)⁻¹
[PROOFSTEP]
induction' i with i ih
[GOAL]
case neg.intro.zero
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
⊢ x ^ Nat.zero ∈ ↑(↑I)⁻¹
[PROOFSTEP]
rw [pow_zero]
[GOAL]
case neg.intro.zero
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
⊢ 1 ∈ ↑(↑I)⁻¹
[PROOFSTEP]
exact one_mem_inv_coe_ideal hI0
[GOAL]
case neg.intro.succ
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
i : ℕ
ih : x ^ i ∈ ↑(↑I)⁻¹
⊢ x ^ Nat.succ i ∈ ↑(↑I)⁻¹
[PROOFSTEP]
show x ^ i.succ ∈ (I⁻¹ : FractionalIdeal A⁰ K)
[GOAL]
case neg.intro.succ
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
i : ℕ
ih : x ^ i ∈ ↑(↑I)⁻¹
⊢ x ^ Nat.succ i ∈ (↑I)⁻¹
[PROOFSTEP]
rw [pow_succ]
[GOAL]
case neg.intro.succ
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : IsDedekindDomain A
I : Ideal A
hI0 : I ≠ ⊥
hJ0 : ¬↑I * (↑I)⁻¹ = 0
x : K
hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹
x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹
p : A[X]
hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x))
i : ℕ
ih : x ^ i ∈ ↑(↑I)⁻¹
⊢ x * x ^ i ∈ (↑I)⁻¹
[PROOFSTEP]
exact x_mul_mem _ ih
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I : FractionalIdeal A⁰ K
hne : I ≠ 0
⊢ I * I⁻¹ = 1
[PROOFSTEP]
obtain ⟨a, J, ha, hJ⟩ : ∃ (a : A) (aI : Ideal A), a ≠ 0 ∧ I = spanSingleton A⁰ (algebraMap A K a)⁻¹ * aI :=
exists_eq_spanSingleton_mul I
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I : FractionalIdeal A⁰ K
hne : I ≠ 0
a : A
J : Ideal A
ha : a ≠ 0
hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J
⊢ I * I⁻¹ = 1
[PROOFSTEP]
suffices h₂ : I * (spanSingleton A⁰ (algebraMap _ _ a) * (J : FractionalIdeal A⁰ K)⁻¹) = 1
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I : FractionalIdeal A⁰ K
hne : I ≠ 0
a : A
J : Ideal A
ha : a ≠ 0
hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J
h₂ : I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1
⊢ I * I⁻¹ = 1
[PROOFSTEP]
rw [mul_inv_cancel_iff]
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I : FractionalIdeal A⁰ K
hne : I ≠ 0
a : A
J : Ideal A
ha : a ≠ 0
hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J
h₂ : I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1
⊢ ∃ J, I * J = 1
[PROOFSTEP]
exact ⟨spanSingleton A⁰ (algebraMap _ _ a) * (J : FractionalIdeal A⁰ K)⁻¹, h₂⟩
[GOAL]
case h₂
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I : FractionalIdeal A⁰ K
hne : I ≠ 0
a : A
J : Ideal A
ha : a ≠ 0
hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J
⊢ I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1
[PROOFSTEP]
subst hJ
[GOAL]
case h₂
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
a : A
J : Ideal A
ha : a ≠ 0
hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0
⊢ spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1
[PROOFSTEP]
rw [mul_assoc, mul_left_comm (J : FractionalIdeal A⁰ K), coe_ideal_mul_inv, mul_one, spanSingleton_mul_spanSingleton,
inv_mul_cancel, spanSingleton_one]
[GOAL]
case h₂
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
a : A
J : Ideal A
ha : a ≠ 0
hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0
⊢ ↑(algebraMap A K) a ≠ 0
[PROOFSTEP]
exact mt ((injective_iff_map_eq_zero (algebraMap A K)).mp (IsFractionRing.injective A K) _) ha
[GOAL]
case h₂.hI0
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
a : A
J : Ideal A
ha : a ≠ 0
hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0
⊢ J ≠ ⊥
[PROOFSTEP]
exact coeIdeal_ne_zero.mp (right_ne_zero_of_mul hne)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
⊢ ∀ {I I' : FractionalIdeal A⁰ K}, I * J ≤ I' * J ↔ I ≤ I'
[PROOFSTEP]
intro I I'
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
⊢ I * J ≤ I' * J ↔ I ≤ I'
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
⊢ I * J ≤ I' * J → I ≤ I'
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
h : I * J ≤ I' * J
⊢ I ≤ I'
[PROOFSTEP]
convert mul_right_mono J⁻¹ h
[GOAL]
case h.e'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
h : I * J ≤ I' * J
⊢ I = (fun J_1 => J_1 * J⁻¹) (I * J)
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
h : I * J ≤ I' * J
⊢ I' = (fun J_1 => J_1 * J⁻¹) (I' * J)
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
h : I * J ≤ I' * J
⊢ I = I * J * J⁻¹
[PROOFSTEP]
rw [mul_assoc, FractionalIdeal.mul_inv_cancel hJ, mul_one]
[GOAL]
case h.e'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
h : I * J ≤ I' * J
⊢ I' = I' * J * J⁻¹
[PROOFSTEP]
rw [mul_assoc, FractionalIdeal.mul_inv_cancel hJ, mul_one]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
⊢ I ≤ I' → I * J ≤ I' * J
[PROOFSTEP]
exact fun h => mul_right_mono J h
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
⊢ J * I ≤ J * I' ↔ I ≤ I'
[PROOFSTEP]
convert mul_right_le_iff hJ using 1
[GOAL]
case h.e'_1.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
J : FractionalIdeal A⁰ K
hJ : J ≠ 0
I I' : FractionalIdeal A⁰ K
⊢ J * I ≤ J * I' ↔ I * J ≤ I' * J
[PROOFSTEP]
simp only [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
⊢ I / J = I * J⁻¹
[PROOFSTEP]
by_cases hJ : J = 0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : J = 0
⊢ I / J = I * J⁻¹
[PROOFSTEP]
rw [hJ, div_zero, inv_zero', mul_zero]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
⊢ I / J = I * J⁻¹
[PROOFSTEP]
refine' le_antisymm ((mul_right_le_iff hJ).mp _) ((le_div_iff_mul_le hJ).mpr _)
[GOAL]
case neg.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
⊢ I / J * J ≤ I * J⁻¹ * J
[PROOFSTEP]
rw [mul_assoc, mul_comm J⁻¹, FractionalIdeal.mul_inv_cancel hJ, mul_one, mul_le]
[GOAL]
case neg.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
⊢ ∀ (i : K), i ∈ I / J → ∀ (j : K), j ∈ J → i * j ∈ I
[PROOFSTEP]
intro x hx y hy
[GOAL]
case neg.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
x : K
hx : x ∈ I / J
y : K
hy : y ∈ J
⊢ x * y ∈ I
[PROOFSTEP]
rw [mem_div_iff_of_nonzero hJ] at hx
[GOAL]
case neg.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
x : K
hx : ∀ (y : K), y ∈ J → x * y ∈ I
y : K
hy : y ∈ J
⊢ x * y ∈ I
[PROOFSTEP]
exact hx y hy
[GOAL]
case neg.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : Algebra A K
inst✝¹ : IsFractionRing A K
inst✝ : IsDedekindDomain A
I J : FractionalIdeal A⁰ K
hJ : ¬J = 0
⊢ I * J⁻¹ * J ≤ I
[PROOFSTEP]
rw [mul_assoc, mul_comm J⁻¹, FractionalIdeal.mul_inv_cancel hJ, mul_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : CommSemiring (FractionalIdeal A⁰ K) := commSemiring
⊢ CancelCommMonoidWithZero (FractionalIdeal A⁰ K)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
⊢ I ∣ J
[PROOFSTEP]
by_cases hI : I = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : I = ⊥
⊢ I ∣ J
[PROOFSTEP]
have hJ : J = ⊥ := by rwa [hI, ← eq_bot_iff] at h
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : I = ⊥
⊢ J = ⊥
[PROOFSTEP]
rwa [hI, ← eq_bot_iff] at h
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : I = ⊥
hJ : J = ⊥
⊢ I ∣ J
[PROOFSTEP]
rw [hI, hJ]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
⊢ I ∣ J
[PROOFSTEP]
have hI' : (I : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr hI
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
hI' : ↑I ≠ 0
⊢ I ∣ J
[PROOFSTEP]
have : (I : FractionalIdeal A⁰ (FractionRing A))⁻¹ * J ≤ 1 :=
le_trans (mul_left_mono (↑I)⁻¹ ((coeIdeal_le_coeIdeal _).mpr h)) (le_of_eq (inv_mul_cancel hI'))
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
hI' : ↑I ≠ 0
this : (↑I)⁻¹ * ↑J ≤ 1
⊢ I ∣ J
[PROOFSTEP]
obtain ⟨H, hH⟩ := le_one_iff_exists_coeIdeal.mp this
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
hI' : ↑I ≠ 0
this : (↑I)⁻¹ * ↑J ≤ 1
H : Ideal A
hH : ↑H = (↑I)⁻¹ * ↑J
⊢ I ∣ J
[PROOFSTEP]
use H
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
hI' : ↑I ≠ 0
this : (↑I)⁻¹ * ↑J ≤ 1
H : Ideal A
hH : ↑H = (↑I)⁻¹ * ↑J
⊢ J = I * H
[PROOFSTEP]
refine coeIdeal_injective (show (J : FractionalIdeal A⁰ (FractionRing A)) = ↑(I * H) from ?_)
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
h : J ≤ I
hI : ¬I = ⊥
hI' : ↑I ≠ 0
this : (↑I)⁻¹ * ↑J ≤ 1
H : Ideal A
hH : ↑H = (↑I)⁻¹ * ↑J
⊢ ↑J = ↑(I * H)
[PROOFSTEP]
rw [coeIdeal_mul, hH, ← mul_assoc, mul_inv_cancel hI', one_mul]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
x✝ : DvdNotUnit I J
hI : I ≠ 0
H : Ideal A
hunit : ¬IsUnit H
hmul : J = I * H
h : J = I
⊢ I * H = I * 1
[PROOFSTEP]
rw [← hmul, h, mul_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
⊢ WellFounded DvdNotUnit
[PROOFSTEP]
have : WellFounded ((· > ·) : Ideal A → Ideal A → Prop) :=
isNoetherian_iff_wellFounded.mp (isNoetherianRing_iff.mp IsDedekindDomain.toIsNoetherian)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
this : WellFounded fun x x_1 => x > x_1
⊢ WellFounded DvdNotUnit
[PROOFSTEP]
convert this
[GOAL]
case h.e'_2.h.h.h.e
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
this : WellFounded fun x x_1 => x > x_1
x✝¹ x✝ : Ideal A
⊢ DvdNotUnit = GT.gt
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h.h.h.e.h.h.a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
this : WellFounded fun x x_1 => x > x_1
x✝³ x✝² x✝¹ x✝ : Ideal A
⊢ DvdNotUnit x✝¹ x✝ ↔ x✝¹ > x✝
[PROOFSTEP]
rw [Ideal.dvdNotUnit_iff_lt]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
⊢ ∀ {a : Ideal A}, Irreducible a ↔ Prime a
[PROOFSTEP]
intro P
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
⊢ Irreducible P ↔ Prime P
[PROOFSTEP]
exact
⟨fun hirr =>
⟨hirr.ne_zero, hirr.not_unit, fun I J =>
by
have : P.IsMaximal := by
refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩
intro J hJ
obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ
exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit)
rw [Ideal.dvd_iff_le, Ideal.dvd_iff_le, Ideal.dvd_iff_le, SetLike.le_def, SetLike.le_def, SetLike.le_def]
contrapose!
rintro ⟨⟨x, x_mem, x_not_mem⟩, ⟨y, y_mem, y_not_mem⟩⟩
exact ⟨x * y, Ideal.mul_mem_mul x_mem y_mem, mt this.isPrime.mem_or_mem (not_or_of_not x_not_mem y_not_mem)⟩⟩,
Prime.irreducible⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
⊢ P ∣ I * J → P ∣ I ∨ P ∣ J
[PROOFSTEP]
have : P.IsMaximal := by
refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩
intro J hJ
obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ
exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
⊢ IsMaximal P
[PROOFSTEP]
refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
⊢ ∀ (b : Ideal A), P < b → b = ⊤
[PROOFSTEP]
intro J hJ
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J✝ J : Ideal A
hJ : P < J
⊢ J = ⊤
[PROOFSTEP]
obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J✝ J : Ideal A
hJ : P < J
_J_ne : J ≠ 0
H : Ideal A
hunit : ¬IsUnit H
P_eq : P = J * H
⊢ J = ⊤
[PROOFSTEP]
exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
this : IsMaximal P
⊢ P ∣ I * J → P ∣ I ∨ P ∣ J
[PROOFSTEP]
rw [Ideal.dvd_iff_le, Ideal.dvd_iff_le, Ideal.dvd_iff_le, SetLike.le_def, SetLike.le_def, SetLike.le_def]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
this : IsMaximal P
⊢ (∀ ⦃x : A⦄, x ∈ I * J → x ∈ P) → (∀ ⦃x : A⦄, x ∈ I → x ∈ P) ∨ ∀ ⦃x : A⦄, x ∈ J → x ∈ P
[PROOFSTEP]
contrapose!
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
this : IsMaximal P
⊢ ((Exists fun ⦃x⦄ => x ∈ I ∧ ¬x ∈ P) ∧ Exists fun ⦃x⦄ => x ∈ J ∧ ¬x ∈ P) → Exists fun ⦃x⦄ => x ∈ I * J ∧ ¬x ∈ P
[PROOFSTEP]
rintro ⟨⟨x, x_mem, x_not_mem⟩, ⟨y, y_mem, y_not_mem⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hirr : Irreducible P
I J : Ideal A
this : IsMaximal P
x : A
x_mem : x ∈ I
x_not_mem : ¬x ∈ P
y : A
y_mem : y ∈ J
y_not_mem : ¬y ∈ P
⊢ Exists fun ⦃x⦄ => x ∈ I * J ∧ ¬x ∈ P
[PROOFSTEP]
exact ⟨x * y, Ideal.mul_mem_mul x_mem y_mem, mt this.isPrime.mem_or_mem (not_or_of_not x_not_mem y_not_mem)⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
h : Prime P
⊢ IsPrime P
[PROOFSTEP]
refine ⟨?_, fun hxy => ?_⟩
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
h : Prime P
⊢ P ≠ ⊤
[PROOFSTEP]
rintro rfl
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : Prime ⊤
⊢ False
[PROOFSTEP]
rw [← Ideal.one_eq_top] at h
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
h : Prime 1
⊢ False
[PROOFSTEP]
exact h.not_unit isUnit_one
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
h : Prime P
x✝ y✝ : A
hxy : x✝ * y✝ ∈ P
⊢ x✝ ∈ P ∨ y✝ ∈ P
[PROOFSTEP]
simp only [← Ideal.dvd_span_singleton, ← Ideal.span_singleton_mul_span_singleton] at hxy ⊢
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
h : Prime P
x✝ y✝ : A
hxy : P ∣ span {x✝} * span {y✝}
⊢ P ∣ span {x✝} ∨ P ∣ span {y✝}
[PROOFSTEP]
exact h.dvd_or_dvd hxy
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hP : P ≠ ⊥
h : IsPrime P
⊢ Prime P
[PROOFSTEP]
refine ⟨hP, mt Ideal.isUnit_iff.mp h.ne_top, fun I J hIJ => ?_⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P : Ideal A
hP : P ≠ ⊥
h : IsPrime P
I J : Ideal A
hIJ : P ∣ I * J
⊢ P ∣ I ∨ P ∣ J
[PROOFSTEP]
simpa only [Ideal.dvd_iff_le] using h.mul_le.mp (Ideal.le_of_dvd hIJ)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
e : ℕ
he : 2 ≤ e
⊢ I ^ e < I
[PROOFSTEP]
convert I.strictAnti_pow hI0 hI1 he
[GOAL]
case h.e'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
e : ℕ
he : 2 ≤ e
⊢ I = (fun x x_1 => x ^ x_1) I 1
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I : Ideal A
hI0 : I ≠ ⊥
hI1 : I ≠ ⊤
e : ℕ
he : 2 ≤ e
⊢ I = I ^ 1
[PROOFSTEP]
rw [pow_one]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
⊢ I = P ^ i
[PROOFSTEP]
have := Classical.decEq (Ideal A)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this : DecidableEq (Ideal A)
⊢ I = P ^ i
[PROOFSTEP]
refine le_antisymm hle ?_
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this : DecidableEq (Ideal A)
⊢ P ^ i ≤ I
[PROOFSTEP]
have P_prime' := Ideal.prime_of_isPrime hP P_prime
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this : DecidableEq (Ideal A)
P_prime' : Prime P
⊢ P ^ i ≤ I
[PROOFSTEP]
have h1 : I ≠ ⊥ := (lt_of_le_of_lt bot_le hlt).ne'
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this : DecidableEq (Ideal A)
P_prime' : Prime P
h1 : I ≠ ⊥
⊢ P ^ i ≤ I
[PROOFSTEP]
have := pow_ne_zero i hP
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
⊢ P ^ i ≤ I
[PROOFSTEP]
have h3 := pow_ne_zero (i + 1) hP
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hlt : P ^ (i + 1) < I
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ P ^ i ≤ I
[PROOFSTEP]
rw [← Ideal.dvdNotUnit_iff_lt, dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors h1 h3, normalizedFactors_pow,
normalizedFactors_irreducible P_prime'.irreducible, Multiset.nsmul_singleton, Multiset.lt_replicate_succ] at hlt
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ P ^ i ≤ I
[PROOFSTEP]
rw [← Ideal.dvd_iff_le, dvd_iff_normalizedFactors_le_normalizedFactors, normalizedFactors_pow,
normalizedFactors_irreducible P_prime'.irreducible, Multiset.nsmul_singleton]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
case hx
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ I ≠ 0
case hy
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ P ^ i ≠ 0
[PROOFSTEP]
all_goals assumption
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
[PROOFSTEP]
assumption
[GOAL]
case hx
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ I ≠ 0
[PROOFSTEP]
assumption
[GOAL]
case hy
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
P I : Ideal A
P_prime : IsPrime P
hP : P ≠ ⊥
i : ℕ
hle : I ≤ P ^ i
this✝ : DecidableEq (Ideal A)
hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P)
P_prime' : Prime P
h1 : I ≠ ⊥
this : P ^ i ≠ 0
h3 : P ^ (i + 1) ≠ 0
⊢ P ^ i ≠ 0
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
x : A
n : ℕ
I : Ideal A
⊢ Associates.mk I ^ n ≤ Associates.mk (span {x}) ↔ x ∈ I ^ n
[PROOFSTEP]
simp_rw [← Associates.dvd_eq_le, ← Associates.mk_pow, Associates.mk_dvd_mk, Ideal.dvd_span_singleton]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
let I : FractionalIdeal A⁰ K := spanFinset A s f
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
have hI0 : I ≠ 0 :=
spanFinset_ne_zero.mpr
⟨j, hjs, hjf⟩
-- We claim the multiplier `a` we're looking for is in `I⁻¹ \ (J / I)`.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
suffices ↑J / I < I⁻¹ by
obtain ⟨_, a, hI, hpI⟩ := SetLike.lt_iff_le_and_exists.mp this
rw [mem_inv_iff hI0] at hI
refine'
⟨a, fun i hi => _, _⟩
-- By definition, `a ∈ I⁻¹` multiplies elements of `I` into elements of `1`,
-- in other words, `a * f i` is an integer.
· exact (mem_one_iff _).mp (hI (f i) (Submodule.subset_span (Set.mem_image_of_mem f hi)))
· contrapose! hpI
refine' (mem_div_iff_of_nonzero hI0).mpr fun y hy => Submodule.span_induction hy _ _ _ _
· rintro _ ⟨i, hi, rfl⟩; exact hpI i hi
· rw [mul_zero]; exact Submodule.zero_mem _
· intro x y hx hy; rw [mul_add]; exact Submodule.add_mem _ hx hy
· intro b x hx; rw [mul_smul_comm]; exact Submodule.smul_mem _ b hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
obtain ⟨_, a, hI, hpI⟩ := SetLike.lt_iff_le_and_exists.mp this
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : a ∈ I⁻¹
hpI : ¬a ∈ ↑J / I
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
rw [mem_inv_iff hI0] at hI
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ¬a ∈ ↑J / I
⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
refine'
⟨a, fun i hi => _, _⟩
-- By definition, `a ∈ I⁻¹` multiplies elements of `I` into elements of `1`,
-- in other words, `a * f i` is an integer.
[GOAL]
case intro.intro.intro.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ¬a ∈ ↑J / I
i : ι
hi : i ∈ s
⊢ IsLocalization.IsInteger A (a * f i)
[PROOFSTEP]
exact (mem_one_iff _).mp (hI (f i) (Submodule.subset_span (Set.mem_image_of_mem f hi)))
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ¬a ∈ ↑J / I
⊢ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J
[PROOFSTEP]
contrapose! hpI
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
⊢ a ∈ ↑J / spanFinset A s f
[PROOFSTEP]
refine' (mem_div_iff_of_nonzero hI0).mpr fun y hy => Submodule.span_induction hy _ _ _ _
[GOAL]
case intro.intro.intro.refine'_2.refine'_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
⊢ ∀ (x : K), x ∈ f '' ↑s → a * x ∈ ↑J
[PROOFSTEP]
rintro _ ⟨i, hi, rfl⟩
[GOAL]
case intro.intro.intro.refine'_2.refine'_1.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
i : ι
hi : i ∈ ↑s
⊢ a * f i ∈ ↑J
[PROOFSTEP]
exact hpI i hi
[GOAL]
case intro.intro.intro.refine'_2.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
⊢ a * 0 ∈ ↑J
[PROOFSTEP]
rw [mul_zero]
[GOAL]
case intro.intro.intro.refine'_2.refine'_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
⊢ 0 ∈ ↑J
[PROOFSTEP]
exact Submodule.zero_mem _
[GOAL]
case intro.intro.intro.refine'_2.refine'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
⊢ ∀ (x y : K), a * x ∈ ↑J → a * y ∈ ↑J → a * (x + y) ∈ ↑J
[PROOFSTEP]
intro x y hx hy
[GOAL]
case intro.intro.intro.refine'_2.refine'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y✝ : K
hy✝ : y✝ ∈ I
x y : K
hx : a * x ∈ ↑J
hy : a * y ∈ ↑J
⊢ a * (x + y) ∈ ↑J
[PROOFSTEP]
rw [mul_add]
[GOAL]
case intro.intro.intro.refine'_2.refine'_3
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y✝ : K
hy✝ : y✝ ∈ I
x y : K
hx : a * x ∈ ↑J
hy : a * y ∈ ↑J
⊢ a * x + a * y ∈ ↑J
[PROOFSTEP]
exact Submodule.add_mem _ hx hy
[GOAL]
case intro.intro.intro.refine'_2.refine'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
⊢ ∀ (a_1 : A) (x : K), a * x ∈ ↑J → a * a_1 • x ∈ ↑J
[PROOFSTEP]
intro b x hx
[GOAL]
case intro.intro.intro.refine'_2.refine'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
b : A
x : K
hx : a * x ∈ ↑J
⊢ a * b • x ∈ ↑J
[PROOFSTEP]
rw [mul_smul_comm]
[GOAL]
case intro.intro.intro.refine'_2.refine'_4
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
this : ↑J / I < I⁻¹
left✝ : ↑J / I ≤ I⁻¹
a : K
hI : ∀ (y : K), y ∈ I → a * y ∈ 1
hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J
y : K
hy : y ∈ I
b : A
x : K
hx : a * x ∈ ↑J
⊢ b • (a * x) ∈ ↑J
[PROOFSTEP]
exact Submodule.smul_mem _ b hx
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
⊢ ↑J / I < I⁻¹
[PROOFSTEP]
calc
↑J / I = ↑J * I⁻¹ := div_eq_mul_inv (↑J) I
_ < 1 * I⁻¹ := (mul_right_strictMono (inv_ne_zero hI0) ?_)
_ = I⁻¹ := one_mul _
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
⊢ ↑J < 1
[PROOFSTEP]
rw [← coeIdeal_top]
-- And multiplying by `I⁻¹` is indeed strictly monotone.
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
J : Ideal A
hJ : J ≠ ⊤
ι : Type u_4
s : Finset ι
f : ι → K
j : ι
hjs : j ∈ s
hjf : f j ≠ 0
I : FractionalIdeal A⁰ K := spanFinset A s f
hI0 : I ≠ 0
⊢ ↑J < ↑⊤
[PROOFSTEP]
exact strictMono_of_le_iff_le (fun _ _ => (coeIdeal_le_coeIdeal K).symm) (lt_top_iff_ne_top.mpr hJ)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
letI := Classical.decEq (Ideal A)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
letI := Classical.decEq (Associates (Ideal A))
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
letI := UniqueFactorizationMonoid.toNormalizedGCDMonoid (Ideal A)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
have hgcd : gcd I J = I ⊔ J := by
rw [gcd_eq_normalize _ _, normalize_eq]
· rw [dvd_iff_le, sup_le_iff, ← dvd_iff_le, ← dvd_iff_le]
exact ⟨gcd_dvd_left _ _, gcd_dvd_right _ _⟩
· rw [dvd_gcd_iff, dvd_iff_le, dvd_iff_le]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ gcd I J = I ⊔ J
[PROOFSTEP]
rw [gcd_eq_normalize _ _, normalize_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ gcd I J ∣ I ⊔ J
[PROOFSTEP]
rw [dvd_iff_le, sup_le_iff, ← dvd_iff_le, ← dvd_iff_le]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ gcd I J ∣ I ∧ gcd I J ∣ J
[PROOFSTEP]
exact ⟨gcd_dvd_left _ _, gcd_dvd_right _ _⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ I ⊔ J ∣ gcd I J
[PROOFSTEP]
rw [dvd_gcd_iff, dvd_iff_le, dvd_iff_le]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
⊢ I ≤ I ⊔ J ∧ J ≤ I ⊔ J
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
have hlcm : lcm I J = I ⊓ J := by
rw [lcm_eq_normalize _ _, normalize_eq]
· rw [lcm_dvd_iff, dvd_iff_le, dvd_iff_le]
simp
· rw [dvd_iff_le, le_inf_iff, ← dvd_iff_le, ← dvd_iff_le]
exact ⟨dvd_lcm_left _ _, dvd_lcm_right _ _⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ lcm I J = I ⊓ J
[PROOFSTEP]
rw [lcm_eq_normalize _ _, normalize_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ lcm I J ∣ I ⊓ J
[PROOFSTEP]
rw [lcm_dvd_iff, dvd_iff_le, dvd_iff_le]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ I ⊓ J ≤ I ∧ I ⊓ J ≤ J
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ I ⊓ J ∣ lcm I J
[PROOFSTEP]
rw [dvd_iff_le, le_inf_iff, ← dvd_iff_le, ← dvd_iff_le]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
⊢ I ∣ lcm I J ∧ J ∣ lcm I J
[PROOFSTEP]
exact ⟨dvd_lcm_left _ _, dvd_lcm_right _ _⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A)
this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A))
this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A)
hgcd : gcd I J = I ⊔ J
hlcm : lcm I J = I ⊓ J
⊢ (I ⊔ J) * (I ⊓ J) = I * J
[PROOFSTEP]
rw [← hgcd, ← hlcm, associated_iff_eq.mp (gcd_mul_lcm _ _)]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
x✝¹ x✝ : Ideal A
⊢ (fun x x_1 => x ⊔ x_1) x✝¹ x✝ ∣ x✝¹
[PROOFSTEP]
simpa only [dvd_iff_le] using le_sup_left
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
x✝¹ x✝ : Ideal A
⊢ (fun x x_1 => x ⊔ x_1) x✝¹ x✝ ∣ x✝
[PROOFSTEP]
simpa only [dvd_iff_le] using le_sup_right
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
⊢ ∀ {a b c : Ideal A}, a ∣ c → a ∣ b → a ∣ (fun x x_1 => x ⊔ x_1) c b
[PROOFSTEP]
simp only [dvd_iff_le]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
⊢ ∀ {a b c : Ideal A}, c ≤ a → b ≤ a → c ⊔ b ≤ a
[PROOFSTEP]
exact fun h1 h2 => @sup_le (Ideal A) _ _ _ _ h1 h2
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
x✝¹ x✝ : Ideal A
⊢ Associated ((fun x x_1 => x ⊔ x_1) x✝¹ x✝ * (fun x x_1 => x ⊓ x_1) x✝¹ x✝) (x✝¹ * x✝)
[PROOFSTEP]
rw [associated_iff_eq, sup_mul_inf]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
x✝ : Ideal A
⊢ (fun x x_1 => x ⊓ x_1) 0 x✝ = 0
[PROOFSTEP]
simp only [zero_eq_bot, bot_inf_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid
x✝ : Ideal A
⊢ (fun x x_1 => x ⊓ x_1) x✝ 0 = 0
[PROOFSTEP]
simp only [zero_eq_bot, inf_bot_eq]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDedekindDomain A
inst✝¹ : Algebra A K
inst✝ : IsFractionRing A K
I J : Ideal A
coprime : I ⊔ J = ⊤
⊢ I ⊓ J = I * J
[PROOFSTEP]
rw [← associated_iff_eq.mp (gcd_mul_lcm I J), lcm_eq_inf I J, gcd_eq_sup, coprime, top_mul]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
have H :
normalizedFactors (normalizedFactors I ∩ normalizedFactors J).prod = normalizedFactors I ∩ normalizedFactors J :=
by
apply normalizedFactors_prod_of_prime
intro p hp
rw [mem_inter] at hp
exact prime_of_normalized_factor p hp.left
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
⊢ normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
[PROOFSTEP]
apply normalizedFactors_prod_of_prime
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p
[PROOFSTEP]
intro p hp
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
p : Ideal T
hp : p ∈ normalizedFactors I ∩ normalizedFactors J
⊢ Prime p
[PROOFSTEP]
rw [mem_inter] at hp
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
p : Ideal T
hp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J
⊢ Prime p
[PROOFSTEP]
exact prime_of_normalized_factor p hp.left
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
have :=
Multiset.prod_ne_zero_of_prime (normalizedFactors I ∩ normalizedFactors J) fun _ h =>
prime_of_normalized_factor _ (Multiset.mem_inter.1 h).1
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ I ⊔ J ≤ Multiset.prod (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
rw [sup_le_iff, ← dvd_iff_le, ← dvd_iff_le]
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I ∧
Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J
[PROOFSTEP]
constructor
[GOAL]
case a.left
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I
[PROOFSTEP]
rw [dvd_iff_normalizedFactors_le_normalizedFactors this hI, H]
[GOAL]
case a.left
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors I
[PROOFSTEP]
exact inf_le_left
[GOAL]
case a.right
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J
[PROOFSTEP]
rw [dvd_iff_normalizedFactors_le_normalizedFactors this hJ, H]
[GOAL]
case a.right
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors J
[PROOFSTEP]
exact inf_le_right
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≤ I ⊔ J
[PROOFSTEP]
rw [← dvd_iff_le, dvd_iff_normalizedFactors_le_normalizedFactors, normalizedFactors_prod_of_prime, le_iff_count]
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ ∀ (a : Ideal T), count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
intro a
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
a : Ideal T
⊢ count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)
[PROOFSTEP]
rw [Multiset.count_inter]
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
a : Ideal T
⊢ count a (normalizedFactors (I ⊔ J)) ≤ min (count a (normalizedFactors I)) (count a (normalizedFactors J))
[PROOFSTEP]
exact le_min (count_le_of_ideal_ge le_sup_left hI a) (count_le_of_ideal_ge le_sup_right hJ a)
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p
[PROOFSTEP]
intro p hp
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
p : Ideal T
hp : p ∈ normalizedFactors I ∩ normalizedFactors J
⊢ Prime p
[PROOFSTEP]
rw [mem_inter] at hp
[GOAL]
case a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
p : Ideal T
hp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J
⊢ Prime p
[PROOFSTEP]
exact prime_of_normalized_factor p hp.left
[GOAL]
case a.hx
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ I ⊔ J ≠ 0
[PROOFSTEP]
exact ne_bot_of_le_ne_bot hI le_sup_left
[GOAL]
case a.hy
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : J ≠ ⊥
H :
normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =
normalizedFactors I ∩ normalizedFactors J
this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0
[PROOFSTEP]
exact this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
⊢ J ^ n ⊔ I = J ^ min (count J (normalizedFactors I)) n
[PROOFSTEP]
rw [sup_eq_prod_inf_factors (pow_ne_zero n hJ.ne_zero) hI, min_comm, normalizedFactors_of_irreducible_pow hJ,
normalize_eq J, replicate_inter, prod_replicate]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hJ : Irreducible J
n : ℕ
hn : ↑n ≤ multiplicity J I
⊢ J ^ n ⊔ I = J ^ n
[PROOFSTEP]
by_cases hI : I = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hJ : Irreducible J
n : ℕ
hn : ↑n ≤ multiplicity J I
hI : I = ⊥
⊢ J ^ n ⊔ I = J ^ n
[PROOFSTEP]
simp_all
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hJ : Irreducible J
n : ℕ
hn : ↑n ≤ multiplicity J I
hI : ¬I = ⊥
⊢ J ^ n ⊔ I = J ^ n
[PROOFSTEP]
rw [irreducible_pow_sup hI hJ, min_eq_right]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hJ : Irreducible J
n : ℕ
hn : ↑n ≤ multiplicity J I
hI : ¬I = ⊥
⊢ n ≤ count J (normalizedFactors I)
[PROOFSTEP]
rwa [multiplicity_eq_count_normalizedFactors hJ hI, PartENat.coe_le_coe, normalize_eq J] at hn
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
hn : multiplicity J I ≤ ↑n
⊢ J ^ n ⊔ I = J ^ Part.get (multiplicity J I) (_ : (multiplicity J I).Dom)
[PROOFSTEP]
rw [irreducible_pow_sup hI hJ, min_eq_left]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
hn : multiplicity J I ≤ ↑n
⊢ J ^ count J (normalizedFactors I) = J ^ Part.get (multiplicity J I) (_ : (multiplicity J I).Dom)
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
hn : multiplicity J I ≤ ↑n
⊢ count J (normalizedFactors I) ≤ n
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
hn : multiplicity J I ≤ ↑n
⊢ count J (normalizedFactors I) = Part.get (multiplicity J I) (_ : (multiplicity J I).Dom)
[PROOFSTEP]
rw [← PartENat.natCast_inj, PartENat.natCast_get, multiplicity_eq_count_normalizedFactors hJ hI, normalize_eq J]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
T : Type u_4
inst✝² : CommRing T
inst✝¹ : IsDomain T
inst✝ : IsDedekindDomain T
I J : Ideal T
hI : I ≠ ⊥
hJ : Irreducible J
n : ℕ
hn : multiplicity J I ≤ ↑n
⊢ count J (normalizedFactors I) ≤ n
[PROOFSTEP]
rwa [multiplicity_eq_count_normalizedFactors hJ hI, PartENat.coe_le_coe, normalize_eq J] at hn
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
⊢ ⨅ (v : HeightOneSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ R⁰) =
⊥
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ x ∈
⨅ (v : HeightOneSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ R⁰) ↔
x ∈ ⊥
[PROOFSTEP]
rw [Algebra.mem_iInf]
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) ↔
x ∈ ⊥
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
x ∈ ⊥
case h.mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ x ∈ ⊥ →
∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)
[PROOFSTEP]
by_cases hR : IsField R
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
hR : IsField R
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
x ∈ ⊥
[PROOFSTEP]
rcases Function.bijective_iff_has_inverse.mp
(IsField.localization_map_bijective (Rₘ := K) (flip nonZeroDivisors.ne_zero rfl : 0 ∉ R⁰) hR) with
⟨algebra_map_inv, _, algebra_map_right_inv⟩
[GOAL]
case pos.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
hR : IsField R
algebra_map_inv : K → R
left✝ : Function.LeftInverse algebra_map_inv ↑(algebraMap R K)
algebra_map_right_inv : Function.RightInverse algebra_map_inv ↑(algebraMap R K)
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
x ∈ ⊥
[PROOFSTEP]
exact fun _ => Algebra.mem_bot.mpr ⟨algebra_map_inv x, algebra_map_right_inv x⟩
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
hR : ¬IsField R
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
x ∈ ⊥
case h.mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ x ∈ ⊥ →
∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)
[PROOFSTEP]
all_goals rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
hR : ¬IsField R
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
x ∈ ⊥
[PROOFSTEP]
rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf]
[GOAL]
case h.mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ x ∈ ⊥ →
∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)
[PROOFSTEP]
rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
hR : ¬IsField R
⊢ (∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
∀ (i : MaximalSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)
[PROOFSTEP]
exact fun hx ⟨v, hv⟩ => hx ((equivMaximalSpectrum hR).symm ⟨v, hv⟩)
[GOAL]
case h.mpr
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
v : HeightOneSpectrum R
inst✝ : Algebra R K
hK : IsFractionRing R K
x : K
⊢ (∀ (i : MaximalSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) →
∀ (i : HeightOneSpectrum R),
x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)
[PROOFSTEP]
exact fun hx ⟨v, hv, hbot⟩ => hx ⟨v, hv.isMaximal hbot⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : { p // p ∣ I }
⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J
[PROOFSTEP]
have : RingHom.ker (Ideal.Quotient.mk J) ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) X)) :=
ker_le_comap (Ideal.Quotient.mk J)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : { p // p ∣ I }
this : RingHom.ker (Ideal.Quotient.mk J) ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X))
⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J
[PROOFSTEP]
rw [mk_ker] at this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : { p // p ∣ I }
this : J ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X))
⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J
[PROOFSTEP]
exact dvd_iff_le.mpr this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
⊢ Monotone fun X =>
{ val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)),
property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) }
[PROOFSTEP]
rintro ⟨X, hX⟩ ⟨Y, hY⟩ h
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : Ideal R
hX : X ∣ I
Y : Ideal R
hY : Y ∣ I
h : { val := X, property := hX } ≤ { val := Y, property := hY }
⊢ (fun X =>
{ val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)),
property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) })
{ val := X, property := hX } ≤
(fun X =>
{ val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)),
property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) })
{ val := Y, property := hY }
[PROOFSTEP]
rw [← Subtype.coe_le_coe, Subtype.coe_mk, Subtype.coe_mk] at h ⊢
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : Ideal R
hX : X ∣ I
Y : Ideal R
hY : Y ∣ I
h : X ≤ Y
⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) X)) ≤
↑((fun X =>
{ val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)),
property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) })
{ val := Y, property := hY })
[PROOFSTEP]
rw [Subtype.coe_mk, comap_le_comap_iff_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, map_le_iff_le_comap,
Subtype.coe_mk, comap_map_of_surjective _ hf (map (Ideal.Quotient.mk I) Y)]
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : Ideal R
hX : X ∣ I
Y : Ideal R
hY : Y ∣ I
h : X ≤ Y
⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y ⊔ comap f ⊥
[PROOFSTEP]
suffices map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y by exact le_sup_of_le_left this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : Ideal R
hX : X ∣ I
Y : Ideal R
hY : Y ∣ I
h : X ≤ Y
this : map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y
⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y ⊔ comap f ⊥
[PROOFSTEP]
exact le_sup_of_le_left this
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
f : R ⧸ I →+* A ⧸ J
hf : Function.Surjective ↑f
X : Ideal R
hX : X ∣ I
Y : Ideal R
hY : Y ∣ I
h : X ≤ Y
⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y
[PROOFSTEP]
rwa [map_le_iff_le_comap, comap_map_of_surjective (Ideal.Quotient.mk I) Quotient.mk_surjective, ←
RingHom.ker_eq_comap_bot, mk_ker, sup_eq_left.mpr <| le_of_dvd hY]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Field K
inst✝¹ : IsDomain A
inst✝ : IsDedekindDomain A
I : Ideal R
J : Ideal A
X : { p // p ∣ J }
⊢ ↑(idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.id (A ⧸ J)))) X = ↑OrderHom.id X
[PROOFSTEP]
simp only [idealFactorsFunOfQuotHom, map_id, OrderHom.coe_mk, OrderHom.id_coe, id.def,
comap_map_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, ←
RingHom.ker_eq_comap_bot (Ideal.Quotient.mk J), mk_ker, sup_eq_left.mpr (dvd_iff_le.mp X.prop), Subtype.coe_eta]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝² : CommRing B
inst✝¹ : IsDomain B
inst✝ : IsDedekindDomain B
L : Ideal B
f : R ⧸ I →+* A ⧸ J
g : A ⧸ J →+* B ⧸ L
hf : Function.Surjective ↑f
hg : Function.Surjective ↑g
⊢ OrderHom.comp (idealFactorsFunOfQuotHom hg) (idealFactorsFunOfQuotHom hf) =
idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp g f))
[PROOFSTEP]
refine OrderHom.ext _ _ (funext fun x => ?_)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝² : CommRing B
inst✝¹ : IsDomain B
inst✝ : IsDedekindDomain B
L : Ideal B
f : R ⧸ I →+* A ⧸ J
g : A ⧸ J →+* B ⧸ L
hf : Function.Surjective ↑f
hg : Function.Surjective ↑g
x : { p // p ∣ I }
⊢ ↑(OrderHom.comp (idealFactorsFunOfQuotHom hg) (idealFactorsFunOfQuotHom hf)) x =
↑(idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp g f))) x
[PROOFSTEP]
rw [idealFactorsFunOfQuotHom, idealFactorsFunOfQuotHom, OrderHom.comp_coe, OrderHom.coe_mk, OrderHom.coe_mk,
Function.comp_apply, idealFactorsFunOfQuotHom, OrderHom.coe_mk, Subtype.mk_eq_mk, Subtype.coe_mk,
map_comap_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, map_map]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J}
[PROOFSTEP]
have f_surj : Function.Surjective (f : R ⧸ I →+* A ⧸ J) := f.surjective
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J}
[PROOFSTEP]
have fsym_surj : Function.Surjective (f.symm : A ⧸ J →+* R ⧸ I) := f.symm.surjective
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J}
[PROOFSTEP]
refine OrderIso.ofHomInv (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) ?_ ?_
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id
[PROOFSTEP]
have := idealFactorsFunOfQuotHom_comp fsym_surj f_surj
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this :
OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) =
idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp ↑f ↑(RingEquiv.symm f)))
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id
[PROOFSTEP]
simp only [RingEquiv.comp_symm, idealFactorsFunOfQuotHom_id] at this
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this : OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id
[PROOFSTEP]
rw [← this]
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this : OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) =
OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj)
[PROOFSTEP]
congr
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id
[PROOFSTEP]
have := idealFactorsFunOfQuotHom_comp f_surj fsym_surj
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this :
OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) =
idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp ↑(RingEquiv.symm f) ↑f))
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id
[PROOFSTEP]
simp only [RingEquiv.symm_comp, idealFactorsFunOfQuotHom_id] at this
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this : OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) = OrderHom.id
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id
[PROOFSTEP]
rw [← this]
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
f_surj : Function.Surjective ↑↑f
fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f)
this : OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) = OrderHom.id
⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) =
OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj)
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L✝ : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
L M : Ideal R
hL : L ∣ I
hM : M ∣ I
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL }) ∣
↑(↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM }) ↔
L ∣ M
[PROOFSTEP]
suffices
idealFactorsEquivOfQuotEquiv f ⟨M, hM⟩ ≤ idealFactorsEquivOfQuotEquiv f ⟨L, hL⟩ ↔
(⟨M, hM⟩ : {p : Ideal R | p ∣ I}) ≤ ⟨L, hL⟩
by rw [dvd_iff_le, dvd_iff_le, Subtype.coe_le_coe, this, Subtype.mk_le_mk]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L✝ : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
L M : Ideal R
hL : L ∣ I
hM : M ∣ I
this :
↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM } ≤
↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL } ↔
{ val := M, property := hM } ≤ { val := L, property := hL }
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL }) ∣
↑(↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM }) ↔
L ∣ M
[PROOFSTEP]
rw [dvd_iff_le, dvd_iff_le, Subtype.coe_le_coe, this, Subtype.mk_le_mk]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁹ : CommRing R
inst✝⁸ : CommRing A
inst✝⁷ : Field K
inst✝⁶ : IsDomain A
inst✝⁵ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁴ : CommRing B
inst✝³ : IsDomain B
inst✝² : IsDedekindDomain B
L✝ : Ideal B
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
L M : Ideal R
hL : L ∣ I
hM : M ∣ I
⊢ ↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM } ≤
↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL } ↔
{ val := M, property := hM } ≤ { val := L, property := hL }
[PROOFSTEP]
exact (idealFactorsEquivOfQuotEquiv f).le_iff_le
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J
[PROOFSTEP]
by_cases hI : I = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : I = ⊥
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : I = ⊥
⊢ False
[PROOFSTEP]
rw [hI, bot_eq_zero, normalizedFactors_zero, ← Multiset.empty_eq_zero] at hL
[GOAL]
case pos.h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ ∅
hI : I = ⊥
⊢ False
[PROOFSTEP]
exact Finset.not_mem_empty _ hL
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : ¬I = ⊥
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J
[PROOFSTEP]
refine
mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors hI hJ hL (d := (idealFactorsEquivOfQuotEquiv f).toEquiv)
?_
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : ¬I = ⊥
⊢ ∀ (l l' : { l // l ∣ I }),
↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l') ↔ ↑l ∣ ↑l'
[PROOFSTEP]
rintro ⟨l, hl⟩ ⟨l', hl'⟩
[GOAL]
case neg.mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : ¬I = ⊥
l : Ideal R
hl : l ∣ I
l' : Ideal R
hl' : l' ∣ I
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l, property := hl }) ∣
↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l', property := hl' }) ↔
↑{ val := l, property := hl } ∣ ↑{ val := l', property := hl' }
[PROOFSTEP]
rw [Subtype.coe_mk, Subtype.coe_mk]
[GOAL]
case neg.mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L✝ : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
hI : ¬I = ⊥
l : Ideal R
hl : l ∣ I
l' : Ideal R
hl' : l' ∣ I
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l, property := hl }) ∣
↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l', property := hl' }) ↔
↑{ val := l, property := hl } ∣ ↑{ val := l', property := hl' }
[PROOFSTEP]
apply idealFactorsEquivOfQuotEquiv_is_dvd_iso f
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hI : I ≠ ⊥
hJ : J ≠ ⊥
j : ↑{M | M ∈ normalizedFactors J}
⊢ ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈
{L | L ∈ normalizedFactors I}
[PROOFSTEP]
rw [idealFactorsEquivOfQuotEquiv_symm]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hI : I ≠ ⊥
hJ : J ≠ ⊥
j : ↑{M | M ∈ normalizedFactors J}
⊢ ↑(↑(idealFactorsEquivOfQuotEquiv (RingEquiv.symm f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈
{L | L ∈ normalizedFactors I}
[PROOFSTEP]
exact idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors f.symm hI j.prop
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hI : I ≠ ⊥
hJ : J ≠ ⊥
x✝ : ↑{L | L ∈ normalizedFactors I}
j : Ideal R
hj : j ∈ {L | L ∈ normalizedFactors I}
⊢ (fun j =>
{ val := ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }),
property :=
(_ :
↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈
{L | L ∈ normalizedFactors I}) })
((fun j =>
{ val := ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }),
property :=
(_ :
↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }) ∈ normalizedFactors J) })
{ val := j, property := hj }) =
{ val := j, property := hj }
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹¹ : CommRing R
inst✝¹⁰ : CommRing A
inst✝⁹ : Field K
inst✝⁸ : IsDomain A
inst✝⁷ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁶ : CommRing B
inst✝⁵ : IsDomain B
inst✝⁴ : IsDedekindDomain B
L : Ideal B
inst✝³ : IsDomain R
inst✝² : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝¹ : DecidableEq (Ideal R)
inst✝ : DecidableEq (Ideal A)
hI : I ≠ ⊥
hJ : J ≠ ⊥
x✝ : ↑{M | M ∈ normalizedFactors J}
j : Ideal A
hj : j ∈ {M | M ∈ normalizedFactors J}
⊢ (fun j =>
{ val := ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }),
property :=
(_ : ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }) ∈ normalizedFactors J) })
((fun j =>
{ val := ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }),
property :=
(_ :
↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈
{L | L ∈ normalizedFactors I}) })
{ val := j, property := hj }) =
{ val := j, property := hj }
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹³ : CommRing R
inst✝¹² : CommRing A
inst✝¹¹ : Field K
inst✝¹⁰ : IsDomain A
inst✝⁹ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁸ : CommRing B
inst✝⁷ : IsDomain B
inst✝⁶ : IsDedekindDomain B
L✝ : Ideal B
inst✝⁵ : IsDomain R
inst✝⁴ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝³ : DecidableEq (Ideal R)
inst✝² : DecidableEq (Ideal A)
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
hI : I ≠ ⊥
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
⊢ multiplicity (↑(↑(normalizedFactorsEquivOfQuotEquiv f hI hJ) { val := L, property := hL })) J = multiplicity L I
[PROOFSTEP]
rw [normalizedFactorsEquivOfQuotEquiv, Equiv.coe_fn_mk, Subtype.coe_mk]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹³ : CommRing R
inst✝¹² : CommRing A
inst✝¹¹ : Field K
inst✝¹⁰ : IsDomain A
inst✝⁹ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁸ : CommRing B
inst✝⁷ : IsDomain B
inst✝⁶ : IsDedekindDomain B
L✝ : Ideal B
inst✝⁵ : IsDomain R
inst✝⁴ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝³ : DecidableEq (Ideal R)
inst✝² : DecidableEq (Ideal A)
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
hI : I ≠ ⊥
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
⊢ multiplicity
(↑(↑(idealFactorsEquivOfQuotEquiv f)
{ val := ↑{ val := L, property := hL }, property := (_ : ↑{ val := L, property := hL } ∣ I) }))
J =
multiplicity L I
[PROOFSTEP]
refine
multiplicity_factor_dvd_iso_eq_multiplicity_of_mem_normalizedFactors hI hJ hL (d :=
(idealFactorsEquivOfQuotEquiv f).toEquiv) ?_
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹³ : CommRing R
inst✝¹² : CommRing A
inst✝¹¹ : Field K
inst✝¹⁰ : IsDomain A
inst✝⁹ : IsDedekindDomain A
I : Ideal R
J : Ideal A
B : Type u_4
inst✝⁸ : CommRing B
inst✝⁷ : IsDomain B
inst✝⁶ : IsDedekindDomain B
L✝ : Ideal B
inst✝⁵ : IsDomain R
inst✝⁴ : IsDedekindDomain R
f : R ⧸ I ≃+* A ⧸ J
inst✝³ : DecidableEq (Ideal R)
inst✝² : DecidableEq (Ideal A)
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
hI : I ≠ ⊥
hJ : J ≠ ⊥
L : Ideal R
hL : L ∈ normalizedFactors I
⊢ ∀ (l l' : { l // l ∣ I }),
↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l') ↔ ↑l ∣ ↑l'
[PROOFSTEP]
exact fun ⟨l, hl⟩ ⟨l', hl'⟩ => idealFactorsEquivOfQuotEquiv_is_dvd_iso f hl hl'
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Field K
inst✝ : IsDomain A
I J : Ideal R
h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P
⊢ I ⊔ J = ⊤
[PROOFSTEP]
by_contra hIJ
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Field K
inst✝ : IsDomain A
I J : Ideal R
h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P
hIJ : ¬I ⊔ J = ⊤
⊢ False
[PROOFSTEP]
obtain ⟨P, hP, hIJ⟩ := Ideal.exists_le_maximal _ hIJ
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Field K
inst✝ : IsDomain A
I J : Ideal R
h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P
hIJ✝ : ¬I ⊔ J = ⊤
P : Ideal R
hP : IsMaximal P
hIJ : I ⊔ J ≤ P
⊢ False
[PROOFSTEP]
exact h P (le_trans le_sup_left hIJ) (le_trans le_sup_right hIJ) hP.isPrime
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n : ℕ
h : a * b ∈ I ^ n
⊢ a ∈ I ∨ b ∈ I ^ n
[PROOFSTEP]
cases n
[GOAL]
case zero
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
h : a * b ∈ I ^ Nat.zero
⊢ a ∈ I ∨ b ∈ I ^ Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
h : a * b ∈ I ^ Nat.succ n✝
⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝
[PROOFSTEP]
by_cases hI0 : I = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
h : a * b ∈ I ^ Nat.succ n✝
hI0 : I = ⊥
⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝
[PROOFSTEP]
simpa [pow_succ, hI0] using h
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
h : a * b ∈ I ^ Nat.succ n✝
hI0 : ¬I = ⊥
⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝
[PROOFSTEP]
simp only [← Submodule.span_singleton_le_iff_mem, Ideal.submodule_span_eq, ← Ideal.dvd_iff_le, ←
Ideal.span_singleton_mul_span_singleton] at h ⊢
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
hI0 : ¬I = ⊥
h : I ^ Nat.succ n✝ ∣ span {a} * span {b}
⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b}
[PROOFSTEP]
by_cases ha : I ∣ span { a }
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
hI0 : ¬I = ⊥
h : I ^ Nat.succ n✝ ∣ span {a} * span {b}
ha : I ∣ span {a}
⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b}
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
hI0 : ¬I = ⊥
h : I ^ Nat.succ n✝ ∣ span {a} * span {b}
ha : ¬I ∣ span {a}
⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b}
[PROOFSTEP]
rw [mul_comm] at h
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : IsPrime I
a b : R
n✝ : ℕ
hI0 : ¬I = ⊥
h : I ^ Nat.succ n✝ ∣ span {b} * span {a}
ha : ¬I ∣ span {a}
⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b}
[PROOFSTEP]
exact Or.inr (Prime.pow_dvd_of_dvd_mul_right ((Ideal.prime_iff_isPrime hI0).mpr hI) _ ha h)
[GOAL]
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I J K : Ideal R
coprime : ∀ (P : Ideal R), J ≤ P → K ≤ P → ¬IsPrime P
hJ : I ≤ J
hK : I ≤ K
⊢ I ≤ J * K
[PROOFSTEP]
simp only [← Ideal.dvd_iff_le] at coprime hJ hK ⊢
[GOAL]
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ : J ∣ I
hK : K ∣ I
⊢ J * K ∣ I
[PROOFSTEP]
by_cases hJ0 : J = 0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ : J ∣ I
hK : K ∣ I
hJ0 : J = 0
⊢ J * K ∣ I
[PROOFSTEP]
simpa only [hJ0, zero_mul] using hJ
[GOAL]
case neg
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ : J ∣ I
hK : K ∣ I
hJ0 : ¬J = 0
⊢ J * K ∣ I
[PROOFSTEP]
obtain ⟨I', rfl⟩ := hK
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ0 : ¬J = 0
I' : Ideal R
hJ : J ∣ K * I'
⊢ J * K ∣ K * I'
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ0 : ¬J = 0
I' : Ideal R
hJ : J ∣ K * I'
⊢ K * J ∣ K * I'
[PROOFSTEP]
refine mul_dvd_mul_left K (UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors (b := K) hJ0 ?_ hJ)
[GOAL]
case neg.intro
R : Type u_1
A : Type u_2
K✝ : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K✝
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
J K : Ideal R
coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P
hJ0 : ¬J = 0
I' : Ideal R
hJ : J ∣ K * I'
⊢ ∀ {d : Ideal R}, d ∣ J → d ∣ K → ¬Prime d
[PROOFSTEP]
exact fun hPJ hPK => mt Ideal.isPrime_of_prime (coprime _ hPJ hPK)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I P : Ideal R
hP : IsPrime P
n : ℕ
h : I ^ n ≤ P
⊢ I ≤ P
[PROOFSTEP]
by_cases hP0 : P = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I P : Ideal R
hP : IsPrime P
n : ℕ
h : I ^ n ≤ P
hP0 : P = ⊥
⊢ I ≤ P
[PROOFSTEP]
simp only [hP0, le_bot_iff] at h ⊢
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I P : Ideal R
hP : IsPrime P
n : ℕ
hP0 : P = ⊥
h : I ^ n = ⊥
⊢ I = ⊥
[PROOFSTEP]
exact pow_eq_zero h
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I P : Ideal R
hP : IsPrime P
n : ℕ
h : I ^ n ≤ P
hP0 : ¬P = ⊥
⊢ I ≤ P
[PROOFSTEP]
rw [← Ideal.dvd_iff_le] at h ⊢
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I P : Ideal R
hP : IsPrime P
n : ℕ
h : P ∣ I ^ n
hP0 : ¬P = ⊥
⊢ P ∣ I
[PROOFSTEP]
exact ((Ideal.prime_iff_isPrime hP0).mpr hP).dvd_of_dvd_pow h
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
P : Ideal R
hP : IsPrime P
⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P
[PROOFSTEP]
by_cases hP0 : P = ⊥
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
P : Ideal R
hP : IsPrime P
hP0 : P = ⊥
⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P
[PROOFSTEP]
simp only [hP0, le_bot_iff]
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
P : Ideal R
hP : IsPrime P
hP0 : P = ⊥
⊢ ∏ i in s, f i = ⊥ ↔ ∃ i, i ∈ s ∧ f i = ⊥
[PROOFSTEP]
rw [← Ideal.zero_eq_bot, Finset.prod_eq_zero_iff]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
P : Ideal R
hP : IsPrime P
hP0 : ¬P = ⊥
⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P
[PROOFSTEP]
simp only [← Ideal.dvd_iff_le]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
P : Ideal R
hP : IsPrime P
hP0 : ¬P = ⊥
⊢ P ∣ ∏ i in s, f i ↔ ∃ i, i ∈ s ∧ P ∣ f i
[PROOFSTEP]
exact ((Ideal.prime_iff_isPrime hP0).mpr hP).dvd_finset_prod_iff _
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (f i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j
⊢ (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (f i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j
this : DecidableEq ι := Classical.decEq ι
⊢ (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
[PROOFSTEP]
revert prime coprime
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
⊢ (∀ (i : ι), i ∈ s → Prime (f i)) →
(∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) → (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
[PROOFSTEP]
refine s.induction ?_ ?_
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
⊢ (∀ (i : ι), i ∈ ∅ → Prime (f i)) →
(∀ (i : ι), i ∈ ∅ → ∀ (j : ι), j ∈ ∅ → i ≠ j → f i ≠ f j) → (Finset.inf ∅ fun i => f i ^ e i) = ∏ i in ∅, f i ^ e i
[PROOFSTEP]
simp
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
⊢ ∀ ⦃a : ι⦄ {s : Finset ι},
¬a ∈ s →
((∀ (i : ι), i ∈ s → Prime (f i)) →
(∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) →
(Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i) →
(∀ (i : ι), i ∈ insert a s → Prime (f i)) →
(∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j) →
(Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i
[PROOFSTEP]
intro a s ha ih prime coprime
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
ih :
(∀ (i : ι), i ∈ s → Prime (f i)) →
(∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) → (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
⊢ (Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i
[PROOFSTEP]
specialize
ih (fun i hi => prime i (Finset.mem_insert_of_mem hi)) fun i hi j hj =>
coprime i (Finset.mem_insert_of_mem hi) j (Finset.mem_insert_of_mem hj)
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
⊢ (Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i
[PROOFSTEP]
rw [Finset.inf_insert, Finset.prod_insert ha, ih]
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
⊢ f a ^ e a ⊓ ∏ i in s, f i ^ e i = f a ^ e a * ∏ x in s, f x ^ e x
[PROOFSTEP]
refine' le_antisymm (Ideal.le_mul_of_no_prime_factors _ inf_le_left inf_le_right) Ideal.mul_le_inf
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
⊢ ∀ (P : Ideal R), f a ^ e a ≤ P → ∏ x in s, f x ^ e x ≤ P → ¬IsPrime P
[PROOFSTEP]
intro P hPa hPs hPp
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp : IsPrime P
⊢ False
[PROOFSTEP]
haveI := hPp
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝ : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this : IsPrime P
⊢ False
[PROOFSTEP]
obtain ⟨b, hb, hPb⟩ := Ideal.prod_le_prime.mp hPs
[GOAL]
case refine_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝ : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
⊢ False
[PROOFSTEP]
haveI := Ideal.isPrime_of_prime (prime a (Finset.mem_insert_self a s))
[GOAL]
case refine_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝¹ : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this : IsPrime (f a)
⊢ False
[PROOFSTEP]
haveI := Ideal.isPrime_of_prime (prime b (Finset.mem_insert_of_mem hb))
[GOAL]
case refine_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ False
[PROOFSTEP]
refine coprime a (Finset.mem_insert_self a s) b (Finset.mem_insert_of_mem hb) ?_ ?_
[GOAL]
case refine_2.intro.intro.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ a ≠ b
[PROOFSTEP]
rintro rfl
[GOAL]
case refine_2.intro.intro.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (f a)
hb : a ∈ s
hPb : f a ^ e a ≤ P
this : IsPrime (f a)
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case refine_2.intro.intro.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ f a = f b
[PROOFSTEP]
refine
((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPa)).trans
((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPb)).symm
[GOAL]
case refine_2.intro.intro.refine_2.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ f a ≠ ⊥
case refine_2.intro.intro.refine_2.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ f b ≠ ⊥
[PROOFSTEP]
exact (prime a (Finset.mem_insert_self a s)).ne_zero
[GOAL]
case refine_2.intro.intro.refine_2.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s✝ : Finset ι
f : ι → Ideal R
e : ι → ℕ
this✝² : DecidableEq ι := Classical.decEq ι
a : ι
s : Finset ι
ha : ¬a ∈ s
prime : ∀ (i : ι), i ∈ insert a s → Prime (f i)
coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j
ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i
P : Ideal R
hPa : f a ^ e a ≤ P
hPs : ∏ x in s, f x ^ e x ≤ P
hPp this✝¹ : IsPrime P
b : ι
hb : b ∈ s
hPb : f b ^ e b ≤ P
this✝ : IsPrime (f a)
this : IsPrime (f b)
⊢ f b ≠ ⊥
[PROOFSTEP]
exact (prime b (Finset.mem_insert_of_mem hb)).ne_zero
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P i)
coprime : ∀ (i j : ι), i ≠ j → P i ≠ P j
prod_eq : ∏ i : ι, P i ^ e i = I
⊢ I = ⨅ (i : ι), P i ^ e i
[PROOFSTEP]
simp only [← prod_eq, Finset.inf_eq_iInf, Finset.mem_univ, ciInf_pos, ←
IsDedekindDomain.inf_prime_pow_eq_prod _ _ _ (fun i _ => prime i) fun i _ j _ => coprime i j]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P i)
coprime : ∀ (i j : ι), i ≠ j → P i ≠ P j
prod_eq : ∏ i : ι, P i ^ e i = I
i j : ι
hij : i ≠ j
⊢ ∀ (P_1 : Ideal R), P i ^ e i ≤ P_1 → P j ^ e j ≤ P_1 → ¬IsPrime P_1
[PROOFSTEP]
intro P hPi hPj hPp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp : IsPrime P
⊢ False
[PROOFSTEP]
haveI := hPp
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this : IsPrime P
⊢ False
[PROOFSTEP]
haveI := Ideal.isPrime_of_prime (prime i)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝ : IsPrime P
this : IsPrime (P✝ i)
⊢ False
[PROOFSTEP]
haveI := Ideal.isPrime_of_prime (prime j)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (P✝ i)
this : IsPrime (P✝ j)
⊢ False
[PROOFSTEP]
refine coprime i j hij ?_
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (P✝ i)
this : IsPrime (P✝ j)
⊢ P✝ i = P✝ j
[PROOFSTEP]
refine
((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPi)).trans
((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPj)).symm
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (P✝ i)
this : IsPrime (P✝ j)
⊢ P✝ i ≠ ⊥
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (P✝ i)
this : IsPrime (P✝ j)
⊢ P✝ j ≠ ⊥
[PROOFSTEP]
exact (prime i).ne_zero
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : Field K
inst✝³ : IsDomain A
inst✝² : IsDomain R
inst✝¹ : IsDedekindDomain R
ι : Type u_4
inst✝ : Fintype ι
I : Ideal R
P✝ : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), Prime (P✝ i)
coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j
prod_eq : ∏ i : ι, P✝ i ^ e i = I
i j : ι
hij : i ≠ j
P : Ideal R
hPi : P✝ i ^ e i ≤ P
hPj : P✝ j ^ e j ≤ P
hPp this✝¹ : IsPrime P
this✝ : IsPrime (P✝ i)
this : IsPrime (P✝ j)
⊢ P✝ j ≠ ⊥
[PROOFSTEP]
exact (prime j).ne_zero
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
⊢ Multiset.prod (Multiset.map (fun P => P) (factors I)) = Multiset.prod (factors I)
[PROOFSTEP]
rw [Multiset.map_id']
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
x : (i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i
⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = x { val := i, property := hi }
[PROOFSTEP]
let f := IsDedekindDomain.quotientEquivPiOfFinsetProdEq _ P e prime coprime rfl
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
x : (i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i
f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) :=
quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i)
⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = x { val := i, property := hi }
[PROOFSTEP]
obtain ⟨y, rfl⟩ := f.surjective x
[GOAL]
case intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) :=
quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i)
y : R ⧸ ∏ i in s, P i ^ e i
⊢ ∃ y_1, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y_1 = ↑f y { val := i, property := hi }
[PROOFSTEP]
obtain ⟨z, rfl⟩ := Ideal.Quotient.mk_surjective y
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) :=
quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i)
z : R
⊢ ∃ y,
∀ (i : ι) (hi : i ∈ s),
↑(Ideal.Quotient.mk (P i ^ e i)) y =
↑f (↑(Ideal.Quotient.mk (∏ i in s, P i ^ e i)) z) { val := i, property := hi }
[PROOFSTEP]
exact ⟨z, fun i _hi => rfl⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
x : { x // x ∈ s } → R
⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), y - x { val := i, property := hi } ∈ P i ^ e i
[PROOFSTEP]
obtain ⟨y, hy⟩ := IsDedekindDomain.exists_representative_mod_finset P e prime coprime fun i => Ideal.Quotient.mk _ (x i)
[GOAL]
case intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : CommRing A
inst✝³ : Field K
inst✝² : IsDomain A
inst✝¹ : IsDomain R
inst✝ : IsDedekindDomain R
ι : Type u_4
s : Finset ι
P : ι → Ideal R
e : ι → ℕ
prime : ∀ (i : ι), i ∈ s → Prime (P i)
coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j
x : { x // x ∈ s } → R
y : R
hy :
∀ (i : ι) (hi : i ∈ s),
↑(Ideal.Quotient.mk (P i ^ e i)) y =
↑(Ideal.Quotient.mk (P ↑{ val := i, property := hi } ^ e ↑{ val := i, property := hi }))
(x { val := i, property := hi })
⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), y - x { val := i, property := hi } ∈ P i ^ e i
[PROOFSTEP]
exact ⟨y, fun i hi => Ideal.Quotient.eq.mp (hy i hi)⟩
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
⊢ span {a} ∈ normalizedFactors (span {b})
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : b = 0
⊢ span {a} ∈ normalizedFactors (span {b})
[PROOFSTEP]
rw [Ideal.span_singleton_eq_bot.mpr hb, bot_eq_zero, normalizedFactors_zero]
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : b = 0
⊢ span {a} ∈ 0
[PROOFSTEP]
rw [hb, normalizedFactors_zero] at ha
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ 0
hb : b = 0
⊢ span {a} ∈ 0
[PROOFSTEP]
exact absurd ha (Multiset.not_mem_zero a)
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
⊢ span {a} ∈ normalizedFactors (span {b})
[PROOFSTEP]
suffices Prime (Ideal.span ({ a } : Set R))
by
obtain ⟨c, hc, hc'⟩ :=
exists_mem_normalizedFactors_of_dvd ?_ this.irreducible
(dvd_iff_le.mpr (span_singleton_le_span_singleton.mpr (dvd_of_mem_normalizedFactors ha)))
rwa [associated_iff_eq.mp hc']
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
this : Prime (span {a})
⊢ span {a} ∈ normalizedFactors (span {b})
[PROOFSTEP]
obtain ⟨c, hc, hc'⟩ :=
exists_mem_normalizedFactors_of_dvd ?_ this.irreducible
(dvd_iff_le.mpr (span_singleton_le_span_singleton.mpr (dvd_of_mem_normalizedFactors ha)))
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
this : Prime (span {a})
c : Ideal R
hc : c ∈ normalizedFactors (span {b})
hc' : Associated (span {a}) c
⊢ span {a} ∈ normalizedFactors (span {b})
[PROOFSTEP]
rwa [associated_iff_eq.mp hc']
[GOAL]
case neg.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
this : Prime (span {a})
⊢ span {b} ≠ 0
[PROOFSTEP]
by_contra h
[GOAL]
case neg.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
this : Prime (span {a})
h : span {b} = 0
⊢ False
[PROOFSTEP]
exact hb (span_singleton_eq_bot.mp h)
[GOAL]
case neg.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
⊢ Prime (span {a})
[PROOFSTEP]
rw [prime_iff_isPrime]
[GOAL]
case neg.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
⊢ IsPrime (span {a})
[PROOFSTEP]
exact (span_singleton_prime (prime_of_normalized_factor a ha).ne_zero).mpr (prime_of_normalized_factor a ha)
[GOAL]
case neg.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
⊢ span {a} ≠ ⊥
[PROOFSTEP]
by_contra h
[GOAL]
case neg.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableEq R
inst✝ : DecidableEq (Ideal R)
a b : R
ha : a ∈ normalizedFactors b
hb : ¬b = 0
h : span {a} = ⊥
⊢ False
[PROOFSTEP]
exact (prime_of_normalized_factor a ha).ne_zero (span_singleton_eq_bot.mp h)
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
⊢ multiplicity (span {a}) (span {b}) = multiplicity a b
[PROOFSTEP]
by_cases h : Finite a b
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ multiplicity (span {a}) (span {b}) = multiplicity a b
[PROOFSTEP]
rw [← PartENat.natCast_get (finite_iff_dom.mp h)]
[GOAL]
case pos
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ multiplicity (span {a}) (span {b}) = ↑(Part.get (multiplicity a b) (_ : (multiplicity a b).Dom))
[PROOFSTEP]
refine (multiplicity.unique (show Ideal.span { a } ^ (multiplicity a b).get h ∣ Ideal.span { b } from ?_) ?_).symm
[GOAL]
case pos.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ span {a} ^ Part.get (multiplicity a b) h ∣ span {b}
[PROOFSTEP]
rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd]
[GOAL]
case pos.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ ¬span {a} ^ (Part.get (multiplicity a b) h + 1) ∣ span {b}
[PROOFSTEP]
rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd]
[GOAL]
case pos.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ a ^ Part.get (multiplicity a b) h ∣ b
case pos.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ ¬a ^ (Part.get (multiplicity a b) h + 1) ∣ b
[PROOFSTEP]
exact pow_multiplicity_dvd h
[GOAL]
case pos.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : multiplicity.Finite a b
⊢ ¬a ^ (Part.get (multiplicity a b) h + 1) ∣ b
[PROOFSTEP]
exact multiplicity.is_greatest ((PartENat.lt_coe_iff _ _).mpr (Exists.intro (finite_iff_dom.mp h) (Nat.lt_succ_self _)))
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : ¬multiplicity.Finite a b
⊢ multiplicity (span {a}) (span {b}) = multiplicity a b
[PROOFSTEP]
suffices ¬Finite (Ideal.span ({ a } : Set R)) (Ideal.span ({ b } : Set R))
by
rw [finite_iff_dom, PartENat.not_dom_iff_eq_top] at h this
rw [h, this]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : ¬multiplicity.Finite a b
this : ¬multiplicity.Finite (span {a}) (span {b})
⊢ multiplicity (span {a}) (span {b}) = multiplicity a b
[PROOFSTEP]
rw [finite_iff_dom, PartENat.not_dom_iff_eq_top] at h this
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h✝ : ¬multiplicity.Finite a b
h : multiplicity a b = ⊤
this✝ : ¬multiplicity.Finite (span {a}) (span {b})
this : multiplicity (span {a}) (span {b}) = ⊤
⊢ multiplicity (span {a}) (span {b}) = multiplicity a b
[PROOFSTEP]
rw [h, this]
[GOAL]
case neg
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : ¬multiplicity.Finite a b
⊢ ¬multiplicity.Finite (span {a}) (span {b})
[PROOFSTEP]
exact
not_finite_iff_forall.mpr fun n =>
by
rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd]
exact not_finite_iff_forall.mp h n
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : ¬multiplicity.Finite a b
n : ℕ
⊢ span {a} ^ n ∣ span {b}
[PROOFSTEP]
rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁷ : CommRing R
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : IsDomain A
inst✝³ : IsDomain R
inst✝² : IsPrincipalIdealRing R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
a b : R
h : ¬multiplicity.Finite a b
n : ℕ
⊢ a ^ n ∣ b
[PROOFSTEP]
exact not_finite_iff_forall.mp h n
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
⊢ ↑{d | d ∈ normalizedFactors r} ≃ ↑{I | I ∈ normalizedFactors (span {r})}
[PROOFSTEP]
refine Equiv.ofBijective ?_ ?_
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
⊢ ↑{d | d ∈ normalizedFactors r} → ↑{I | I ∈ normalizedFactors (span {r})}
[PROOFSTEP]
exact fun d => ⟨Ideal.span {↑d}, singleton_span_mem_normalizedFactors_of_mem_normalizedFactors d.prop⟩
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
⊢ Function.Bijective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }
[PROOFSTEP]
refine ⟨?_, ?_⟩
[GOAL]
case refine_2.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
⊢ Function.Injective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩ h
[GOAL]
case refine_2.refine_1.mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
a : R
ha : a ∈ {d | d ∈ normalizedFactors r}
b : R
hb : b ∈ {d | d ∈ normalizedFactors r}
h :
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) })
{ val := a, property := ha } =
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) })
{ val := b, property := hb }
⊢ { val := a, property := ha } = { val := b, property := hb }
[PROOFSTEP]
rw [Subtype.mk_eq_mk, Ideal.span_singleton_eq_span_singleton, Subtype.coe_mk, Subtype.coe_mk] at h
[GOAL]
case refine_2.refine_1.mk.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
a : R
ha : a ∈ {d | d ∈ normalizedFactors r}
b : R
hb : b ∈ {d | d ∈ normalizedFactors r}
h : Associated a b
⊢ { val := a, property := ha } = { val := b, property := hb }
[PROOFSTEP]
exact Subtype.mk_eq_mk.mpr (mem_normalizedFactors_eq_of_associated ha hb h)
[GOAL]
case refine_2.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
⊢ Function.Surjective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }
[PROOFSTEP]
rintro ⟨i, hi⟩
[GOAL]
case refine_2.refine_2.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
⊢ ∃ a,
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a =
{ val := i, property := hi }
[PROOFSTEP]
have : i.IsPrime := isPrime_of_prime (prime_of_normalized_factor i hi)
[GOAL]
case refine_2.refine_2.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
this : IsPrime i
⊢ ∃ a,
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a =
{ val := i, property := hi }
[PROOFSTEP]
have :=
exists_mem_normalizedFactors_of_dvd hr
(Submodule.IsPrincipal.prime_generator_of_isPrime i (prime_of_normalized_factor i hi).ne_zero).irreducible ?_
[GOAL]
case refine_2.refine_2.mk.refine_2
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
this✝ : IsPrime i
this : ∃ q, q ∈ normalizedFactors r ∧ Associated (Submodule.IsPrincipal.generator i) q
⊢ ∃ a,
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a =
{ val := i, property := hi }
[PROOFSTEP]
obtain ⟨a, ha, ha'⟩ := this
[GOAL]
case refine_2.refine_2.mk.refine_2.intro.intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
this : IsPrime i
a : R
ha : a ∈ normalizedFactors r
ha' : Associated (Submodule.IsPrincipal.generator i) a
⊢ ∃ a,
(fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a =
{ val := i, property := hi }
[PROOFSTEP]
use⟨a, ha⟩
[GOAL]
case h
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
this : IsPrime i
a : R
ha : a ∈ normalizedFactors r
ha' : Associated (Submodule.IsPrincipal.generator i) a
⊢ (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) })
{ val := a, property := ha } =
{ val := i, property := hi }
[PROOFSTEP]
simp only [Subtype.coe_mk, Subtype.mk_eq_mk, ← span_singleton_eq_span_singleton.mpr ha', Ideal.span_singleton_generator]
[GOAL]
case refine_2.refine_2.mk.refine_1
R : Type u_1
A : Type u_2
K : Type u_3
inst✝⁸ : CommRing R
inst✝⁷ : CommRing A
inst✝⁶ : Field K
inst✝⁵ : IsDomain A
inst✝⁴ : IsDomain R
inst✝³ : IsPrincipalIdealRing R
inst✝² : DecidableEq R
inst✝¹ : DecidableEq (Ideal R)
inst✝ : NormalizationMonoid R
r : R
hr : r ≠ 0
i : Ideal R
hi : i ∈ {I | I ∈ normalizedFactors (span {r})}
this : IsPrime i
⊢ Submodule.IsPrincipal.generator i ∣ r
[PROOFSTEP]
exact
(Submodule.IsPrincipal.mem_iff_generator_dvd i).mp
((show Ideal.span { r } ≤ i from dvd_iff_le.mp (dvd_of_mem_normalizedFactors hi))
(mem_span_singleton.mpr (dvd_refl r)))
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
inst✝⁶ : IsDomain R
inst✝⁵ : IsPrincipalIdealRing R
inst✝⁴ : DecidableEq R
inst✝³ : DecidableEq (Ideal R)
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
r d : R
hr : r ≠ 0
hd : d ∈ normalizedFactors r
⊢ multiplicity d r =
multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr) { val := d, property := hd })) (span {r})
[PROOFSTEP]
simp only [normalizedFactorsEquivSpanNormalizedFactors, multiplicity_eq_multiplicity_span, Subtype.coe_mk,
Equiv.ofBijective_apply]
[GOAL]
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
inst✝⁶ : IsDomain R
inst✝⁵ : IsPrincipalIdealRing R
inst✝⁴ : DecidableEq R
inst✝³ : DecidableEq (Ideal R)
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
r : R
hr : r ≠ 0
I : ↑{I | I ∈ normalizedFactors (span {r})}
⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r})
[PROOFSTEP]
obtain ⟨x, hx⟩ := (normalizedFactorsEquivSpanNormalizedFactors hr).surjective I
[GOAL]
case intro
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
inst✝⁶ : IsDomain R
inst✝⁵ : IsPrincipalIdealRing R
inst✝⁴ : DecidableEq R
inst✝³ : DecidableEq (Ideal R)
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
r : R
hr : r ≠ 0
I : ↑{I | I ∈ normalizedFactors (span {r})}
x : ↑{d | d ∈ normalizedFactors r}
hx : ↑(normalizedFactorsEquivSpanNormalizedFactors hr) x = I
⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r})
[PROOFSTEP]
obtain ⟨a, ha⟩ := x
[GOAL]
case intro.mk
R : Type u_1
A : Type u_2
K : Type u_3
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing A
inst✝⁸ : Field K
inst✝⁷ : IsDomain A
inst✝⁶ : IsDomain R
inst✝⁵ : IsPrincipalIdealRing R
inst✝⁴ : DecidableEq R
inst✝³ : DecidableEq (Ideal R)
inst✝² : NormalizationMonoid R
inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1
inst✝ : DecidableRel fun x x_1 => x ∣ x_1
r : R
hr : r ≠ 0
I : ↑{I | I ∈ normalizedFactors (span {r})}
a : R
ha : a ∈ {d | d ∈ normalizedFactors r}
hx : ↑(normalizedFactorsEquivSpanNormalizedFactors hr) { val := a, property := ha } = I
⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r})
[PROOFSTEP]
rw [hx.symm, Equiv.symm_apply_apply, Subtype.coe_mk,
multiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_multiplicity hr ha, hx]
| {"mathlib_filename": "Mathlib.RingTheory.DedekindDomain.Ideal", "llama_tokens": 147765} |
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
r : ℝ
hr : im =O[l] fun z => z.re ^ r
n : ℕ
⊢ (fun z => z.im ^ ↑n) =O[l] fun z => (z.re ^ r) ^ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
r : ℝ
hr : im =O[l] fun z => z.re ^ r
n : ℕ
⊢ (fun z => z.im ^ n) =O[l] fun z => (z.re ^ r) ^ n
[PROOFSTEP]
exact hr.pow n
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
r : ℝ
hr : im =O[l] fun z => z.re ^ r
n : ℕ
z : ℂ
hz : 0 ≤ z.re
⊢ (fun z => (z.re ^ r) ^ ↑n) z = (fun z => z.re ^ (r * ↑n)) z
[PROOFSTEP]
simp only [Real.rpow_mul hz r n, Real.rpow_nat_cast]
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
n : ℕ
hr : im =O[l] fun z => z.re ^ ↑n
⊢ im =O[l] fun z => z.re ^ ↑n
[PROOFSTEP]
norm_cast at hr
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
n : ℕ
hr : im =O[l] fun z => z.re ^ n
⊢ im =O[l] fun z => z.re ^ ↑n
[PROOFSTEP]
simpa only [Real.rpow_nat_cast]
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
him : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun z => |z.im|
⊢ im =O[l] fun z => z.re ^ ↑0
[PROOFSTEP]
norm_cast
[GOAL]
l : Filter ℂ
hre : Tendsto re l atTop
him : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun z => |z.im|
⊢ im =O[l] fun z => z.re ^ 0
[PROOFSTEP]
simpa only [pow_zero] using @IsBoundedUnder.isBigO_const ℂ ℝ ℝ _ _ _ l him 1 one_ne_zero
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ ∀ (x : ℂ), ((fun z => z.im ^ ↑n) ^ 2) x = (x.im ^ ↑n) ^ 2
[PROOFSTEP]
simp
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
x✝ : ℂ
⊢ (x✝.im ^ ↑n) ^ 2 = x✝.im ^ (2 * ↑n)
[PROOFSTEP]
norm_cast
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
x✝ : ℂ
⊢ (x✝.im ^ n) ^ 2 = x✝.im ^ (2 * n)
[PROOFSTEP]
rw [pow_mul']
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ (fun z => z.im ^ (2 * ↑n)) =O[l] fun z => Real.exp z.re
[PROOFSTEP]
have := hl.isBigO_im_pow_re (2 * n)
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
this : (fun z => z.im ^ ↑(2 * n)) =O[l] fun z => Real.exp z.re
⊢ (fun z => z.im ^ (2 * ↑n)) =O[l] fun z => Real.exp z.re
[PROOFSTEP]
norm_cast at *
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
x✝ : ℂ
⊢ Real.exp x✝.re = Real.exp x✝.re ^ 1
[PROOFSTEP]
norm_cast
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
x✝ : ℂ
⊢ Real.exp x✝.re = Real.exp x✝.re ^ 1
[PROOFSTEP]
rw [pow_one]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ (fun z => Real.exp z.re ^ 1) =o[l] fun z => Real.exp z.re ^ 2
[PROOFSTEP]
have := (isLittleO_pow_pow_atTop_of_lt one_lt_two).comp_tendsto <| Real.tendsto_exp_atTop.comp hl.tendsto_re
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
this : ((fun x => x ^ 1) ∘ Real.exp ∘ re) =o[l] ((fun x => x ^ 2) ∘ Real.exp ∘ re)
⊢ (fun z => Real.exp z.re ^ 1) =o[l] fun z => Real.exp z.re ^ 2
[PROOFSTEP]
simpa only [pow_one, Real.rpow_one, Real.rpow_two]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ ∀ (x : ℂ), Real.exp x.re ^ 2 = ((fun z => Real.exp z.re) ^ 2) x
[PROOFSTEP]
simp
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ (fun z => |z.im| ^ ↑n) ≤ᶠ[l] fun z => Real.exp z.re
[PROOFSTEP]
simpa using (hl.isLittleO_im_pow_exp_re n).bound zero_lt_one
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
have h2 : 0 < Real.sqrt 2 := by simp
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
⊢ 0 < Real.sqrt 2
[PROOFSTEP]
simp
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
have hz' : 1 ≤ abs z := hz.trans (re_le_abs z)
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
have _ : 0 < abs z := one_pos.trans_le hz'
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
have hm₀ : 0 < max z.re |z.im| := lt_max_iff.2 (Or.inl <| one_pos.trans_le hz)
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
rw [one_mul, Real.norm_eq_abs, _root_.abs_of_nonneg (Real.log_nonneg hz')]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ Real.log (↑abs z) ≤ ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖
[PROOFSTEP]
refine' le_trans _ (le_abs_self _)
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ Real.log (↑abs z) ≤ Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)
[PROOFSTEP]
rw [← Real.log_mul, Real.log_le_log, ← _root_.abs_of_nonneg (le_trans zero_le_one hz)]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ ↑abs z ≤ Real.sqrt 2 * max |z.re| |z.im|
case h
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ 0 < ↑abs z
case h₁
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ 0 < Real.sqrt 2 * max z.re |z.im|
case hx
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ Real.sqrt 2 ≠ 0
case hy
l : Filter ℂ
hl : IsExpCmpFilter l
z : ℂ
hz : 1 ≤ z.re
h2 : 0 < Real.sqrt 2
hz' : 1 ≤ ↑abs z
x✝ : 0 < ↑abs z
hm₀ : 0 < max z.re |z.im|
⊢ max z.re |z.im| ≠ 0
[PROOFSTEP]
exacts [abs_le_sqrt_two_mul_max z, one_pos.trans_le hz', mul_pos h2 hm₀, h2.ne', hm₀.ne']
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
⊢ ∀ᶠ (x : ℂ) in l, ↑n * ‖Real.log (max x.re |x.im|)‖ ≤ ‖x.re‖
[PROOFSTEP]
filter_upwards [isLittleO_iff_nat_mul_le'.1 hl.isLittleO_log_re_re n, hl.abs_im_pow_eventuallyLE_exp_re n,
hl.tendsto_re.eventually_gt_atTop 1] with z hre him h₁
[GOAL]
case h
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
z : ℂ
hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖
him : |z.im| ^ ↑n ≤ Real.exp z.re
h₁ : 1 < z.re
⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖
[PROOFSTEP]
cases' le_total |z.im| z.re with hle hle
[GOAL]
case h.inl
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
z : ℂ
hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖
him : |z.im| ^ ↑n ≤ Real.exp z.re
h₁ : 1 < z.re
hle : |z.im| ≤ z.re
⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖
[PROOFSTEP]
rwa [max_eq_left hle]
[GOAL]
case h.inr
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
z : ℂ
hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖
him : |z.im| ^ ↑n ≤ Real.exp z.re
h₁ : 1 < z.re
hle : z.re ≤ |z.im|
⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖
[PROOFSTEP]
have H : 1 < |z.im| := h₁.trans_le hle
[GOAL]
case h.inr
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
z : ℂ
hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖
him : |z.im| ^ ↑n ≤ Real.exp z.re
h₁ : 1 < z.re
hle : z.re ≤ |z.im|
H : 1 < |z.im|
⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖
[PROOFSTEP]
norm_cast at *
[GOAL]
case h.inr
l : Filter ℂ
hl : IsExpCmpFilter l
n : ℕ
z : ℂ
hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖
hle : z.re ≤ |z.im|
him : |z.im| ^ n ≤ Real.exp z.re
h₁ : 1 < z.re
H : 1 < |z.im|
⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖
[PROOFSTEP]
rwa [max_eq_right hle, Real.norm_eq_abs, Real.norm_eq_abs, abs_of_pos (Real.log_pos H), ← Real.log_pow,
Real.log_le_iff_le_exp (pow_pos (one_pos.trans H) _), abs_of_pos (one_pos.trans h₁)]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
a : ℂ
b : ℝ
hb : 0 < b
z : ℂ
hz : z ≠ 0
⊢ (let_fun this := fun z => ↑abs z ^ a.re;
this)
z =
(fun z => Real.exp (a.re * Real.log (↑abs z))) z
[PROOFSTEP]
simp only [Real.rpow_def_of_pos, abs.pos hz, mul_comm]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
a : ℂ
b : ℝ
hb : 0 < b
⊢ (fun z => Real.exp (a.re * Real.log (↑abs z))) =o[l] fun x => ‖exp (↑b * x)‖
[PROOFSTEP]
simp only [norm_eq_abs, abs_exp, ofReal_mul_re, Real.isLittleO_exp_comp_exp_comp]
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
a : ℂ
b : ℝ
hb : 0 < b
⊢ Tendsto (fun x => b * x.re - a.re * Real.log (↑abs x)) l atTop
[PROOFSTEP]
refine' (IsEquivalent.refl.sub_isLittleO _).symm.tendsto_atTop (hl.tendsto_re.const_mul_atTop hb)
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
a : ℂ
b : ℝ
hb : 0 < b
⊢ (fun x => a.re * Real.log (↑abs x)) =o[l] fun x => b * x.re
[PROOFSTEP]
exact (hl.isLittleO_log_abs_re.const_mul_left _).const_mul_right hb.ne'
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
a₁ a₂ z : ℂ
hz : z ≠ 0
⊢ (fun z => z ^ a₁ * exp (↑b₁ * z)) z = (fun z => z ^ a₂ * exp (↑b₁ * z) * z ^ (a₁ - a₂)) z
[PROOFSTEP]
simp only
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
a₁ a₂ z : ℂ
hz : z ≠ 0
⊢ z ^ a₁ * exp (↑b₁ * z) = z ^ a₂ * exp (↑b₁ * z) * z ^ (a₁ - a₂)
[PROOFSTEP]
rw [mul_right_comm, ← cpow_add _ _ hz, add_sub_cancel'_right]
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
a₁ a₂ : ℂ
⊢ (fun z => z ^ a₂ * exp (↑b₁ * z) * exp (↑(b₂ - b₁) * z)) =ᶠ[l] fun z => z ^ a₂ * exp (↑b₂ * z)
[PROOFSTEP]
simp only [ofReal_sub, sub_mul, mul_assoc, ← exp_add, add_sub_cancel'_right]
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
a₁ a₂ : ℂ
⊢ (fun z => z ^ a₂ * exp (↑b₂ * z)) =ᶠ[l] fun z => z ^ a₂ * exp (↑b₂ * z)
[PROOFSTEP]
norm_cast
[GOAL]
l : Filter ℂ
hl : IsExpCmpFilter l
a : ℂ
b : ℝ
hb : b < 0
⊢ (fun z => exp (↑b * z)) =o[l] fun z => z ^ a
[PROOFSTEP]
simpa using hl.isLittleO_cpow_mul_exp hb 0 a
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
m n : ℕ
⊢ (fun z => z ^ ↑m * exp (↑b₁ * z)) =o[l] fun z => z ^ ↑n * exp (↑b₂ * z)
[PROOFSTEP]
simpa only [cpow_nat_cast] using hl.isLittleO_cpow_mul_exp hb m n
[GOAL]
l : Filter ℂ
b₁ b₂ : ℝ
hl : IsExpCmpFilter l
hb : b₁ < b₂
m n : ℤ
⊢ (fun z => z ^ ↑m * exp (↑b₁ * z)) =o[l] fun z => z ^ ↑n * exp (↑b₂ * z)
[PROOFSTEP]
simpa only [cpow_int_cast] using hl.isLittleO_cpow_mul_exp hb m n
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.CompareExp", "llama_tokens": 5629} |
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
have hp₀' : 0 < 1 / p := by positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
⊢ 0 < 1 / p
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
have hp₁' : 1 < 1 / p := by rw [one_lt_div hp₀]; exact hp₁
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
⊢ 1 < 1 / p
[PROOFSTEP]
rw [one_lt_div hp₀]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
⊢ p < 1
[PROOFSTEP]
exact hp₁
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
let f := NNReal.orderIsoRpow (1 / p) hp₀'
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
have h₁ : StrictConvexOn ℝ≥0 univ f :=
by
refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩
exact
(strictConvexOn_rpow hp₁').2 (by positivity : 0 ≤ x) (by positivity : 0 ≤ y) (by simp [hxy]) ha hb
(by simp; norm_cast)
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
⊢ StrictConvexOn ℝ≥0 univ ↑f
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ↑f (a • x + b • y) < a • ↑f x + b • ↑f y
[PROOFSTEP]
exact
(strictConvexOn_rpow hp₁').2 (by positivity : 0 ≤ x) (by positivity : 0 ≤ y) (by simp [hxy]) ha hb
(by simp; norm_cast)
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ 0 ≤ x
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ 0 ≤ y
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (fun a => ↑a) x ≠ (fun a => ↑a) y
[PROOFSTEP]
simp [hxy]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ↑(↑(RingHom.id ℝ≥0) a) + ↑(↑(RingHom.id ℝ≥0) b) = 1
[PROOFSTEP]
simp
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ↑a + ↑b = 1
[PROOFSTEP]
norm_cast
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
h₁ : StrictConvexOn ℝ≥0 univ ↑f
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
have h₂ : ∀ x, f.symm x = x ^ p := by simp [NNReal.orderIsoRpow_symm_eq]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
h₁ : StrictConvexOn ℝ≥0 univ ↑f
⊢ ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p
[PROOFSTEP]
simp [NNReal.orderIsoRpow_symm_eq]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
h₁ : StrictConvexOn ℝ≥0 univ ↑f
h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
h₁ : StrictConvexOn ℝ≥0 univ ↑f
h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
simp only [← h₂]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
hp₀' : 0 < 1 / p
hp₁' : 1 < 1 / p
f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀'
h₁ : StrictConvexOn ℝ≥0 univ ↑f
h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p
x : ℝ≥0
x✝¹ : x ∈ univ
y : ℝ≥0
x✝ : y ∈ univ
hxy : x ≠ y
a b : ℝ≥0
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) x + b • ↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) y <
↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) (a • x + b • y)
[PROOFSTEP]
exact (f.strictConcaveOn_symm h₁).2 (Set.mem_univ x) (Set.mem_univ y) hxy ha hb hab
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
by_cases hp : p = 0
[GOAL]
case pos
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
x✝⁷ : ℝ≥0
x✝⁶ : x✝⁷ ∈ univ
x✝⁵ : ℝ≥0
x✝⁴ : x✝⁵ ∈ univ
x✝³ x✝² : ℝ≥0
x✝¹ : 0 ≤ x✝³
x✝ : 0 ≤ x✝²
hab : x✝³ + x✝² = 1
⊢ x✝³ • (fun x => x ^ p) x✝⁷ + x✝² • (fun x => x ^ p) x✝⁵ ≤ (fun x => x ^ p) (x✝³ • x✝⁷ + x✝² • x✝⁵)
[PROOFSTEP]
simp [hp, hab]
[GOAL]
case neg
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp
by_cases hp' : p = 1
case pos => exact ⟨convex_univ, by simp [hp']⟩
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp
by_cases hp' : p = 1
case pos => exact ⟨convex_univ, by simp [hp']⟩
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
push_neg at hp
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
by_cases hp' : p = 1
[GOAL]
case pos
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_univ, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_univ, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
exact ⟨convex_univ, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ∀ ⦃x : ℝ≥0⦄,
x ∈ univ →
∀ ⦃y : ℝ≥0⦄,
y ∈ univ →
∀ ⦃a b : ℝ≥0⦄,
0 ≤ a →
0 ≤ b → a + b = 1 → a • (fun x => x ^ p) x + b • (fun x => x ^ p) y ≤ (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
simp [hp']
[GOAL]
case neg
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
push_neg at hp'
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p ≠ 1
⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p
[PROOFSTEP]
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p ≠ 1
⊢ 0 < p
[PROOFSTEP]
positivity
[GOAL]
⊢ StrictConcaveOn ℝ≥0 univ ↑sqrt
[PROOFSTEP]
have : NNReal.sqrt = fun (x : ℝ≥0) ↦ x ^ (1 / (2 : ℝ)) := by ext x; exact_mod_cast NNReal.sqrt_eq_rpow x
[GOAL]
⊢ ↑sqrt = fun x => x ^ (1 / 2)
[PROOFSTEP]
ext x
[GOAL]
case h.a
x : ℝ≥0
⊢ ↑(↑sqrt x) = ↑(x ^ (1 / 2))
[PROOFSTEP]
exact_mod_cast NNReal.sqrt_eq_rpow x
[GOAL]
this : ↑sqrt = fun x => x ^ (1 / 2)
⊢ StrictConcaveOn ℝ≥0 univ ↑sqrt
[PROOFSTEP]
rw [this]
[GOAL]
this : ↑sqrt = fun x => x ^ (1 / 2)
⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ (1 / 2)
[PROOFSTEP]
exact strictConcaveOn_rpow (by positivity) (by linarith)
[GOAL]
this : ↑sqrt = fun x => x ^ (1 / 2)
⊢ 0 < 1 / 2
[PROOFSTEP]
positivity
[GOAL]
this : ↑sqrt = fun x => x ^ (1 / 2)
⊢ 1 / 2 < 1
[PROOFSTEP]
linarith
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
⊢ StrictConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
refine ⟨convex_Ici _, fun x hx y hy hxy a b ha hb hab => ?_⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
let x' : ℝ≥0 := ⟨x, hx⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
let y' : ℝ≥0 := ⟨y, hy⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
let a' : ℝ≥0 := ⟨a, by positivity⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
⊢ 0 ≤ a
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
let b' : ℝ≥0 := ⟨b, by positivity⟩
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
⊢ 0 ≤ b
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
have hx' : (fun z => z ^ p) x = (fun z => z ^ p) x' := rfl
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
have hy' : (fun z => z ^ p) y = (fun z => z ^ p) y' := rfl
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
have hxy' : x' ≠ y' := Subtype.ne_of_val_ne hxy
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
have hab' : a' + b' = 1 := by ext; simp [hab]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
⊢ a' + b' = 1
[PROOFSTEP]
ext
[GOAL]
case a
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
⊢ ↑(a' + b') = ↑1
[PROOFSTEP]
simp [hab]
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
hab' : a' + b' = 1
⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
rw [hx', hy']
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
hab' : a' + b' = 1
⊢ a • ↑((fun z => z ^ p) x') + b • ↑((fun z => z ^ p) y') < (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
exact
(NNReal.strictConcaveOn_rpow hp₀ hp₁).2 (Set.mem_univ x') (Set.mem_univ y') hxy' (by exact_mod_cast ha)
(by exact_mod_cast hb) hab'
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
hab' : a' + b' = 1
⊢ 0 < a'
[PROOFSTEP]
exact_mod_cast ha
[GOAL]
p : ℝ
hp₀ : 0 < p
hp₁ : p < 1
x : ℝ
hx : x ∈ Ici 0
y : ℝ
hy : y ∈ Ici 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : ℝ≥0 := { val := x, property := hx }
y' : ℝ≥0 := { val := y, property := hy }
a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) }
b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) }
hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x')
hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y')
hxy' : x' ≠ y'
hab' : a' + b' = 1
⊢ 0 < b'
[PROOFSTEP]
exact_mod_cast hb
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
by_cases hp : p = 0
[GOAL]
case pos
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p = 0
x✝⁷ : ℝ
x✝⁶ : x✝⁷ ∈ Ici 0
x✝⁵ : ℝ
x✝⁴ : x✝⁵ ∈ Ici 0
x✝³ x✝² : ℝ
x✝¹ : 0 ≤ x✝³
x✝ : 0 ≤ x✝²
hab : x✝³ + x✝² = 1
⊢ x✝³ • (fun x => x ^ p) x✝⁷ + x✝² • (fun x => x ^ p) x✝⁵ ≤ (fun x => x ^ p) (x✝³ • x✝⁷ + x✝² • x✝⁵)
[PROOFSTEP]
simp [hp, hab]
[GOAL]
case neg
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp
by_cases hp' : p = 1
case pos => exact ⟨convex_Ici 0, by simp [hp']⟩
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp
by_cases hp' : p = 1
case pos => exact ⟨convex_Ici 0, by simp [hp']⟩
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : ¬p = 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
push_neg at hp
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
by_cases hp' : p = 1
[GOAL]
case pos
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_Ici 0, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case pos => exact ⟨convex_Ici 0, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
exact ⟨convex_Ici 0, by simp [hp']⟩
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p = 1
⊢ ∀ ⦃x : ℝ⦄,
x ∈ Ici 0 →
∀ ⦃y : ℝ⦄,
y ∈ Ici 0 →
∀ ⦃a b : ℝ⦄,
0 ≤ a →
0 ≤ b → a + b = 1 → a • (fun x => x ^ p) x + b • (fun x => x ^ p) y ≤ (fun x => x ^ p) (a • x + b • y)
[PROOFSTEP]
simp [hp']
[GOAL]
case neg
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
case neg =>
push_neg at hp'
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : ¬p = 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
push_neg at hp'
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p ≠ 1
⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn
[GOAL]
p : ℝ
hp₀ : 0 ≤ p
hp₁ : p ≤ 1
hp : p ≠ 0
hp' : p ≠ 1
⊢ 0 < p
[PROOFSTEP]
positivity
[GOAL]
⊢ StrictConcaveOn ℝ (Ici 0) sqrt
[PROOFSTEP]
have : Real.sqrt = fun (x : ℝ) ↦ x ^ (1 / (2 : ℝ)) := by ext x; exact Real.sqrt_eq_rpow x
[GOAL]
⊢ sqrt = fun x => x ^ (1 / 2)
[PROOFSTEP]
ext x
[GOAL]
case h
x : ℝ
⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
exact Real.sqrt_eq_rpow x
[GOAL]
this : sqrt = fun x => x ^ (1 / 2)
⊢ StrictConcaveOn ℝ (Ici 0) sqrt
[PROOFSTEP]
rw [this]
[GOAL]
this : sqrt = fun x => x ^ (1 / 2)
⊢ StrictConcaveOn ℝ (Ici 0) fun x => x ^ (1 / 2)
[PROOFSTEP]
exact strictConcaveOn_rpow (by positivity) (by linarith)
[GOAL]
this : sqrt = fun x => x ^ (1 / 2)
⊢ 0 < 1 / 2
[PROOFSTEP]
positivity
[GOAL]
this : sqrt = fun x => x ^ (1 / 2)
⊢ 1 / 2 < 1
[PROOFSTEP]
linarith
| {"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Pow", "llama_tokens": 12248} |
[GOAL]
𝕜 : Type u_1
inst✝³ : OrderedSemiring 𝕜
E : Type u_2
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : SMul 𝕜 E
S T : ProperCone 𝕜 E
h : S.toConvexCone = T.toConvexCone
⊢ S = T
[PROOFSTEP]
cases S
[GOAL]
case mk
𝕜 : Type u_1
inst✝³ : OrderedSemiring 𝕜
E : Type u_2
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : SMul 𝕜 E
T : ProperCone 𝕜 E
toConvexCone✝ : ConvexCone 𝕜 E
nonempty'✝ : Set.Nonempty toConvexCone✝.carrier
is_closed'✝ : IsClosed toConvexCone✝.carrier
h : { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ }.toConvexCone = T.toConvexCone
⊢ { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ } = T
[PROOFSTEP]
cases T
[GOAL]
case mk.mk
𝕜 : Type u_1
inst✝³ : OrderedSemiring 𝕜
E : Type u_2
inst✝² : AddCommMonoid E
inst✝¹ : TopologicalSpace E
inst✝ : SMul 𝕜 E
toConvexCone✝¹ : ConvexCone 𝕜 E
nonempty'✝¹ : Set.Nonempty toConvexCone✝¹.carrier
is_closed'✝¹ : IsClosed toConvexCone✝¹.carrier
toConvexCone✝ : ConvexCone 𝕜 E
nonempty'✝ : Set.Nonempty toConvexCone✝.carrier
is_closed'✝ : IsClosed toConvexCone✝.carrier
h :
{ toConvexCone := toConvexCone✝¹, nonempty' := nonempty'✝¹, is_closed' := is_closed'✝¹ }.toConvexCone =
{ toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ }.toConvexCone
⊢ { toConvexCone := toConvexCone✝¹, nonempty' := nonempty'✝¹, is_closed' := is_closed'✝¹ } =
{ toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ }
[PROOFSTEP]
congr
[GOAL]
𝕜 : Type u_1
inst✝⁴ : OrderedSemiring 𝕜
E : Type u_2
inst✝³ : AddCommMonoid E
inst✝² : TopologicalSpace E
inst✝¹ : T1Space E
inst✝ : Module 𝕜 E
⊢ ConvexCone.Pointed 0.toConvexCone
[PROOFSTEP]
simp [ConvexCone.pointed_zero]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
K : ProperCone ℝ E
⊢ (map (ContinuousLinearMap.id ℝ E) K).toConvexCone = K.toConvexCone
[PROOFSTEP]
simpa using IsClosed.closure_eq K.isClosed
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
K : ProperCone ℝ E
y : E
⊢ y ∈ dual K ↔ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner x y
[PROOFSTEP]
rw [← mem_coe, coe_dual, mem_innerDualCone _ _]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
K : ProperCone ℝ E
y : E
⊢ (∀ (x : E), x ∈ ↑K → 0 ≤ inner x y) ↔ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner x y
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
f : E →L[ℝ] F
S : ProperCone ℝ F
⊢ 0 ∈ (ConvexCone.comap (↑f) S.toConvexCone).carrier
[PROOFSTEP]
simp only [ConvexCone.comap, mem_preimage, map_zero, SetLike.mem_coe, mem_coe]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
f : E →L[ℝ] F
S : ProperCone ℝ F
⊢ 0 ∈ S
[PROOFSTEP]
apply ProperCone.pointed
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
f : E →L[ℝ] F
S : ProperCone ℝ F
⊢ IsClosed (ConvexCone.comap (↑f) S.toConvexCone).carrier
[PROOFSTEP]
simp only [ConvexCone.comap, ContinuousLinearMap.coe_coe]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
f : E →L[ℝ] F
S : ProperCone ℝ F
⊢ IsClosed (↑f ⁻¹' ↑S.toConvexCone)
[PROOFSTEP]
apply IsClosed.preimage f.2 S.isClosed
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
g : F →L[ℝ] G
f : E →L[ℝ] F
S : ProperCone ℝ G
⊢ ↑(comap f (comap g S)) = ↑(comap (comp g f) S)
[PROOFSTEP]
congr
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
⊢ b ∈ map f K → ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b
[PROOFSTEP]
simp only [ProperCone.mem_map, ProperCone.mem_dual, adjoint_inner_right, ConvexCone.mem_closure,
mem_closure_iff_seq_limit]
-- there is a sequence `seq : ℕ → F` in the image of `f` that converges to `b`
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
⊢ (∃ x, (∀ (n : ℕ), x n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)) ∧ Tendsto x atTop (nhds b)) →
∀ (y : F), (∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y) → 0 ≤ inner y b
[PROOFSTEP]
rintro ⟨seq, hmem, htends⟩ y hinner
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
⊢ 0 ≤ inner y b
[PROOFSTEP]
suffices h : ∀ n, 0 ≤ ⟪y, seq n⟫_ℝ
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
h : ∀ (n : ℕ), 0 ≤ inner y (seq n)
⊢ 0 ≤ inner y b
case h
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
⊢ ∀ (n : ℕ), 0 ≤ inner y (seq n)
[PROOFSTEP]
exact ge_of_tendsto' (Continuous.seqContinuous (Continuous.inner (@continuous_const _ _ _ _ y) continuous_id) htends) h
[GOAL]
case h
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
⊢ ∀ (n : ℕ), 0 ≤ inner y (seq n)
[PROOFSTEP]
intro n
[GOAL]
case h
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
n : ℕ
⊢ 0 ≤ inner y (seq n)
[PROOFSTEP]
obtain ⟨_, h, hseq⟩ := hmem n
[GOAL]
case h.intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
seq : ℕ → F
hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
htends : Tendsto seq atTop (nhds b)
y : F
hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
n : ℕ
w✝ : E
h : w✝ ∈ ↑K.toConvexCone
hseq : ↑↑f w✝ = seq n
⊢ 0 ≤ inner y (seq n)
[PROOFSTEP]
simpa only [← hseq, real_inner_comm] using hinner h
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
⊢ (∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b) → b ∈ map f K
[PROOFSTEP]
intro h
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b
⊢ b ∈ map f K
[PROOFSTEP]
contrapose! h
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0
[PROOFSTEP]
obtain ⟨y, hxy, hyb⟩ :=
ConvexCone.hyperplane_separation_of_nonempty_of_isClosed_of_nmem _ (K.map f).nonempty (K.map f).isClosed h
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0
[PROOFSTEP]
refine' ⟨y, _, hyb⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
⊢ ↑(↑adjoint f) y ∈ dual K
[PROOFSTEP]
simp_rw [ProperCone.mem_dual, adjoint_inner_right]
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
⊢ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y
[PROOFSTEP]
intro x hxK
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ 0 ≤ inner (↑f x) y
[PROOFSTEP]
apply hxy (f x)
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ ↑f x ∈ (map f K).toConvexCone
[PROOFSTEP]
rw [ProperCone.coe_map]
[GOAL]
case intro.intro
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ ↑f x ∈ ConvexCone.closure (ConvexCone.map (↑f) K.toConvexCone)
[PROOFSTEP]
apply subset_closure
[GOAL]
case intro.intro.a
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ ↑f x ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)
[PROOFSTEP]
rw [SetLike.mem_coe, ConvexCone.mem_map]
[GOAL]
case intro.intro.a
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ ∃ x_1, x_1 ∈ K.toConvexCone ∧ ↑↑f x_1 = ↑f x
[PROOFSTEP]
refine' ⟨x, hxK, by rw [coe_coe]⟩
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
h : ¬b ∈ map f K
y : F
hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y
hyb : inner y b < 0
x : E
hxK : x ∈ K
⊢ ↑↑f x = ↑f x
[PROOFSTEP]
rw [coe_coe]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
disj : ¬b ∈ map f K
⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0
[PROOFSTEP]
contrapose! disj
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace ℝ E
inst✝³ : CompleteSpace E
F : Type u_2
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
inst✝ : CompleteSpace F
K : ProperCone ℝ E
f : E →L[ℝ] F
b : F
disj : ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b
⊢ b ∈ map f K
[PROOFSTEP]
rwa [K.hyperplane_separation]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Proper", "llama_tokens": 7270} |
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
f : P →ᵃ[R] P'
⊢ WSameSide (AffineSubspace.map f s) (↑f x) (↑f y)
[PROOFSTEP]
rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WSameSide (AffineSubspace.map f s) (↑f x) (↑f y)
[PROOFSTEP]
refine' ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂)
[PROOFSTEP]
simp_rw [← linearMap_vsub]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ SameRay R (↑f.linear (x -ᵥ p₁)) (↑f.linear (y -ᵥ p₂))
[PROOFSTEP]
exact h.map f.linear
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
⊢ WSameSide (map f s) (↑f x) (↑f y) ↔ WSameSide s x y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.map _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
h : WSameSide (map f s) (↑f x) (↑f y)
⊢ WSameSide s x y
[PROOFSTEP]
rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₁ : P'
hfp₁ : fp₁ ∈ map f s
fp₂ : P'
hfp₂ : fp₂ ∈ map f s
h : SameRay R (↑f x -ᵥ fp₁) (↑f y -ᵥ fp₂)
⊢ WSameSide s x y
[PROOFSTEP]
rw [mem_map] at hfp₁ hfp₂
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₁ : P'
hfp₁ : ∃ y, y ∈ s ∧ ↑f y = fp₁
fp₂ : P'
hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂
h : SameRay R (↑f x -ᵥ fp₁) (↑f y -ᵥ fp₂)
⊢ WSameSide s x y
[PROOFSTEP]
rcases hfp₁ with ⟨p₁, hp₁, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₂ : P'
hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂
p₁ : P
hp₁ : p₁ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ fp₂)
⊢ WSameSide s x y
[PROOFSTEP]
rcases hfp₂ with ⟨p₂, hp₂, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂)
⊢ WSameSide s x y
[PROOFSTEP]
refine' ⟨p₁, hp₁, p₂, hp₂, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂)
⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
simp_rw [← linearMap_vsub, (f.linear_injective_iff.2 hf).sameRay_map_iff] at h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
⊢ SSameSide (map f s) (↑f x) (↑f y) ↔ SSameSide s x y
[PROOFSTEP]
simp_rw [SSameSide, hf.wSameSide_map_iff, mem_map_iff_mem_of_injective hf]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WOppSide s x y
f : P →ᵃ[R] P'
⊢ WOppSide (AffineSubspace.map f s) (↑f x) (↑f y)
[PROOFSTEP]
rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WOppSide (AffineSubspace.map f s) (↑f x) (↑f y)
[PROOFSTEP]
refine' ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y)
[PROOFSTEP]
simp_rw [← linearMap_vsub]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (↑f.linear (x -ᵥ p₁)) (↑f.linear (p₂ -ᵥ y))
[PROOFSTEP]
exact h.map f.linear
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
⊢ WOppSide (map f s) (↑f x) (↑f y) ↔ WOppSide s x y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.map _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
h : WOppSide (map f s) (↑f x) (↑f y)
⊢ WOppSide s x y
[PROOFSTEP]
rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₁ : P'
hfp₁ : fp₁ ∈ map f s
fp₂ : P'
hfp₂ : fp₂ ∈ map f s
h : SameRay R (↑f x -ᵥ fp₁) (fp₂ -ᵥ ↑f y)
⊢ WOppSide s x y
[PROOFSTEP]
rw [mem_map] at hfp₁ hfp₂
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₁ : P'
hfp₁ : ∃ y, y ∈ s ∧ ↑f y = fp₁
fp₂ : P'
hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂
h : SameRay R (↑f x -ᵥ fp₁) (fp₂ -ᵥ ↑f y)
⊢ WOppSide s x y
[PROOFSTEP]
rcases hfp₁ with ⟨p₁, hp₁, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
fp₂ : P'
hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂
p₁ : P
hp₁ : p₁ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (fp₂ -ᵥ ↑f y)
⊢ WOppSide s x y
[PROOFSTEP]
rcases hfp₂ with ⟨p₂, hp₂, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y)
⊢ WOppSide s x y
[PROOFSTEP]
refine' ⟨p₁, hp₁, p₂, hp₂, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y)
⊢ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
simp_rw [← linearMap_vsub, (f.linear_injective_iff.2 hf).sameRay_map_iff] at h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
exact h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
f : P →ᵃ[R] P'
hf : Function.Injective ↑f
⊢ SOppSide (map f s) (↑f x) (↑f y) ↔ SOppSide s x y
[PROOFSTEP]
simp_rw [SOppSide, hf.wOppSide_map_iff, mem_map_iff_mem_of_injective hf]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ SSameSide s x y ↔ SSameSide s y x
[PROOFSTEP]
rw [SSameSide, SSameSide, wSameSide_comm, and_comm (b := x ∉ s)]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WOppSide s x y ↔ WOppSide s y x
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WOppSide s x y → WOppSide s y x
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WOppSide s y x
[PROOFSTEP]
refine' ⟨p₂, hp₂, p₁, hp₁, _⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (y -ᵥ p₂) (p₁ -ᵥ x)
[PROOFSTEP]
rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WOppSide s y x → WOppSide s x y
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)
⊢ WOppSide s x y
[PROOFSTEP]
refine' ⟨p₂, hp₂, p₁, hp₁, _⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)
⊢ SameRay R (x -ᵥ p₂) (p₁ -ᵥ y)
[PROOFSTEP]
rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ SOppSide s x y ↔ SOppSide s y x
[PROOFSTEP]
rw [SOppSide, SOppSide, wOppSide_comm, and_comm (b := x ∉ s)]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ WSameSide s x y
[PROOFSTEP]
refine' ⟨x, hx, x, hx, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ SameRay R (x -ᵥ x) (y -ᵥ x)
[PROOFSTEP]
rw [vsub_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ SameRay R 0 (y -ᵥ x)
[PROOFSTEP]
apply SameRay.zero_left
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ WOppSide s x y
[PROOFSTEP]
refine' ⟨x, hx, x, hx, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ SameRay R (x -ᵥ x) (x -ᵥ y)
[PROOFSTEP]
rw [vsub_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
⊢ SameRay R 0 (x -ᵥ y)
[PROOFSTEP]
apply SameRay.zero_left
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WSameSide s (v +ᵥ x) y ↔ WSameSide s x y
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WSameSide s (v +ᵥ x) y → WSameSide s x y
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (v +ᵥ x -ᵥ p₁) (y -ᵥ p₂)
⊢ WSameSide s x y
[PROOFSTEP]
refine' ⟨-v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction (Submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (v +ᵥ x -ᵥ p₁) (y -ᵥ p₂)
⊢ SameRay R (x -ᵥ (-v +ᵥ p₁)) (y -ᵥ p₂)
[PROOFSTEP]
rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ← vadd_vsub_assoc]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WSameSide s x y → WSameSide s (v +ᵥ x) y
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WSameSide s (v +ᵥ x) y
[PROOFSTEP]
refine' ⟨v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ SameRay R (v +ᵥ x -ᵥ (v +ᵥ p₁)) (y -ᵥ p₂)
[PROOFSTEP]
rwa [vadd_vsub_vadd_cancel_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WSameSide s x (v +ᵥ y) ↔ WSameSide s x y
[PROOFSTEP]
rw [wSameSide_comm, wSameSide_vadd_left_iff hv, wSameSide_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ SSameSide s (v +ᵥ x) y ↔ SSameSide s x y
[PROOFSTEP]
rw [SSameSide, SSameSide, wSameSide_vadd_left_iff hv, vadd_mem_iff_mem_of_mem_direction hv]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ SSameSide s x (v +ᵥ y) ↔ SSameSide s x y
[PROOFSTEP]
rw [sSameSide_comm, sSameSide_vadd_left_iff hv, sSameSide_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WOppSide s (v +ᵥ x) y ↔ WOppSide s x y
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WOppSide s (v +ᵥ x) y → WOppSide s x y
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (v +ᵥ x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WOppSide s x y
[PROOFSTEP]
refine' ⟨-v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction (Submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (v +ᵥ x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (x -ᵥ (-v +ᵥ p₁)) (p₂ -ᵥ y)
[PROOFSTEP]
rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ← vadd_vsub_assoc]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WOppSide s x y → WOppSide s (v +ᵥ x) y
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WOppSide s (v +ᵥ x) y
[PROOFSTEP]
refine' ⟨v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩
[GOAL]
case mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ SameRay R (v +ᵥ x -ᵥ (v +ᵥ p₁)) (p₂ -ᵥ y)
[PROOFSTEP]
rwa [vadd_vsub_vadd_cancel_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ WOppSide s x (v +ᵥ y) ↔ WOppSide s x y
[PROOFSTEP]
rw [wOppSide_comm, wOppSide_vadd_left_iff hv, wOppSide_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ SOppSide s (v +ᵥ x) y ↔ SOppSide s x y
[PROOFSTEP]
rw [SOppSide, SOppSide, wOppSide_vadd_left_iff hv, vadd_mem_iff_mem_of_mem_direction hv]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
v : V
hv : v ∈ direction s
⊢ SOppSide s x (v +ᵥ y) ↔ SOppSide s x y
[PROOFSTEP]
rw [sOppSide_comm, sOppSide_vadd_left_iff hv, sOppSide_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : 0 ≤ t
⊢ WSameSide s (t • (x -ᵥ p₁) +ᵥ p₂) x
[PROOFSTEP]
refine' ⟨p₂, hp₂, p₁, hp₁, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : 0 ≤ t
⊢ SameRay R (t • (x -ᵥ p₁) +ᵥ p₂ -ᵥ p₂) (x -ᵥ p₁)
[PROOFSTEP]
rw [vadd_vsub]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : 0 ≤ t
⊢ SameRay R (t • (x -ᵥ p₁)) (x -ᵥ p₁)
[PROOFSTEP]
exact SameRay.sameRay_nonneg_smul_left _ ht
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : t ≤ 0
⊢ WOppSide s (t • (x -ᵥ p₁) +ᵥ p₂) x
[PROOFSTEP]
refine' ⟨p₂, hp₂, p₁, hp₁, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : t ≤ 0
⊢ SameRay R (t • (x -ᵥ p₁) +ᵥ p₂ -ᵥ p₂) (p₁ -ᵥ x)
[PROOFSTEP]
rw [vadd_vsub, ← neg_neg t, neg_smul, ← smul_neg, neg_vsub_eq_vsub_rev]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
p₁ p₂ x : P
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : t ≤ 0
⊢ SameRay R (-t • (p₁ -ᵥ x)) (p₁ -ᵥ x)
[PROOFSTEP]
exact SameRay.sameRay_nonneg_smul_left _ (neg_nonneg.2 ht)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
h : Wbtw R x y z
hx : x ∈ s
⊢ WSameSide s y z
[PROOFSTEP]
rcases h with ⟨t, ⟨ht0, -⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : x ∈ s
t : R
ht0 : 0 ≤ t
⊢ WSameSide s (↑(lineMap x z) t) z
[PROOFSTEP]
exact wSameSide_lineMap_left z hx ht0
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
h : Wbtw R x y z
hy : y ∈ s
⊢ WOppSide s x z
[PROOFSTEP]
rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
⊢ WOppSide s x z
[PROOFSTEP]
refine' ⟨_, hy, _, hy, _⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z)
[PROOFSTEP]
rcases ht1.lt_or_eq with (ht1' | rfl)
[GOAL]
case intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z)
case intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
hy : ↑(lineMap x z) 1 ∈ s
⊢ SameRay R (x -ᵥ ↑(lineMap x z) 1) (↑(lineMap x z) 1 -ᵥ z)
[PROOFSTEP]
swap
[GOAL]
case intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
hy : ↑(lineMap x z) 1 ∈ s
⊢ SameRay R (x -ᵥ ↑(lineMap x z) 1) (↑(lineMap x z) 1 -ᵥ z)
[PROOFSTEP]
rw [lineMap_apply_one]
[GOAL]
case intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
hy : ↑(lineMap x z) 1 ∈ s
⊢ SameRay R (x -ᵥ z) (z -ᵥ z)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z)
[PROOFSTEP]
rcases ht0.lt_or_eq with (ht0' | rfl)
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
ht0' : 0 < t
⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z)
case intro.intro.intro.inl.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 0
ht1 : 0 ≤ 1
hy : ↑(lineMap x z) 0 ∈ s
ht1' : 0 < 1
⊢ SameRay R (x -ᵥ ↑(lineMap x z) 0) (↑(lineMap x z) 0 -ᵥ z)
[PROOFSTEP]
swap
[GOAL]
case intro.intro.intro.inl.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 0
ht1 : 0 ≤ 1
hy : ↑(lineMap x z) 0 ∈ s
ht1' : 0 < 1
⊢ SameRay R (x -ᵥ ↑(lineMap x z) 0) (↑(lineMap x z) 0 -ᵥ z)
[PROOFSTEP]
rw [lineMap_apply_zero]
[GOAL]
case intro.intro.intro.inl.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
ht0 : 0 ≤ 0
ht1 : 0 ≤ 1
hy : ↑(lineMap x z) 0 ∈ s
ht1' : 0 < 1
⊢ SameRay R (x -ᵥ x) (x -ᵥ z)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
ht0' : 0 < t
⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z)
[PROOFSTEP]
refine'
Or.inr
(Or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩)
-- TODO: after lean4#2336 "simp made no progress feature"
-- had to add `_` to several lemmas here. Not sure why!
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
ht0' : 0 < t
⊢ (1 - t) • (x -ᵥ ↑(lineMap x z) t) = t • (↑(lineMap x z) t -ᵥ z)
[PROOFSTEP]
simp_rw [lineMap_apply _, vadd_vsub_assoc _, vsub_vadd_eq_vsub_sub _, ← neg_vsub_eq_vsub_rev z x, vsub_self _, zero_sub,
← neg_one_smul R (z -ᵥ x), ← add_smul, smul_neg, ← neg_smul, smul_smul]
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : StrictOrderedCommRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
ht1' : t < 1
ht0' : 0 < t
⊢ (-(1 - t) * t) • (z -ᵥ x) = (t * (t + -1)) • (z -ᵥ x)
[PROOFSTEP]
ring_nf
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x : P
⊢ WOppSide s x x ↔ x ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x : P
⊢ WOppSide s x x → x ∈ s
[PROOFSTEP]
rintro ⟨p₁, hp₁, p₂, hp₂, h⟩
[GOAL]
case mp.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x)
⊢ x ∈ s
[PROOFSTEP]
obtain ⟨a, -, -, -, -, h₁, -⟩ := h.exists_eq_smul_add
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x)
a : R
h₁ : x -ᵥ p₁ = a • (x -ᵥ p₁ + (p₂ -ᵥ x))
⊢ x ∈ s
[PROOFSTEP]
rw [add_comm, vsub_add_vsub_cancel, ← eq_vadd_iff_vsub_eq] at h₁
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x)
a : R
h₁ : x = a • (p₂ -ᵥ p₁) +ᵥ p₁
⊢ x ∈ s
[PROOFSTEP]
rw [h₁]
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x)
a : R
h₁ : x = a • (p₂ -ᵥ p₁) +ᵥ p₁
⊢ a • (p₂ -ᵥ p₁) +ᵥ p₁ ∈ s
[PROOFSTEP]
exact s.smul_vsub_vadd_mem a hp₂ hp₁ hp₁
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x : P
⊢ x ∈ s → WOppSide s x x
[PROOFSTEP]
exact fun h => ⟨x, h, x, h, SameRay.rfl⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x : P
⊢ ¬SOppSide s x x
[PROOFSTEP]
rw [SOppSide]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x : P
⊢ ¬(WOppSide s x x ∧ ¬x ∈ s ∧ ¬x ∈ s)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ WSameSide s x y ↔ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ WSameSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x -ᵥ p₁' = 0
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h0
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x = p₁'
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [h0]
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x = p₁'
⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
exact Or.inl hp₁'
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : y -ᵥ p₂' = 0
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
refine' Or.inr ⟨p₂', hp₂', _⟩
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : y -ᵥ p₂' = 0
⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂')
[PROOFSTEP]
rw [h0]
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : y -ᵥ p₂' = 0
⊢ SameRay R (x -ᵥ p₁) 0
[PROOFSTEP]
exact SameRay.zero_right _
[GOAL]
case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
hr : r₁ • (x -ᵥ p₁') = r₂ • (y -ᵥ p₂')
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
refine'
Or.inr ⟨(r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂', Or.inr (Or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩
[GOAL]
case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
hr : r₁ • (x -ᵥ p₁') = r₂ • (y -ᵥ p₂')
⊢ r₁ • (x -ᵥ p₁) = r₂ • (y -ᵥ ((r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂'))
[PROOFSTEP]
rw [vsub_vadd_eq_vsub_sub, smul_sub, ← hr, smul_smul, mul_div_cancel' _ hr₂.ne.symm, ← smul_sub,
vsub_sub_vsub_cancel_right]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) → WSameSide s x y
[PROOFSTEP]
rintro (h' | ⟨h₁, h₂, h₃⟩)
[GOAL]
case mpr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
h' : x ∈ s
⊢ WSameSide s x y
[PROOFSTEP]
exact wSameSide_of_left_mem y h'
[GOAL]
case mpr.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
h₁ : P
h₂ : h₁ ∈ s
h₃ : SameRay R (x -ᵥ p₁) (y -ᵥ h₁)
⊢ WSameSide s x y
[PROOFSTEP]
exact ⟨p₁, h, h₁, h₂, h₃⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ WSameSide s x y ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [wSameSide_comm, wSameSide_iff_exists_left h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (x -ᵥ p₂_1)) ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
simp_rw [SameRay.sameRay_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ SSameSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [SSameSide, and_comm, wSameSide_iff_exists_left h, and_assoc, and_congr_right_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ ¬x ∈ s →
(¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) ↔
¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂))
[PROOFSTEP]
intro hx
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
hx : ¬x ∈ s
⊢ ¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) ↔
¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [or_iff_right hx]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ SSameSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
rw [sSameSide_comm, sSameSide_iff_exists_left h, ← and_assoc, and_comm (a := y ∉ s), and_assoc]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (x -ᵥ p₂_1)) ↔
¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
[PROOFSTEP]
simp_rw [SameRay.sameRay_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ WOppSide s x y ↔ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ WOppSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x -ᵥ p₁' = 0
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h0
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x = p₁'
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [h0]
[GOAL]
case mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : x = p₁'
⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
exact Or.inl hp₁'
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : p₂' -ᵥ y = 0
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
refine' Or.inr ⟨p₂', hp₂', _⟩
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : p₂' -ᵥ y = 0
⊢ SameRay R (x -ᵥ p₁) (p₂' -ᵥ y)
[PROOFSTEP]
rw [h0]
[GOAL]
case mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
h0 : p₂' -ᵥ y = 0
⊢ SameRay R (x -ᵥ p₁) 0
[PROOFSTEP]
exact SameRay.zero_right _
[GOAL]
case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
hr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)
⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
refine'
Or.inr ⟨(-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂', Or.inr (Or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩
[GOAL]
case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
p₁' : P
hp₁' : p₁' ∈ s
p₂' : P
hp₂' : p₂' ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
hr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)
⊢ r₁ • (x -ᵥ p₁) = r₂ • ((-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂' -ᵥ y)
[PROOFSTEP]
rw [vadd_vsub_assoc, smul_add, ← hr, smul_smul, neg_div, mul_neg, mul_div_cancel' _ hr₂.ne.symm, neg_smul,
neg_add_eq_sub, ← smul_sub, vsub_sub_vsub_cancel_right]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → WOppSide s x y
[PROOFSTEP]
rintro (h' | ⟨h₁, h₂, h₃⟩)
[GOAL]
case mpr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
h' : x ∈ s
⊢ WOppSide s x y
[PROOFSTEP]
exact wOppSide_of_left_mem y h'
[GOAL]
case mpr.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
h₁ : P
h₂ : h₁ ∈ s
h₃ : SameRay R (x -ᵥ p₁) (h₁ -ᵥ y)
⊢ WOppSide s x y
[PROOFSTEP]
exact ⟨p₁, h, h₁, h₂, h₃⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ WOppSide s x y ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [wOppSide_comm, wOppSide_iff_exists_left h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)) ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)) → y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rintro (hy | ⟨p, hp, hr⟩)
[GOAL]
case mp.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
hy : y ∈ s
⊢ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
exact Or.inl hy
[GOAL]
case mp.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
p : P
hp : p ∈ s
hr : SameRay R (y -ᵥ p₂) (p -ᵥ x)
⊢ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
refine' Or.inr ⟨p, hp, _⟩
[GOAL]
case mp.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
p : P
hp : p ∈ s
hr : SameRay R (y -ᵥ p₂) (p -ᵥ x)
⊢ SameRay R (x -ᵥ p) (p₂ -ᵥ y)
[PROOFSTEP]
rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ (y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)
[PROOFSTEP]
rintro (hy | ⟨p, hp, hr⟩)
[GOAL]
case mpr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
hy : y ∈ s
⊢ y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)
[PROOFSTEP]
exact Or.inl hy
[GOAL]
case mpr.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
p : P
hp : p ∈ s
hr : SameRay R (x -ᵥ p) (p₂ -ᵥ y)
⊢ y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)
[PROOFSTEP]
refine' Or.inr ⟨p, hp, _⟩
[GOAL]
case mpr.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
p : P
hp : p ∈ s
hr : SameRay R (x -ᵥ p) (p₂ -ᵥ y)
⊢ SameRay R (y -ᵥ p₂) (p -ᵥ x)
[PROOFSTEP]
rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ SOppSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [SOppSide, and_comm, wOppSide_iff_exists_left h, and_assoc, and_congr_right_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
⊢ ¬x ∈ s →
(¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔
¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y))
[PROOFSTEP]
intro hx
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
h : p₁ ∈ s
hx : ¬x ∈ s
⊢ ¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔
¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [or_iff_right hx]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ SOppSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [SOppSide, and_comm, wOppSide_iff_exists_right h, and_assoc, and_congr_right_iff, and_congr_right_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
⊢ ¬x ∈ s →
¬y ∈ s → ((y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y))
[PROOFSTEP]
rintro _ hy
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₂ : P
h : p₂ ∈ s
a✝ : ¬x ∈ s
hy : ¬y ∈ s
⊢ (y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
[PROOFSTEP]
rw [or_iff_right hy]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hxy : WSameSide s x y
hyz : WSameSide s y z
hy : ¬y ∈ s
⊢ WSameSide s x z
[PROOFSTEP]
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hyz : WSameSide s y z
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WSameSide s x z
[PROOFSTEP]
rw [wSameSide_iff_exists_left hp₂, or_iff_right hy] at hyz
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (z -ᵥ p₂_1)
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WSameSide s x z
[PROOFSTEP]
rcases hyz with ⟨p₃, hp₃, hyz⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃)
⊢ WSameSide s x z
[PROOFSTEP]
refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃)
⊢ y -ᵥ p₂ = 0 → x -ᵥ p₁ = 0 ∨ z -ᵥ p₃ = 0
[PROOFSTEP]
refine' fun h => False.elim _
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃)
h : y -ᵥ p₂ = 0
⊢ False
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃)
h : y = p₂
⊢ False
[PROOFSTEP]
exact hy (h.symm ▸ hp₂)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hxy : WSameSide s x y
hyz : WOppSide s y z
hy : ¬y ∈ s
⊢ WOppSide s x z
[PROOFSTEP]
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hyz : WOppSide s y z
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WOppSide s x z
[PROOFSTEP]
rw [wOppSide_iff_exists_left hp₂, or_iff_right hy] at hyz
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ z)
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
⊢ WOppSide s x z
[PROOFSTEP]
rcases hyz with ⟨p₃, hp₃, hyz⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z)
⊢ WOppSide s x z
[PROOFSTEP]
refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z)
⊢ y -ᵥ p₂ = 0 → x -ᵥ p₁ = 0 ∨ p₃ -ᵥ z = 0
[PROOFSTEP]
refine' fun h => False.elim _
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z)
h : y -ᵥ p₂ = 0
⊢ False
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z)
h : y = p₂
⊢ False
[PROOFSTEP]
exact hy (h.symm ▸ hp₂)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hxy : WOppSide s x y
hyz : WOppSide s y z
hy : ¬y ∈ s
⊢ WSameSide s x z
[PROOFSTEP]
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hyz : WOppSide s y z
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WSameSide s x z
[PROOFSTEP]
rw [wOppSide_iff_exists_left hp₂, or_iff_right hy] at hyz
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ z)
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
⊢ WSameSide s x z
[PROOFSTEP]
rcases hyz with ⟨p₃, hp₃, hyz⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z)
⊢ WSameSide s x z
[PROOFSTEP]
rw [← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] at hyz
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃)
⊢ WSameSide s x z
[PROOFSTEP]
refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃)
⊢ p₂ -ᵥ y = 0 → x -ᵥ p₁ = 0 ∨ z -ᵥ p₃ = 0
[PROOFSTEP]
refine' fun h => False.elim _
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃)
h : p₂ -ᵥ y = 0
⊢ False
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
hy : ¬y ∈ s
p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)
p₃ : P
hp₃ : p₃ ∈ s
hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃)
h : p₂ = y
⊢ False
[PROOFSTEP]
exact hy (h ▸ hp₂)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WSameSide s x y ∧ WOppSide s x y ↔ x ∈ s ∨ y ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WSameSide s x y ∧ WOppSide s x y → x ∈ s ∨ y ∈ s
[PROOFSTEP]
rintro ⟨hs, ho⟩
[GOAL]
case mp.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hs : WSameSide s x y
ho : WOppSide s x y
⊢ x ∈ s ∨ y ∈ s
[PROOFSTEP]
rw [wOppSide_comm] at ho
[GOAL]
case mp.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hs : WSameSide s x y
ho : WOppSide s y x
⊢ x ∈ s ∨ y ∈ s
[PROOFSTEP]
by_contra h
[GOAL]
case mp.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hs : WSameSide s x y
ho : WOppSide s y x
h : ¬(x ∈ s ∨ y ∈ s)
⊢ False
[PROOFSTEP]
rw [not_or] at h
[GOAL]
case mp.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hs : WSameSide s x y
ho : WOppSide s y x
h : ¬x ∈ s ∧ ¬y ∈ s
⊢ False
[PROOFSTEP]
exact h.1 (wOppSide_self_iff.1 (hs.trans_wOppSide ho h.2))
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ x ∈ s ∨ y ∈ s → WSameSide s x y ∧ WOppSide s x y
[PROOFSTEP]
rintro (h | h)
[GOAL]
case mpr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : x ∈ s
⊢ WSameSide s x y ∧ WOppSide s x y
[PROOFSTEP]
exact ⟨wSameSide_of_left_mem y h, wOppSide_of_left_mem y h⟩
[GOAL]
case mpr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : y ∈ s
⊢ WSameSide s x y ∧ WOppSide s x y
[PROOFSTEP]
exact ⟨wSameSide_of_right_mem x h, wOppSide_of_right_mem x h⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
⊢ ¬SOppSide s x y
[PROOFSTEP]
intro ho
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
ho : SOppSide s x y
⊢ False
[PROOFSTEP]
have hxy := wSameSide_and_wOppSide_iff.1 ⟨h, ho.1⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
ho : SOppSide s x y
hxy : x ∈ s ∨ y ∈ s
⊢ False
[PROOFSTEP]
rcases hxy with (hx | hy)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
ho : SOppSide s x y
hx : x ∈ s
⊢ False
[PROOFSTEP]
exact ho.2.1 hx
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WSameSide s x y
ho : SOppSide s x y
hy : y ∈ s
⊢ False
[PROOFSTEP]
exact ho.2.2 hy
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SSameSide s x y
⊢ ¬WOppSide s x y
[PROOFSTEP]
intro ho
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SSameSide s x y
ho : WOppSide s x y
⊢ False
[PROOFSTEP]
have hxy := wSameSide_and_wOppSide_iff.1 ⟨h.1, ho⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SSameSide s x y
ho : WOppSide s x y
hxy : x ∈ s ∨ y ∈ s
⊢ False
[PROOFSTEP]
rcases hxy with (hx | hy)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SSameSide s x y
ho : WOppSide s x y
hx : x ∈ s
⊢ False
[PROOFSTEP]
exact h.2.1 hx
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SSameSide s x y
ho : WOppSide s x y
hy : y ∈ s
⊢ False
[PROOFSTEP]
exact h.2.2 hy
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
⊢ WOppSide s x y ↔ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
refine' ⟨fun h => _, fun ⟨p, hp, h⟩ => h.wOppSide₁₃ hp⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : WOppSide s x y
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
rcases h with ⟨p₁, hp₁, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩
[GOAL]
case intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x -ᵥ p₁ = 0
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x = p₁
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
rw [h]
[GOAL]
case intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x = p₁
⊢ ∃ p, p ∈ s ∧ Wbtw R p₁ p y
[PROOFSTEP]
exact ⟨p₁, hp₁, wbtw_self_left _ _ _⟩
[GOAL]
case intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : p₂ -ᵥ y = 0
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : p₂ = y
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
rw [← h]
[GOAL]
case intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : p₂ = y
⊢ ∃ p, p ∈ s ∧ Wbtw R x p p₂
[PROOFSTEP]
exact ⟨p₂, hp₂, wbtw_self_right _ _ _⟩
[GOAL]
case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
⊢ ∃ p, p ∈ s ∧ Wbtw R x p y
[PROOFSTEP]
refine' ⟨lineMap x y (r₂ / (r₁ + r₂)), _, _⟩
[GOAL]
case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
⊢ ↑(lineMap x y) (r₂ / (r₁ + r₂)) ∈ s
[PROOFSTEP]
have : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) := by
rw [add_comm (y -ᵥ p₂), smul_sub, smul_add, add_sub_assoc, add_assoc, add_right_eq_self, div_eq_inv_mul, ←
neg_vsub_eq_vsub_rev, smul_neg, ← smul_smul, ← h, smul_smul, ← neg_smul, ← sub_smul, ← div_eq_inv_mul, ←
div_eq_inv_mul, ← neg_div, ← sub_div, sub_eq_add_neg, ← neg_add, neg_div, div_self (Left.add_pos hr₁ hr₂).ne.symm,
neg_one_smul, neg_add_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
⊢ (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁)
[PROOFSTEP]
rw [add_comm (y -ᵥ p₂), smul_sub, smul_add, add_sub_assoc, add_assoc, add_right_eq_self, div_eq_inv_mul, ←
neg_vsub_eq_vsub_rev, smul_neg, ← smul_smul, ← h, smul_smul, ← neg_smul, ← sub_smul, ← div_eq_inv_mul, ←
div_eq_inv_mul, ← neg_div, ← sub_div, sub_eq_add_neg, ← neg_add, neg_div, div_self (Left.add_pos hr₁ hr₂).ne.symm,
neg_one_smul, neg_add_self]
[GOAL]
case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
this : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁)
⊢ ↑(lineMap x y) (r₂ / (r₁ + r₂)) ∈ s
[PROOFSTEP]
rw [lineMap_apply, ← vsub_vadd x p₁, ← vsub_vadd y p₂, vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, ← vadd_assoc,
vadd_eq_add, this]
[GOAL]
case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
this : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁)
⊢ (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) +ᵥ p₁ ∈ s
[PROOFSTEP]
exact s.smul_vsub_vadd_mem (r₂ / (r₁ + r₂)) hp₂ hp₁ hp₁
[GOAL]
case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y p₁ : P
hp₁ : p₁ ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y)
⊢ Wbtw R x (↑(lineMap x y) (r₂ / (r₁ + r₂))) y
[PROOFSTEP]
exact
Set.mem_image_of_mem _
⟨div_nonneg hr₂.le (Left.add_pos hr₁ hr₂).le,
div_le_one_of_le (le_add_of_nonneg_left hr₁.le) (Left.add_pos hr₁ hr₂).le⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SOppSide s x y
⊢ ∃ p, p ∈ s ∧ Sbtw R x p y
[PROOFSTEP]
obtain ⟨p, hp, hw⟩ := wOppSide_iff_exists_wbtw.1 h.wOppSide
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SOppSide s x y
p : P
hp : p ∈ s
hw : Wbtw R x p y
⊢ ∃ p, p ∈ s ∧ Sbtw R x p y
[PROOFSTEP]
refine' ⟨p, hp, hw, _, _⟩
[GOAL]
case intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SOppSide s x y
p : P
hp : p ∈ s
hw : Wbtw R x p y
⊢ p ≠ x
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
y p : P
hp : p ∈ s
h : SOppSide s p y
hw : Wbtw R p p y
⊢ False
[PROOFSTEP]
exact h.2.1 hp
[GOAL]
case intro.intro.refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
h : SOppSide s x y
p : P
hp : p ∈ s
hw : Wbtw R x p y
⊢ p ≠ y
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro.refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hp : p ∈ s
h : SOppSide s x p
hw : Wbtw R x p p
⊢ False
[PROOFSTEP]
exact h.2.2 hp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
h : Sbtw R x y z
hx : ¬x ∈ s
hy : y ∈ s
⊢ SOppSide s x z
[PROOFSTEP]
refine' ⟨h.wbtw.wOppSide₁₃ hy, hx, fun hz => hx _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y z : P
h : Sbtw R x y z
hx : ¬x ∈ s
hy : y ∈ s
hz : z ∈ s
⊢ x ∈ s
[PROOFSTEP]
rcases h with ⟨⟨t, ⟨ht0, ht1⟩, rfl⟩, hyx, hyz⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : ↑(lineMap x z) t ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
⊢ x ∈ s
[PROOFSTEP]
rw [lineMap_apply] at hy
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : t • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
⊢ x ∈ s
[PROOFSTEP]
have ht : t ≠ 1 := by
rintro rfl
simp [lineMap_apply] at hyz
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : t • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
⊢ t ≠ 1
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
hy : 1 • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) 1 ≠ x
hyz : ↑(lineMap x z) 1 ≠ z
⊢ False
[PROOFSTEP]
simp [lineMap_apply] at hyz
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : t • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
ht : t ≠ 1
⊢ x ∈ s
[PROOFSTEP]
have hy' := vsub_mem_direction hy hz
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : t • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
ht : t ≠ 1
hy' : t • (z -ᵥ x) +ᵥ x -ᵥ z ∈ direction s
⊢ x ∈ s
[PROOFSTEP]
rw [vadd_vsub_assoc, ← neg_vsub_eq_vsub_rev z, ← neg_one_smul R (z -ᵥ x), ← add_smul, ← sub_eq_add_neg,
s.direction.smul_mem_iff (sub_ne_zero_of_ne ht)] at hy'
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x z : P
hx : ¬x ∈ s
hz : z ∈ s
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
hy : t • (z -ᵥ x) +ᵥ x ∈ s
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
ht : t ≠ 1
hy' : z -ᵥ x ∈ direction s
⊢ x ∈ s
[PROOFSTEP]
rwa [vadd_mem_iff_mem_of_mem_direction (Submodule.smul_mem _ _ hy')] at hy
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ p₂ : P
hx : ¬x ∈ s
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : 0 < t
⊢ SSameSide s (t • (x -ᵥ p₁) +ᵥ p₂) x
[PROOFSTEP]
refine' ⟨wSameSide_smul_vsub_vadd_left x hp₁ hp₂ ht.le, fun h => hx _, hx⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ p₂ : P
hx : ¬x ∈ s
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : 0 < t
h : t • (x -ᵥ p₁) +ᵥ p₂ ∈ s
⊢ x ∈ s
[PROOFSTEP]
rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne.symm, vsub_right_mem_direction_iff_mem hp₁] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ p₂ : P
hx : ¬x ∈ s
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : t < 0
⊢ SOppSide s (t • (x -ᵥ p₁) +ᵥ p₂) x
[PROOFSTEP]
refine' ⟨wOppSide_smul_vsub_vadd_left x hp₁ hp₂ ht.le, fun h => hx _, hx⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p₁ p₂ : P
hx : ¬x ∈ s
hp₁ : p₁ ∈ s
hp₂ : p₂ ∈ s
t : R
ht : t < 0
h : t • (x -ᵥ p₁) +ᵥ p₂ ∈ s
⊢ x ∈ s
[PROOFSTEP]
rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne, vsub_right_mem_direction_iff_mem hp₁] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
⊢ {y | WSameSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ y ∈ {y | WSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s
[PROOFSTEP]
simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Ici]
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ WSameSide s x y ↔ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ WSameSide s x y → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [wSameSide_iff_exists_left hp, or_iff_right hx]
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩
[GOAL]
case h.mp.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : x -ᵥ p = 0
⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : x = p
⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hx (h.symm ▸ hp))
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : y -ᵥ p₂ = 0
⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : y = p₂
⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨0, p₂, le_refl _, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : y = p₂
⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
simp [h]
[GOAL]
case h.mp.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)
⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨r₁ / r₂, p₂, (div_pos hr₁ hr₂).le, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)
⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
rw [div_eq_inv_mul, ← smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, vsub_vadd]
[GOAL]
case h.mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WSameSide s x y
[PROOFSTEP]
rintro ⟨t, p', ht, hp', rfl⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
t : R
p' : P
ht : 0 ≤ t
hp' : p' ∈ ↑s
⊢ WSameSide s x (t • (x -ᵥ p) +ᵥ p')
[PROOFSTEP]
exact wSameSide_smul_vsub_vadd_right x hp hp' ht
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
⊢ {y | SSameSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ioi 0) ↑s
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ y ∈ {y | SSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ioi 0) ↑s
[PROOFSTEP]
simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Ioi]
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ SSameSide s x y ↔ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ SSameSide s x y → ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [sSameSide_iff_exists_left hp]
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩
[GOAL]
case h.mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x -ᵥ p = 0
⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x = p
⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hx (h.symm ▸ hp))
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : y -ᵥ p₂ = 0
⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : y = p₂
⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hy (h.symm ▸ hp₂))
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)
⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨r₁ / r₂, p₂, div_pos hr₁ hr₂, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)
⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
rw [div_eq_inv_mul, ← smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, vsub_vadd]
[GOAL]
case h.mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → SSameSide s x y
[PROOFSTEP]
rintro ⟨t, p', ht, hp', rfl⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
t : R
p' : P
ht : 0 < t
hp' : p' ∈ ↑s
⊢ SSameSide s x (t • (x -ᵥ p) +ᵥ p')
[PROOFSTEP]
exact sSameSide_smul_vsub_vadd_right hx hp hp' ht
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
⊢ {y | WOppSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iic 0) ↑s
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ y ∈ {y | WOppSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iic 0) ↑s
[PROOFSTEP]
simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Iic]
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ WOppSide s x y ↔ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ WOppSide s x y → ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [wOppSide_iff_exists_left hp, or_iff_right hx]
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (p₂ -ᵥ y)) → ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩
[GOAL]
case h.mp.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : x -ᵥ p = 0
⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : x = p
⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hx (h.symm ▸ hp))
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : p₂ -ᵥ y = 0
⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : p₂ = y
⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨0, p₂, le_refl _, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
h : p₂ = y
⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
simp [h]
[GOAL]
case h.mp.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y)
⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨-r₁ / r₂, p₂, (div_neg_of_neg_of_pos (Left.neg_neg_iff.2 hr₁) hr₂).le, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y)
⊢ (-r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
rw [div_eq_inv_mul, ← smul_smul, neg_smul, h, smul_neg, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul,
neg_vsub_eq_vsub_rev, vsub_vadd]
[GOAL]
case h.mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WOppSide s x y
[PROOFSTEP]
rintro ⟨t, p', ht, hp', rfl⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
t : R
p' : P
ht : t ≤ 0
hp' : p' ∈ ↑s
⊢ WOppSide s x (t • (x -ᵥ p) +ᵥ p')
[PROOFSTEP]
exact wOppSide_smul_vsub_vadd_right x hp hp' ht
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
⊢ {y | SOppSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) ↑s
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ y ∈ {y | SOppSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) ↑s
[PROOFSTEP]
simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Iio]
[GOAL]
case h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ SOppSide s x y ↔ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ SOppSide s x y → ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [sOppSide_iff_exists_left hp]
[GOAL]
case h.mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (p₂ -ᵥ y)) → ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩
[GOAL]
case h.mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x -ᵥ p = 0
⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : x = p
⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hx (h.symm ▸ hp))
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : p₂ -ᵥ y = 0
⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
h : p₂ = y
⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
exact False.elim (hy (h ▸ hp₂))
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y)
⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y
[PROOFSTEP]
refine' ⟨-r₁ / r₂, p₂, div_neg_of_neg_of_pos (Left.neg_neg_iff.2 hr₁) hr₂, hp₂, _⟩
[GOAL]
case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
hy : ¬y ∈ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y)
⊢ (-r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y
[PROOFSTEP]
rw [div_eq_inv_mul, ← smul_smul, neg_smul, h, smul_neg, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul,
neg_vsub_eq_vsub_rev, vsub_vadd]
[GOAL]
case h.mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
y : P
⊢ (∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → SOppSide s x y
[PROOFSTEP]
rintro ⟨t, p', ht, hp', rfl⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x p : P
hx : ¬x ∈ s
hp : p ∈ s
t : R
p' : P
ht : t < 0
hp' : p' ∈ ↑s
⊢ SOppSide s x (t • (x -ᵥ p) +ᵥ p')
[PROOFSTEP]
exact sOppSide_smul_vsub_vadd_right hx hp hp' ht
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
hy : ¬y ∈ s
⊢ SOppSide s y (↑(pointReflection R x) y)
[PROOFSTEP]
refine' (sbtw_pointReflection_of_ne R fun h => hy _).sOppSide_of_not_mem_of_mem hy hx
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : LinearOrderedField R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
s : AffineSubspace R P
x y : P
hx : x ∈ s
hy : ¬y ∈ s
h : x = y
⊢ y ∈ s
[PROOFSTEP]
rwa [← h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsConnected {y | WSameSide s x y}
[PROOFSTEP]
obtain ⟨p, hp⟩ := h
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
⊢ IsConnected {y | WSameSide s x y}
[PROOFSTEP]
haveI : Nonempty s := ⟨⟨p, hp⟩⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected {y | WSameSide s x y}
[PROOFSTEP]
by_cases hx : x ∈ s
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : x ∈ s
⊢ IsConnected {y | WSameSide s x y}
[PROOFSTEP]
simp only [wSameSide_of_left_mem, hx]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : x ∈ s
⊢ IsConnected {y | True}
[PROOFSTEP]
have := AddTorsor.connectedSpace V P
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this✝ : Nonempty { x // x ∈ s }
hx : x ∈ s
this : ConnectedSpace P
⊢ IsConnected {y | True}
[PROOFSTEP]
exact isConnected_univ
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ IsConnected {y | WSameSide s x y}
[PROOFSTEP]
rw [setOf_wSameSide_eq_image2 hx hp, ← Set.image_prod]
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Ici 0 ×ˢ ↑s)
[PROOFSTEP]
refine'
(isConnected_Ici.prod (isConnected_iff_connectedSpace.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ ConnectedSpace ↑↑s
[PROOFSTEP]
convert AddTorsor.connectedSpace s.direction s
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
⊢ IsPreconnected {y | WSameSide s x y}
[PROOFSTEP]
rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : ↑s = ∅
⊢ IsPreconnected {y | WSameSide s x y}
[PROOFSTEP]
rw [coe_eq_bot_iff] at h
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | WSameSide s x y}
[PROOFSTEP]
simp only [h, not_wSameSide_bot]
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsPreconnected {y | WSameSide s x y}
[PROOFSTEP]
exact (isConnected_setOf_wSameSide x h).isPreconnected
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
h : Set.Nonempty ↑s
⊢ IsConnected {y | SSameSide s x y}
[PROOFSTEP]
obtain ⟨p, hp⟩ := h
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
⊢ IsConnected {y | SSameSide s x y}
[PROOFSTEP]
haveI : Nonempty s := ⟨⟨p, hp⟩⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected {y | SSameSide s x y}
[PROOFSTEP]
rw [setOf_sSameSide_eq_image2 hx hp, ← Set.image_prod]
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Ioi 0 ×ˢ ↑s)
[PROOFSTEP]
refine'
(isConnected_Ioi.prod (isConnected_iff_connectedSpace.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ ConnectedSpace ↑↑s
[PROOFSTEP]
convert AddTorsor.connectedSpace s.direction s
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : ↑s = ∅
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
rw [coe_eq_bot_iff] at h
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
simp only [h, not_sSameSide_bot]
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
by_cases hx : x ∈ s
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : x ∈ s
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
simp only [hx, SSameSide, not_true, false_and_iff, and_false_iff]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : x ∈ s
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : ¬x ∈ s
⊢ IsPreconnected {y | SSameSide s x y}
[PROOFSTEP]
exact (isConnected_setOf_sSameSide hx h).isPreconnected
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsConnected {y | WOppSide s x y}
[PROOFSTEP]
obtain ⟨p, hp⟩ := h
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
⊢ IsConnected {y | WOppSide s x y}
[PROOFSTEP]
haveI : Nonempty s := ⟨⟨p, hp⟩⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected {y | WOppSide s x y}
[PROOFSTEP]
by_cases hx : x ∈ s
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : x ∈ s
⊢ IsConnected {y | WOppSide s x y}
[PROOFSTEP]
simp only [wOppSide_of_left_mem, hx]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : x ∈ s
⊢ IsConnected {y | True}
[PROOFSTEP]
have := AddTorsor.connectedSpace V P
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this✝ : Nonempty { x // x ∈ s }
hx : x ∈ s
this : ConnectedSpace P
⊢ IsConnected {y | True}
[PROOFSTEP]
exact isConnected_univ
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ IsConnected {y | WOppSide s x y}
[PROOFSTEP]
rw [setOf_wOppSide_eq_image2 hx hp, ← Set.image_prod]
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Iic 0 ×ˢ ↑s)
[PROOFSTEP]
refine'
(isConnected_Iic.prod (isConnected_iff_connectedSpace.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
hx : ¬x ∈ s
⊢ ConnectedSpace ↑↑s
[PROOFSTEP]
convert AddTorsor.connectedSpace s.direction s
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
⊢ IsPreconnected {y | WOppSide s x y}
[PROOFSTEP]
rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : ↑s = ∅
⊢ IsPreconnected {y | WOppSide s x y}
[PROOFSTEP]
rw [coe_eq_bot_iff] at h
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | WOppSide s x y}
[PROOFSTEP]
simp only [h, not_wOppSide_bot]
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsPreconnected {y | WOppSide s x y}
[PROOFSTEP]
exact (isConnected_setOf_wOppSide x h).isPreconnected
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
h : Set.Nonempty ↑s
⊢ IsConnected {y | SOppSide s x y}
[PROOFSTEP]
obtain ⟨p, hp⟩ := h
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
⊢ IsConnected {y | SOppSide s x y}
[PROOFSTEP]
haveI : Nonempty s := ⟨⟨p, hp⟩⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected {y | SOppSide s x y}
[PROOFSTEP]
rw [setOf_sOppSide_eq_image2 hx hp, ← Set.image_prod]
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Iio 0 ×ˢ ↑s)
[PROOFSTEP]
refine'
(isConnected_Iio.prod (isConnected_iff_connectedSpace.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
hx : ¬x ∈ s
p : P
hp : p ∈ ↑s
this : Nonempty { x // x ∈ s }
⊢ ConnectedSpace ↑↑s
[PROOFSTEP]
convert AddTorsor.connectedSpace s.direction s
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : ↑s = ∅
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
rw [coe_eq_bot_iff] at h
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
simp only [h, not_sOppSide_bot]
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : s = ⊥
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
by_cases hx : x ∈ s
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : x ∈ s
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
simp only [hx, SOppSide, not_true, false_and_iff, and_false_iff]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : x ∈ s
⊢ IsPreconnected {y | False}
[PROOFSTEP]
exact isPreconnected_empty
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : SeminormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor V P
s : AffineSubspace ℝ P
x : P
h : Set.Nonempty ↑s
hx : ¬x ∈ s
⊢ IsPreconnected {y | SOppSide s x y}
[PROOFSTEP]
exact (isConnected_setOf_sOppSide hx h).isPreconnected
| {"mathlib_filename": "Mathlib.Analysis.Convex.Side", "llama_tokens": 78467} |
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
⊢ StrictConvex 𝕜 univ
[PROOFSTEP]
intro x _ y _ _ a b _ _ _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x✝ y✝ : E
a✝⁶ b✝ : 𝕜
x : E
a✝⁵ : x ∈ univ
y : E
a✝⁴ : y ∈ univ
a✝³ : x ≠ y
a b : 𝕜
a✝² : 0 < a
a✝¹ : 0 < b
a✝ : a + b = 1
⊢ a • x + b • y ∈ interior univ
[PROOFSTEP]
rw [interior_univ]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x✝ y✝ : E
a✝⁶ b✝ : 𝕜
x : E
a✝⁵ : x ∈ univ
y : E
a✝⁴ : y ∈ univ
a✝³ : x ≠ y
a b : 𝕜
a✝² : 0 < a
a✝¹ : 0 < b
a✝ : a + b = 1
⊢ a • x + b • y ∈ univ
[PROOFSTEP]
exact mem_univ _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
⊢ StrictConvex 𝕜 (s ∩ t)
[PROOFSTEP]
intro x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
x : E
hx : x ∈ s ∩ t
y : E
hy : y ∈ s ∩ t
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (s ∩ t)
[PROOFSTEP]
rw [interior_inter]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
x : E
hx : x ∈ s ∩ t
y : E
hy : y ∈ s ∩ t
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior s ∩ interior t
[PROOFSTEP]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x y : E
a b : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
⊢ StrictConvex 𝕜 (⋃ (i : ι), s i)
[PROOFSTEP]
rintro x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x : E
hx : x ∈ ⋃ (i : ι), s i
y : E
hy : y ∈ ⋃ (i : ι), s i
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i)
[PROOFSTEP]
rw [mem_iUnion] at hx hy
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x : E
hx : ∃ i, x ∈ s i
y : E
hy : ∃ i, y ∈ s i
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i)
[PROOFSTEP]
obtain ⟨i, hx⟩ := hx
[GOAL]
case intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hy : ∃ i, y ∈ s i
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i)
[PROOFSTEP]
obtain ⟨j, hy⟩ := hy
[GOAL]
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i)
[PROOFSTEP]
obtain ⟨k, hik, hjk⟩ := hdir i j
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
k : ι
hik : s i ⊆ s k
hjk : s j ⊆ s k
⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i)
[PROOFSTEP]
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
S : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S
hS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (⋃₀ S)
[PROOFSTEP]
rw [sUnion_eq_iUnion]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
S : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S
hS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (⋃ (i : ↑S), ↑i)
[PROOFSTEP]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ↑f
⊢ StrictConvex 𝕜 (↑f '' s)
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ↑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : ↑f x ≠ ↑f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s)
[PROOFSTEP]
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ↑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : ↑f x ≠ ↑f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ↑f (a • x + b • y) = a • ↑f x + b • ↑f y
[PROOFSTEP]
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
⊢ StrictConvex 𝕜 (↑f ⁻¹' s)
[PROOFSTEP]
intro x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (↑f ⁻¹' s)
[PROOFSTEP]
refine' preimage_interior_subset_interior_preimage hf _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f ⁻¹' interior s
[PROOFSTEP]
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ interior s
[PROOFSTEP]
exact hs hx hy (hfinj.ne hxy) ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
⊢ StrictConvex 𝕜 s
[PROOFSTEP]
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
[PROOFSTEP]
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
[PROOFSTEP]
cases' hxy.lt_or_lt with hlt hlt
[GOAL]
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : x < y
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
skip
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : y < x
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
rw [openSegment_symm]
[GOAL]
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : x < y
⊢ openSegment 𝕜 x y ⊆ interior s
[PROOFSTEP]
exact
(openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : y < x
⊢ openSegment 𝕜 y x ⊆ interior s
[PROOFSTEP]
exact
(openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
[PROOFSTEP]
intro x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior ((fun x => z + x) ⁻¹' s)
[PROOFSTEP]
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
[PROOFSTEP]
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ interior s
⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
[PROOFSTEP]
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s)
[PROOFSTEP]
simpa only [add_comm] using hs.preimage_add_right z
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
⊢ StrictConvex 𝕜 (s + t)
[PROOFSTEP]
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • (fun x x_1 => x + x_1) v w + b • (fun x x_1 => x + x_1) x y ∈ interior (s + t)
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
[PROOFSTEP]
obtain rfl | hvx := eq_or_ne v x
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ a • v + b • v + (a • w + b • y) ∈ interior (s + t)
[PROOFSTEP]
refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ a • v + b • v + (a • w + b • y) ∈ interior ({v} + t)
[PROOFSTEP]
rw [Convex.combo_self hab, singleton_add]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ v + (a • w + b • y) ∈ interior ((fun x x_1 => x + x_1) v '' t)
[PROOFSTEP]
exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hvx : v ≠ x
⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
[PROOFSTEP]
exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => z + x) '' s)
[PROOFSTEP]
simpa only [singleton_add] using (strictConvex_singleton z).add hs
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => x + z) '' s)
[PROOFSTEP]
simpa only [add_comm] using hs.add_left z
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
c : 𝕝
⊢ StrictConvex 𝕜 (c • s)
[PROOFSTEP]
obtain rfl | hc := eq_or_ne c 0
[GOAL]
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (0 • s)
[PROOFSTEP]
exact (subsingleton_zero_smul_set _).strictConvex
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
c : 𝕝
hc : c ≠ 0
⊢ StrictConvex 𝕜 (c • s)
[PROOFSTEP]
exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
[PROOFSTEP]
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
[PROOFSTEP]
obtain rfl | hc := eq_or_ne c 0
[GOAL]
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 ((fun z => 0 • z) ⁻¹' s)
[PROOFSTEP]
simp_rw [zero_smul, preimage_const]
[GOAL]
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (if 0 ∈ s then univ else ∅)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
h✝ : 0 ∈ s
⊢ StrictConvex 𝕜 univ
[PROOFSTEP]
exact strictConvex_univ
[GOAL]
case neg
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
h✝ : ¬0 ∈ s
⊢ StrictConvex 𝕜 ∅
[PROOFSTEP]
exact strictConvex_empty
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
[PROOFSTEP]
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ Continuous ↑(↑(LinearMap.lsmul 𝕜 E) c)
[PROOFSTEP]
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
[GOAL]
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ Continuous
↑(↑{
toAddHom :=
{
toFun := fun m =>
{
toAddHom :=
{ toFun := (fun x x_1 => x • x_1) m,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) },
map_smul' :=
(_ :
∀ (c m : 𝕜),
AddHom.toFun
{
toFun := fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) }
(c • m) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{
toFun := fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) }
m) }
c)
[PROOFSTEP]
exact continuous_const_smul _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
⊢ x = y
[PROOFSTEP]
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
[GOAL]
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ x = y
[PROOFSTEP]
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
[GOAL]
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ x = y
[PROOFSTEP]
by_contra hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
hxy : ¬x = y
⊢ False
[PROOFSTEP]
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • y ∈ interior s
[PROOFSTEP]
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • y = (1 - t) • x + t • (x + y)
[PROOFSTEP]
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x + t • y ∈ interior s
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ (1 - t) • x + t • (x + y) ∈ interior s
[PROOFSTEP]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
[GOAL]
case refine'_1
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h✝ : x + t • y = (1 - t) • x + t • (x + y)
h : x = x + y
⊢ ?refine'_2 h + y = ?refine'_2 h + 0
case refine'_2
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x = x + y → E
[PROOFSTEP]
rw [← h, add_zero]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ t • x ∈ interior s
[PROOFSTEP]
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ 0 + x ∈ s
[PROOFSTEP]
simpa using hx
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ interior s
[PROOFSTEP]
apply h.openSegment_subset hx hy hxy
[GOAL]
case a
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ openSegment 𝕜 x y
[PROOFSTEP]
rw [openSegment_eq_image']
[GOAL]
case a
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1
[PROOFSTEP]
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x y : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
⊢ StrictConvex 𝕜 (↑f ⁻¹' s)
[PROOFSTEP]
intro x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (↑f ⁻¹' s)
[PROOFSTEP]
refine' preimage_interior_subset_interior_preimage hf _
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ ↑f ⁻¹' interior s
[PROOFSTEP]
rw [mem_preimage, Convex.combo_affine_apply hab]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ↑f
hfinj : Injective ↑f
x : E
hx : x ∈ ↑f ⁻¹' s
y : E
hy : y ∈ ↑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ interior s
[PROOFSTEP]
exact hs hx hy (hfinj.ne hxy) ha hb hab
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : IsOpenMap ↑f
⊢ StrictConvex 𝕜 (↑f '' s)
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x✝ y✝ : E
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : IsOpenMap ↑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : ↑f x ≠ ↑f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s)
[PROOFSTEP]
exact
hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
[PROOFSTEP]
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ (a + b) / (a + b) = 1
[PROOFSTEP]
exact div_self (add_pos ha hb).ne'
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior s
[PROOFSTEP]
convert h hx hy hxy ha hb
[GOAL]
case h.e'_4.h.e'_5.h.e'_5
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a = a / (a + b)
[PROOFSTEP]
rw [hab, div_one]
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ b = b / (a + b)
[PROOFSTEP]
rw [hab, div_one]
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht : 1 < t
⊢ x ∈ t • interior s
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
[GOAL]
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht : 1 < t
⊢ t⁻¹ • x ∈ interior s
[PROOFSTEP]
exact hs.smul_mem_of_zero_mem zero_mem hx hx₀ (inv_pos.2 <| zero_lt_one.trans ht) (inv_lt_one ht)
| {"mathlib_filename": "Mathlib.Analysis.Convex.Strict", "llama_tokens": 24129} |
[GOAL]
c : ℝ
⊢ IntegrableOn exp (Iic c)
[PROOFSTEP]
refine'
integrableOn_Iic_of_intervalIntegral_norm_bounded (exp c) c (fun y => intervalIntegrable_exp.1) tendsto_id
(eventually_of_mem (Iic_mem_atBot 0) fun y _ => _)
[GOAL]
c y : ℝ
x✝ : y ∈ Iic 0
⊢ ∫ (x : ℝ) in id y..c, ‖exp x‖ ≤ exp c
[PROOFSTEP]
simp_rw [norm_of_nonneg (exp_pos _).le, integral_exp, sub_le_self_iff]
[GOAL]
c y : ℝ
x✝ : y ∈ Iic 0
⊢ 0 ≤ exp (id y)
[PROOFSTEP]
exact (exp_pos _).le
[GOAL]
c : ℝ
⊢ ∫ (x : ℝ) in Iic c, exp x = exp c
[PROOFSTEP]
refine' tendsto_nhds_unique (intervalIntegral_tendsto_integral_Iic _ (integrableOn_exp_Iic _) tendsto_id) _
[GOAL]
c : ℝ
⊢ Tendsto (fun i => ∫ (x : ℝ) in id i..c, exp x) atBot (𝓝 (exp c))
[PROOFSTEP]
simp_rw [integral_exp, show 𝓝 (exp c) = 𝓝 (exp c - 0) by rw [sub_zero]]
[GOAL]
c : ℝ
⊢ 𝓝 (exp c) = 𝓝 (exp c - 0)
[PROOFSTEP]
rw [sub_zero]
[GOAL]
c : ℝ
⊢ Tendsto (fun i => exp c - exp (id i)) atBot (𝓝 (exp c - 0))
[PROOFSTEP]
exact tendsto_exp_atBot.const_sub _
[GOAL]
c : ℝ
⊢ ∫ (x : ℝ) in Ioi c, exp (-x) = exp (-c)
[PROOFSTEP]
simpa only [integral_comp_neg_Ioi] using integral_exp_Iic (-c)
[GOAL]
⊢ ∫ (x : ℝ) in Ioi 0, exp (-x) = 1
[PROOFSTEP]
simpa only [neg_zero, exp_zero] using integral_exp_neg_Ioi 0
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
⊢ IntegrableOn (fun t => t ^ a) (Ioi c)
[PROOFSTEP]
have hd : ∀ (x : ℝ) (_ : x ∈ Ici c), HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x :=
by
intro x hx
convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1
field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm]
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
⊢ ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
[PROOFSTEP]
intro x hx
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
[PROOFSTEP]
convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1
[GOAL]
case h.e'_7
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ x ^ a = (a + 1) * x ^ (a + 1 - 1) / (a + 1)
[PROOFSTEP]
field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm]
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ a + 1 < 0
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ IntegrableOn (fun t => t ^ a) (Ioi c)
[PROOFSTEP]
have ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) :=
by
apply Tendsto.div_const
simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1))
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1)))
[PROOFSTEP]
apply Tendsto.div_const
[GOAL]
case hf
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ Tendsto (fun a_1 => a_1 ^ (a + 1)) atTop (𝓝 0)
[PROOFSTEP]
simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1))
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ 0 < -(a + 1)
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1)))
⊢ IntegrableOn (fun t => t ^ a) (Ioi c)
[PROOFSTEP]
exact integrableOn_Ioi_deriv_of_nonneg' hd (fun t ht => rpow_nonneg_of_nonneg (hc.trans ht).le a) ht
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)
[PROOFSTEP]
have hd : ∀ (x : ℝ) (_ : x ∈ Ici c), HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x :=
by
intro x hx
convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1
field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm]
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
⊢ ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
[PROOFSTEP]
intro x hx
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
[PROOFSTEP]
convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1
[GOAL]
case h.e'_7
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ x ^ a = (a + 1) * x ^ (a + 1 - 1) / (a + 1)
[PROOFSTEP]
field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm]
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ici c
⊢ a + 1 < 0
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)
[PROOFSTEP]
have ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) :=
by
apply Tendsto.div_const
simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1))
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1)))
[PROOFSTEP]
apply Tendsto.div_const
[GOAL]
case hf
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ Tendsto (fun a_1 => a_1 ^ (a + 1)) atTop (𝓝 0)
[PROOFSTEP]
simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1))
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
⊢ 0 < -(a + 1)
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1)))
⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)
[PROOFSTEP]
convert integral_Ioi_of_hasDerivAt_of_tendsto' hd (integrableOn_Ioi_rpow_of_lt ha hc) ht using 1
[GOAL]
case h.e'_3
a : ℝ
ha : a < -1
c : ℝ
hc : 0 < c
hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x
ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1)))
⊢ -c ^ (a + 1) / (a + 1) = 0 / (a + 1) - c ^ (a + 1) / (a + 1)
[PROOFSTEP]
simp only [neg_div, zero_div, zero_sub]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ IntegrableOn (fun t => ↑t ^ a) (Ioi c)
[PROOFSTEP]
rw [IntegrableOn, ← integrable_norm_iff, ← IntegrableOn]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ IntegrableOn (fun a_1 => ‖↑a_1 ^ a‖) (Ioi c)
a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ AEStronglyMeasurable (fun t => ↑t ^ a) (Measure.restrict volume (Ioi c))
[PROOFSTEP]
refine' (integrableOn_Ioi_rpow_of_lt ha hc).congr_fun (fun x hx => _) measurableSet_Ioi
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ioi c
⊢ x ^ a.re = ‖↑x ^ a‖
[PROOFSTEP]
dsimp only
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : x ∈ Ioi c
⊢ x ^ a.re = ‖↑x ^ a‖
[PROOFSTEP]
rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos (hc.trans hx)]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ AEStronglyMeasurable (fun t => ↑t ^ a) (Measure.restrict volume (Ioi c))
[PROOFSTEP]
refine' ContinuousOn.aestronglyMeasurable (fun t ht => _) measurableSet_Ioi
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
t : ℝ
ht : t ∈ Ioi c
⊢ ContinuousWithinAt (fun t => ↑t ^ a) (Ioi c) t
[PROOFSTEP]
exact (Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr (hc.trans ht).ne')).continuousWithinAt
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ ∫ (t : ℝ) in Ioi c, ↑t ^ a = -↑c ^ (a + 1) / (a + 1)
[PROOFSTEP]
refine' tendsto_nhds_unique (intervalIntegral_tendsto_integral_Ioi c (integrableOn_Ioi_cpow_of_lt ha hc) tendsto_id) _
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ Tendsto (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
[PROOFSTEP]
suffices Tendsto (fun x : ℝ => ((x : ℂ) ^ (a + 1) - (c : ℂ) ^ (a + 1)) / (a + 1)) atTop (𝓝 <| -c ^ (a + 1) / (a + 1))
by
refine' this.congr' ((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _))
dsimp only
rw [integral_cpow, id.def]
refine' Or.inr ⟨_, not_mem_uIcc_of_lt hc hx⟩
apply_fun Complex.re
rw [Complex.neg_re, Complex.one_re]
exact ha.ne
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
⊢ Tendsto (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
[PROOFSTEP]
refine' this.congr' ((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _))
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1) = (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) x
[PROOFSTEP]
dsimp only
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1) = ∫ (x : ℝ) in c..id x, ↑x ^ a
[PROOFSTEP]
rw [integral_cpow, id.def]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ -1 < a.re ∨ a ≠ -1 ∧ ¬0 ∈ uIcc c (id x)
[PROOFSTEP]
refine' Or.inr ⟨_, not_mem_uIcc_of_lt hc hx⟩
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ a ≠ -1
[PROOFSTEP]
apply_fun Complex.re
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ a.re ≠ (-1).re
[PROOFSTEP]
rw [Complex.neg_re, Complex.one_re]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
x : ℝ
hx : 0 < x
⊢ a.re ≠ -1
[PROOFSTEP]
exact ha.ne
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1)))
[PROOFSTEP]
simp_rw [← zero_sub, sub_div]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ Tendsto (fun x => ↑x ^ (a + 1) / (a + 1) - ↑c ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1) - ↑c ^ (a + 1) / (a + 1)))
[PROOFSTEP]
refine' (Tendsto.div_const _ _).sub_const _
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ Tendsto (fun x => ↑x ^ (a + 1)) atTop (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ Tendsto (fun e => ‖↑e ^ (a + 1)‖) atTop (𝓝 0)
[PROOFSTEP]
refine'
(tendsto_rpow_neg_atTop (by linarith : 0 < -(a.re + 1))).congr'
((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _))
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
⊢ 0 < -(a.re + 1)
[PROOFSTEP]
linarith
[GOAL]
a : ℂ
ha : a.re < -1
c : ℝ
hc : 0 < c
x : ℝ
hx : 0 < x
⊢ x ^ (- -(a.re + 1)) = (fun e => ‖↑e ^ (a + 1)‖) x
[PROOFSTEP]
simp_rw [neg_neg, Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx, Complex.add_re, Complex.one_re]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.ImproperIntegrals", "llama_tokens": 6371} |
[GOAL]
n : ℕ
hn : 2 ≤ n
⊢ StrictConvexOn ℝ (Ici 0) fun x => x ^ n
[PROOFSTEP]
apply StrictMonoOn.strictConvexOn_of_deriv (convex_Ici _) (continuousOn_pow _)
[GOAL]
n : ℕ
hn : 2 ≤ n
⊢ StrictMonoOn (deriv fun x => x ^ n) (interior (Ici 0))
[PROOFSTEP]
rw [deriv_pow', interior_Ici]
[GOAL]
n : ℕ
hn : 2 ≤ n
⊢ StrictMonoOn (fun x => ↑n * x ^ (n - 1)) (Ioi 0)
[PROOFSTEP]
exact fun x (hx : 0 < x) y hy hxy =>
mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_left hxy hx.le <| Nat.sub_pos_of_lt hn)
(Nat.cast_pos.2 <| zero_lt_two.trans_le hn)
[GOAL]
n : ℕ
hn : Even n
h : n ≠ 0
⊢ StrictConvexOn ℝ univ fun x => x ^ n
[PROOFSTEP]
apply StrictMono.strictConvexOn_univ_of_deriv (continuous_pow n)
[GOAL]
n : ℕ
hn : Even n
h : n ≠ 0
⊢ StrictMono (deriv fun a => a ^ n)
[PROOFSTEP]
rw [deriv_pow']
[GOAL]
n : ℕ
hn : Even n
h : n ≠ 0
⊢ StrictMono fun x => ↑n * x ^ (n - 1)
[PROOFSTEP]
replace h := Nat.pos_of_ne_zero h
[GOAL]
n : ℕ
hn : Even n
h : 0 < n
⊢ StrictMono fun x => ↑n * x ^ (n - 1)
[PROOFSTEP]
exact StrictMono.const_mul (Odd.strictMono_pow <| Nat.Even.sub_odd h hn <| Nat.odd_iff.2 rfl) (Nat.cast_pos.2 h)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrderedCommRing β
f : α → β
inst✝ : DecidablePred fun x => f x ≤ 0
s : Finset α
h0 : Even (card (filter (fun x => f x ≤ 0) s))
x : α
x✝ : x ∈ s
⊢ 0 ≤ (if f x ≤ 0 then -1 else 1) * f x
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrderedCommRing β
f : α → β
inst✝ : DecidablePred fun x => f x ≤ 0
s : Finset α
h0 : Even (card (filter (fun x => f x ≤ 0) s))
x : α
x✝ : x ∈ s
hx : f x ≤ 0
⊢ 0 ≤ -1 * f x
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrderedCommRing β
f : α → β
inst✝ : DecidablePred fun x => f x ≤ 0
s : Finset α
h0 : Even (card (filter (fun x => f x ≤ 0) s))
x : α
x✝ : x ∈ s
hx : ¬f x ≤ 0
⊢ 0 ≤ 1 * f x
[PROOFSTEP]
simp at hx ⊢
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrderedCommRing β
f : α → β
inst✝ : DecidablePred fun x => f x ≤ 0
s : Finset α
h0 : Even (card (filter (fun x => f x ≤ 0) s))
x : α
x✝ : x ∈ s
hx : 0 < f x
⊢ 0 ≤ f x
[PROOFSTEP]
exact le_of_lt hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrderedCommRing β
f : α → β
inst✝ : DecidablePred fun x => f x ≤ 0
s : Finset α
h0 : Even (card (filter (fun x => f x ≤ 0) s))
⊢ ∏ x in s, (if f x ≤ 0 then -1 else 1) * f x = ∏ x in s, f x
[PROOFSTEP]
rw [Finset.prod_mul_distrib, Finset.prod_ite, Finset.prod_const_one, mul_one, Finset.prod_const,
neg_one_pow_eq_pow_mod_two, Nat.even_iff.1 h0, pow_zero, one_mul]
[GOAL]
m : ℤ
n : ℕ
hn : Even n
⊢ 0 ≤ ∏ k in Finset.range n, (m - ↑k)
[PROOFSTEP]
rcases hn with ⟨n, rfl⟩
[GOAL]
case intro
m : ℤ
n : ℕ
⊢ 0 ≤ ∏ k in Finset.range (n + n), (m - ↑k)
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case intro.zero
m : ℤ
⊢ 0 ≤ ∏ k in Finset.range (Nat.zero + Nat.zero), (m - ↑k)
[PROOFSTEP]
simp
[GOAL]
case intro.succ
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (n + n), (m - ↑k)
⊢ 0 ≤ ∏ k in Finset.range (Nat.succ n + Nat.succ n), (m - ↑k)
[PROOFSTEP]
rw [← two_mul] at ihn
[GOAL]
case intro.succ
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
⊢ 0 ≤ ∏ k in Finset.range (Nat.succ n + Nat.succ n), (m - ↑k)
[PROOFSTEP]
rw [← two_mul, Nat.succ_eq_add_one, mul_add, mul_one, ← one_add_one_eq_two, ← add_assoc, Finset.prod_range_succ,
Finset.prod_range_succ, mul_assoc]
[GOAL]
case intro.succ
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
⊢ 0 ≤ (∏ x in Finset.range ((1 + 1) * n), (m - ↑x)) * ((m - ↑((1 + 1) * n)) * (m - ↑((1 + 1) * n + 1)))
[PROOFSTEP]
refine' mul_nonneg ihn _
[GOAL]
case intro.succ
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
⊢ 0 ≤ (m - ↑((1 + 1) * n)) * (m - ↑((1 + 1) * n + 1))
[PROOFSTEP]
generalize (1 + 1) * n = k
[GOAL]
case intro.succ
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
k : ℕ
⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1))
[PROOFSTEP]
cases' le_or_lt m k with hmk hmk
[GOAL]
case intro.succ.inl
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
k : ℕ
hmk : m ≤ ↑k
⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1))
[PROOFSTEP]
have : m ≤ k + 1 := hmk.trans (lt_add_one (k : ℤ)).le
[GOAL]
case intro.succ.inl
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
k : ℕ
hmk : m ≤ ↑k
this : m ≤ ↑k + 1
⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1))
[PROOFSTEP]
convert mul_nonneg_of_nonpos_of_nonpos (sub_nonpos_of_le hmk) _
[GOAL]
case intro.succ.inl.convert_2
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
k : ℕ
hmk : m ≤ ↑k
this : m ≤ ↑k + 1
⊢ m - ↑(k + 1) ≤ 0
[PROOFSTEP]
convert sub_nonpos_of_le this
[GOAL]
case intro.succ.inr
m : ℤ
n : ℕ
ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k)
k : ℕ
hmk : ↑k < m
⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1))
[PROOFSTEP]
exact mul_nonneg (sub_nonneg_of_le hmk.le) (sub_nonneg_of_le hmk)
[GOAL]
m : ℤ
n : ℕ
hn : Even n
hm : ¬m ∈ Ico 0 ↑n
⊢ 0 < ∏ k in Finset.range n, (m - ↑k)
[PROOFSTEP]
refine' (int_prod_range_nonneg m n hn).lt_of_ne fun h => hm _
[GOAL]
m : ℤ
n : ℕ
hn : Even n
hm : ¬m ∈ Ico 0 ↑n
h : 0 = ∏ k in Finset.range n, (m - ↑k)
⊢ m ∈ Ico 0 ↑n
[PROOFSTEP]
rw [eq_comm, Finset.prod_eq_zero_iff] at h
[GOAL]
m : ℤ
n : ℕ
hn : Even n
hm : ¬m ∈ Ico 0 ↑n
h : ∃ a, a ∈ Finset.range n ∧ m - ↑a = 0
⊢ m ∈ Ico 0 ↑n
[PROOFSTEP]
obtain ⟨a, ha, h⟩ := h
[GOAL]
case intro.intro
m : ℤ
n : ℕ
hn : Even n
hm : ¬m ∈ Ico 0 ↑n
a : ℕ
ha : a ∈ Finset.range n
h : m - ↑a = 0
⊢ m ∈ Ico 0 ↑n
[PROOFSTEP]
rw [sub_eq_zero.1 h]
[GOAL]
case intro.intro
m : ℤ
n : ℕ
hn : Even n
hm : ¬m ∈ Ico 0 ↑n
a : ℕ
ha : a ∈ Finset.range n
h : m - ↑a = 0
⊢ ↑a ∈ Ico 0 ↑n
[PROOFSTEP]
exact ⟨Int.ofNat_zero_le _, Int.ofNat_lt.2 <| Finset.mem_range.1 ha⟩
[GOAL]
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
⊢ StrictConvexOn ℝ (Ioi 0) fun x => x ^ m
[PROOFSTEP]
apply strictConvexOn_of_deriv2_pos' (convex_Ioi 0)
[GOAL]
case hf
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
⊢ ContinuousOn (fun x => x ^ m) (Ioi 0)
[PROOFSTEP]
exact (continuousOn_zpow₀ m).mono fun x hx => ne_of_gt hx
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
⊢ ∀ (x : ℝ), x ∈ Ioi 0 → 0 < deriv^[2] (fun x => x ^ m) x
[PROOFSTEP]
intro x hx
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : x ∈ Ioi 0
⊢ 0 < deriv^[2] (fun x => x ^ m) x
[PROOFSTEP]
rw [mem_Ioi] at hx
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
⊢ 0 < deriv^[2] (fun x => x ^ m) x
[PROOFSTEP]
rw [iter_deriv_zpow]
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
⊢ 0 < (∏ i in Finset.range 2, (↑m - ↑i)) * x ^ (m - ↑2)
[PROOFSTEP]
refine' mul_pos _ (zpow_pos_of_pos hx _)
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
⊢ 0 < ∏ i in Finset.range 2, (↑m - ↑i)
[PROOFSTEP]
norm_cast
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
⊢ 0 < ∏ i in Finset.range 2, (m - ↑i)
[PROOFSTEP]
refine' int_prod_range_pos (by simp only) fun hm => _
[GOAL]
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
⊢ Even 2
[PROOFSTEP]
simp only
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
hm : m ∈ Ico 0 ↑2
⊢ False
[PROOFSTEP]
rw [← Finset.coe_Ico] at hm
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
hm✝ : m ∈ Ico 0 ↑2
hm : m ∈ ↑(Finset.Ico 0 ↑2)
⊢ False
[PROOFSTEP]
norm_cast at hm
[GOAL]
case hf''
m : ℤ
hm₀ : m ≠ 0
hm₁ : m ≠ 1
x : ℝ
hx : 0 < x
hm✝ : m ∈ Ico 0 ↑2
hm : m ∈ Finset.Ico 0 2
⊢ False
[PROOFSTEP]
fin_cases hm
[GOAL]
case hf''.head
x : ℝ
hx : 0 < x
hm₀ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ≠ 0
hm₁ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ≠ 1
hm : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ∈ Ico 0 ↑2
⊢ False
[PROOFSTEP]
simp_all
-- Porting note: `simp_all` was `cc`
[GOAL]
case hf''.tail.head
x : ℝ
hx : 0 < x
hm₀ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ≠ 0
hm₁ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ≠ 1
hm : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ∈ Ico 0 ↑2
⊢ False
[PROOFSTEP]
simp_all
-- Porting note: `simp_all` was `cc`
[GOAL]
x : ℝ
hx : x ≠ 0
⊢ HasDerivAt (fun x => sqrt x * log x) ((2 + log x) / (2 * sqrt x)) x
[PROOFSTEP]
convert (hasDerivAt_sqrt hx).mul (hasDerivAt_log hx) using 1
[GOAL]
case h.e'_7
x : ℝ
hx : x ≠ 0
⊢ (2 + log x) / (2 * sqrt x) = 1 / (2 * sqrt x) * log x + sqrt x * x⁻¹
[PROOFSTEP]
rw [add_div, div_mul_right (sqrt x) two_ne_zero, ← div_eq_mul_inv, sqrt_div_self', add_comm, div_eq_mul_one_div,
mul_comm]
[GOAL]
x : ℝ
⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x)
[PROOFSTEP]
cases' lt_or_le 0 x with hx hx
[GOAL]
case inl
x : ℝ
hx : 0 < x
⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x)
[PROOFSTEP]
exact (hasDerivAt_sqrt_mul_log hx.ne').deriv
[GOAL]
case inr
x : ℝ
hx : x ≤ 0
⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x)
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero]
[GOAL]
case inr
x : ℝ
hx : x ≤ 0
⊢ deriv (fun x => sqrt x * log x) x = 0
[PROOFSTEP]
refine' HasDerivWithinAt.deriv_eq_zero _ (uniqueDiffOn_Iic 0 x hx)
[GOAL]
case inr
x : ℝ
hx : x ≤ 0
⊢ HasDerivWithinAt (fun x => sqrt x * log x) 0 (Iic 0) x
[PROOFSTEP]
refine' (hasDerivWithinAt_const x _ 0).congr_of_mem (fun x hx => _) hx
[GOAL]
case inr
x✝ : ℝ
hx✝ : x✝ ≤ 0
x : ℝ
hx : x ∈ Iic 0
⊢ sqrt x * log x = 0
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos hx, zero_mul]
[GOAL]
x : ℝ
⊢ deriv^[2] (fun x => sqrt x * log x) x = -log x / (↑4 * sqrt x ^ 3)
[PROOFSTEP]
simp only [Nat.iterate, deriv_sqrt_mul_log']
[GOAL]
x : ℝ
⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3)
[PROOFSTEP]
cases' le_or_lt x 0 with hx hx
[GOAL]
case inl
x : ℝ
hx : x ≤ 0
⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3)
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos hx, zero_pow zero_lt_three, mul_zero, div_zero]
[GOAL]
case inl
x : ℝ
hx : x ≤ 0
⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = 0
[PROOFSTEP]
refine' HasDerivWithinAt.deriv_eq_zero _ (uniqueDiffOn_Iic 0 x hx)
[GOAL]
case inl
x : ℝ
hx : x ≤ 0
⊢ HasDerivWithinAt (fun x => (2 + log x) / (2 * sqrt x)) 0 (Iic 0) x
[PROOFSTEP]
refine' (hasDerivWithinAt_const _ _ 0).congr_of_mem (fun x hx => _) hx
[GOAL]
case inl
x✝ : ℝ
hx✝ : x✝ ≤ 0
x : ℝ
hx : x ∈ Iic 0
⊢ (2 + log x) / (2 * sqrt x) = 0
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero]
[GOAL]
case inr
x : ℝ
hx : 0 < x
⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3)
[PROOFSTEP]
have h₀ : sqrt x ≠ 0 := sqrt_ne_zero'.2 hx
[GOAL]
case inr
x : ℝ
hx : 0 < x
h₀ : sqrt x ≠ 0
⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3)
[PROOFSTEP]
convert
(((hasDerivAt_log hx.ne').const_add 2).div ((hasDerivAt_sqrt hx.ne').const_mul 2) <|
mul_ne_zero two_ne_zero h₀).deriv using
1
[GOAL]
case h.e'_3
x : ℝ
hx : 0 < x
h₀ : sqrt x ≠ 0
⊢ -log x / (↑4 * sqrt x ^ 3) = (x⁻¹ * (2 * sqrt x) - (2 + log x) * (2 * (1 / (2 * sqrt x)))) / (2 * sqrt x) ^ 2
[PROOFSTEP]
nth_rw 3 [← mul_self_sqrt hx.le]
[GOAL]
case h.e'_3
x : ℝ
hx : 0 < x
h₀ : sqrt x ≠ 0
⊢ -log x / (↑4 * sqrt x ^ 3) =
((sqrt x * sqrt x)⁻¹ * (2 * sqrt x) - (2 + log x) * (2 * (1 / (2 * sqrt x)))) / (2 * sqrt x) ^ 2
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_3
x : ℝ
hx : 0 < x
h₀ : sqrt x ≠ 0
⊢ -(log x * (sqrt x * sqrt x * (2 * sqrt x) * (2 * sqrt x) ^ 2)) =
(2 * sqrt x * (2 * sqrt x) - sqrt x * sqrt x * ((2 + log x) * 2)) * (4 * sqrt x ^ 3)
[PROOFSTEP]
ring
[GOAL]
⊢ StrictConcaveOn ℝ (Ioi 1) fun x => sqrt x * log x
[PROOFSTEP]
apply strictConcaveOn_of_deriv2_neg' (convex_Ioi 1) _ fun x hx => ?_
[GOAL]
⊢ ContinuousOn (fun x => sqrt x * log x) (Ioi 1)
[PROOFSTEP]
exact continuous_sqrt.continuousOn.mul (continuousOn_log.mono fun x hx => ne_of_gt (zero_lt_one.trans hx))
[GOAL]
x : ℝ
hx : x ∈ Ioi 1
⊢ deriv^[2] (fun x => sqrt x * log x) x < 0
[PROOFSTEP]
rw [deriv2_sqrt_mul_log x]
[GOAL]
x : ℝ
hx : x ∈ Ioi 1
⊢ -log x / (↑4 * sqrt x ^ 3) < 0
[PROOFSTEP]
exact
div_neg_of_neg_of_pos (neg_neg_of_pos (log_pos hx))
(mul_pos four_pos (pow_pos (sqrt_pos.mpr (zero_lt_one.trans hx)) 3))
[GOAL]
⊢ StrictConcaveOn ℝ (Icc 0 π) sin
[PROOFSTEP]
apply strictConcaveOn_of_deriv2_neg (convex_Icc _ _) continuousOn_sin fun x hx => ?_
[GOAL]
x : ℝ
hx : x ∈ interior (Icc 0 π)
⊢ deriv^[2] sin x < 0
[PROOFSTEP]
rw [interior_Icc] at hx
[GOAL]
x : ℝ
hx : x ∈ Ioo 0 π
⊢ deriv^[2] sin x < 0
[PROOFSTEP]
simp [sin_pos_of_mem_Ioo hx]
[GOAL]
⊢ StrictConcaveOn ℝ (Icc (-(π / 2)) (π / 2)) cos
[PROOFSTEP]
apply strictConcaveOn_of_deriv2_neg (convex_Icc _ _) continuousOn_cos fun x hx => ?_
[GOAL]
x : ℝ
hx : x ∈ interior (Icc (-(π / 2)) (π / 2))
⊢ deriv^[2] cos x < 0
[PROOFSTEP]
rw [interior_Icc] at hx
[GOAL]
x : ℝ
hx : x ∈ Ioo (-(π / 2)) (π / 2)
⊢ deriv^[2] cos x < 0
[PROOFSTEP]
simp [cos_pos_of_mem_Ioo hx]
| {"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Deriv", "llama_tokens": 7094} |
[GOAL]
x : ℝ
hx : x ≠ 0
⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
cases' hx.lt_or_lt with hx hx
[GOAL]
case inl
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos hx.le, mul_zero, div_zero]
[GOAL]
case inl
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
⊢ HasStrictDerivAt sqrt 0 x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
have : sqrt =ᶠ[𝓝 x] fun _ => 0 := (gt_mem_nhds hx).mono fun x hx => sqrt_eq_zero_of_nonpos hx.le
[GOAL]
case inl
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
this : sqrt =ᶠ[𝓝 x] fun x => 0
⊢ HasStrictDerivAt sqrt 0 x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
exact
⟨(hasStrictDerivAt_const x (0 : ℝ)).congr_of_eventuallyEq this.symm, fun n =>
contDiffAt_const.congr_of_eventuallyEq this⟩
[GOAL]
case inr
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
have : ↑2 * sqrt x ^ (2 - 1) ≠ 0 := by simp [(sqrt_pos.2 hx).ne', @two_ne_zero ℝ]
[GOAL]
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
⊢ 2 * sqrt x ^ (2 - 1) ≠ 0
[PROOFSTEP]
simp [(sqrt_pos.2 hx).ne', @two_ne_zero ℝ]
[GOAL]
case inr
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
this : 2 * sqrt x ^ (2 - 1) ≠ 0
⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
constructor
[GOAL]
case inr.left
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
this : 2 * sqrt x ^ (2 - 1) ≠ 0
⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x
[PROOFSTEP]
simpa using sqLocalHomeomorph.hasStrictDerivAt_symm hx this (hasStrictDerivAt_pow 2 _)
[GOAL]
case inr.right
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
this : 2 * sqrt x ^ (2 - 1) ≠ 0
⊢ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x
[PROOFSTEP]
exact fun n => sqLocalHomeomorph.contDiffAt_symm_deriv this hx (hasDerivAt_pow 2 (sqrt x)) (contDiffAt_id.pow 2)
[GOAL]
f : ℝ → ℝ
s : Set ℝ
f' x : ℝ
hf : HasDerivWithinAt f f' s x
hx : f x ≠ 0
⊢ HasDerivWithinAt (fun y => Real.sqrt (f y)) (f' / (2 * Real.sqrt (f x))) s x
[PROOFSTEP]
simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasDerivAt_sqrt hx).comp_hasDerivWithinAt x hf
[GOAL]
f : ℝ → ℝ
s : Set ℝ
f' x : ℝ
hf : HasDerivAt f f' x
hx : f x ≠ 0
⊢ HasDerivAt (fun y => Real.sqrt (f y)) (f' / (2 * Real.sqrt (f x))) x
[PROOFSTEP]
simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasDerivAt_sqrt hx).comp x hf
[GOAL]
f : ℝ → ℝ
s : Set ℝ
f' x : ℝ
hf : HasStrictDerivAt f f' x
hx : f x ≠ 0
⊢ HasStrictDerivAt (fun t => Real.sqrt (f t)) (f' / (2 * Real.sqrt (f x))) x
[PROOFSTEP]
simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasStrictDerivAt_sqrt hx).comp x hf
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Sqrt", "llama_tokens": 1411} |
[GOAL]
x✝ y x : ℝ
⊢ exp (arsinh x) = x + sqrt (1 + x ^ 2)
[PROOFSTEP]
apply exp_log
[GOAL]
case hx
x✝ y x : ℝ
⊢ 0 < x + sqrt (1 + x ^ 2)
[PROOFSTEP]
rw [← neg_lt_iff_pos_add']
[GOAL]
case hx
x✝ y x : ℝ
⊢ -x < sqrt (1 + x ^ 2)
[PROOFSTEP]
apply lt_sqrt_of_sq_lt
[GOAL]
case hx.h
x✝ y x : ℝ
⊢ (-x) ^ 2 < 1 + x ^ 2
[PROOFSTEP]
simp
[GOAL]
x y : ℝ
⊢ arsinh 0 = 0
[PROOFSTEP]
simp [arsinh]
[GOAL]
x✝ y x : ℝ
⊢ arsinh (-x) = -arsinh x
[PROOFSTEP]
rw [← exp_eq_exp, exp_arsinh, exp_neg, exp_arsinh]
[GOAL]
x✝ y x : ℝ
⊢ -x + sqrt (1 + (-x) ^ 2) = (x + sqrt (1 + x ^ 2))⁻¹
[PROOFSTEP]
apply eq_inv_of_mul_eq_one_left
[GOAL]
case h
x✝ y x : ℝ
⊢ (-x + sqrt (1 + (-x) ^ 2)) * (x + sqrt (1 + x ^ 2)) = 1
[PROOFSTEP]
rw [neg_sq, neg_add_eq_sub, add_comm x, mul_comm, ← sq_sub_sq, sq_sqrt, add_sub_cancel]
[GOAL]
case h
x✝ y x : ℝ
⊢ 0 ≤ 1 + x ^ 2
[PROOFSTEP]
exact add_nonneg zero_le_one (sq_nonneg _)
[GOAL]
x✝ y x : ℝ
⊢ sinh (arsinh x) = x
[PROOFSTEP]
rw [sinh_eq, ← arsinh_neg, exp_arsinh, exp_arsinh, neg_sq]
[GOAL]
x✝ y x : ℝ
⊢ (x + sqrt (1 + x ^ 2) - (-x + sqrt (1 + x ^ 2))) / 2 = x
[PROOFSTEP]
field_simp
[GOAL]
x✝ y x : ℝ
⊢ cosh (arsinh x) = sqrt (1 + x ^ 2)
[PROOFSTEP]
rw [← sqrt_sq (cosh_pos _).le, cosh_sq', sinh_arsinh]
[GOAL]
x y : ℝ
⊢ 0 ≤ arsinh x ↔ 0 ≤ x
[PROOFSTEP]
rw [← sinh_le_sinh, sinh_zero, sinh_arsinh]
[GOAL]
x y : ℝ
⊢ arsinh x ≤ 0 ↔ x ≤ 0
[PROOFSTEP]
rw [← sinh_le_sinh, sinh_zero, sinh_arsinh]
[GOAL]
x✝ y x : ℝ
⊢ HasStrictDerivAt arsinh (sqrt (1 + x ^ 2))⁻¹ x
[PROOFSTEP]
convert
sinhHomeomorph.toLocalHomeomorph.hasStrictDerivAt_symm (mem_univ x) (cosh_pos _).ne' (hasStrictDerivAt_sinh _) using 2
[GOAL]
case h.e'_7.h.e'_3
x✝ y x : ℝ
⊢ sqrt (1 + x ^ 2) = cosh (↑(LocalHomeomorph.symm (Homeomorph.toLocalHomeomorph sinhHomeomorph)) x)
[PROOFSTEP]
exact (cosh_arsinh _).symm
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Arsinh", "llama_tokens": 1034} |
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
⊢ ¬IntervalIntegrable g volume a b
[PROOFSTEP]
intro hgi
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
⊢ False
[PROOFSTEP]
obtain ⟨C, hC₀, s, hsl, hsub, hfd, hg⟩ :
∃ (C : ℝ) (_ : 0 ≤ C),
∃ s ∈ l,
(∀ x ∈ s, ∀ y ∈ s, [[x, y]] ⊆ [[a, b]]) ∧
(∀ x ∈ s, ∀ y ∈ s, ∀ z ∈ [[x, y]], DifferentiableAt ℝ f z) ∧
∀ x ∈ s, ∀ y ∈ s, ∀ z ∈ [[x, y]], ‖deriv f z‖ ≤ C * ‖g z‖ :=
by
rcases hfg.exists_nonneg with ⟨C, C₀, hC⟩
have h :
∀ᶠ x : ℝ × ℝ in l.prod l, ∀ y ∈ [[x.1, x.2]], (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] :=
(tendsto_fst.uIcc tendsto_snd).eventually ((hd.and hC.bound).and hl).smallSets
rcases mem_prod_self_iff.1 h with ⟨s, hsl, hs⟩
simp only [prod_subset_iff, mem_setOf_eq] at hs
exact
⟨C, C₀, s, hsl, fun x hx y hy z hz => (hs x hx y hy z hz).2, fun x hx y hy z hz => (hs x hx y hy z hz).1.1,
fun x hx y hy z hz => (hs x hx y hy z hz).1.2⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
⊢ ∃ C x s,
s ∈ l ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧
∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
[PROOFSTEP]
rcases hfg.exists_nonneg with ⟨C, C₀, hC⟩
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
C₀ : 0 ≤ C
hC : IsBigOWith C l (deriv f) g
⊢ ∃ C x s,
s ∈ l ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧
∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
[PROOFSTEP]
have h :
∀ᶠ x : ℝ × ℝ in l.prod l, ∀ y ∈ [[x.1, x.2]], (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] :=
(tendsto_fst.uIcc tendsto_snd).eventually ((hd.and hC.bound).and hl).smallSets
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
C₀ : 0 ≤ C
hC : IsBigOWith C l (deriv f) g
h :
∀ᶠ (x : ℝ × ℝ) in Filter.prod l l,
∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]]
⊢ ∃ C x s,
s ∈ l ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧
∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
[PROOFSTEP]
rcases mem_prod_self_iff.1 h with ⟨s, hsl, hs⟩
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
C₀ : 0 ≤ C
hC : IsBigOWith C l (deriv f) g
h :
∀ᶠ (x : ℝ × ℝ) in Filter.prod l l,
∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]]
s : Set ℝ
hsl : s ∈ l
hs :
s ×ˢ s ⊆
{x |
(fun x => ∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]]) x}
⊢ ∃ C x s,
s ∈ l ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧
∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
[PROOFSTEP]
simp only [prod_subset_iff, mem_setOf_eq] at hs
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
C₀ : 0 ≤ C
hC : IsBigOWith C l (deriv f) g
h :
∀ᶠ (x : ℝ × ℝ) in Filter.prod l l,
∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]]
s : Set ℝ
hsl : s ∈ l
hs :
∀ (x : ℝ),
x ∈ s →
∀ (y : ℝ),
y ∈ s → ∀ (y_1 : ℝ), y_1 ∈ [[x, y]] → (DifferentiableAt ℝ f y_1 ∧ ‖deriv f y_1‖ ≤ C * ‖g y_1‖) ∧ y_1 ∈ [[a, b]]
⊢ ∃ C x s,
s ∈ l ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧
(∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧
∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
[PROOFSTEP]
exact
⟨C, C₀, s, hsl, fun x hx y hy z hz => (hs x hx y hy z hz).2, fun x hx y hy z hz => (hs x hx y hy z hz).1.1,
fun x hx y hy z hz => (hs x hx y hy z hz).1.2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
⊢ False
[PROOFSTEP]
replace hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
[GOAL]
case hgi
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
hgi : IntervalIntegrable g volume a b
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
⊢ IntervalIntegrable (fun x => C * ‖g x‖) volume a b
[PROOFSTEP]
convert hgi.norm.smul C using 1
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
⊢ False
[PROOFSTEP]
obtain ⟨c, hc, d, hd, hlt⟩ : ∃ c ∈ s, ∃ d ∈ s, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f d‖ :=
by
rcases Filter.nonempty_of_mem hsl with ⟨c, hc⟩
have : ∀ᶠ x in l, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f x‖ := hf.eventually (eventually_gt_atTop _)
exact ⟨c, hc, (this.and hsl).exists.imp fun d hd => ⟨hd.2, hd.1⟩⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
[PROOFSTEP]
rcases Filter.nonempty_of_mem hsl with ⟨c, hc⟩
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
[PROOFSTEP]
have : ∀ᶠ x in l, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f x‖ := hf.eventually (eventually_gt_atTop _)
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
this : ∀ᶠ (x : ℝ) in l, ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f x‖
⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
[PROOFSTEP]
exact ⟨c, hc, (this.and hsl).exists.imp fun d hd => ⟨hd.2, hd.1⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
⊢ False
[PROOFSTEP]
specialize hsub c hc d hd
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
⊢ False
[PROOFSTEP]
specialize hfd c hc d hd
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
⊢ False
[PROOFSTEP]
replace hg : ∀ x ∈ Ι c d, ‖deriv f x‖ ≤ C * ‖g x‖
[GOAL]
case hg
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
⊢ ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
⊢ False
[PROOFSTEP]
exact fun z hz => hg c hc d hd z ⟨hz.1.le, hz.2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
⊢ False
[PROOFSTEP]
have hg_ae : ∀ᵐ x ∂volume.restrict (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ := (ae_restrict_mem measurableSet_uIoc).mono hg
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖
⊢ False
[PROOFSTEP]
have hsub' : Ι c d ⊆ Ι a b := uIoc_subset_uIoc_of_uIcc_subset_uIcc hsub
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖
hsub' : Ι c d ⊆ Ι a b
⊢ False
[PROOFSTEP]
have hfi : IntervalIntegrable (deriv f) volume c d :=
(hgi.mono_set hsub).mono_fun' (aestronglyMeasurable_deriv _ _) hg_ae
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖
hsub' : Ι c d ⊆ Ι a b
hfi : IntervalIntegrable (deriv f) volume c d
⊢ False
[PROOFSTEP]
refine' hlt.not_le (sub_le_iff_le_add'.1 _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : SecondCountableTopology E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b : ℝ
l : Filter ℝ
inst✝¹ : NeBot l
inst✝ : TendstoIxxClass Icc l l
hl : [[a, b]] ∈ l
hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x
hf : Tendsto (fun x => ‖f x‖) l atTop
hfg : deriv f =O[l] g
C : ℝ
hC₀ : 0 ≤ C
s : Set ℝ
hsl : s ∈ l
hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b
c : ℝ
hc : c ∈ s
d : ℝ
hd : d ∈ s
hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖
hsub : [[c, d]] ⊆ [[a, b]]
hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z
hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖
hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖
hsub' : Ι c d ⊆ Ι a b
hfi : IntervalIntegrable (deriv f) volume c d
⊢ ‖f d‖ - ‖f c‖ ≤ ∫ (y : ℝ) in Ι a b, C * ‖g y‖
[PROOFSTEP]
calc
‖f d‖ - ‖f c‖ ≤ ‖f d - f c‖ := norm_sub_norm_le _ _
_ = ‖∫ x in c..d, deriv f x‖ := (congr_arg _ (integral_deriv_eq_sub hfd hfi).symm)
_ = ‖∫ x in Ι c d, deriv f x‖ := (norm_integral_eq_norm_integral_Ioc _)
_ ≤ ∫ x in Ι c d, ‖deriv f x‖ := (norm_integral_le_integral_norm _)
_ ≤ ∫ x in Ι c d, C * ‖g x‖ := (set_integral_mono_on hfi.norm.def (hgi.def.mono_set hsub') measurableSet_uIoc hg)
_ ≤ ∫ x in Ι a b, C * ‖g x‖ :=
set_integral_mono_set hgi.def (ae_of_all _ fun x => mul_nonneg hC₀ (norm_nonneg _)) hsub'.eventuallyLE
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
⊢ ¬IntervalIntegrable g volume a b
[PROOFSTEP]
obtain ⟨l, hl, hl', hle, hmem⟩ : ∃ l : Filter ℝ, TendstoIxxClass Icc l l ∧ l.NeBot ∧ l ≤ 𝓝 c ∧ [[a, b]] \ { c } ∈ l :=
by
cases' (min_lt_max.2 hne).lt_or_lt c with hlt hlt
· refine' ⟨𝓝[<] c, inferInstance, inferInstance, inf_le_left, _⟩
rw [← Iic_diff_right]
exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Iic ⟨hlt, hc.2⟩) _
· refine' ⟨𝓝[>] c, inferInstance, inferInstance, inf_le_left, _⟩
rw [← Ici_diff_left]
exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Ici ⟨hc.1, hlt⟩) _
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l
[PROOFSTEP]
cases' (min_lt_max.2 hne).lt_or_lt c with hlt hlt
[GOAL]
case inl
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : min a b < c
⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l
[PROOFSTEP]
refine' ⟨𝓝[<] c, inferInstance, inferInstance, inf_le_left, _⟩
[GOAL]
case inl
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : min a b < c
⊢ [[a, b]] \ {c} ∈ 𝓝[Iio c] c
[PROOFSTEP]
rw [← Iic_diff_right]
[GOAL]
case inl
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : min a b < c
⊢ [[a, b]] \ {c} ∈ 𝓝[Iic c \ {c}] c
[PROOFSTEP]
exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Iic ⟨hlt, hc.2⟩) _
[GOAL]
case inr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : c < max a b
⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l
[PROOFSTEP]
refine' ⟨𝓝[>] c, inferInstance, inferInstance, inf_le_left, _⟩
[GOAL]
case inr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : c < max a b
⊢ [[a, b]] \ {c} ∈ 𝓝[Ioi c] c
[PROOFSTEP]
rw [← Ici_diff_left]
[GOAL]
case inr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
hlt : c < max a b
⊢ [[a, b]] \ {c} ∈ 𝓝[Ici c \ {c}] c
[PROOFSTEP]
exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Ici ⟨hc.1, hlt⟩) _
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
l : Filter ℝ
hl : TendstoIxxClass Icc l l
hl' : NeBot l
hle : l ≤ 𝓝 c
hmem : [[a, b]] \ {c} ∈ l
⊢ ¬IntervalIntegrable g volume a b
[PROOFSTEP]
have : l ≤ 𝓝[[[a, b]] \ { c }] c := le_inf hle (le_principal_iff.2 hmem)
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → E
g : ℝ → F
a b c : ℝ
hne : a ≠ b
hc : c ∈ [[a, b]]
h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x
h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop
hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g
l : Filter ℝ
hl : TendstoIxxClass Icc l l
hl' : NeBot l
hle : l ≤ 𝓝 c
hmem : [[a, b]] \ {c} ∈ l
this : l ≤ 𝓝[[[a, b]] \ {c}] c
⊢ ¬IntervalIntegrable g volume a b
[PROOFSTEP]
exact
not_intervalIntegrable_of_tendsto_norm_atTop_of_deriv_isBigO_filter l (mem_of_superset hmem (diff_subset _ _))
(h_deriv.filter_mono this) (h_infty.mono_left this) (hg.mono this)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
⊢ ¬IntervalIntegrable f volume a b
[PROOFSTEP]
have A : ∀ᶠ x in 𝓝[≠] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x :=
by
filter_upwards [self_mem_nhdsWithin] with x hx
simpa using ((hasDerivAt_id x).sub_const c).log (sub_ne_zero.2 hx)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
⊢ ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin] with x hx
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
x : ℝ
hx : x ∈ {c}ᶜ
⊢ HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
[PROOFSTEP]
simpa using ((hasDerivAt_id x).sub_const c).log (sub_ne_zero.2 hx)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
⊢ ¬IntervalIntegrable f volume a b
[PROOFSTEP]
have B : Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[≠] c) atTop :=
by
refine' tendsto_abs_atBot_atTop.comp (Real.tendsto_log_nhdsWithin_zero.comp _)
rw [← sub_self c]
exact ((hasDerivAt_id c).sub_const c).tendsto_punctured_nhds one_ne_zero
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
⊢ Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[{c}ᶜ] c) atTop
[PROOFSTEP]
refine' tendsto_abs_atBot_atTop.comp (Real.tendsto_log_nhdsWithin_zero.comp _)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
⊢ Tendsto (fun x => x - c) (𝓝[{c}ᶜ] c) (𝓝[{0}ᶜ] 0)
[PROOFSTEP]
rw [← sub_self c]
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
⊢ Tendsto (fun x => x - c) (𝓝[{c}ᶜ] c) (𝓝[{c - c}ᶜ] (c - c))
[PROOFSTEP]
exact ((hasDerivAt_id c).sub_const c).tendsto_punctured_nhds one_ne_zero
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
f : ℝ → F
a b c : ℝ
hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f
hne : a ≠ b
hc : c ∈ [[a, b]]
A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x
B : Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[{c}ᶜ] c) atTop
⊢ ¬IntervalIntegrable f volume a b
[PROOFSTEP]
exact
not_intervalIntegrable_of_tendsto_norm_atTop_of_deriv_isBigO_punctured (A.mono fun x hx => hx.differentiableAt) B
(hf.congr' (A.mono fun x hx => hx.deriv.symm) EventuallyEq.rfl) hne hc
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b ↔ a = b ∨ ¬c ∈ [[a, b]]
[PROOFSTEP]
constructor
[GOAL]
case mp
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b → a = b ∨ ¬c ∈ [[a, b]]
[PROOFSTEP]
refine' fun h => or_iff_not_imp_left.2 fun hne hc => _
[GOAL]
case mp
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
h : IntervalIntegrable (fun x => (x - c)⁻¹) volume a b
hne : ¬a = b
hc : c ∈ [[a, b]]
⊢ False
[PROOFSTEP]
exact not_intervalIntegrable_of_sub_inv_isBigO_punctured (isBigO_refl _ _) hne hc h
[GOAL]
case mpr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
⊢ a = b ∨ ¬c ∈ [[a, b]] → IntervalIntegrable (fun x => (x - c)⁻¹) volume a b
[PROOFSTEP]
rintro (rfl | h₀)
[GOAL]
case mpr.inl
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a c : ℝ
⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a a
[PROOFSTEP]
exact IntervalIntegrable.refl
[GOAL]
case mpr.inr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
h₀ : ¬c ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b
[PROOFSTEP]
refine' ((continuous_sub_right c).continuousOn.inv₀ _).intervalIntegrable
[GOAL]
case mpr.inr
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b c : ℝ
h₀ : ¬c ∈ [[a, b]]
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → x - c ≠ 0
[PROOFSTEP]
exact fun x hx => sub_ne_zero.2 <| ne_of_mem_of_not_mem hx h₀
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : SecondCountableTopology E
inst✝¹ : CompleteSpace E
inst✝ : NormedAddCommGroup F
a b : ℝ
⊢ IntervalIntegrable (fun x => x⁻¹) volume a b ↔ a = b ∨ ¬0 ∈ [[a, b]]
[PROOFSTEP]
simp only [← intervalIntegrable_sub_inv_iff, sub_zero]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.NonIntegrable", "llama_tokens": 19061} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
⊢ ↑(convexHull 𝕜) ↑s ⊆ space K
[PROOFSTEP]
convert subset_biUnion_of_mem hs
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
⊢ ↑(convexHull 𝕜) ↑s = ↑(convexHull 𝕜) ↑s
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
⊢ Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∨
∃ u, u ∈ K.faces ∧ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑u
[PROOFSTEP]
classical
by_contra' h
refine'
h.2 (s ∩ t)
(K.down_closed hs (inter_subset_left _ _) fun hst =>
h.1 <| disjoint_iff_inf_le.mpr <| (K.inter_subset_convexHull hs ht).trans _)
_
· rw [← coe_inter, hst, coe_empty, convexHull_empty]
rfl
· rw [coe_inter, convexHull_inter_convexHull hs ht]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
⊢ Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∨
∃ u, u ∈ K.faces ∧ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑u
[PROOFSTEP]
by_contra' h
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
h :
¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧
∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u
⊢ False
[PROOFSTEP]
refine'
h.2 (s ∩ t)
(K.down_closed hs (inter_subset_left _ _) fun hst =>
h.1 <| disjoint_iff_inf_le.mpr <| (K.inter_subset_convexHull hs ht).trans _)
_
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
h :
¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧
∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u
hst : s ∩ t = ∅
⊢ ↑(convexHull 𝕜) (↑s ∩ ↑t) ⊆ ⊥
[PROOFSTEP]
rw [← coe_inter, hst, coe_empty, convexHull_empty]
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
h :
¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧
∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u
hst : s ∩ t = ∅
⊢ ∅ ⊆ ⊥
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
ht : t ∈ K.faces
h :
¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧
∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u
⊢ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑(s ∩ t)
[PROOFSTEP]
rw [coe_inter, convexHull_inter_convexHull hs ht]
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
⊢ vertices K = ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x✝ x : E
⊢ x ∈ vertices K ↔ x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k
[PROOFSTEP]
refine' ⟨fun h => mem_biUnion h <| mem_coe.2 <| mem_singleton_self x, fun h => _⟩
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x✝ x : E
h : x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k
⊢ x ∈ vertices K
[PROOFSTEP]
obtain ⟨s, hs, hx⟩ := mem_iUnion₂.1 h
[GOAL]
case h.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s✝ t : Finset E
x✝ x : E
h : x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k
s : Finset E
hs : s ∈ K.faces
hx : x ∈ ↑s
⊢ x ∈ vertices K
[PROOFSTEP]
exact K.down_closed hs (Finset.singleton_subset_iff.2 <| mem_coe.1 hx) (singleton_ne_empty _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
⊢ x ∈ ↑(convexHull 𝕜) ↑s ↔ x ∈ s
[PROOFSTEP]
refine' ⟨fun h => _, fun h => subset_convexHull 𝕜 _ h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
h : x ∈ ↑(convexHull 𝕜) ↑s
⊢ x ∈ s
[PROOFSTEP]
classical
have h := K.inter_subset_convexHull hx hs ⟨by simp, h⟩
by_contra H
rwa [← coe_inter, Finset.disjoint_iff_inter_eq_empty.1 (Finset.disjoint_singleton_right.2 H).symm, coe_empty,
convexHull_empty] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
h : x ∈ ↑(convexHull 𝕜) ↑s
⊢ x ∈ s
[PROOFSTEP]
have h := K.inter_subset_convexHull hx hs ⟨by simp, h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
h : x ∈ ↑(convexHull 𝕜) ↑s
⊢ x ∈ ↑(convexHull 𝕜) ↑{x}
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
h✝ : x ∈ ↑(convexHull 𝕜) ↑s
h : x ∈ ↑(convexHull 𝕜) (↑{x} ∩ ↑s)
⊢ x ∈ s
[PROOFSTEP]
by_contra H
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hx : x ∈ vertices K
hs : s ∈ K.faces
h✝ : x ∈ ↑(convexHull 𝕜) ↑s
h : x ∈ ↑(convexHull 𝕜) (↑{x} ∩ ↑s)
H : ¬x ∈ s
⊢ False
[PROOFSTEP]
rwa [← coe_inter, Finset.disjoint_iff_inter_eq_empty.1 (Finset.disjoint_singleton_right.2 H).symm, coe_empty,
convexHull_empty] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
⊢ ¬s ∈ facets K ↔ ∃ t, t ∈ K.faces ∧ s ⊂ t
[PROOFSTEP]
refine' ⟨fun hs' : ¬(_ ∧ _) => _, _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
hs' : ¬(s ∈ K.faces ∧ ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t)
⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t
[PROOFSTEP]
push_neg at hs'
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
hs' : s ∈ K.faces → Exists fun ⦃t⦄ => t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t
⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t
[PROOFSTEP]
obtain ⟨t, ht⟩ := hs' hs
[GOAL]
case refine'_1.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t✝ : Finset E
x : E
hs : s ∈ K.faces
hs' : s ∈ K.faces → Exists fun ⦃t⦄ => t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t
t : Finset E
ht : t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t
⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t
[PROOFSTEP]
exact ⟨t, ht.1, ⟨ht.2.1, fun hts => ht.2.2 (Subset.antisymm ht.2.1 hts)⟩⟩
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t : Finset E
x : E
hs : s ∈ K.faces
⊢ (∃ t, t ∈ K.faces ∧ s ⊂ t) → ¬s ∈ facets K
[PROOFSTEP]
rintro ⟨t, ht⟩ ⟨hs, hs'⟩
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t✝ : Finset E
x : E
hs✝ : s ∈ K.faces
t : Finset E
ht : t ∈ K.faces ∧ s ⊂ t
hs : s ∈ K.faces
hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t
⊢ False
[PROOFSTEP]
have := hs' ht.1 ht.2.1
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t✝ : Finset E
x : E
hs✝ : s ∈ K.faces
t : Finset E
ht : t ∈ K.faces ∧ s ⊂ t
hs : s ∈ K.faces
hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t
this : s = t
⊢ False
[PROOFSTEP]
rw [this] at ht
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
ι : Type u_3
inst✝² : OrderedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
K : SimplicialComplex 𝕜 E
s t✝ : Finset E
x : E
hs✝ : s ∈ K.faces
t : Finset E
ht : t ∈ K.faces ∧ t ⊂ t
hs : s ∈ K.faces
hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t
this : s = t
⊢ False
[PROOFSTEP]
exact ht.2.2 (Subset.refl t)
| {"mathlib_filename": "Mathlib.Analysis.Convex.SimplicialComplex.Basic", "llama_tokens": 5122} |
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M✝
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k✝ l k : ℕ+
M : Type u_7
inst✝ : CommMonoid M
a✝ b✝ : Mˣ
x✝¹ : a✝ ∈ {ζ | ζ ^ ↑k = 1}
x✝ : b✝ ∈ {ζ | ζ ^ ↑k = 1}
⊢ a✝ * b✝ ∈ {ζ | ζ ^ ↑k = 1}
[PROOFSTEP]
simp_all only [Set.mem_setOf_eq, mul_pow, one_mul]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M✝
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k✝ l k : ℕ+
M : Type u_7
inst✝ : CommMonoid M
x✝¹ : Mˣ
x✝ :
x✝¹ ∈
{
toSubsemigroup :=
{ carrier := {ζ | ζ ^ ↑k = 1},
mul_mem' := (_ : ∀ {a b : Mˣ}, a ∈ {ζ | ζ ^ ↑k = 1} → b ∈ {ζ | ζ ^ ↑k = 1} → (a * b) ^ ↑k = 1) },
one_mem' := (_ : 1 ^ ↑k = 1) }.toSubsemigroup.carrier
⊢ x✝¹⁻¹ ∈
{
toSubsemigroup :=
{ carrier := {ζ | ζ ^ ↑k = 1},
mul_mem' := (_ : ∀ {a b : Mˣ}, a ∈ {ζ | ζ ^ ↑k = 1} → b ∈ {ζ | ζ ^ ↑k = 1} → (a * b) ^ ↑k = 1) },
one_mem' := (_ : 1 ^ ↑k = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
simp_all only [Set.mem_setOf_eq, inv_pow, inv_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k✝ l k : ℕ+
ζ : Mˣ
⊢ ζ ∈ rootsOfUnity k M ↔ ↑ζ ^ ↑k = 1
[PROOFSTEP]
rw [mem_rootsOfUnity]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k✝ l k : ℕ+
ζ : Mˣ
⊢ ζ ^ ↑k = 1 ↔ ↑ζ ^ ↑k = 1
[PROOFSTEP]
norm_cast
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ+
h : k ∣ l
⊢ rootsOfUnity k M ≤ rootsOfUnity l M
[PROOFSTEP]
obtain ⟨d, rfl⟩ := h
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k d : ℕ+
⊢ rootsOfUnity k M ≤ rootsOfUnity (k * d) M
[PROOFSTEP]
intro ζ h
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k d : ℕ+
ζ : Mˣ
h : ζ ∈ rootsOfUnity k M
⊢ ζ ∈ rootsOfUnity (k * d) M
[PROOFSTEP]
simp_all only [mem_rootsOfUnity, PNat.mul_coe, pow_mul, one_pow]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k✝ l : ℕ+
f : Mˣ →* Nˣ
k : ℕ+
⊢ Subgroup.map f (rootsOfUnity k M) ≤ rootsOfUnity k N
[PROOFSTEP]
rintro _ ⟨ζ, h, rfl⟩
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k✝ l : ℕ+
f : Mˣ →* Nˣ
k : ℕ+
ζ : Mˣ
h : ζ ∈ ↑(rootsOfUnity k M)
⊢ ↑f ζ ∈ rootsOfUnity k N
[PROOFSTEP]
simp_all only [← map_pow, mem_rootsOfUnity, SetLike.mem_coe, MonoidHom.map_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ+
inst✝ : CommMonoid R
ζ : { x // x ∈ rootsOfUnity k R }
m : ℕ
⊢ ↑↑(ζ ^ m) = ↑↑ζ ^ m
[PROOFSTEP]
rw [Subgroup.coe_pow, Units.val_pow_eq_pow_val]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
ξ : { x // x ∈ rootsOfUnity n R }
⊢ ↑σ ↑↑ξ ^ ↑n = 1
[PROOFSTEP]
rw [← map_pow, ← Units.val_pow_eq_pow_val, show (ξ : Rˣ) ^ (n : ℕ) = 1 from ξ.2, Units.val_one, map_one σ]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ : { x // x ∈ rootsOfUnity n R }
⊢ unitOfInvertible (↑σ ↑↑ξ) ∈ rootsOfUnity n S
[PROOFSTEP]
ext
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ : { x // x ∈ rootsOfUnity n R }
⊢ ↑(unitOfInvertible (↑σ ↑↑ξ) ^ ↑n) = ↑1
[PROOFSTEP]
rw [Units.val_pow_eq_pow_val]
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ : { x // x ∈ rootsOfUnity n R }
⊢ ↑(unitOfInvertible (↑σ ↑↑ξ)) ^ ↑n = ↑1
[PROOFSTEP]
exact h ξ
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
⊢ (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1
[PROOFSTEP]
ext
[GOAL]
case a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
⊢ ↑↑((fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1) = ↑↑1
[PROOFSTEP]
exact map_one σ
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R }
⊢ OneHom.toFun
{ toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 =
1) }
(ξ₁ * ξ₂) =
OneHom.toFun
{ toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 =
1) }
ξ₁ *
OneHom.toFun
{ toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 =
1) }
ξ₂
[PROOFSTEP]
ext
[GOAL]
case a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R }
⊢ ↑↑(OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
(ξ₁ * ξ₂)) =
↑↑(OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
ξ₁ *
OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
ξ₂)
[PROOFSTEP]
rw [Subgroup.coe_mul, Units.val_mul]
[GOAL]
case a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S
inst✝ : RingHomClass F R S
σ : F
n : ℕ+
h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 :=
fun ξ =>
Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1)))
(Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1)))
(Eq.mpr
(id
((let_fun this := ξ.property;
this) ▸
Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1)))
(Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1)))
(Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1)))))
ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R }
⊢ ↑↑(OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
(ξ₁ * ξ₂)) =
↑↑(OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
ξ₁) *
↑↑(OneHom.toFun
{
toFun := fun ξ =>
{ val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) },
map_one' :=
(_ :
(fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) })
1 =
1) }
ξ₂)
[PROOFSTEP]
exact map_mul σ _ _
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommSemiring R
inst✝ : CommSemiring S
σ : R ≃+* S
n : ℕ+
ξ : { x // x ∈ rootsOfUnity n R }
⊢ ↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) (↑(_root_.restrictRootsOfUnity (toRingHom σ) n) ξ) = ξ
[PROOFSTEP]
ext
[GOAL]
case a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommSemiring R
inst✝ : CommSemiring S
σ : R ≃+* S
n : ℕ+
ξ : { x // x ∈ rootsOfUnity n R }
⊢ ↑↑(↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n)
(↑(_root_.restrictRootsOfUnity (toRingHom σ) n) ξ)) =
↑↑ξ
[PROOFSTEP]
exact σ.symm_apply_apply (ξ : Rˣ)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommSemiring R
inst✝ : CommSemiring S
σ : R ≃+* S
n : ℕ+
ξ : { x // x ∈ rootsOfUnity n S }
⊢ ↑(_root_.restrictRootsOfUnity (toRingHom σ) n) (↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) ξ) = ξ
[PROOFSTEP]
ext
[GOAL]
case a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommSemiring R
inst✝ : CommSemiring S
σ : R ≃+* S
n : ℕ+
ξ : { x // x ∈ rootsOfUnity n S }
⊢ ↑↑(↑(_root_.restrictRootsOfUnity (toRingHom σ) n)
(↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) ξ)) =
↑↑ξ
[PROOFSTEP]
exact σ.apply_symm_apply (ξ : Sˣ)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
ζ : Rˣ
⊢ ζ ∈ rootsOfUnity k R ↔ ↑ζ ∈ nthRoots (↑k) 1
[PROOFSTEP]
simp only [mem_rootsOfUnity, mem_nthRoots k.pos, Units.ext_iff, Units.val_one, Units.val_pow_eq_pow_val]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ { x // x ∈ rootsOfUnity k R } ≃ { x // x ∈ nthRoots (↑k) 1 }
[PROOFSTEP]
refine'
{ toFun := fun x => ⟨(x : Rˣ), mem_rootsOfUnity_iff_mem_nthRoots.mp x.2⟩
invFun := fun x => ⟨⟨x, ↑x ^ (k - 1 : ℕ), _, _⟩, _⟩
left_inv := _
right_inv := _ }
[GOAL]
case refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x * ↑x ^ (↑k - 1) = 1
case refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x ^ (↑k - 1) * ↑x = 1
case refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R
case refine'_4
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Function.LeftInverse
(fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }
case refine'_5
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Function.RightInverse
(fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }
[PROOFSTEP]
pick_goal 4
[GOAL]
case refine'_4
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Function.LeftInverse
(fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case refine'_4.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : Rˣ
hx : x ∈ rootsOfUnity k R
⊢ (fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) { val := x, property := hx }) =
{ val := x, property := hx }
[PROOFSTEP]
ext
[GOAL]
case refine'_4.mk.a.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : Rˣ
hx : x ∈ rootsOfUnity k R
⊢ ↑↑((fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) { val := x, property := hx })) =
↑↑{ val := x, property := hx }
[PROOFSTEP]
rfl
[GOAL]
case refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x * ↑x ^ (↑k - 1) = 1
case refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x ^ (↑k - 1) * ↑x = 1
case refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R
case refine'_5
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Function.RightInverse
(fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }
[PROOFSTEP]
pick_goal 4
[GOAL]
case refine'_5
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ Function.RightInverse
(fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case refine'_5.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ nthRoots (↑k) 1
⊢ (fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) })
((fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
{ val := x, property := hx }) =
{ val := x, property := hx }
[PROOFSTEP]
ext
[GOAL]
case refine'_5.mk.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ nthRoots (↑k) 1
⊢ ↑((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) })
((fun x =>
{
val :=
{ val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) },
property :=
(_ :
{ val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1),
inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R) })
{ val := x, property := hx })) =
↑{ val := x, property := hx }
[PROOFSTEP]
rfl
[GOAL]
case refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x * ↑x ^ (↑k - 1) = 1
case refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x ^ (↑k - 1) * ↑x = 1
case refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R
[PROOFSTEP]
all_goals
rcases x with ⟨x, hx⟩; rw [mem_nthRoots k.pos] at hx
simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)]
[GOAL]
case refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x * ↑x ^ (↑k - 1) = 1
[PROOFSTEP]
rcases x with ⟨x, hx⟩
[GOAL]
case refine'_1.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ nthRoots (↑k) 1
⊢ ↑{ val := x, property := hx } * ↑{ val := x, property := hx } ^ (↑k - 1) = 1
[PROOFSTEP]
rw [mem_nthRoots k.pos] at hx
[GOAL]
case refine'_1.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx✝ : x ∈ nthRoots (↑k) 1
hx : x ^ ↑k = 1
⊢ ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1
[PROOFSTEP]
simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)]
[GOAL]
case refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ ↑x ^ (↑k - 1) * ↑x = 1
[PROOFSTEP]
rcases x with ⟨x, hx⟩
[GOAL]
case refine'_2.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ nthRoots (↑k) 1
⊢ ↑{ val := x, property := hx } ^ (↑k - 1) * ↑{ val := x, property := hx } = 1
[PROOFSTEP]
rw [mem_nthRoots k.pos] at hx
[GOAL]
case refine'_2.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx✝ : x ∈ nthRoots (↑k) 1
hx : x ^ ↑k = 1
⊢ ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1
[PROOFSTEP]
simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)]
[GOAL]
case refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : { x // x ∈ nthRoots (↑k) 1 }
⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ↑x ^ (↑k - 1) = 1),
inv_val := (_ : ↑x ^ (↑k - 1) * ↑x = 1) } ∈
rootsOfUnity k R
[PROOFSTEP]
rcases x with ⟨x, hx⟩
[GOAL]
case refine'_3.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ nthRoots (↑k) 1
⊢ { val := ↑{ val := x, property := hx }, inv := ↑{ val := x, property := hx } ^ (↑k - 1),
val_inv := (_ : ↑{ val := x, property := hx } * ↑{ val := x, property := hx } ^ (↑k - 1) = 1),
inv_val := (_ : ↑{ val := x, property := hx } ^ (↑k - 1) * ↑{ val := x, property := hx } = 1) } ∈
rootsOfUnity k R
[PROOFSTEP]
rw [mem_nthRoots k.pos] at hx
[GOAL]
case refine'_3.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx✝ : x ∈ nthRoots (↑k) 1
hx : x ^ ↑k = 1
⊢ { val := ↑{ val := x, property := hx✝ }, inv := ↑{ val := x, property := hx✝ } ^ (↑k - 1),
val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1),
inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ∈
rootsOfUnity k R
[PROOFSTEP]
simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)]
[GOAL]
case refine'_3.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx✝ : x ∈ nthRoots (↑k) 1
hx : x ^ ↑k = 1
⊢ { val := x, inv := x ^ (↑k - 1),
val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1),
inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ∈
rootsOfUnity k R
[PROOFSTEP]
show (_ : Rˣ) ^ (k : ℕ) = 1
[GOAL]
case refine'_3.mk
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ+
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx✝ : x ∈ nthRoots (↑k) 1
hx : x ^ ↑k = 1
⊢ { val := x, inv := x ^ (↑k - 1),
val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1),
inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ^
↑k =
1
[PROOFSTEP]
simp only [Units.ext_iff, hx, Units.val_mk, Units.val_one, Subtype.coe_mk, Units.val_pow_eq_pow_val]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : RingHomClass F R R
σ : F
ζ : { x // x ∈ rootsOfUnity k R }
⊢ ∃ m, ↑σ ↑↑ζ = ↑↑ζ ^ m
[PROOFSTEP]
obtain ⟨m, hm⟩ := MonoidHom.map_cyclic (restrictRootsOfUnity σ k)
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : RingHomClass F R R
σ : F
ζ : { x // x ∈ rootsOfUnity k R }
m : ℤ
hm : ∀ (g : { x // x ∈ rootsOfUnity k R }), ↑(restrictRootsOfUnity σ k) g = g ^ m
⊢ ∃ m, ↑σ ↑↑ζ = ↑↑ζ ^ m
[PROOFSTEP]
rw [← restrictRootsOfUnity_coe_apply, hm, zpow_eq_mod_orderOf, ←
Int.toNat_of_nonneg (m.emod_nonneg (Int.coe_nat_ne_zero.mpr (pos_iff_ne_zero.mp (orderOf_pos ζ)))), zpow_ofNat,
rootsOfUnity.coe_pow]
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k l : ℕ+
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : RingHomClass F R R
σ : F
ζ : { x // x ∈ rootsOfUnity k R }
m : ℤ
hm : ∀ (g : { x // x ∈ rootsOfUnity k R }), ↑(restrictRootsOfUnity σ k) g = g ^ m
⊢ ∃ m_1, ↑↑ζ ^ Int.toNat (m % ↑(orderOf ζ)) = ↑↑ζ ^ m_1
[PROOFSTEP]
exact ⟨(m % orderOf ζ).toNat, rfl⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k✝ l : ℕ+
inst✝² : CommRing R
inst✝¹ : IsReduced R
p k : ℕ
m : ℕ+
hp : Fact (Nat.Prime p)
inst✝ : CharP R p
ζ : Rˣ
⊢ ζ ∈ rootsOfUnity ({ val := p, property := (_ : 0 < p) } ^ k * m) R ↔ ζ ∈ rootsOfUnity m R
[PROOFSTEP]
simp only [mem_rootsOfUnity', PNat.mul_coe, PNat.pow_coe, PNat.mk_coe, CharP.pow_prime_pow_mul_eq_one_iff]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M
inst✝⁴ : CommMonoid N
inst✝³ : DivisionCommMonoid G
k✝ l : ℕ+
inst✝² : CommRing R
inst✝¹ : IsReduced R
p k : ℕ
m : ℕ+
hp : Fact (Nat.Prime p)
inst✝ : CharP R p
ζ : Rˣ
⊢ ζ ^ (p ^ k * ↑m) = 1 ↔ ζ ∈ rootsOfUnity m R
[PROOFSTEP]
rw [← PNat.mk_coe p hp.1.pos, ← PNat.pow_coe, ← PNat.mul_coe, ← mem_rootsOfUnity, mem_rootsOfUnity_prime_pow_mul_iff]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
ζ : R
h0 : 0 < k
⊢ ζ ∈ primitiveRoots k R ↔ IsPrimitiveRoot ζ k
[PROOFSTEP]
rw [primitiveRoots, mem_filter, Multiset.mem_toFinset, mem_nthRoots h0, and_iff_right_iff_imp]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
ζ : R
h0 : 0 < k
⊢ IsPrimitiveRoot ζ k → ζ ^ k = 1
[PROOFSTEP]
exact IsPrimitiveRoot.pow_eq_one
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ primitiveRoots 0 R = ∅
[PROOFSTEP]
rw [primitiveRoots, nthRoots_zero, Multiset.toFinset_zero, Finset.filter_empty]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
ζ : R
h : ζ ∈ primitiveRoots k R
hk : k = 0
⊢ IsPrimitiveRoot ζ k
[PROOFSTEP]
simp [hk] at h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
⊢ IsPrimitiveRoot ζ k
[PROOFSTEP]
refine' ⟨h1, fun l hl => _⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
⊢ k ∣ l
[PROOFSTEP]
suffices k.gcd l = k by exact this ▸ k.gcd_dvd_right l
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
this : Nat.gcd k l = k
⊢ k ∣ l
[PROOFSTEP]
exact this ▸ k.gcd_dvd_right l
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
⊢ Nat.gcd k l = k
[PROOFSTEP]
rw [eq_iff_le_not_lt]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
⊢ Nat.gcd k l ≤ k ∧ ¬Nat.gcd k l < k
[PROOFSTEP]
refine' ⟨Nat.le_of_dvd hk (k.gcd_dvd_left l), _⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
⊢ ¬Nat.gcd k l < k
[PROOFSTEP]
intro h'
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
h' : Nat.gcd k l < k
⊢ False
[PROOFSTEP]
apply h _ (Nat.gcd_pos_of_pos_left _ hk) h'
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
hk : 0 < k
h1 : ζ ^ k = 1
h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
l : ℕ
hl : ζ ^ l = 1
h' : Nat.gcd k l < k
⊢ ζ ^ Nat.gcd k l = 1
[PROOFSTEP]
exact pow_gcd_eq_one _ h1 hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
l : ℕ
⊢ k ∣ l → ζ ^ l = 1
[PROOFSTEP]
rintro ⟨i, rfl⟩
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
i : ℕ
⊢ ζ ^ (k * i) = 1
[PROOFSTEP]
simp only [pow_mul, h.pow_eq_one, one_pow, PNat.mul_coe]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
⊢ IsUnit ζ
[PROOFSTEP]
apply isUnit_of_mul_eq_one ζ (ζ ^ (k - 1))
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
⊢ ζ * ζ ^ (k - 1) = 1
[PROOFSTEP]
rw [← pow_succ, tsub_add_cancel_of_le h0.nat_succ_le, h.pow_eq_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
⊢ i = j
[PROOFSTEP]
wlog hij : i ≤ j generalizing i j
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
this : ∀ ⦃i j : ℕ⦄, i < k → j < k → ζ ^ i = ζ ^ j → i ≤ j → i = j
hij : ¬i ≤ j
⊢ i = j
[PROOFSTEP]
exact (this hj hi H.symm (le_of_not_le hij)).symm
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
hij : i ≤ j
⊢ i = j
[PROOFSTEP]
apply le_antisymm hij
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
hij : i ≤ j
⊢ j ≤ i
[PROOFSTEP]
rw [← tsub_eq_zero_iff_le]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
hij : i ≤ j
⊢ j - i = 0
[PROOFSTEP]
apply Nat.eq_zero_of_dvd_of_lt _ (lt_of_le_of_lt tsub_le_self hj)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
hij : i ≤ j
⊢ k ∣ j - i
[PROOFSTEP]
apply h.dvd_of_pow_eq_one
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
hij : i ≤ j
⊢ ζ ^ (j - i) = 1
[PROOFSTEP]
rw [← ((h.isUnit (lt_of_le_of_lt (Nat.zero_le _) hi)).pow i).mul_left_inj, ← pow_add, tsub_add_cancel_of_le hij, H,
one_mul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
⊢ IsPrimitiveRoot ζ 1 ↔ ζ = 1
[PROOFSTEP]
clear h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
⊢ IsPrimitiveRoot ζ 1 ↔ ζ = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
⊢ IsPrimitiveRoot ζ 1 → ζ = 1
[PROOFSTEP]
intro h
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ 1
⊢ ζ = 1
[PROOFSTEP]
rw [← pow_one ζ, h.pow_eq_one]
[GOAL]
case mpr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
⊢ ζ = 1 → IsPrimitiveRoot ζ 1
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
⊢ IsPrimitiveRoot 1 1
[PROOFSTEP]
exact one
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N✝
inst✝³ : DivisionCommMonoid G
k l : ℕ
ζ✝ : M✝
f : F
h : IsPrimitiveRoot ζ✝ k
M : Type u_7
B : Type u_8
inst✝² : CommMonoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
N : B
ζ : { x // x ∈ N }
⊢ IsPrimitiveRoot (↑ζ) k ↔ IsPrimitiveRoot ζ k
[PROOFSTEP]
simp_rw [iff_def]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N✝
inst✝³ : DivisionCommMonoid G
k l : ℕ
ζ✝ : M✝
f : F
h : IsPrimitiveRoot ζ✝ k
M : Type u_7
B : Type u_8
inst✝² : CommMonoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
N : B
ζ : { x // x ∈ N }
⊢ (↑ζ ^ k = 1 ∧ ∀ (l : ℕ), ↑ζ ^ l = 1 → k ∣ l) ↔ ζ ^ k = 1 ∧ ∀ (l : ℕ), ζ ^ l = 1 → k ∣ l
[PROOFSTEP]
norm_cast
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ✝ : M
f : F
h : IsPrimitiveRoot ζ✝ k
ζ : Mˣ
⊢ IsPrimitiveRoot (↑ζ) k ↔ IsPrimitiveRoot ζ k
[PROOFSTEP]
simp only [iff_def, Units.ext_iff, Units.val_pow_eq_pow_val, Units.val_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
i : ℕ
hi : Nat.coprime i k
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
by_cases h0 : k = 0
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
i : ℕ
hi : Nat.coprime i k
h0 : k = 0
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
subst k
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
l : ℕ
ζ : M
f : F
i : ℕ
h : IsPrimitiveRoot ζ 0
hi : Nat.coprime i 0
⊢ IsPrimitiveRoot (ζ ^ i) 0
[PROOFSTEP]
simp_all only [pow_one, Nat.coprime_zero_right]
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
rcases h.isUnit (Nat.pos_of_ne_zero h0) with ⟨ζ, rfl⟩
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot (↑ζ) k
⊢ IsPrimitiveRoot (↑ζ ^ i) k
[PROOFSTEP]
rw [← Units.val_pow_eq_pow_val]
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot (↑ζ) k
⊢ IsPrimitiveRoot (↑(ζ ^ i)) k
[PROOFSTEP]
rw [coe_units_iff] at h ⊢
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
refine'
{ pow_eq_one := by rw [← pow_mul', pow_mul, h.pow_eq_one, one_pow]
dvd_of_pow_eq_one := _ }
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
⊢ (ζ ^ i) ^ k = 1
[PROOFSTEP]
rw [← pow_mul', pow_mul, h.pow_eq_one, one_pow]
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
⊢ ∀ (l : ℕ), (ζ ^ i) ^ l = 1 → k ∣ l
[PROOFSTEP]
intro l hl
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
l : ℕ
hl : (ζ ^ i) ^ l = 1
⊢ k ∣ l
[PROOFSTEP]
apply h.dvd_of_pow_eq_one
[GOAL]
case neg.intro.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
l : ℕ
hl : (ζ ^ i) ^ l = 1
⊢ ζ ^ l = 1
[PROOFSTEP]
rw [← pow_one ζ, ← zpow_ofNat ζ, ← hi.gcd_eq_one, Nat.gcd_eq_gcd_ab, zpow_add, mul_pow, ← zpow_ofNat, ← zpow_mul,
mul_right_comm]
[GOAL]
case neg.intro.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
f : F
i : ℕ
hi : Nat.coprime i k
h0 : ¬k = 0
ζ : Mˣ
h : IsPrimitiveRoot ζ k
l : ℕ
hl : (ζ ^ i) ^ l = 1
⊢ ζ ^ (↑i * ↑l * Nat.gcdA i k) * (ζ ^ (↑k * Nat.gcdB i k)) ^ l = 1
[PROOFSTEP]
simp only [zpow_mul, hl, h.pow_eq_one, one_zpow, one_pow, one_mul, zpow_ofNat]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
⊢ IsPrimitiveRoot (ζ ^ i) k ↔ Nat.coprime i k
[PROOFSTEP]
refine' ⟨_, h.pow_of_coprime i⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
⊢ IsPrimitiveRoot (ζ ^ i) k → Nat.coprime i k
[PROOFSTEP]
intro hi
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
⊢ Nat.coprime i k
[PROOFSTEP]
obtain ⟨a, ha⟩ := i.gcd_dvd_left k
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
a : ℕ
ha : i = Nat.gcd i k * a
⊢ Nat.coprime i k
[PROOFSTEP]
obtain ⟨b, hb⟩ := i.gcd_dvd_right k
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
a : ℕ
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = Nat.gcd i k * b
⊢ Nat.coprime i k
[PROOFSTEP]
suffices b = k by
-- Porting note: was `rwa [this, ← one_mul k, mul_left_inj' h0.ne', eq_comm] at hb`
rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb
rwa [Nat.coprime]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
a : ℕ
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = Nat.gcd i k * b
this : b = k
⊢ Nat.coprime i k
[PROOFSTEP]
rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
a : ℕ
ha : i = Nat.gcd i k * a
b : ℕ
hb : Nat.gcd i k = 1
this : b = k
⊢ Nat.coprime i k
[PROOFSTEP]
rwa [Nat.coprime]
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : IsPrimitiveRoot (ζ ^ i) k
a : ℕ
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = Nat.gcd i k * b
⊢ b = k
[PROOFSTEP]
rw [ha] at hi
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i a : ℕ
hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = Nat.gcd i k * b
⊢ b = k
[PROOFSTEP]
rw [mul_comm] at hb
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i a : ℕ
hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = b * Nat.gcd i k
⊢ b = k
[PROOFSTEP]
apply Nat.dvd_antisymm ⟨i.gcd k, hb⟩ (hi.dvd_of_pow_eq_one b _)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
h0 : 0 < k
i a : ℕ
hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k
ha : i = Nat.gcd i k * a
b : ℕ
hb : k = b * Nat.gcd i k
⊢ (ζ ^ (Nat.gcd i k * a)) ^ b = 1
[PROOFSTEP]
rw [← pow_mul', ← mul_assoc, ← hb, pow_mul, h.pow_eq_one, one_pow]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h : IsPrimitiveRoot ζ k
hk : 0 < k
⊢ IsPrimitiveRoot ζ k ↔ ζ ^ k = 1 ∧ ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1
[PROOFSTEP]
refine' ⟨fun h => ⟨h.pow_eq_one, fun l hl' hl => _⟩, fun ⟨hζ, hl⟩ => IsPrimitiveRoot.mk_of_lt ζ hk hζ hl⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
hk : 0 < k
h : IsPrimitiveRoot ζ k
l : ℕ
hl' : 0 < l
hl : l < k
⊢ ζ ^ l ≠ 1
[PROOFSTEP]
rw [h.eq_orderOf] at hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
hk : 0 < k
h : IsPrimitiveRoot ζ k
l : ℕ
hl' : 0 < l
hl : l < orderOf ζ
⊢ ζ ^ l ≠ 1
[PROOFSTEP]
exact pow_ne_one_of_lt_orderOf' hl'.ne' hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
p : ℕ
hp : p ≠ 0
hdiv : p ∣ k
⊢ IsPrimitiveRoot (ζ ^ p) (k / p)
[PROOFSTEP]
suffices orderOf (ζ ^ p) = k / p by exact this ▸ IsPrimitiveRoot.orderOf (ζ ^ p)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
p : ℕ
hp : p ≠ 0
hdiv : p ∣ k
this : orderOf (ζ ^ p) = k / p
⊢ IsPrimitiveRoot (ζ ^ p) (k / p)
[PROOFSTEP]
exact this ▸ IsPrimitiveRoot.orderOf (ζ ^ p)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ h : IsPrimitiveRoot ζ k
p : ℕ
hp : p ≠ 0
hdiv : p ∣ k
⊢ orderOf (ζ ^ p) = k / p
[PROOFSTEP]
rw [orderOf_pow' _ hp, ← eq_orderOf h, Nat.gcd_eq_right hdiv]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
n a b : ℕ
hn : 0 < n
h : IsPrimitiveRoot ζ n
hprod : n = a * b
⊢ IsPrimitiveRoot (ζ ^ a) b
[PROOFSTEP]
subst n
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
a b : ℕ
hn : 0 < a * b
h : IsPrimitiveRoot ζ (a * b)
⊢ IsPrimitiveRoot (ζ ^ a) b
[PROOFSTEP]
simp only [iff_def, ← pow_mul, h.pow_eq_one, eq_self_iff_true, true_and_iff]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
a b : ℕ
hn : 0 < a * b
h : IsPrimitiveRoot ζ (a * b)
⊢ ∀ (l : ℕ), ζ ^ (a * l) = 1 → b ∣ l
[PROOFSTEP]
intro l hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
a b : ℕ
hn : 0 < a * b
h : IsPrimitiveRoot ζ (a * b)
l : ℕ
hl : ζ ^ (a * l) = 1
⊢ b ∣ l
[PROOFSTEP]
have ha0 : a ≠ 0 := left_ne_zero_of_mul hn.ne'
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
a b : ℕ
hn : 0 < a * b
h : IsPrimitiveRoot ζ (a * b)
l : ℕ
hl : ζ ^ (a * l) = 1
ha0 : a ≠ 0
⊢ b ∣ l
[PROOFSTEP]
rw [← mul_dvd_mul_iff_left ha0]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
a b : ℕ
hn : 0 < a * b
h : IsPrimitiveRoot ζ (a * b)
l : ℕ
hl : ζ ^ (a * l) = 1
ha0 : a ≠ 0
⊢ a * b ∣ a * l
[PROOFSTEP]
exact h.dvd_of_pow_eq_one _ hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot ζ k
hf : Injective ↑f
⊢ ↑f ζ ^ k = 1
[PROOFSTEP]
rw [← map_pow, h.pow_eq_one, _root_.map_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot ζ k
hf : Injective ↑f
⊢ ∀ (l : ℕ), ↑f ζ ^ l = 1 → k ∣ l
[PROOFSTEP]
rw [h.eq_orderOf]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot ζ k
hf : Injective ↑f
⊢ ∀ (l : ℕ), ↑f ζ ^ l = 1 → orderOf ζ ∣ l
[PROOFSTEP]
intro l hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot ζ k
hf : Injective ↑f
l : ℕ
hl : ↑f ζ ^ l = 1
⊢ orderOf ζ ∣ l
[PROOFSTEP]
rw [← map_pow, ← map_one f] at hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot ζ k
hf : Injective ↑f
l : ℕ
hl : ↑f (ζ ^ l) = ↑f 1
⊢ orderOf ζ ∣ l
[PROOFSTEP]
exact orderOf_dvd_of_pow_eq_one (hf hl)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
⊢ ζ ^ k = 1
[PROOFSTEP]
apply_fun f
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
⊢ ↑f (ζ ^ k) = ↑f 1
[PROOFSTEP]
rw [map_pow, _root_.map_one, h.pow_eq_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
⊢ ∀ (l : ℕ), ζ ^ l = 1 → k ∣ l
[PROOFSTEP]
rw [h.eq_orderOf]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
⊢ ∀ (l : ℕ), ζ ^ l = 1 → orderOf (↑f ζ) ∣ l
[PROOFSTEP]
intro l hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
l : ℕ
hl : ζ ^ l = 1
⊢ orderOf (↑f ζ) ∣ l
[PROOFSTEP]
apply_fun f at hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
l : ℕ
hl : ↑f (ζ ^ l) = ↑f 1
⊢ orderOf (↑f ζ) ∣ l
[PROOFSTEP]
rw [map_pow, _root_.map_one] at hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l✝ : ℕ
ζ : M
f : F
h✝ : IsPrimitiveRoot ζ k
inst✝ : MonoidHomClass F M N
h : IsPrimitiveRoot (↑f ζ) k
hf : Injective ↑f
l : ℕ
hl : ↑f ζ ^ l = 1
⊢ orderOf (↑f ζ) ∣ l
[PROOFSTEP]
exact orderOf_dvd_of_pow_eq_one hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l✝ : ℕ
M₀ : Type u_7
inst✝¹ : CommMonoidWithZero M₀
inst✝ : Nontrivial M₀
l : ℕ
hl : 0 ^ l = 1
⊢ 0 ∣ l
[PROOFSTEP]
simpa [zero_pow_eq, show ∀ p, ¬p → False ↔ p from @Classical.not_not] using hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
⊢ ζ ^ ↑k = 1
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
⊢ ζ ^ k = 1
[PROOFSTEP]
exact h.pow_eq_one
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
⊢ ζ ^ l = 1 ↔ ↑k ∣ l
[PROOFSTEP]
by_cases h0 : 0 ≤ l
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : 0 ≤ l
⊢ ζ ^ l = 1 ↔ ↑k ∣ l
[PROOFSTEP]
lift l to ℕ using h0
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℕ
⊢ ζ ^ ↑l = 1 ↔ ↑k ∣ ↑l
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℕ
⊢ ζ ^ l = 1 ↔ ↑k ∣ ↑l
[PROOFSTEP]
norm_cast
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℕ
⊢ ζ ^ l = 1 ↔ k ∣ l
[PROOFSTEP]
exact h.pow_eq_one_iff_dvd l
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
⊢ ζ ^ l = 1 ↔ ↑k ∣ l
[PROOFSTEP]
have : 0 ≤ -l := by simp only [not_le, neg_nonneg] at h0 ⊢; exact le_of_lt h0
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
⊢ 0 ≤ -l
[PROOFSTEP]
simp only [not_le, neg_nonneg] at h0 ⊢
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : l < 0
⊢ l ≤ 0
[PROOFSTEP]
exact le_of_lt h0
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
this : 0 ≤ -l
⊢ ζ ^ l = 1 ↔ ↑k ∣ l
[PROOFSTEP]
lift -l to ℕ using this with l' hl'
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
l' : ℕ
hl' : ↑l' = -l
⊢ ζ ^ l = 1 ↔ ↑k ∣ l
[PROOFSTEP]
rw [← dvd_neg, ← hl']
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
l' : ℕ
hl' : ↑l' = -l
⊢ ζ ^ l = 1 ↔ ↑k ∣ ↑l'
[PROOFSTEP]
norm_cast
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℤ
h0 : ¬0 ≤ l
l' : ℕ
hl' : ↑l' = -l
⊢ ζ ^ l = 1 ↔ k ∣ l'
[PROOFSTEP]
rw [← h.pow_eq_one_iff_dvd, ← inv_inj, ← zpow_neg, ← hl', zpow_ofNat, inv_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
⊢ ζ⁻¹ ^ k = 1
[PROOFSTEP]
simp only [h.pow_eq_one, inv_one, eq_self_iff_true, inv_pow]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
⊢ ∀ (l : ℕ), ζ⁻¹ ^ l = 1 → k ∣ l
[PROOFSTEP]
intro l hl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℕ
hl : ζ⁻¹ ^ l = 1
⊢ k ∣ l
[PROOFSTEP]
apply h.dvd_of_pow_eq_one l
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l✝ : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
l : ℕ
hl : ζ⁻¹ ^ l = 1
⊢ ζ ^ l = 1
[PROOFSTEP]
rw [← inv_inj, ← inv_pow, hl, inv_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
⊢ IsPrimitiveRoot ζ⁻¹ k ↔ IsPrimitiveRoot ζ k
[PROOFSTEP]
refine' ⟨_, fun h => inv h⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
⊢ IsPrimitiveRoot ζ⁻¹ k → IsPrimitiveRoot ζ k
[PROOFSTEP]
intro h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ⁻¹ k
⊢ IsPrimitiveRoot ζ k
[PROOFSTEP]
rw [← inv_inv ζ]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ⁻¹ k
⊢ IsPrimitiveRoot ζ⁻¹⁻¹ k
[PROOFSTEP]
exact inv h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
by_cases h0 : 0 ≤ i
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : 0 ≤ i
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
lift i to ℕ using h0
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℕ
hi : Int.gcd ↑i ↑k = 1
⊢ IsPrimitiveRoot (ζ ^ ↑i) k
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℕ
hi : Int.gcd ↑i ↑k = 1
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
exact h.pow_of_coprime i hi
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
have : 0 ≤ -i := by simp only [not_le, neg_nonneg] at h0 ⊢; exact le_of_lt h0
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
⊢ 0 ≤ -i
[PROOFSTEP]
simp only [not_le, neg_nonneg] at h0 ⊢
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : i < 0
⊢ i ≤ 0
[PROOFSTEP]
exact le_of_lt h0
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
this : 0 ≤ -i
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
lift -i to ℕ using this with i' hi'
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
i' : ℕ
hi' : ↑i' = -i
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
rw [← inv_iff, ← zpow_neg, ← hi', zpow_ofNat]
[GOAL]
case neg.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
i' : ℕ
hi' : ↑i' = -i
⊢ IsPrimitiveRoot (ζ ^ i') k
[PROOFSTEP]
apply h.pow_of_coprime
[GOAL]
case neg.intro.hi
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
hi : Int.gcd i ↑k = 1
h0 : ¬0 ≤ i
i' : ℕ
hi' : ↑i' = -i
⊢ Nat.coprime i' k
[PROOFSTEP]
rw [Int.gcd, ← Int.natAbs_neg, ← hi'] at hi
[GOAL]
case neg.intro.hi
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : DivisionCommMonoid G
k l : ℕ
ζ : G
h : IsPrimitiveRoot ζ k
i : ℤ
h0 : ¬0 ≤ i
i' : ℕ
hi : Nat.gcd (Int.natAbs ↑i') (Int.natAbs ↑k) = 1
hi' : ↑i' = -i
⊢ Nat.coprime i' k
[PROOFSTEP]
exact hi
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ primitiveRoots 1 R = {1}
[PROOFSTEP]
apply Finset.eq_singleton_iff_unique_mem.2
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ 1 ∈ primitiveRoots 1 R ∧ ∀ (x : R), x ∈ primitiveRoots 1 R → x = 1
[PROOFSTEP]
constructor
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ 1 ∈ primitiveRoots 1 R
[PROOFSTEP]
simp only [IsPrimitiveRoot.one_right_iff, mem_primitiveRoots zero_lt_one]
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
⊢ ∀ (x : R), x ∈ primitiveRoots 1 R → x = 1
[PROOFSTEP]
intro x hx
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x ∈ primitiveRoots 1 R
⊢ x = 1
[PROOFSTEP]
rw [mem_primitiveRoots zero_lt_one, IsPrimitiveRoot.one_right_iff] at hx
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
x : R
hx : x = 1
⊢ x = 1
[PROOFSTEP]
exact hx
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
⊢ NeZero ↑↑n
[PROOFSTEP]
let p := ringChar R
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
⊢ NeZero ↑↑n
[PROOFSTEP]
have hfin := multiplicity.finite_nat_iff.2 ⟨CharP.char_ne_one R p, n.pos⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
⊢ NeZero ↑↑n
[PROOFSTEP]
obtain ⟨m, hm⟩ := multiplicity.exists_eq_pow_mul_and_not_dvd hfin
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
⊢ NeZero ↑↑n
[PROOFSTEP]
by_cases hp : p ∣ n
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
⊢ NeZero ↑↑n
[PROOFSTEP]
obtain ⟨k, hk⟩ := Nat.exists_eq_succ_of_ne_zero (multiplicity.pos_of_dvd hfin hp).ne'
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
⊢ NeZero ↑↑n
[PROOFSTEP]
haveI : NeZero p := NeZero.of_pos (Nat.pos_of_dvd_of_pos hp n.pos)
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this : NeZero p
⊢ NeZero ↑↑n
[PROOFSTEP]
haveI hpri : Fact p.Prime := CharP.char_is_prime_of_pos R p
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this : NeZero p
hpri : Fact (Nat.Prime p)
⊢ NeZero ↑↑n
[PROOFSTEP]
have := hζ.pow_eq_one
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝ : NeZero p
hpri : Fact (Nat.Prime p)
this : ζ ^ ↑n = 1
⊢ NeZero ↑↑n
[PROOFSTEP]
rw [hm.1, hk, pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at this
[GOAL]
case pos.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
⊢ NeZero ↑↑n
[PROOFSTEP]
exfalso
[GOAL]
case pos.intro.h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
⊢ False
[PROOFSTEP]
have hpos : 0 < p ^ k * m :=
by
refine' mul_pos (pow_pos hpri.1.pos _) (Nat.pos_of_ne_zero fun h => _)
have H := hm.1
rw [h] at H
simp at H
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
⊢ 0 < p ^ k * m
[PROOFSTEP]
refine' mul_pos (pow_pos hpri.1.pos _) (Nat.pos_of_ne_zero fun h => _)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
h : m = 0
⊢ False
[PROOFSTEP]
have H := hm.1
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
h : m = 0
H : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m
⊢ False
[PROOFSTEP]
rw [h] at H
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
h : m = 0
H : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * 0
⊢ False
[PROOFSTEP]
simp at H
[GOAL]
case pos.intro.h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
hpos : 0 < p ^ k * m
⊢ False
[PROOFSTEP]
refine' hζ.pow_ne_one_of_pos_of_lt hpos _ (frobenius_inj R p this)
[GOAL]
case pos.intro.h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
hpos : 0 < p ^ k * m
⊢ p ^ k * m < ↑n
[PROOFSTEP]
rw [hm.1, hk, pow_succ, mul_assoc, mul_comm p]
[GOAL]
case pos.intro.h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : p ∣ ↑n
k : ℕ
hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k
this✝¹ : NeZero p
hpri : Fact (Nat.Prime p)
this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1
this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1
hpos : 0 < p ^ k * m
⊢ p ^ k * m < p ^ k * m * p
[PROOFSTEP]
exact lt_mul_of_one_lt_right hpos hpri.1.one_lt
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
ζ : R
inst✝¹ : CommRing R
inst✝ : IsDomain R
n : ℕ+
hζ : IsPrimitiveRoot ζ ↑n
p : ℕ := ringChar R
hfin : multiplicity.Finite p ↑n
m : ℕ
hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m
hp : ¬p ∣ ↑n
⊢ NeZero ↑↑n
[PROOFSTEP]
exact NeZero.of_not_dvd R hp
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ ζ = -1
[PROOFSTEP]
apply (eq_or_eq_neg_of_sq_eq_sq ζ 1 _).resolve_left
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ ¬ζ = 1
[PROOFSTEP]
rw [← pow_one ζ]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ ¬ζ ^ 1 = 1
[PROOFSTEP]
apply h.pow_ne_one_of_pos_of_lt
[GOAL]
case h0
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ 0 < 1
[PROOFSTEP]
decide
[GOAL]
case hl
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ 1 < 2
[PROOFSTEP]
decide
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : NoZeroDivisors R
ζ : R
h : IsPrimitiveRoot ζ 2
⊢ ζ ^ 2 = 1 ^ 2
[PROOFSTEP]
simp only [h.pow_eq_one, one_pow]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
p : ℕ
inst✝ : Nontrivial R
h : CharP R p
hp : p ≠ 2
⊢ IsPrimitiveRoot (-1) 2
[PROOFSTEP]
convert IsPrimitiveRoot.orderOf (-1 : R)
[GOAL]
case h.e'_4
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
p : ℕ
inst✝ : Nontrivial R
h : CharP R p
hp : p ≠ 2
⊢ 2 = orderOf (-1)
[PROOFSTEP]
rw [orderOf_neg_one, if_neg]
[GOAL]
case h.e'_4.hnc
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
p : ℕ
inst✝ : Nontrivial R
h : CharP R p
hp : p ≠ 2
⊢ ¬ringChar R = 2
[PROOFSTEP]
rwa [ringChar.eq_iff.mpr h]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
hζ : IsPrimitiveRoot ζ k
hk : 1 < k
⊢ ∑ i in range k, ζ ^ i = 0
[PROOFSTEP]
refine' eq_zero_of_ne_zero_of_mul_left_eq_zero (sub_ne_zero_of_ne (hζ.ne_one hk).symm) _
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
hζ : IsPrimitiveRoot ζ k
hk : 1 < k
⊢ (1 - ζ) * ∑ i in range k, ζ ^ i = 0
[PROOFSTEP]
rw [mul_neg_geom_sum, hζ.pow_eq_one, sub_self]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
hζ : IsPrimitiveRoot ζ k
hk : 1 < k
⊢ ζ ^ Nat.pred k = -∑ i in range (Nat.pred k), ζ ^ i
[PROOFSTEP]
rw [eq_neg_iff_add_eq_zero, add_comm, ← sum_range_succ, ← Nat.succ_eq_add_one, Nat.succ_pred_eq_of_pos (pos_of_gt hk),
hζ.geom_sum_eq_zero hk]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ (fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0
[PROOFSTEP]
simp only [zpow_zero]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ ↑Additive.ofMul { val := 1, property := (_ : (fun x => x ∈ Subgroup.zpowers ζ) 1) } = 0
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ ∀ (x y : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(x + y) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
x +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
y
[PROOFSTEP]
intro i j
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i j : ℤ
⊢ ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j
[PROOFSTEP]
simp only [zpow_add]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i j : ℤ
⊢ ↑Additive.ofMul { val := ζ ^ i * ζ ^ j, property := (_ : (fun x => x ∈ Subgroup.zpowers ζ) (ζ ^ i * ζ ^ j)) } =
↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) } +
↑Additive.ofMul { val := ζ ^ j, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ j) }
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
hi : i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k))
⊢ i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }
[PROOFSTEP]
simp only [AddMonoidHom.mem_ker, CharP.int_cast_eq_zero_iff (ZMod k) k, AddMonoidHom.coe_mk, Int.coe_castAddHom] at hi ⊢
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
hi : ↑k ∣ i
⊢ ↑{
toFun := fun i =>
↑Additive.ofMul
{ val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i =
0
[PROOFSTEP]
obtain ⟨i, rfl⟩ := hi
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑{
toFun := fun i =>
↑Additive.ofMul
{ val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(↑k * i) =
0
[PROOFSTEP]
simp [zpow_mul, h.pow_eq_one, one_zpow, zpow_ofNat]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ Function.Bijective
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
[PROOFSTEP]
constructor
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ Function.Injective
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ ∀ (a : ZMod k),
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
a =
0 →
a = 0
[PROOFSTEP]
intro i hi
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ZMod k
hi :
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
i =
0
⊢ i = 0
[PROOFSTEP]
rw [Subtype.ext_iff] at hi
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ZMod k
hi :
↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
i) =
↑0
⊢ i = 0
[PROOFSTEP]
have := (h.zpow_eq_one_iff_dvd _).mp hi
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ZMod k
hi :
↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
i) =
↑0
this : ↑k ∣ ↑i
⊢ i = 0
[PROOFSTEP]
rw [← (CharP.int_cast_eq_zero_iff (ZMod k) k _).mpr this, eq_comm]
[GOAL]
case left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ZMod k
hi :
↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
i) =
↑0
this : ↑k ∣ ↑i
⊢ ↑↑i = i
[PROOFSTEP]
exact ZMod.int_cast_rightInverse i
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
⊢ Function.Surjective
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
[PROOFSTEP]
rintro ⟨ξ, i, rfl⟩
[GOAL]
case right.mk.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ∃ a,
↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y =
(fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
a =
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }
[PROOFSTEP]
refine' ⟨Int.castAddHom (ZMod k) i, _⟩
[GOAL]
case right.mk.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
(↑(Int.castAddHom (ZMod k)) i) =
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }
[PROOFSTEP]
rw [AddMonoidHom.liftOfRightInverse_comp_apply]
[GOAL]
case right.mk.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h✝ h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑↑{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) }
i =
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }
[PROOFSTEP]
rw [zmodEquivZpowers, AddEquiv.ofBijective_apply]
-- Porting note: Original proof didn't have `rw`
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast
(_ : Function.RightInverse ZMod.cast Int.cast))
{
val :=
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) },
property :=
(_ :
∀ (i : ℤ),
i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) →
i ∈
AddMonoidHom.ker
{
toZeroHom :=
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) },
map_add' :=
(_ :
∀ (i j : ℤ),
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
(i + j) =
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
i +
ZeroHom.toFun
{
toFun := fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) },
map_zero' :=
(_ :
(fun i =>
↑Additive.ofMul
{ val := (fun x x_1 => x ^ x_1) ζ i,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) })
0 =
0) }
j) }) })
↑i =
↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }
[PROOFSTEP]
exact AddMonoidHom.liftOfRightInverse_comp_apply _ _ ZMod.int_cast_rightInverse _ _
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℕ
⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }
[PROOFSTEP]
have : (i : ZMod k) = (i : ℤ) := by norm_cast
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℕ
⊢ ↑i = ↑↑i
[PROOFSTEP]
norm_cast
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℕ
this : ↑i = ↑↑i
⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }
[PROOFSTEP]
simp only [this, zmodEquivZpowers_apply_coe_int, zpow_ofNat]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℤ
⊢ ↑(AddEquiv.symm (zmodEquivZpowers h))
(↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }) =
↑i
[PROOFSTEP]
rw [← h.zmodEquivZpowers.symm_apply_apply i, zmodEquivZpowers_apply_coe_int]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
inst✝¹ : DivisionCommMonoid G
k l : ℕ
inst✝ : CommRing R
ζ : Rˣ
h : IsPrimitiveRoot ζ k
i : ℕ
⊢ ↑(AddEquiv.symm (zmodEquivZpowers h))
(↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }) =
↑i
[PROOFSTEP]
rw [← h.zmodEquivZpowers.symm_apply_apply i, zmodEquivZpowers_apply_coe_nat]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
⊢ Subgroup.zpowers ζ = rootsOfUnity k R
[PROOFSTEP]
apply SetLike.coe_injective
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
⊢ ↑(Subgroup.zpowers ζ) = ↑(rootsOfUnity k R)
[PROOFSTEP]
haveI F : Fintype (Subgroup.zpowers ζ) := Fintype.ofEquiv _ h.zmodEquivZpowers.toEquiv
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F✝ : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
F : Fintype { x // x ∈ Subgroup.zpowers ζ }
⊢ ↑(Subgroup.zpowers ζ) = ↑(rootsOfUnity k R)
[PROOFSTEP]
refine'
@Set.eq_of_subset_of_card_le Rˣ (Subgroup.zpowers ζ) (rootsOfUnity k R) F (rootsOfUnity.fintype R k)
(Subgroup.zpowers_le_of_mem <| show ζ ∈ rootsOfUnity k R from h.pow_eq_one) _
[GOAL]
case a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F✝ : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
F : Fintype { x // x ∈ Subgroup.zpowers ζ }
⊢ Fintype.card ↑↑(rootsOfUnity k R) ≤ Fintype.card ↑↑(Subgroup.zpowers ζ)
[PROOFSTEP]
calc
Fintype.card (rootsOfUnity k R) ≤ k := card_rootsOfUnity R k
_ = Fintype.card (ZMod k) := (ZMod.card k).symm
_ = Fintype.card (Subgroup.zpowers ζ) := Fintype.card_congr h.zmodEquivZpowers.toEquiv
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
hξ : ξ ∈ rootsOfUnity k R
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
obtain ⟨n, rfl⟩ : ∃ n : ℤ, ζ ^ n = ξ := by rwa [← h.zpowers_eq] at hξ
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
hξ : ξ ∈ rootsOfUnity k R
⊢ ∃ n, ζ ^ n = ξ
[PROOFSTEP]
rwa [← h.zpowers_eq] at hξ
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n
[PROOFSTEP]
have hk0 : (0 : ℤ) < k := by exact_mod_cast k.pos
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
⊢ 0 < ↑↑k
[PROOFSTEP]
exact_mod_cast k.pos
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n
[PROOFSTEP]
let i := n % k
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n
[PROOFSTEP]
have hi0 : 0 ≤ i := Int.emod_nonneg _ (ne_of_gt hk0)
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
hi0 : 0 ≤ i
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n
[PROOFSTEP]
lift i to ℕ using hi0 with i₀ hi₀
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
i₀ : ℕ
hi₀ : ↑i₀ = i
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n
[PROOFSTEP]
refine' ⟨i₀, _, _⟩
[GOAL]
case intro.intro.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
i₀ : ℕ
hi₀ : ↑i₀ = i
⊢ i₀ < ↑k
[PROOFSTEP]
zify
[GOAL]
case intro.intro.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
i₀ : ℕ
hi₀ : ↑i₀ = i
⊢ ↑i₀ < ↑↑k
[PROOFSTEP]
rw [hi₀]
[GOAL]
case intro.intro.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
i₀ : ℕ
hi₀ : ↑i₀ = i
⊢ i < ↑↑k
[PROOFSTEP]
exact Int.emod_lt_of_pos _ hk0
[GOAL]
case intro.intro.refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
n : ℤ
hξ : ζ ^ n ∈ rootsOfUnity k R
hk0 : 0 < ↑↑k
i : ℤ := n % ↑↑k
i₀ : ℕ
hi₀ : ↑i₀ = i
⊢ ζ ^ i₀ = ζ ^ n
[PROOFSTEP]
rw [← zpow_ofNat, hi₀, ← Int.emod_add_ediv n k, zpow_add, zpow_mul, h.zpow_eq_one, one_zpow, mul_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ ξ : R
h : IsPrimitiveRoot ζ k
hξ : ξ ^ k = 1
h0 : 0 < k
⊢ ∃ i, i < k ∧ ζ ^ i = ξ
[PROOFSTEP]
lift ζ to Rˣ using h.isUnit h0
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ξ : R
hξ : ξ ^ k = 1
h0 : 0 < k
ζ : Rˣ
h : IsPrimitiveRoot (↑ζ) k
⊢ ∃ i, i < k ∧ ↑ζ ^ i = ξ
[PROOFSTEP]
lift ξ to Rˣ using isUnit_ofPowEqOne hξ h0.ne'
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
h0 : 0 < k
ζ : Rˣ
h : IsPrimitiveRoot (↑ζ) k
ξ : Rˣ
hξ : ↑ξ ^ k = 1
⊢ ∃ i, i < k ∧ ↑ζ ^ i = ↑ξ
[PROOFSTEP]
lift k to ℕ+ using h0
[GOAL]
case intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ ξ : Rˣ
k : ℕ+
h : IsPrimitiveRoot ↑ζ ↑k
hξ : ↑ξ ^ ↑k = 1
⊢ ∃ i, i < ↑k ∧ ↑ζ ^ i = ↑ξ
[PROOFSTEP]
simp only [← Units.val_pow_eq_pow_val, ← Units.ext_iff]
[GOAL]
case intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ ξ : Rˣ
k : ℕ+
h : IsPrimitiveRoot ↑ζ ↑k
hξ : ↑ξ ^ ↑k = 1
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
rw [coe_units_iff] at h
[GOAL]
case intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ ξ : Rˣ
k : ℕ+
h : IsPrimitiveRoot ζ ↑k
hξ : ↑ξ ^ ↑k = 1
⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
apply h.eq_pow_of_mem_rootsOfUnity
[GOAL]
case intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ ξ : Rˣ
k : ℕ+
h : IsPrimitiveRoot ζ ↑k
hξ : ↑ξ ^ ↑k = 1
⊢ ξ ∈ rootsOfUnity k R
[PROOFSTEP]
rw [mem_rootsOfUnity, Units.ext_iff, Units.val_pow_eq_pow_val, hξ, Units.val_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
⊢ IsPrimitiveRoot ξ ↑k ↔ ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
⊢ IsPrimitiveRoot ξ ↑k → ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
intro hξ
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
hξ : IsPrimitiveRoot ξ ↑k
⊢ ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ
[PROOFSTEP]
obtain ⟨i, hik, rfl⟩ := h.eq_pow_of_mem_rootsOfUnity hξ.pow_eq_one
[GOAL]
case mp.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
i : ℕ
hik : i < ↑k
hξ : IsPrimitiveRoot (ζ ^ i) ↑k
⊢ ∃ i_1, i_1 < ↑k ∧ Nat.coprime i_1 ↑k ∧ ζ ^ i_1 = ζ ^ i
[PROOFSTEP]
rw [h.pow_iff_coprime k.pos] at hξ
[GOAL]
case mp.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
i : ℕ
hik : i < ↑k
hξ : Nat.coprime i ↑k
⊢ ∃ i_1, i_1 < ↑k ∧ Nat.coprime i_1 ↑k ∧ ζ ^ i_1 = ζ ^ i
[PROOFSTEP]
exact ⟨i, hik, hξ, rfl⟩
[GOAL]
case mpr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ ξ : Rˣ
h : IsPrimitiveRoot ζ ↑k
⊢ (∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ) → IsPrimitiveRoot ξ ↑k
[PROOFSTEP]
rintro ⟨i, -, hi, rfl⟩
[GOAL]
case mpr.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑k
i : ℕ
hi : Nat.coprime i ↑k
⊢ IsPrimitiveRoot (ζ ^ i) ↑k
[PROOFSTEP]
exact h.pow_of_coprime i hi
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ ξ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
⊢ IsPrimitiveRoot ξ k ↔ ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ ξ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
⊢ IsPrimitiveRoot ξ k → ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ
[PROOFSTEP]
intro hξ
[GOAL]
case mp
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ ξ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
hξ : IsPrimitiveRoot ξ k
⊢ ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ
[PROOFSTEP]
obtain ⟨i, hik, rfl⟩ := h.eq_pow_of_pow_eq_one hξ.pow_eq_one h0
[GOAL]
case mp.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hik : i < k
hξ : IsPrimitiveRoot (ζ ^ i) k
⊢ ∃ i_1, i_1 < k ∧ Nat.coprime i_1 k ∧ ζ ^ i_1 = ζ ^ i
[PROOFSTEP]
rw [h.pow_iff_coprime h0] at hξ
[GOAL]
case mp.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hik : i < k
hξ : Nat.coprime i k
⊢ ∃ i_1, i_1 < k ∧ Nat.coprime i_1 k ∧ ζ ^ i_1 = ζ ^ i
[PROOFSTEP]
exact ⟨i, hik, hξ, rfl⟩
[GOAL]
case mpr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ ξ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
⊢ (∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ) → IsPrimitiveRoot ξ k
[PROOFSTEP]
rintro ⟨i, -, hi, rfl⟩
[GOAL]
case mpr.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
k : ℕ
ζ : R
h : IsPrimitiveRoot ζ k
h0 : 0 < k
i : ℕ
hi : Nat.coprime i k
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
exact h.pow_of_coprime i hi
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
inst✝ : IsDomain R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
let e := h.zmodEquivZpowers
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
inst✝ : IsDomain R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
haveI F : Fintype (Subgroup.zpowers ζ) := Fintype.ofEquiv _ e.toEquiv
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F✝ : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
inst✝ : IsDomain R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h
F : Fintype { x // x ∈ Subgroup.zpowers ζ }
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
calc
Fintype.card (rootsOfUnity n R) = Fintype.card (Subgroup.zpowers ζ) := Fintype.card_congr <| by rw [h.zpowers_eq]
_ = Fintype.card (ZMod n) := (Fintype.card_congr e.toEquiv.symm)
_ = n := ZMod.card n
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F✝ : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ : Rˣ
h✝ : IsPrimitiveRoot ζ k
inst✝ : IsDomain R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h
F : Fintype { x // x ∈ Subgroup.zpowers ζ }
⊢ { x // x ∈ rootsOfUnity n R } ≃ { x // x ∈ Subgroup.zpowers ζ }
[PROOFSTEP]
rw [h.zpowers_eq]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
obtain ⟨ζ, hζ⟩ := h.isUnit n.pos
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝¹ : Rˣ
h✝ : IsPrimitiveRoot ζ✝¹ k
inst✝ : IsDomain R
ζ✝ : R
n : ℕ+
h : IsPrimitiveRoot ζ✝ ↑n
ζ : Rˣ
hζ : ↑ζ = ζ✝
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
rw [← hζ, IsPrimitiveRoot.coe_units_iff] at h
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝¹ : Rˣ
h✝ : IsPrimitiveRoot ζ✝¹ k
inst✝ : IsDomain R
ζ✝ : R
n : ℕ+
ζ : Rˣ
h : IsPrimitiveRoot ζ ↑n
hζ : ↑ζ = ζ✝
⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n
[PROOFSTEP]
exact h.card_rootsOfUnity'
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
⊢ ↑Multiset.card (nthRoots n 1) = n
[PROOFSTEP]
cases' Nat.eq_zero_or_pos n with hzero hpos
[GOAL]
case inl
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hzero : n = 0
⊢ ↑Multiset.card (nthRoots n 1) = n
[PROOFSTEP]
simp only [hzero, Multiset.card_zero, nthRoots_zero]
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ ↑Multiset.card (nthRoots n 1) = n
[PROOFSTEP]
rw [eq_iff_le_not_lt]
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ ↑Multiset.card (nthRoots n 1) ≤ n ∧ ¬↑Multiset.card (nthRoots n 1) < n
[PROOFSTEP]
use card_nthRoots n 1
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ ¬↑Multiset.card (nthRoots n 1) < n
[PROOFSTEP]
rw [not_lt]
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ n ≤ ↑Multiset.card (nthRoots n 1)
[PROOFSTEP]
have hcard : Fintype.card { x // x ∈ nthRoots n (1 : R) } ≤ Multiset.card (nthRoots n (1 : R)).attach :=
Multiset.card_le_of_le (Multiset.dedup_le _)
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
hcard : Fintype.card { x // x ∈ nthRoots n 1 } ≤ ↑Multiset.card (Multiset.attach (nthRoots n 1))
⊢ n ≤ ↑Multiset.card (nthRoots n 1)
[PROOFSTEP]
rw [Multiset.card_attach] at hcard
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
hcard : Fintype.card { x // x ∈ nthRoots n 1 } ≤ ↑Multiset.card (nthRoots n 1)
⊢ n ≤ ↑Multiset.card (nthRoots n 1)
[PROOFSTEP]
rw [← PNat.toPNat'_coe hpos] at hcard h ⊢
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ ↑(Nat.toPNat' n)
hpos : n > 0
hcard : Fintype.card { x // x ∈ nthRoots (↑(Nat.toPNat' n)) 1 } ≤ ↑Multiset.card (nthRoots (↑(Nat.toPNat' n)) 1)
⊢ ↑(Nat.toPNat' n) ≤ ↑Multiset.card (nthRoots (↑(Nat.toPNat' n)) 1)
[PROOFSTEP]
set m := Nat.toPNat' n
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
hpos : n > 0
m : ℕ+ := Nat.toPNat' n
h : IsPrimitiveRoot ζ ↑m
hcard : Fintype.card { x // x ∈ nthRoots (↑m) 1 } ≤ ↑Multiset.card (nthRoots (↑m) 1)
⊢ ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1)
[PROOFSTEP]
rw [← Fintype.card_congr (rootsOfUnityEquivNthRoots R m), card_rootsOfUnity h] at hcard
[GOAL]
case right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
hpos : n > 0
m : ℕ+ := Nat.toPNat' n
h : IsPrimitiveRoot ζ ↑m
hcard : ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1)
⊢ ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1)
[PROOFSTEP]
exact hcard
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
⊢ Multiset.Nodup (nthRoots n 1)
[PROOFSTEP]
cases' Nat.eq_zero_or_pos n with hzero hpos
[GOAL]
case inl
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hzero : n = 0
⊢ Multiset.Nodup (nthRoots n 1)
[PROOFSTEP]
simp only [hzero, Multiset.nodup_zero, nthRoots_zero]
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ Multiset.Nodup (nthRoots n 1)
[PROOFSTEP]
apply (Multiset.dedup_eq_self (α := R)).1
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ Multiset.dedup (nthRoots n 1) = nthRoots n 1
[PROOFSTEP]
rw [eq_iff_le_not_lt]
[GOAL]
case inr
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ Multiset.dedup (nthRoots n 1) ≤ nthRoots n 1 ∧ ¬Multiset.dedup (nthRoots n 1) < nthRoots n 1
[PROOFSTEP]
constructor
[GOAL]
case inr.left
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ Multiset.dedup (nthRoots n 1) ≤ nthRoots n 1
[PROOFSTEP]
exact Multiset.dedup_le (nthRoots n (1 : R))
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
⊢ ¬Multiset.dedup (nthRoots n 1) < nthRoots n 1
[PROOFSTEP]
by_contra ha
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : Multiset.dedup (nthRoots n 1) < nthRoots n 1
⊢ False
[PROOFSTEP]
replace ha := Multiset.card_lt_of_lt ha
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < ↑Multiset.card (nthRoots n 1)
⊢ False
[PROOFSTEP]
rw [card_nthRoots h] at ha
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
⊢ False
[PROOFSTEP]
have hrw : Multiset.card (nthRoots n (1 : R)).dedup = Fintype.card { x // x ∈ nthRoots n (1 : R) } :=
by
set fs := (⟨(nthRoots n (1 : R)).dedup, Multiset.nodup_dedup _⟩ : Finset R)
rw [← Finset.card_mk, Fintype.card_of_subtype fs _]
intro x
simp only [Multiset.mem_dedup, Finset.mem_mk]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
⊢ ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 }
[PROOFSTEP]
set fs := (⟨(nthRoots n (1 : R)).dedup, Multiset.nodup_dedup _⟩ : Finset R)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) }
⊢ ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 }
[PROOFSTEP]
rw [← Finset.card_mk, Fintype.card_of_subtype fs _]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) }
⊢ ∀ (x : R), x ∈ fs ↔ x ∈ nthRoots n 1
[PROOFSTEP]
intro x
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) }
x : R
⊢ x ∈ fs ↔ x ∈ nthRoots n 1
[PROOFSTEP]
simp only [Multiset.mem_dedup, Finset.mem_mk]
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n
hrw : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 }
⊢ False
[PROOFSTEP]
rw [← PNat.toPNat'_coe hpos] at h hrw ha
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ ↑(Nat.toPNat' n)
hpos : n > 0
ha : ↑Multiset.card (Multiset.dedup (nthRoots (↑(Nat.toPNat' n)) 1)) < ↑(Nat.toPNat' n)
hrw :
↑Multiset.card (Multiset.dedup (nthRoots (↑(Nat.toPNat' n)) 1)) =
Fintype.card { x // x ∈ nthRoots (↑(Nat.toPNat' n)) 1 }
⊢ False
[PROOFSTEP]
set m := Nat.toPNat' n
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
hpos : n > 0
m : ℕ+ := Nat.toPNat' n
h : IsPrimitiveRoot ζ ↑m
ha : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) < ↑m
hrw : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) = Fintype.card { x // x ∈ nthRoots (↑m) 1 }
⊢ False
[PROOFSTEP]
rw [hrw, ← Fintype.card_congr (rootsOfUnityEquivNthRoots R m), card_rootsOfUnity h] at ha
[GOAL]
case inr.right
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
hpos : n > 0
m : ℕ+ := Nat.toPNat' n
h : IsPrimitiveRoot ζ ↑m
ha : ↑m < ↑m
hrw : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) = Fintype.card { x // x ∈ nthRoots (↑m) 1 }
⊢ False
[PROOFSTEP]
exact Nat.lt_asymm ha ha
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
⊢ card (nthRootsFinset n R) = n
[PROOFSTEP]
rw [nthRootsFinset, ← Multiset.toFinset_eq (nthRoots_nodup h), card_mk, h.card_nthRoots]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
⊢ card (primitiveRoots k R) = φ k
[PROOFSTEP]
by_cases h0 : k = 0
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : k = 0
⊢ card (primitiveRoots k R) = φ k
[PROOFSTEP]
simp [h0]
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ card (primitiveRoots k R) = φ k
[PROOFSTEP]
symm
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ φ k = card (primitiveRoots k R)
[PROOFSTEP]
refine' Finset.card_congr (fun i _ => ζ ^ i) _ _ _
[GOAL]
case neg.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (a : ℕ) (ha : a ∈ filter (Nat.coprime k) (range k)), (fun i x => ζ ^ i) a ha ∈ primitiveRoots k R
[PROOFSTEP]
simp only [true_and_iff, and_imp, mem_filter, mem_range, mem_univ]
[GOAL]
case neg.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (a : ℕ), a < k → Nat.coprime k a → ζ ^ a ∈ primitiveRoots k R
[PROOFSTEP]
rintro i - hi
[GOAL]
case neg.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
i : ℕ
hi : Nat.coprime k i
⊢ ζ ^ i ∈ primitiveRoots k R
[PROOFSTEP]
rw [mem_primitiveRoots (Nat.pos_of_ne_zero h0)]
[GOAL]
case neg.refine'_1
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
i : ℕ
hi : Nat.coprime k i
⊢ IsPrimitiveRoot (ζ ^ i) k
[PROOFSTEP]
exact h.pow_of_coprime i hi.symm
[GOAL]
case neg.refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (a b : ℕ) (ha : a ∈ filter (Nat.coprime k) (range k)) (hb : b ∈ filter (Nat.coprime k) (range k)),
(fun i x => ζ ^ i) a ha = (fun i x => ζ ^ i) b hb → a = b
[PROOFSTEP]
simp only [true_and_iff, and_imp, mem_filter, mem_range, mem_univ]
[GOAL]
case neg.refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (a b : ℕ), a < k → Nat.coprime k a → b < k → Nat.coprime k b → ζ ^ a = ζ ^ b → a = b
[PROOFSTEP]
rintro i j hi - hj - H
[GOAL]
case neg.refine'_2
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
i j : ℕ
hi : i < k
hj : j < k
H : ζ ^ i = ζ ^ j
⊢ i = j
[PROOFSTEP]
exact h.pow_inj hi hj H
[GOAL]
case neg.refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (b : R), b ∈ primitiveRoots k R → ∃ a ha, (fun i x => ζ ^ i) a ha = b
[PROOFSTEP]
simp only [exists_prop, true_and_iff, mem_filter, mem_range, mem_univ]
[GOAL]
case neg.refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
⊢ ∀ (b : R), b ∈ primitiveRoots k R → ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = b
[PROOFSTEP]
intro ξ hξ
[GOAL]
case neg.refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
ξ : R
hξ : ξ ∈ primitiveRoots k R
⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ
[PROOFSTEP]
rw [mem_primitiveRoots (Nat.pos_of_ne_zero h0), h.isPrimitiveRoot_iff (Nat.pos_of_ne_zero h0)] at hξ
[GOAL]
case neg.refine'_3
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
ξ : R
hξ : ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ
⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ
[PROOFSTEP]
rcases hξ with ⟨i, hin, hi, H⟩
[GOAL]
case neg.refine'_3.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
k : ℕ
h : IsPrimitiveRoot ζ k
h0 : ¬k = 0
ξ : R
i : ℕ
hin : i < k
hi : Nat.coprime i k
H : ζ ^ i = ξ
⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ
[PROOFSTEP]
exact ⟨i, ⟨hin, hi.symm⟩, H⟩
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ nthRootsFinset (↑n) R = Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R
[PROOFSTEP]
symm
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) = nthRootsFinset (↑n) R
[PROOFSTEP]
apply Finset.eq_of_subset_of_card_le
[GOAL]
case h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) ⊆ nthRootsFinset (↑n) R
[PROOFSTEP]
intro x
[GOAL]
case h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
⊢ (x ∈ Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) → x ∈ nthRootsFinset (↑n) R
[PROOFSTEP]
simp only [nthRootsFinset, ← Multiset.toFinset_eq (nthRoots_nodup h), exists_prop, Finset.mem_biUnion,
Finset.mem_filter, Finset.mem_range, mem_nthRoots, Finset.mem_mk, Nat.mem_divisors, and_true_iff, Ne.def,
PNat.ne_zero, PNat.pos, not_false_iff]
[GOAL]
case h
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
⊢ (∃ a, a ∣ ↑n ∧ x ∈ primitiveRoots a R) → x ^ ↑n = 1
[PROOFSTEP]
rintro ⟨a, ⟨d, hd⟩, ha⟩
[GOAL]
case h.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a : ℕ
ha : x ∈ primitiveRoots a R
d : ℕ
hd : ↑n = a * d
⊢ x ^ ↑n = 1
[PROOFSTEP]
have hazero : 0 < a := by
contrapose! hd with ha0
simp_all only [nonpos_iff_eq_zero, zero_mul]
exact n.ne_zero
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a : ℕ
ha : x ∈ primitiveRoots a R
d : ℕ
hd : ↑n = a * d
⊢ 0 < a
[PROOFSTEP]
contrapose! hd with ha0
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a : ℕ
ha : x ∈ primitiveRoots a R
d : ℕ
ha0 : a ≤ 0
⊢ ↑n ≠ a * d
[PROOFSTEP]
simp_all only [nonpos_iff_eq_zero, zero_mul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a d : ℕ
ha : x ∈ primitiveRoots 0 R
ha0 : a = 0
⊢ ↑n ≠ 0
[PROOFSTEP]
exact n.ne_zero
[GOAL]
case h.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a : ℕ
ha : x ∈ primitiveRoots a R
d : ℕ
hd : ↑n = a * d
hazero : 0 < a
⊢ x ^ ↑n = 1
[PROOFSTEP]
rw [mem_primitiveRoots hazero] at ha
[GOAL]
case h.intro.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
x : R
a : ℕ
ha : IsPrimitiveRoot x a
d : ℕ
hd : ↑n = a * d
hazero : 0 < a
⊢ x ^ ↑n = 1
[PROOFSTEP]
rw [hd, pow_mul, ha.pow_eq_one, one_pow]
[GOAL]
case h₂
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ card (nthRootsFinset (↑n) R) ≤ card (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R)
[PROOFSTEP]
apply le_of_eq
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ card (nthRootsFinset (↑n) R) = card (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R)
[PROOFSTEP]
rw [h.card_nthRootsFinset, Finset.card_biUnion]
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ ↑n = ∑ u in Nat.divisors ↑n, card (primitiveRoots u R)
[PROOFSTEP]
nth_rw 1 [← Nat.sum_totient n]
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ Finset.sum (Nat.divisors ↑n) φ = ∑ u in Nat.divisors ↑n, card (primitiveRoots u R)
[PROOFSTEP]
refine' sum_congr rfl _
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ ∀ (x : ℕ), x ∈ Nat.divisors ↑n → φ x = card (primitiveRoots x R)
[PROOFSTEP]
simp only [Nat.mem_divisors]
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ ∀ (x : ℕ), x ∣ ↑n ∧ ↑n ≠ 0 → φ x = card (primitiveRoots x R)
[PROOFSTEP]
rintro k ⟨⟨d, hd⟩, -⟩
[GOAL]
case h₂.a.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
k d : ℕ
hd : ↑n = k * d
⊢ φ k = card (primitiveRoots k R)
[PROOFSTEP]
rw [mul_comm] at hd
[GOAL]
case h₂.a.intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k✝ l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k✝
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
k d : ℕ
hd : ↑n = d * k
⊢ φ k = card (primitiveRoots k R)
[PROOFSTEP]
rw [(h.pow n.pos hd).card_primitiveRoots]
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
⊢ ∀ (x : ℕ),
x ∈ Nat.divisors ↑n → ∀ (y : ℕ), y ∈ Nat.divisors ↑n → x ≠ y → Disjoint (primitiveRoots x R) (primitiveRoots y R)
[PROOFSTEP]
intro i _ j _ hdiff
[GOAL]
case h₂.a
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ+
h : IsPrimitiveRoot ζ ↑n
i : ℕ
a✝¹ : i ∈ Nat.divisors ↑n
j : ℕ
a✝ : j ∈ Nat.divisors ↑n
hdiff : i ≠ j
⊢ Disjoint (primitiveRoots i R) (primitiveRoots j R)
[PROOFSTEP]
exact disjoint hdiff
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R
[PROOFSTEP]
by_cases hn : n = 0
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hn : n = 0
⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R
[PROOFSTEP]
simp [hn]
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁴ : CommMonoid M
inst✝³ : CommMonoid N
inst✝² : DivisionCommMonoid G
k l : ℕ
inst✝¹ : CommRing R
ζ✝ : Rˣ
h✝ : IsPrimitiveRoot ζ✝ k
inst✝ : IsDomain R
ζ : R
n : ℕ
h : IsPrimitiveRoot ζ n
hn : ¬n = 0
⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R
[PROOFSTEP]
exact nthRoots_one_eq_biUnion_primitiveRoots' (n := ⟨n, Nat.pos_of_ne_zero hn⟩) h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
⊢ orderOf μ' = ↑n
[PROOFSTEP]
rw [hμ.eq_orderOf, ← hμ.toRootsOfUnity_coe_val, orderOf_units, orderOf_subgroup]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
⊢ (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1
[PROOFSTEP]
dsimp only
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
⊢ ↑(Exists.choose (_ : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) = 1
[PROOFSTEP]
generalize_proofs h1
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
⊢ ↑(Exists.choose h1) = 1
[PROOFSTEP]
have h := h1.choose_spec
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1
⊢ ↑(Exists.choose h1) = 1
[PROOFSTEP]
dsimp only [AlgEquiv.one_apply, AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.coe_toRingHom,
AlgEquiv.coe_ringEquiv] at *
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1
⊢ ↑(Exists.choose h1) = 1
[PROOFSTEP]
replace h : μ' = μ' ^ h1.choose := rootsOfUnity.coe_injective (by simpa only [rootsOfUnity.coe_pow] using h)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1
⊢ (fun x => ↑↑x) μ' = (fun x => ↑↑x) (μ' ^ Exists.choose h1)
[PROOFSTEP]
simpa only [rootsOfUnity.coe_pow] using h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
h : μ' = μ' ^ Exists.choose h1
⊢ ↑(Exists.choose h1) = 1
[PROOFSTEP]
nth_rw 1 [← pow_one μ'] at h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
h : μ' ^ 1 = μ' ^ Exists.choose h1
⊢ ↑(Exists.choose h1) = 1
[PROOFSTEP]
rw [← Nat.cast_one, ZMod.nat_cast_eq_nat_cast_iff, ← ho, ← pow_eq_pow_iff_modEq μ', h]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
⊢ ∀ (x y : S ≃ₐ[R] S),
OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
x *
OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
y
[PROOFSTEP]
intro x y
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
⊢ OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
x *
OneHom.toFun
{ toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)),
map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) }
y
[PROOFSTEP]
dsimp only
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
⊢ ↑(Exists.choose (_ : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) =
↑(Exists.choose (_ : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) *
↑(Exists.choose (_ : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m))
[PROOFSTEP]
generalize_proofs hxy' hx' hy'
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
have hxy := hxy'.choose_spec
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
have hx := hx'.choose_spec
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy'
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
have hy := hy'.choose_spec
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf μ' = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy'
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
dsimp only [AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.coe_toRingHom, AlgEquiv.coe_ringEquiv,
AlgEquiv.mul_apply] at *
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy'
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
replace hxy : x (((μ' : Sˣ) : S) ^ hy'.choose) = ((μ' : Sˣ) : S) ^ hxy'.choose := hy ▸ hxy
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : ↑x (↑↑μ' ^ Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
rw [x.map_pow] at hxy
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : ↑x ↑↑μ' ^ Exists.choose hy' = ↑↑μ' ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
replace hxy : (((μ' : Sˣ) : S) ^ hx'.choose) ^ hy'.choose = ((μ' : Sˣ) : S) ^ hxy'.choose := hx ▸ hxy
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : (↑↑μ' ^ Exists.choose hx') ^ Exists.choose hy' = ↑↑μ' ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
rw [← pow_mul] at hxy
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : ↑↑μ' ^ (Exists.choose hx' * Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
replace hxy : μ' ^ (hx'.choose * hy'.choose) = μ' ^ hxy'.choose :=
rootsOfUnity.coe_injective (by simpa only [rootsOfUnity.coe_pow] using hxy)
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : ↑↑μ' ^ (Exists.choose hx' * Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy'
⊢ (fun x => ↑↑x) (μ' ^ (Exists.choose hx' * Exists.choose hy')) = (fun x => ↑↑x) (μ' ^ Exists.choose hxy')
[PROOFSTEP]
simpa only [rootsOfUnity.coe_pow] using hxy
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ
ho : orderOf (toRootsOfUnity hμ) = ↑n
x y : S ≃ₐ[R] S
hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx'
hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy'
hxy : μ' ^ (Exists.choose hx' * Exists.choose hy') = μ' ^ Exists.choose hxy'
⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy')
[PROOFSTEP]
rw [← Nat.cast_mul, ZMod.nat_cast_eq_nat_cast_iff, ← ho, ← pow_eq_pow_iff_modEq μ', hxy]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
⊢ μ ^ ZMod.val ↑(↑(autToPow R hμ) f) = ↑f μ
[PROOFSTEP]
rw [IsPrimitiveRoot.coe_autToPow_apply]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
⊢ μ ^ ZMod.val ↑(Exists.choose (_ : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) = ↑f μ
[PROOFSTEP]
generalize_proofs h
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ
[PROOFSTEP]
have := h.choose_spec
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ
[PROOFSTEP]
dsimp only [AlgEquiv.toAlgHom_eq_coe, AlgEquiv.coe_algHom] at this
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ
[PROOFSTEP]
refine' (_ : ((hμ.toRootsOfUnity : Sˣ) : S) ^ _ = _).trans this.symm
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ ↑↑(toRootsOfUnity hμ) ^ ZMod.val ↑(Exists.choose h) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
[PROOFSTEP]
rw [← rootsOfUnity.coe_pow, ← rootsOfUnity.coe_pow]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ ↑↑(toRootsOfUnity hμ ^ ZMod.val ↑(Exists.choose h)) = ↑↑(toRootsOfUnity hμ ^ Exists.choose h)
[PROOFSTEP]
congr 2
[GOAL]
case e_self.e_self
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ toRootsOfUnity hμ ^ ZMod.val ↑(Exists.choose h) = toRootsOfUnity hμ ^ Exists.choose h
[PROOFSTEP]
rw [pow_eq_pow_iff_modEq, ZMod.val_nat_cast, hμ.eq_orderOf, ← orderOf_subgroup, ← orderOf_units]
[GOAL]
case e_self.e_self
M : Type u_1
N : Type u_2
G : Type u_3
R : Type u_4
S : Type u_5
F : Type u_6
inst✝⁶ : CommMonoid M
inst✝⁵ : CommMonoid N
inst✝⁴ : DivisionCommMonoid G
k l : ℕ
inst✝³ : CommRing S
inst✝² : IsDomain S
μ : S
n : ℕ+
hμ : IsPrimitiveRoot μ ↑n
inst✝¹ : CommRing R
inst✝ : Algebra R S
f : S ≃ₐ[R] S
h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m
this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h
⊢ Exists.choose h % orderOf μ ≡ Exists.choose h [MOD orderOf ↑↑(toRootsOfUnity hμ)]
[PROOFSTEP]
exact Nat.mod_modEq _ _
| {"mathlib_filename": "Mathlib.RingTheory.RootsOfUnity.Basic", "llama_tokens": 119656} |
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
s : S
⊢ ∃ x, s * ↑(algebraMap R S) ↑x.snd = ↑(algebraMap R S) x.fst
[PROOFSTEP]
obtain ⟨⟨x, y, hy⟩, H⟩ := IsLocalization.surj M s
[GOAL]
case intro.mk.mk
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
s : S
x y : R
hy : y ∈ M
H :
s * ↑(algebraMap R S) ↑(x, { val := y, property := hy }).snd = ↑(algebraMap R S) (x, { val := y, property := hy }).fst
⊢ ∃ x, s * ↑(algebraMap R S) ↑x.snd = ↑(algebraMap R S) x.fst
[PROOFSTEP]
exact ⟨⟨x, y, h₁ hy⟩, H⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y → ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
rw [IsLocalization.eq_iff_exists M]
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
⊢ (∃ c, ↑c * x = ↑c * y) → ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case mp.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
c : { x // x ∈ M }
hc : ↑c * x = ↑c * y
⊢ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
exact ⟨⟨c, h₁ c.2⟩, hc⟩
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
⊢ (∃ c, ↑c * x = ↑c * y) → ↑(algebraMap R S) x = ↑(algebraMap R S) y
[PROOFSTEP]
rintro ⟨c, h⟩
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
N : Submonoid R
h₁ : M ≤ N
h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r)
x y : R
c : { x // x ∈ N }
h : ↑c * x = ↑c * y
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y
[PROOFSTEP]
simpa only [map_mul, (h₂ c c.2).mul_right_inj] using congr_arg (algebraMap R S) h
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
z : S
⊢ ↑(algebraMap R S) (sec M z).fst = ↑(algebraMap R S) ↑(sec M z).snd * z
[PROOFSTEP]
rw [mul_comm, sec_spec]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
z : S
x : R
y : { x // x ∈ M }
h : z * ↑(algebraMap R S) ↑y = ↑(algebraMap R S) x
hx : x = 0
⊢ z = 0
[PROOFSTEP]
rw [hx, (algebraMap R S).map_zero] at h
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
z : S
x : R
y : { x // x ∈ M }
h : z * ↑(algebraMap R S) ↑y = 0
hx : x = 0
⊢ z = 0
[PROOFSTEP]
exact (IsUnit.mul_left_eq_zero (IsLocalization.map_units S y)).1 h
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
⊢ ↑(algebraMap R S) r = 0 ↔ ∃ m, ↑m * r = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
⊢ ↑(algebraMap R S) r = 0 → ∃ m, ↑m * r = 0
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
h : ↑(algebraMap R S) r = 0
⊢ ∃ m, ↑m * r = 0
[PROOFSTEP]
obtain ⟨m, hm⟩ := (IsLocalization.eq_iff_exists M S).mp ((algebraMap R S).map_zero.trans h.symm)
[GOAL]
case mp.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
h : ↑(algebraMap R S) r = 0
m : { x // x ∈ M }
hm : ↑m * 0 = ↑m * r
⊢ ∃ m, ↑m * r = 0
[PROOFSTEP]
exact ⟨m, by simpa using hm.symm⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
h : ↑(algebraMap R S) r = 0
m : { x // x ∈ M }
hm : ↑m * 0 = ↑m * r
⊢ ↑m * r = 0
[PROOFSTEP]
simpa using hm.symm
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0
[PROOFSTEP]
rintro ⟨m, hm⟩
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
r : R
m : { x // x ∈ M }
hm : ↑m * r = 0
⊢ ↑(algebraMap R S) r = 0
[PROOFSTEP]
rw [← (IsLocalization.map_units S m).mul_right_inj, mul_zero, ← RingHom.map_mul, hm, RingHom.map_zero]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
z₁ z₂ : S
⊢ mk' S x y + z₁ = z₂ ↔ ↑(algebraMap R S) x + z₁ * ↑(algebraMap R S) ↑y = z₂ * ↑(algebraMap R S) ↑y
[PROOFSTEP]
rw [← mk'_spec S x y, ← IsUnit.mul_left_inj (IsLocalization.map_units S y), right_distrib]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : 0 ∈ M
⊢ 0 = 1
[PROOFSTEP]
simpa using IsLocalization.map_units S ⟨0, h⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
⊢ mk' S x y ∈ I ↔ ↑(algebraMap R S) x ∈ I
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
⊢ mk' S x y ∈ I → ↑(algebraMap R S) x ∈ I
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
⊢ ↑(algebraMap R S) x ∈ I → mk' S x y ∈ I
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : mk' S x y ∈ I
⊢ ↑(algebraMap R S) x ∈ I
[PROOFSTEP]
rw [← mk'_spec S x y, mul_comm]
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : mk' S x y ∈ I
⊢ ↑(algebraMap R S) ↑y * mk' S x y ∈ I
[PROOFSTEP]
exact I.mul_mem_left ((algebraMap R S) y) h
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : ↑(algebraMap R S) x ∈ I
⊢ mk' S x y ∈ I
[PROOFSTEP]
rw [← mk'_spec S x y] at h
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I
⊢ mk' S x y ∈ I
[PROOFSTEP]
obtain ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (map_units S y)
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I
b : S
hb : ↑(algebraMap R S) ↑y * b = 1
⊢ mk' S x y ∈ I
[PROOFSTEP]
have := I.mul_mem_left b h
[GOAL]
case mpr.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
I : Ideal S
h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I
b : S
hb : ↑(algebraMap R S) ↑y * b = 1
this : b * (mk' S x y * ↑(algebraMap R S) ↑y) ∈ I
⊢ mk' S x y ∈ I
[PROOFSTEP]
rwa [mul_comm, mul_assoc, hb, mul_one] at this
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
s : { x // x ∈ M }
⊢ mk' S x s = 0 ↔ ∃ m, ↑m * x = 0
[PROOFSTEP]
rw [← (map_units S s).mul_left_inj, mk'_spec, zero_mul, map_eq_zero_iff M]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
s : { x // x ∈ M }
⊢ mk' S 0 s = 0
[PROOFSTEP]
rw [eq_comm, IsLocalization.eq_mk'_iff_mul_eq, zero_mul, map_zero]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
hxy : mk' S x y ≠ 0
⊢ x ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
y : { x // x ∈ M }
hxy : mk' S 0 y ≠ 0
⊢ False
[PROOFSTEP]
exact hxy (IsLocalization.mk'_zero _)
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x y : { x // x ∈ M }
⊢ mk' S (↑x) y * mk' S (↑y) x = 1
[PROOFSTEP]
rw [← mk'_mul, mul_comm]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x y : { x // x ∈ M }
⊢ mk' S (↑y * ↑x) (y * x) = 1
[PROOFSTEP]
exact mk'_self _ _
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x y : R
m : { x // x ∈ M }
⊢ x • mk' S y m = mk' S (x * y) m
[PROOFSTEP]
nth_rw 2 [← one_mul m]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x y : R
m : { x // x ∈ M }
⊢ x • mk' S y m = mk' S (x * y) (1 * m)
[PROOFSTEP]
rw [mk'_mul, mk'_one, Algebra.smul_def]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
m : { x // x ∈ M }
⊢ x • mk' S 1 m = mk' S x m
[PROOFSTEP]
rw [smul_mk', mul_one]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
m : { x // x ∈ M }
r : R
⊢ ↑m • mk' S r m = ↑(algebraMap R S) r
[PROOFSTEP]
rw [smul_mk', mk'_mul_cancel_left]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x₁ x₂ : R
y₁ y₂ : { x // x ∈ M }
⊢ (mk' S x₁ y₁ + mk' S x₂ y₂) * ↑(algebraMap R S) ↑(y₁ * y₂) = ↑(algebraMap R S) (x₁ * ↑y₂ + x₂ * ↑y₁)
[PROOFSTEP]
rw [mul_comm (_ + _), mul_add, mul_mk'_eq_mk'_of_mul, mk'_add_eq_iff_add_mul_eq_mul, mul_comm (_ * _), ← mul_assoc,
add_comm, ← map_mul, mul_mk'_eq_mk'_of_mul, add_comm _ (mk' _ _ _), mk'_add_eq_iff_add_mul_eq_mul]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x₁ x₂ : R
y₁ y₂ : { x // x ∈ M }
⊢ ↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) (↑y₁ * ↑(y₁ * y₂) * x₂) +
↑(algebraMap R ((fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂))) (↑(y₁ * y₂) * x₁) *
↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) ↑y₂ =
↑(algebraMap R S) (x₂ * ↑y₁ + x₁ * ↑y₂) * ↑(algebraMap R ((fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂))) ↑y₁ *
↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) ↑y₂
[PROOFSTEP]
simp only [map_add, Submonoid.coe_mul, map_mul]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x₁ x₂ : R
y₁ y₂ : { x // x ∈ M }
⊢ ↑(algebraMap R S) ↑y₁ * (↑(algebraMap R S) ↑y₁ * ↑(algebraMap R S) ↑y₂) * ↑(algebraMap R S) x₂ +
↑(algebraMap R S) ↑y₁ * ↑(algebraMap R S) ↑y₂ * ↑(algebraMap R S) x₁ * ↑(algebraMap R S) ↑y₂ =
(↑(algebraMap R S) x₂ * ↑(algebraMap R S) ↑y₁ + ↑(algebraMap R S) x₁ * ↑(algebraMap R S) ↑y₂) *
↑(algebraMap R S) ↑y₁ *
↑(algebraMap R S) ↑y₂
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
h : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
y : { x // x ∈ M }
w z₁ z₂ : P
⊢ w * ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑g) M) h) y)⁻¹ + z₁ = z₂ ↔ w + ↑g ↑y * z₁ = ↑g ↑y * z₂
[PROOFSTEP]
rw [mul_comm, ← one_mul z₁, ← Units.inv_mul (IsUnit.liftRight (g.toMonoidHom.restrict M) h y), mul_assoc, ← mul_add,
Units.inv_mul_eq_iff_eq_mul, Units.inv_mul_cancel_left, IsUnit.coe_liftRight]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
h : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
y : { x // x ∈ M }
w z₁ z₂ : P
⊢ w + ↑(MonoidHom.restrict (↑g) M) y * z₁ = ↑(MonoidHom.restrict (↑g) M) y * z₂ ↔ w + ↑g ↑y * z₁ = ↑g ↑y * z₂
[PROOFSTEP]
simp [RingHom.toMonoidHom_eq_coe, MonoidHom.restrict_apply]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
z : S
w w' v : (fun x => P) z
⊢ ↑(Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg) z * w +
w' =
v ↔
↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).fst * w +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * w' =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * v
[PROOFSTEP]
erw [mul_comm, ← mul_assoc, mul_add_inv_left hg, mul_comm]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
z : S
w w' v : (fun x => P) z
⊢ ↑↑(RingHom.toMonoidWithZeroHom g)
(Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).fst *
w +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).snd * w' =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).snd * v ↔
↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).fst * w +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * w' =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * v
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
⊢ ∀ (x y : S),
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
y
[PROOFSTEP]
intro x y
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) },
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
y
[PROOFSTEP]
erw [(toLocalizationMap M S).lift_spec, mul_add, mul_comm, eq_comm, lift_spec_mul_add, add_comm, mul_comm, mul_assoc,
mul_comm, mul_assoc, lift_spec_mul_add]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst *
(↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
(↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst *
↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
(↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑↑(RingHom.toMonoidWithZeroHom g) (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst)
[PROOFSTEP]
simp_rw [← mul_assoc]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst *
↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑↑(RingHom.toMonoidWithZeroHom g) (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst
[PROOFSTEP]
show g _ * g _ * g _ + g _ * g _ * g _ = g _ * g _ * g _
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd +
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd =
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst
[PROOFSTEP]
simp_rw [← map_mul g, ← map_add g]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑g
((Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd +
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) =
↑g
(↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst)
[PROOFSTEP]
apply @eq_of_eq _ _ _ S _ _ _ _ _ g hg
[GOAL]
case h
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑(algebraMap R S)
((Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd +
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) =
↑(algebraMap R S)
(↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd *
↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd *
(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst)
[PROOFSTEP]
simp only [sec_spec', toLocalizationMap_sec, map_add, map_mul]
[GOAL]
case h
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
src✝ : S →*₀ P :=
Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg
x y : S
⊢ ↑(algebraMap R S) ↑(sec M y).snd * y * ↑(algebraMap R S) ↑(sec M x).snd * ↑(algebraMap R S) ↑(sec M (x + y)).snd +
↑(algebraMap R S) ↑(sec M y).snd * (↑(algebraMap R S) ↑(sec M x).snd * x) *
↑(algebraMap R S) ↑(sec M (x + y)).snd =
↑(algebraMap R S) ↑(sec M y).snd * ↑(algebraMap R S) ↑(sec M x).snd *
(↑(algebraMap R S) ↑(sec M (x + y)).snd * (x + y))
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : IsLocalization M S
g✝ : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g✝ ↑y)
inst✝ : Algebra R P
f g : S →ₐ[R] P
⊢ RingHom.comp (↑f) (algebraMap R S) = RingHom.comp (↑g) (algebraMap R S)
[PROOFSTEP]
rw [f.comp_algebraMap, g.comp_algebraMap]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
j k : S → P
hj1 : j 1 = 1
hk1 : k 1 = 1
hjm : ∀ (a b : S), j (a * b) = j a * j b
hkm : ∀ (a b : S), k (a * b) = k a * k b
h : ∀ (a : R), j (↑(algebraMap R S) a) = k (↑(algebraMap R S) a)
j' : S →* P := { toOneHom := { toFun := j, map_one' := hj1 }, map_mul' := hjm }
k' : S →* P := { toOneHom := { toFun := k, map_one' := hk1 }, map_mul' := hkm }
this : j' = k'
⊢ j'.toFun = k'.toFun
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u_1
inst✝¹¹ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝¹⁰ : CommSemiring S
inst✝⁹ : Algebra R S
P : Type u_3
inst✝⁸ : CommSemiring P
inst✝⁷ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝⁶ : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝⁵ : Algebra P Q
inst✝⁴ : IsLocalization T Q
A : Type u_5
inst✝³ : CommSemiring A
U : Submonoid A
W : Type u_6
inst✝² : CommSemiring W
inst✝¹ : Algebra A W
inst✝ : IsLocalization U W
l : P →+* A
hl : T ≤ Submonoid.comap l U
x : S
⊢ ↑(map W l hl) (↑(map Q g hy) x) = ↑(map W (RingHom.comp l g) (_ : ∀ (x : R), x ∈ M → ↑g x ∈ Submonoid.comap l U)) x
[PROOFSTEP]
rw [← map_comp_map (Q := Q) hy hl]
[GOAL]
R : Type u_1
inst✝¹¹ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝¹⁰ : CommSemiring S
inst✝⁹ : Algebra R S
P : Type u_3
inst✝⁸ : CommSemiring P
inst✝⁷ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝⁶ : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝⁵ : Algebra P Q
inst✝⁴ : IsLocalization T Q
A : Type u_5
inst✝³ : CommSemiring A
U : Submonoid A
W : Type u_6
inst✝² : CommSemiring W
inst✝¹ : Algebra A W
inst✝ : IsLocalization U W
l : P →+* A
hl : T ≤ Submonoid.comap l U
x : S
⊢ ↑(map W l hl) (↑(map Q g hy) x) = ↑(RingHom.comp (map W l hl) (map Q g hy)) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
x : S
z : R
⊢ ↑(map Q g hy) (z • x) = ↑g z • ↑(map Q g hy) x
[PROOFSTEP]
rw [Algebra.smul_def, Algebra.smul_def, RingHom.map_mul, map_eq]
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
⊢ Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M
[PROOFSTEP]
rw [← M.map_id, ← H, Submonoid.map_map]
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
⊢ Submonoid.map (MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h)) M =
Submonoid.map (MonoidHom.id R) M
[PROOFSTEP]
congr
[GOAL]
case e_f
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
⊢ MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h) = MonoidHom.id R
[PROOFSTEP]
ext
[GOAL]
case e_f.h
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
x✝ : R
⊢ ↑(MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h)) x✝ = ↑(MonoidHom.id R) x✝
[PROOFSTEP]
apply h.symm_apply_apply
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M
src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)
x : S
⊢ ↑(map S ↑(RingEquiv.symm h) (_ : T ≤ Submonoid.comap (↑(RingEquiv.symm h)) M))
(↑(map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)) x) =
x
[PROOFSTEP]
rw [map_map, map_unique _ (RingHom.id _), RingHom.id_apply]
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M
src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)
x : S
⊢ ∀ (x : R), ↑(RingHom.id S) (↑(algebraMap R S) x) = ↑(algebraMap R S) (↑(RingHom.comp ↑(RingEquiv.symm h) ↑h) x)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M
src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)
x : Q
⊢ ↑(map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T))
(↑(map S ↑(RingEquiv.symm h) (_ : T ≤ Submonoid.comap (↑(RingEquiv.symm h)) M)) x) =
x
[PROOFSTEP]
rw [map_map, map_unique _ (RingHom.id _), RingHom.id_apply]
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
h : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom h) M = T
H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M
src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)
x : Q
⊢ ∀ (x : P), ↑(RingHom.id Q) (↑(algebraMap P Q) x) = ↑(algebraMap P Q) (↑(RingHom.comp ↑h ↑(RingEquiv.symm h)) x)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
j : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom j) M = T
x : R
⊢ ↑(ringEquivOfRingEquiv S Q j H) (↑(algebraMap R S) x) = ↑(algebraMap P Q) (↑j x)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
T : Submonoid P
Q : Type u_4
inst✝² : CommSemiring Q
hy : M ≤ Submonoid.comap g T
inst✝¹ : Algebra P Q
inst✝ : IsLocalization T Q
j : R ≃+* P
H : Submonoid.map (RingEquiv.toMonoidHom j) M = T
x : R
y : { x // x ∈ M }
⊢ ↑(ringEquivOfRingEquiv S Q j H) (mk' S x y) = mk' Q (↑j x) { val := ↑j ↑y, property := (_ : ↑j ↑y ∈ T) }
[PROOFSTEP]
simp [map_mk']
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
Q : Type u_4
inst✝² : CommSemiring Q
inst✝¹ : Algebra R Q
inst✝ : IsLocalization M Q
x : R
y : { x // x ∈ M }
⊢ ↑(algEquiv M S Q) (mk' S x y) = mk' Q x y
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁷ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁶ : CommSemiring S
inst✝⁵ : Algebra R S
P : Type u_3
inst✝⁴ : CommSemiring P
inst✝³ : IsLocalization M S
g : R →+* P
hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y)
Q : Type u_4
inst✝² : CommSemiring Q
inst✝¹ : Algebra R Q
inst✝ : IsLocalization M Q
x : R
y : { x // x ∈ M }
⊢ ↑(AlgEquiv.symm (algEquiv M S Q)) (mk' Q x y) = mk' S x y
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
⊢ IsLocalization M P
[PROOFSTEP]
constructor
[GOAL]
case map_units'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
⊢ ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap R P) ↑y)
[PROOFSTEP]
intro y
[GOAL]
case map_units'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : { x // x ∈ M }
⊢ IsUnit (↑(algebraMap R P) ↑y)
[PROOFSTEP]
convert (IsLocalization.map_units S y).map h.toAlgHom.toRingHom.toMonoidHom
[GOAL]
case h.e'_3
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : { x // x ∈ M }
⊢ ↑(algebraMap R P) ↑y = ↑↑↑↑h (↑(algebraMap R S) ↑y)
[PROOFSTEP]
exact (h.commutes y).symm
[GOAL]
case surj'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
⊢ ∀ (z : P), ∃ x, z * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst
[PROOFSTEP]
intro y
[GOAL]
case surj'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : P
⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst
[PROOFSTEP]
obtain ⟨⟨x, s⟩, e⟩ := IsLocalization.surj M (h.symm y)
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : P
x : R
s : { x // x ∈ M }
e : ↑(AlgEquiv.symm h) y * ↑(algebraMap R ((fun x => S) y)) ↑(x, s).snd = ↑(algebraMap R ((fun x => S) y)) (x, s).fst
⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst
[PROOFSTEP]
apply_fun (show S → P from h) at e
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : P
x : R
s : { x // x ∈ M }
e :
(let_fun this := ↑h;
this)
(↑(AlgEquiv.symm h) y * ↑(algebraMap R ((fun x => S) y)) ↑(x, s).snd) =
(let_fun this := ↑h;
this)
(↑(algebraMap R ((fun x => S) y)) (x, s).fst)
⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst
[PROOFSTEP]
simp only [h.map_mul, h.apply_symm_apply, h.commutes] at e
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
y : P
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R P) ↑s = ↑(algebraMap R P) x
⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst
[PROOFSTEP]
exact ⟨⟨x, s⟩, e⟩
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
⊢ ∀ {x y : R}, ↑(algebraMap R P) x = ↑(algebraMap R P) y ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
intro x y
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
x y : R
⊢ ↑(algebraMap R P) x = ↑(algebraMap R P) y ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
rw [← h.symm.toEquiv.injective.eq_iff, ← IsLocalization.eq_iff_exists M S, ← h.symm.commutes, ← h.symm.commutes]
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
inst✝¹ : Algebra R P
inst✝ : IsLocalization M S
h : S ≃ₐ[R] P
x y : R
⊢ ↑(AlgEquiv.symm h).toEquiv (↑(algebraMap R P) x) = ↑(AlgEquiv.symm h).toEquiv (↑(algebraMap R P) y) ↔
↑(AlgEquiv.symm h) (↑(algebraMap R P) x) = ↑(AlgEquiv.symm h) (↑(algebraMap R P) y)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
[PROOFSTEP]
letI : Algebra P S := ((algebraMap R S).comp h.symm.toRingHom).toAlgebra
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
[PROOFSTEP]
constructor
[GOAL]
case map_units'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ ∀ (y : { x // x ∈ Submonoid.map (RingEquiv.toMonoidHom h) M }), IsUnit (↑(algebraMap P S) ↑y)
[PROOFSTEP]
rintro ⟨_, ⟨y, hy, rfl⟩⟩
[GOAL]
case map_units'.mk.intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : R
hy : y ∈ ↑M
⊢ IsUnit
(↑(algebraMap P S)
↑{ val := ↑(RingEquiv.toMonoidHom h) y,
property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) y) })
[PROOFSTEP]
convert IsLocalization.map_units S ⟨y, hy⟩
[GOAL]
case h.e'_3
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : R
hy : y ∈ ↑M
⊢ ↑(algebraMap P S)
↑{ val := ↑(RingEquiv.toMonoidHom h) y,
property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) y) } =
↑(algebraMap R S) ↑{ val := y, property := hy }
[PROOFSTEP]
dsimp only [RingHom.algebraMap_toAlgebra, RingHom.comp_apply]
[GOAL]
case h.e'_3
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : R
hy : y ∈ ↑M
⊢ ↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) y)) = ↑(algebraMap R S) y
[PROOFSTEP]
exact congr_arg _ (h.symm_apply_apply _)
[GOAL]
case surj'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ ∀ (z : S), ∃ x, z * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst
[PROOFSTEP]
intro y
[GOAL]
case surj'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
⊢ ∃ x, y * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst
[PROOFSTEP]
obtain ⟨⟨x, s⟩, e⟩ := IsLocalization.surj M y
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R S) ↑(x, s).snd = ↑(algebraMap R S) (x, s).fst
⊢ ∃ x, y * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst
[PROOFSTEP]
refine' ⟨⟨h x, _, _, s.prop, rfl⟩, _⟩
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R S) ↑(x, s).snd = ↑(algebraMap R S) (x, s).fst
⊢ y *
↑(algebraMap P S)
↑(↑h x,
{ val := ↑(RingEquiv.toMonoidHom h) ↑s,
property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) ↑s) }).snd =
↑(algebraMap P S)
(↑h x,
{ val := ↑(RingEquiv.toMonoidHom h) ↑s,
property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) ↑s) }).fst
[PROOFSTEP]
dsimp only [RingHom.algebraMap_toAlgebra, RingHom.comp_apply] at e ⊢
[GOAL]
case surj'.intro.mk
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x
⊢ y * ↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) ↑s)) =
↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑h x))
[PROOFSTEP]
convert e
[GOAL]
case h.e'_2.h.e'_6.h.e'_6
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x
⊢ ↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) ↑s) = ↑s
[PROOFSTEP]
exact h.symm_apply_apply _
[GOAL]
case h.e'_3.h.e'_6
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
y : S
x : R
s : { x // x ∈ M }
e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x
⊢ ↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑h x) = x
[PROOFSTEP]
exact h.symm_apply_apply _
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ ∀ {x y : P}, ↑(algebraMap P S) x = ↑(algebraMap P S) y ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
intro x y
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
x y : P
⊢ ↑(algebraMap P S) x = ↑(algebraMap P S) y ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
rw [RingHom.algebraMap_toAlgebra, RingHom.comp_apply, RingHom.comp_apply, IsLocalization.eq_iff_exists M S]
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
x y : P
⊢ (∃ c, ↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) x = ↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) y) ↔
∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
simp_rw [← h.toEquiv.apply_eq_iff_eq]
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
x y : P
⊢ (∃ c,
↑h.toEquiv (↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) x) =
↑h.toEquiv (↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) y)) ↔
∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
change (∃ c : M, h (c * h.symm x) = h (c * h.symm y)) ↔ _
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
x y : P
⊢ (∃ c, ↑h (↑c * ↑(RingEquiv.symm h) x) = ↑h (↑c * ↑(RingEquiv.symm h) y)) ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
simp only [RingEquiv.apply_symm_apply, RingEquiv.map_mul]
[GOAL]
case eq_iff_exists'
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
x y : P
⊢ (∃ c, ↑h ↑c * x = ↑h ↑c * y) ↔ ∃ c, ↑c * x = ↑c * y
[PROOFSTEP]
exact ⟨fun ⟨c, e⟩ => ⟨⟨_, _, c.prop, rfl⟩, e⟩, fun ⟨⟨_, c, h, e₁⟩, e₂⟩ => ⟨⟨_, h⟩, e₁.symm ▸ e₂⟩⟩
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
⊢ IsLocalization M S ↔ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
[PROOFSTEP]
letI : Algebra P S := ((algebraMap R S).comp h.symm.toRingHom).toAlgebra
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ IsLocalization M S ↔ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
[PROOFSTEP]
refine' ⟨fun _ => isLocalization_of_base_ringEquiv M S h, _⟩
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S → IsLocalization M S
[PROOFSTEP]
intro H
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ IsLocalization M S
[PROOFSTEP]
convert isLocalization_of_base_ringEquiv (Submonoid.map (RingEquiv.toMonoidHom h) M) S h.symm
[GOAL]
case h.e'_3
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ M = Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) (Submonoid.map (RingEquiv.toMonoidHom h) M)
[PROOFSTEP]
erw [Submonoid.map_equiv_eq_comap_symm, Submonoid.comap_map_eq_of_injective]
[GOAL]
case h.e'_3.hf
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ Injective ↑(MulEquiv.toMonoidHom (MulEquiv.symm (RingEquiv.toMulEquiv (RingEquiv.symm h))))
[PROOFSTEP]
exact h.toEquiv.injective
[GOAL]
case h.e'_6
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ inst✝¹ = RingHom.toAlgebra (RingHom.comp (algebraMap P S) (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.symm h))))
[PROOFSTEP]
rw [RingHom.algebraMap_toAlgebra, RingHom.comp_assoc]
[GOAL]
case h.e'_6
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ inst✝¹ =
RingHom.toAlgebra
(RingHom.comp (algebraMap R S)
(RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm h))
(RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.symm h)))))
[PROOFSTEP]
simp only [RingHom.comp_id, RingEquiv.symm_symm, RingEquiv.symm_toRingHom_comp_toRingHom]
[GOAL]
case h.e'_6
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ inst✝¹ = RingHom.toAlgebra (algebraMap R S)
[PROOFSTEP]
apply Algebra.algebra_ext
[GOAL]
case h.e'_6.h
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
⊢ ∀ (r : R), ↑(algebraMap R S) r = ↑(algebraMap R S) r
[PROOFSTEP]
intro r
[GOAL]
case h.e'_6.h
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
h : R ≃+* P
this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h)))
H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S
r : R
⊢ ↑(algebraMap R S) r = ↑(algebraMap R S) r
[PROOFSTEP]
rw [RingHom.algebraMap_toAlgebra]
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
⊢ nonZeroDivisors R ≤ Submonoid.comap (algebraMap R S) (nonZeroDivisors S)
[PROOFSTEP]
rintro a ha b (e : b * algebraMap R S a = 0)
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
b : S
e : b * ↑(algebraMap R S) a = 0
⊢ b = 0
[PROOFSTEP]
obtain ⟨x, s, rfl⟩ := mk'_surjective M b
[GOAL]
case intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
x : R
s : { x // x ∈ M }
e : mk' S x s * ↑(algebraMap R S) a = 0
⊢ mk' S x s = 0
[PROOFSTEP]
rw [← @mk'_one R _ M, ← mk'_mul, ← (algebraMap R S).map_zero, ← @mk'_one R _ M, IsLocalization.eq] at e
[GOAL]
case intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
x : R
s : { x // x ∈ M }
e : ∃ c, ↑c * (↑1 * (x * a)) = ↑c * (↑(s * 1) * 0)
⊢ mk' S x s = 0
[PROOFSTEP]
obtain ⟨c, e⟩ := e
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
x : R
s c : { x // x ∈ M }
e : ↑c * (↑1 * (x * a)) = ↑c * (↑(s * 1) * 0)
⊢ mk' S x s = 0
[PROOFSTEP]
rw [mul_zero, mul_zero, Submonoid.coe_one, one_mul, ← mul_assoc] at e
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
x : R
s c : { x // x ∈ M }
e : ↑c * x * a = 0
⊢ mk' S x s = 0
[PROOFSTEP]
rw [mk'_eq_zero_iff]
[GOAL]
case intro.intro.intro
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
a : R
ha : a ∈ nonZeroDivisors R
x : R
s c : { x // x ∈ M }
e : ↑c * x * a = 0
⊢ ∃ m, ↑m * x = 0
[PROOFSTEP]
exact ⟨c, ha _ e⟩
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : Subsingleton R
a : Localization M
x✝ : R × { x // x ∈ M }
⊢ mk x✝.fst x✝.snd = mk 1 1
[PROOFSTEP]
congr
[GOAL]
case e_x
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : Subsingleton R
a : Localization M
x✝ : R × { x // x ∈ M }
⊢ x✝.fst = 1
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
case e_y
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : Subsingleton R
a : Localization M
x✝ : R × { x // x ∈ M }
⊢ x✝.snd = 1
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' : { x // x ∈ M }
h1 : ↑(r M) (a, b) (a', b')
h2 : ↑(r M) (c, d) (c', d')
⊢ ↑(r M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d')
[PROOFSTEP]
rw [r_eq_r'] at h1 h2 ⊢
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' : { x // x ∈ M }
h1 : ↑(r' M) (a, b) (a', b')
h2 : ↑(r' M) (c, d) (c', d')
⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d')
[PROOFSTEP]
cases' h1 with t₅ ht₅
[GOAL]
case intro
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' : { x // x ∈ M }
h2 : ↑(r' M) (c, d) (c', d')
t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d')
[PROOFSTEP]
cases' h2 with t₆ ht₆
[GOAL]
case intro.intro
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d')
[PROOFSTEP]
use t₅ * t₆
[GOAL]
case h
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑(t₅ * t₆) * (↑(↑b' * c' + ↑d' * a', b' * d').snd * (↑b * c + ↑d * a, b * d).fst) =
↑(t₅ * t₆) * (↑(↑b * c + ↑d * a, b * d).snd * (↑b' * c' + ↑d' * a', b' * d').fst)
[PROOFSTEP]
dsimp only
[GOAL]
case h
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑(t₅ * t₆) * (↑(b' * d') * (↑b * c + ↑d * a)) = ↑(t₅ * t₆) * (↑(b * d) * (↑b' * c' + ↑d' * a'))
[PROOFSTEP]
calc
↑t₅ * ↑t₆ * (↑b' * ↑d' * ((b : R) * c + d * a)) = t₆ * (d' * c) * (t₅ * (b' * b)) + t₅ * (b' * a) * (t₆ * (d' * d)) :=
by ring
_ = t₅ * t₆ * (b * d * (b' * c' + d' * a')) := by rw [ht₆, ht₅]; ring
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑t₅ * ↑t₆ * (↑b' * ↑d' * (↑b * c + ↑d * a)) =
↑t₆ * (↑d' * c) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑b' * a) * (↑t₆ * (↑d' * ↑d))
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑t₆ * (↑d' * c) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑b' * a) * (↑t₆ * (↑d' * ↑d)) =
↑t₅ * ↑t₆ * (↑b * ↑d * (↑b' * c' + ↑d' * a'))
[PROOFSTEP]
rw [ht₆, ht₅]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
z w : Localization M
a a' : R
b b' : { x // x ∈ M }
c c' : R
d d' t₅ : { x // x ∈ M }
ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst)
t₆ : { x // x ∈ M }
ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst)
⊢ ↑t₆ * (↑(c, d).snd * (c', d').fst) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑(a, b).snd * (a', b').fst) * (↑t₆ * (↑d' * ↑d)) =
↑t₅ * ↑t₆ * (↑b * ↑d * (↑b' * c' + ↑d' * a'))
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
d : { x // x ∈ M }
⊢ mk a b + mk c d = mk (↑b * c + ↑d * a) (b * d)
[PROOFSTEP]
show Localization.add (mk a b) (mk c d) = mk _ _
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
d : { x // x ∈ M }
⊢ Localization.add (mk a b) (mk c d) = mk (↑b * c + ↑d * a) (b * d)
[PROOFSTEP]
simp [Localization.add_def]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
⊢ mk a b + mk c b = mk (a + c) b
[PROOFSTEP]
rw [add_mk, mk_eq_mk_iff, r_eq_r']
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
⊢ ↑(r' M) (↑b * c + ↑b * a, b * b) (a + c, b)
[PROOFSTEP]
refine' (r' M).symm ⟨1, _⟩
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
⊢ ↑1 * (↑(↑b * c + ↑b * a, b * b).snd * (a + c, b).fst) = ↑1 * (↑(a + c, b).snd * (↑b * c + ↑b * a, b * b).fst)
[PROOFSTEP]
simp only [Submonoid.coe_one, Submonoid.coe_mul]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
a : R
b : { x // x ∈ M }
c : R
⊢ 1 * (↑b * ↑b * (a + c)) = 1 * (↑b * (↑b * c + ↑b * a))
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
⊢ CommMonoidWithZero (Localization M)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
m n k : Localization M
⊢ ∀ (x y z : R × { x // x ∈ M }),
mk x.fst x.snd + mk y.fst y.snd + mk z.fst z.snd = mk x.fst x.snd + (mk y.fst y.snd + mk z.fst z.snd)
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
y : Localization M
⊢ ∀ (y : R × { x // x ∈ M }), 0 + mk y.fst y.snd = mk y.fst y.snd
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
y : Localization M
⊢ ∀ (y : R × { x // x ∈ M }), mk y.fst y.snd + 0 = mk y.fst y.snd
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ (fun x x_1 => x • x_1) 0 (mk x.fst x.snd) = 0
[PROOFSTEP]
simp only [smul_mk, zero_nsmul, mk_zero]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
n : ℕ
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ (fun x x_1 => x • x_1) (n + 1) (mk x.fst x.snd) = mk x.fst x.snd + (fun x x_1 => x • x_1) n (mk x.fst x.snd)
[PROOFSTEP]
simp only [smul_mk, succ_nsmul, add_mk_self]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
y z : Localization M
⊢ ∀ (x y : R × { x // x ∈ M }), mk y.fst y.snd + mk x.fst x.snd = mk x.fst x.snd + mk y.fst y.snd
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
m n k : Localization M
⊢ ∀ (x y z : R × { x // x ∈ M }),
mk x.fst x.snd * (mk y.fst y.snd + mk z.fst z.snd) =
mk x.fst x.snd * mk y.fst y.snd + mk x.fst x.snd * mk z.fst z.snd
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
src✝ : CommMonoidWithZero (Localization M) :=
let_fun this := inferInstance;
this
m n k : Localization M
⊢ ∀ (x y z : R × { x // x ∈ M }),
(mk x.fst x.snd + mk y.fst y.snd) * mk z.fst z.snd =
mk x.fst x.snd * mk z.fst z.snd + mk y.fst y.snd * mk z.fst z.snd
[PROOFSTEP]
localization_tac
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : IsScalarTower S R R
s : S
⊢ s • 0 = 0
[PROOFSTEP]
simp only [← Localization.mk_zero 1, Localization.smul_mk, smul_zero]
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : IsScalarTower S R R
s : S
x y : Localization M
r₁ : R
x₁ : { x // x ∈ M }
r₂ : R
x₂ : { x // x ∈ M }
⊢ s • (mk (r₁, x₁).fst (r₁, x₁).snd + mk (r₂, x₂).fst (r₂, x₂).snd) =
s • mk (r₁, x₁).fst (r₁, x₁).snd + s • mk (r₂, x₂).fst (r₂, x₂).snd
[PROOFSTEP]
simp only [Localization.smul_mk, Localization.add_mk, smul_add, mul_comm _ (s • _), mul_comm _ r₁, mul_comm _ r₂,
smul_mul_assoc]
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : IsScalarTower S R R
src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M))
s₁ s₂ : S
⊢ ∀ (fst : R) (snd : { x // x ∈ M }),
(s₁ + s₂) • mk (fst, snd).fst (fst, snd).snd =
s₁ • mk (fst, snd).fst (fst, snd).snd + s₂ • mk (fst, snd).fst (fst, snd).snd
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : IsScalarTower S R R
src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M))
s₁ s₂ : S
fst✝ : R
snd✝ : { x // x ∈ M }
⊢ (s₁ + s₂) • mk (fst✝, snd✝).fst (fst✝, snd✝).snd =
s₁ • mk (fst✝, snd✝).fst (fst✝, snd✝).snd + s₂ • mk (fst✝, snd✝).fst (fst✝, snd✝).snd
[PROOFSTEP]
simp only [Localization.smul_mk, add_smul, add_mk_self]
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : IsScalarTower S R R
src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M))
⊢ ∀ (fst : R) (snd : { x // x ∈ M }), 0 • mk (fst, snd).fst (fst, snd).snd = 0
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
inst✝⁶ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁵ : CommSemiring S✝
inst✝⁴ : Algebra R S✝
P : Type u_3
inst✝³ : CommSemiring P
S : Type u_4
inst✝² : Semiring S
inst✝¹ : Module S R
inst✝ : IsScalarTower S R R
src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M))
fst✝ : R
snd✝ : { x // x ∈ M }
⊢ 0 • mk (fst✝, snd✝).fst (fst✝, snd✝).snd = 0
[PROOFSTEP]
simp only [Localization.smul_mk, zero_smul, mk_zero]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
src✝ : Submonoid.LocalizationMap M (Localization M) := monoidOf M
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src✝.toMonoidHom) (x * y) =
OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) })
0 =
0
[PROOFSTEP]
rw [← mk_zero (1 : M), mk_one_eq_monoidOf_mk]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
src✝ : Submonoid.LocalizationMap M (Localization M) := monoidOf M
x y : R
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src✝.toMonoidHom) (x * y) =
OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src✝.toMonoidHom) (x * y) =
OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src✝.toMonoidHom) (x * y) =
OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) })
y
[PROOFSTEP]
simp only [← mk_one_eq_monoidOf_mk, add_mk, Submonoid.coe_one, one_mul, add_comm]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
⊢ ∀ (fst : R) (snd : { x // x ∈ M }),
↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s *
mk (fst, snd).fst (fst, snd).snd =
mk (fst, snd).fst (fst, snd).snd *
↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s
[PROOFSTEP]
intro r x
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
r : R
x : { x // x ∈ M }
⊢ ↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s *
mk (r, x).fst (r, x).snd =
mk (r, x).fst (r, x).snd *
↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
r : R
x : { x // x ∈ M }
⊢ ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s) * mk r x =
mk r x * ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s)
[PROOFSTEP]
simp only [← mk_one_eq_monoidOf_mk, mk_mul, Localization.smul_mk, one_mul, mul_one, Algebra.commutes]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
⊢ ∀ (fst : R) (snd : { x // x ∈ M }),
s • mk (fst, snd).fst (fst, snd).snd =
↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s *
mk (fst, snd).fst (fst, snd).snd
[PROOFSTEP]
intro r x
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
r : R
x : { x // x ∈ M }
⊢ s • mk (r, x).fst (r, x).snd =
↑(RingHom.comp
(let src := monoidOf M;
{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)),
map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : R),
OneHom.toFun (↑src.toMonoidHom) (x * y) =
OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) })
0 =
0),
map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) })
(algebraMap S R))
s *
mk (r, x).fst (r, x).snd
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S✝ : Type u_2
inst✝⁴ : CommSemiring S✝
inst✝³ : Algebra R S✝
P : Type u_3
inst✝² : CommSemiring P
S : Type u_4
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
r : R
x : { x // x ∈ M }
⊢ s • mk r x = ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s) * mk r x
[PROOFSTEP]
simp only [← mk_one_eq_monoidOf_mk, mk_mul, Localization.smul_mk, one_mul, Algebra.smul_def]
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
x : R
y : { x // x ∈ M }
⊢ mk x y = mk' (Localization M) x y
[PROOFSTEP]
rw [mk_eq_monoidOf_mk'_apply, mk', toLocalizationMap_eq_monoidOf]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
A : Type u_4
inst✝¹ : CommSemiring A
inst✝ : Algebra A R
m : A
⊢ mk (↑(algebraMap A R) m) 1 = ↑(algebraMap A (Localization M)) m
[PROOFSTEP]
rw [mk_eq_mk', mk'_eq_iff_eq_mul, Submonoid.coe_one, map_one, mul_one]
[GOAL]
R : Type u_1
inst✝⁵ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝⁴ : CommSemiring S
inst✝³ : Algebra R S
P : Type u_3
inst✝² : CommSemiring P
A : Type u_4
inst✝¹ : CommSemiring A
inst✝ : Algebra A R
m : A
⊢ ↑(algebraMap ((fun x => R) m) (Localization M)) (↑(algebraMap A R) m) = ↑(algebraMap A (Localization M)) m
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝³ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝² : CommSemiring S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommSemiring P
m : ℕ
⊢ mk (↑m) 1 = ↑m
[PROOFSTEP]
simpa using @mk_algebraMap R _ M ℕ _ _ m
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
⊢ ↑(algEquiv M S) (mk x y) = mk' S x y
[PROOFSTEP]
rw [mk_eq_mk', algEquiv_mk']
[GOAL]
R : Type u_1
inst✝⁴ : CommSemiring R
M : Submonoid R
S : Type u_2
inst✝³ : CommSemiring S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommSemiring P
inst✝ : IsLocalization M S
x : R
y : { x // x ∈ M }
⊢ ↑(AlgEquiv.symm (algEquiv M S)) (mk' S x y) = mk x y
[PROOFSTEP]
rw [mk_eq_mk', algEquiv_symm_mk']
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
z : Localization M
a b : R
c d : { x // x ∈ M }
h : ↑(r M) (a, c) (b, d)
⊢ ↑(r M) (-a, c) (-b, d)
[PROOFSTEP]
rw [r_eq_r'] at h ⊢
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
z : Localization M
a b : R
c d : { x // x ∈ M }
h : ↑(r' M) (a, c) (b, d)
⊢ ↑(r' M) (-a, c) (-b, d)
[PROOFSTEP]
cases' h with t ht
[GOAL]
case intro
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
z : Localization M
a b : R
c d t : { x // x ∈ M }
ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst)
⊢ ↑(r' M) (-a, c) (-b, d)
[PROOFSTEP]
use t
[GOAL]
case h
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
z : Localization M
a b : R
c d t : { x // x ∈ M }
ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst)
⊢ ↑t * (↑(-b, d).snd * (-a, c).fst) = ↑t * (↑(-a, c).snd * (-b, d).fst)
[PROOFSTEP]
rw [mul_neg, mul_neg, ht]
[GOAL]
case h
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
z : Localization M
a b : R
c d t : { x // x ∈ M }
ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst)
⊢ -(↑t * (↑(a, c).snd * (b, d).fst)) = ↑t * (↑(-a, c).snd * (-b, d).fst)
[PROOFSTEP]
ring_nf
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a : R
b : { x // x ∈ M }
⊢ -mk a b = mk (-a) b
[PROOFSTEP]
show Localization.neg (mk a b) = mk (-a) b
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a : R
b : { x // x ∈ M }
⊢ Localization.neg (mk a b) = mk (-a) b
[PROOFSTEP]
rw [Localization.neg_def]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a : R
b : { x // x ∈ M }
⊢ liftOn (mk a b) (fun a b => mk (-a) b)
(_ : ∀ (a b : R) (c d : { x // x ∈ M }), ↑(r M) (a, c) (b, d) → mk (-a) c = mk (-b) d) =
mk (-a) b
[PROOFSTEP]
apply liftOn_mk
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ (fun x x_1 => x • x_1) 0 (mk x.fst x.snd) = 0
[PROOFSTEP]
simp only [smul_mk, zero_zsmul, mk_zero]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
n : ℕ
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ (fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) (mk x.fst x.snd) =
mk x.fst x.snd + (fun x x_1 => x • x_1) (Int.ofNat n) (mk x.fst x.snd)
[PROOFSTEP]
simp [smul_mk, add_mk_self, -mk_eq_monoidOf_mk', add_comm (n : ℤ) 1, add_smul]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
n : ℕ
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ (fun x x_1 => x • x_1) (Int.negSucc n) (mk x.fst x.snd) = -(fun x x_1 => x • x_1) (↑(Nat.succ n)) (mk x.fst x.snd)
[PROOFSTEP]
dsimp only
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
n : ℕ
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ Int.negSucc n • mk x.fst x.snd = -(↑(Nat.succ n) • mk x.fst x.snd)
[PROOFSTEP]
rw [smul_mk, smul_mk, neg_mk, ← neg_smul]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
n : ℕ
x✝ : Localization M
x : R × { x // x ∈ M }
⊢ mk (Int.negSucc n • x.fst) x.snd = mk (-↑(Nat.succ n) • x.fst) x.snd
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
y : Localization M
⊢ ∀ (y : R × { x // x ∈ M }), -mk y.fst y.snd + mk y.fst y.snd = 0
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
y : Localization M
y✝ : R × { x // x ∈ M }
⊢ -mk y✝.fst y✝.snd + mk y✝.fst y✝.snd = 0
[PROOFSTEP]
simp only [add_mk, Localization.mk_mul, neg_mk, ← mk_zero 1]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
y : Localization M
y✝ : R × { x // x ∈ M }
⊢ mk (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst) (y✝.snd * y✝.snd) = mk 0 1
[PROOFSTEP]
refine' mk_eq_mk_iff.mpr (r_of_eq _)
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
y : Localization M
y✝ : R × { x // x ∈ M }
⊢ ↑(0, 1).snd * (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst, y✝.snd * y✝.snd).fst =
↑(↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst, y✝.snd * y✝.snd).snd * (0, 1).fst
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M))
y : Localization M
y✝ : R × { x // x ∈ M }
⊢ ↑1 * (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst) = ↑y✝.snd * ↑y✝.snd * 0
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a c : R
b d : { x // x ∈ M }
⊢ mk a b + -mk c d = mk a b + mk (-c) d
[PROOFSTEP]
rw [neg_mk]
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a c : R
b d : { x // x ∈ M }
⊢ mk (↑b * -c + ↑d * a) (b * d) = mk (↑d * a - ↑b * c) (b * d)
[PROOFSTEP]
congr
[GOAL]
case e_x
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
a c : R
b d : { x // x ∈ M }
⊢ ↑b * -c + ↑d * a = ↑d * a - ↑b * c
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝³ : CommRing R
M : Submonoid R
S : Type u_2
inst✝² : CommRing S
inst✝¹ : Algebra R S
P : Type u_3
inst✝ : CommRing P
m : ℤ
⊢ mk (↑m) 1 = ↑m
[PROOFSTEP]
simpa using @mk_algebraMap R _ M ℤ _ _ m
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
⊢ ↑(algebraMap R S) x = 0 ↔ x = 0
[PROOFSTEP]
rw [← (algebraMap R S).map_zero]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0 ↔ x = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0 → x = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
⊢ x = 0 → ↑(algebraMap R S) x = ↑(algebraMap R S) 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0
⊢ x = 0
[PROOFSTEP]
cases' (eq_iff_exists M S).mp h with c hc
[GOAL]
case mp.intro
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0
c : { x // x ∈ M }
hc : ↑c * x = ↑c * 0
⊢ x = 0
[PROOFSTEP]
rw [mul_zero, mul_comm] at hc
[GOAL]
case mp.intro
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0
c : { x // x ∈ M }
hc : x * ↑c = 0
⊢ x = 0
[PROOFSTEP]
exact hM c.2 x hc
[GOAL]
case mpr
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
x : R
hM : M ≤ nonZeroDivisors R
h : x = 0
⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors R
⊢ Injective ↑(algebraMap R S)
[PROOFSTEP]
rw [injective_iff_map_eq_zero (algebraMap R S)]
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors R
⊢ ∀ (a : R), ↑(algebraMap R S) a = 0 → a = 0
[PROOFSTEP]
intro a ha
[GOAL]
R : Type u_1
inst✝⁴ : CommRing R
M : Submonoid R
S : Type u_2
inst✝³ : CommRing S
inst✝² : Algebra R S
P : Type u_3
inst✝¹ : CommRing P
K : Type u_4
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors R
a : R
ha : ↑(algebraMap R S) a = 0
⊢ a = 0
[PROOFSTEP]
rwa [to_map_eq_zero_iff S hM] at ha
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors S
hM : M ≤ nonZeroDivisors R
x : S
hx : x ≠ 0
⊢ (sec M x).fst ≠ 0
[PROOFSTEP]
have hsec := sec_spec M x
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors S
hM : M ≤ nonZeroDivisors R
x : S
hx : x ≠ 0
hsec : x * ↑(algebraMap R S) ↑(sec M x).snd = ↑(algebraMap R S) (sec M x).fst
⊢ (sec M x).fst ≠ 0
[PROOFSTEP]
intro hfst
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors S
hM : M ≤ nonZeroDivisors R
x : S
hx : x ≠ 0
hsec : x * ↑(algebraMap R S) ↑(sec M x).snd = ↑(algebraMap R S) (sec M x).fst
hfst : (sec M x).fst = 0
⊢ False
[PROOFSTEP]
rw [hfst, map_zero, mul_eq_zero, _root_.map_eq_zero_iff] at hsec
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors S
hM : M ≤ nonZeroDivisors R
x : S
hx : x ≠ 0
hsec : x = 0 ∨ ↑(sec M x).snd = 0
hfst : (sec M x).fst = 0
⊢ False
[PROOFSTEP]
exact Or.elim hsec hx (sec_snd_ne_zero hM x)
[GOAL]
case hf
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
inst✝¹ : Nontrivial R
inst✝ : NoZeroDivisors S
hM : M ≤ nonZeroDivisors R
x : S
hx : x ≠ 0
hsec : x = 0 ∨ ↑(algebraMap R S) ↑(sec M x).snd = 0
hfst : (sec M x).fst = 0
⊢ Injective ↑(algebraMap R S)
[PROOFSTEP]
exact IsLocalization.injective S hM
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
⊢ Injective ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M)))
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
⊢ ∀ (a : S), ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) a = 0 → a = 0
[PROOFSTEP]
intro z hz
[GOAL]
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
z : S
hz : ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) z = 0
⊢ z = 0
[PROOFSTEP]
obtain ⟨a, b, rfl⟩ := mk'_surjective M z
[GOAL]
case intro.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
hz : ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) (mk' S a b) = 0
⊢ mk' S a b = 0
[PROOFSTEP]
rw [map_mk', mk'_eq_zero_iff] at hz
[GOAL]
case intro.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
hz : ∃ m, ↑m * ↑g a = 0
⊢ mk' S a b = 0
[PROOFSTEP]
obtain ⟨⟨m', hm'⟩, hm⟩ := hz
[GOAL]
case intro.intro.intro.mk
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
m' : P
hm' : m' ∈ Submonoid.map g M
hm : ↑{ val := m', property := hm' } * ↑g a = 0
⊢ mk' S a b = 0
[PROOFSTEP]
rw [Submonoid.mem_map] at hm'
[GOAL]
case intro.intro.intro.mk
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
m' : P
hm'✝ : m' ∈ Submonoid.map g M
hm' : ∃ x, x ∈ M ∧ ↑g x = m'
hm : ↑{ val := m', property := hm'✝ } * ↑g a = 0
⊢ mk' S a b = 0
[PROOFSTEP]
obtain ⟨n, hn, hnm⟩ := hm'
[GOAL]
case intro.intro.intro.mk.intro.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
m' : P
hm' : m' ∈ Submonoid.map g M
hm : ↑{ val := m', property := hm' } * ↑g a = 0
n : R
hn : n ∈ M
hnm : ↑g n = m'
⊢ mk' S a b = 0
[PROOFSTEP]
rw [Subtype.coe_mk, ← hnm, ← map_mul, ← map_zero g] at hm
[GOAL]
case intro.intro.intro.mk.intro.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
m' : P
hm' : m' ∈ Submonoid.map g M
n : R
hm : ↑g (n * a) = ↑g 0
hn : n ∈ M
hnm : ↑g n = m'
⊢ mk' S a b = 0
[PROOFSTEP]
rw [mk'_eq_zero_iff]
[GOAL]
case intro.intro.intro.mk.intro.intro
R : Type u_1
inst✝⁶ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁵ : CommRing S
inst✝⁴ : Algebra R S
P : Type u_3
inst✝³ : CommRing P
K : Type u_4
inst✝² : IsLocalization M S
Q : Type u_5
inst✝¹ : CommRing Q
g : R →+* P
inst✝ : Algebra P Q
hg : Injective ↑g
i : IsLocalization (Submonoid.map g M) Q
a : R
b : { x // x ∈ M }
m' : P
hm' : m' ∈ Submonoid.map g M
n : R
hm : ↑g (n * a) = ↑g 0
hn : n ∈ M
hnm : ↑g n = m'
⊢ ∃ m, ↑m * a = 0
[PROOFSTEP]
exact ⟨⟨n, hn⟩, hg hm⟩
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
⊢ ∀ {a b : S}, a * b = 0 → a = 0 ∨ b = 0
[PROOFSTEP]
intro z w h
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
cases' surj M z with x hx
[GOAL]
case intro
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
cases' surj M w with y hy
[GOAL]
case intro.intro
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
have : z * w * algebraMap A S y.2 * algebraMap A S x.2 = algebraMap A S x.1 * algebraMap A S y.1 := by
rw [mul_assoc z, hy, ← hx]; ring
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
⊢ z * w * ↑(algebraMap A S) ↑y.snd * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst * ↑(algebraMap A S) y.fst
[PROOFSTEP]
rw [mul_assoc z, hy, ← hx]
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
⊢ z * ↑(algebraMap A S) y.fst * ↑(algebraMap A S) ↑x.snd = z * ↑(algebraMap A S) ↑x.snd * ↑(algebraMap A S) y.fst
[PROOFSTEP]
ring
[GOAL]
case intro.intro
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
this : z * w * ↑(algebraMap A S) ↑y.snd * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst * ↑(algebraMap A S) y.fst
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
rw [h, zero_mul, zero_mul, ← (algebraMap A S).map_mul] at this
[GOAL]
case intro.intro
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
this : 0 = ↑(algebraMap A S) (x.fst * y.fst)
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
cases' eq_zero_or_eq_zero_of_mul_eq_zero ((to_map_eq_zero_iff S hM).mp this.symm) with H H
[GOAL]
case intro.intro.inl
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
this : 0 = ↑(algebraMap A S) (x.fst * y.fst)
H : x.fst = 0
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
exact Or.inl (eq_zero_of_fst_eq_zero hx H)
[GOAL]
case intro.intro.inr
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
z w : S
h : z * w = 0
x : A × { x // x ∈ M }
hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst
y : A × { x // x ∈ M }
hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst
this : 0 = ↑(algebraMap A S) (x.fst * y.fst)
H : y.fst = 0
⊢ z = 0 ∨ w = 0
[PROOFSTEP]
exact Or.inr (eq_zero_of_fst_eq_zero hy H)
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
⊢ IsDomain S
[PROOFSTEP]
apply @NoZeroDivisors.to_isDomain _ _ (id _) (id _)
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
⊢ Nontrivial S
[PROOFSTEP]
exact ⟨⟨(algebraMap A S) 0, (algebraMap A S) 1, fun h => zero_ne_one (IsLocalization.injective S hM h)⟩⟩
[GOAL]
R : Type u_1
inst✝¹⁰ : CommRing R
M✝ : Submonoid R
S : Type u_2
inst✝⁹ : CommRing S
inst✝⁸ : Algebra R S
P : Type u_3
inst✝⁷ : CommRing P
K : Type u_4
inst✝⁶ : IsLocalization M✝ S
Q : Type u_5
inst✝⁵ : CommRing Q
g : R →+* P
inst✝⁴ : Algebra P Q
A : Type u_6
inst✝³ : CommRing A
inst✝² : IsDomain A
inst✝¹ : Algebra A S
M : Submonoid A
inst✝ : IsLocalization M S
hM : M ≤ nonZeroDivisors A
⊢ NoZeroDivisors S
[PROOFSTEP]
exact noZeroDivisors_of_le_nonZeroDivisors _ hM
[GOAL]
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hM : ¬0 ∈ M
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
⊢ Bijective ↑(algebraMap R Rₘ)
[PROOFSTEP]
letI := hR.toField
[GOAL]
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hM : ¬0 ∈ M
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
⊢ Bijective ↑(algebraMap R Rₘ)
[PROOFSTEP]
replace hM := le_nonZeroDivisors_of_noZeroDivisors hM
[GOAL]
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
hM : M ≤ nonZeroDivisors R
⊢ Bijective ↑(algebraMap R Rₘ)
[PROOFSTEP]
refine' ⟨IsLocalization.injective _ hM, fun x => _⟩
[GOAL]
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
hM : M ≤ nonZeroDivisors R
x : Rₘ
⊢ ∃ a, ↑(algebraMap R Rₘ) a = x
[PROOFSTEP]
obtain ⟨r, ⟨m, hm⟩, rfl⟩ := mk'_surjective M x
[GOAL]
case intro.intro.mk
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
hM : M ≤ nonZeroDivisors R
r m : R
hm : m ∈ M
⊢ ∃ a, ↑(algebraMap R Rₘ) a = mk' Rₘ r { val := m, property := hm }
[PROOFSTEP]
obtain ⟨n, hn⟩ := hR.mul_inv_cancel (nonZeroDivisors.ne_zero <| hM hm)
[GOAL]
case intro.intro.mk.intro
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
hM : M ≤ nonZeroDivisors R
r m : R
hm : m ∈ M
n : R
hn : m * n = 1
⊢ ∃ a, ↑(algebraMap R Rₘ) a = mk' Rₘ r { val := m, property := hm }
[PROOFSTEP]
exact ⟨r * n, by erw [eq_mk'_iff_mul_eq, ← map_mul, mul_assoc, _root_.mul_comm n, hn, mul_one]⟩
[GOAL]
R✝ : Type u_1
inst✝⁷ : CommRing R✝
M✝ : Submonoid R✝
S : Type u_2
inst✝⁶ : CommRing S
inst✝⁵ : Algebra R✝ S
P : Type u_3
inst✝⁴ : CommRing P
R : Type u_4
Rₘ : Type u_5
inst✝³ : CommRing R
inst✝² : CommRing Rₘ
M : Submonoid R
hR : IsField R
inst✝¹ : Algebra R Rₘ
inst✝ : IsLocalization M Rₘ
this : Field R := toField hR
hM : M ≤ nonZeroDivisors R
r m : R
hm : m ∈ M
n : R
hn : m * n = 1
⊢ ↑(algebraMap R Rₘ) (r * n) = mk' Rₘ r { val := m, property := hm }
[PROOFSTEP]
erw [eq_mk'_iff_mul_eq, ← map_mul, mul_assoc, _root_.mul_comm n, hn, mul_one]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Submonoid R
S : Type u_2
inst✝¹¹ : CommRing S
inst✝¹⁰ : Algebra R S
P : Type u_3
inst✝⁹ : CommRing P
Rₘ : Type u_4
Sₘ : Type u_5
inst✝⁸ : CommRing Rₘ
inst✝⁷ : CommRing Sₘ
inst✝⁶ : Algebra R Rₘ
inst✝⁵ : IsLocalization M Rₘ
inst✝⁴ : Algebra S Sₘ
i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝³ : Algebra Rₘ Sₘ
inst✝² : Algebra R Sₘ
inst✝¹ : IsScalarTower R Rₘ Sₘ
inst✝ : IsScalarTower R S Sₘ
y : { x // x ∈ M }
⊢ IsUnit (↑(algebraMap R Sₘ) ↑y)
[PROOFSTEP]
rw [IsScalarTower.algebraMap_apply _ S]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Submonoid R
S : Type u_2
inst✝¹¹ : CommRing S
inst✝¹⁰ : Algebra R S
P : Type u_3
inst✝⁹ : CommRing P
Rₘ : Type u_4
Sₘ : Type u_5
inst✝⁸ : CommRing Rₘ
inst✝⁷ : CommRing Sₘ
inst✝⁶ : Algebra R Rₘ
inst✝⁵ : IsLocalization M Rₘ
inst✝⁴ : Algebra S Sₘ
i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝³ : Algebra Rₘ Sₘ
inst✝² : Algebra R Sₘ
inst✝¹ : IsScalarTower R Rₘ Sₘ
inst✝ : IsScalarTower R S Sₘ
y : { x // x ∈ M }
⊢ IsUnit (↑(algebraMap S Sₘ) (↑(algebraMap R S) ↑y))
[PROOFSTEP]
exact IsLocalization.map_units Sₘ ⟨algebraMap R S y, Algebra.mem_algebraMapSubmonoid_of_mem y⟩
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Submonoid R
S : Type u_2
inst✝¹¹ : CommRing S
inst✝¹⁰ : Algebra R S
P : Type u_3
inst✝⁹ : CommRing P
Rₘ : Type u_4
Sₘ : Type u_5
inst✝⁸ : CommRing Rₘ
inst✝⁷ : CommRing Sₘ
inst✝⁶ : Algebra R Rₘ
inst✝⁵ : IsLocalization M Rₘ
inst✝⁴ : Algebra S Sₘ
i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝³ : Algebra Rₘ Sₘ
inst✝² : Algebra R Sₘ
inst✝¹ : IsScalarTower R Rₘ Sₘ
inst✝ : IsScalarTower R S Sₘ
x : R
y : { x // x ∈ M }
⊢ ↑(algebraMap Rₘ Sₘ) (mk' Rₘ x y) =
mk' Sₘ (↑(algebraMap R S) x)
{ val := ↑(algebraMap R S) ↑y, property := (_ : ↑(algebraMap R S) ↑y ∈ Algebra.algebraMapSubmonoid S M) }
[PROOFSTEP]
rw [IsLocalization.eq_mk'_iff_mul_eq, Subtype.coe_mk, ← IsScalarTower.algebraMap_apply, ←
IsScalarTower.algebraMap_apply, IsScalarTower.algebraMap_apply R Rₘ Sₘ, IsScalarTower.algebraMap_apply R Rₘ Sₘ, ←
_root_.map_mul, mul_comm, IsLocalization.mul_mk'_eq_mk'_of_mul]
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Submonoid R
S : Type u_2
inst✝¹¹ : CommRing S
inst✝¹⁰ : Algebra R S
P : Type u_3
inst✝⁹ : CommRing P
Rₘ : Type u_4
Sₘ : Type u_5
inst✝⁸ : CommRing Rₘ
inst✝⁷ : CommRing Sₘ
inst✝⁶ : Algebra R Rₘ
inst✝⁵ : IsLocalization M Rₘ
inst✝⁴ : Algebra S Sₘ
i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝³ : Algebra Rₘ Sₘ
inst✝² : Algebra R Sₘ
inst✝¹ : IsScalarTower R Rₘ Sₘ
inst✝ : IsScalarTower R S Sₘ
x : R
y : { x // x ∈ M }
⊢ ↑(algebraMap Rₘ Sₘ) (mk' Rₘ (↑y * x) y) = ↑(algebraMap Rₘ Sₘ) (↑(algebraMap R Rₘ) x)
[PROOFSTEP]
exact congr_arg (algebraMap Rₘ Sₘ) (IsLocalization.mk'_mul_cancel_left x y)
[GOAL]
R : Type u_1
inst✝¹² : CommRing R
M : Submonoid R
S : Type u_2
inst✝¹¹ : CommRing S
inst✝¹⁰ : Algebra R S
P : Type u_3
inst✝⁹ : CommRing P
Rₘ : Type u_4
Sₘ : Type u_5
inst✝⁸ : CommRing Rₘ
inst✝⁷ : CommRing Sₘ
inst✝⁶ : Algebra R Rₘ
inst✝⁵ : IsLocalization M Rₘ
inst✝⁴ : Algebra S Sₘ
i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝³ : Algebra Rₘ Sₘ
inst✝² : Algebra R Sₘ
inst✝¹ : IsScalarTower R Rₘ Sₘ
inst✝ : IsScalarTower R S Sₘ
x : R
⊢ ↑(algebraMap Rₘ Sₘ) (↑(algebraMap R Rₘ) x) = ↑(algebraMap S Sₘ) (↑(algebraMap R S) x)
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_apply R S Sₘ, ← IsScalarTower.algebraMap_apply R Rₘ Sₘ]
| {"mathlib_filename": "Mathlib.RingTheory.Localization.Basic", "llama_tokens": 60309} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : SMul 𝕜 α
inst✝ : SMul 𝕜 β
s✝ : Set E
f : E → β
g : β → α
s : Set β
hs : Convex 𝕜 s
⊢ ∀ ⦃x : β⦄,
x ∈ s →
∀ ⦃y : β⦄,
y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → _root_.id (a • x + b • y) ≤ a • _root_.id x + b • _root_.id y
[PROOFSTEP]
intros
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : SMul 𝕜 α
inst✝ : SMul 𝕜 β
s✝ : Set E
f : E → β
g : β → α
s : Set β
hs : Convex 𝕜 s
x✝ : β
a✝⁵ : x✝ ∈ s
y✝ : β
a✝⁴ : y✝ ∈ s
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ _root_.id (a✝³ • x✝ + b✝ • y✝) ≤ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : SMul 𝕜 α
inst✝ : SMul 𝕜 β
s✝ : Set E
f : E → β
g : β → α
s : Set β
hs : Convex 𝕜 s
⊢ ∀ ⦃x : β⦄,
x ∈ s →
∀ ⦃y : β⦄,
y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • _root_.id x + b • _root_.id y ≤ _root_.id (a • x + b • y)
[PROOFSTEP]
intros
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : SMul 𝕜 α
inst✝ : SMul 𝕜 β
s✝ : Set E
f : E → β
g : β → α
s : Set β
hs : Convex 𝕜 s
x✝ : β
a✝⁵ : x✝ ∈ s
y✝ : β
a✝⁴ : y✝ ∈ s
a✝³ b✝ : 𝕜
a✝² : 0 ≤ a✝³
a✝¹ : 0 ≤ b✝
a✝ : a✝³ + b✝ = 1
⊢ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝ ≤ _root_.id (a✝³ • x✝ + b✝ • y✝)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : DistribMulAction 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y)
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x ≤ r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x ≤ r}
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • r + b • r
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x ≤ r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x ≤ r}
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f x ≤ r
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x ≤ r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x ≤ r}
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f y ≤ r
[PROOFSTEP]
exact hx.2
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x ≤ r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x ≤ r}
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f y ≤ r
[PROOFSTEP]
exact hy.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
⊢ Convex 𝕜 {p | p.fst ∈ s ∧ f p.fst ≤ p.snd}
[PROOFSTEP]
rintro ⟨x, r⟩ ⟨hx, hr⟩ ⟨y, t⟩ ⟨hy, ht⟩ a b ha hb hab
[GOAL]
case mk.intro.mk.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
x : E
r : β
hx : (x, r).fst ∈ s
hr : f (x, r).fst ≤ (x, r).snd
y : E
t : β
hy : (y, t).fst ∈ s
ht : f (y, t).fst ≤ (y, t).snd
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • (x, r) + b • (y, t) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd}
[PROOFSTEP]
refine' ⟨hf.1 hx hy ha hb hab, _⟩
[GOAL]
case mk.intro.mk.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
x : E
r : β
hx : (x, r).fst ∈ s
hr : f (x, r).fst ≤ (x, r).snd
y : E
t : β
hy : (y, t).fst ∈ s
ht : f (y, t).fst ≤ (y, t).snd
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (a • (x, r) + b • (y, t)).fst ≤ (a • (x, r) + b • (y, t)).snd
[PROOFSTEP]
calc
f (a • x + b • y) ≤ a • f x + b • f y := hf.2 hx hy ha hb hab
_ ≤ a • r + b • t := by gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
x : E
r : β
hx : (x, r).fst ∈ s
hr : f (x, r).fst ≤ (x, r).snd
y : E
t : β
hy : (y, t).fst ∈ s
ht : f (y, t).fst ≤ (y, t).snd
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • r + b • t
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
c x : E
hx : x ∈ (fun z => c + z) ⁻¹' s
y : E
hy : y ∈ (fun z => c + z) ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (c + (a • x + b • y)) = f (a • (c + x) + b • (c + y))
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm, Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
c : E
⊢ ConvexOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c)
[PROOFSTEP]
simpa only [add_comm c] using hf.translate_right c
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
⊢ ConvexOn 𝕜 s f ↔
Convex 𝕜 s ∧
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
refine' and_congr_right' ⟨fun h x hx y hy a b ha hb hab => h hx hy ha.le hb.le hab, fun h x hx y hy a b ha hb hab => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ f (0 • x + b • y) ≤ 0 • f x + b • f y
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
⊢ f (0 • x + b • y) ≤ 0 • f x + b • f y
[PROOFSTEP]
subst b
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
ha : 0 ≤ 0
hb : 0 ≤ 1
⊢ f (0 • x + 1 • y) ≤ 0 • f x + 1 • f y
[PROOFSTEP]
simp_rw [zero_smul, zero_add, one_smul, le_rfl]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
obtain rfl | hb' := hb.eq_or_lt
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha : 0 ≤ a
ha' : 0 < a
hb : 0 ≤ 0
hab : a + 0 = 1
⊢ f (a • x + 0 • y) ≤ a • f x + 0 • f y
[PROOFSTEP]
rw [add_zero] at hab
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a : 𝕜
ha : 0 ≤ a
ha' : 0 < a
hb : 0 ≤ 0
hab : a = 1
⊢ f (a • x + 0 • y) ≤ a • f x + 0 • f y
[PROOFSTEP]
subst a
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hb : 0 ≤ 0
ha : 0 ≤ 1
ha' : 0 < 1
⊢ f (1 • x + 0 • y) ≤ 1 • f x + 0 • f y
[PROOFSTEP]
simp_rw [zero_smul, add_zero, one_smul, le_rfl]
[GOAL]
case inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
ha' : 0 < a
hb' : 0 < b
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
exact h hx hy ha' hb' hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
⊢ ConvexOn 𝕜 s f ↔
Convex 𝕜 s ∧
Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
rw [convexOn_iff_forall_pos]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
⊢ (Convex 𝕜 s ∧
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) ↔
Convex 𝕜 s ∧
Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
refine' and_congr_right' ⟨fun h x hx y hy _ a b ha hb hab => h hx hy ha hb hab, fun h x hx y hy a b ha hb hab => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
obtain rfl | hxy := eq_or_ne x y
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hy : x ∈ s
⊢ f (a • x + b • x) ≤ a • f x + b • f x
[PROOFSTEP]
rw [Convex.combo_self hab, Convex.combo_self hab]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f : E → β
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hxy : x ≠ y
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
exact h hx hy hxy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
f : E →ₗ[𝕜] β
s : Set E
hs : Convex 𝕜 s
x✝⁸ : E
x✝⁷ : x✝⁸ ∈ s
x✝⁶ : E
x✝⁵ : x✝⁶ ∈ s
x✝⁴ x✝³ : 𝕜
x✝² : 0 ≤ x✝⁴
x✝¹ : 0 ≤ x✝³
x✝ : x✝⁴ + x✝³ = 1
⊢ ↑f (x✝⁴ • x✝⁸ + x✝³ • x✝⁶) ≤ x✝⁴ • ↑f x✝⁸ + x✝³ • ↑f x✝⁶
[PROOFSTEP]
rw [f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedAddCommMonoid α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 β
f : E →ₗ[𝕜] β
s : Set E
hs : Convex 𝕜 s
x✝⁸ : E
x✝⁷ : x✝⁸ ∈ s
x✝⁶ : E
x✝⁵ : x✝⁶ ∈ s
x✝⁴ x✝³ : 𝕜
x✝² : 0 ≤ x✝⁴
x✝¹ : 0 ≤ x✝³
x✝ : x✝⁴ + x✝³ = 1
⊢ x✝⁴ • ↑f x✝⁸ + x✝³ • ↑f x✝⁶ ≤ ↑f (x✝⁴ • x✝⁸ + x✝³ • x✝⁶)
[PROOFSTEP]
rw [f.map_add, f.map_smul, f.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x < r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x < r}
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • r + b • r
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x < r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x < r}
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f x ≤ r
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x < r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x < r}
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f y ≤ r
[PROOFSTEP]
exact hx.2.le
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
r : β
x : E
hx : x ∈ {x | x ∈ s ∧ f x < r}
y : E
hy : y ∈ {x | x ∈ s ∧ f x < r}
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f y ≤ r
[PROOFSTEP]
exact hy.2.le
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
⊢ ConvexOn 𝕜 s f
[PROOFSTEP]
refine'
convexOn_iff_pairwise_pos.2
⟨hs, fun x hx y hy hxy a b ha hb hab => _⟩
-- Porting note: without clearing the stray variables, `wlog` gives a bad term.
-- See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/wlog.20.2316495
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
clear! α F ι
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
wlog h : x < y
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y
h : ¬x < y
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
rw [add_comm (a • x), add_comm (a • f x)]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y
h : ¬x < y
⊢ f (b • y + a • x) ≤ b • f y + a • f x
[PROOFSTEP]
rw [add_comm] at hab
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : b + a = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y
h : ¬x < y
⊢ f (b • y + a • x) ≤ b • f y + a • f x
[PROOFSTEP]
refine' this hs hf y hy x hx hxy.symm b a hb ha hab (hxy.lt_or_lt.resolve_left h)
[GOAL]
𝕜✝ : Type u_1
E✝ : Type u_2
β✝ : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜✝
inst✝¹⁰ : AddCommMonoid E✝
inst✝⁹ : OrderedAddCommMonoid β✝
inst✝⁸ : Module 𝕜✝ E✝
inst✝⁷ : Module 𝕜✝ β✝
inst✝⁶ : LinearOrder E✝
s✝ : Set E✝
f✝ : E✝ → β✝
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h : x < y
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
exact hf hx hy h ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
⊢ StrictConvexOn 𝕜 s f
[PROOFSTEP]
refine'
⟨hs, fun x hx y hy hxy a b ha hb hab => _⟩
-- Porting note: without clearing the stray variables, `wlog` gives a bad term.
-- See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/wlog.20.2316495
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
clear! α F ι
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
wlog h : x < y
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y
h : ¬x < y
⊢ f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
rw [add_comm (a • x), add_comm (a • f x)]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y
h : ¬x < y
⊢ f (b • y + a • x) < b • f y + a • f x
[PROOFSTEP]
rw [add_comm] at hab
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : b + a = 1
this :
∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E]
[inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E}
{f : E → β},
Convex 𝕜 s →
(∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) →
∀ (x : E),
x ∈ s →
∀ (y : E),
y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y
h : ¬x < y
⊢ f (b • y + a • x) < b • f y + a • f x
[PROOFSTEP]
refine' this hs hf y hy x hx hxy.symm b a hb ha hab (hxy.lt_or_lt.resolve_left h)
[GOAL]
𝕜✝ : Type u_1
E✝ : Type u_2
β✝ : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜✝
inst✝¹⁰ : AddCommMonoid E✝
inst✝⁹ : OrderedAddCommMonoid β✝
inst✝⁸ : Module 𝕜✝ E✝
inst✝⁷ : Module 𝕜✝ β✝
inst✝⁶ : LinearOrder E✝
s✝ : Set E✝
f✝ : E✝ → β✝
𝕜 : Type u_1
E : Type u_2
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : LinearOrder E
s : Set E
f : E → β
hs : Convex 𝕜 s
hf :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h : x < y
⊢ f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
exact hf hx hy h ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : AddCommMonoid E
inst✝⁵ : AddCommMonoid F
inst✝⁴ : OrderedAddCommMonoid α
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : SMul 𝕜 β
f : F → β
s : Set F
hf : ConvexOn 𝕜 s f
g : E →ₗ[𝕜] F
x : E
hx : x ∈ ↑g ⁻¹' s
y : E
hy : y ∈ ↑g ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (↑g (a • x + b • y)) = f (a • ↑g x + b • ↑g y)
[PROOFSTEP]
rw [g.map_add, g.map_smul, g.map_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : DistribMulAction 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y)
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedCancelAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : DistribMulAction 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y)
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
p q : E × β
hp : p.fst ∈ s ∧ f p.fst < p.snd
hq : q.fst ∈ s ∧ f q.fst ≤ q.snd
⊢ openSegment 𝕜 p q ⊆ {p | p.fst ∈ s ∧ f p.fst < p.snd}
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
p q : E × β
hp : p.fst ∈ s ∧ f p.fst < p.snd
hq : q.fst ∈ s ∧ f q.fst ≤ q.snd
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • p + b • q ∈ {p | p.fst ∈ s ∧ f p.fst < p.snd}
[PROOFSTEP]
refine' ⟨hf.1 hp.1 hq.1 ha.le hb.le hab, _⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : OrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
hf : ConvexOn 𝕜 s f
p q : E × β
hp : p.fst ∈ s ∧ f p.fst < p.snd
hq : q.fst ∈ s ∧ f q.fst ≤ q.snd
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • p + b • q).fst < (a • p + b • q).snd
[PROOFSTEP]
calc
f (a • p.1 + b • q.1) ≤ a • f p.1 + b • f q.1 := hf.2 hp.1 hq.1 ha.le hb.le hab
_ < a • p.2 + b • q.2 := add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hp.2 ha) (smul_le_smul_of_nonneg hq.2 hb.le)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
⊢ ConvexOn 𝕜 s (f ⊔ g)
[PROOFSTEP]
refine' ⟨hf.left, fun x hx y hy a b ha hb hab => sup_le _ _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • (f ⊔ g) x + b • (f ⊔ g) y
[PROOFSTEP]
calc
f (a • x + b • y) ≤ a • f x + b • f y := hf.right hx hy ha hb hab
_ ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) := by gcongr <;> apply le_sup_left
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f x ≤ f x ⊔ g x
[PROOFSTEP]
apply le_sup_left
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f y ≤ f y ⊔ g y
[PROOFSTEP]
apply le_sup_left
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ g (a • x + b • y) ≤ a • (f ⊔ g) x + b • (f ⊔ g) y
[PROOFSTEP]
calc
g (a • x + b • y) ≤ a • g x + b • g y := hg.right hx hy ha hb hab
_ ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) := by gcongr <;> apply le_sup_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • g x + b • g y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ g x ≤ f x ⊔ g x
[PROOFSTEP]
apply le_sup_right
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
hg : ConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ g y ≤ f y ⊔ g y
[PROOFSTEP]
apply le_sup_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f x ≤ f x ⊔ g x
[PROOFSTEP]
apply le_sup_left
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f y ≤ f y ⊔ g y
[PROOFSTEP]
apply le_sup_left
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • g x + b • g y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ g x ≤ f x ⊔ g x
[PROOFSTEP]
apply le_sup_right
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
hg : StrictConvexOn 𝕜 s g
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ g y ≤ f y ⊔ g y
[PROOFSTEP]
apply le_sup_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • max (f x) (f y) + b • max (f x) (f y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f x ≤ max (f x) (f y)
[PROOFSTEP]
apply le_max_left
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f y ≤ max (f x) (f y)
[PROOFSTEP]
apply le_max_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ≤ a • max (f x) (f y) + b • max (f x) (f y)
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f x ≤ max (f x) (f y)
[PROOFSTEP]
apply le_max_left
[GOAL]
case h₂.h₁
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : StrictConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f y ≤ max (f x) (f y)
[PROOFSTEP]
apply le_max_right
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
a b : 𝕜
hx : x ∈ s
hy : y ∈ s
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
hfx : f x ≤ f (a • x + b • y)
⊢ f (a • x + b • y) ≤ f y
[PROOFSTEP]
rw [add_comm] at hab hfx ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
a b : 𝕜
hx : x ∈ s
hy : y ∈ s
ha : 0 ≤ a
hb : 0 < b
hab : b + a = 1
hfx : f x ≤ f (b • y + a • x)
⊢ f (b • y + a • x) ≤ f y
[PROOFSTEP]
exact hf.le_left_of_right_le' hy hx hb ha hab hfx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y z : E
hx : x ∈ s
hy : y ∈ s
hz : z ∈ openSegment 𝕜 x y
hyz : f y ≤ f z
⊢ f z ≤ f x
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hyz : f y ≤ f (a • x + b • y)
⊢ f (a • x + b • y) ≤ f x
[PROOFSTEP]
exact hf.le_left_of_right_le' hx hy ha hb.le hab hyz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y z : E
hx : x ∈ s
hy : y ∈ s
hz : z ∈ openSegment 𝕜 x y
hxz : f x ≤ f z
⊢ f z ≤ f y
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hxz : f x ≤ f (a • x + b • y)
⊢ f (a • x + b • y) ≤ f y
[PROOFSTEP]
exact hf.le_right_of_left_le' hx hy ha.le hb hab hxz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
a b : 𝕜
hx : x ∈ s
hy : y ∈ s
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hfx : f x < f (a • x + b • y)
⊢ f (a • x + b • y) < f y
[PROOFSTEP]
rw [add_comm] at hab hfx ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
a b : 𝕜
hx : x ∈ s
hy : y ∈ s
ha : 0 < a
hb : 0 < b
hab : b + a = 1
hfx : f x < f (b • y + a • x)
⊢ f (b • y + a • x) < f y
[PROOFSTEP]
exact hf.lt_left_of_right_lt' hy hx hb ha hab hfx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y z : E
hx : x ∈ s
hy : y ∈ s
hz : z ∈ openSegment 𝕜 x y
hyz : f y < f z
⊢ f z < f x
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hyz : f y < f (a • x + b • y)
⊢ f (a • x + b • y) < f x
[PROOFSTEP]
exact hf.lt_left_of_right_lt' hx hy ha hb hab hyz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y z : E
hx : x ∈ s
hy : y ∈ s
hz : z ∈ openSegment 𝕜 x y
hxz : f x < f z
⊢ f z < f y
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f g : E → β
hf : ConvexOn 𝕜 s f
x y : E
hx : x ∈ s
hy : y ∈ s
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hxz : f x < f (a • x + b • y)
⊢ f (a • x + b • y) < f y
[PROOFSTEP]
exact hf.lt_right_of_left_lt' hx hy ha hb hab hxz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ ConvexOn 𝕜 s (-f) ↔ ConcaveOn 𝕜 s f
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ ConvexOn 𝕜 s (-f) → ConcaveOn 𝕜 s f
[PROOFSTEP]
rintro ⟨hconv, h⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y
⊢ ConcaveOn 𝕜 s f
[PROOFSTEP]
refine' ⟨hconv, fun x hx y hy a b ha hb hab => _⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ f (a • x + b • y)
[PROOFSTEP]
simp [neg_apply, neg_le, add_comm] at h
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y)
⊢ a • f x + b • f y ≤ f (a • x + b • y)
[PROOFSTEP]
exact h hx hy ha hb hab
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ ConcaveOn 𝕜 s f → ConvexOn 𝕜 s (-f)
[PROOFSTEP]
rintro ⟨hconv, h⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y)
⊢ ConvexOn 𝕜 s (-f)
[PROOFSTEP]
refine' ⟨hconv, fun x hx y hy a b ha hb hab => _⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y
[PROOFSTEP]
rw [← neg_le_neg_iff]
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ -(a • (-f) x + b • (-f) y) ≤ -(-f) (a • x + b • y)
[PROOFSTEP]
simp_rw [neg_add, Pi.neg_apply, smul_neg, neg_neg]
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • f x + b • f y ≤ f (a • x + b • y)
[PROOFSTEP]
exact h hx hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ ConcaveOn 𝕜 s (-f) ↔ ConvexOn 𝕜 s f
[PROOFSTEP]
rw [← neg_convexOn_iff, neg_neg f]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ StrictConvexOn 𝕜 s (-f) ↔ StrictConcaveOn 𝕜 s f
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ StrictConvexOn 𝕜 s (-f) → StrictConcaveOn 𝕜 s f
[PROOFSTEP]
rintro ⟨hconv, h⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → (-f) (a • x + b • y) < a • (-f) x + b • (-f) y
⊢ StrictConcaveOn 𝕜 s f
[PROOFSTEP]
refine' ⟨hconv, fun x hx y hy hxy a b ha hb hab => _⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → (-f) (a • x + b • y) < a • (-f) x + b • (-f) y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y < f (a • x + b • y)
[PROOFSTEP]
simp [neg_apply, neg_lt, add_comm] at h
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ¬x = y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y)
⊢ a • f x + b • f y < f (a • x + b • y)
[PROOFSTEP]
exact h hx hy hxy ha hb hab
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ StrictConcaveOn 𝕜 s f → StrictConvexOn 𝕜 s (-f)
[PROOFSTEP]
rintro ⟨hconv, h⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y)
⊢ StrictConvexOn 𝕜 s (-f)
[PROOFSTEP]
refine' ⟨hconv, fun x hx y hy hxy a b ha hb hab => _⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (-f) (a • x + b • y) < a • (-f) x + b • (-f) y
[PROOFSTEP]
rw [← neg_lt_neg_iff]
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ -(a • (-f) x + b • (-f) y) < -(-f) (a • x + b • y)
[PROOFSTEP]
simp_rw [neg_add, Pi.neg_apply, smul_neg, neg_neg]
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
hconv : Convex 𝕜 s
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y)
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y < f (a • x + b • y)
[PROOFSTEP]
exact h hx hy hxy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : AddCommMonoid F
inst✝² : OrderedAddCommGroup β
inst✝¹ : SMul 𝕜 E
inst✝ : Module 𝕜 β
s : Set E
f g : E → β
⊢ StrictConcaveOn 𝕜 s (-f) ↔ StrictConvexOn 𝕜 s f
[PROOFSTEP]
rw [← neg_strictConvexOn_iff, neg_neg f]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCancelCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
c x : E
hx : x ∈ (fun z => c + z) ⁻¹' s
y : E
hy : y ∈ (fun z => c + z) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (c + (a • x + b • y)) = f (a • (c + x) + b • (c + y))
[PROOFSTEP]
rw [smul_add, smul_add, add_add_add_comm, Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCancelCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
hf : StrictConvexOn 𝕜 s f
c : E
⊢ StrictConvexOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c)
[PROOFSTEP]
simpa only [add_comm] using hf.translate_right c
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCancelCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : Module 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
hf : StrictConcaveOn 𝕜 s f
c : E
⊢ StrictConcaveOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c)
[PROOFSTEP]
simpa only [add_comm] using hf.translate_right c
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : AddCommMonoid E
inst✝³ : OrderedAddCommMonoid β
inst✝² : SMul 𝕜 E
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set E
f : E → β
c : 𝕜
hc : 0 ≤ c
hf : ConvexOn 𝕜 s f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ c • (a • f x + b • f y) = a • c • f x + b • c • f y
[PROOFSTEP]
rw [smul_add, smul_comm c, smul_comm c]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁶ : LinearOrderedField 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : OrderedAddCommMonoid β
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : SMul 𝕜 β
f : F → β
g : E →ᵃ[𝕜] F
s : Set F
hf : ConvexOn 𝕜 s f
x : E
hx : x ∈ ↑g ⁻¹' s
y : E
hy : y ∈ ↑g ⁻¹' s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (↑g (a • x + b • y)) = f (a • ↑g x + b • ↑g y)
[PROOFSTEP]
rw [Convex.combo_affine_apply hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
⊢ (∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) →
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
∀ ⦃a b : 𝕜⦄,
0 ≤ a →
0 ≤ b →
0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y
[PROOFSTEP]
intro h x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y
[PROOFSTEP]
apply h hx hy (div_nonneg ha hab.le) (div_nonneg hb hab.le)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
⊢ (∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
∀ ⦃a b : 𝕜⦄,
0 ≤ a →
0 ≤ b →
0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y) →
∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
intro h x hx y hy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h :
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
∀ ⦃a b : 𝕜⦄,
0 ≤ a →
0 ≤ b → 0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ f (a • x + b • y) ≤ a • f x + b • f y
[PROOFSTEP]
simpa [hab, zero_lt_one] using h hx hy ha hb
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
⊢ (∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) →
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
x ≠ y →
∀ ⦃a b : 𝕜⦄,
0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y
[PROOFSTEP]
intro h x hx y hy hxy a b ha hb
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y
[PROOFSTEP]
have hab := add_pos ha hb
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y
[PROOFSTEP]
apply h hx hy hxy (div_pos ha hab) (div_pos hb hab)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h :
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
⊢ (∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
x ≠ y →
∀ ⦃a b : 𝕜⦄,
0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y) →
∀ ⦃x : E⦄,
x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
intro h x hx y hy hxy a b ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : LinearOrderedField 𝕜
inst✝³ : AddCommMonoid E
inst✝² : OrderedAddCommMonoid β
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 β
s : Set E
f : E → β
h :
∀ ⦃x : E⦄,
x ∈ s →
∀ ⦃y : E⦄,
y ∈ s →
x ≠ y →
∀ ⦃a b : 𝕜⦄,
0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) < a • f x + b • f y
[PROOFSTEP]
simpa [hab, zero_lt_one] using h hx hy hxy ha hb
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
⊢ StrictConvexOn 𝕜 univ ↑(symm f)
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
have hxy' : x' ≠ y' := by rw [← f.injective.ne_iff, ← hx'', ← hy'']; exact hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x' ≠ y'
[PROOFSTEP]
rw [← f.injective.ne_iff, ← hx'', ← hy'']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x ≠ y
[PROOFSTEP]
exact hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ ↑(symm f) (a • ↑f x' + b • ↑f y') < a • x' + b • y'
[PROOFSTEP]
rw [← f.lt_iff_lt, OrderIso.apply_symm_apply]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ a • ↑f x' + b • ↑f y' < ↑f (a • x' + b • y')
[PROOFSTEP]
exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) hxy' ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ x' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ y' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
⊢ ConvexOn 𝕜 univ ↑(symm f)
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ a b ha hb hab => ?_⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y
[PROOFSTEP]
simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ ↑(symm f) (a • ↑f x' + b • ↑f y') ≤ a • x' + b • y'
[PROOFSTEP]
rw [← f.le_iff_le, OrderIso.apply_symm_apply]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ a • ↑f x' + b • ↑f y' ≤ ↑f (a • x' + b • y')
[PROOFSTEP]
exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConcaveOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ y' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
⊢ StrictConcaveOn 𝕜 univ ↑(symm f)
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y)
[PROOFSTEP]
obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y)
[PROOFSTEP]
obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y)
[PROOFSTEP]
have hxy' : x' ≠ y' := by rw [← f.injective.ne_iff, ← hx'', ← hy'']; exact hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x' ≠ y'
[PROOFSTEP]
rw [← f.injective.ne_iff, ← hx'', ← hy'']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x ≠ y
[PROOFSTEP]
exact hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y)
[PROOFSTEP]
simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ a • x' + b • y' < ↑(symm f) (a • ↑f x' + b • ↑f y')
[PROOFSTEP]
rw [← f.lt_iff_lt, OrderIso.apply_symm_apply]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ ↑f (a • x' + b • y') < a • ↑f x' + b • ↑f y'
[PROOFSTEP]
exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) hxy' ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ x' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : StrictConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
hxy' : x' ≠ y'
⊢ y' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
⊢ ConcaveOn 𝕜 univ ↑(symm f)
[PROOFSTEP]
refine ⟨convex_univ, fun x _ y _ a b ha hb hab => ?_⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y)
[PROOFSTEP]
obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y)
[PROOFSTEP]
obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y)
[PROOFSTEP]
simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ a • x' + b • y' ≤ ↑(symm f) (a • ↑f x' + b • ↑f y')
[PROOFSTEP]
rw [← f.le_iff_le, OrderIso.apply_symm_apply]
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ ↑f (a • x' + b • y') ≤ a • ↑f x' + b • ↑f y'
[PROOFSTEP]
exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ x' ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
α : Type u_4
β : Type u_5
ι : Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : OrderedAddCommMonoid α
inst✝² : SMul 𝕜 α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
f : α ≃o β
hf : ConvexOn 𝕜 univ ↑f
x : β
x✝¹ : x ∈ univ
y : β
x✝ : y ∈ univ
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
x' : α
hx'' : x = ↑f x'
y' : α
hy'' : y = ↑f y'
⊢ y' ∈ univ
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.Convex.Function", "llama_tokens": 51921} |
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
⊢ sqrt (1 + ‖x‖ ^ 2) ≤ 1 + ‖x‖
[PROOFSTEP]
rw [sqrt_le_left (by positivity)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
⊢ 0 ≤ 1 + ‖x‖
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
⊢ 1 + ‖x‖ ^ 2 ≤ (1 + ‖x‖) ^ 2
[PROOFSTEP]
simp [add_sq]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
⊢ 1 + ‖x‖ ≤ sqrt 2 * sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
rw [← sqrt_mul zero_le_two]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
⊢ 1 + ‖x‖ ≤ sqrt (2 * (1 + ‖x‖ ^ 2))
[PROOFSTEP]
have := sq_nonneg (‖x‖ - 1)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
this : 0 ≤ (‖x‖ - 1) ^ 2
⊢ 1 + ‖x‖ ≤ sqrt (2 * (1 + ‖x‖ ^ 2))
[PROOFSTEP]
apply le_sqrt_of_sq_le
[GOAL]
case h
E : Type u_1
inst✝ : NormedAddCommGroup E
x : E
this : 0 ≤ (‖x‖ - 1) ^ 2
⊢ (1 + ‖x‖) ^ 2 ≤ 2 * (1 + ‖x‖ ^ 2)
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ (1 + ‖x‖ ^ 2) ^ (-r / 2) = 2 ^ (r / 2) * ((sqrt 2 * sqrt (1 + ‖x‖ ^ 2)) ^ r)⁻¹
[PROOFSTEP]
rw [rpow_div_two_eq_sqrt, rpow_div_two_eq_sqrt, mul_rpow, mul_inv, rpow_neg, mul_inv_cancel_left₀]
[GOAL]
case h
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ sqrt 2 ^ r ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case hx
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
positivity
[GOAL]
case h
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ sqrt 2
[PROOFSTEP]
positivity
[GOAL]
case h₁
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
positivity
[GOAL]
case hx
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ 2
[PROOFSTEP]
positivity
[GOAL]
case hx
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ 1 + ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 2 ^ (r / 2) * ((sqrt 2 * sqrt (1 + ‖x‖ ^ 2)) ^ r)⁻¹ ≤ 2 ^ (r / 2) * ((1 + ‖x‖) ^ r)⁻¹
[PROOFSTEP]
gcongr
[GOAL]
case h.h.h₁
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 1 + ‖x‖ ≤ sqrt 2 * sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
apply one_add_norm_le_sqrt_two_mul_sqrt
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 2 ^ (r / 2) * ((1 + ‖x‖) ^ r)⁻¹ = 2 ^ (r / 2) * (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
rw [rpow_neg]
[GOAL]
case hx
E : Type u_1
inst✝ : NormedAddCommGroup E
r : ℝ
x : E
hr : 0 < r
⊢ 0 ≤ 1 + ‖x‖
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 0 < t
x : E
⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ ‖x‖ ≤ t ^ (-r⁻¹) - 1
[PROOFSTEP]
rw [le_sub_iff_add_le', neg_inv]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 0 < t
x : E
⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ 1 + ‖x‖ ≤ t ^ (-r)⁻¹
[PROOFSTEP]
exact (Real.le_rpow_inv_iff_of_neg (by positivity) ht (neg_lt_zero.mpr hr)).symm
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 0 < t
x : E
⊢ 0 < 1 + ‖x‖
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 1 < t
⊢ Metric.closedBall 0 (t ^ (-r⁻¹) - 1) = ∅
[PROOFSTEP]
rw [Metric.closedBall_eq_empty, sub_neg]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 1 < t
⊢ t ^ (-r⁻¹) < 1
[PROOFSTEP]
exact Real.rpow_lt_one_of_one_lt_of_neg ht (by simp only [hr, Right.neg_neg_iff, inv_pos])
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
r t : ℝ
hr : 0 < r
ht : 1 < t
⊢ -r⁻¹ < 0
[PROOFSTEP]
simp only [hr, Right.neg_neg_iff, inv_pos]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤
[PROOFSTEP]
have hr : 0 < r := lt_of_le_of_lt n.cast_nonneg hnr
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤
[PROOFSTEP]
have h_int : ∀ x : ℝ, x ∈ Ioc (0 : ℝ) 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * n))) :=
fun x hx ↦ by
apply ENNReal.ofReal_le_ofReal
rw [← neg_mul, rpow_mul hx.1.le, rpow_nat_cast]
refine' pow_le_pow_of_le_left _ (by simp only [sub_le_self_iff, zero_le_one]) n
rw [le_sub_iff_add_le', add_zero]
refine' Real.one_le_rpow_of_pos_of_le_one_of_nonpos hx.1 hx.2 _
rw [Right.neg_nonpos_iff, inv_nonneg]
exact hr.le
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
[PROOFSTEP]
apply ENNReal.ofReal_le_ofReal
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ (x ^ (-r⁻¹) - 1) ^ n ≤ x ^ (-(r⁻¹ * ↑n))
[PROOFSTEP]
rw [← neg_mul, rpow_mul hx.1.le, rpow_nat_cast]
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ (x ^ (-r⁻¹) - 1) ^ n ≤ (x ^ (-r⁻¹)) ^ n
[PROOFSTEP]
refine' pow_le_pow_of_le_left _ (by simp only [sub_le_self_iff, zero_le_one]) n
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ x ^ (-r⁻¹) - 1 ≤ x ^ (-r⁻¹)
[PROOFSTEP]
simp only [sub_le_self_iff, zero_le_one]
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ 0 ≤ x ^ (-r⁻¹) - 1
[PROOFSTEP]
rw [le_sub_iff_add_le', add_zero]
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ 1 ≤ x ^ (-r⁻¹)
[PROOFSTEP]
refine' Real.one_le_rpow_of_pos_of_le_one_of_nonpos hx.1 hx.2 _
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ -r⁻¹ ≤ 0
[PROOFSTEP]
rw [Right.neg_nonpos_iff, inv_nonneg]
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
x : ℝ
hx : x ∈ Ioc 0 1
⊢ 0 ≤ r
[PROOFSTEP]
exact hr.le
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤
[PROOFSTEP]
refine' lt_of_le_of_lt (set_lintegral_mono' measurableSet_Ioc h_int) _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) < ⊤
[PROOFSTEP]
refine' IntegrableOn.set_lintegral_lt_top _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
⊢ IntegrableOn (fun x => x ^ (-(r⁻¹ * ↑n))) (Ioc 0 1)
[PROOFSTEP]
rw [← intervalIntegrable_iff_integrable_Ioc_of_le zero_le_one]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
⊢ IntervalIntegrable (fun x => x ^ (-(r⁻¹ * ↑n))) volume 0 1
[PROOFSTEP]
apply intervalIntegral.intervalIntegrable_rpow'
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
r : ℝ
n : ℕ
hnr : ↑n < r
hr : 0 < r
h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n)))
⊢ -1 < -(r⁻¹ * ↑n)
[PROOFSTEP]
rwa [neg_lt_neg_iff, inv_mul_lt_iff' hr, one_mul]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤
[PROOFSTEP]
have hr : 0 < r := lt_of_le_of_lt (finrank ℝ E).cast_nonneg hnr
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤
[PROOFSTEP]
have h_meas : Measurable fun ω : E => (1 + ‖ω‖) ^ (-r) :=
-- porting note: was `by measurability`(measurable_norm.const_add _).pow_const _
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤
[PROOFSTEP]
have h_pos : ∀ x : E, 0 ≤ (1 + ‖x‖) ^ (-r) := fun x ↦ by positivity
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
x : E
⊢ 0 ≤ (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤
[PROOFSTEP]
rw [lintegral_eq_lintegral_meas_le volume h_pos h_meas]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
⊢ ∫⁻ (t : ℝ) in Ioi 0, ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} < ⊤
[PROOFSTEP]
have h_int : ∀ t, 0 < t → volume {a : E | t ≤ (1 + ‖a‖) ^ (-r)} = volume (Metric.closedBall (0 : E) (t ^ (-r⁻¹) - 1)) :=
fun t ht ↦ by
congr 1
ext x
simp only [mem_setOf_eq, mem_closedBall_zero_iff]
exact le_rpow_one_add_norm_iff_norm_le hr (mem_Ioi.mp ht) x
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
t : ℝ
ht : 0 < t
⊢ ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
t : ℝ
ht : 0 < t
⊢ {a | t ≤ (1 + ‖a‖) ^ (-r)} = Metric.closedBall 0 (t ^ (-r⁻¹) - 1)
[PROOFSTEP]
ext x
[GOAL]
case e_a.h
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
t : ℝ
ht : 0 < t
x : E
⊢ x ∈ {a | t ≤ (1 + ‖a‖) ^ (-r)} ↔ x ∈ Metric.closedBall 0 (t ^ (-r⁻¹) - 1)
[PROOFSTEP]
simp only [mem_setOf_eq, mem_closedBall_zero_iff]
[GOAL]
case e_a.h
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
t : ℝ
ht : 0 < t
x : E
⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ ‖x‖ ≤ t ^ (-r⁻¹) - 1
[PROOFSTEP]
exact le_rpow_one_add_norm_iff_norm_le hr (mem_Ioi.mp ht) x
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
⊢ ∫⁻ (t : ℝ) in Ioi 0, ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} < ⊤
[PROOFSTEP]
rw [set_lintegral_congr_fun measurableSet_Ioi (eventually_of_forall h_int)]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
⊢ ∫⁻ (x : ℝ) in Ioi 0, ↑↑volume (Metric.closedBall 0 (x ^ (-r⁻¹) - 1)) < ⊤
[PROOFSTEP]
set f := fun t : ℝ ↦ volume (Metric.closedBall (0 : E) (t ^ (-r⁻¹) - 1))
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
⊢ lintegral (Measure.restrict volume (Ioi 0)) f < ⊤
[PROOFSTEP]
set mB :=
volume
(Metric.ball (0 : E) 1)
-- the next two inequalities are in fact equalities but we don't need that
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
⊢ lintegral (Measure.restrict volume (Ioi 0)) f < ⊤
[PROOFSTEP]
calc
∫⁻ t in Ioi 0, f t ≤ ∫⁻ t in Ioc 0 1 ∪ Ioi 1, f t := lintegral_mono_set Ioi_subset_Ioc_union_Ioi
_ ≤ (∫⁻ t in Ioc 0 1, f t) + ∫⁻ t in Ioi 1, f t := (lintegral_union_le _ _ _)
_ < ∞ := ENNReal.add_lt_top.2 ⟨?_, ?_⟩
[GOAL]
case calc_1
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
⊢ ∫⁻ (t : ℝ) in Ioc 0 1, f t < ⊤
[PROOFSTEP]
have h_int' : ∀ t ∈ Ioc (0 : ℝ) 1, f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB := fun t ht ↦
by
refine' volume.addHaar_closedBall (0 : E) _
rw [sub_nonneg]
exact Real.one_le_rpow_of_pos_of_le_one_of_nonpos ht.1 ht.2 (by simp [hr.le])
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
t : ℝ
ht : t ∈ Ioc 0 1
⊢ f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB
[PROOFSTEP]
refine' volume.addHaar_closedBall (0 : E) _
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
t : ℝ
ht : t ∈ Ioc 0 1
⊢ 0 ≤ t ^ (-r⁻¹) - 1
[PROOFSTEP]
rw [sub_nonneg]
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
t : ℝ
ht : t ∈ Ioc 0 1
⊢ 1 ≤ t ^ (-r⁻¹)
[PROOFSTEP]
exact Real.one_le_rpow_of_pos_of_le_one_of_nonpos ht.1 ht.2 (by simp [hr.le])
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
t : ℝ
ht : t ∈ Ioc 0 1
⊢ -r⁻¹ ≤ 0
[PROOFSTEP]
simp [hr.le]
[GOAL]
case calc_1
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
h_int' : ∀ (t : ℝ), t ∈ Ioc 0 1 → f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB
⊢ ∫⁻ (t : ℝ) in Ioc 0 1, f t < ⊤
[PROOFSTEP]
rw [set_lintegral_congr_fun measurableSet_Ioc (ae_of_all _ h_int'), lintegral_mul_const' _ _ measure_ball_lt_top.ne]
[GOAL]
case calc_1
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
h_int' : ∀ (t : ℝ), t ∈ Ioc 0 1 → f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB
⊢ (∫⁻ (a : ℝ) in Ioc 0 1, ENNReal.ofReal ((a ^ (-r⁻¹) - 1) ^ finrank ℝ E)) * ↑↑volume (Metric.ball 0 1) < ⊤
[PROOFSTEP]
exact ENNReal.mul_lt_top (finite_integral_rpow_sub_one_pow_aux (finrank ℝ E) hnr).ne measure_ball_lt_top.ne
[GOAL]
case calc_2
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
⊢ ∫⁻ (t : ℝ) in Ioi 1, f t < ⊤
[PROOFSTEP]
have h_int'' : ∀ t ∈ Ioi (1 : ℝ), f t = 0 := fun t ht => by
simp only [closedBall_rpow_sub_one_eq_empty_aux E hr ht, measure_empty]
-- The integral over the constant zero function is finite:
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
t : ℝ
ht : t ∈ Ioi 1
⊢ f t = 0
[PROOFSTEP]
simp only [closedBall_rpow_sub_one_eq_empty_aux E hr ht, measure_empty]
-- The integral over the constant zero function is finite:
[GOAL]
case calc_2
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
h_int'' : ∀ (t : ℝ), t ∈ Ioi 1 → f t = 0
⊢ ∫⁻ (t : ℝ) in Ioi 1, f t < ⊤
[PROOFSTEP]
rw [set_lintegral_congr_fun measurableSet_Ioi (ae_of_all volume <| h_int''), lintegral_const 0, zero_mul]
[GOAL]
case calc_2
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r)
h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r)
h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1))
mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1)
h_int'' : ∀ (t : ℝ), t ∈ Ioi 1 → f t = 0
⊢ 0 < ⊤
[PROOFSTEP]
exact WithTop.zero_lt_top
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
⊢ Integrable fun x => (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
constructor
[GOAL]
case left
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
⊢ AEStronglyMeasurable (fun x => (1 + ‖x‖) ^ (-r)) volume
[PROOFSTEP]
exact ((measurable_norm.const_add _).pow_const _).aestronglyMeasurable
[GOAL]
case right
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
⊢ HasFiniteIntegral fun x => (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
have : (∫⁻ a : E, ‖(1 + ‖a‖) ^ (-r)‖₊) = ∫⁻ a : E, ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) :=
lintegral_nnnorm_eq_of_nonneg fun _ => rpow_nonneg_of_nonneg (by positivity) _
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
x✝ : E
⊢ 0 ≤ 1 + ‖x✝‖
[PROOFSTEP]
positivity
[GOAL]
case right
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
this : ∫⁻ (a : E), ↑‖(1 + ‖a‖) ^ (-r)‖₊ = ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r))
⊢ HasFiniteIntegral fun x => (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
rw [HasFiniteIntegral, this]
[GOAL]
case right
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
this : ∫⁻ (a : E), ↑‖(1 + ‖a‖) ^ (-r)‖₊ = ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r))
⊢ ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) < ⊤
[PROOFSTEP]
exact finite_integral_one_add_norm hnr
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
⊢ Integrable fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2)
[PROOFSTEP]
have hr : 0 < r := lt_of_le_of_lt (finrank ℝ E).cast_nonneg hnr
[GOAL]
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
⊢ Integrable fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2)
[PROOFSTEP]
refine ((integrable_one_add_norm hnr).const_mul <| (2 : ℝ) ^ (r / 2)).mono' ?_ (eventually_of_forall fun x => ?_)
[GOAL]
case refine_1
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
⊢ AEStronglyMeasurable (fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2)) volume
[PROOFSTEP]
exact (((measurable_id.norm.pow_const _).const_add _).pow_const _).aestronglyMeasurable
[GOAL]
case refine_2
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
x : E
⊢ ‖(1 + ‖x‖ ^ 2) ^ (-r / 2)‖ ≤ 2 ^ (r / 2) * (1 + ‖x‖) ^ (-r)
[PROOFSTEP]
refine (abs_of_pos ?_).trans_le (rpow_neg_one_add_norm_sq_le x hr)
[GOAL]
case refine_2
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : FiniteDimensional ℝ E
inst✝² : MeasureSpace E
inst✝¹ : BorelSpace E
inst✝ : Measure.IsAddHaarMeasure volume
r : ℝ
hnr : ↑(finrank ℝ E) < r
hr : 0 < r
x : E
⊢ 0 < (1 + ‖x‖ ^ 2) ^ (-r / 2)
[PROOFSTEP]
positivity
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.JapaneseBracket", "llama_tokens": 15060} |
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P
[PROOFSTEP]
by_cases h : P = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : P = 0
⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P
[PROOFSTEP]
simp [h, IsEquivalent.refl]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : ¬P = 0
⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P
[PROOFSTEP]
simp only [Polynomial.eval_eq_sum_range, sum_range_succ]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : ¬P = 0
⊢ (fun x =>
(Finset.sum (range (natDegree P)) fun i => coeff P i * x ^ i) + coeff P (natDegree P) * x ^ natDegree P) ~[atTop]
fun x => leadingCoeff P * x ^ natDegree P
[PROOFSTEP]
exact
IsLittleO.add_isEquivalent
(IsLittleO.sum fun i hi =>
IsLittleO.const_mul_left
((IsLittleO.const_mul_right fun hz => h <| leadingCoeff_eq_zero.mp hz) <|
isLittleO_pow_pow_atTop_of_lt (mem_range.mp hi))
_)
IsEquivalent.refl
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
⊢ Tendsto (fun x => eval x P) atTop atTop ↔ 0 < degree P ∧ 0 ≤ leadingCoeff P
[PROOFSTEP]
refine' ⟨fun h => _, fun h => tendsto_atTop_of_leadingCoeff_nonneg P h.1 h.2⟩
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : Tendsto (fun x => eval x P) atTop atTop
⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P
[PROOFSTEP]
have : Tendsto (fun x => P.leadingCoeff * x ^ P.natDegree) atTop atTop := (isEquivalent_atTop_lead P).tendsto_atTop h
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : Tendsto (fun x => eval x P) atTop atTop
this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop atTop
⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P
[PROOFSTEP]
rw [tendsto_const_mul_pow_atTop_iff, ← pos_iff_ne_zero, natDegree_pos_iff_degree_pos] at this
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : Tendsto (fun x => eval x P) atTop atTop
this : 0 < degree P ∧ 0 < leadingCoeff P
⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P
[PROOFSTEP]
exact ⟨this.1, this.2.le⟩
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
⊢ Tendsto (fun x => eval x P) atTop atBot ↔ 0 < degree P ∧ leadingCoeff P ≤ 0
[PROOFSTEP]
simp only [← tendsto_neg_atTop_iff, ← eval_neg, tendsto_atTop_iff_leadingCoeff_nonneg, degree_neg, leadingCoeff_neg,
neg_nonneg]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : 0 < degree P
⊢ Tendsto (fun x => |eval x P|) atTop atTop
[PROOFSTEP]
cases' le_total 0 P.leadingCoeff with hP hP
[GOAL]
case inl
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : 0 < degree P
hP : 0 ≤ leadingCoeff P
⊢ Tendsto (fun x => |eval x P|) atTop atTop
[PROOFSTEP]
exact tendsto_abs_atTop_atTop.comp (P.tendsto_atTop_of_leadingCoeff_nonneg hdeg hP)
[GOAL]
case inr
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : 0 < degree P
hP : leadingCoeff P ≤ 0
⊢ Tendsto (fun x => |eval x P|) atTop atTop
[PROOFSTEP]
exact tendsto_abs_atBot_atTop.comp (P.tendsto_atBot_of_leadingCoeff_nonpos hdeg hP)
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
⊢ (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|) ↔ degree P ≤ 0
[PROOFSTEP]
refine'
⟨fun h => _, fun h =>
⟨|P.coeff 0|,
eventually_map.mpr
(eventually_of_forall
(forall_imp (fun _ => le_of_eq) fun x =>
congr_arg abs <| _root_.trans (congr_arg (eval x) (eq_C_of_degree_le_zero h)) eval_C))⟩⟩
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|
⊢ degree P ≤ 0
[PROOFSTEP]
contrapose! h
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : 0 < degree P
⊢ ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|
[PROOFSTEP]
exact not_isBoundedUnder_of_tendsto_atTop (abs_tendsto_atTop P h)
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
⊢ Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
have := P.isEquivalent_atTop_lead.tendsto_nhds h
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c)
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
by_cases hP : P.leadingCoeff = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c)
hP : leadingCoeff P = 0
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
simp only [hP, zero_mul, tendsto_const_nhds_iff] at this
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
hP : leadingCoeff P = 0
this : 0 = c
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
refine' ⟨_root_.trans hP this, by simp [leadingCoeff_eq_zero.1 hP]⟩
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
hP : leadingCoeff P = 0
this : 0 = c
⊢ degree P ≤ 0
[PROOFSTEP]
simp [leadingCoeff_eq_zero.1 hP]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c)
hP : ¬leadingCoeff P = 0
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
rw [tendsto_const_mul_pow_nhds_iff hP, natDegree_eq_zero_iff_degree_le_zero] at this
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : Tendsto (fun x => eval x P) atTop (𝓝 c)
this : degree P ≤ 0 ∧ leadingCoeff P = c
hP : ¬leadingCoeff P = 0
⊢ leadingCoeff P = c ∧ degree P ≤ 0
[PROOFSTEP]
exact this.symm
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : leadingCoeff P = c ∧ degree P ≤ 0
⊢ Tendsto (fun x => eval x P) atTop (𝓝 c)
[PROOFSTEP]
refine' P.isEquivalent_atTop_lead.symm.tendsto_nhds _
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : leadingCoeff P = c ∧ degree P ≤ 0
⊢ Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c)
[PROOFSTEP]
have : P.natDegree = 0 := natDegree_eq_zero_iff_degree_le_zero.2 h.2
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : leadingCoeff P = c ∧ degree P ≤ 0
this : natDegree P = 0
⊢ Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c)
[PROOFSTEP]
simp only [h.1, this, pow_zero, mul_one]
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
c : 𝕜
h : leadingCoeff P = c ∧ degree P ≤ 0
this : natDegree P = 0
⊢ Tendsto (fun x => c) atTop (𝓝 c)
[PROOFSTEP]
exact tendsto_const_nhds
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x =>
leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))
[PROOFSTEP]
by_cases hP : P = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hP : P = 0
⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x =>
leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))
[PROOFSTEP]
simp [hP, IsEquivalent.refl]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hP : ¬P = 0
⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x =>
leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))
[PROOFSTEP]
by_cases hQ : Q = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hP : ¬P = 0
hQ : Q = 0
⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x =>
leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))
[PROOFSTEP]
simp [hQ, IsEquivalent.refl]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hP : ¬P = 0
hQ : ¬Q = 0
⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x =>
leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))
[PROOFSTEP]
refine'
(P.isEquivalent_atTop_lead.symm.div Q.isEquivalent_atTop_lead.symm).symm.trans
(EventuallyEq.isEquivalent ((eventually_gt_atTop 0).mono fun x hx => _))
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hP : ¬P = 0
hQ : ¬Q = 0
x : 𝕜
hx : 0 < x
⊢ (fun x => leadingCoeff P * x ^ natDegree P / (leadingCoeff Q * x ^ natDegree Q)) x =
(fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) x
[PROOFSTEP]
simp [← div_mul_div_comm, hP, hQ, zpow_sub₀ hx.ne.symm]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P < degree Q
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
[PROOFSTEP]
by_cases hP : P = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P < degree Q
hP : P = 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
[PROOFSTEP]
simp [hP, tendsto_const_nhds]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P < degree Q
hP : ¬P = 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
[PROOFSTEP]
rw [← natDegree_lt_natDegree_iff hP] at hdeg
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree P < natDegree Q
hP : ¬P = 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
[PROOFSTEP]
refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree P < natDegree Q
hP : ¬P = 0
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 0)
[PROOFSTEP]
rw [← mul_zero]
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree P < natDegree Q
hP : ¬P = 0
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 (?neg✝ * 0))
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree P < natDegree Q
hP : ¬P = 0
⊢ 𝕜
[PROOFSTEP]
refine' (tendsto_zpow_atTop_zero _).const_mul _
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree P < natDegree Q
hP : ¬P = 0
⊢ ↑(natDegree P) - ↑(natDegree Q) < 0
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ↔ degree P < degree Q
[PROOFSTEP]
refine' ⟨fun h => _, div_tendsto_zero_of_degree_lt P Q⟩
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
⊢ degree P < degree Q
[PROOFSTEP]
by_cases hPQ : P.leadingCoeff / Q.leadingCoeff = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : leadingCoeff P / leadingCoeff Q = 0
⊢ degree P < degree Q
[PROOFSTEP]
simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : leadingCoeff P = 0 ∨ leadingCoeff Q = 0
⊢ degree P < degree Q
[PROOFSTEP]
cases' hPQ with hP0 hQ0
[GOAL]
case pos.inl
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hP0 : leadingCoeff P = 0
⊢ degree P < degree Q
[PROOFSTEP]
rw [leadingCoeff_eq_zero.1 hP0, degree_zero]
[GOAL]
case pos.inl
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hP0 : leadingCoeff P = 0
⊢ ⊥ < degree Q
[PROOFSTEP]
exact bot_lt_iff_ne_bot.2 fun hQ' => hQ (degree_eq_bot.1 hQ')
[GOAL]
case pos.inr
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hQ0 : leadingCoeff Q = 0
⊢ degree P < degree Q
[PROOFSTEP]
exact absurd (leadingCoeff_eq_zero.1 hQ0) hQ
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
⊢ degree P < degree Q
[PROOFSTEP]
have := (isEquivalent_atTop_div P Q).tendsto_nhds h
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
this : Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 0)
⊢ degree P < degree Q
[PROOFSTEP]
rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
this :
↑(natDegree P) - ↑(natDegree Q) = 0 ∧ leadingCoeff P / leadingCoeff Q = 0 ∨
↑(natDegree P) - ↑(natDegree Q) < 0 ∧ 0 = 0
⊢ degree P < degree Q
[PROOFSTEP]
cases' this with h h
[GOAL]
case neg.inl
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
h : ↑(natDegree P) - ↑(natDegree Q) = 0 ∧ leadingCoeff P / leadingCoeff Q = 0
⊢ degree P < degree Q
[PROOFSTEP]
exact absurd h.2 hPQ
[GOAL]
case neg.inr
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
h : ↑(natDegree P) - ↑(natDegree Q) < 0 ∧ 0 = 0
⊢ degree P < degree Q
[PROOFSTEP]
rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h
[GOAL]
case neg.inr
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hQ : Q ≠ 0
h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0)
hPQ : ¬leadingCoeff P / leadingCoeff Q = 0
h : natDegree P < natDegree Q ∧ 0 = 0
⊢ degree P < degree Q
[PROOFSTEP]
exact degree_lt_degree h.1
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P = degree Q
⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 (leadingCoeff P / leadingCoeff Q))
[PROOFSTEP]
refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P = degree Q
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop
(𝓝 (leadingCoeff P / leadingCoeff Q))
[PROOFSTEP]
rw [show (P.natDegree : ℤ) = Q.natDegree by simp [hdeg, natDegree]]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P = degree Q
⊢ ↑(natDegree P) = ↑(natDegree Q)
[PROOFSTEP]
simp [hdeg, natDegree]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree P = degree Q
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree Q) - ↑(natDegree Q))) atTop
(𝓝 (leadingCoeff P / leadingCoeff Q))
[PROOFSTEP]
simp [tendsto_const_nhds]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop
[PROOFSTEP]
have hQ : Q ≠ 0 := fun h => by
simp only [h, div_zero, leadingCoeff_zero] at hpos
exact hpos.false
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
h : Q = 0
⊢ False
[PROOFSTEP]
simp only [h, div_zero, leadingCoeff_zero] at hpos
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
h : Q = 0
hpos : 0 < 0
⊢ False
[PROOFSTEP]
exact hpos.false
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
hQ : Q ≠ 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop
[PROOFSTEP]
rw [← natDegree_lt_natDegree_iff hQ] at hdeg
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
hQ : Q ≠ 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop
[PROOFSTEP]
refine' (isEquivalent_atTop_div P Q).symm.tendsto_atTop _
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
hQ : Q ≠ 0
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop
[PROOFSTEP]
apply Tendsto.const_mul_atTop hpos
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
hQ : Q ≠ 0
⊢ Tendsto (fun x => x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop
[PROOFSTEP]
apply tendsto_zpow_atTop_atTop
[GOAL]
case hn
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hpos : 0 < leadingCoeff P / leadingCoeff Q
hQ : Q ≠ 0
⊢ 0 < ↑(natDegree P) - ↑(natDegree Q)
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hneg : leadingCoeff P / leadingCoeff Q < 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot
[PROOFSTEP]
have hQ : Q ≠ 0 := fun h => by
simp only [h, div_zero, leadingCoeff_zero] at hneg
exact hneg.false
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hneg : leadingCoeff P / leadingCoeff Q < 0
h : Q = 0
⊢ False
[PROOFSTEP]
simp only [h, div_zero, leadingCoeff_zero] at hneg
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
h : Q = 0
hneg : 0 < 0
⊢ False
[PROOFSTEP]
exact hneg.false
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hneg : leadingCoeff P / leadingCoeff Q < 0
hQ : Q ≠ 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot
[PROOFSTEP]
rw [← natDegree_lt_natDegree_iff hQ] at hdeg
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hneg : leadingCoeff P / leadingCoeff Q < 0
hQ : Q ≠ 0
⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot
[PROOFSTEP]
refine' (isEquivalent_atTop_div P Q).symm.tendsto_atBot _
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hneg : leadingCoeff P / leadingCoeff Q < 0
hQ : Q ≠ 0
⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atBot
[PROOFSTEP]
apply Tendsto.neg_const_mul_atTop hneg
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hneg : leadingCoeff P / leadingCoeff Q < 0
hQ : Q ≠ 0
⊢ Tendsto (fun x => x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop
[PROOFSTEP]
apply tendsto_zpow_atTop_atTop
[GOAL]
case hn
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : natDegree Q < natDegree P
hneg : leadingCoeff P / leadingCoeff Q < 0
hQ : Q ≠ 0
⊢ 0 < ↑(natDegree P) - ↑(natDegree Q)
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hQ : Q ≠ 0
⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop
[PROOFSTEP]
by_cases h : 0 ≤ P.leadingCoeff / Q.leadingCoeff
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hQ : Q ≠ 0
h : 0 ≤ leadingCoeff P / leadingCoeff Q
⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop
[PROOFSTEP]
exact tendsto_abs_atTop_atTop.comp (P.div_tendsto_atTop_of_degree_gt Q hdeg hQ h)
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hQ : Q ≠ 0
h : ¬0 ≤ leadingCoeff P / leadingCoeff Q
⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
hdeg : degree Q < degree P
hQ : Q ≠ 0
h : leadingCoeff P / leadingCoeff Q < 0
⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop
[PROOFSTEP]
exact tendsto_abs_atBot_atTop.comp (P.div_tendsto_atBot_of_degree_gt Q hdeg hQ h.le)
[GOAL]
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : degree P ≤ degree Q
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
by_cases hp : P = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : degree P ≤ degree Q
hp : P = 0
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
simpa [hp] using isBigO_zero (fun x => eval x Q) atTop
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : degree P ≤ degree Q
hp : ¬P = 0
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
have hq : Q ≠ 0 := ne_zero_of_degree_ge_degree h hp
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : degree P ≤ degree Q
hp : ¬P = 0
hq : Q ≠ 0
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
have hPQ : ∀ᶠ x : 𝕜 in atTop, eval x Q = 0 → eval x P = 0 :=
Filter.mem_of_superset (Polynomial.eventually_no_roots Q hq) fun x h h' => absurd h' h
[GOAL]
case neg
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h : degree P ≤ degree Q
hp : ¬P = 0
hq : Q ≠ 0
hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
cases' le_iff_lt_or_eq.mp h with h h
[GOAL]
case neg.inl
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h✝ : degree P ≤ degree Q
hp : ¬P = 0
hq : Q ≠ 0
hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0
h : degree P < degree Q
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
exact isBigO_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h)
[GOAL]
case neg.inr
𝕜 : Type u_1
inst✝¹ : NormedLinearOrderedField 𝕜
P Q : 𝕜[X]
inst✝ : OrderTopology 𝕜
h✝ : degree P ≤ degree Q
hp : ¬P = 0
hq : Q ≠ 0
hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0
h : degree P = degree Q
⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q
[PROOFSTEP]
exact isBigO_of_div_tendsto_nhds hPQ _ (div_tendsto_leadingCoeff_div_of_degree_eq P Q h)
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Polynomials", "llama_tokens": 11879} |
[GOAL]
z✝ y x✝ : ℝ
x z : ℂ
hz : ‖z‖ ≤ 1
⊢ ‖exp (x + z) - exp x - z * exp x‖ = ‖exp x * (exp z - 1 - z)‖
[PROOFSTEP]
congr
[GOAL]
case e_a
z✝ y x✝ : ℝ
x z : ℂ
hz : ‖z‖ ≤ 1
⊢ exp (x + z) - exp x - z * exp x = exp x * (exp z - 1 - z)
[PROOFSTEP]
rw [exp_add]
[GOAL]
case e_a
z✝ y x✝ : ℝ
x z : ℂ
hz : ‖z‖ ≤ 1
⊢ exp x * exp z - exp x - z * exp x = exp x * (exp z - 1 - z)
[PROOFSTEP]
ring
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
have hy_eq : y = x + (y - x) := by abel
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
⊢ y = x + (y - x)
[PROOFSTEP]
abel
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
⊢ y = x + (y - x)
[PROOFSTEP]
abel
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
have hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ := by
rw [pow_two]
exact mul_le_mul hyx.le le_rfl (norm_nonneg _) hr_nonneg
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
⊢ ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
[PROOFSTEP]
rw [pow_two]
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
⊢ ‖y - x‖ * ‖y - x‖ ≤ r * ‖y - x‖
[PROOFSTEP]
exact mul_le_mul hyx.le le_rfl (norm_nonneg _) hr_nonneg
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
have h_sq : ∀ z, ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 :=
by
intro z hz
have : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 := exp_bound_sq x z hz
rw [← sub_le_iff_le_add', ← norm_smul z]
exact (norm_sub_norm_le _ _).trans this
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
⊢ ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
[PROOFSTEP]
intro z hz
[GOAL]
z✝ y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
z : ℂ
hz : ‖z‖ ≤ 1
⊢ ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
[PROOFSTEP]
have : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 := exp_bound_sq x z hz
[GOAL]
z✝ y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
z : ℂ
hz : ‖z‖ ≤ 1
this : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2
⊢ ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
[PROOFSTEP]
rw [← sub_le_iff_le_add', ← norm_smul z]
[GOAL]
z✝ y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
z : ℂ
hz : ‖z‖ ≤ 1
this : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2
⊢ ‖exp (x + z) - exp x‖ - ‖z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2
[PROOFSTEP]
exact (norm_sub_norm_le _ _).trans this
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
calc
‖exp y - exp x‖ = ‖exp (x + (y - x)) - exp x‖ := by nth_rw 1 [hy_eq]
_ ≤ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * ‖y - x‖ ^ 2 := (h_sq (y - x) (hyx.le.trans hr_le))
_ ≤ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * (r * ‖y - x‖) :=
(add_le_add_left (mul_le_mul le_rfl hyx_sq_le (sq_nonneg _) (norm_nonneg _)) _)
_ = (1 + r) * ‖exp x‖ * ‖y - x‖ := by ring
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
⊢ ‖exp y - exp x‖ = ‖exp (x + (y - x)) - exp x‖
[PROOFSTEP]
nth_rw 1 [hy_eq]
[GOAL]
z y✝ x✝ r : ℝ
hr_nonneg : 0 ≤ r
hr_le : r ≤ 1
x y : ℂ
hyx : ‖y - x‖ < r
hy_eq : y = x + (y - x)
hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖
h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2
⊢ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * (r * ‖y - x‖) = (1 + r) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
ring
[GOAL]
z y✝ x✝ : ℝ
x y : ℂ
⊢ dist y x < 1 → dist (exp y) (exp x) ≤ 2 * ‖exp x‖ * dist y x
[PROOFSTEP]
convert locally_lipschitz_exp zero_le_one le_rfl x y using 2
[GOAL]
case h'.h.e'_4
z y✝ x✝ : ℝ
x y : ℂ
a✝ : ‖y - x‖ < 1
⊢ 2 * ‖exp x‖ * dist y x = (1 + 1) * ‖exp x‖ * ‖y - x‖
[PROOFSTEP]
congr
[GOAL]
case h'.h.e'_4.e_a.e_a
z y✝ x✝ : ℝ
x y : ℂ
a✝ : ‖y - x‖ < 1
⊢ 2 = 1 + 1
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
x✝ y z : ℝ
l : Filter α
x : ℝ
⊢ exp (x / 2) = sqrt (exp x)
[PROOFSTEP]
rw [eq_comm, sqrt_eq_iff_sq_eq, sq, ← exp_add, add_halves]
[GOAL]
case hx
α : Type u_1
x✝ y z : ℝ
l : Filter α
x : ℝ
⊢ 0 ≤ exp x
[PROOFSTEP]
exact (exp_pos _).le
[GOAL]
case hy
α : Type u_1
x✝ y z : ℝ
l : Filter α
x : ℝ
⊢ 0 ≤ exp (x / 2)
[PROOFSTEP]
exact (exp_pos _).le
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Tendsto exp atTop atTop
[PROOFSTEP]
have A : Tendsto (fun x : ℝ => x + 1) atTop atTop := tendsto_atTop_add_const_right atTop 1 tendsto_id
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
A : Tendsto (fun x => x + 1) atTop atTop
⊢ Tendsto exp atTop atTop
[PROOFSTEP]
have B : ∀ᶠ x in atTop, x + 1 ≤ exp x := eventually_atTop.2 ⟨0, fun x _ => add_one_le_exp x⟩
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
A : Tendsto (fun x => x + 1) atTop atTop
B : ∀ᶠ (x : ℝ) in atTop, x + 1 ≤ exp x
⊢ Tendsto exp atTop atTop
[PROOFSTEP]
exact tendsto_atTop_mono' atTop B A
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Tendsto exp (𝓝 0) (𝓝 1)
[PROOFSTEP]
convert continuous_exp.tendsto 0
[GOAL]
case h.e'_5.h.e'_3
α : Type u_1
x y z : ℝ
l : Filter α
⊢ 1 = exp 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
⊢ Tendsto (fun x => exp x / x ^ n) atTop atTop
[PROOFSTEP]
refine' (atTop_basis_Ioi.tendsto_iff (atTop_basis' 1)).2 fun C hC₁ => _
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
have hC₀ : 0 < C := zero_lt_one.trans_le hC₁
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
have : 0 < (exp 1 * C)⁻¹ := inv_pos.2 (mul_pos (exp_pos _) hC₀)
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
obtain ⟨N, hN⟩ : ∃ N : ℕ, ∀ k ≥ N, (↑k : ℝ) ^ n / exp 1 ^ k < (exp 1 * C)⁻¹ :=
eventually_atTop.1
((tendsto_pow_const_div_const_pow_of_one_lt n (one_lt_exp_iff.2 zero_lt_one)).eventually (gt_mem_nhds this))
[GOAL]
case intro
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n / exp 1 ^ k < (exp 1 * C)⁻¹
⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
simp only [← exp_nat_mul, mul_one, div_lt_iff, exp_pos, ← div_eq_inv_mul] at hN
[GOAL]
case intro
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
refine' ⟨N, trivial, fun x hx => _⟩
[GOAL]
case intro
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : x ∈ Set.Ioi ↑N
⊢ exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
rw [Set.mem_Ioi] at hx
[GOAL]
case intro
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
⊢ exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
have hx₀ : 0 < x := (Nat.cast_nonneg N).trans_lt hx
[GOAL]
case intro
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
hx₀ : 0 < x
⊢ exp x / x ^ n ∈ Set.Ici C
[PROOFSTEP]
rw [Set.mem_Ici, le_div_iff (pow_pos hx₀ _), ← le_div_iff' hC₀]
[GOAL]
case intro
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
hx₀ : 0 < x
⊢ x ^ n ≤ exp x / C
[PROOFSTEP]
calc
x ^ n ≤ ⌈x⌉₊ ^ n := by exact_mod_cast pow_le_pow_of_le_left hx₀.le (Nat.le_ceil _) _
_ ≤ exp ⌈x⌉₊ / (exp 1 * C) := by exact_mod_cast (hN _ (Nat.lt_ceil.2 hx).le).le
_ ≤ exp (x + 1) / (exp 1 * C) :=
(div_le_div_of_le (mul_pos (exp_pos _) hC₀).le (exp_le_exp.2 <| (Nat.ceil_lt_add_one hx₀.le).le))
_ = exp x / C := by rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne']
[GOAL]
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
hx₀ : 0 < x
⊢ x ^ n ≤ ↑(⌈x⌉₊ ^ n)
[PROOFSTEP]
exact_mod_cast pow_le_pow_of_le_left hx₀.le (Nat.le_ceil _) _
[GOAL]
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
hx₀ : 0 < x
⊢ ↑(⌈x⌉₊ ^ n) ≤ exp ↑⌈x⌉₊ / (exp 1 * C)
[PROOFSTEP]
exact_mod_cast (hN _ (Nat.lt_ceil.2 hx).le).le
[GOAL]
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
C : ℝ
hC₁ : 1 ≤ C
hC₀ : 0 < C
this : 0 < (exp 1 * C)⁻¹
N : ℕ
hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C)
x : ℝ
hx : ↑N < x
hx₀ : 0 < x
⊢ exp (x + 1) / (exp 1 * C) = exp x / C
[PROOFSTEP]
rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne']
[GOAL]
α : Type u_1
x✝ y z : ℝ
l : Filter α
n : ℕ
x : ℝ
⊢ ((fun r => r⁻¹) ∘ fun x => exp x / x ^ n) x = x ^ n * exp (-x)
[PROOFSTEP]
rw [comp_apply, inv_eq_one_div, div_div_eq_mul_div, one_mul, div_eq_mul_inv, exp_neg]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 < b
⊢ Tendsto (fun x => (b * exp x + c) / x ^ n) atTop atTop
[PROOFSTEP]
rcases eq_or_ne n 0 with (rfl | hn)
[GOAL]
case inl
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
hb : 0 < b
⊢ Tendsto (fun x => (b * exp x + c) / x ^ 0) atTop atTop
[PROOFSTEP]
simp only [pow_zero, div_one]
[GOAL]
case inl
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
hb : 0 < b
⊢ Tendsto (fun x => b * exp x + c) atTop atTop
[PROOFSTEP]
exact (tendsto_exp_atTop.const_mul_atTop hb).atTop_add tendsto_const_nhds
[GOAL]
case inr
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 < b
hn : n ≠ 0
⊢ Tendsto (fun x => (b * exp x + c) / x ^ n) atTop atTop
[PROOFSTEP]
simp only [add_div, mul_div_assoc]
[GOAL]
case inr
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 < b
hn : n ≠ 0
⊢ Tendsto (fun x => b * (exp x / x ^ n) + c / x ^ n) atTop atTop
[PROOFSTEP]
exact ((tendsto_exp_div_pow_atTop n).const_mul_atTop hb).atTop_add (tendsto_const_nhds.div_atTop (tendsto_pow_atTop hn))
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0)
[PROOFSTEP]
have H : ∀ d e, 0 < d → Tendsto (fun x : ℝ => x ^ n / (d * exp x + e)) atTop (𝓝 0) :=
by
intro b' c' h
convert (tendsto_mul_exp_add_div_pow_atTop b' c' n h).inv_tendsto_atTop using 1
ext x
simp
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
⊢ ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
[PROOFSTEP]
intro b' c' h
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
b' c' : ℝ
h : 0 < b'
⊢ Tendsto (fun x => x ^ n / (b' * exp x + c')) atTop (𝓝 0)
[PROOFSTEP]
convert (tendsto_mul_exp_add_div_pow_atTop b' c' n h).inv_tendsto_atTop using 1
[GOAL]
case h.e'_3
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
b' c' : ℝ
h : 0 < b'
⊢ (fun x => x ^ n / (b' * exp x + c')) = (fun x => (b' * exp x + c') / x ^ n)⁻¹
[PROOFSTEP]
ext x
[GOAL]
case h.e'_3.h
α : Type u_1
x✝ y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
b' c' : ℝ
h : 0 < b'
x : ℝ
⊢ x ^ n / (b' * exp x + c') = (fun x => (b' * exp x + c') / x ^ n)⁻¹ x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0)
[PROOFSTEP]
cases' lt_or_gt_of_ne hb with h h
[GOAL]
case inl
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 < b
⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0)
[PROOFSTEP]
exact H b c h
[GOAL]
case inr
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 > b
⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0)
[PROOFSTEP]
convert (H (-b) (-c) (neg_pos.mpr h)).neg using 1
[GOAL]
case h.e'_3
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 > b
⊢ (fun x => x ^ n / (b * exp x + c)) = fun x => -(x ^ n / (-b * exp x + -c))
[PROOFSTEP]
ext x
[GOAL]
case h.e'_3.h
α : Type u_1
x✝ y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 > b
x : ℝ
⊢ x ^ n / (b * exp x + c) = -(x ^ n / (-b * exp x + -c))
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_3.h
α : Type u_1
x✝ y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 > b
x : ℝ
⊢ x ^ n / (b * exp x + c) = -x ^ n / (-(b * exp x) + -c)
[PROOFSTEP]
rw [← neg_add (b * exp x) c, neg_div_neg_eq]
[GOAL]
case h.e'_5
α : Type u_1
x y z : ℝ
l : Filter α
b c : ℝ
n : ℕ
hb : 0 ≠ b
H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0)
h : 0 > b
⊢ 𝓝 0 = 𝓝 (-0)
[PROOFSTEP]
rw [neg_zero]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Tendsto (fun x => { val := exp x, property := (_ : 0 < exp x) }) atTop atTop
[PROOFSTEP]
simp only [tendsto_Ioi_atTop, Subtype.coe_mk, tendsto_exp_atTop]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Tendsto (fun x => { val := exp x, property := (_ : 0 < exp x) }) atBot atBot
[PROOFSTEP]
simp [tendsto_exp_atBot_nhdsWithin]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Set.range exp = Set.Ioi 0
[PROOFSTEP]
rw [← coe_comp_expOrderIso, range_comp, expOrderIso.range_eq, image_univ, Subtype.range_coe]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Filter.map exp atTop = atTop
[PROOFSTEP]
rw [← coe_comp_expOrderIso, ← Filter.map_map, OrderIso.map_atTop, map_val_Ioi_atTop]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ comap exp atTop = atTop
[PROOFSTEP]
rw [← map_exp_atTop, comap_map exp_injective, map_exp_atTop]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ Tendsto (fun x => exp (f x)) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_atTop]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : ℝ → α
⊢ Tendsto (fun x => f (exp x)) atTop l ↔ Tendsto f atTop l
[PROOFSTEP]
simp_rw [← comp_apply (g := exp), ← tendsto_map'_iff, map_exp_atTop]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ Filter.map exp atBot = 𝓝[Set.Ioi 0] 0
[PROOFSTEP]
rw [← coe_comp_expOrderIso, ← Filter.map_map, expOrderIso.map_atBot, ← map_coe_Ioi_atBot]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ comap exp (𝓝[Set.Ioi 0] 0) = atBot
[PROOFSTEP]
rw [← map_exp_atBot, comap_map exp_injective]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : ℝ → α
⊢ Tendsto (fun x => f (exp x)) atBot l ↔ Tendsto f (𝓝[Set.Ioi 0] 0) l
[PROOFSTEP]
rw [← map_exp_atBot, tendsto_map'_iff]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : ℝ → α
⊢ Tendsto (fun x => f (exp x)) atBot l ↔ Tendsto (f ∘ exp) atBot l
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
⊢ comap exp (𝓝[Set.range exp] 0) = atBot
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ Tendsto (fun x => exp (f x)) l (𝓝 0) ↔ Tendsto f l atBot
[PROOFSTEP]
simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_nhds_zero]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
n : ℕ
⊢ (fun x => x ^ n) =o[atTop] exp
[PROOFSTEP]
simpa [isLittleO_iff_tendsto fun x hx => ((exp_pos x).ne' hx).elim] using
tendsto_div_pow_mul_exp_add_atTop 1 0 n zero_ne_one
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f g : α → ℝ
⊢ (IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => ‖exp (f x)‖ / ‖exp (g x)‖) ↔
IsBoundedUnder (fun x x_1 => x ≤ x_1) l (f - g)
[PROOFSTEP]
simp only [norm_eq_abs, abs_exp, ← exp_sub, isBoundedUnder_le_exp_comp, Pi.sub_def]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f g : α → ℝ
⊢ ((fun x => exp (f x)) =Θ[l] fun x => exp (g x)) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |f x - g x|
[PROOFSTEP]
simp only [isBoundedUnder_le_abs, ← isBoundedUnder_le_neg, neg_sub, IsTheta, isBigO_exp_comp_exp_comp, Pi.sub_def]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f g : α → ℝ
⊢ ((fun x => exp (f x)) =o[l] fun x => exp (g x)) ↔ Tendsto (fun x => g x - f x) l atTop
[PROOFSTEP]
simp only [isLittleO_iff_tendsto, exp_ne_zero, ← exp_sub, ← tendsto_neg_atTop_iff, false_imp_iff, imp_true_iff,
tendsto_exp_comp_nhds_zero, neg_sub]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ ((fun x => 1) =o[l] fun x => exp (f x)) ↔ Tendsto f l atTop
[PROOFSTEP]
simp only [← exp_zero, isLittleO_exp_comp_exp_comp, sub_zero]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ ((fun x => 1) =O[l] fun x => exp (f x)) ↔ IsBoundedUnder (fun x x_1 => x ≥ x_1) l f
[PROOFSTEP]
simp only [← exp_zero, isBigO_exp_comp_exp_comp, Pi.sub_def, zero_sub, isBoundedUnder_le_neg]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ ((fun x => exp (f x)) =O[l] fun x => 1) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
simp only [isBigO_one_iff, norm_eq_abs, abs_exp, isBoundedUnder_le_exp_comp]
[GOAL]
α : Type u_1
x y z : ℝ
l : Filter α
f : α → ℝ
⊢ ((fun x => exp (f x)) =Θ[l] fun x => 1) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |f x|
[PROOFSTEP]
simp only [← exp_zero, isTheta_exp_comp_exp_comp, sub_zero]
[GOAL]
⊢ comap exp (comap (↑abs) atTop) = comap re (comap Real.exp atTop)
[PROOFSTEP]
simp only [comap_comap, (· ∘ ·), abs_exp]
[GOAL]
⊢ comap re (comap Real.exp atTop) = comap re atTop
[PROOFSTEP]
rw [Real.comap_exp_atTop]
[GOAL]
⊢ comap exp (𝓝 0) = comap re (comap Real.exp (𝓝 0))
[PROOFSTEP]
simp only [comap_comap, ← comap_abs_nhds_zero, (· ∘ ·), abs_exp]
[GOAL]
⊢ comap re (comap Real.exp (𝓝 0)) = comap re atBot
[PROOFSTEP]
rw [Real.comap_exp_nhds_zero]
[GOAL]
⊢ comap exp (𝓝[{0}ᶜ] 0) = comap re atBot
[PROOFSTEP]
have : (exp ⁻¹' {0})ᶜ = Set.univ := eq_univ_of_forall exp_ne_zero
[GOAL]
this : (exp ⁻¹' {0})ᶜ = Set.univ
⊢ comap exp (𝓝[{0}ᶜ] 0) = comap re atBot
[PROOFSTEP]
simp [nhdsWithin, comap_exp_nhds_zero, this]
[GOAL]
α : Type u_1
l : Filter α
f : α → ℂ
⊢ Tendsto (fun x => exp (f x)) l (𝓝 0) ↔ Tendsto (fun x => (f x).re) l atBot
[PROOFSTEP]
simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_nhds_zero, tendsto_comap_iff]
[GOAL]
α : Type u_1
l : Filter α
f : α → ℂ
⊢ Tendsto (re ∘ f) l atBot ↔ Tendsto (fun x => (f x).re) l atBot
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Exp", "llama_tokens": 11177} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
s : Set E
x✝ y✝ x y : E
⊢ [x-[𝕜]y] = (fun p => p.fst • x + p.snd • y) '' {p | 0 ≤ p.fst ∧ 0 ≤ p.snd ∧ p.fst + p.snd = 1}
[PROOFSTEP]
simp only [segment, image, Prod.exists, mem_setOf_eq, exists_prop, and_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
s : Set E
x✝ y✝ x y : E
⊢ openSegment 𝕜 x y = (fun p => p.fst • x + p.snd • y) '' {p | 0 < p.fst ∧ 0 < p.snd ∧ p.fst + p.snd = 1}
[PROOFSTEP]
simp only [openSegment, image, Prod.exists, mem_setOf_eq, exists_prop, and_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : MulActionWithZero 𝕜 E
x y : E
⊢ 1 • x + 0 • y = x
[PROOFSTEP]
rw [zero_smul, one_smul, add_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝¹ y z✝ x z : E
x✝ : z ∈ [x-[𝕜]x]
a b : 𝕜
w✝¹ : 0 ≤ a
w✝ : 0 ≤ b
hab : a + b = 1
hz : a • x + b • x = z
⊢ z ∈ {x}
[PROOFSTEP]
simpa only [(add_smul _ _ _).symm, mem_singleton_iff, hab, one_smul, eq_comm] using hz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
⊢ insert x (insert y (openSegment 𝕜 x y)) = [x-[𝕜]y]
[PROOFSTEP]
simp only [subset_antisymm_iff, insert_subset_iff, left_mem_segment, right_mem_segment, openSegment_subset_segment,
true_and_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
⊢ [x-[𝕜]y] ⊆ insert x (insert y (openSegment 𝕜 x y))
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ insert x (insert y (openSegment 𝕜 x y))
[PROOFSTEP]
refine' hb.eq_or_gt.imp _ fun hb' => ha.eq_or_gt.imp _ fun ha' => _
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ b = 0 → a • x + b • y = x
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
a : 𝕜
ha : 0 ≤ a
hb : 0 ≤ 0
hab : a + 0 = 1
⊢ a • x + 0 • y = x
[PROOFSTEP]
rw [← add_zero a, hab, one_smul, zero_smul, add_zero]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hb' : 0 < b
⊢ a = 0 → a • x + b • y = y
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
b : 𝕜
hb : 0 ≤ b
hb' : 0 < b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ 0 • x + b • y = y
[PROOFSTEP]
rw [← zero_add b, hab, one_smul, zero_smul, zero_add]
[GOAL]
case intro.intro.intro.intro.intro.refine'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x✝ y✝ z x y : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hb' : 0 < b
ha' : 0 < a
⊢ a • x + b • y ∈ openSegment 𝕜 x y
[PROOFSTEP]
exact ⟨a, b, ha', hb', hab, rfl⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x y z : E
hx : x ≠ z
hy : y ≠ z
hz : z ∈ [x-[𝕜]y]
⊢ z ∈ openSegment 𝕜 x y
[PROOFSTEP]
rw [← insert_endpoints_openSegment] at hz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x y z : E
hx : x ≠ z
hy : y ≠ z
hz : z ∈ insert x (insert y (openSegment 𝕜 x y))
⊢ z ∈ openSegment 𝕜 x y
[PROOFSTEP]
exact (hz.resolve_left hx.symm).resolve_left hy.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
s : Set E
x y z : E
hx : x ∈ s
hy : y ∈ s
⊢ openSegment 𝕜 x y ⊆ s ↔ [x-[𝕜]y] ⊆ s
[PROOFSTEP]
simp only [← insert_endpoints_openSegment, insert_subset_iff, *, true_and_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁷ : OrderedRing 𝕜
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
x z : E
x✝ : z ∈ openSegment 𝕜 x x
a b : 𝕜
w✝¹ : 0 < a
w✝ : 0 < b
hab : a + b = 1
hz : a • x + b • x = z
⊢ z ∈ {x}
[PROOFSTEP]
simpa only [← add_smul, mem_singleton_iff, hab, one_smul, eq_comm] using hz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁷ : OrderedRing 𝕜
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
x z : E
h : z = x
⊢ z ∈ openSegment 𝕜 x x
[PROOFSTEP]
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁷ : OrderedRing 𝕜
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
x z : E
h : z = x
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ z ∈ openSegment 𝕜 x x
[PROOFSTEP]
refine' ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁷ : OrderedRing 𝕜
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
x z : E
h : z = x
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ a • x + (1 - a) • x = z
[PROOFSTEP]
rw [← add_smul, add_sub_cancel'_right, one_smul, h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
x✝ : z ∈ [x-[𝕜]y]
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a • x + b • y = z
⊢ (fun θ => (a + b - θ) • x + θ • y) b = a • x + b • y
[PROOFSTEP]
simp only [add_sub_cancel]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E
x✝ : z ∈ openSegment 𝕜 x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hz : a • x + b • y = z
⊢ (fun θ => (a + b - θ) • x + θ • y) b = a • x + b • y
[PROOFSTEP]
simp only [add_sub_cancel]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
⊢ [x-[𝕜]y] = (fun θ => x + θ • (y - x)) '' Icc 0 1
[PROOFSTEP]
convert segment_eq_image 𝕜 x y using 2
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Icc 0 1
⊢ x + a✝¹ • (y - x) = (1 - a✝¹) • x + a✝¹ • y
[PROOFSTEP]
simp only [smul_sub, sub_smul, one_smul]
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Icc 0 1
⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Icc 0 1
⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
⊢ openSegment 𝕜 x y = (fun θ => x + θ • (y - x)) '' Ioo 0 1
[PROOFSTEP]
convert openSegment_eq_image 𝕜 x y using 2
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Ioo 0 1
⊢ x + a✝¹ • (y - x) = (1 - a✝¹) • x + a✝¹ • y
[PROOFSTEP]
simp only [smul_sub, sub_smul, one_smul]
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Ioo 0 1
⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Ioo 0 1
⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
⊢ [x-[𝕜]y] = ↑(AffineMap.lineMap x y) '' Icc 0 1
[PROOFSTEP]
convert segment_eq_image 𝕜 x y using 2
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Icc 0 1
⊢ ↑(AffineMap.lineMap x y) a✝¹ = (1 - a✝¹) • x + a✝¹ • y
[PROOFSTEP]
exact AffineMap.lineMap_apply_module _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
⊢ openSegment 𝕜 x y = ↑(AffineMap.lineMap x y) '' Ioo 0 1
[PROOFSTEP]
convert openSegment_eq_image 𝕜 x y using 2
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E
a✝¹ : 𝕜
a✝ : a✝¹ ∈ Ioo 0 1
⊢ ↑(AffineMap.lineMap x y) a✝¹ = (1 - a✝¹) • x + a✝¹ • y
[PROOFSTEP]
exact AffineMap.lineMap_apply_module _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
f : E →ᵃ[𝕜] F
a b : E
x : F
⊢ x ∈ ↑f '' [a-[𝕜]b] ↔ x ∈ [↑f a-[𝕜]↑f b]
[PROOFSTEP]
simp_rw [segment_eq_image_lineMap, mem_image, exists_exists_and_eq_and, AffineMap.apply_lineMap]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
f : E →ᵃ[𝕜] F
a b : E
x : F
⊢ x ∈ ↑f '' openSegment 𝕜 a b ↔ x ∈ openSegment 𝕜 (↑f a) (↑f b)
[PROOFSTEP]
simp_rw [openSegment_eq_image_lineMap, mem_image, exists_exists_and_eq_and, AffineMap.apply_lineMap]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
a x b c : E
⊢ a + x ∈ [a + b-[𝕜]a + c] ↔ x ∈ [b-[𝕜]c]
[PROOFSTEP]
simp_rw [← vadd_eq_add, ← vadd_segment, vadd_mem_vadd_set_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁵ : OrderedRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : AddCommGroup G
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
a x b c : E
⊢ a + x ∈ openSegment 𝕜 (a + b) (a + c) ↔ x ∈ openSegment 𝕜 b c
[PROOFSTEP]
simp_rw [← vadd_eq_add, ← vadd_openSegment, vadd_mem_vadd_set_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : StrictOrderedCommRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : x ∈ [y-[𝕜]z]
⊢ SameRay 𝕜 (x - y) (z - x)
[PROOFSTEP]
rw [segment_eq_image'] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : StrictOrderedCommRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : x ∈ (fun θ => y + θ • (z - y)) '' Icc 0 1
⊢ SameRay 𝕜 (x - y) (z - x)
[PROOFSTEP]
rcases h with ⟨θ, ⟨hθ₀, hθ₁⟩, rfl⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : StrictOrderedCommRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
θ : 𝕜
hθ₀ : 0 ≤ θ
hθ₁ : θ ≤ 1
⊢ SameRay 𝕜 ((fun θ => y + θ • (z - y)) θ - y) (z - (fun θ => y + θ • (z - y)) θ)
[PROOFSTEP]
simpa only [add_sub_cancel', ← sub_sub, sub_smul, one_smul] using
(SameRay.sameRay_nonneg_smul_left (z - y) hθ₀).nonneg_smul_right (sub_nonneg.2 hθ₁)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ midpoint 𝕜 x y ∈ [x-[𝕜]y]
[PROOFSTEP]
rw [segment_eq_image_lineMap]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ midpoint 𝕜 x y ∈ ↑(AffineMap.lineMap x y) '' Icc 0 1
[PROOFSTEP]
exact ⟨⅟2, ⟨invOf_nonneg.mpr zero_le_two, invOf_le_one one_le_two⟩, rfl⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ x ∈ [x - y-[𝕜]x + y]
[PROOFSTEP]
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ x = midpoint 𝕜 (x - y) (x + y)
[PROOFSTEP]
rw [midpoint_sub_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ x ∈ [x + y-[𝕜]x - y]
[PROOFSTEP]
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : LinearOrderedRing 𝕜
inst✝² : AddCommGroup E
inst✝¹ : Module 𝕜 E
x✝ y✝ : E
inst✝ : Invertible 2
x y : E
⊢ x = midpoint 𝕜 (x + y) (x - y)
[PROOFSTEP]
rw [midpoint_add_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ x ∈ openSegment 𝕜 x y ↔ x = y
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ x ∈ openSegment 𝕜 x y → x = y
[PROOFSTEP]
rintro ⟨a, b, _, hb, hab, hx⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
a b : 𝕜
w✝ : 0 < a
hb : 0 < b
hab : a + b = 1
hx : a • x + b • y = x
⊢ x = y
[PROOFSTEP]
refine' smul_right_injective _ hb.ne' ((add_right_inj (a • x)).1 _)
[GOAL]
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
a b : 𝕜
w✝ : 0 < a
hb : 0 < b
hab : a + b = 1
hx : a • x + b • y = x
⊢ a • x + (fun x x_1 => x • x_1) b x = a • x + (fun x x_1 => x • x_1) b y
[PROOFSTEP]
rw [hx, ← add_smul, hab, one_smul]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ x = y → x ∈ openSegment 𝕜 x y
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ x ∈ openSegment 𝕜 x x
[PROOFSTEP]
rw [openSegment_same]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ x ∈ {x}
[PROOFSTEP]
exact mem_singleton _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : LinearOrderedRing 𝕜
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
x y : E
inst✝¹ : DenselyOrdered 𝕜
inst✝ : NoZeroSMulDivisors 𝕜 E
⊢ y ∈ openSegment 𝕜 x y ↔ x = y
[PROOFSTEP]
rw [openSegment_symm, left_mem_openSegment_iff, eq_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ [y-[𝕜]z] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ [y-[𝕜]z] → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
[PROOFSTEP]
rintro ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 ≤ b_1 ∧ 0 < a_1 + b_1 ∧ (a_1 / (a_1 + b_1)) • y + (b_1 / (a_1 + b_1)) • z = a • y + b • z
[PROOFSTEP]
use a, b, ha, hb
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = a • y + b • z
[PROOFSTEP]
simp [*]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ (∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x) → x ∈ [y-[𝕜]z]
[PROOFSTEP]
rintro ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ [y-[𝕜]z]
[PROOFSTEP]
refine' ⟨a / (a + b), b / (a + b), by positivity, by positivity, _, rfl⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ 0 ≤ a / (a + b)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ 0 ≤ b / (a + b)
[PROOFSTEP]
positivity
[GOAL]
case mpr.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : 0 < a + b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ openSegment 𝕜 y z ↔ ∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ openSegment 𝕜 y z → ∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x
[PROOFSTEP]
rintro ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 < b_1 ∧ (a_1 / (a_1 + b_1)) • y + (b_1 / (a_1 + b_1)) • z = a • y + b • z
[PROOFSTEP]
use a, b, ha, hb
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (a / (a + b)) • y + (b / (a + b)) • z = a • y + b • z
[PROOFSTEP]
rw [hab, div_one, div_one]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ (∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x) → x ∈ openSegment 𝕜 y z
[PROOFSTEP]
rintro ⟨a, b, ha, hb, rfl⟩
[GOAL]
case mpr.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ openSegment 𝕜 y z
[PROOFSTEP]
have hab : 0 < a + b := by positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ 0 < a + b
[PROOFSTEP]
positivity
[GOAL]
case mpr.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ openSegment 𝕜 y z
[PROOFSTEP]
refine' ⟨a / (a + b), b / (a + b), by positivity, by positivity, _, rfl⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ 0 < a / (a + b)
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ 0 < b / (a + b)
[PROOFSTEP]
positivity
[GOAL]
case mpr.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedSemifield 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
y z : E
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : 0 < a + b
⊢ a / (a + b) + b / (a + b) = 1
[PROOFSTEP]
rw [← add_div, div_self hab.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
⊢ x ∈ [y-[𝕜]z] ↔ SameRay 𝕜 (x - y) (z - x)
[PROOFSTEP]
refine' ⟨sameRay_of_mem_segment, fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : SameRay 𝕜 (x - y) (z - x)
⊢ x ∈ [y-[𝕜]z]
[PROOFSTEP]
rcases h.exists_eq_smul_add with ⟨a, b, ha, hb, hab, hxy, hzx⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : SameRay 𝕜 (x - y) (z - x)
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x - y = a • (x - y + (z - x))
hzx : z - x = b • (x - y + (z - x))
⊢ x ∈ [y-[𝕜]z]
[PROOFSTEP]
rw [add_comm, sub_add_sub_cancel] at hxy hzx
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : SameRay 𝕜 (x - y) (z - x)
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x - y = a • (z - y)
hzx : z - x = b • (z - y)
⊢ x ∈ [y-[𝕜]z]
[PROOFSTEP]
rw [← mem_segment_translate _ (-x), neg_add_self]
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : SameRay 𝕜 (x - y) (z - x)
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x - y = a • (z - y)
hzx : z - x = b • (z - y)
⊢ 0 ∈ [-x + y-[𝕜]-x + z]
[PROOFSTEP]
refine' ⟨b, a, hb, ha, add_comm a b ▸ hab, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x y z : E
h : SameRay 𝕜 (x - y) (z - x)
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hxy : x - y = a • (z - y)
hzx : z - x = b • (z - y)
⊢ b • (-x + y) + a • (-x + z) = 0
[PROOFSTEP]
rw [← sub_eq_neg_add, ← neg_sub, hxy, ← sub_eq_neg_add, hzx, smul_neg, smul_comm, neg_add_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z✝ x y z : E
hz : z ∈ range ↑(lineMap x y)
⊢ openSegment 𝕜 x y ⊆ insert z (openSegment 𝕜 x z ∪ openSegment 𝕜 z y)
[PROOFSTEP]
rcases hz with ⟨c, rfl⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c : 𝕜
⊢ openSegment 𝕜 x y ⊆
insert (↑(lineMap x y) c) (openSegment 𝕜 x (↑(lineMap x y) c) ∪ openSegment 𝕜 (↑(lineMap x y) c) y)
[PROOFSTEP]
simp only [openSegment_eq_image_lineMap, ← mapsTo']
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c : 𝕜
⊢ MapsTo (fun a => ↑(lineMap x y) a) (Ioo 0 1)
(insert (↑(lineMap x y) c)
((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪
(fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1))
[PROOFSTEP]
rintro a ⟨h₀, h₁⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
⊢ (fun a => ↑(lineMap x y) a) a ∈
insert (↑(lineMap x y) c)
((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪
(fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)
[PROOFSTEP]
rcases lt_trichotomy a c with (hac | rfl | hca)
[GOAL]
case intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hac : a < c
⊢ (fun a => ↑(lineMap x y) a) a ∈
insert (↑(lineMap x y) c)
((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪
(fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)
[PROOFSTEP]
right
[GOAL]
case intro.intro.inl.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hac : a < c
⊢ (fun a => ↑(lineMap x y) a) a ∈
(fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1
[PROOFSTEP]
left
[GOAL]
case intro.intro.inl.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hac : a < c
⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1
[PROOFSTEP]
have hc : 0 < c := h₀.trans hac
[GOAL]
case intro.intro.inl.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hac : a < c
hc : 0 < c
⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1
[PROOFSTEP]
refine' ⟨a / c, ⟨div_pos h₀ hc, (div_lt_one hc).2 hac⟩, _⟩
[GOAL]
case intro.intro.inl.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hac : a < c
hc : 0 < c
⊢ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) (a / c) = (fun a => ↑(lineMap x y) a) a
[PROOFSTEP]
simp only [← homothety_eq_lineMap, ← homothety_mul_apply, div_mul_cancel _ hc.ne']
[GOAL]
case intro.intro.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
a : 𝕜
h₀ : 0 < a
h₁ : a < 1
⊢ (fun a => ↑(lineMap x y) a) a ∈
insert (↑(lineMap x y) a)
((fun a_1 => ↑(lineMap x (↑(lineMap x y) a)) a_1) '' Ioo 0 1 ∪
(fun a_1 => ↑(lineMap (↑(lineMap x y) a) y) a_1) '' Ioo 0 1)
[PROOFSTEP]
left
[GOAL]
case intro.intro.inr.inl.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
a : 𝕜
h₀ : 0 < a
h₁ : a < 1
⊢ (fun a => ↑(lineMap x y) a) a = ↑(lineMap x y) a
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
⊢ (fun a => ↑(lineMap x y) a) a ∈
insert (↑(lineMap x y) c)
((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪
(fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)
[PROOFSTEP]
right
[GOAL]
case intro.intro.inr.inr.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
⊢ (fun a => ↑(lineMap x y) a) a ∈
(fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1
[PROOFSTEP]
right
[GOAL]
case intro.intro.inr.inr.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1
[PROOFSTEP]
have hc : 0 < 1 - c := sub_pos.2 (hca.trans h₁)
[GOAL]
case intro.intro.inr.inr.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
hc : 0 < 1 - c
⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1
[PROOFSTEP]
simp only [← lineMap_apply_one_sub y]
[GOAL]
case intro.intro.inr.inr.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
hc : 0 < 1 - c
⊢ ↑(lineMap y x) (1 - a) ∈ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) '' Ioo 0 1
[PROOFSTEP]
refine' ⟨(a - c) / (1 - c), ⟨div_pos (sub_pos.2 hca) hc, (div_lt_one hc).2 <| sub_lt_sub_right h₁ _⟩, _⟩
[GOAL]
case intro.intro.inr.inr.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
x✝ y✝ z x y : E
c a : 𝕜
h₀ : 0 < a
h₁ : a < 1
hca : c < a
hc : 0 < 1 - c
⊢ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) ((a - c) / (1 - c)) = ↑(lineMap y x) (1 - a)
[PROOFSTEP]
simp only [← homothety_eq_lineMap, ← homothety_mul_apply, sub_mul, one_mul, div_mul_cancel _ hc.ne',
sub_sub_sub_cancel_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
⊢ [x-[𝕜]y] ⊆ Icc x y
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ Icc x y
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.intro.intro.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ x ≤ a • x + b • y
case intro.intro.intro.intro.intro.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ≤ y
[PROOFSTEP]
calc
x = a • x + b • x := (Convex.combo_self hab _).symm
_ ≤ a • x + b • y := by gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • x ≤ a • x + b • y
[PROOFSTEP]
gcongr
[GOAL]
case intro.intro.intro.intro.intro.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ≤ y
[PROOFSTEP]
calc
a • x + b • y ≤ a • y + b • y := by gcongr
_ = y := Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x ≤ y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ≤ a • y + b • y
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
⊢ openSegment 𝕜 x y ⊆ Ioo x y
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ Ioo x y
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.intro.intro.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ x < a • x + b • y
case intro.intro.intro.intro.intro.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y < y
[PROOFSTEP]
calc
x = a • x + b • x := (Convex.combo_self hab _).symm
_ < a • x + b • y := by gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • x < a • x + b • y
[PROOFSTEP]
gcongr
[GOAL]
case intro.intro.intro.intro.intro.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y < y
[PROOFSTEP]
calc
a • x + b • y < a • y + b • y := by gcongr
_ = y := Convex.combo_self hab _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : OrderedCancelAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
x y : E
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y < a • y + b • y
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : LinearOrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
a b : 𝕜
x y : E
⊢ [x-[𝕜]y] ⊆ uIcc x y
[PROOFSTEP]
cases' le_total x y with h h
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : LinearOrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
a b : 𝕜
x y : E
h : x ≤ y
⊢ [x-[𝕜]y] ⊆ uIcc x y
[PROOFSTEP]
rw [uIcc_of_le h]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : LinearOrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
a b : 𝕜
x y : E
h : x ≤ y
⊢ [x-[𝕜]y] ⊆ Icc x y
[PROOFSTEP]
exact segment_subset_Icc h
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : LinearOrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
a b : 𝕜
x y : E
h : y ≤ x
⊢ [x-[𝕜]y] ⊆ uIcc x y
[PROOFSTEP]
rw [uIcc_of_ge h, segment_symm]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : LinearOrderedAddCommMonoid E
inst✝¹ : Module 𝕜 E
inst✝ : OrderedSMul 𝕜 E
a b : 𝕜
x y : E
h : y ≤ x
⊢ [y-[𝕜]x] ⊆ Icc y x
[PROOFSTEP]
exact segment_subset_Icc h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
⊢ Icc x y ⊆ [x-[𝕜]y]
[PROOFSTEP]
rintro z ⟨hxz, hyz⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz : x ≤ z
hyz : z ≤ y
⊢ z ∈ [x-[𝕜]y]
[PROOFSTEP]
obtain rfl | h := (hxz.trans hyz).eq_or_lt
[GOAL]
case intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x z✝ z : 𝕜
hxz : x ≤ z
hyz : z ≤ x
⊢ z ∈ [x-[𝕜]x]
[PROOFSTEP]
rw [segment_same]
[GOAL]
case intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x z✝ z : 𝕜
hxz : x ≤ z
hyz : z ≤ x
⊢ z ∈ {x}
[PROOFSTEP]
exact hyz.antisymm hxz
[GOAL]
case intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz : x ≤ z
hyz : z ≤ y
h : x < y
⊢ z ∈ [x-[𝕜]y]
[PROOFSTEP]
rw [← sub_nonneg] at hxz hyz
[GOAL]
case intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz✝ : x ≤ z
hxz : 0 ≤ z - x
hyz✝ : z ≤ y
hyz : 0 ≤ y - z
h : x < y
⊢ z ∈ [x-[𝕜]y]
[PROOFSTEP]
rw [← sub_pos] at h
[GOAL]
case intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz✝ : x ≤ z
hxz : 0 ≤ z - x
hyz✝ : z ≤ y
hyz : 0 ≤ y - z
h✝ : x < y
h : 0 < y - x
⊢ z ∈ [x-[𝕜]y]
[PROOFSTEP]
refine' ⟨(y - z) / (y - x), (z - x) / (y - x), div_nonneg hyz h.le, div_nonneg hxz h.le, _, _⟩
[GOAL]
case intro.inr.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz✝ : x ≤ z
hxz : 0 ≤ z - x
hyz✝ : z ≤ y
hyz : 0 ≤ y - z
h✝ : x < y
h : 0 < y - x
⊢ (y - z) / (y - x) + (z - x) / (y - x) = 1
[PROOFSTEP]
rw [← add_div, sub_add_sub_cancel, div_self h.ne']
[GOAL]
case intro.inr.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z✝ z : 𝕜
hxz✝ : x ≤ z
hxz : 0 ≤ z - x
hyz✝ : z ≤ y
hyz : 0 ≤ y - z
h✝ : x < y
h : 0 < y - x
⊢ ((y - z) / (y - x)) • x + ((z - x) / (y - x)) • y = z
[PROOFSTEP]
rw [smul_eq_mul, smul_eq_mul, ← mul_div_right_comm, ← mul_div_right_comm, ← add_div, div_eq_iff h.ne', add_comm,
sub_mul, sub_mul, mul_comm x, sub_add_sub_cancel, mul_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x✝ y✝ z x y : 𝕜
⊢ [x-[𝕜]y] = Icc (min x y) (max x y)
[PROOFSTEP]
cases' le_total x y with h h
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x✝ y✝ z x y : 𝕜
h : x ≤ y
⊢ [x-[𝕜]y] = Icc (min x y) (max x y)
[PROOFSTEP]
rw [segment_eq_Icc h, max_eq_right h, min_eq_left h]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x✝ y✝ z x y : 𝕜
h : y ≤ x
⊢ [x-[𝕜]y] = Icc (min x y) (max x y)
[PROOFSTEP]
rw [segment_symm, segment_eq_Icc h, max_eq_left h, min_eq_right h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
hxy : x ≠ y
⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y)
[PROOFSTEP]
cases' hxy.lt_or_lt with h h
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
hxy : x ≠ y
h : x < y
⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y)
[PROOFSTEP]
rw [openSegment_eq_Ioo h, max_eq_right h.le, min_eq_left h.le]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
hxy : x ≠ y
h : y < x
⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y)
[PROOFSTEP]
rw [openSegment_symm, openSegment_eq_Ioo h, max_eq_left h.le, min_eq_right h.le]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x ≤ y
⊢ z ∈ Icc x y ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
rw [← segment_eq_Icc h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x ≤ y
⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
simp_rw [← exists_prop]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x ≤ y
⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b _h _h _h, a * x + b * y = z
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ z ∈ Ioo x y ↔ ∃ a b, 0 < a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
rw [← openSegment_eq_Ioo h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ z ∈ openSegment 𝕜 x y ↔ ∃ a b, 0 < a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
simp_rw [← exists_prop]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ z ∈ openSegment 𝕜 x y ↔ ∃ a b _h _h _h, a * x + b * y = z
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ z ∈ Ioc x y ↔ ∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
refine' ⟨fun hz => _, _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
hz : z ∈ Ioc x y
⊢ ∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := (Convex.mem_Icc h.le).1 (Ioc_subset_Icc_self hz)
[GOAL]
case refine'_1.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a * x + b * y ∈ Ioc x y
⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 < b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y
[PROOFSTEP]
obtain rfl | hb' := hb.eq_or_lt
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a : 𝕜
ha : 0 ≤ a
hb : 0 ≤ 0
hab : a + 0 = 1
hz : a * x + 0 * y ∈ Ioc x y
⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y
[PROOFSTEP]
rw [add_zero] at hab
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a : 𝕜
ha : 0 ≤ a
hb : 0 ≤ 0
hab : a = 1
hz : a * x + 0 * y ∈ Ioc x y
⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y
[PROOFSTEP]
rw [hab, one_mul, zero_mul, add_zero] at hz
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a : 𝕜
ha : 0 ≤ a
hb : 0 ≤ 0
hab : a = 1
hz : x ∈ Ioc x y
⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y
[PROOFSTEP]
exact (hz.1.ne rfl).elim
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a * x + b * y ∈ Ioc x y
hb' : 0 < b
⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 < b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y
[PROOFSTEP]
exact ⟨a, b, ha, hb', hab, rfl⟩
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ (∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z) → z ∈ Ioc x y
[PROOFSTEP]
rintro ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
⊢ a * x + b * y ∈ Ioc x y
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
b : 𝕜
hb : 0 < b
ha : 0 ≤ 0
hab : 0 + b = 1
⊢ 0 * x + b * y ∈ Ioc x y
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
b : 𝕜
hb : 0 < b
ha : 0 ≤ 0
hab : b = 1
⊢ 0 * x + b * y ∈ Ioc x y
[PROOFSTEP]
rwa [hab, one_mul, zero_mul, zero_add, right_mem_Ioc]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 < b
hab : a + b = 1
ha' : 0 < a
⊢ a * x + b * y ∈ Ioc x y
[PROOFSTEP]
exact Ioo_subset_Ioc_self ((Convex.mem_Ioo h).2 ⟨a, b, ha', hb, hab, rfl⟩)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ z ∈ Ico x y ↔ ∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
refine' ⟨fun hz => _, _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
hz : z ∈ Ico x y
⊢ ∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z
[PROOFSTEP]
obtain ⟨a, b, ha, hb, hab, rfl⟩ := (Convex.mem_Icc h.le).1 (Ico_subset_Icc_self hz)
[GOAL]
case refine'_1.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a * x + b * y ∈ Ico x y
⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 ≤ b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y
[PROOFSTEP]
obtain rfl | ha' := ha.eq_or_lt
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : 0 + b = 1
hz : 0 * x + b * y ∈ Ico x y
⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y
[PROOFSTEP]
rw [zero_add] at hab
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
hz : 0 * x + b * y ∈ Ico x y
⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y
[PROOFSTEP]
rw [hab, one_mul, zero_mul, zero_add] at hz
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
b : 𝕜
hb : 0 ≤ b
ha : 0 ≤ 0
hab : b = 1
hz : y ∈ Ico x y
⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y
[PROOFSTEP]
exact (hz.2.ne rfl).elim
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a * x + b * y ∈ Ico x y
ha' : 0 < a
⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 ≤ b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y
[PROOFSTEP]
exact ⟨a, b, ha', hb, hab, rfl⟩
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y z : 𝕜
h : x < y
⊢ (∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z) → z ∈ Ico x y
[PROOFSTEP]
rintro ⟨a, b, ha, hb, hab, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 ≤ b
hab : a + b = 1
⊢ a * x + b * y ∈ Ico x y
[PROOFSTEP]
obtain rfl | hb' := hb.eq_or_lt
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a : 𝕜
ha : 0 < a
hb : 0 ≤ 0
hab : a + 0 = 1
⊢ a * x + 0 * y ∈ Ico x y
[PROOFSTEP]
rw [add_zero] at hab
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a : 𝕜
ha : 0 < a
hb : 0 ≤ 0
hab : a = 1
⊢ a * x + 0 * y ∈ Ico x y
[PROOFSTEP]
rwa [hab, one_mul, zero_mul, add_zero, left_mem_Ico]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝ : LinearOrderedField 𝕜
x y : 𝕜
h : x < y
a b : 𝕜
ha : 0 < a
hb : 0 ≤ b
hab : a + b = 1
hb' : 0 < b
⊢ a * x + b * y ∈ Ico x y
[PROOFSTEP]
exact Ioo_subset_Ico_self ((Convex.mem_Ioo h).2 ⟨a, b, ha, hb', hab, rfl⟩)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E × F
⊢ [x-[𝕜]y] ⊆ [x.fst-[𝕜]y.fst] ×ˢ [x.snd-[𝕜]y.snd]
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, hz⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E × F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a • x + b • y = z
⊢ z ∈ [x.fst-[𝕜]y.fst] ×ˢ [x.snd-[𝕜]y.snd]
[PROOFSTEP]
exact ⟨⟨a, b, ha, hb, hab, congr_arg Prod.fst hz⟩, a, b, ha, hb, hab, congr_arg Prod.snd hz⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y : E × F
⊢ openSegment 𝕜 x y ⊆ openSegment 𝕜 x.fst y.fst ×ˢ openSegment 𝕜 x.snd y.snd
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, hz⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x y z : E × F
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hz : a • x + b • y = z
⊢ z ∈ openSegment 𝕜 x.fst y.fst ×ˢ openSegment 𝕜 x.snd y.snd
[PROOFSTEP]
exact ⟨⟨a, b, ha, hb, hab, congr_arg Prod.fst hz⟩, a, b, ha, hb, hab, congr_arg Prod.snd hz⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
⊢ (fun x => (x, y)) '' [x₁-[𝕜]x₂] = [(x₁, y)-[𝕜](x₂, y)]
[PROOFSTEP]
ext ⟨x', y'⟩
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
⊢ (x', y') ∈ (fun x => (x, y)) '' [x₁-[𝕜]x₂] ↔ (x', y') ∈ [(x₁, y)-[𝕜](x₂, y)]
[PROOFSTEP]
simp_rw [Set.mem_image, segment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right,
@exists_comm E, exists_eq_left']
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = x' ∧ y = y') ↔ ∃ a b h h h, a • x₁ + b • x₂ = x' ∧ a • y + b • y = y'
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x₁ + b • x₂ = x' ∧ y = y' ↔ a • x₁ + b • x₂ = x' ∧ a • y + b • y = y'
[PROOFSTEP]
rw [Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
⊢ (fun y => (x, y)) '' [y₁-[𝕜]y₂] = [(x, y₁)-[𝕜](x, y₂)]
[PROOFSTEP]
ext ⟨x', y'⟩
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
⊢ (x', y') ∈ (fun y => (x, y)) '' [y₁-[𝕜]y₂] ↔ (x', y') ∈ [(x, y₁)-[𝕜](x, y₂)]
[PROOFSTEP]
simp_rw [Set.mem_image, segment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right,
@exists_comm F, exists_eq_left']
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
⊢ (∃ b b_1 h h h, x = x' ∧ b • y₁ + b_1 • y₂ = y') ↔ ∃ a b h h h, a • x + b • x = x' ∧ a • y₁ + b • y₂ = y'
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ x = x' ∧ a • y₁ + b • y₂ = y' ↔ a • x + b • x = x' ∧ a • y₁ + b • y₂ = y'
[PROOFSTEP]
rw [Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
⊢ (fun x => (x, y)) '' openSegment 𝕜 x₁ x₂ = openSegment 𝕜 (x₁, y) (x₂, y)
[PROOFSTEP]
ext ⟨x', y'⟩
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
⊢ (x', y') ∈ (fun x => (x, y)) '' openSegment 𝕜 x₁ x₂ ↔ (x', y') ∈ openSegment 𝕜 (x₁, y) (x₂, y)
[PROOFSTEP]
simp_rw [Set.mem_image, openSegment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right,
@exists_comm E, exists_eq_left']
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = x' ∧ y = y') ↔ ∃ a b h h h, a • x₁ + b • x₂ = x' ∧ a • y + b • y = y'
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x₁ x₂ : E
y : F
x' : E
y' : F
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x₁ + b • x₂ = x' ∧ y = y' ↔ a • x₁ + b • x₂ = x' ∧ a • y + b • y = y'
[PROOFSTEP]
rw [Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
⊢ (fun y => (x, y)) '' openSegment 𝕜 y₁ y₂ = openSegment 𝕜 (x, y₁) (x, y₂)
[PROOFSTEP]
ext ⟨x', y'⟩
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
⊢ (x', y') ∈ (fun y => (x, y)) '' openSegment 𝕜 y₁ y₂ ↔ (x', y') ∈ openSegment 𝕜 (x, y₁) (x, y₂)
[PROOFSTEP]
simp_rw [Set.mem_image, openSegment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right,
@exists_comm F, exists_eq_left']
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
⊢ (∃ b b_1 h h h, x = x' ∧ b • y₁ + b_1 • y₂ = y') ↔ ∃ a b h h h, a • x + b • x = x' ∧ a • y₁ + b • y₂ = y'
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
x : E
y₁ y₂ : F
x' : E
y' : F
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ x = x' ∧ a • y₁ + b • y₂ = y' ↔ a • x + b • x = x' ∧ a • y₁ + b • y₂ = y'
[PROOFSTEP]
rw [Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : (i : ι) → AddCommMonoid (π i)
inst✝ : (i : ι) → Module 𝕜 (π i)
s : Set ι
x y : (i : ι) → π i
⊢ [x-[𝕜]y] ⊆ pi s fun i => [x i-[𝕜]y i]
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, hz⟩ i -
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : (i : ι) → AddCommMonoid (π i)
inst✝ : (i : ι) → Module 𝕜 (π i)
s : Set ι
x y z : (i : ι) → π i
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
hz : a • x + b • y = z
i : ι
⊢ z i ∈ (fun i => [x i-[𝕜]y i]) i
[PROOFSTEP]
exact ⟨a, b, ha, hb, hab, congr_fun hz i⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : (i : ι) → AddCommMonoid (π i)
inst✝ : (i : ι) → Module 𝕜 (π i)
s : Set ι
x y : (i : ι) → π i
⊢ openSegment 𝕜 x y ⊆ pi s fun i => openSegment 𝕜 (x i) (y i)
[PROOFSTEP]
rintro z ⟨a, b, ha, hb, hab, hz⟩ i -
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝² : OrderedSemiring 𝕜
inst✝¹ : (i : ι) → AddCommMonoid (π i)
inst✝ : (i : ι) → Module 𝕜 (π i)
s : Set ι
x y z : (i : ι) → π i
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hz : a • x + b • y = z
i : ι
⊢ z i ∈ (fun i => openSegment 𝕜 (x i) (y i)) i
[PROOFSTEP]
exact ⟨a, b, ha, hb, hab, congr_fun hz i⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y : (i : ι) → π i
⊢ update y i '' [x₁-[𝕜]x₂] = [update y i x₁-[𝕜]update y i x₂]
[PROOFSTEP]
ext z
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
⊢ z ∈ update y i '' [x₁-[𝕜]x₂] ↔ z ∈ [update y i x₁-[𝕜]update y i x₂]
[PROOFSTEP]
simp_rw [Set.mem_image, segment, Set.mem_setOf, ← update_smul, ← update_add, update_eq_iff, ← exists_and_right,
@exists_comm (π i), exists_eq_left']
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔
∃ a b h h h, a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ (a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔
a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x
[PROOFSTEP]
rw [Convex.combo_self hab]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y : (i : ι) → π i
⊢ update y i '' openSegment 𝕜 x₁ x₂ = openSegment 𝕜 (update y i x₁) (update y i x₂)
[PROOFSTEP]
ext z
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
⊢ z ∈ update y i '' openSegment 𝕜 x₁ x₂ ↔ z ∈ openSegment 𝕜 (update y i x₁) (update y i x₂)
[PROOFSTEP]
simp_rw [Set.mem_image, openSegment, Set.mem_setOf, ← update_smul, ← update_add, update_eq_iff, ← exists_and_right,
@exists_comm (π i), exists_eq_left']
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔
∃ a b h h h, a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x
[PROOFSTEP]
refine' exists₅_congr fun a b ha hb hab => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : OrderedSemiring 𝕜
inst✝² : (i : ι) → AddCommMonoid (π i)
inst✝¹ : (i : ι) → Module 𝕜 (π i)
s : Set ι
inst✝ : DecidableEq ι
i : ι
x₁ x₂ : π i
y z : (a : ι) → π a
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔
a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x
[PROOFSTEP]
rw [Convex.combo_self hab]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Segment", "llama_tokens": 37442} |
[GOAL]
x : ℝ
hx : x ≤ 0
⊢ expNegInvGlue x = 0
[PROOFSTEP]
simp [expNegInvGlue, hx]
[GOAL]
x : ℝ
hx : 0 < x
⊢ 0 < expNegInvGlue x
[PROOFSTEP]
simp [expNegInvGlue, not_le.2 hx, exp_pos]
[GOAL]
x : ℝ
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
cases le_or_gt x 0 with
| inl h => exact ge_of_eq (zero_of_nonpos h)
| inr h => exact le_of_lt (pos_of_pos h)
[GOAL]
x : ℝ
x✝ : x ≤ 0 ∨ x > 0
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
cases le_or_gt x 0 with
| inl h => exact ge_of_eq (zero_of_nonpos h)
| inr h => exact le_of_lt (pos_of_pos h)
[GOAL]
case inl
x : ℝ
h : x ≤ 0
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
| inl h => exact ge_of_eq (zero_of_nonpos h)
[GOAL]
case inl
x : ℝ
h : x ≤ 0
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
exact ge_of_eq (zero_of_nonpos h)
[GOAL]
case inr
x : ℝ
h : x > 0
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
| inr h => exact le_of_lt (pos_of_pos h)
[GOAL]
case inr
x : ℝ
h : x > 0
⊢ 0 ≤ expNegInvGlue x
[PROOFSTEP]
exact le_of_lt (pos_of_pos h)
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (𝓝 0) (𝓝 0)
[PROOFSTEP]
simp only [expNegInvGlue, mul_ite, mul_zero]
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => if x ≤ 0 then 0 else Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0) (𝓝 0)
[PROOFSTEP]
refine tendsto_const_nhds.if ?_
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | ¬x ≤ 0}) (𝓝 0)
[PROOFSTEP]
simp only [not_le]
[GOAL]
p : ℝ[X]
⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | 0 < x}) (𝓝 0)
[PROOFSTEP]
have : Tendsto (fun x ↦ p.eval x⁻¹ / exp x⁻¹) (𝓝[>] 0) (𝓝 0) := p.tendsto_div_exp_atTop.comp tendsto_inv_zero_atTop
[GOAL]
p : ℝ[X]
this : Tendsto (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹) (𝓝[Ioi 0] 0) (𝓝 0)
⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | 0 < x}) (𝓝 0)
[PROOFSTEP]
refine this.congr' <| mem_of_superset self_mem_nhdsWithin fun x hx ↦ ?_
[GOAL]
p : ℝ[X]
this : Tendsto (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹) (𝓝[Ioi 0] 0) (𝓝 0)
x : ℝ
hx : x ∈ {x | 0 < x}
⊢ x ∈ {x | (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹ = (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) x) x}
[PROOFSTEP]
simp [expNegInvGlue, hx.out.not_le, exp_neg, div_eq_mul_inv]
[GOAL]
p : ℝ[X]
x : ℝ
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
(Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x
[PROOFSTEP]
rcases lt_trichotomy x 0 with hx | rfl | hx
[GOAL]
case inl
p : ℝ[X]
x : ℝ
hx : x < 0
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
(Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x
[PROOFSTEP]
rw [zero_of_nonpos hx.le, mul_zero]
[GOAL]
case inl
p : ℝ[X]
x : ℝ
hx : x < 0
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0 x
[PROOFSTEP]
refine (hasDerivAt_const _ 0).congr_of_eventuallyEq ?_
[GOAL]
case inl
p : ℝ[X]
x : ℝ
hx : x < 0
⊢ (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) =ᶠ[𝓝 x] fun x => 0
[PROOFSTEP]
filter_upwards [gt_mem_nhds hx] with y hy
[GOAL]
case h
p : ℝ[X]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
⊢ Polynomial.eval y⁻¹ p * expNegInvGlue y = 0
[PROOFSTEP]
rw [zero_of_nonpos hy.le, mul_zero]
[GOAL]
case inr.inl
p : ℝ[X]
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
(Polynomial.eval 0⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue 0) 0
[PROOFSTEP]
rw [expNegInvGlue.zero, mul_zero, hasDerivAt_iff_tendsto_slope]
[GOAL]
case inr.inl
p : ℝ[X]
⊢ Tendsto (slope (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0) (𝓝[{0}ᶜ] 0) (𝓝 0)
[PROOFSTEP]
refine ((tendsto_polynomial_inv_mul_zero (p * X)).mono_left inf_le_left).congr fun x ↦ ?_
[GOAL]
case inr.inl
p : ℝ[X]
x : ℝ
⊢ Polynomial.eval x⁻¹ (p * X) * expNegInvGlue x = slope (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0 x
[PROOFSTEP]
simp [slope_def_field, div_eq_mul_inv, mul_right_comm]
[GOAL]
case inr.inr
p : ℝ[X]
x : ℝ
hx : 0 < x
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
(Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x
[PROOFSTEP]
have := ((p.hasDerivAt x⁻¹).mul (hasDerivAt_neg _).exp).comp x (hasDerivAt_inv hx.ne')
[GOAL]
case inr.inr
p : ℝ[X]
x : ℝ
hx : 0 < x
this :
HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv)
((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x
⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
(Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x
[PROOFSTEP]
convert this.congr_of_eventuallyEq _ using 1
[GOAL]
case h.e'_7
p : ℝ[X]
x : ℝ
hx : 0 < x
this :
HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv)
((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x
⊢ Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x =
(Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹
[PROOFSTEP]
simp [expNegInvGlue, hx.not_le]
[GOAL]
case h.e'_7
p : ℝ[X]
x : ℝ
hx : 0 < x
this :
HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv)
((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x
⊢ (x ^ 2)⁻¹ * (Polynomial.eval x⁻¹ p - Polynomial.eval x⁻¹ (↑derivative p)) * exp (-x⁻¹) =
-((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + -(Polynomial.eval x⁻¹ p * exp (-x⁻¹))) * (x ^ 2)⁻¹)
[PROOFSTEP]
ring
[GOAL]
case inr.inr.convert_2
p : ℝ[X]
x : ℝ
hx : 0 < x
this :
HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv)
((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x
⊢ (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) =ᶠ[𝓝 x] (fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv
[PROOFSTEP]
filter_upwards [lt_mem_nhds hx] with y hy
[GOAL]
case h
p : ℝ[X]
x : ℝ
hx : 0 < x
this :
HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv)
((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x
y : ℝ
hy : 0 < y
⊢ Polynomial.eval y⁻¹ p * expNegInvGlue y = ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) y
[PROOFSTEP]
simp [expNegInvGlue, hy.not_le]
[GOAL]
n : ℕ∞
p : ℝ[X]
⊢ ContDiff ℝ n fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
apply contDiff_all_iff_nat.2 (fun m => ?_) n
[GOAL]
n : ℕ∞
p : ℝ[X]
m : ℕ
⊢ ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
induction m generalizing p with
| zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _
| succ m ihm =>
refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩
convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2
exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv
[GOAL]
n : ℕ∞
p : ℝ[X]
m : ℕ
⊢ ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
induction m generalizing p with
| zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _
| succ m ihm =>
refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩
convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2
exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv
[GOAL]
case zero
n : ℕ∞
p : ℝ[X]
⊢ ContDiff ℝ ↑Nat.zero fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
| zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _
[GOAL]
case zero
n : ℕ∞
p : ℝ[X]
⊢ ContDiff ℝ ↑Nat.zero fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _
[GOAL]
case succ
n : ℕ∞
m : ℕ
ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
p : ℝ[X]
⊢ ContDiff ℝ ↑(Nat.succ m) fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
| succ m ihm =>
refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩
convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2
exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv
[GOAL]
case succ
n : ℕ∞
m : ℕ
ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
p : ℝ[X]
⊢ ContDiff ℝ ↑(Nat.succ m) fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
[PROOFSTEP]
refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩
[GOAL]
case succ
n : ℕ∞
m : ℕ
ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
p : ℝ[X]
⊢ ContDiff ℝ (↑m) (deriv fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x)
[PROOFSTEP]
convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2
[GOAL]
case h.e'_10.h
n : ℕ∞
m : ℕ
ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x
p : ℝ[X]
x✝ : ℝ
⊢ deriv (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) x✝ =
Polynomial.eval x✝⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x✝
[PROOFSTEP]
exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv
[GOAL]
n : ℕ∞
⊢ ContDiff ℝ n expNegInvGlue
[PROOFSTEP]
simpa using contDiff_polynomial_eval_inv_mul 1
[GOAL]
x : ℝ
h : 1 ≤ x
⊢ expNegInvGlue x = expNegInvGlue x + expNegInvGlue (1 - x)
[PROOFSTEP]
rw [zero_of_nonpos (sub_nonpos.2 h), add_zero]
[GOAL]
x : ℝ
⊢ smoothTransition x = 0 ↔ x ≤ 0
[PROOFSTEP]
simp only [smoothTransition, _root_.div_eq_zero_iff, (pos_denom x).ne', zero_iff_nonpos, or_false]
[GOAL]
x : ℝ
⊢ smoothTransition ↑(projIcc 0 1 (_ : 0 ≤ 1) x) = smoothTransition x
[PROOFSTEP]
refine' congr_fun (IccExtend_eq_self zero_le_one smoothTransition (fun x hx => _) fun x hx => _) x
[GOAL]
case refine'_1
x✝ x : ℝ
hx : x < 0
⊢ smoothTransition x = smoothTransition 0
[PROOFSTEP]
rw [smoothTransition.zero, zero_of_nonpos hx.le]
[GOAL]
case refine'_2
x✝ x : ℝ
hx : 1 < x
⊢ smoothTransition x = smoothTransition 1
[PROOFSTEP]
rw [smoothTransition.one, one_of_one_le hx.le]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.SmoothTransition", "llama_tokens": 4963} |
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
⊢ HasDerivAt exp (exp x) x
[PROOFSTEP]
rw [hasDerivAt_iff_isLittleO_nhds_zero]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
⊢ (fun h => exp (x + h) - exp x - h • exp x) =o[𝓝 0] fun h => h
[PROOFSTEP]
have : (1 : ℕ) < 2 := by norm_num
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
⊢ 1 < 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
this : 1 < 2
⊢ (fun h => exp (x + h) - exp x - h • exp x) =o[𝓝 0] fun h => h
[PROOFSTEP]
refine' (IsBigO.of_bound ‖exp x‖ _).trans_isLittleO (isLittleO_pow_id this)
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
this : 1 < 2
⊢ ∀ᶠ (x_1 : ℂ) in 𝓝 0, ‖exp (x + x_1) - exp x - x_1 • exp x‖ ≤ ‖exp x‖ * ‖x_1 ^ 2‖
[PROOFSTEP]
filter_upwards [Metric.ball_mem_nhds (0 : ℂ) zero_lt_one]
[GOAL]
case h
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
this : 1 < 2
⊢ ∀ (a : ℂ), a ∈ Metric.ball 0 1 → ‖exp (x + a) - exp x - a • exp x‖ ≤ ‖exp x‖ * ‖a ^ 2‖
[PROOFSTEP]
simp only [Metric.mem_ball, dist_zero_right, norm_pow]
[GOAL]
case h
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
x : ℂ
this : 1 < 2
⊢ ∀ (a : ℂ), ‖a‖ < 1 → ‖exp (x + a) - exp x - a • exp x‖ ≤ ‖exp x‖ * ‖a‖ ^ 2
[PROOFSTEP]
exact fun z hz => exp_bound_sq x z hz.le
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
⊢ deriv^[n + 1] exp = exp
[PROOFSTEP]
rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
⊢ ∀ {n : ℕ∞}, ContDiff 𝕜 n exp
[PROOFSTEP]
refine' @(contDiff_all_iff_nat.2 fun n => ?_)
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
⊢ ContDiff 𝕜 (↑n) exp
[PROOFSTEP]
have : ContDiff ℂ (↑n) exp := by
induction' n with n ihn
· exact contDiff_zero.2 continuous_exp
· rw [contDiff_succ_iff_deriv]
use differentiable_exp
rwa [deriv_exp]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
⊢ ContDiff ℂ (↑n) exp
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case zero
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
⊢ ContDiff ℂ (↑Nat.zero) exp
[PROOFSTEP]
exact contDiff_zero.2 continuous_exp
[GOAL]
case succ
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
ihn : ContDiff ℂ (↑n) exp
⊢ ContDiff ℂ (↑(Nat.succ n)) exp
[PROOFSTEP]
rw [contDiff_succ_iff_deriv]
[GOAL]
case succ
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
ihn : ContDiff ℂ (↑n) exp
⊢ Differentiable ℂ exp ∧ ContDiff ℂ (↑n) (deriv exp)
[PROOFSTEP]
use differentiable_exp
[GOAL]
case right
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
ihn : ContDiff ℂ (↑n) exp
⊢ ContDiff ℂ (↑n) (deriv exp)
[PROOFSTEP]
rwa [deriv_exp]
[GOAL]
𝕜 : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜
inst✝ : NormedAlgebra 𝕜 ℂ
n : ℕ
this : ContDiff ℂ (↑n) exp
⊢ ContDiff 𝕜 (↑n) exp
[PROOFSTEP]
exact this.restrict_scalars 𝕜
[GOAL]
x y z : ℝ
n : ℕ
⊢ deriv^[n + 1] exp = exp
[PROOFSTEP]
rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.ExpDeriv", "llama_tokens": 1730} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S✝ T✝ S T : ConvexCone 𝕜 E
h : S.carrier = T.carrier
⊢ S = T
[PROOFSTEP]
cases S
[GOAL]
case mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S T✝ T : ConvexCone 𝕜 E
carrier✝ : Set E
smul_mem'✝ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝ → c • x ∈ carrier✝
add_mem'✝ : ∀ ⦃x : E⦄, x ∈ carrier✝ → ∀ ⦃y : E⦄, y ∈ carrier✝ → x + y ∈ carrier✝
h : { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ }.carrier = T.carrier
⊢ { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ } = T
[PROOFSTEP]
cases T
[GOAL]
case mk.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S T : ConvexCone 𝕜 E
carrier✝¹ : Set E
smul_mem'✝¹ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝¹ → c • x ∈ carrier✝¹
add_mem'✝¹ : ∀ ⦃x : E⦄, x ∈ carrier✝¹ → ∀ ⦃y : E⦄, y ∈ carrier✝¹ → x + y ∈ carrier✝¹
carrier✝ : Set E
smul_mem'✝ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝ → c • x ∈ carrier✝
add_mem'✝ : ∀ ⦃x : E⦄, x ∈ carrier✝ → ∀ ⦃y : E⦄, y ∈ carrier✝ → x + y ∈ carrier✝
h :
{ carrier := carrier✝¹, smul_mem' := smul_mem'✝¹, add_mem' := add_mem'✝¹ }.carrier =
{ carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ }.carrier
⊢ { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹, add_mem' := add_mem'✝¹ } =
{ carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S T : ConvexCone 𝕜 E
ι : Sort u_5
f : ι → ConvexCone 𝕜 E
⊢ ↑(iInf f) = ⋂ (i : ι), ↑(f i)
[PROOFSTEP]
simp [iInf]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S T : ConvexCone 𝕜 E
ι : Sort u_5
x : E
f : ι → ConvexCone 𝕜 E
⊢ (∀ (i : ConvexCone 𝕜 E), i ∈ Set.range f → x ∈ ↑i) ↔ ∀ (i : ι), x ∈ f i
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁶ : LinearOrderedField 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : AddCommMonoid G
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : Module 𝕜 G
f : E →ₗ[𝕜] F
S : ConvexCone 𝕜 F
c : 𝕜
hc : 0 < c
x : E
hx : x ∈ ↑f ⁻¹' ↑S
⊢ c • x ∈ ↑f ⁻¹' ↑S
[PROOFSTEP]
rw [mem_preimage, f.map_smul c]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁶ : LinearOrderedField 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : AddCommMonoid G
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : Module 𝕜 G
f : E →ₗ[𝕜] F
S : ConvexCone 𝕜 F
c : 𝕜
hc : 0 < c
x : E
hx : x ∈ ↑f ⁻¹' ↑S
⊢ c • ↑f x ∈ ↑S
[PROOFSTEP]
exact S.smul_mem hc hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁶ : LinearOrderedField 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : AddCommMonoid G
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : Module 𝕜 G
f : E →ₗ[𝕜] F
S : ConvexCone 𝕜 F
x : E
hx : x ∈ ↑f ⁻¹' ↑S
y : E
hy : y ∈ ↑f ⁻¹' ↑S
⊢ x + y ∈ ↑f ⁻¹' ↑S
[PROOFSTEP]
rw [mem_preimage, f.map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁶ : LinearOrderedField 𝕜
inst✝⁵ : AddCommMonoid E
inst✝⁴ : AddCommMonoid F
inst✝³ : AddCommMonoid G
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : Module 𝕜 G
f : E →ₗ[𝕜] F
S : ConvexCone 𝕜 F
x : E
hx : x ∈ ↑f ⁻¹' ↑S
y : E
hy : y ∈ ↑f ⁻¹' ↑S
⊢ ↑f x + ↑f y ∈ ↑S
[PROOFSTEP]
exact S.add_mem hx hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : OrderedAddCommGroup E
inst✝ : Module 𝕜 E
S : ConvexCone 𝕜 E
h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S
⊢ ∀ ⦃a b : E⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b
[PROOFSTEP]
intro x y z xy hz
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : OrderedAddCommGroup E
inst✝ : Module 𝕜 E
S : ConvexCone 𝕜 E
h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S
x y : E
z : 𝕜
xy : x < y
hz : 0 < z
⊢ z • x ≤ z • y
[PROOFSTEP]
rw [h (z • x) (z • y), ← smul_sub z y x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : OrderedAddCommGroup E
inst✝ : Module 𝕜 E
S : ConvexCone 𝕜 E
h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S
x y : E
z : 𝕜
xy : x < y
hz : 0 < z
⊢ z • (y - x) ∈ S
[PROOFSTEP]
exact smul_mem S hz ((h x y).mp xy.le)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
⊢ Blunt S ↔ ¬Pointed S
[PROOFSTEP]
rw [pointed_iff_not_blunt, Classical.not_not]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
⊢ Salient S ↔ ¬Flat S
[PROOFSTEP]
simp [Salient, Flat]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
hS : Flat S
⊢ Pointed S
[PROOFSTEP]
obtain ⟨x, hx, _, hxneg⟩ := hS
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
x : E
hx : x ∈ S
left✝ : x ≠ 0
hxneg : -x ∈ S
⊢ Pointed S
[PROOFSTEP]
rw [Pointed, ← add_neg_self x]
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
x : E
hx : x ∈ S
left✝ : x ≠ 0
hxneg : -x ∈ S
⊢ x + -x ∈ S
[PROOFSTEP]
exact add_mem S hx hxneg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
⊢ Blunt S → Salient S
[PROOFSTEP]
rw [salient_iff_not_flat, blunt_iff_not_pointed]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S✝ S : ConvexCone 𝕜 E
⊢ ¬Pointed S → ¬Flat S
[PROOFSTEP]
exact mt Flat.pointed
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
x : E
⊢ x ≤ x
[PROOFSTEP]
change x - x ∈ S
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
x : E
⊢ x - x ∈ S
[PROOFSTEP]
rw [sub_self x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
x : E
⊢ 0 ∈ S
[PROOFSTEP]
exact h₁
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
x y z : E
xy : x ≤ y
zy : y ≤ z
⊢ x ≤ z
[PROOFSTEP]
simpa using add_mem S zy xy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
⊢ ∀ (a b : E), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
intro a b ab ba
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
a b : E
ab : a ≤ b
ba : b ≤ a
⊢ a = b
[PROOFSTEP]
by_contra h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
a b : E
ab : a ≤ b
ba : b ≤ a
h : ¬a = b
⊢ False
[PROOFSTEP]
have h' : b - a ≠ 0 := fun h'' => h (eq_of_sub_eq_zero h'').symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
a b : E
ab : a ≤ b
ba : b ≤ a
h : ¬a = b
h' : b - a ≠ 0
⊢ False
[PROOFSTEP]
have H := h₂ (b - a) ab h'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
a b : E
ab : a ≤ b
ba : b ≤ a
h : ¬a = b
h' : b - a ≠ 0
H : ¬-(b - a) ∈ S
⊢ False
[PROOFSTEP]
rw [neg_sub b a] at H
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : Preorder E := toPreorder S h₁
a b : E
ab : a ≤ b
ba : b ≤ a
h : ¬a = b
h' : b - a ≠ 0
H : ¬a - b ∈ S
⊢ False
[PROOFSTEP]
exact H ba
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝ : PartialOrder E := toPartialOrder S h₁ h₂
⊢ AddCommGroup E
[PROOFSTEP]
infer_instance
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂
src✝ : AddCommGroup E :=
let_fun this := inferInstance;
this
⊢ ∀ (a b : E), a ≤ b → ∀ (c : E), c + a ≤ c + b
[PROOFSTEP]
intro a b hab c
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂
src✝ : AddCommGroup E :=
let_fun this := inferInstance;
this
a b : E
hab : a ≤ b
c : E
⊢ c + a ≤ c + b
[PROOFSTEP]
change c + b - (c + a) ∈ S
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂
src✝ : AddCommGroup E :=
let_fun this := inferInstance;
this
a b : E
hab : a ≤ b
c : E
⊢ c + b - (c + a) ∈ S
[PROOFSTEP]
rw [add_sub_add_left_eq_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
S : ConvexCone 𝕜 E
h₁ : Pointed S
h₂ : Salient S
src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂
src✝ : AddCommGroup E :=
let_fun this := inferInstance;
this
a b : E
hab : a ≤ b
c : E
⊢ b - a ∈ S
[PROOFSTEP]
exact hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝¹ : 𝕜
x✝ : 0 < x✝¹
⊢ ∀ ⦃x : E⦄, x ∈ 0 → x✝¹ • x ∈ 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝ : E
⊢ x✝ ∈ 0 → ∀ ⦃y : E⦄, y ∈ 0 → x✝ + y ∈ 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
⊢ Pointed 0
[PROOFSTEP]
rw [Pointed, mem_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
⊢ ∀ ⦃c : 𝕜⦄,
0 < c → ∀ ⦃x : E⦄, x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} → c • x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z}
[PROOFSTEP]
rintro c hc _ ⟨x, y, hx, hy, rfl⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
c : 𝕜
hc : 0 < c
x y : E
hx : x ∈ K₁
hy : y ∈ K₂
⊢ c • (x + y) ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z}
[PROOFSTEP]
rw [smul_add]
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
c : 𝕜
hc : 0 < c
x y : E
hx : x ∈ K₁
hy : y ∈ K₂
⊢ c • x + c • y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z}
[PROOFSTEP]
use c • x, c • y, K₁.smul_mem hc hx, K₂.smul_mem hc hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
⊢ ∀ ⦃x : E⦄,
x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} →
∀ ⦃y : E⦄, y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} → x + y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z}
[PROOFSTEP]
rintro _ ⟨x₁, x₂, hx₁, hx₂, rfl⟩ y ⟨y₁, y₂, hy₁, hy₂, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
x₁ x₂ : E
hx₁ : x₁ ∈ K₁
hx₂ : x₂ ∈ K₂
y₁ y₂ : E
hy₁ : y₁ ∈ K₁
hy₂ : y₂ ∈ K₂
⊢ x₁ + x₂ + (y₁ + y₂) ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z}
[PROOFSTEP]
use x₁ + y₁, x₂ + y₂, K₁.add_mem hx₁ hy₁, K₂.add_mem hx₂ hy₂
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
x₁ x₂ : E
hx₁ : x₁ ∈ K₁
hx₂ : x₂ ∈ K₂
y₁ y₂ : E
hy₁ : y₁ ∈ K₁
hy₂ : y₂ ∈ K₂
⊢ x₁ + y₁ + (x₂ + y₂) = x₁ + x₂ + (y₁ + y₂)
[PROOFSTEP]
abel
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
K₁ K₂ : ConvexCone 𝕜 E
x₁ x₂ : E
hx₁ : x₁ ∈ K₁
hx₂ : x₂ ∈ K₂
y₁ y₂ : E
hy₁ : y₁ ∈ K₁
hy₂ : y₂ ∈ K₂
⊢ x₁ + y₁ + (x₂ + y₂) = x₁ + x₂ + (y₁ + y₂)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝ : ConvexCone 𝕜 E
⊢ 0 + x✝ = x✝
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝¹ : ConvexCone 𝕜 E
x✝ : E
⊢ x✝ ∈ 0 + x✝¹ ↔ x✝ ∈ x✝¹
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝ : ConvexCone 𝕜 E
⊢ x✝ + 0 = x✝
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : OrderedSemiring 𝕜
inst✝¹ : AddCommMonoid E
inst✝ : Module 𝕜 E
x✝¹ : ConvexCone 𝕜 E
x✝ : E
⊢ x✝ ∈ x✝¹ + 0 ↔ x✝ ∈ x✝¹
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
⊢ ConvexCone 𝕜 E
[PROOFSTEP]
apply ConvexCone.mk (⋃ (c : 𝕜) (_ : 0 < c), c • s)
[GOAL]
case smul_mem'
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
⊢ ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s → c • x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s
[PROOFSTEP]
simp only [mem_iUnion, mem_smul_set]
[GOAL]
case add_mem'
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
⊢ ∀ ⦃x : E⦄,
x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s →
∀ ⦃y : E⦄, y ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s → x + y ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s
[PROOFSTEP]
simp only [mem_iUnion, mem_smul_set]
[GOAL]
case smul_mem'
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
⊢ ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, (∃ i h y, y ∈ s ∧ i • y = x) → ∃ i h y, y ∈ s ∧ i • y = c • x
[PROOFSTEP]
rintro c c_pos _ ⟨c', c'_pos, x, hx, rfl⟩
[GOAL]
case smul_mem'.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
c : 𝕜
c_pos : 0 < c
c' : 𝕜
c'_pos : 0 < c'
x : E
hx : x ∈ s
⊢ ∃ i h y, y ∈ s ∧ i • y = c • c' • x
[PROOFSTEP]
exact ⟨c * c', mul_pos c_pos c'_pos, x, hx, (smul_smul _ _ _).symm⟩
[GOAL]
case add_mem'
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
⊢ ∀ ⦃x : E⦄,
(∃ i h y, y ∈ s ∧ i • y = x) → ∀ ⦃y : E⦄, (∃ i h y_1, y_1 ∈ s ∧ i • y_1 = y) → ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = x + y
[PROOFSTEP]
rintro _ ⟨cx, cx_pos, x, hx, rfl⟩ _ ⟨cy, cy_pos, y, hy, rfl⟩
[GOAL]
case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
cx : 𝕜
cx_pos : 0 < cx
x : E
hx : x ∈ s
cy : 𝕜
cy_pos : 0 < cy
y : E
hy : y ∈ s
⊢ ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = cx • x + cy • y
[PROOFSTEP]
have : 0 < cx + cy := add_pos cx_pos cy_pos
[GOAL]
case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
cx : 𝕜
cx_pos : 0 < cx
x : E
hx : x ∈ s
cy : 𝕜
cy_pos : 0 < cy
y : E
hy : y ∈ s
this : 0 < cx + cy
⊢ ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = cx • x + cy • y
[PROOFSTEP]
refine' ⟨_, this, _, convex_iff_div.1 hs hx hy cx_pos.le cy_pos.le this, _⟩
[GOAL]
case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
cx : 𝕜
cx_pos : 0 < cx
x : E
hx : x ∈ s
cy : 𝕜
cy_pos : 0 < cy
y : E
hy : y ∈ s
this : 0 < cx + cy
⊢ (cx + cy) • ((cx / (cx + cy)) • x + (cy / (cx + cy)) • y) = cx • x + cy • y
[PROOFSTEP]
simp only [smul_add, smul_smul, mul_div_assoc', mul_div_cancel_left _ this.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ x ∈ toCone s hs ↔ ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x
[PROOFSTEP]
simp only [toCone, ConvexCone.mem_mk, mem_iUnion, mem_smul_set, eq_comm, exists_prop]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ x ∈ toCone s hs ↔ ∃ c, 0 < c ∧ c • x ∈ s
[PROOFSTEP]
refine' hs.mem_toCone.trans ⟨_, _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ (∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x) → ∃ c, 0 < c ∧ c • x ∈ s
[PROOFSTEP]
rintro ⟨c, hc, y, hy, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
c : 𝕜
hc : 0 < c
y : E
hy : y ∈ s
⊢ ∃ c_1, 0 < c_1 ∧ c_1 • c • y ∈ s
[PROOFSTEP]
exact ⟨c⁻¹, inv_pos.2 hc, by rwa [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
c : 𝕜
hc : 0 < c
y : E
hy : y ∈ s
⊢ c⁻¹ • c • y ∈ s
[PROOFSTEP]
rwa [smul_smul, inv_mul_cancel hc.ne', one_smul]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ (∃ c, 0 < c ∧ c • x ∈ s) → ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x
[PROOFSTEP]
rintro ⟨c, hc, hcx⟩
[GOAL]
case refine'_2.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
c : 𝕜
hc : 0 < c
hcx : c • x ∈ s
⊢ ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x
[PROOFSTEP]
exact ⟨c⁻¹, inv_pos.2 hc, _, hcx, by rw [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
c : 𝕜
hc : 0 < c
hcx : c • x ∈ s
⊢ c⁻¹ • c • x = x
[PROOFSTEP]
rw [smul_smul, inv_mul_cancel hc.ne', one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x✝ x : E
hx : x ∈ s
⊢ 1 • x ∈ s
[PROOFSTEP]
rwa [one_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
⊢ IsLeast {t | s ⊆ ↑t} (toCone s hs)
[PROOFSTEP]
refine' ⟨hs.subset_toCone, fun t ht x hx => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x✝ : E
t : ConvexCone 𝕜 E
ht : t ∈ {t | s ⊆ ↑t}
x : E
hx : x ∈ toCone s hs
⊢ x ∈ t
[PROOFSTEP]
rcases hs.mem_toCone.1 hx with ⟨c, hc, y, hy, rfl⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
hs : Convex 𝕜 s
x : E
t : ConvexCone 𝕜 E
ht : t ∈ {t | s ⊆ ↑t}
c : 𝕜
hc : 0 < c
y : E
hy : y ∈ s
hx : c • y ∈ toCone s hs
⊢ c • y ∈ t
[PROOFSTEP]
exact t.smul_mem hc (ht hy)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ IsLeast {t | s ⊆ ↑t} (Convex.toCone (↑(convexHull 𝕜) s) (_ : Convex 𝕜 (↑(convexHull 𝕜) s)))
[PROOFSTEP]
convert (convex_convexHull 𝕜 s).toCone_isLeast using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
⊢ {t | s ⊆ ↑t} = {t | ↑(convexHull 𝕜) s ⊆ ↑t}
[PROOFSTEP]
ext t
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝² : LinearOrderedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
t : ConvexCone 𝕜 E
⊢ t ∈ {t | s ⊆ ↑t} ↔ t ∈ {t | ↑(convexHull 𝕜) s ⊆ ↑t}
[PROOFSTEP]
exact ⟨fun h => convexHull_min h t.convex, (subset_convexHull 𝕜 s).trans⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x
[PROOFSTEP]
obtain ⟨y, -, hy⟩ : ∃ y ∈ ⊤, y ∉ f.domain := @SetLike.exists_of_lt (Submodule ℝ E) _ _ _ _ (lt_top_iff_ne_top.2 hdom)
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x
[PROOFSTEP]
obtain ⟨c, le_c, c_le⟩ :
∃ c, (∀ x : f.domain, -(x : E) - y ∈ s → f x ≤ c) ∧ ∀ x : f.domain, (x : E) + y ∈ s → c ≤ f x :=
by
set Sp := f '' {x : f.domain | (x : E) + y ∈ s}
set Sn := f '' {x : f.domain | -(x : E) - y ∈ s}
suffices (upperBounds Sn ∩ lowerBounds Sp).Nonempty by
simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this
refine' exists_between_of_forall_le (Nonempty.image f _) (Nonempty.image f (dense y)) _
· rcases dense (-y) with ⟨x, hx⟩
rw [← neg_neg x, AddSubgroupClass.coe_neg, ← sub_eq_add_neg] at hx
exact ⟨_, hx⟩
rintro a ⟨xn, hxn, rfl⟩ b ⟨xp, hxp, rfl⟩
have := s.add_mem hxp hxn
rw [add_assoc, add_sub_cancel'_right, ← sub_eq_add_neg, ← AddSubgroupClass.coe_sub] at this
replace := nonneg _ this
rwa [f.map_sub, sub_nonneg] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
[PROOFSTEP]
set Sp := f '' {x : f.domain | (x : E) + y ∈ s}
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
[PROOFSTEP]
set Sn := f '' {x : f.domain | -(x : E) - y ∈ s}
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
[PROOFSTEP]
suffices (upperBounds Sn ∩ lowerBounds Sp).Nonempty by
simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
this : Set.Nonempty (upperBounds Sn ∩ lowerBounds Sp)
⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
[PROOFSTEP]
simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
⊢ Set.Nonempty (upperBounds Sn ∩ lowerBounds Sp)
[PROOFSTEP]
refine' exists_between_of_forall_le (Nonempty.image f _) (Nonempty.image f (dense y)) _
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
⊢ Set.Nonempty {x | -↑x - y ∈ s}
[PROOFSTEP]
rcases dense (-y) with ⟨x, hx⟩
[GOAL]
case refine'_1.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
x : { x // x ∈ f.domain }
hx : ↑x + -y ∈ s
⊢ Set.Nonempty {x | -↑x - y ∈ s}
[PROOFSTEP]
rw [← neg_neg x, AddSubgroupClass.coe_neg, ← sub_eq_add_neg] at hx
[GOAL]
case refine'_1.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
x : { x // x ∈ f.domain }
hx : -↑(-x) - y ∈ s
⊢ Set.Nonempty {x | -↑x - y ∈ s}
[PROOFSTEP]
exact ⟨_, hx⟩
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
⊢ ∀ (x : ℝ), x ∈ Sn → ∀ (y : ℝ), y ∈ Sp → x ≤ y
[PROOFSTEP]
rintro a ⟨xn, hxn, rfl⟩ b ⟨xp, hxp, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
xn : { x // x ∈ f.domain }
hxn : xn ∈ {x | -↑x - y ∈ s}
xp : { x // x ∈ f.domain }
hxp : xp ∈ {x | ↑x + y ∈ s}
⊢ ↑f xn ≤ ↑f xp
[PROOFSTEP]
have := s.add_mem hxp hxn
[GOAL]
case refine'_2.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
xn : { x // x ∈ f.domain }
hxn : xn ∈ {x | -↑x - y ∈ s}
xp : { x // x ∈ f.domain }
hxp : xp ∈ {x | ↑x + y ∈ s}
this : ↑xp + y + (-↑xn - y) ∈ s
⊢ ↑f xn ≤ ↑f xp
[PROOFSTEP]
rw [add_assoc, add_sub_cancel'_right, ← sub_eq_add_neg, ← AddSubgroupClass.coe_sub] at this
[GOAL]
case refine'_2.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
xn : { x // x ∈ f.domain }
hxn : xn ∈ {x | -↑x - y ∈ s}
xp : { x // x ∈ f.domain }
hxp : xp ∈ {x | ↑x + y ∈ s}
this✝ : ↑xp - ↑xn ∈ s
this : ↑(xp - xn) ∈ s
⊢ ↑f xn ≤ ↑f xp
[PROOFSTEP]
replace := nonneg _ this
[GOAL]
case refine'_2.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s}
Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s}
xn : { x // x ∈ f.domain }
hxn : xn ∈ {x | -↑x - y ∈ s}
xp : { x // x ∈ f.domain }
hxp : xp ∈ {x | ↑x + y ∈ s}
this✝ : ↑xp - ↑xn ∈ s
this : 0 ≤ ↑f (xp - xn)
⊢ ↑f xn ≤ ↑f xp
[PROOFSTEP]
rwa [f.map_sub, sub_nonneg] at this
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x
[PROOFSTEP]
refine' ⟨f.supSpanSingleton y (-c) hy, _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
⊢ f < LinearPMap.supSpanSingleton f y (-c) hy
[PROOFSTEP]
refine' lt_iff_le_not_le.2 ⟨f.left_le_sup _ _, fun H => _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
H : LinearPMap.supSpanSingleton f y (-c) hy ≤ f
⊢ False
[PROOFSTEP]
replace H := LinearPMap.domain_mono.monotone H
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
H : (LinearPMap.supSpanSingleton f y (-c) hy).domain ≤ f.domain
⊢ False
[PROOFSTEP]
rw [LinearPMap.domain_supSpanSingleton, sup_le_iff, span_le, singleton_subset_iff] at H
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
H : f.domain ≤ f.domain ∧ y ∈ ↑f.domain
⊢ False
[PROOFSTEP]
exact hy H.2
[GOAL]
case intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
⊢ ∀ (x : { x // x ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain }),
↑x ∈ s → 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) x
[PROOFSTEP]
rintro ⟨z, hz⟩ hzs
[GOAL]
case intro.intro.intro.intro.refine'_2.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
z : E
hz : z ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : ↑{ val := z, property := hz } ∈ s
⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := z, property := hz }
[PROOFSTEP]
rcases mem_sup.1 hz with ⟨x, hx, y', hy', rfl⟩
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
y' : E
hy' : y' ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + y' ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : ↑{ val := x + y', property := hz } ∈ s
⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + y', property := hz }
[PROOFSTEP]
rcases mem_span_singleton.1 hy' with ⟨r, rfl⟩
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : ↑{ val := x + r • y, property := hz } ∈ s
⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + r • y, property := hz }
[PROOFSTEP]
simp only [Subtype.coe_mk] at hzs
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + r • y, property := hz }
[PROOFSTEP]
erw [LinearPMap.supSpanSingleton_apply_mk _ _ _ _ _ hx, smul_neg, ← sub_eq_add_neg, sub_nonneg]
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
rcases lt_trichotomy r 0 with (hr | hr | hr)
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r < 0
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
have : -(r⁻¹ • x) - y ∈ s := by
rwa [← s.smul_mem_iff (neg_pos.2 hr), smul_sub, smul_neg, neg_smul, neg_neg, smul_smul, mul_inv_cancel hr.ne,
one_smul, sub_eq_add_neg, neg_smul, neg_neg]
-- Porting note: added type annotation and `by exact`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r < 0
⊢ -(r⁻¹ • x) - y ∈ s
[PROOFSTEP]
rwa [← s.smul_mem_iff (neg_pos.2 hr), smul_sub, smul_neg, neg_smul, neg_neg, smul_smul, mul_inv_cancel hr.ne, one_smul,
sub_eq_add_neg, neg_smul, neg_neg]
-- Porting note: added type annotation and `by exact`
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r < 0
this : -(r⁻¹ • x) - y ∈ s
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
replace : f (r⁻¹ • ⟨x, hx⟩) ≤ c := le_c (r⁻¹ • ⟨x, hx⟩) (by exact this)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r < 0
this : -(r⁻¹ • x) - y ∈ s
⊢ -↑(r⁻¹ • { val := x, property := hx }) - y ∈ s
[PROOFSTEP]
exact this
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r < 0
this : ↑f (r⁻¹ • { val := x, property := hx }) ≤ c
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
rwa [← mul_le_mul_left (neg_pos.2 hr), neg_mul, neg_mul, neg_le_neg_iff, f.map_smul, smul_eq_mul, ← mul_assoc,
mul_inv_cancel hr.ne, one_mul] at this
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : r = 0
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
subst r
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + 0 • y ∈ s
⊢ 0 • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
simp only [zero_smul, add_zero] at hzs ⊢
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x ∈ s
⊢ 0 ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
apply nonneg
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x ∈ s
⊢ ↑{ val := x, property := hx } ∈ s
[PROOFSTEP]
exact hzs
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : 0 < r
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
have : r⁻¹ • x + y ∈ s := by
rwa [← s.smul_mem_iff hr, smul_add, smul_smul, mul_inv_cancel hr.ne', one_smul]
-- Porting note: added type annotation and `by exact`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : 0 < r
⊢ r⁻¹ • x + y ∈ s
[PROOFSTEP]
rwa [← s.smul_mem_iff hr, smul_add, smul_smul, mul_inv_cancel hr.ne', one_smul]
-- Porting note: added type annotation and `by exact`
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : 0 < r
this : r⁻¹ • x + y ∈ s
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
replace : c ≤ f (r⁻¹ • ⟨x, hx⟩) := c_le (r⁻¹ • ⟨x, hx⟩) (by exact this)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : 0 < r
this : r⁻¹ • x + y ∈ s
⊢ ↑(r⁻¹ • { val := x, property := hx }) + y ∈ s
[PROOFSTEP]
exact this
[GOAL]
case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
hdom : f.domain ≠ ⊤
y : E
hy : ¬y ∈ f.domain
c : ℝ
le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c
c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x
x : E
hx : x ∈ f.domain
r : ℝ
hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain
hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain
hzs : x + r • y ∈ s
hr : 0 < r
this : c ≤ ↑f (r⁻¹ • { val := x, property := hx })
⊢ r • c ≤ ↑f { val := x, property := hx }
[PROOFSTEP]
rwa [← mul_le_mul_left hr, f.map_smul, smul_eq_mul, ← mul_assoc, mul_inv_cancel hr.ne', one_mul] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x
[PROOFSTEP]
set S := {p : E →ₗ.[ℝ] ℝ | ∀ x : p.domain, (x : E) ∈ s → 0 ≤ p x}
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x
[PROOFSTEP]
have hSc : ∀ c, c ⊆ S → IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ S, ∀ z ∈ c, z ≤ ub
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
⊢ ∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
[PROOFSTEP]
intro c hcs c_chain y hy
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
[PROOFSTEP]
clear hp_nonneg hp_dense p
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
[PROOFSTEP]
have cne : c.Nonempty := ⟨y, hy⟩
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
[PROOFSTEP]
have hcd : DirectedOn (· ≤ ·) c := c_chain.directedOn
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
[PROOFSTEP]
refine' ⟨LinearPMap.sSup c hcd, _, fun _ ↦ LinearPMap.le_sSup hcd⟩
[GOAL]
case hSc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
⊢ LinearPMap.sSup c hcd ∈ S
[PROOFSTEP]
rintro ⟨x, hx⟩ hxs
[GOAL]
case hSc.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
x : E
hx : x ∈ (LinearPMap.sSup c hcd).domain
hxs : ↑{ val := x, property := hx } ∈ s
⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx }
[PROOFSTEP]
have hdir : DirectedOn (· ≤ ·) (LinearPMap.domain '' c) :=
directedOn_image.2 (hcd.mono fun h ↦ LinearPMap.domain_mono.monotone h)
[GOAL]
case hSc.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
x : E
hx : x ∈ (LinearPMap.sSup c hcd).domain
hxs : ↑{ val := x, property := hx } ∈ s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c)
⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx }
[PROOFSTEP]
rcases(mem_sSup_of_directed (cne.image _) hdir).1 hx with ⟨_, ⟨f, hfc, rfl⟩, hfx⟩
[GOAL]
case hSc.mk.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f✝ : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
x : E
hx : x ∈ (LinearPMap.sSup c hcd).domain
hxs : ↑{ val := x, property := hx } ∈ s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c)
f : E →ₗ.[ℝ] ℝ
hfc : f ∈ c
hfx : x ∈ f.domain
⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx }
[PROOFSTEP]
have : f ≤ LinearPMap.sSup c hcd := LinearPMap.le_sSup _ hfc
[GOAL]
case hSc.mk.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f✝ : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
x : E
hx : x ∈ (LinearPMap.sSup c hcd).domain
hxs : ↑{ val := x, property := hx } ∈ s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c)
f : E →ₗ.[ℝ] ℝ
hfc : f ∈ c
hfx : x ∈ f.domain
this : f ≤ LinearPMap.sSup c hcd
⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx }
[PROOFSTEP]
convert ← hcs hfc ⟨x, hfx⟩ hxs using 1
[GOAL]
case h.e'_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f✝ : E →ₗ.[ℝ] ℝ
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
c : Set (E →ₗ.[ℝ] ℝ)
hcs : c ⊆ S
c_chain : IsChain (fun x x_1 => x ≤ x_1) c
y : E →ₗ.[ℝ] ℝ
hy : y ∈ c
cne : Set.Nonempty c
hcd : DirectedOn (fun x x_1 => x ≤ x_1) c
x : E
hx : x ∈ (LinearPMap.sSup c hcd).domain
hxs : ↑{ val := x, property := hx } ∈ s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c)
f : E →ₗ.[ℝ] ℝ
hfc : f ∈ c
hfx : x ∈ f.domain
this : f ≤ LinearPMap.sSup c hcd
⊢ ↑f { val := x, property := hfx } = ↑(LinearPMap.sSup c hcd) { val := x, property := hx }
[PROOFSTEP]
exact this.2 rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x
[PROOFSTEP]
obtain ⟨q, hqs, hpq, hq⟩ := zorn_nonempty_partialOrder₀ S hSc p hp_nonneg
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
q : E →ₗ.[ℝ] ℝ
hqs : q ∈ S
hpq : p ≤ q
hq : ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ S → q ≤ z → z = q
⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x
[PROOFSTEP]
refine' ⟨q, hpq, _, hqs⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
q : E →ₗ.[ℝ] ℝ
hqs : q ∈ S
hpq : p ≤ q
hq : ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ S → q ≤ z → z = q
⊢ q.domain = ⊤
[PROOFSTEP]
contrapose! hq
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
q : E →ₗ.[ℝ] ℝ
hqs : q ∈ S
hpq : p ≤ q
hq : q.domain ≠ ⊤
⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q
[PROOFSTEP]
have hqd : ∀ y, ∃ x : q.domain, (x : E) + y ∈ s := fun y ↦
let ⟨x, hx⟩ := hp_dense y
⟨ofLe hpq.left x, hx⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
q : E →ₗ.[ℝ] ℝ
hqs : q ∈ S
hpq : p ≤ q
hq : q.domain ≠ ⊤
hqd : ∀ (y : E), ∃ x, ↑x + y ∈ s
⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q
[PROOFSTEP]
rcases step s q hqs hqd hq with ⟨r, hqr, hr⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f p : E →ₗ.[ℝ] ℝ
hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x
hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x}
hSc :
∀ (c : Set (E →ₗ.[ℝ] ℝ)),
c ⊆ S →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub
q : E →ₗ.[ℝ] ℝ
hqs : q ∈ S
hpq : p ≤ q
hq : q.domain ≠ ⊤
hqd : ∀ (y : E), ∃ x, ↑x + y ∈ s
r : E →ₗ.[ℝ] ℝ
hqr : q < r
hr : ∀ (x : { x // x ∈ r.domain }), ↑x ∈ s → 0 ≤ ↑r x
⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q
[PROOFSTEP]
exact ⟨r, hr, hqr.le, hqr.ne'⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), x ∈ s → 0 ≤ ↑g x
[PROOFSTEP]
rcases RieszExtension.exists_top s f nonneg dense with ⟨⟨g_dom, g⟩, ⟨-, hfg⟩, rfl : g_dom = ⊤, hgs⟩
[GOAL]
case intro.mk.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ
hfg :
∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄,
↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y
hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), x ∈ s → 0 ≤ ↑g x
[PROOFSTEP]
refine' ⟨g.comp (LinearMap.id.codRestrict ⊤ fun _ ↦ trivial), _, _⟩
[GOAL]
case intro.mk.intro.intro.intro.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ
hfg :
∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄,
↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y
hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x
⊢ ∀ (x : { x // x ∈ f.domain }), ↑(comp g (LinearMap.codRestrict ⊤ LinearMap.id (_ : E → True))) ↑x = ↑f x
[PROOFSTEP]
exact fun x => (hfg rfl).symm
[GOAL]
case intro.mk.intro.intro.intro.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
s : ConvexCone ℝ E
f : E →ₗ.[ℝ] ℝ
nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x
dense : ∀ (y : E), ∃ x, ↑x + y ∈ s
g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ
hfg :
∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄,
↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y
hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x
⊢ ∀ (x : E), x ∈ s → 0 ≤ ↑(comp g (LinearMap.codRestrict ⊤ LinearMap.id (_ : E → True))) x
[PROOFSTEP]
exact fun x hx => hgs ⟨x, _⟩ hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
let s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p : E × ℝ | N p.1 ≤ p.2}
smul_mem' := fun c hc p hp =>
calc
N (c • p.1) = c * N p.1 := N_hom c hc p.1
_ ≤ c * p.2 := mul_le_mul_of_nonneg_left hp hc.le
add_mem' := fun x hx y hy => (N_add _ _).trans (add_le_add hx hy) }
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
set f' := (-f).coprod (LinearMap.id.toPMap ⊤)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
have hf'_nonneg : ∀ x : f'.domain, x.1 ∈ s → 0 ≤ f' x := fun x (hx : N x.1.1 ≤ x.1.2) ↦ by
simpa using le_trans (hf ⟨x.1.1, x.2.1⟩) hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
x : { x // x ∈ f'.domain }
hx : N (↑x).fst ≤ (↑x).snd
⊢ 0 ≤ ↑f' x
[PROOFSTEP]
simpa using le_trans (hf ⟨x.1.1, x.2.1⟩) hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
have hf'_dense : ∀ y : E × ℝ, ∃ x : f'.domain, ↑x + y ∈ s
[GOAL]
case hf'_dense
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
⊢ ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
[PROOFSTEP]
rintro ⟨x, y⟩
[GOAL]
case hf'_dense.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
x : E
y : ℝ
⊢ ∃ x_1, ↑x_1 + (x, y) ∈ s
[PROOFSTEP]
refine' ⟨⟨(0, N x - y), ⟨f.domain.zero_mem, trivial⟩⟩, _⟩
[GOAL]
case hf'_dense.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
x : E
y : ℝ
⊢ ↑{ val := (0, N x - y),
property := (_ : (0, N x - y).fst ∈ ↑(-f).domain ∧ (0, N x - y).snd ∈ ↑(toPMap LinearMap.id ⊤).domain) } +
(x, y) ∈
s
[PROOFSTEP]
simp only [ConvexCone.mem_mk, mem_setOf_eq, Prod.fst_add, Prod.snd_add, zero_add, sub_add_cancel, le_rfl]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
obtain ⟨g, g_eq, g_nonneg⟩ := riesz_extension s f' hf'_nonneg hf'_dense
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_eq : ∀ (x : { x // x ∈ f'.domain }), ↑g ↑x = ↑f' x
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
replace g_eq : ∀ (x : f.domain) (y : ℝ), g (x, y) = y - f x := fun x y ↦
(g_eq ⟨(x, y), ⟨x.2, trivial⟩⟩).trans (sub_eq_neg_add _ _).symm
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x
[PROOFSTEP]
refine ⟨-g.comp (inl ℝ E ℝ), fun x ↦ ?_, fun x ↦ ?_⟩
[GOAL]
case intro.intro.refine_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
x : { x // x ∈ f.domain }
⊢ ↑(-comp g (inl ℝ E ℝ)) ↑x = ↑f x
[PROOFSTEP]
simp [g_eq x 0]
[GOAL]
case intro.intro.refine_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
x : E
⊢ ↑(-comp g (inl ℝ E ℝ)) x ≤ N x
[PROOFSTEP]
calc
-g (x, 0) = g (0, N x) - g (x, N x) := by simp [← map_sub, ← map_neg]
_ = N x - g (x, N x) := by simpa using g_eq 0 (N x)
_ ≤ N x := by simpa using g_nonneg ⟨x, N x⟩ (le_refl (N x))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
x : E
⊢ -↑g (x, 0) = ↑g (0, N x) - ↑g (x, N x)
[PROOFSTEP]
simp [← map_sub, ← map_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
x : E
⊢ ↑g (0, N x) - ↑g (x, N x) = N x - ↑g (x, N x)
[PROOFSTEP]
simpa using g_eq 0 (N x)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹ : AddCommGroup E
inst✝ : Module ℝ E
f : E →ₗ.[ℝ] ℝ
N : E → ℝ
N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x
N_add : ∀ (x y : E), N (x + y) ≤ N x + N y
hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x
s : ConvexCone ℝ (E × ℝ) :=
{ carrier := {p | N p.fst ≤ p.snd},
smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd),
add_mem' :=
(_ :
∀ (x : E × ℝ),
x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) }
f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤)
hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x
hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s
g : E × ℝ →ₗ[ℝ] ℝ
g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x
g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x
x : E
⊢ N x - ↑g (x, N x) ≤ N x
[PROOFSTEP]
simpa using g_nonneg ⟨x, N x⟩ (le_refl (N x))
| {"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Basic", "llama_tokens": 44340} |
[GOAL]
x : ℂ
h : cos x ≠ 0
⊢ HasStrictDerivAt tan (↑1 / cos x ^ 2) x
[PROOFSTEP]
convert (hasStrictDerivAt_sin x).div (hasStrictDerivAt_cos x) h using 1
[GOAL]
case h.e'_7
x : ℂ
h : cos x ≠ 0
⊢ ↑1 / cos x ^ 2 = (cos x * cos x - sin x * -sin x) / cos x ^ 2
[PROOFSTEP]
rw_mod_cast [← sin_sq_add_cos_sq x]
[GOAL]
case h.e'_7
x : ℂ
h : ¬cos x = 0
⊢ (sin x ^ 2 + cos x ^ 2) / cos x ^ 2 = (cos x * cos x - sin x * -sin x) / cos x ^ 2
[PROOFSTEP]
ring
[GOAL]
x : ℂ
hx : cos x = 0
⊢ Tendsto (fun x => ↑abs (tan x)) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
simp only [tan_eq_sin_div_cos, ← norm_eq_abs, norm_div]
[GOAL]
x : ℂ
hx : cos x = 0
⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
have A : sin x ≠ 0 := fun h => by simpa [*, sq] using sin_sq_add_cos_sq x
[GOAL]
x : ℂ
hx : cos x = 0
h : sin x = 0
⊢ False
[PROOFSTEP]
simpa [*, sq] using sin_sq_add_cos_sq x
[GOAL]
x : ℂ
hx : cos x = 0
A : sin x ≠ 0
⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
have B : Tendsto cos (𝓝[≠] x) (𝓝[≠] 0) := hx ▸ (hasDerivAt_cos x).tendsto_punctured_nhds (neg_ne_zero.2 A)
[GOAL]
x : ℂ
hx : cos x = 0
A : sin x ≠ 0
B : Tendsto cos (𝓝[{x}ᶜ] x) (𝓝[{0}ᶜ] 0)
⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
exact
continuous_sin.continuousWithinAt.norm.mul_atTop (norm_pos_iff.2 A)
(tendsto_norm_nhdsWithin_zero.comp B).inv_tendsto_zero
[GOAL]
x : ℂ
⊢ ContinuousAt tan x ↔ cos x ≠ 0
[PROOFSTEP]
refine' ⟨fun hc h₀ => _, fun h => (hasDerivAt_tan h).continuousAt⟩
[GOAL]
x : ℂ
hc : ContinuousAt tan x
h₀ : cos x = 0
⊢ False
[PROOFSTEP]
exact not_tendsto_nhds_of_tendsto_atTop (tendsto_abs_tan_of_cos_eq_zero h₀) _ (hc.norm.tendsto.mono_left inf_le_left)
[GOAL]
x : ℂ
h : cos x = 0
⊢ deriv tan x = ↑1 / cos x ^ 2
[PROOFSTEP]
have : ¬DifferentiableAt ℂ tan x := mt differentiableAt_tan.1 (Classical.not_not.2 h)
[GOAL]
x : ℂ
h : cos x = 0
this : ¬DifferentiableAt ℂ tan x
⊢ deriv tan x = ↑1 / cos x ^ 2
[PROOFSTEP]
simp [deriv_zero_of_not_differentiableAt this, h, sq]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv", "llama_tokens": 1063} |
[GOAL]
x : ℝ
h₁ : x ≠ -1
h₂ : x ≠ 1
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
cases' h₁.lt_or_lt with h₁ h₁
[GOAL]
case inl
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : x < -1
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
have : 1 - x ^ 2 < 0 := by nlinarith [h₁]
[GOAL]
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : x < -1
⊢ 1 - x ^ 2 < 0
[PROOFSTEP]
nlinarith [h₁]
[GOAL]
case inl
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : x < -1
this : 1 - x ^ 2 < 0
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
rw [sqrt_eq_zero'.2 this.le, div_zero]
[GOAL]
case inl
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : x < -1
this : 1 - x ^ 2 < 0
⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
have : arcsin =ᶠ[𝓝 x] fun _ => -(π / 2) := (gt_mem_nhds h₁).mono fun y hy => arcsin_of_le_neg_one hy.le
[GOAL]
case inl
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : x < -1
this✝ : 1 - x ^ 2 < 0
this : arcsin =ᶠ[𝓝 x] fun x => -(π / 2)
⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩
[GOAL]
case inr
x : ℝ
h₁✝ : x ≠ -1
h₂ : x ≠ 1
h₁ : -1 < x
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
cases' h₂.lt_or_lt with h₂ h₂
[GOAL]
case inr.inl
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : x < 1
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
have : 0 < sqrt (1 - x ^ 2) := sqrt_pos.2 (by nlinarith [h₁, h₂])
[GOAL]
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : x < 1
⊢ 0 < 1 - x ^ 2
[PROOFSTEP]
nlinarith [h₁, h₂]
[GOAL]
case inr.inl
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : x < 1
this : 0 < sqrt (1 - x ^ 2)
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
simp only [← cos_arcsin, one_div] at this ⊢
[GOAL]
case inr.inl
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : x < 1
this : 0 < cos (arcsin x)
⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
exact
⟨sinLocalHomeomorph.hasStrictDerivAt_symm ⟨h₁, h₂⟩ this.ne' (hasStrictDerivAt_sin _),
sinLocalHomeomorph.contDiffAt_symm_deriv this.ne' ⟨h₁, h₂⟩ (hasDerivAt_sin _) contDiff_sin.contDiffAt⟩
[GOAL]
case inr.inr
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : 1 < x
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
have : 1 - x ^ 2 < 0 := by nlinarith [h₂]
[GOAL]
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : 1 < x
⊢ 1 - x ^ 2 < 0
[PROOFSTEP]
nlinarith [h₂]
[GOAL]
case inr.inr
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : 1 < x
this : 1 - x ^ 2 < 0
⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
rw [sqrt_eq_zero'.2 this.le, div_zero]
[GOAL]
case inr.inr
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : 1 < x
this : 1 - x ^ 2 < 0
⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
have : arcsin =ᶠ[𝓝 x] fun _ => π / 2 := (lt_mem_nhds h₂).mono fun y hy => arcsin_of_one_le hy.le
[GOAL]
case inr.inr
x : ℝ
h₁✝ : x ≠ -1
h₂✝ : x ≠ 1
h₁ : -1 < x
h₂ : 1 < x
this✝ : 1 - x ^ 2 < 0
this : arcsin =ᶠ[𝓝 x] fun x => π / 2
⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x
[PROOFSTEP]
exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩
[GOAL]
x : ℝ
h : x ≠ -1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Ici x) x
[PROOFSTEP]
rcases eq_or_ne x 1 with (rfl | h')
[GOAL]
case inl
h : 1 ≠ -1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - 1 ^ 2)) (Ici 1) 1
[PROOFSTEP]
convert (hasDerivWithinAt_const (1 : ℝ) _ (π / 2)).congr _ _
[GOAL]
case h.e'_7
h : 1 ≠ -1
⊢ 1 / sqrt (1 - 1 ^ 2) = 0
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_one_le]
[GOAL]
case inl.convert_3
h : 1 ≠ -1
⊢ ∀ (x : ℝ), x ∈ Ici 1 → arcsin x = π / 2
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_one_le]
[GOAL]
case inl.convert_4
h : 1 ≠ -1
⊢ arcsin 1 = π / 2
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_one_le]
[GOAL]
case inr
x : ℝ
h : x ≠ -1
h' : x ≠ 1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Ici x) x
[PROOFSTEP]
exact (hasDerivAt_arcsin h h').hasDerivWithinAt
[GOAL]
x : ℝ
h : x ≠ 1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Iic x) x
[PROOFSTEP]
rcases em (x = -1) with (rfl | h')
[GOAL]
case inl
h : -1 ≠ 1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - (-1) ^ 2)) (Iic (-1)) (-1)
[PROOFSTEP]
convert (hasDerivWithinAt_const (-1 : ℝ) _ (-(π / 2))).congr _ _
[GOAL]
case h.e'_7
h : -1 ≠ 1
⊢ 1 / sqrt (1 - (-1) ^ 2) = 0
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_le_neg_one]
[GOAL]
case inl.convert_3
h : -1 ≠ 1
⊢ ∀ (x : ℝ), x ∈ Iic (-1) → arcsin x = -(π / 2)
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_le_neg_one]
[GOAL]
case inl.convert_4
h : -1 ≠ 1
⊢ arcsin (-1) = -(π / 2)
[PROOFSTEP]
simp (config := { contextual := true }) [arcsin_of_le_neg_one]
[GOAL]
case inr
x : ℝ
h : x ≠ 1
h' : ¬x = -1
⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Iic x) x
[PROOFSTEP]
exact (hasDerivAt_arcsin h' h).hasDerivWithinAt
[GOAL]
x : ℝ
⊢ DifferentiableWithinAt ℝ arcsin (Ici x) x ↔ x ≠ -1
[PROOFSTEP]
refine' ⟨_, fun h => (hasDerivWithinAt_arcsin_Ici h).differentiableWithinAt⟩
[GOAL]
x : ℝ
⊢ DifferentiableWithinAt ℝ arcsin (Ici x) x → x ≠ -1
[PROOFSTEP]
rintro h rfl
[GOAL]
h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1)
⊢ False
[PROOFSTEP]
have : sin ∘ arcsin =ᶠ[𝓝[≥] (-1 : ℝ)] id := by
filter_upwards [Icc_mem_nhdsWithin_Ici ⟨le_rfl, neg_lt_self (zero_lt_one' ℝ)⟩] with x using sin_arcsin'
[GOAL]
h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1)
⊢ sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id
[PROOFSTEP]
filter_upwards [Icc_mem_nhdsWithin_Ici ⟨le_rfl, neg_lt_self (zero_lt_one' ℝ)⟩] with x using sin_arcsin'
[GOAL]
h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1)
this : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id
⊢ False
[PROOFSTEP]
have := h.hasDerivWithinAt.sin.congr_of_eventuallyEq this.symm (by simp)
[GOAL]
h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1)
this : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id
⊢ id (-1) = sin (arcsin (-1))
[PROOFSTEP]
simp
[GOAL]
h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1)
this✝ : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id
this : HasDerivWithinAt id (cos (arcsin (-1)) * derivWithin arcsin (Ici (-1)) (-1)) (Ici (-1)) (-1)
⊢ False
[PROOFSTEP]
simpa using (uniqueDiffOn_Ici _ _ left_mem_Ici).eq_deriv _ this (hasDerivWithinAt_id _ _)
[GOAL]
x : ℝ
⊢ DifferentiableWithinAt ℝ arcsin (Iic x) x ↔ x ≠ 1
[PROOFSTEP]
refine' ⟨fun h => _, fun h => (hasDerivWithinAt_arcsin_Iic h).differentiableWithinAt⟩
[GOAL]
x : ℝ
h : DifferentiableWithinAt ℝ arcsin (Iic x) x
⊢ x ≠ 1
[PROOFSTEP]
rw [← neg_neg x, ← image_neg_Ici] at h
[GOAL]
x : ℝ
h : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x)
⊢ x ≠ 1
[PROOFSTEP]
have := (h.comp (-x) differentiableWithinAt_id.neg (mapsTo_image _ _)).neg
[GOAL]
x : ℝ
h : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x)
this : DifferentiableWithinAt ℝ (fun y => -(arcsin ∘ Neg.neg) y) (Ici (-x)) (-x)
⊢ x ≠ 1
[PROOFSTEP]
simpa [(· ∘ ·), differentiableWithinAt_arcsin_Ici] using this
[GOAL]
⊢ deriv arcsin = fun x => 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
funext x
[GOAL]
case h
x : ℝ
⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases h : x ≠ -1 ∧ x ≠ 1
[GOAL]
case pos
x : ℝ
h : x ≠ -1 ∧ x ≠ 1
⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
exact (hasDerivAt_arcsin h.1 h.2).deriv
[GOAL]
case neg
x : ℝ
h : ¬(x ≠ -1 ∧ x ≠ 1)
⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [deriv_zero_of_not_differentiableAt (mt differentiableAt_arcsin.1 h)]
[GOAL]
case neg
x : ℝ
h : ¬(x ≠ -1 ∧ x ≠ 1)
⊢ 0 = 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
simp only [not_and_or, Ne.def, Classical.not_not] at h
[GOAL]
case neg
x : ℝ
h : x = -1 ∨ x = 1
⊢ 0 = 1 / sqrt (1 - x ^ 2)
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case neg.inl
⊢ 0 = 1 / sqrt (1 - (-1) ^ 2)
[PROOFSTEP]
simp
[GOAL]
case neg.inr
⊢ 0 = 1 / sqrt (1 - 1 ^ 2)
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ -deriv (fun y => arcsin y) x = -(1 / sqrt (1 - x ^ 2))
[PROOFSTEP]
simp only [deriv_arcsin]
[GOAL]
x : ℝ
n : ℕ∞
⊢ ContDiffAt ℝ n arccos x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1
[PROOFSTEP]
refine' Iff.trans ⟨fun h => _, fun h => _⟩ contDiffAt_arcsin_iff
[GOAL]
case refine'_1
x : ℝ
n : ℕ∞
h : ContDiffAt ℝ n arccos x
⊢ ContDiffAt ℝ n arcsin x
[PROOFSTEP]
simpa [arccos] using (@contDiffAt_const _ _ _ _ _ _ _ _ _ _ (π / 2)).sub h
[GOAL]
case refine'_2
x : ℝ
n : ℕ∞
h : ContDiffAt ℝ n arcsin x
⊢ ContDiffAt ℝ n arccos x
[PROOFSTEP]
simpa [arccos] using (@contDiffAt_const _ _ _ _ _ _ _ _ _ _ (π / 2)).sub h
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.InverseDeriv", "llama_tokens": 4774} |
[GOAL]
⊢ StrictConvexOn ℝ univ exp
[PROOFSTEP]
apply strictConvexOn_of_slope_strict_mono_adjacent convex_univ
[GOAL]
⊢ ∀ {x y z : ℝ}, x ∈ univ → z ∈ univ → x < y → y < z → (exp y - exp x) / (y - x) < (exp z - exp y) / (z - y)
[PROOFSTEP]
rintro x y z - - hxy hyz
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
⊢ (exp y - exp x) / (y - x) < (exp z - exp y) / (z - y)
[PROOFSTEP]
trans exp y
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
⊢ (exp y - exp x) / (y - x) < exp y
[PROOFSTEP]
have h1 : 0 < y - x := by linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
⊢ (exp y - exp x) / (y - x) < exp y
[PROOFSTEP]
have h2 : x - y < 0 := by linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
⊢ x - y < 0
[PROOFSTEP]
linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ (exp y - exp x) / (y - x) < exp y
[PROOFSTEP]
rw [div_lt_iff h1]
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y - exp x < exp y * (y - x)
[PROOFSTEP]
calc
exp y - exp x = exp y - exp y * exp (x - y) := by rw [← exp_add]; ring_nf
_ = exp y * (1 - exp (x - y)) := by ring
_ < exp y * -(x - y) := by gcongr; linarith [add_one_lt_exp_of_nonzero h2.ne]
_ = exp y * (y - x) := by ring
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y - exp x = exp y - exp y * exp (x - y)
[PROOFSTEP]
rw [← exp_add]
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y - exp x = exp y - exp (y + (x - y))
[PROOFSTEP]
ring_nf
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y - exp y * exp (x - y) = exp y * (1 - exp (x - y))
[PROOFSTEP]
ring
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y * (1 - exp (x - y)) < exp y * -(x - y)
[PROOFSTEP]
gcongr
[GOAL]
case bc
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ 1 - exp (x - y) < -(x - y)
[PROOFSTEP]
linarith [add_one_lt_exp_of_nonzero h2.ne]
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < y - x
h2 : x - y < 0
⊢ exp y * -(x - y) = exp y * (y - x)
[PROOFSTEP]
ring
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
⊢ exp y < (exp z - exp y) / (z - y)
[PROOFSTEP]
have h1 : 0 < z - y := by linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp y < (exp z - exp y) / (z - y)
[PROOFSTEP]
rw [lt_div_iff h1]
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp y * (z - y) < exp z - exp y
[PROOFSTEP]
calc
exp y * (z - y) < exp y * (exp (z - y) - 1) := by
gcongr _ * ?_
linarith [add_one_lt_exp_of_nonzero h1.ne']
_ = exp (z - y) * exp y - exp y := by ring
_ ≤ exp z - exp y := by rw [← exp_add]; ring_nf; rfl
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp y * (z - y) < exp y * (exp (z - y) - 1)
[PROOFSTEP]
gcongr _ * ?_
[GOAL]
case bc
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ z - y < exp (z - y) - 1
[PROOFSTEP]
linarith [add_one_lt_exp_of_nonzero h1.ne']
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp y * (exp (z - y) - 1) = exp (z - y) * exp y - exp y
[PROOFSTEP]
ring
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp (z - y) * exp y - exp y ≤ exp z - exp y
[PROOFSTEP]
rw [← exp_add]
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp (z - y + y) - exp y ≤ exp z - exp y
[PROOFSTEP]
ring_nf
[GOAL]
x y z : ℝ
hxy : x < y
hyz : y < z
h1 : 0 < z - y
⊢ exp z - exp y ≤ exp z - exp y
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ n
[PROOFSTEP]
induction' n with k IH
[GOAL]
case zero
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.zero
[PROOFSTEP]
exact convexOn_const (1 : ℝ) (convex_Ici _)
[GOAL]
case succ
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.succ k
[PROOFSTEP]
refine' ⟨convex_Ici _, _⟩
[GOAL]
case succ
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
⊢ ∀ ⦃x : ℝ⦄,
x ∈ Ici 0 →
∀ ⦃y : ℝ⦄,
y ∈ Ici 0 →
∀ ⦃a b : ℝ⦄,
0 ≤ a →
0 ≤ b →
a + b = 1 →
(fun x => x ^ Nat.succ k) (a • x + b • y) ≤
a • (fun x => x ^ Nat.succ k) x + b • (fun x => x ^ Nat.succ k) y
[PROOFSTEP]
rintro a (ha : 0 ≤ a) b (hb : 0 ≤ b) μ ν hμ hν h
[GOAL]
case succ
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b
[PROOFSTEP]
have H := IH.2 ha hb hμ hν h
[GOAL]
case succ
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b
[PROOFSTEP]
have : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν :=
by
cases' le_or_lt a b with hab hab
· have : a ^ k ≤ b ^ k := by gcongr
have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith
positivity
· have : b ^ k ≤ a ^ k := by gcongr
have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith
positivity
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
cases' le_or_lt a b with hab hab
[GOAL]
case inl
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : a ≤ b
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
have : a ^ k ≤ b ^ k := by gcongr
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : a ≤ b
⊢ a ^ k ≤ b ^ k
[PROOFSTEP]
gcongr
[GOAL]
case inl
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : a ≤ b
this : a ^ k ≤ b ^ k
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : a ≤ b
this : a ^ k ≤ b ^ k
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a)
[PROOFSTEP]
nlinarith
[GOAL]
case inl
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : a ≤ b
this✝ : a ^ k ≤ b ^ k
this : 0 ≤ (b ^ k - a ^ k) * (b - a)
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
positivity
[GOAL]
case inr
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : b < a
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
have : b ^ k ≤ a ^ k := by gcongr
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : b < a
⊢ b ^ k ≤ a ^ k
[PROOFSTEP]
gcongr
[GOAL]
case inr
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : b < a
this : b ^ k ≤ a ^ k
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : b < a
this : b ^ k ≤ a ^ k
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a)
[PROOFSTEP]
nlinarith
[GOAL]
case inr
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
hab : b < a
this✝ : b ^ k ≤ a ^ k
this : 0 ≤ (b ^ k - a ^ k) * (b - a)
⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
positivity
[GOAL]
case succ
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b
[PROOFSTEP]
calc
(μ * a + ν * b) ^ k.succ = (μ * a + ν * b) * (μ * a + ν * b) ^ k := pow_succ _ _
_ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) := by gcongr; exact H
_ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν := by linarith
_ = (μ + ν) * (μ * a ^ k.succ + ν * b ^ k.succ) := by rw [Nat.succ_eq_add_one]; ring
_ = μ * a ^ k.succ + ν * b ^ k.succ := by rw [h]; ring
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ * a + ν * b) * (μ * a + ν * b) ^ k ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k)
[PROOFSTEP]
gcongr
[GOAL]
case h
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ * a + ν * b) ^ k ≤ μ * a ^ k + ν * b ^ k
[PROOFSTEP]
exact H
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) ≤
(μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν
[PROOFSTEP]
linarith
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν =
(μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k)
[PROOFSTEP]
rw [Nat.succ_eq_add_one]
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν =
(μ + ν) * (μ * a ^ (k + 1) + ν * b ^ (k + 1))
[PROOFSTEP]
ring
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ (μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k
[PROOFSTEP]
rw [h]
[GOAL]
k : ℕ
IH : ConvexOn ℝ (Ici 0) fun x => x ^ k
a : ℝ
ha : 0 ≤ a
b : ℝ
hb : 0 ≤ b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b
this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν
⊢ 1 * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k
[PROOFSTEP]
ring
[GOAL]
n : ℕ
hn : Even n
⊢ ConvexOn ℝ univ fun x => x ^ n
[PROOFSTEP]
refine' ⟨convex_univ, _⟩
[GOAL]
n : ℕ
hn : Even n
⊢ ∀ ⦃x : ℝ⦄,
x ∈ univ →
∀ ⦃y : ℝ⦄,
y ∈ univ →
∀ ⦃a b : ℝ⦄,
0 ≤ a →
0 ≤ b → a + b = 1 → (fun x => x ^ n) (a • x + b • y) ≤ a • (fun x => x ^ n) x + b • (fun x => x ^ n) y
[PROOFSTEP]
rintro a - b - μ ν hμ hν h
[GOAL]
n : ℕ
hn : Even n
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (fun x => x ^ n) (μ • a + ν • b) ≤ μ • (fun x => x ^ n) a + ν • (fun x => x ^ n) b
[PROOFSTEP]
obtain ⟨k, rfl⟩ :=
hn.exists_two_nsmul
_
-- Porting note: added type ascription to LHS
[GOAL]
case intro
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
⊢ (fun x => x ^ (2 • k)) (μ • a + ν • b) ≤ μ • (fun x => x ^ (2 • k)) a + ν • (fun x => x ^ (2 • k)) b
[PROOFSTEP]
have : (0 : ℝ) ≤ (a - b) ^ 2 * μ * ν := by positivity
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
⊢ 0 ≤ (a - b) ^ 2 * μ * ν
[PROOFSTEP]
positivity
[GOAL]
case intro
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ (fun x => x ^ (2 • k)) (μ • a + ν • b) ≤ μ • (fun x => x ^ (2 • k)) a + ν • (fun x => x ^ (2 • k)) b
[PROOFSTEP]
calc
(μ * a + ν * b) ^ (2 * k) = ((μ * a + ν * b) ^ 2) ^ k := by rw [pow_mul]
_ ≤ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k := by gcongr; linarith
_ = (μ * a ^ 2 + ν * b ^ 2) ^ k := by rw [h]; ring
_ ≤ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k := ?_
_ ≤ μ * a ^ (2 * k) + ν * b ^ (2 * k) := by ring_nf;
rfl
-- Porting note: `rw [mem_Ici]` was `dsimp`
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ (μ * a + ν * b) ^ (2 * k) = ((μ * a + ν * b) ^ 2) ^ k
[PROOFSTEP]
rw [pow_mul]
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ ((μ * a + ν * b) ^ 2) ^ k ≤ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k
[PROOFSTEP]
gcongr
[GOAL]
case hab
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ (μ * a + ν * b) ^ 2 ≤ (μ + ν) * (μ * a ^ 2 + ν * b ^ 2)
[PROOFSTEP]
linarith
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k = (μ * a ^ 2 + ν * b ^ 2) ^ k
[PROOFSTEP]
rw [h]
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ (1 * (μ * a ^ 2 + ν * b ^ 2)) ^ k = (μ * a ^ 2 + ν * b ^ 2) ^ k
[PROOFSTEP]
ring
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k ≤ μ * a ^ (2 * k) + ν * b ^ (2 * k)
[PROOFSTEP]
ring_nf
[GOAL]
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ μ * a ^ (k * 2) + ν * b ^ (k * 2) ≤ μ * a ^ (k * 2) + ν * b ^ (k * 2)
[PROOFSTEP]
rfl
-- Porting note: `rw [mem_Ici]` was `dsimp`
[GOAL]
case intro
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ (μ * a ^ 2 + ν * b ^ 2) ^ k ≤ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k
[PROOFSTEP]
refine' (convexOn_pow k).2 _ _ hμ hν h
[GOAL]
case intro.refine'_1
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ a ^ 2 ∈ Ici 0
[PROOFSTEP]
rw [mem_Ici]
[GOAL]
case intro.refine'_2
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ b ^ 2 ∈ Ici 0
[PROOFSTEP]
rw [mem_Ici]
[GOAL]
case intro.refine'_1
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ 0 ≤ a ^ 2
[PROOFSTEP]
positivity
[GOAL]
case intro.refine'_2
a b μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
k : ℕ
hn : Even (2 • k)
this : 0 ≤ (a - b) ^ 2 * μ * ν
⊢ 0 ≤ b ^ 2
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ ↑n
[PROOFSTEP]
simp_rw [zpow_ofNat]
[GOAL]
n : ℕ
⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ n
[PROOFSTEP]
exact (convexOn_pow n).subset Ioi_subset_Ici_self (convex_Ioi _)
[GOAL]
n : ℕ
⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ -[n+1]
[PROOFSTEP]
simp_rw [zpow_negSucc]
[GOAL]
n : ℕ
⊢ ConvexOn ℝ (Ioi 0) fun x => (x ^ (n + 1))⁻¹
[PROOFSTEP]
refine' ⟨convex_Ioi _, _⟩
[GOAL]
n : ℕ
⊢ ∀ ⦃x : ℝ⦄,
x ∈ Ioi 0 →
∀ ⦃y : ℝ⦄,
y ∈ Ioi 0 →
∀ ⦃a b : ℝ⦄,
0 ≤ a →
0 ≤ b →
a + b = 1 →
(fun x => (x ^ (n + 1))⁻¹) (a • x + b • y) ≤
a • (fun x => (x ^ (n + 1))⁻¹) x + b • (fun x => (x ^ (n + 1))⁻¹) y
[PROOFSTEP]
rintro a (ha : 0 < a) b (hb : 0 < b) μ ν hμ hν h
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (fun x => (x ^ (n + 1))⁻¹) (μ • a + ν • b) ≤ μ • (fun x => (x ^ (n + 1))⁻¹) a + ν • (fun x => (x ^ (n + 1))⁻¹) b
[PROOFSTEP]
field_simp [ha.ne', hb.ne']
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 1 / (μ * a + ν * b) ^ (n + 1) ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) / (a ^ (n + 1) * b ^ (n + 1))
[PROOFSTEP]
rw [div_le_div_iff]
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1)
[PROOFSTEP]
calc
(1 : ℝ) * (a ^ (n + 1) * b ^ (n + 1)) = ((μ + ν) ^ 2 * (a * b)) ^ (n + 1) := by rw [h]; ring
_ ≤ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1) := ?_
_ = (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1) := by rw [mul_pow]
_ ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1) := ?_
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) = ((μ + ν) ^ 2 * (a * b)) ^ (n + 1)
[PROOFSTEP]
rw [h]
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) = (1 ^ 2 * (a * b)) ^ (n + 1)
[PROOFSTEP]
ring
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1) = (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1)
[PROOFSTEP]
rw [mul_pow]
[GOAL]
case calc_1
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ ((μ + ν) ^ 2 * (a * b)) ^ (n + 1) ≤ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1)
[PROOFSTEP]
gcongr(?_ : ℝ) ^ _
[GOAL]
case calc_1.hab
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (μ + ν) ^ 2 * (a * b) ≤ (μ * b + ν * a) * (μ * a + ν * b)
[PROOFSTEP]
have : (0 : ℝ) ≤ μ * ν * (a - b) ^ 2 := by positivity
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 0 ≤ μ * ν * (a - b) ^ 2
[PROOFSTEP]
positivity
[GOAL]
case calc_1.hab
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
this : 0 ≤ μ * ν * (a - b) ^ 2
⊢ (μ + ν) ^ 2 * (a * b) ≤ (μ * b + ν * a) * (μ * a + ν * b)
[PROOFSTEP]
linarith
[GOAL]
case calc_2
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1) ≤
(μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1)
[PROOFSTEP]
gcongr
[GOAL]
case calc_2.h
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ (μ * b + ν * a) ^ (n + 1) ≤ μ * b ^ (n + 1) + ν * a ^ (n + 1)
[PROOFSTEP]
apply (convexOn_pow (n + 1)).2 hb.le ha.le hμ hν h
[GOAL]
case b0
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 0 < (μ * a + ν * b) ^ (n + 1)
[PROOFSTEP]
have : 0 < μ * a + ν * b := by cases le_or_lt a b <;> nlinarith
[GOAL]
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 0 < μ * a + ν * b
[PROOFSTEP]
cases le_or_lt a b
[GOAL]
case inl
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
h✝ : a ≤ b
⊢ 0 < μ * a + ν * b
[PROOFSTEP]
nlinarith
[GOAL]
case inr
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
h✝ : b < a
⊢ 0 < μ * a + ν * b
[PROOFSTEP]
nlinarith
[GOAL]
case b0
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
this : 0 < μ * a + ν * b
⊢ 0 < (μ * a + ν * b) ^ (n + 1)
[PROOFSTEP]
positivity
[GOAL]
case d0
n : ℕ
a : ℝ
ha : 0 < a
b : ℝ
hb : 0 < b
μ ν : ℝ
hμ : 0 ≤ μ
hν : 0 ≤ ν
h : μ + ν = 1
⊢ 0 < a ^ (n + 1) * b ^ (n + 1)
[PROOFSTEP]
positivity
[GOAL]
⊢ StrictConcaveOn ℝ (Ioi 0) log
[PROOFSTEP]
apply strictConcaveOn_of_slope_strict_anti_adjacent (convex_Ioi (0 : ℝ))
[GOAL]
⊢ ∀ {x y z : ℝ}, x ∈ Ioi 0 → z ∈ Ioi 0 → x < y → y < z → (log z - log y) / (z - y) < (log y - log x) / (y - x)
[PROOFSTEP]
rintro x y z (hx : 0 < x) (hz : 0 < z) hxy hyz
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
⊢ (log z - log y) / (z - y) < (log y - log x) / (y - x)
[PROOFSTEP]
have hy : 0 < y := hx.trans hxy
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ (log z - log y) / (z - y) < (log y - log x) / (y - x)
[PROOFSTEP]
trans y⁻¹
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ (log z - log y) / (z - y) < y⁻¹
[PROOFSTEP]
have h : 0 < z - y := by linarith
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ 0 < z - y
[PROOFSTEP]
linarith
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
⊢ (log z - log y) / (z - y) < y⁻¹
[PROOFSTEP]
rw [div_lt_iff h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
⊢ log z - log y < y⁻¹ * (z - y)
[PROOFSTEP]
have hyz' : 0 < z / y := by positivity
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
⊢ 0 < z / y
[PROOFSTEP]
positivity
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
hyz' : 0 < z / y
⊢ log z - log y < y⁻¹ * (z - y)
[PROOFSTEP]
have hyz'' : z / y ≠ 1 := by
contrapose! h
rw [div_eq_one_iff_eq hy.ne'] at h
simp [h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
hyz' : 0 < z / y
⊢ z / y ≠ 1
[PROOFSTEP]
contrapose! h
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
hyz' : 0 < z / y
h : z / y = 1
⊢ z - y ≤ 0
[PROOFSTEP]
rw [div_eq_one_iff_eq hy.ne'] at h
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
hyz' : 0 < z / y
h : z = y
⊢ z - y ≤ 0
[PROOFSTEP]
simp [h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
hyz' : 0 < z / y
hyz'' : z / y ≠ 1
⊢ log z - log y < y⁻¹ * (z - y)
[PROOFSTEP]
calc
log z - log y = log (z / y) := by rw [← log_div hz.ne' hy.ne']
_ < z / y - 1 := (log_lt_sub_one_of_pos hyz' hyz'')
_ = y⁻¹ * (z - y) := by field_simp [hy.ne']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
hyz' : 0 < z / y
hyz'' : z / y ≠ 1
⊢ log z - log y = log (z / y)
[PROOFSTEP]
rw [← log_div hz.ne' hy.ne']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < z - y
hyz' : 0 < z / y
hyz'' : z / y ≠ 1
⊢ z / y - 1 = y⁻¹ * (z - y)
[PROOFSTEP]
field_simp [hy.ne']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ y⁻¹ < (log y - log x) / (y - x)
[PROOFSTEP]
have h : 0 < y - x := by linarith
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ 0 < y - x
[PROOFSTEP]
linarith
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
⊢ y⁻¹ < (log y - log x) / (y - x)
[PROOFSTEP]
rw [lt_div_iff h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
⊢ y⁻¹ * (y - x) < log y - log x
[PROOFSTEP]
have hxy' : 0 < x / y := by positivity
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
⊢ 0 < x / y
[PROOFSTEP]
positivity
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
⊢ y⁻¹ * (y - x) < log y - log x
[PROOFSTEP]
have hxy'' : x / y ≠ 1 := by
contrapose! h
rw [div_eq_one_iff_eq hy.ne'] at h
simp [h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
⊢ x / y ≠ 1
[PROOFSTEP]
contrapose! h
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
hxy' : 0 < x / y
h : x / y = 1
⊢ y - x ≤ 0
[PROOFSTEP]
rw [div_eq_one_iff_eq hy.ne'] at h
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
hxy' : 0 < x / y
h : x = y
⊢ y - x ≤ 0
[PROOFSTEP]
simp [h]
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
hxy'' : x / y ≠ 1
⊢ y⁻¹ * (y - x) < log y - log x
[PROOFSTEP]
calc
y⁻¹ * (y - x) = 1 - x / y := by field_simp [hy.ne']
_ < -log (x / y) := by linarith [log_lt_sub_one_of_pos hxy' hxy'']
_ = -(log x - log y) := by rw [log_div hx.ne' hy.ne']
_ = log y - log x := by ring
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
hxy'' : x / y ≠ 1
⊢ y⁻¹ * (y - x) = 1 - x / y
[PROOFSTEP]
field_simp [hy.ne']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
hxy'' : x / y ≠ 1
⊢ 1 - x / y < -log (x / y)
[PROOFSTEP]
linarith [log_lt_sub_one_of_pos hxy' hxy'']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
hxy'' : x / y ≠ 1
⊢ -log (x / y) = -(log x - log y)
[PROOFSTEP]
rw [log_div hx.ne' hy.ne']
[GOAL]
x y z : ℝ
hx : 0 < x
hz : 0 < z
hxy : x < y
hyz : y < z
hy : 0 < y
h : 0 < y - x
hxy' : 0 < x / y
hxy'' : x / y ≠ 1
⊢ -(log x - log y) = log y - log x
[PROOFSTEP]
ring
[GOAL]
s : ℝ
hs : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
⊢ 1 + p * s < (1 + s) ^ p
[PROOFSTEP]
rcases eq_or_lt_of_le hs with (rfl | hs)
[GOAL]
case inl
p : ℝ
hp : 1 < p
hs : -1 ≤ -1
hs' : -1 ≠ 0
⊢ 1 + p * -1 < (1 + -1) ^ p
[PROOFSTEP]
have : p ≠ 0 := by positivity
[GOAL]
p : ℝ
hp : 1 < p
hs : -1 ≤ -1
hs' : -1 ≠ 0
⊢ p ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case inl
p : ℝ
hp : 1 < p
hs : -1 ≤ -1
hs' : -1 ≠ 0
this : p ≠ 0
⊢ 1 + p * -1 < (1 + -1) ^ p
[PROOFSTEP]
simpa [zero_rpow this]
[GOAL]
case inr
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
⊢ 1 + p * s < (1 + s) ^ p
[PROOFSTEP]
have hs1 : 0 < 1 + s := by linarith
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
⊢ 0 < 1 + s
[PROOFSTEP]
linarith
[GOAL]
case inr
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
⊢ 1 + p * s < (1 + s) ^ p
[PROOFSTEP]
cases' le_or_lt (1 + p * s) 0 with hs2 hs2
[GOAL]
case inr.inl
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 1 + p * s ≤ 0
⊢ 1 + p * s < (1 + s) ^ p
[PROOFSTEP]
exact hs2.trans_lt (rpow_pos_of_pos hs1 _)
[GOAL]
case inr.inr
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
⊢ 1 + p * s < (1 + s) ^ p
[PROOFSTEP]
rw [rpow_def_of_pos hs1, ← exp_log hs2]
[GOAL]
case inr.inr
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
⊢ exp (log (1 + p * s)) < exp (log (1 + s) * p)
[PROOFSTEP]
apply exp_strictMono
[GOAL]
case inr.inr.a
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
have hp : 0 < p := by positivity
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
⊢ 0 < p
[PROOFSTEP]
positivity
[GOAL]
case inr.inr.a
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
have hs3 : 1 + s ≠ 1 := by contrapose! hs'; linarith
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
⊢ 1 + s ≠ 1
[PROOFSTEP]
contrapose! hs'
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs' : 1 + s = 1
⊢ s = 0
[PROOFSTEP]
linarith
[GOAL]
case inr.inr.a
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
have hs4 : 1 + p * s ≠ 1 := by contrapose! hs'; nlinarith
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
⊢ 1 + p * s ≠ 1
[PROOFSTEP]
contrapose! hs'
[GOAL]
s : ℝ
hs✝ : -1 ≤ s
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs' : 1 + p * s = 1
⊢ s = 0
[PROOFSTEP]
nlinarith
[GOAL]
case inr.inr.a
s : ℝ
hs✝ : -1 ≤ s
hs' : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
cases' lt_or_gt_of_ne hs' with hs' hs'
[GOAL]
case inr.inr.a.inl
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
rw [← div_lt_iff hp, ← div_lt_div_right_of_neg hs']
-- Porting note: previously we could write `zero_lt_one` inline,
-- but now Lean doesn't guess we are talking about `1` fast enough.
[GOAL]
case inr.inr.a.inl
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
⊢ log (1 + s) / s < log (1 + p * s) / p / s
[PROOFSTEP]
haveI : (1 : ℝ) ∈ Ioi 0 := zero_lt_one
[GOAL]
case inr.inr.a.inl
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
this : 1 ∈ Ioi 0
⊢ log (1 + s) / s < log (1 + p * s) / p / s
[PROOFSTEP]
convert strictConcaveOn_log_Ioi.secant_strict_mono this hs2 hs1 hs4 hs3 _ using 1
[GOAL]
case h.e'_3
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
this : 1 ∈ Ioi 0
⊢ log (1 + s) / s = (log (1 + s) - log 1) / (1 + s - 1)
[PROOFSTEP]
field_simp [log_one]
[GOAL]
case h.e'_4
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
this : 1 ∈ Ioi 0
⊢ log (1 + p * s) / p / s = (log (1 + p * s) - log 1) / (1 + p * s - 1)
[PROOFSTEP]
field_simp [log_one]
[GOAL]
case inr.inr.a.inl
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s < 0
this : 1 ∈ Ioi 0
⊢ 1 + p * s < 1 + s
[PROOFSTEP]
nlinarith
[GOAL]
case inr.inr.a.inr
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
⊢ log (1 + p * s) < log (1 + s) * p
[PROOFSTEP]
rw [← div_lt_iff hp, ← div_lt_div_right hs']
-- Porting note: previously we could write `zero_lt_one` inline,
-- but now Lean doesn't guess we are talking about `1` fast enough.
[GOAL]
case inr.inr.a.inr
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
⊢ log (1 + p * s) / p / s < log (1 + s) / s
[PROOFSTEP]
haveI : (1 : ℝ) ∈ Ioi 0 := zero_lt_one
[GOAL]
case inr.inr.a.inr
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
this : 1 ∈ Ioi 0
⊢ log (1 + p * s) / p / s < log (1 + s) / s
[PROOFSTEP]
convert strictConcaveOn_log_Ioi.secant_strict_mono this hs1 hs2 hs3 hs4 _ using 1
[GOAL]
case h.e'_3
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
this : 1 ∈ Ioi 0
⊢ log (1 + p * s) / p / s = (log (1 + p * s) - log 1) / (1 + p * s - 1)
[PROOFSTEP]
field_simp [log_one, hp.ne']
[GOAL]
case h.e'_4
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
this : 1 ∈ Ioi 0
⊢ log (1 + s) / s = (log (1 + s) - log 1) / (1 + s - 1)
[PROOFSTEP]
field_simp [log_one]
[GOAL]
case inr.inr.a.inr
s : ℝ
hs✝ : -1 ≤ s
hs'✝ : s ≠ 0
p : ℝ
hp✝ : 1 < p
hs : -1 < s
hs1 : 0 < 1 + s
hs2 : 0 < 1 + p * s
hp : 0 < p
hs3 : 1 + s ≠ 1
hs4 : 1 + p * s ≠ 1
hs' : s > 0
this : 1 ∈ Ioi 0
⊢ 1 + s < 1 + p * s
[PROOFSTEP]
nlinarith
[GOAL]
s : ℝ
hs : -1 ≤ s
p : ℝ
hp : 1 ≤ p
⊢ 1 + p * s ≤ (1 + s) ^ p
[PROOFSTEP]
rcases eq_or_lt_of_le hp with (rfl | hp)
[GOAL]
case inl
s : ℝ
hs : -1 ≤ s
hp : 1 ≤ 1
⊢ 1 + 1 * s ≤ (1 + s) ^ 1
[PROOFSTEP]
simp
[GOAL]
case inr
s : ℝ
hs : -1 ≤ s
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
⊢ 1 + p * s ≤ (1 + s) ^ p
[PROOFSTEP]
by_cases hs' : s = 0
[GOAL]
case pos
s : ℝ
hs : -1 ≤ s
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hs' : s = 0
⊢ 1 + p * s ≤ (1 + s) ^ p
[PROOFSTEP]
simp [hs']
[GOAL]
case neg
s : ℝ
hs : -1 ≤ s
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
hs' : ¬s = 0
⊢ 1 + p * s ≤ (1 + s) ^ p
[PROOFSTEP]
exact (one_add_mul_self_lt_rpow_one_add hs hs' hp).le
[GOAL]
p : ℝ
hp : 1 < p
⊢ StrictConvexOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
apply strictConvexOn_of_slope_strict_mono_adjacent (convex_Ici (0 : ℝ))
[GOAL]
p : ℝ
hp : 1 < p
⊢ ∀ {x y z : ℝ}, x ∈ Ici 0 → z ∈ Ici 0 → x < y → y < z → (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
rintro x y z (hx : 0 ≤ x) (hz : 0 ≤ z) hxy hyz
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hy : 0 < y := by linarith
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
⊢ 0 < y
[PROOFSTEP]
linarith
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hy' : 0 < y ^ p := rpow_pos_of_pos hy _
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have H1 : y ^ (p - 1 + 1) = y ^ (p - 1) * y := rpow_add_one hy.ne' _
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ (p - 1 + 1) = y ^ (p - 1) * y
⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
ring_nf at H1
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
trans p * y ^ (p - 1)
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have h3 : 0 < y - x := by linarith only [hxy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
⊢ 0 < y - x
[PROOFSTEP]
linarith only [hxy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have hyx'' : x / y < 1 := by rwa [div_lt_one hy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
⊢ x / y < 1
[PROOFSTEP]
rwa [div_lt_one hy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have hyx''' : x / y - 1 < 0 := by linarith only [hyx'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
⊢ x / y - 1 < 0
[PROOFSTEP]
linarith only [hyx'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have hyx'''' : 0 ≤ x / y := by positivity
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
⊢ 0 ≤ x / y
[PROOFSTEP]
positivity
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have hyx''''' : -1 ≤ x / y - 1 := by linarith only [hyx'''']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
⊢ -1 ≤ x / y - 1
[PROOFSTEP]
linarith only [hyx'''']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
have : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) := by
linarith [one_add_mul_self_lt_rpow_one_add hyx''''' hyx'''.ne hp]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
⊢ 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
[PROOFSTEP]
linarith [one_add_mul_self_lt_rpow_one_add hyx''''' hyx'''.ne hp]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
[PROOFSTEP]
rw [div_lt_iff h3, ← div_lt_div_right hy']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ (y ^ p - x ^ p) / y ^ p < p * y ^ (p - 1) * (y - x) / y ^ p
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ (y ^ p - x ^ p) / y ^ p = 1 - (1 + (x / y - 1)) ^ p
[PROOFSTEP]
have H : (x / y) ^ p = x ^ p / y ^ p := div_rpow hx hy.le _
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
H : (x / y) ^ p = x ^ p / y ^ p
⊢ (y ^ p - x ^ p) / y ^ p = 1 - (1 + (x / y - 1)) ^ p
[PROOFSTEP]
ring_nf at H ⊢
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
H : (x * y⁻¹) ^ p = x ^ p * (y ^ p)⁻¹
⊢ -(x ^ p * (y ^ p)⁻¹) + y ^ p * (y ^ p)⁻¹ = 1 - (x * y⁻¹) ^ p
[PROOFSTEP]
field_simp [hy.ne', hy'.ne'] at H ⊢
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
H : (x / y) ^ p * y ^ p = x ^ p
⊢ -x ^ p + y ^ p = (1 - (x / y) ^ p) * y ^ p
[PROOFSTEP]
linear_combination H
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ p * y ^ (p - 1) * (y - x) / y ^ p = -p * (x / y - 1)
[PROOFSTEP]
ring_nf at H1 ⊢
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ p * y ^ (-1 + p) * y * (y ^ p)⁻¹ - p * y ^ (-1 + p) * x * (y ^ p)⁻¹ = p - p * x * y⁻¹
[PROOFSTEP]
field_simp [hy.ne', hy'.ne']
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
h3 : 0 < y - x
hyx'' : x / y < 1
hyx''' : x / y - 1 < 0
hyx'''' : 0 ≤ x / y
hyx''''' : -1 ≤ x / y - 1
this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1)
⊢ (p * y ^ (-1 + p) * y - p * y ^ (-1 + p) * x) * y = (p * y - p * x) * y ^ p
[PROOFSTEP]
linear_combination p * (-y + x) * H1
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hyz' : 0 < z - y := by linarith only [hyz]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
⊢ 0 < z - y
[PROOFSTEP]
linarith only [hyz]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hyz'' : 1 < z / y := by rwa [one_lt_div hy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
⊢ 1 < z / y
[PROOFSTEP]
rwa [one_lt_div hy]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hyz''' : 0 < z / y - 1 := by linarith only [hyz'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
⊢ 0 < z / y - 1
[PROOFSTEP]
linarith only [hyz'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have hyz'''' : -1 ≤ z / y - 1 := by linarith only [hyz'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
⊢ -1 ≤ z / y - 1
[PROOFSTEP]
linarith only [hyz'']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
have : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 := by
linarith [one_add_mul_self_lt_rpow_one_add hyz'''' hyz'''.ne' hp]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
⊢ p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
[PROOFSTEP]
linarith [one_add_mul_self_lt_rpow_one_add hyz'''' hyz'''.ne' hp]
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y)
[PROOFSTEP]
rw [lt_div_iff hyz', ← div_lt_div_right hy']
[GOAL]
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ p * y ^ (p - 1) * (z - y) / y ^ p < (z ^ p - y ^ p) / y ^ p
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ p * y ^ (p - 1) * (z - y) / y ^ p = p * (z / y - 1)
[PROOFSTEP]
ring_nf at H1 ⊢
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ -(p * y ^ (-1 + p) * y * (y ^ p)⁻¹) + p * y ^ (-1 + p) * z * (y ^ p)⁻¹ = -p + p * z * y⁻¹
[PROOFSTEP]
field_simp [hy.ne', hy'.ne'] at H1 ⊢
[GOAL]
case h.e'_3
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ (-(p * y ^ (-1 + p) * y * y ^ p) + p * y ^ (-1 + p) * z * y ^ p) * y = (-(p * y) + p * z) * (y ^ p * y ^ p)
[PROOFSTEP]
linear_combination p * (y - z) * y ^ p * H1
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
⊢ (z ^ p - y ^ p) / y ^ p = (1 + (z / y - 1)) ^ p - 1
[PROOFSTEP]
have H : (z / y) ^ p = z ^ p / y ^ p := div_rpow hz hy.le _
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
H : (z / y) ^ p = z ^ p / y ^ p
⊢ (z ^ p - y ^ p) / y ^ p = (1 + (z / y - 1)) ^ p - 1
[PROOFSTEP]
ring_nf at H ⊢
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
H : (z * y⁻¹) ^ p = z ^ p * (y ^ p)⁻¹
⊢ z ^ p * (y ^ p)⁻¹ - y ^ p * (y ^ p)⁻¹ = -1 + (z * y⁻¹) ^ p
[PROOFSTEP]
field_simp [hy.ne', hy'.ne'] at H ⊢
[GOAL]
case h.e'_4
p : ℝ
hp : 1 < p
x y z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hxy : x < y
hyz : y < z
hy : 0 < y
hy' : 0 < y ^ p
H1 : y ^ p = y ^ (-1 + p) * y
hyz' : 0 < z - y
hyz'' : 1 < z / y
hyz''' : 0 < z / y - 1
hyz'''' : -1 ≤ z / y - 1
this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1
H : (z / y) ^ p * y ^ p = z ^ p
⊢ z ^ p - y ^ p = (-1 + (z / y) ^ p) * y ^ p
[PROOFSTEP]
linear_combination -H
[GOAL]
p : ℝ
hp : 1 ≤ p
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
rcases eq_or_lt_of_le hp with (rfl | hp)
[GOAL]
case inl
hp : 1 ≤ 1
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ 1
[PROOFSTEP]
simpa using convexOn_id (convex_Ici _)
[GOAL]
case inr
p : ℝ
hp✝ : 1 ≤ p
hp : 1 < p
⊢ ConvexOn ℝ (Ici 0) fun x => x ^ p
[PROOFSTEP]
exact (strictConvexOn_rpow hp).convexOn
[GOAL]
⊢ StrictConcaveOn ℝ (Iio 0) log
[PROOFSTEP]
refine' ⟨convex_Iio _, _⟩
[GOAL]
⊢ ∀ ⦃x : ℝ⦄,
x ∈ Iio 0 →
∀ ⦃y : ℝ⦄,
y ∈ Iio 0 → x ≠ y → ∀ ⦃a b : ℝ⦄, 0 < a → 0 < b → a + b = 1 → a • log x + b • log y < log (a • x + b • y)
[PROOFSTEP]
rintro x (hx : x < 0) y (hy : y < 0) hxy a b ha hb hab
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • log x + b • log y < log (a • x + b • y)
[PROOFSTEP]
have hx' : 0 < -x := by linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ 0 < -x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
⊢ a • log x + b • log y < log (a • x + b • y)
[PROOFSTEP]
have hy' : 0 < -y := by linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
⊢ 0 < -y
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
⊢ a • log x + b • log y < log (a • x + b • y)
[PROOFSTEP]
have hxy' : -x ≠ -y := by contrapose! hxy; linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
⊢ -x ≠ -y
[PROOFSTEP]
contrapose! hxy
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy : -x = -y
⊢ x = y
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ a • log x + b • log y < log (a • x + b • y)
[PROOFSTEP]
calc
a • log x + b • log y = a • log (-x) + b • log (-y) := by simp_rw [log_neg_eq_log]
_ < log (a • -x + b • -y) := (strictConcaveOn_log_Ioi.2 hx' hy' hxy' ha hb hab)
_ = log (-(a • x + b • y)) := by congr 1; simp only [Algebra.id.smul_eq_mul]; ring
_ = _ := by rw [log_neg_eq_log]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ a • log x + b • log y = a • log (-x) + b • log (-y)
[PROOFSTEP]
simp_rw [log_neg_eq_log]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ log (a • -x + b • -y) = log (-(a • x + b • y))
[PROOFSTEP]
congr 1
[GOAL]
case e_x
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ a • -x + b • -y = -(a • x + b • y)
[PROOFSTEP]
simp only [Algebra.id.smul_eq_mul]
[GOAL]
case e_x
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ a * -x + b * -y = -(a * x + b * y)
[PROOFSTEP]
ring
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x ≠ y
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx' : 0 < -x
hy' : 0 < -y
hxy' : -x ≠ -y
⊢ log (-(a • x + b • y)) = log (a • x + b • y)
[PROOFSTEP]
rw [log_neg_eq_log]
| {"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Basic", "llama_tokens": 32142} |
[GOAL]
⊢ range arcsin = Icc (-(π / 2)) (π / 2)
[PROOFSTEP]
rw [arcsin, range_comp Subtype.val]
[GOAL]
⊢ Subtype.val '' range (IccExtend arcsin.proof_2 ↑(OrderIso.symm sinOrderIso)) = Icc (-(π / 2)) (π / 2)
[PROOFSTEP]
simp [Icc]
[GOAL]
x : ℝ
⊢ arcsin ↑(projIcc (-1) 1 (_ : -1 ≤ 1) x) = arcsin x
[PROOFSTEP]
rw [arcsin, Function.comp_apply, IccExtend_val, Function.comp_apply, IccExtend, Function.comp_apply]
[GOAL]
x : ℝ
hx : x ∈ Icc (-1) 1
⊢ sin (arcsin x) = x
[PROOFSTEP]
simpa [arcsin, IccExtend_of_mem _ _ hx, -OrderIso.apply_symm_apply] using
Subtype.ext_iff.1 (sinOrderIso.apply_symm_apply ⟨x, hx⟩)
[GOAL]
x : ℝ
hx : x ∈ Icc (-(π / 2)) (π / 2)
⊢ sin (arcsin (sin x)) = sin x
[PROOFSTEP]
rw [sin_arcsin (neg_one_le_sin _) (sin_le_one _)]
[GOAL]
x y : ℝ
h₁ : sin x = y
h₂ : x ∈ Icc (-(π / 2)) (π / 2)
⊢ arcsin y = x
[PROOFSTEP]
subst y
[GOAL]
x : ℝ
h₂ : x ∈ Icc (-(π / 2)) (π / 2)
⊢ arcsin (sin x) = x
[PROOFSTEP]
exact injOn_sin (arcsin_mem_Icc _) h₂ (sin_arcsin' (sin_mem_Icc x))
[GOAL]
x : ℝ
hx : 1 ≤ x
⊢ arcsin x = π / 2
[PROOFSTEP]
rw [← arcsin_projIcc, projIcc_of_right_le _ hx, Subtype.coe_mk, arcsin_one]
[GOAL]
⊢ sin (-(π / 2)) = -1
[PROOFSTEP]
rw [sin_neg, sin_pi_div_two]
[GOAL]
x : ℝ
hx : x ≤ -1
⊢ arcsin x = -(π / 2)
[PROOFSTEP]
rw [← arcsin_projIcc, projIcc_of_le_left _ hx, Subtype.coe_mk, arcsin_neg_one]
[GOAL]
x : ℝ
⊢ arcsin (-x) = -arcsin x
[PROOFSTEP]
cases' le_total x (-1) with hx₁ hx₁
[GOAL]
case inl
x : ℝ
hx₁ : x ≤ -1
⊢ arcsin (-x) = -arcsin x
[PROOFSTEP]
rw [arcsin_of_le_neg_one hx₁, neg_neg, arcsin_of_one_le (le_neg.2 hx₁)]
[GOAL]
case inr
x : ℝ
hx₁ : -1 ≤ x
⊢ arcsin (-x) = -arcsin x
[PROOFSTEP]
cases' le_total 1 x with hx₂ hx₂
[GOAL]
case inr.inl
x : ℝ
hx₁ : -1 ≤ x
hx₂ : 1 ≤ x
⊢ arcsin (-x) = -arcsin x
[PROOFSTEP]
rw [arcsin_of_one_le hx₂, arcsin_of_le_neg_one (neg_le_neg hx₂)]
[GOAL]
case inr.inr
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ arcsin (-x) = -arcsin x
[PROOFSTEP]
refine' arcsin_eq_of_sin_eq _ _
[GOAL]
case inr.inr.refine'_1
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ sin (-arcsin x) = -x
[PROOFSTEP]
rw [sin_neg, sin_arcsin hx₁ hx₂]
[GOAL]
case inr.inr.refine'_2
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ -arcsin x ∈ Icc (-(π / 2)) (π / 2)
[PROOFSTEP]
exact ⟨neg_le_neg (arcsin_le_pi_div_two _), neg_le.2 (neg_pi_div_two_le_arcsin _)⟩
[GOAL]
x y : ℝ
hx : x ∈ Icc (-1) 1
hy : y ∈ Icc (-(π / 2)) (π / 2)
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
rw [← arcsin_sin' hy, strictMonoOn_arcsin.le_iff_le hx (sin_mem_Icc _), arcsin_sin' hy]
[GOAL]
x y : ℝ
hy : y ∈ Ico (-(π / 2)) (π / 2)
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
cases' le_total x (-1) with hx₁ hx₁
[GOAL]
case inl
x y : ℝ
hy : y ∈ Ico (-(π / 2)) (π / 2)
hx₁ : x ≤ -1
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
simp [arcsin_of_le_neg_one hx₁, hy.1, hx₁.trans (neg_one_le_sin _)]
[GOAL]
case inr
x y : ℝ
hy : y ∈ Ico (-(π / 2)) (π / 2)
hx₁ : -1 ≤ x
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
cases' lt_or_le 1 x with hx₂ hx₂
[GOAL]
case inr.inl
x y : ℝ
hy : y ∈ Ico (-(π / 2)) (π / 2)
hx₁ : -1 ≤ x
hx₂ : 1 < x
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
simp [arcsin_of_one_le hx₂.le, hy.2.not_le, (sin_le_one y).trans_lt hx₂]
[GOAL]
case inr.inr
x y : ℝ
hy : y ∈ Ico (-(π / 2)) (π / 2)
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ arcsin x ≤ y ↔ x ≤ sin y
[PROOFSTEP]
exact arcsin_le_iff_le_sin ⟨hx₁, hx₂⟩ (mem_Icc_of_Ico hy)
[GOAL]
x y : ℝ
hx : x ∈ Icc (-(π / 2)) (π / 2)
hy : y ∈ Icc (-1) 1
⊢ x ≤ arcsin y ↔ sin x ≤ y
[PROOFSTEP]
rw [← neg_le_neg_iff, ← arcsin_neg,
arcsin_le_iff_le_sin ⟨neg_le_neg hy.2, neg_le.2 hy.1⟩ ⟨neg_le_neg hx.2, neg_le.2 hx.1⟩, sin_neg, neg_le_neg_iff]
[GOAL]
x y : ℝ
hx : x ∈ Ioc (-(π / 2)) (π / 2)
⊢ x ≤ arcsin y ↔ sin x ≤ y
[PROOFSTEP]
rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin' ⟨neg_le_neg hx.2, neg_lt.2 hx.1⟩, sin_neg, neg_le_neg_iff]
[GOAL]
x y : ℝ
hy : y ∈ Ioo (-(π / 2)) (π / 2)
⊢ arcsin x = y ↔ x = sin y
[PROOFSTEP]
simp only [le_antisymm_iff, arcsin_le_iff_le_sin' (mem_Ico_of_Ioo hy), le_arcsin_iff_sin_le' (mem_Ioc_of_Ioo hy)]
[GOAL]
x : ℝ
⊢ sin 0 ≤ x ↔ 0 ≤ x
[PROOFSTEP]
rw [sin_zero]
[GOAL]
x : ℝ
⊢ arcsin x = 0 ↔ x = 0
[PROOFSTEP]
simp [le_antisymm_iff]
[GOAL]
x : ℝ
⊢ x < sin (π / 2) ↔ x < 1
[PROOFSTEP]
rw [sin_pi_div_two]
[GOAL]
x : ℝ
⊢ sin (-(π / 2)) < x ↔ -1 < x
[PROOFSTEP]
rw [sin_neg, sin_pi_div_two]
[GOAL]
x : ℝ
⊢ π / 4 ≤ arcsin x ↔ sqrt 2 / 2 ≤ x
[PROOFSTEP]
rw [← sin_pi_div_four, le_arcsin_iff_sin_le']
[GOAL]
x : ℝ
⊢ π / 4 ∈ Ioc (-(π / 2)) (π / 2)
[PROOFSTEP]
have := pi_pos
[GOAL]
x : ℝ
this : 0 < π
⊢ π / 4 ∈ Ioc (-(π / 2)) (π / 2)
[PROOFSTEP]
constructor
[GOAL]
case left
x : ℝ
this : 0 < π
⊢ -(π / 2) < π / 4
[PROOFSTEP]
linarith
[GOAL]
case right
x : ℝ
this : 0 < π
⊢ π / 4 ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
h : x ∈ Ioo (-(π / 2)) (π / 2)
⊢ sin x ∈ Ioo (-1) 1
[PROOFSTEP]
rwa [mem_Ioo, ← arcsin_lt_pi_div_two, ← neg_pi_div_two_lt_arcsin, arcsin_sin h.1.le h.2.le]
[GOAL]
x : ℝ
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₁ : -1 ≤ x
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : ¬-1 ≤ x
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [not_le] at hx₁
[GOAL]
case neg
x : ℝ
hx₁ : x < -1
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [arcsin_of_le_neg_one hx₁.le, cos_neg, cos_pi_div_two, sqrt_eq_zero_of_nonpos]
[GOAL]
case neg
x : ℝ
hx₁ : x < -1
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₂ : x ≤ 1
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [not_le] at hx₂
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : 1 < x
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [arcsin_of_one_le hx₂.le, cos_pi_div_two, sqrt_eq_zero_of_nonpos]
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : 1 < x
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
have : sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1 := sin_sq_add_cos_sq (arcsin x)
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
this : sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [← eq_sub_iff_add_eq', ← sqrt_inj (sq_nonneg _) (sub_nonneg.2 (sin_sq_le_one (arcsin x))), sq,
sqrt_mul_self (cos_arcsin_nonneg _)] at this
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
this : cos (arcsin x) = sqrt (1 - sin (arcsin x) ^ 2)
⊢ cos (arcsin x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [this, sin_arcsin hx₁ hx₂]
[GOAL]
x : ℝ
⊢ tan (arcsin x) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [tan_eq_sin_div_cos, cos_arcsin]
[GOAL]
x : ℝ
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₁ : -1 ≤ x
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : ¬-1 ≤ x
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
have h : sqrt (1 - x ^ 2) = 0 := sqrt_eq_zero_of_nonpos (by nlinarith)
[GOAL]
x : ℝ
hx₁ : ¬-1 ≤ x
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case neg
x : ℝ
hx₁ : ¬-1 ≤ x
h : sqrt (1 - x ^ 2) = 0
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [h]
[GOAL]
case neg
x : ℝ
hx₁ : ¬-1 ≤ x
h : sqrt (1 - x ^ 2) = 0
⊢ sin (arcsin x) / 0 = x / 0
[PROOFSTEP]
simp
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₂ : x ≤ 1
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
have h : sqrt (1 - x ^ 2) = 0 := sqrt_eq_zero_of_nonpos (by nlinarith)
[GOAL]
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
h : sqrt (1 - x ^ 2) = 0
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [h]
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
h : sqrt (1 - x ^ 2) = 0
⊢ sin (arcsin x) / 0 = x / 0
[PROOFSTEP]
simp
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [sin_arcsin hx₁ hx₂]
[GOAL]
x : ℝ
⊢ arcsin x = π / 2 - arccos x
[PROOFSTEP]
simp [arccos]
[GOAL]
x : ℝ
⊢ arccos x ≤ π
[PROOFSTEP]
unfold arccos
[GOAL]
x : ℝ
⊢ π / 2 - arcsin x ≤ π
[PROOFSTEP]
linarith [neg_pi_div_two_le_arcsin x]
[GOAL]
x : ℝ
⊢ 0 ≤ arccos x
[PROOFSTEP]
unfold arccos
[GOAL]
x : ℝ
⊢ 0 ≤ π / 2 - arcsin x
[PROOFSTEP]
linarith [arcsin_le_pi_div_two x]
[GOAL]
x : ℝ
⊢ 0 < arccos x ↔ x < 1
[PROOFSTEP]
simp [arccos]
[GOAL]
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ cos (arccos x) = x
[PROOFSTEP]
rw [arccos, cos_pi_div_two_sub, sin_arcsin hx₁ hx₂]
[GOAL]
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ arccos (cos x) = x
[PROOFSTEP]
rw [arccos, ← sin_pi_div_two_sub, arcsin_sin]
[GOAL]
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ π / 2 - (π / 2 - x) = x
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
case hx₁
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ -(π / 2) ≤ π / 2 - x
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
case hx₂
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ π / 2 - x ≤ π / 2
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
case hx₁
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ x ≤ π
[PROOFSTEP]
linarith
[GOAL]
case hx₂
x : ℝ
hx₁ : 0 ≤ x
hx₂ : x ≤ π
⊢ 0 ≤ x
[PROOFSTEP]
linarith
[GOAL]
⊢ arccos 0 = π / 2
[PROOFSTEP]
simp [arccos]
[GOAL]
⊢ arccos 1 = 0
[PROOFSTEP]
simp [arccos]
[GOAL]
⊢ arccos (-1) = π
[PROOFSTEP]
simp [arccos, add_halves]
[GOAL]
x : ℝ
⊢ arccos x = 0 ↔ 1 ≤ x
[PROOFSTEP]
simp [arccos, sub_eq_zero]
[GOAL]
x : ℝ
⊢ arccos x = π / 2 ↔ x = 0
[PROOFSTEP]
simp [arccos]
[GOAL]
x : ℝ
⊢ arccos x = π ↔ x ≤ -1
[PROOFSTEP]
rw [arccos, sub_eq_iff_eq_add, ← sub_eq_iff_eq_add', div_two_sub_self, neg_pi_div_two_eq_arcsin]
[GOAL]
x : ℝ
⊢ arccos (-x) = π - arccos x
[PROOFSTEP]
rw [← add_halves π, arccos, arcsin_neg, arccos, add_sub_assoc, sub_sub_self, sub_neg_eq_add]
[GOAL]
x : ℝ
hx : 1 ≤ x
⊢ arccos x = 0
[PROOFSTEP]
rw [arccos, arcsin_of_one_le hx, sub_self]
[GOAL]
x : ℝ
hx : x ≤ -1
⊢ arccos x = π
[PROOFSTEP]
rw [arccos, arcsin_of_le_neg_one hx, sub_neg_eq_add, add_halves']
[GOAL]
x : ℝ
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₁ : -1 ≤ x
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : ¬-1 ≤ x
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [not_le] at hx₁
[GOAL]
case neg
x : ℝ
hx₁ : x < -1
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [arccos_of_le_neg_one hx₁.le, sin_pi, sqrt_eq_zero_of_nonpos]
[GOAL]
case neg
x : ℝ
hx₁ : x < -1
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
by_cases hx₂ : x ≤ 1
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
swap
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : ¬x ≤ 1
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [not_le] at hx₂
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : 1 < x
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [arccos_of_one_le hx₂.le, sin_zero, sqrt_eq_zero_of_nonpos]
[GOAL]
case neg
x : ℝ
hx₁ : -1 ≤ x
hx₂ : 1 < x
⊢ 1 - x ^ 2 ≤ 0
[PROOFSTEP]
nlinarith
[GOAL]
case pos
x : ℝ
hx₁ : -1 ≤ x
hx₂ : x ≤ 1
⊢ sin (arccos x) = sqrt (1 - x ^ 2)
[PROOFSTEP]
rw [arccos_eq_pi_div_two_sub_arcsin, sin_pi_div_two_sub, cos_arcsin]
[GOAL]
x : ℝ
⊢ arccos x ≤ π / 2 ↔ 0 ≤ x
[PROOFSTEP]
simp [arccos]
[GOAL]
x : ℝ
⊢ arccos x < π / 2 ↔ 0 < x
[PROOFSTEP]
simp [arccos]
[GOAL]
x : ℝ
⊢ arccos x ≤ π / 4 ↔ sqrt 2 / 2 ≤ x
[PROOFSTEP]
rw [arccos, ← pi_div_four_le_arcsin]
[GOAL]
x : ℝ
⊢ π / 2 - arcsin x ≤ π / 4 ↔ π / 4 ≤ arcsin x
[PROOFSTEP]
constructor
[GOAL]
case mp
x : ℝ
⊢ π / 2 - arcsin x ≤ π / 4 → π / 4 ≤ arcsin x
[PROOFSTEP]
intro
[GOAL]
case mp
x : ℝ
a✝ : π / 2 - arcsin x ≤ π / 4
⊢ π / 4 ≤ arcsin x
[PROOFSTEP]
linarith
[GOAL]
case mpr
x : ℝ
⊢ π / 4 ≤ arcsin x → π / 2 - arcsin x ≤ π / 4
[PROOFSTEP]
intro
[GOAL]
case mpr
x : ℝ
a✝ : π / 4 ≤ arcsin x
⊢ π / 2 - arcsin x ≤ π / 4
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
⊢ tan (arccos x) = sqrt (1 - x ^ 2) / x
[PROOFSTEP]
rw [arccos, tan_pi_div_two_sub, tan_arcsin, inv_div]
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ arcsin x = arccos (sqrt (1 - x ^ 2))
[PROOFSTEP]
rw [eq_comm, ← cos_arcsin]
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ arccos (cos (arcsin x)) = arcsin x
[PROOFSTEP]
exact arccos_cos (arcsin_nonneg.2 h) ((arcsin_le_pi_div_two _).trans (div_le_self pi_pos.le one_le_two))
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse", "llama_tokens": 7822} |
[GOAL]
x : ℝ
h₁ : -π < x
h₂ : x ≤ π
⊢ arg ↑(↑expMapCircle x) = x
[PROOFSTEP]
rw [expMapCircle_apply, exp_mul_I, arg_cos_add_sin_mul_I ⟨h₁, h₂⟩]
[GOAL]
x y : ℝ
⊢ ↑expMapCircle x = ↑expMapCircle y ↔ ∃ m, x = y + ↑m * (2 * π)
[PROOFSTEP]
rw [Subtype.ext_iff, expMapCircle_apply, expMapCircle_apply, exp_eq_exp_iff_exists_int]
[GOAL]
x y : ℝ
⊢ (∃ n, ↑x * I = ↑y * I + ↑n * (2 * ↑π * I)) ↔ ∃ m, x = y + ↑m * (2 * π)
[PROOFSTEP]
refine' exists_congr fun n => _
[GOAL]
x y : ℝ
n : ℤ
⊢ ↑x * I = ↑y * I + ↑n * (2 * ↑π * I) ↔ x = y + ↑n * (2 * π)
[PROOFSTEP]
rw [← mul_assoc, ← add_mul, mul_left_inj' I_ne_zero]
[GOAL]
x y : ℝ
n : ℤ
⊢ ↑x = ↑y + ↑n * (2 * ↑π) ↔ x = y + ↑n * (2 * π)
[PROOFSTEP]
norm_cast
[GOAL]
z : ℝ
⊢ z + 2 * π = z + ↑1 * (2 * π)
[PROOFSTEP]
rw [Int.cast_one, one_mul]
[GOAL]
θ : Angle
⊢ ↑(expMapCircle θ) = ↑(cos θ) + ↑(sin θ) * I
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ ↑(expMapCircle ↑x✝) = ↑(cos ↑x✝) + ↑(sin ↑x✝) * I
[PROOFSTEP]
simp [Complex.exp_mul_I]
[GOAL]
⊢ expMapCircle 0 = 1
[PROOFSTEP]
rw [← Real.Angle.coe_zero, Real.Angle.expMapCircle_coe, _root_.expMapCircle_zero]
[GOAL]
θ : Angle
⊢ expMapCircle (-θ) = (expMapCircle θ)⁻¹
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ expMapCircle (-↑x✝) = (expMapCircle ↑x✝)⁻¹
[PROOFSTEP]
simp_rw [← Real.Angle.coe_neg, Real.Angle.expMapCircle_coe, _root_.expMapCircle_neg]
[GOAL]
θ₁ θ₂ : Angle
⊢ expMapCircle (θ₁ + θ₂) = expMapCircle θ₁ * expMapCircle θ₂
[PROOFSTEP]
induction θ₁ using Real.Angle.induction_on
[GOAL]
case h
θ₂ : Angle
x✝ : ℝ
⊢ expMapCircle (↑x✝ + θ₂) = expMapCircle ↑x✝ * expMapCircle θ₂
[PROOFSTEP]
induction θ₂ using Real.Angle.induction_on
[GOAL]
case h.h
x✝¹ x✝ : ℝ
⊢ expMapCircle (↑x✝¹ + ↑x✝) = expMapCircle ↑x✝¹ * expMapCircle ↑x✝
[PROOFSTEP]
exact _root_.expMapCircle_add _ _
[GOAL]
θ : Angle
⊢ ↑(arg ↑(expMapCircle θ)) = θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ ↑(arg ↑(expMapCircle ↑x✝)) = ↑x✝
[PROOFSTEP]
rw [Real.Angle.expMapCircle_coe, expMapCircle_apply, exp_mul_I, ← ofReal_cos, ← ofReal_sin, ← Real.Angle.cos_coe, ←
Real.Angle.sin_coe, arg_cos_add_sin_mul_I_coe_angle]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Circle", "llama_tokens": 1218} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : A
n : ℕ
⊢ ↑(aeval x) (T R n) = eval x (T A n)
[PROOFSTEP]
rw [aeval_def, eval₂_eq_eval_map, map_T]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : A
n : ℕ
⊢ ↑(aeval x) (U R n) = eval x (U A n)
[PROOFSTEP]
rw [aeval_def, eval₂_eq_eval_map, map_U]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : R
n : ℕ
⊢ ↑(algebraMap R A) (eval x (T R n)) = eval (↑(algebraMap R A) x) (T A n)
[PROOFSTEP]
rw [← aeval_algebraMap_apply_eq_algebraMap_eval, aeval_T]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : R
n : ℕ
⊢ ↑(algebraMap R A) (eval x (U R n)) = eval (↑(algebraMap R A) x) (U A n)
[PROOFSTEP]
rw [← aeval_algebraMap_apply_eq_algebraMap_eval, aeval_U]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
⊢ eval (cos θ) (T ℂ 0) = cos (↑0 * θ)
[PROOFSTEP]
simp only [T_zero, eval_one, Nat.cast_zero, zero_mul, cos_zero]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
⊢ eval (cos θ) (T ℂ 1) = cos (↑1 * θ)
[PROOFSTEP]
simp only [eval_X, one_mul, T_one, Nat.cast_one]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
⊢ eval (cos θ) (T ℂ (n + 2)) = cos (↑(n + 2) * θ)
[PROOFSTEP]
have : (2 : ℂ[X]) = (2 : ℕ) := by norm_num
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
⊢ 2 = ↑2
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
this : 2 = ↑2
⊢ eval (cos θ) (T ℂ (n + 2)) = cos (↑(n + 2) * θ)
[PROOFSTEP]
simp only [this, eval_X, eval_one, T_add_two, eval_sub, eval_mul, eval_nat_cast]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
this : 2 = ↑2
⊢ ↑2 * cos θ * eval (cos θ) (T ℂ (n + 1)) - eval (cos θ) (T ℂ n) = cos (↑(n + 2) * θ)
[PROOFSTEP]
simp only [Nat.cast_ofNat, Nat.cast_add]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
this : 2 = ↑2
⊢ 2 * cos θ * eval (cos θ) (T ℂ (n + 1)) - eval (cos θ) (T ℂ n) = cos ((↑n + 2) * θ)
[PROOFSTEP]
rw [T_complex_cos (n + 1), T_complex_cos n]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
this : 2 = ↑2
⊢ 2 * cos θ * cos (↑(n + 1) * θ) - cos (↑n * θ) = cos ((↑n + 2) * θ)
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one, add_mul, cos_add, one_mul, mul_assoc, sin_two_mul, cos_two_mul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
this : 2 = ↑2
⊢ 2 * (cos θ * (cos (↑n * θ) * cos θ - sin (↑n * θ) * sin θ)) - cos (↑n * θ) =
cos (↑n * θ) * (2 * cos θ ^ 2 - 1) - sin (↑n * θ) * (2 * (sin θ * cos θ))
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
n : ℕ
⊢ eval (cos θ) (U ℂ n) * sin θ = sin ((↑n + 1) * θ)
[PROOFSTEP]
induction' n with d hd
[GOAL]
case zero
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
⊢ eval (cos θ) (U ℂ Nat.zero) * sin θ = sin ((↑Nat.zero + 1) * θ)
[PROOFSTEP]
simp [U_zero, eval_one, zero_add, one_mul, Nat.zero_eq, CharP.cast_eq_zero]
[GOAL]
case succ
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ eval (cos θ) (U ℂ (Nat.succ d)) * sin θ = sin ((↑(Nat.succ d) + 1) * θ)
[PROOFSTEP]
rw [U_eq_X_mul_U_add_T]
[GOAL]
case succ
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ eval (cos θ) (X * U ℂ d + T ℂ (d + 1)) * sin θ = sin ((↑(Nat.succ d) + 1) * θ)
[PROOFSTEP]
simp only [eval_add, eval_mul, eval_X, T_complex_cos, add_mul, mul_assoc, hd, one_mul]
-- Porting note: added `trans` to prevent `rw` from going on a wild goose chase applying `rfl`
[GOAL]
case succ
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
trans cos θ * sin (↑(d.succ) * θ) + cos (↑(d.succ) * θ) * sin θ
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ =
cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
swap
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
conv_rhs => rw [sin_add, mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
| sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
rw [sin_add, mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
| sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
rw [sin_add, mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
| sin (↑(Nat.succ d) * θ + θ)
[PROOFSTEP]
rw [sin_add, mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ =
cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ
[PROOFSTEP]
push_cast
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℂ
d : ℕ
hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ)
⊢ cos θ * sin (↑d * θ + θ) + cos ((↑d + 1) * θ) * sin θ = cos θ * sin ((↑d + 1) * θ) + cos ((↑d + 1) * θ) * sin θ
[PROOFSTEP]
simp only [add_mul, one_mul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℝ
n : ℕ
⊢ eval (cos θ) (T ℝ n) = cos (↑n * θ)
[PROOFSTEP]
exact_mod_cast T_complex_cos θ n
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
θ : ℝ
n : ℕ
⊢ eval (cos θ) (U ℝ n) * sin θ = sin ((↑n + 1) * θ)
[PROOFSTEP]
exact_mod_cast U_complex_cos θ n
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev", "llama_tokens": 3975} |
[GOAL]
θ : ℂ
⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
[PROOFSTEP]
have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 :=
by
rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg,
neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub]
congr 3; ring_nf
[GOAL]
θ : ℂ
⊢ (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
[PROOFSTEP]
rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul,
← div_eq_iff (exp_ne_zero _), ← exp_sub]
[GOAL]
θ : ℂ
⊢ exp (θ * I - -θ * I) = -1 ↔ exp (2 * θ * I) = -1
[PROOFSTEP]
congr 3
[GOAL]
θ : ℂ
⊢ exp (θ * I - -θ * I) = -1 ↔ exp (2 * θ * I) = -1
[PROOFSTEP]
ring_nf
[GOAL]
θ : ℂ
h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
[PROOFSTEP]
rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
[GOAL]
θ : ℂ
h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
⊢ (∃ n, 2 * I * θ = ↑π * I + ↑n * (2 * ↑π * I)) ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
[PROOFSTEP]
refine' exists_congr fun x => _
[GOAL]
θ : ℂ
h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
x : ℤ
⊢ 2 * I * θ = ↑π * I + ↑x * (2 * ↑π * I) ↔ θ = (2 * ↑x + 1) * ↑π / 2
[PROOFSTEP]
refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero)
[GOAL]
θ : ℂ
h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
x : ℤ
⊢ ↑π * I + ↑x * (2 * ↑π * I) = 2 * I * ((2 * ↑x + 1) * ↑π / 2)
[PROOFSTEP]
field_simp
[GOAL]
θ : ℂ
h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1
x : ℤ
⊢ (↑π * I + ↑x * (2 * ↑π * I)) * 2 = 2 * I * ((2 * ↑x + 1) * ↑π)
[PROOFSTEP]
ring
[GOAL]
θ : ℂ
⊢ cos θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ (2 * ↑k + 1) * ↑π / 2
[PROOFSTEP]
rw [← not_exists, not_iff_not, cos_eq_zero_iff]
[GOAL]
θ : ℂ
⊢ sin θ = 0 ↔ ∃ k, θ = ↑k * ↑π
[PROOFSTEP]
rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff]
[GOAL]
θ : ℂ
⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) ↔ ∃ k, θ = ↑k * ↑π
[PROOFSTEP]
constructor
[GOAL]
case mp
θ : ℂ
⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) → ∃ k, θ = ↑k * ↑π
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mp.intro
θ : ℂ
k : ℤ
hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2
⊢ ∃ k, θ = ↑k * ↑π
[PROOFSTEP]
use k + 1
[GOAL]
case h
θ : ℂ
k : ℤ
hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2
⊢ θ = ↑(k + 1) * ↑π
[PROOFSTEP]
field_simp [eq_add_of_sub_eq hk]
[GOAL]
case h
θ : ℂ
k : ℤ
hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2
⊢ (2 * ↑k + 1) * ↑π + ↑π = (↑k + 1) * ↑π * 2
[PROOFSTEP]
ring
[GOAL]
case mpr
θ : ℂ
⊢ (∃ k, θ = ↑k * ↑π) → ∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2
[PROOFSTEP]
rintro ⟨k, rfl⟩
[GOAL]
case mpr.intro
k : ℤ
⊢ ∃ k_1, ↑k * ↑π - ↑π / 2 = (2 * ↑k_1 + 1) * ↑π / 2
[PROOFSTEP]
use k - 1
[GOAL]
case h
k : ℤ
⊢ ↑k * ↑π - ↑π / 2 = (2 * ↑(k - 1) + 1) * ↑π / 2
[PROOFSTEP]
field_simp
[GOAL]
case h
k : ℤ
⊢ ↑k * ↑π * 2 - ↑π = (2 * (↑k - 1) + 1) * ↑π
[PROOFSTEP]
ring
[GOAL]
θ : ℂ
⊢ sin θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π
[PROOFSTEP]
rw [← not_exists, not_iff_not, sin_eq_zero_iff]
[GOAL]
θ : ℂ
⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
[PROOFSTEP]
have h := (sin_two_mul θ).symm
[GOAL]
θ : ℂ
h : 2 * sin θ * cos θ = sin (2 * θ)
⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
[PROOFSTEP]
rw [mul_assoc] at h
[GOAL]
θ : ℂ
h : 2 * (sin θ * cos θ) = sin (2 * θ)
⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
[PROOFSTEP]
rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div,
CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm]
[GOAL]
θ : ℂ
h : 2 * (sin θ * cos θ) = sin (2 * θ)
⊢ sin (θ * 2) / 2 = 0 / 2 ↔ ∃ k, θ = ↑k * ↑π / 2
[PROOFSTEP]
simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff
[GOAL]
θ : ℂ
⊢ tan θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π / 2
[PROOFSTEP]
rw [← not_exists, not_iff_not, tan_eq_zero_iff]
[GOAL]
n : ℤ
⊢ ∃ k, ↑n * ↑π / 2 = ↑k * ↑π / 2
[PROOFSTEP]
use n
[GOAL]
x y : ℂ
⊢ cos x - cos y = 0 ↔ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0
[PROOFSTEP]
rw [cos_sub_cos]
[GOAL]
x y : ℂ
⊢ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0 ↔ sin ((x + y) / 2) = 0 ∨ sin ((x - y) / 2) = 0
[PROOFSTEP]
simp [(by norm_num : (2 : ℂ) ≠ 0)]
[GOAL]
x y : ℂ
⊢ 2 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
x y : ℂ
⊢ sin ((x - y) / 2) = 0 ∨ sin ((x + y) / 2) = 0 ↔ (∃ k, y = 2 * ↑k * ↑π + x) ∨ ∃ k, y = 2 * ↑k * ↑π - x
[PROOFSTEP]
apply or_congr
[GOAL]
case h₁
x y : ℂ
⊢ sin ((x - y) / 2) = 0 ↔ ∃ k, y = 2 * ↑k * ↑π + x
[PROOFSTEP]
field_simp [sin_eq_zero_iff, (by norm_num : -(2 : ℂ) ≠ 0), eq_sub_iff_add_eq', sub_eq_iff_eq_add, mul_comm (2 : ℂ),
mul_right_comm _ (2 : ℂ)]
[GOAL]
x y : ℂ
⊢ -2 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
case h₂
x y : ℂ
⊢ sin ((x + y) / 2) = 0 ↔ ∃ k, y = 2 * ↑k * ↑π - x
[PROOFSTEP]
field_simp [sin_eq_zero_iff, (by norm_num : -(2 : ℂ) ≠ 0), eq_sub_iff_add_eq', sub_eq_iff_eq_add, mul_comm (2 : ℂ),
mul_right_comm _ (2 : ℂ)]
[GOAL]
x y : ℂ
⊢ -2 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
case h₁
x y : ℂ
⊢ (∃ k, x = ↑k * ↑π * 2 + y) ↔ ∃ k, y = ↑k * ↑π * 2 + x
[PROOFSTEP]
constructor
[GOAL]
case h₁.mp
x y : ℂ
⊢ (∃ k, x = ↑k * ↑π * 2 + y) → ∃ k, y = ↑k * ↑π * 2 + x
[PROOFSTEP]
rintro ⟨k, rfl⟩
[GOAL]
case h₁.mp.intro
y : ℂ
k : ℤ
⊢ ∃ k_1, y = ↑k_1 * ↑π * 2 + (↑k * ↑π * 2 + y)
[PROOFSTEP]
use-k
[GOAL]
case h
y : ℂ
k : ℤ
⊢ y = ↑(-k) * ↑π * 2 + (↑k * ↑π * 2 + y)
[PROOFSTEP]
simp
[GOAL]
case h₁.mpr
x y : ℂ
⊢ (∃ k, y = ↑k * ↑π * 2 + x) → ∃ k, x = ↑k * ↑π * 2 + y
[PROOFSTEP]
rintro ⟨k, rfl⟩
[GOAL]
case h₁.mpr.intro
x : ℂ
k : ℤ
⊢ ∃ k_1, x = ↑k_1 * ↑π * 2 + (↑k * ↑π * 2 + x)
[PROOFSTEP]
use-k
[GOAL]
case h
x : ℂ
k : ℤ
⊢ x = ↑(-k) * ↑π * 2 + (↑k * ↑π * 2 + x)
[PROOFSTEP]
simp
[GOAL]
x y : ℂ
⊢ sin x = sin y ↔ ∃ k, y = 2 * ↑k * ↑π + x ∨ y = (2 * ↑k + 1) * ↑π - x
[PROOFSTEP]
simp only [← Complex.cos_sub_pi_div_two, cos_eq_cos_iff, sub_eq_iff_eq_add]
[GOAL]
x y : ℂ
⊢ (∃ k, y = 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 ∨ y = 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2) ↔
∃ k, y = 2 * ↑k * ↑π + x ∨ y = (2 * ↑k + 1) * ↑π - x
[PROOFSTEP]
refine' exists_congr fun k => or_congr _ _
[GOAL]
case refine'_1
x y : ℂ
k : ℤ
⊢ y = 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 ↔ y = 2 * ↑k * ↑π + x
[PROOFSTEP]
refine' Eq.congr rfl _
[GOAL]
case refine'_2
x y : ℂ
k : ℤ
⊢ y = 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2 ↔ y = (2 * ↑k + 1) * ↑π - x
[PROOFSTEP]
refine' Eq.congr rfl _
[GOAL]
case refine'_1
x y : ℂ
k : ℤ
⊢ 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 = 2 * ↑k * ↑π + x
[PROOFSTEP]
field_simp
[GOAL]
case refine'_2
x y : ℂ
k : ℤ
⊢ 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2 = (2 * ↑k + 1) * ↑π - x
[PROOFSTEP]
field_simp
[GOAL]
case refine'_1
x y : ℂ
k : ℤ
⊢ 2 * ↑k * ↑π * 2 + (x * 2 - ↑π) + ↑π = (2 * ↑k * ↑π + x) * 2
[PROOFSTEP]
ring
[GOAL]
case refine'_2
x y : ℂ
k : ℤ
⊢ 2 * ↑k * ↑π * 2 - (x * 2 - ↑π) + ↑π = ((2 * ↑k + 1) * ↑π - x) * 2
[PROOFSTEP]
ring
[GOAL]
x y : ℂ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * ↑π / 2
⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y)
[PROOFSTEP]
rcases h with (⟨h1, h2⟩ | ⟨⟨k, rfl⟩, ⟨l, rfl⟩⟩)
[GOAL]
case inl.intro
x y : ℂ
h1 : ∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2
h2 : ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2
⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y)
[PROOFSTEP]
rw [tan, sin_add, cos_add, ←
div_div_div_cancel_right (sin x * cos y + cos x * sin y)
(mul_ne_zero (cos_ne_zero_iff.mpr h1) (cos_ne_zero_iff.mpr h2)),
add_div, sub_div]
[GOAL]
case inl.intro
x y : ℂ
h1 : ∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2
h2 : ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2
⊢ (sin x * cos y / (cos x * cos y) + cos x * sin y / (cos x * cos y)) /
(cos x * cos y / (cos x * cos y) - sin x * sin y / (cos x * cos y)) =
(tan x + tan y) / (1 - tan x * tan y)
[PROOFSTEP]
simp only [← div_mul_div_comm, tan, mul_one, one_mul, div_self (cos_ne_zero_iff.mpr h1),
div_self (cos_ne_zero_iff.mpr h2)]
[GOAL]
case inr.intro.intro.intro
k l : ℤ
⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) =
(tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) /
(1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2))
[PROOFSTEP]
haveI t := tan_int_mul_pi_div_two
[GOAL]
case inr.intro.intro.intro
k l : ℤ
t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0
⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) =
(tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) /
(1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2))
[PROOFSTEP]
obtain ⟨hx, hy, hxy⟩ := t (2 * k + 1), t (2 * l + 1), t (2 * k + 1 + (2 * l + 1))
[GOAL]
case inr.intro.intro.intro
k l : ℤ
t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0
hx : tan (↑(2 * k + 1) * ↑π / 2) = 0
hy : tan (↑(2 * l + 1) * ↑π / 2) = 0
hxy : tan (↑(2 * k + 1 + (2 * l + 1)) * ↑π / 2) = 0
⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) =
(tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) /
(1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2))
[PROOFSTEP]
simp only [Int.cast_add, Int.cast_two, Int.cast_mul, Int.cast_one, hx, hy] at hx hy hxy
[GOAL]
case inr.intro.intro.intro
k l : ℤ
t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0
hx : tan ((2 * ↑k + 1) * ↑π / 2) = 0
hy : tan ((2 * ↑l + 1) * ↑π / 2) = 0
hxy : tan ((2 * ↑k + 1 + (2 * ↑l + 1)) * ↑π / 2) = 0
⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) =
(tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) /
(1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2))
[PROOFSTEP]
rw [hx, hy, add_zero, zero_div, mul_div_assoc, mul_div_assoc, ← add_mul (2 * (k : ℂ) + 1) (2 * l + 1) (π / 2), ←
mul_div_assoc, hxy]
[GOAL]
z : ℂ
⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2)
[PROOFSTEP]
by_cases h : ∀ k : ℤ, z ≠ (2 * k + 1) * π / 2
[GOAL]
case pos
z : ℂ
h : ∀ (k : ℤ), z ≠ (2 * ↑k + 1) * ↑π / 2
⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2)
[PROOFSTEP]
rw [two_mul, two_mul, sq, tan_add (Or.inl ⟨h, h⟩)]
[GOAL]
case neg
z : ℂ
h : ¬∀ (k : ℤ), z ≠ (2 * ↑k + 1) * ↑π / 2
⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2)
[PROOFSTEP]
rw [not_forall_not] at h
[GOAL]
case neg
z : ℂ
h : ∃ x, z = (2 * ↑x + 1) * ↑π / 2
⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2)
[PROOFSTEP]
rw [two_mul, two_mul, sq, tan_add (Or.inr ⟨h, h⟩)]
[GOAL]
x y : ℂ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), y * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, y * I = (2 * ↑l + 1) * ↑π / 2
⊢ tan (x + y * I) = (tan x + tanh y * I) / (1 - tan x * tanh y * I)
[PROOFSTEP]
rw [tan_add h, tan_mul_I, mul_assoc]
[GOAL]
z : ℂ
h :
((∀ (k : ℤ), ↑z.re ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑z.im * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨
(∃ k, ↑z.re = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑z.im * I = (2 * ↑l + 1) * ↑π / 2
⊢ tan z = (tan ↑z.re + tanh ↑z.im * I) / (1 - tan ↑z.re * tanh ↑z.im * I)
[PROOFSTEP]
convert tan_add_mul_I h
[GOAL]
case h.e'_2.h.e'_1
z : ℂ
h :
((∀ (k : ℤ), ↑z.re ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑z.im * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨
(∃ k, ↑z.re = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑z.im * I = (2 * ↑l + 1) * ↑π / 2
⊢ z = ↑z.re + ↑z.im * I
[PROOFSTEP]
exact (re_add_im z).symm
[GOAL]
z w : ℂ
⊢ cos z = w ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
z w : ℂ
⊢ cos z - w = 0 ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0
[PROOFSTEP]
field_simp [cos, exp_neg, exp_ne_zero]
[GOAL]
z w : ℂ
⊢ exp (z * I) * exp (z * I) + 1 - exp (z * I) * 2 * w = 0 ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0
[PROOFSTEP]
refine' Eq.congr _ rfl
[GOAL]
z w : ℂ
⊢ exp (z * I) * exp (z * I) + 1 - exp (z * I) * 2 * w = exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1
[PROOFSTEP]
ring
[GOAL]
⊢ Function.Surjective cos
[PROOFSTEP]
intro x
[GOAL]
x : ℂ
⊢ ∃ a, cos a = x
[PROOFSTEP]
obtain ⟨w, w₀, hw⟩ : ∃ (w : _) (_ : w ≠ 0), 1 * w * w + -2 * x * w + 1 = 0 :=
by
rcases exists_quadratic_eq_zero one_ne_zero ⟨_, (cpow_nat_inv_pow _ two_ne_zero).symm.trans <| pow_two _⟩ with ⟨w, hw⟩
refine' ⟨w, _, hw⟩
rintro rfl
simp only [zero_add, one_ne_zero, mul_zero] at hw
[GOAL]
x : ℂ
⊢ ∃ w x_1, 1 * w * w + -2 * x * w + 1 = 0
[PROOFSTEP]
rcases exists_quadratic_eq_zero one_ne_zero ⟨_, (cpow_nat_inv_pow _ two_ne_zero).symm.trans <| pow_two _⟩ with ⟨w, hw⟩
[GOAL]
case intro
x w : ℂ
hw : 1 * w * w + ?m.63171 * w + ?m.63172 = 0
⊢ ∃ w x_1, 1 * w * w + -2 * x * w + 1 = 0
[PROOFSTEP]
refine' ⟨w, _, hw⟩
[GOAL]
case intro
x w : ℂ
hw : 1 * w * w + -2 * x * w + 1 = 0
⊢ w ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
case intro
x : ℂ
hw : 1 * 0 * 0 + -2 * x * 0 + 1 = 0
⊢ False
[PROOFSTEP]
simp only [zero_add, one_ne_zero, mul_zero] at hw
[GOAL]
case intro.intro
x w : ℂ
w₀ : w ≠ 0
hw : 1 * w * w + -2 * x * w + 1 = 0
⊢ ∃ a, cos a = x
[PROOFSTEP]
refine' ⟨log w / I, cos_eq_iff_quadratic.2 _⟩
[GOAL]
case intro.intro
x w : ℂ
w₀ : w ≠ 0
hw : 1 * w * w + -2 * x * w + 1 = 0
⊢ exp (log w / I * I) ^ 2 - 2 * x * exp (log w / I * I) + 1 = 0
[PROOFSTEP]
rw [div_mul_cancel _ I_ne_zero, exp_log w₀]
[GOAL]
case intro.intro
x w : ℂ
w₀ : w ≠ 0
hw : 1 * w * w + -2 * x * w + 1 = 0
⊢ w ^ 2 - 2 * x * w + 1 = 0
[PROOFSTEP]
convert hw using 1
[GOAL]
case h.e'_2
x w : ℂ
w₀ : w ≠ 0
hw : 1 * w * w + -2 * x * w + 1 = 0
⊢ w ^ 2 - 2 * x * w + 1 = 1 * w * w + -2 * x * w + 1
[PROOFSTEP]
ring
[GOAL]
⊢ Function.Surjective sin
[PROOFSTEP]
intro x
[GOAL]
x : ℂ
⊢ ∃ a, sin a = x
[PROOFSTEP]
rcases cos_surjective x with ⟨z, rfl⟩
[GOAL]
case intro
z : ℂ
⊢ ∃ a, sin a = cos z
[PROOFSTEP]
exact ⟨z + π / 2, sin_add_pi_div_two z⟩
[GOAL]
θ : ℝ
⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * π / 2
[PROOFSTEP]
exact_mod_cast @Complex.cos_eq_zero_iff θ
[GOAL]
θ : ℝ
⊢ cos θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ (2 * ↑k + 1) * π / 2
[PROOFSTEP]
rw [← not_exists, not_iff_not, cos_eq_zero_iff]
[GOAL]
x y : ℝ
⊢ cos x = cos y ↔ ∃ k, y = 2 * ↑k * π + x ∨ y = 2 * ↑k * π - x
[PROOFSTEP]
exact_mod_cast @Complex.cos_eq_cos_iff x y
[GOAL]
x y : ℝ
⊢ sin x = sin y ↔ ∃ k, y = 2 * ↑k * π + x ∨ y = (2 * ↑k + 1) * π - x
[PROOFSTEP]
exact_mod_cast @Complex.sin_eq_sin_iff x y
[GOAL]
x : ℝ
hx : 0 < x
hx' : x < 1
⊢ x < sin (π / 2 * x)
[PROOFSTEP]
simpa [mul_comm x] using
strictConcaveOn_sin_Icc.2 ⟨le_rfl, pi_pos.le⟩ ⟨pi_div_two_pos.le, half_le_self pi_pos.le⟩ pi_div_two_pos.ne
(sub_pos.2 hx') hx
[GOAL]
x : ℝ
hx : 0 ≤ x
hx' : x ≤ 1
⊢ x ≤ sin (π / 2 * x)
[PROOFSTEP]
simpa [mul_comm x] using
strictConcaveOn_sin_Icc.concaveOn.2 ⟨le_rfl, pi_pos.le⟩ ⟨pi_div_two_pos.le, half_le_self pi_pos.le⟩ (sub_nonneg.2 hx')
hx
[GOAL]
x : ℝ
hx : 0 < x
hx' : x < π / 2
⊢ 2 / π * x < sin x
[PROOFSTEP]
rw [← inv_div]
[GOAL]
x : ℝ
hx : 0 < x
hx' : x < π / 2
⊢ (π / 2)⁻¹ * x < sin x
[PROOFSTEP]
simpa [-inv_div, mul_inv_cancel_left₀ pi_div_two_pos.ne'] using
@lt_sin_mul ((π / 2)⁻¹ * x) (mul_pos (inv_pos.2 pi_div_two_pos) hx)
(by rwa [← div_eq_inv_mul, div_lt_one pi_div_two_pos])
[GOAL]
x : ℝ
hx : 0 < x
hx' : x < π / 2
⊢ (π / 2)⁻¹ * x < 1
[PROOFSTEP]
rwa [← div_eq_inv_mul, div_lt_one pi_div_two_pos]
[GOAL]
x : ℝ
hx : 0 ≤ x
hx' : x ≤ π / 2
⊢ 2 / π * x ≤ sin x
[PROOFSTEP]
rw [← inv_div]
[GOAL]
x : ℝ
hx : 0 ≤ x
hx' : x ≤ π / 2
⊢ (π / 2)⁻¹ * x ≤ sin x
[PROOFSTEP]
simpa [-inv_div, mul_inv_cancel_left₀ pi_div_two_pos.ne'] using
@le_sin_mul ((π / 2)⁻¹ * x) (mul_nonneg (inv_nonneg.2 pi_div_two_pos.le) hx)
(by rwa [← div_eq_inv_mul, div_le_one pi_div_two_pos])
[GOAL]
x : ℝ
hx : 0 ≤ x
hx' : x ≤ π / 2
⊢ (π / 2)⁻¹ * x ≤ 1
[PROOFSTEP]
rwa [← div_eq_inv_mul, div_le_one pi_div_two_pos]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex", "llama_tokens": 9345} |
[GOAL]
z : ℂ
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) (cos z)
[PROOFSTEP]
rw [Complex.cos, Complex.exp_eq_exp_ℂ]
[GOAL]
z : ℂ
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
[PROOFSTEP]
have := ((expSeries_div_hasSum_exp ℂ (z * Complex.I)).add (expSeries_div_hasSum_exp ℂ (-z * Complex.I))).div_const 2
[GOAL]
z : ℂ
this :
HasSum (fun i => ((z * I) ^ i / ↑i ! + (-z * I) ^ i / ↑i !) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
[PROOFSTEP]
replace := (Nat.divModEquiv 2).symm.hasSum_iff.mpr this
[GOAL]
z : ℂ
this :
HasSum ((fun i => ((z * I) ^ i / ↑i ! + (-z * I) ^ i / ↑i !) / 2) ∘ ↑(Nat.divModEquiv 2).symm)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
[PROOFSTEP]
dsimp [Function.comp] at this
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)! +
(-z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
[PROOFSTEP]
simp_rw [← mul_comm 2 _] at this
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! +
(-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
[PROOFSTEP]
refine' this.prod_fiberwise fun k => _
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! +
(-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
k : ℕ
⊢ HasSum
(fun c =>
((z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)! +
(-z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)!) /
2)
((z * I) ^ (2 * k) / ↑(2 * k)!)
[PROOFSTEP]
dsimp only
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! +
(-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
k : ℕ
⊢ HasSum (fun c => ((z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)! + (-z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)!) / 2)
((z * I) ^ (2 * k) / ↑(2 * k)!)
[PROOFSTEP]
convert hasSum_fintype (_ : Fin 2 → ℂ) using 1
[GOAL]
case h.e'_6
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! +
(-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
k : ℕ
⊢ (z * I) ^ (2 * k) / ↑(2 * k)! =
Finset.sum Finset.univ fun b =>
((z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)! + (-z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)!) / 2
[PROOFSTEP]
rw [Fin.sum_univ_two]
[GOAL]
case h.e'_6
z : ℂ
this :
HasSum
(fun x =>
((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! +
(-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) /
2)
((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2)
k : ℕ
⊢ (z * I) ^ (2 * k) / ↑(2 * k)! =
((z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)! + (-z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)!) / 2 +
((z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)! + (-z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)!) / 2
[PROOFSTEP]
simp_rw [Fin.val_zero, Fin.val_one, add_zero, pow_succ', pow_mul, mul_pow, neg_sq, ← two_mul, neg_mul, mul_neg, neg_div,
add_right_neg, zero_div, add_zero, mul_div_cancel_left _ (two_ne_zero : (2 : ℂ) ≠ 0)]
[GOAL]
z : ℂ
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) (sin z)
[PROOFSTEP]
rw [Complex.sin, Complex.exp_eq_exp_ℂ]
[GOAL]
z : ℂ
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
[PROOFSTEP]
have :=
(((expSeries_div_hasSum_exp ℂ (-z * Complex.I)).sub (expSeries_div_hasSum_exp ℂ (z * Complex.I))).mul_right
Complex.I).div_const
2
[GOAL]
z : ℂ
this :
HasSum (fun i => ((-z * I) ^ i / ↑i ! - (z * I) ^ i / ↑i !) * I / 2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
[PROOFSTEP]
replace := (Nat.divModEquiv 2).symm.hasSum_iff.mpr this
[GOAL]
z : ℂ
this :
HasSum ((fun i => ((-z * I) ^ i / ↑i ! - (z * I) ^ i / ↑i !) * I / 2) ∘ ↑(Nat.divModEquiv 2).symm)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
[PROOFSTEP]
dsimp [Function.comp] at this
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)! -
(z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
[PROOFSTEP]
simp_rw [← mul_comm 2 _] at this
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! -
(z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
[PROOFSTEP]
refine' this.prod_fiberwise fun k => _
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! -
(z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
k : ℕ
⊢ HasSum
(fun c =>
((-z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)! -
(z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)!) *
I /
2)
((z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I)
[PROOFSTEP]
dsimp only
[GOAL]
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! -
(z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
k : ℕ
⊢ HasSum (fun c => ((-z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)! - (z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)!) * I / 2)
((z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I)
[PROOFSTEP]
convert hasSum_fintype (_ : Fin 2 → ℂ) using 1
[GOAL]
case h.e'_6
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! -
(z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
k : ℕ
⊢ (z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I =
Finset.sum Finset.univ fun b =>
((-z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)! - (z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)!) * I / 2
[PROOFSTEP]
rw [Fin.sum_univ_two]
[GOAL]
case h.e'_6
z : ℂ
this :
HasSum
(fun x =>
((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! -
(z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) *
I /
2)
((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2)
k : ℕ
⊢ (z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I =
((-z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)! - (z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)!) * I / 2 +
((-z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)! - (z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)!) * I / 2
[PROOFSTEP]
simp_rw [Fin.val_zero, Fin.val_one, add_zero, pow_succ', pow_mul, mul_pow, neg_sq, sub_self, zero_mul, zero_div,
zero_add, neg_mul, mul_neg, neg_div, ← neg_add', ← two_mul, neg_mul, neg_div, mul_assoc,
mul_div_cancel_left _ (two_ne_zero : (2 : ℂ) ≠ 0), Complex.div_I]
[GOAL]
z : ℂ
⊢ HasSum (fun n => (-1) ^ n * z ^ (2 * n) / ↑(2 * n)!) (cos z)
[PROOFSTEP]
convert Complex.hasSum_cos' z using 1
[GOAL]
case h.e'_5
z : ℂ
⊢ (fun n => (-1) ^ n * z ^ (2 * n) / ↑(2 * n)!) = fun n => (z * I) ^ (2 * n) / ↑(2 * n)!
[PROOFSTEP]
simp_rw [mul_pow, pow_mul, Complex.I_sq, mul_comm]
[GOAL]
z : ℂ
⊢ HasSum (fun n => (-1) ^ n * z ^ (2 * n + 1) / ↑(2 * n + 1)!) (sin z)
[PROOFSTEP]
convert Complex.hasSum_sin' z using 1
[GOAL]
case h.e'_5
z : ℂ
⊢ (fun n => (-1) ^ n * z ^ (2 * n + 1) / ↑(2 * n + 1)!) = fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I
[PROOFSTEP]
simp_rw [mul_pow, pow_succ', pow_mul, Complex.I_sq, ← mul_assoc, mul_div_assoc, div_right_comm,
div_self Complex.I_ne_zero, mul_comm _ ((-1 : ℂ) ^ _), mul_one_div, mul_div_assoc, mul_assoc]
[GOAL]
r : ℝ
⊢ HasSum (fun n => (-1) ^ n * r ^ (2 * n) / ↑(2 * n)!) (cos r)
[PROOFSTEP]
exact_mod_cast Complex.hasSum_cos r
[GOAL]
r : ℝ
⊢ HasSum (fun n => (-1) ^ n * r ^ (2 * n + 1) / ↑(2 * n + 1)!) (sin r)
[PROOFSTEP]
exact_mod_cast Complex.hasSum_sin r
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Series", "llama_tokens": 5172} |
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
f g : Valuation R Γ₀
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
g : Valuation R Γ₀
toFun✝ : R → Γ₀
map_zero'✝ : toFun✝ 0 = 0
map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1
map_mul'✝ :
∀ (x y : R),
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) =
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x *
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y
map_add_le_max'✝ :
∀ (x y : R),
ZeroHom.toFun
(↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ })
(x + y) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ })
x)
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ })
y)
h :
(fun f => f.toFun)
{
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
map_add_le_max' := map_add_le_max'✝ } =
(fun f => f.toFun) g
⊢ {
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
map_add_le_max' := map_add_le_max'✝ } =
g
[PROOFSTEP]
congr
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
⊢ v.toFun = ↑v
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
⊢ ↑v.toMonoidWithZeroHom = ↑v
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
⊢ ∀ (x y : R), ↑v (x + y) ≤ ↑v x ∨ ↑v (x + y) ≤ ↑v y
[PROOFSTEP]
intro x y
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
⊢ ↑v (x + y) ≤ ↑v x ∨ ↑v (x + y) ≤ ↑v y
[PROOFSTEP]
rw [← le_max_iff, ← ge_iff_le]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
⊢ max (↑v x) (↑v y) ≥ ↑v (x + y)
[PROOFSTEP]
apply map_add
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s : Finset ι
f : ι → R
g : Γ₀
hf : ∀ (i : ι), i ∈ s → ↑v (f i) ≤ g
⊢ ↑v (∑ i in s, f i) ≤ g
[PROOFSTEP]
refine' Finset.induction_on s (fun _ => v.map_zero ▸ zero_le') (fun a s has ih hf => _) hf
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g
hf : ∀ (i : ι), i ∈ insert a s → ↑v (f i) ≤ g
⊢ ↑v (∑ i in insert a s, f i) ≤ g
[PROOFSTEP]
rw [Finset.forall_mem_insert] at hf
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g
hf : ↑v (f a) ≤ g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) ≤ g
⊢ ↑v (∑ i in insert a s, f i) ≤ g
[PROOFSTEP]
rw [Finset.sum_insert has]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g
hf : ↑v (f a) ≤ g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) ≤ g
⊢ ↑v (f a + ∑ x in s, f x) ≤ g
[PROOFSTEP]
exact v.map_add_le hf.1 (ih hf.2)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s : Finset ι
f : ι → R
g : Γ₀
hg : g ≠ 0
hf : ∀ (i : ι), i ∈ s → ↑v (f i) < g
⊢ ↑v (∑ i in s, f i) < g
[PROOFSTEP]
refine' Finset.induction_on s (fun _ => v.map_zero ▸ (zero_lt_iff.2 hg)) (fun a s has ih hf => _) hf
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hg : g ≠ 0
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g
hf : ∀ (i : ι), i ∈ insert a s → ↑v (f i) < g
⊢ ↑v (∑ i in insert a s, f i) < g
[PROOFSTEP]
rw [Finset.forall_mem_insert] at hf
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hg : g ≠ 0
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g
hf : ↑v (f a) < g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) < g
⊢ ↑v (∑ i in insert a s, f i) < g
[PROOFSTEP]
rw [Finset.sum_insert has]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
x y z : R
ι : Type u_7
s✝ : Finset ι
f : ι → R
g : Γ₀
hg : g ≠ 0
hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g
hf : ↑v (f a) < g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) < g
⊢ ↑v (f a + ∑ x in s, f x) < g
[PROOFSTEP]
exact v.map_add_lt hf.1 (ih hf.2)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁵ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁴ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝³ : Ring R
inst✝² : LinearOrderedCommMonoidWithZero Γ₀
inst✝¹ : LinearOrderedCommMonoidWithZero Γ'₀
v✝ : Valuation R Γ₀
x✝ y✝ z : R
S : Type u_7
inst✝ : Ring S
f : S →+* R
v : Valuation R Γ₀
src✝ : S →*₀ Γ₀ := MonoidWithZeroHom.comp v.toMonoidWithZeroHom (RingHom.toMonoidWithZeroHom f)
x y : S
⊢ ZeroHom.toFun
(↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) },
map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1),
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
(x + y) ≤
max
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) },
map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1),
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
x)
(ZeroHom.toFun
(↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) },
map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1),
map_mul' :=
(_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) })
y)
[PROOFSTEP]
simp only [comp_apply, map_add, f.map_add]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
⊢ ↑v (x - y) = ↑v (x + -y)
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
⊢ max (↑v x) (↑v (-y)) = max (↑v x) (↑v y)
[PROOFSTEP]
rw [map_neg]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
g : (fun x => Γ₀) x
hx : ↑v x ≤ g
hy : ↑v y ≤ g
⊢ ↑v (x - y) ≤ g
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
g : (fun x => Γ₀) x
hx : ↑v x ≤ g
hy : ↑v y ≤ g
⊢ ↑v (x + -y) ≤ g
[PROOFSTEP]
exact v.map_add_le hx (le_trans (le_of_eq (v.map_neg y)) hy)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
⊢ ↑v (x + y) = max (↑v x) (↑v y)
[PROOFSTEP]
suffices : ¬v (x + y) < max (v x) (v y)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
this : ¬↑v (x + y) < max (↑v x) (↑v y)
⊢ ↑v (x + y) = max (↑v x) (↑v y)
case this
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
⊢ ¬↑v (x + y) < max (↑v x) (↑v y)
[PROOFSTEP]
exact or_iff_not_imp_right.1 (le_iff_eq_or_lt.1 (v.map_add x y)) this
[GOAL]
case this
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
⊢ ¬↑v (x + y) < max (↑v x) (↑v y)
[PROOFSTEP]
intro h'
[GOAL]
case this
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < max (↑v x) (↑v y)
⊢ False
[PROOFSTEP]
wlog vyx : v y < v x generalizing x y
[GOAL]
case this.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < max (↑v x) (↑v y)
this : ∀ {x y : R}, ↑v x ≠ ↑v y → ↑v (x + y) < max (↑v x) (↑v y) → ↑v y < ↑v x → False
vyx : ¬↑v y < ↑v x
⊢ False
[PROOFSTEP]
refine' this h.symm _ (h.lt_or_lt.resolve_right vyx)
[GOAL]
case this.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < max (↑v x) (↑v y)
this : ∀ {x y : R}, ↑v x ≠ ↑v y → ↑v (x + y) < max (↑v x) (↑v y) → ↑v y < ↑v x → False
vyx : ¬↑v y < ↑v x
⊢ ↑v (y + x) < max (↑v y) (↑v x)
[PROOFSTEP]
rwa [add_comm, max_comm]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < max (↑v x) (↑v y)
vyx : ↑v y < ↑v x
⊢ False
[PROOFSTEP]
rw [max_eq_left_of_lt vyx] at h'
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < ↑v x
vyx : ↑v y < ↑v x
⊢ False
[PROOFSTEP]
apply lt_irrefl (v x)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < ↑v x
vyx : ↑v y < ↑v x
⊢ ↑v x < ↑v x
[PROOFSTEP]
calc
v x = v (x + y - y) := by simp
_ ≤ max (v <| x + y) (v y) := (map_sub _ _ _)
_ < v x := max_lt h' vyx
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x✝ y✝ z x y : R
h : ↑v x ≠ ↑v y
h' : ↑v (x + y) < ↑v x
vyx : ↑v y < ↑v x
⊢ ↑v x = ↑v (x + y - y)
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v y < ↑v x
⊢ ↑v (x + y) = ↑v x
[PROOFSTEP]
rw [add_comm]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v y < ↑v x
⊢ ↑v (y + x) = ↑v x
[PROOFSTEP]
exact map_add_eq_of_lt_right _ h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v (y - x) < ↑v x
⊢ ↑v y = ↑v x
[PROOFSTEP]
have := Valuation.map_add_of_distinct_val v (ne_of_gt h).symm
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v (y - x) < ↑v x
this : ↑v (y - x + x) = max (↑v (y - x)) (↑v x)
⊢ ↑v y = ↑v x
[PROOFSTEP]
rw [max_eq_right (le_of_lt h)] at this
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v (y - x) < ↑v x
this : ↑v (y - x + x) = ↑v x
⊢ ↑v y = ↑v x
[PROOFSTEP]
simpa using this
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x < 1
⊢ ↑v (1 + x) = 1
[PROOFSTEP]
rw [← v.map_one] at h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x < ↑v 1
⊢ ↑v (1 + x) = 1
[PROOFSTEP]
simpa only [v.map_one] using v.map_add_eq_of_lt_left h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v x < 1
⊢ ↑v (1 - x) = 1
[PROOFSTEP]
rw [← v.map_one, ← v.map_neg] at h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v (-x) < ↑v 1
⊢ ↑v (1 - x) = 1
[PROOFSTEP]
rw [sub_eq_add_neg 1 x]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v : Valuation R Γ₀
x y z : R
h : ↑v (-x) < ↑v 1
⊢ ↑v (1 + -x) = 1
[PROOFSTEP]
simpa only [v.map_one, v.map_neg] using v.map_add_eq_of_lt_left h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v✝ : Valuation R Γ₀
x✝ y z : R
v : Valuation K Γ₀
x : K
h : x ≠ 0
⊢ 1 < ↑v x ↔ ↑v x⁻¹ < 1
[PROOFSTEP]
simpa using (inv_lt_inv₀ (v.ne_zero_iff.2 h) one_ne_zero).symm
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v✝ : Valuation R Γ₀
x y z : R
v : Valuation R Γ₀
γ : Γ₀ˣ
⊢ 0 ∈
{ carrier := {x | ↑v x < ↑γ},
add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) }.carrier
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : Ring R
inst✝ : LinearOrderedCommGroupWithZero Γ₀
v✝ : Valuation R Γ₀
x y z : R
v : Valuation R Γ₀
γ : Γ₀ˣ
x✝ : R
x_in :
x✝ ∈
{
toAddSubsemigroup :=
{ carrier := {x | ↑v x < ↑γ},
add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) },
zero_mem' := (_ : ↑v 0 < ↑γ) }.toAddSubsemigroup.carrier
⊢ -x✝ ∈
{
toAddSubsemigroup :=
{ carrier := {x | ↑v x < ↑γ},
add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) },
zero_mem' := (_ : ↑v 0 < ↑γ) }.toAddSubsemigroup.carrier
[PROOFSTEP]
rwa [Set.mem_setOf, map_neg]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
v' : Valuation R Γ₀
h : v = v'
⊢ IsEquiv v v'
[PROOFSTEP]
subst h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
⊢ IsEquiv v v
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
v' : Valuation R Γ₀
f : Γ₀ →*₀ Γ'₀
hf : Monotone ↑f
inf : Injective ↑f
h : IsEquiv v v'
H : StrictMono ↑f := Monotone.strictMono_of_injective hf inf
r s : R
⊢ ↑f (↑v r) ≤ ↑f (↑v s) ↔ ↑v r ≤ ↑v s
[PROOFSTEP]
rw [H.le_iff_le]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
v' : Valuation R Γ₀
f : Γ₀ →*₀ Γ'₀
hf : Monotone ↑f
inf : Injective ↑f
h : IsEquiv v v'
H : StrictMono ↑f := Monotone.strictMono_of_injective hf inf
r s : R
⊢ ↑v' r ≤ ↑v' s ↔ ↑f (↑v' r) ≤ ↑f (↑v' s)
[PROOFSTEP]
rw [H.le_iff_le]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
h : IsEquiv v₁ v₂
r s : R
⊢ ↑v₁ r = ↑v₁ s ↔ ↑v₂ r = ↑v₂ s
[PROOFSTEP]
simpa only [le_antisymm_iff] using and_congr (h r s) (h s r)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
h : IsEquiv v₁ v₂
r : R
⊢ ↑v₁ r ≠ 0 ↔ ↑v₂ r ≠ 0
[PROOFSTEP]
have : v₁ r ≠ v₁ 0 ↔ v₂ r ≠ v₂ 0 := not_congr h.val_eq
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : Ring R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v v₁ : Valuation R Γ₀
v₂ : Valuation R Γ'₀
v₃ : Valuation R Γ''₀
h : IsEquiv v₁ v₂
r : R
this : ↑v₁ r ≠ ↑v₁ 0 ↔ ↑v₂ r ≠ ↑v₂ 0
⊢ ↑v₁ r ≠ 0 ↔ ↑v₂ r ≠ 0
[PROOFSTEP]
rwa [v₁.map_zero, v₂.map_zero] at this
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
⊢ IsEquiv v v'
[PROOFSTEP]
intro x y
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : y = 0
⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y
[PROOFSTEP]
simp [hy, zero_iff]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y
[PROOFSTEP]
rw [show y = 1 * y by rw [one_mul]]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ y = 1 * y
[PROOFSTEP]
rw [one_mul]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v x ≤ ↑v (1 * y) ↔ ↑v' x ≤ ↑v' (1 * y)
[PROOFSTEP]
rw [← inv_mul_cancel_right₀ hy x]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹ * y) ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹ * y) ≤ ↑v' (1 * y)
[PROOFSTEP]
iterate 2 rw [v.map_mul _ y, v'.map_mul _ y]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹ * y) ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹ * y) ≤ ↑v' (1 * y)
[PROOFSTEP]
rw [v.map_mul _ y, v'.map_mul _ y]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹) * ↑v y ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ ↑v' (1 * y)
[PROOFSTEP]
rw [v.map_mul _ y, v'.map_mul _ y]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹) * ↑v y ≤ ↑v 1 * ↑v y ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ ↑v' 1 * ↑v' y
[PROOFSTEP]
rw [v.map_one, v'.map_one]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y → ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
[PROOFSTEP]
intro H
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
⊢ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y → ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y
[PROOFSTEP]
intro H
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y
⊢ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
[PROOFSTEP]
apply mul_le_mul_right'
[GOAL]
case neg.mp.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y
⊢ ↑v' (x * y⁻¹) ≤ 1
[PROOFSTEP]
replace hy := v.ne_zero_iff.mpr hy
[GOAL]
case neg.mp.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y
hy : ↑v y ≠ 0
⊢ ↑v' (x * y⁻¹) ≤ 1
[PROOFSTEP]
replace H := le_of_le_mul_right hy H
[GOAL]
case neg.mp.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ↑v y ≠ 0
H : ↑v (x * y⁻¹) ≤ 1
⊢ ↑v' (x * y⁻¹) ≤ 1
[PROOFSTEP]
rwa [h] at H
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y
[PROOFSTEP]
apply mul_le_mul_right'
[GOAL]
case neg.mpr.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ¬y = 0
H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
⊢ ↑v (x * y⁻¹) ≤ 1
[PROOFSTEP]
replace hy := v'.ne_zero_iff.mpr hy
[GOAL]
case neg.mpr.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y
hy : ↑v' y ≠ 0
⊢ ↑v (x * y⁻¹) ≤ 1
[PROOFSTEP]
replace H := le_of_le_mul_right hy H
[GOAL]
case neg.mpr.bc
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
x y : K
hy : ↑v' y ≠ 0
H : ↑v' (x * y⁻¹) ≤ 1
⊢ ↑v (x * y⁻¹) ≤ 1
[PROOFSTEP]
rwa [h]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : IsEquiv v v'
x : K
⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1
[PROOFSTEP]
simpa using h x 1
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
intro h x
[GOAL]
case mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : IsEquiv v v'
x : K
⊢ ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
simpa using @IsEquiv.val_eq _ _ _ _ _ _ v v' h x 1
[GOAL]
case mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v'
[PROOFSTEP]
intro h
[GOAL]
case mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
⊢ IsEquiv v v'
[PROOFSTEP]
apply isEquiv_of_val_le_one
[GOAL]
case mpr.h
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
[PROOFSTEP]
intro x
[GOAL]
case mpr.h
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case mpr.h.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
⊢ ↑v x ≤ 1 → ↑v' x ≤ 1
[PROOFSTEP]
intro hx
[GOAL]
case mpr.h.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
cases' lt_or_eq_of_le hx with hx' hx'
[GOAL]
case mpr.h.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
have : v (1 + x) = 1 := by
rw [← v.map_one]
apply map_add_eq_of_lt_left
simpa
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
⊢ ↑v (1 + x) = 1
[PROOFSTEP]
rw [← v.map_one]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
⊢ ↑v (1 + x) = ↑v 1
[PROOFSTEP]
apply map_add_eq_of_lt_left
[GOAL]
case h
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
⊢ ↑v x < ↑v 1
[PROOFSTEP]
simpa
[GOAL]
case mpr.h.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
this : ↑v (1 + x) = 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
rw [h] at this
[GOAL]
case mpr.h.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
this : ↑v' (1 + x) = 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
rw [show x = -1 + (1 + x) by simp]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
this : ↑v' (1 + x) = 1
⊢ x = -1 + (1 + x)
[PROOFSTEP]
simp
[GOAL]
case mpr.h.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
this : ↑v' (1 + x) = 1
⊢ ↑v' (-1 + (1 + x)) ≤ 1
[PROOFSTEP]
refine' le_trans (v'.map_add _ _) _
[GOAL]
case mpr.h.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x < 1
this : ↑v' (1 + x) = 1
⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1
[PROOFSTEP]
simp [this]
[GOAL]
case mpr.h.mp.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v x = 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
rw [h] at hx'
[GOAL]
case mpr.h.mp.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v x ≤ 1
hx' : ↑v' x = 1
⊢ ↑v' x ≤ 1
[PROOFSTEP]
exact le_of_eq hx'
[GOAL]
case mpr.h.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
⊢ ↑v' x ≤ 1 → ↑v x ≤ 1
[PROOFSTEP]
intro hx
[GOAL]
case mpr.h.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
cases' lt_or_eq_of_le hx with hx' hx'
[GOAL]
case mpr.h.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
have : v' (1 + x) = 1 := by
rw [← v'.map_one]
apply map_add_eq_of_lt_left
simpa
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
⊢ ↑v' (1 + x) = 1
[PROOFSTEP]
rw [← v'.map_one]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
⊢ ↑v' (1 + x) = ↑v' 1
[PROOFSTEP]
apply map_add_eq_of_lt_left
[GOAL]
case h
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
⊢ ↑v' x < ↑v' 1
[PROOFSTEP]
simpa
[GOAL]
case mpr.h.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
this : ↑v' (1 + x) = 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
rw [← h] at this
[GOAL]
case mpr.h.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
this : ↑v (1 + x) = 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
rw [show x = -1 + (1 + x) by simp]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
this : ↑v (1 + x) = 1
⊢ x = -1 + (1 + x)
[PROOFSTEP]
simp
[GOAL]
case mpr.h.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
this : ↑v (1 + x) = 1
⊢ ↑v (-1 + (1 + x)) ≤ 1
[PROOFSTEP]
refine' le_trans (v.map_add _ _) _
[GOAL]
case mpr.h.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x < 1
this : ↑v (1 + x) = 1
⊢ max (↑v (-1)) (↑v (1 + x)) ≤ 1
[PROOFSTEP]
simp [this]
[GOAL]
case mpr.h.mpr.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v' x = 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
rw [← h] at hx'
[GOAL]
case mpr.h.mpr.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
x : K
hx : ↑v' x ≤ 1
hx' : ↑v x = 1
⊢ ↑v x ≤ 1
[PROOFSTEP]
exact le_of_eq hx'
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' → ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
[PROOFSTEP]
intro h x
[GOAL]
case mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : IsEquiv v v'
x : K
⊢ ↑v x < 1 ↔ ↑v' x < 1
[PROOFSTEP]
simp only [lt_iff_le_and_ne, and_congr ((isEquiv_iff_val_le_one _ _).1 h) ((isEquiv_iff_val_eq_one _ _).1 h).not]
[GOAL]
case mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) → IsEquiv v v'
[PROOFSTEP]
rw [isEquiv_iff_val_eq_one]
[GOAL]
case mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
intro h x
[GOAL]
case mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
⊢ ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : x = 0
⊢ ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
rw [(zero_iff _).2 hx, (zero_iff _).2 hx]
[GOAL]
case pos
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : x = 0
⊢ 0 = 1 ↔ 0 = 1
[PROOFSTEP]
simp only [zero_ne_one]
[GOAL]
case neg
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
⊢ ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
⊢ ↑v x = 1 → ↑v' x = 1
[PROOFSTEP]
intro hh
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
⊢ ↑v' x = 1
[PROOFSTEP]
by_contra h_1
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
⊢ False
[PROOFSTEP]
cases ne_iff_lt_or_gt.1 h_1 with
| inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2))
[GOAL]
case neg.mp
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
x✝ : ↑v' x < 1 ∨ ↑v' x > 1
⊢ False
[PROOFSTEP]
cases ne_iff_lt_or_gt.1 h_1 with
| inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2))
[GOAL]
case neg.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
h_2 : ↑v' x < 1
⊢ False
[PROOFSTEP]
| inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2
[GOAL]
case neg.mp.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
h_2 : ↑v' x < 1
⊢ False
[PROOFSTEP]
simpa [hh, lt_self_iff_false] using h.2 h_2
[GOAL]
case neg.mp.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
h_2 : ↑v' x > 1
⊢ False
[PROOFSTEP]
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2))
[GOAL]
case neg.mp.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x = 1
h_1 : ¬↑v' x = 1
h_2 : ↑v' x > 1
⊢ False
[PROOFSTEP]
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
[GOAL]
case neg.mp.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v x⁻¹ = 1
h_1 : ¬↑v' x = 1
h_2 : ↑v' x > 1
⊢ False
[PROOFSTEP]
exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2))
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
⊢ ↑v' x = 1 → ↑v x = 1
[PROOFSTEP]
intro hh
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
⊢ ↑v x = 1
[PROOFSTEP]
by_contra h_1
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
⊢ False
[PROOFSTEP]
cases ne_iff_lt_or_gt.1 h_1 with
| inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2))
[GOAL]
case neg.mpr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
x✝ : ↑v x < 1 ∨ ↑v x > 1
⊢ False
[PROOFSTEP]
cases ne_iff_lt_or_gt.1 h_1 with
| inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2))
[GOAL]
case neg.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
h_2 : ↑v x < 1
⊢ False
[PROOFSTEP]
| inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2
[GOAL]
case neg.mpr.inl
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
h_2 : ↑v x < 1
⊢ False
[PROOFSTEP]
simpa [hh, lt_self_iff_false] using h.1 h_2
[GOAL]
case neg.mpr.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
h_2 : ↑v x > 1
⊢ False
[PROOFSTEP]
| inr h_2 =>
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2))
[GOAL]
case neg.mpr.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x = 1
h_1 : ¬↑v x = 1
h_2 : ↑v x > 1
⊢ False
[PROOFSTEP]
rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh
[GOAL]
case neg.mpr.inr
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
x : K
hx : ¬x = 0
hh : ↑v' x⁻¹ = 1
h_1 : ¬↑v x = 1
h_2 : ↑v x > 1
⊢ False
[PROOFSTEP]
exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2))
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1
[PROOFSTEP]
rw [isEquiv_iff_val_lt_one]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1
[PROOFSTEP]
exact (Equiv.subRight 1).surjective.forall
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ List.TFAE
[IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1,
∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1]
[PROOFSTEP]
tfae_have 1 ↔ 2
[GOAL]
case tfae_1_iff_2
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
[PROOFSTEP]
apply isEquiv_iff_val_le_one
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
⊢ List.TFAE
[IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1,
∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1]
[PROOFSTEP]
tfae_have 1 ↔ 3
[GOAL]
case tfae_1_iff_3
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
[PROOFSTEP]
apply isEquiv_iff_val_eq_one
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
⊢ List.TFAE
[IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1,
∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1]
[PROOFSTEP]
tfae_have 1 ↔ 4
[GOAL]
case tfae_1_iff_4
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
[PROOFSTEP]
apply isEquiv_iff_val_lt_one
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
⊢ List.TFAE
[IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1,
∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1]
[PROOFSTEP]
tfae_have 1 ↔ 5
[GOAL]
case tfae_1_iff_5
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1
[PROOFSTEP]
apply isEquiv_iff_val_sub_one_lt_one
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝² : LinearOrderedCommMonoidWithZero Γ''₀
inst✝¹ : LinearOrderedCommGroupWithZero Γ₀
inst✝ : LinearOrderedCommGroupWithZero Γ'₀
v : Valuation K Γ₀
v' : Valuation K Γ'₀
tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1
tfae_1_iff_5 : IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1
⊢ List.TFAE
[IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1,
∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1]
[PROOFSTEP]
tfae_finish
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁶ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝⁴ : CommRing R
inst✝³ : LinearOrderedCommMonoidWithZero Γ₀
inst✝² : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
inst✝¹ : Nontrivial Γ₀
inst✝ : NoZeroDivisors Γ₀
h : supp v = ⊤
⊢ ↑v 1 = 0
[PROOFSTEP]
rw [← mem_supp_iff, h]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁶ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝⁴ : CommRing R
inst✝³ : LinearOrderedCommMonoidWithZero Γ₀
inst✝² : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
inst✝¹ : Nontrivial Γ₀
inst✝ : NoZeroDivisors Γ₀
h : supp v = ⊤
⊢ 1 ∈ ⊤
[PROOFSTEP]
exact Submodule.mem_top
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁶ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝⁴ : CommRing R
inst✝³ : LinearOrderedCommMonoidWithZero Γ₀
inst✝² : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
inst✝¹ : Nontrivial Γ₀
inst✝ : NoZeroDivisors Γ₀
x y : R
hxy : x * y ∈ supp v
⊢ x ∈ supp v ∨ y ∈ supp v
[PROOFSTEP]
simp only [mem_supp_iff] at hxy ⊢
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁶ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝⁴ : CommRing R
inst✝³ : LinearOrderedCommMonoidWithZero Γ₀
inst✝² : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
inst✝¹ : Nontrivial Γ₀
inst✝ : NoZeroDivisors Γ₀
x y : R
hxy : ↑v (x * y) = 0
⊢ ↑v x = 0 ∨ ↑v y = 0
[PROOFSTEP]
rw [v.map_mul x y] at hxy
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁶ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝⁴ : CommRing R
inst✝³ : LinearOrderedCommMonoidWithZero Γ₀
inst✝² : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
inst✝¹ : Nontrivial Γ₀
inst✝ : NoZeroDivisors Γ₀
x y : R
hxy : ↑v x * ↑v y = 0
⊢ ↑v x = 0 ∨ ↑v y = 0
[PROOFSTEP]
exact eq_zero_or_eq_zero_of_mul_eq_zero hxy
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
⊢ ↑v (a + s) = ↑v a
[PROOFSTEP]
have aux : ∀ a s, v s = 0 → v (a + s) ≤ v a := by
intro a' s' h'
refine' le_trans (v.map_add a' s') (max_le le_rfl _)
simp [h']
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
⊢ ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a
[PROOFSTEP]
intro a' s' h'
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
a' s' : R
h' : ↑v s' = 0
⊢ ↑v (a' + s') ≤ ↑v a'
[PROOFSTEP]
refine' le_trans (v.map_add a' s') (max_le le_rfl _)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
a' s' : R
h' : ↑v s' = 0
⊢ ↑v s' ≤ ↑v a'
[PROOFSTEP]
simp [h']
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a
⊢ ↑v (a + s) = ↑v a
[PROOFSTEP]
apply le_antisymm (aux a s h)
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a
⊢ ↑v a ≤ ↑v (a + s)
[PROOFSTEP]
calc
v a = v (a + s + -s) := by simp
_ ≤ v (a + s) := aux (a + s) (-s) (by rwa [← Ideal.neg_mem_iff] at h )
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a
⊢ ↑v a = ↑v (a + s + -s)
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁴ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝² : CommRing R
inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀
inst✝ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
a s : R
h : s ∈ supp v
aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a
⊢ ↑v (-s) = 0
[PROOFSTEP]
rwa [← Ideal.neg_mem_iff] at h
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝⁵ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
Γ''₀ : Type u_6
inst✝⁴ : LinearOrderedCommMonoidWithZero Γ''₀
inst✝³ : CommRing R
inst✝² : LinearOrderedCommMonoidWithZero Γ₀
inst✝¹ : LinearOrderedCommMonoidWithZero Γ'₀
v : Valuation R Γ₀
S : Type u_7
inst✝ : CommRing S
f : S →+* R
x : S
⊢ x ∈ supp (comap f v) ↔ x ∈ Ideal.comap f (supp v)
[PROOFSTEP]
rw [mem_supp_iff, Ideal.mem_comap, mem_supp_iff, comap_apply]
[GOAL]
K : Type u_1
F : Type u_2
R✝ : Type u_3
inst✝² : DivisionRing K
Γ₀✝ : Type u_4
Γ'₀ : Type u_5
R : Type ?u.4327439
Γ₀ : Type ?u.4327442
inst✝¹ : Ring R
inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀
f g : AddValuation R Γ₀
⊢ (fun v => v.toFun) f = (fun v => v.toFun) g → f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
K : Type u_1
F : Type u_2
R✝ : Type u_3
inst✝² : DivisionRing K
Γ₀✝ : Type u_4
Γ'₀ : Type u_5
R : Type ?u.4327439
Γ₀ : Type ?u.4327442
inst✝¹ : Ring R
inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀
g : AddValuation R Γ₀
toMonoidWithZeroHom✝ : R →*₀ Multiplicative Γ₀ᵒᵈ
map_add_le_max'✝ :
∀ (x y : R),
ZeroHom.toFun (↑toMonoidWithZeroHom✝) (x + y) ≤
max (ZeroHom.toFun (↑toMonoidWithZeroHom✝) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝) y)
⊢ (fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } =
(fun v => v.toFun) g →
{ toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
K : Type u_1
F : Type u_2
R✝ : Type u_3
inst✝² : DivisionRing K
Γ₀✝ : Type u_4
Γ'₀ : Type u_5
R : Type ?u.4327439
Γ₀ : Type ?u.4327442
inst✝¹ : Ring R
inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀
toMonoidWithZeroHom✝¹ : R →*₀ Multiplicative Γ₀ᵒᵈ
map_add_le_max'✝¹ :
∀ (x y : R),
ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) (x + y) ≤
max (ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) y)
toMonoidWithZeroHom✝ : R →*₀ Multiplicative Γ₀ᵒᵈ
map_add_le_max'✝ :
∀ (x y : R),
ZeroHom.toFun (↑toMonoidWithZeroHom✝) (x + y) ≤
max (ZeroHom.toFun (↑toMonoidWithZeroHom✝) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝) y)
⊢ (fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝¹, map_add_le_max' := map_add_le_max'✝¹ } =
(fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } →
{ toMonoidWithZeroHom := toMonoidWithZeroHom✝¹, map_add_le_max' := map_add_le_max'✝¹ } =
{ toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ }
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
inst✝² : Ring R
inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀
inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀
v : AddValuation R Γ₀
x y z : R
⊢ ∀ (x y : R), ↑v x ≤ ↑v (x + y) ∨ ↑v y ≤ ↑v (x + y)
[PROOFSTEP]
intro x y
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
inst✝² : Ring R
inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀
inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀
v : AddValuation R Γ₀
x✝ y✝ z x y : R
⊢ ↑v x ≤ ↑v (x + y) ∨ ↑v y ≤ ↑v (x + y)
[PROOFSTEP]
rw [← @min_le_iff _ _ (v x) (v y) (v (x + y)), ← ge_iff_le]
[GOAL]
K : Type u_1
F : Type u_2
R : Type u_3
inst✝³ : DivisionRing K
Γ₀ : Type u_4
Γ'₀ : Type u_5
inst✝² : Ring R
inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀
inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀
v : AddValuation R Γ₀
x✝ y✝ z x y : R
⊢ ↑v (x + y) ≥ min (↑v x) (↑v y)
[PROOFSTEP]
apply map_add
| {"mathlib_filename": "Mathlib.RingTheory.Valuation.Basic", "llama_tokens": 40810} |
[GOAL]
n ν : ℕ
x : ↑I
⊢ ↑(bernstein n ν) x = ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν)
[PROOFSTEP]
dsimp [bernstein, Polynomial.toContinuousMapOn, Polynomial.toContinuousMap, bernsteinPolynomial]
[GOAL]
n ν : ℕ
x : ↑I
⊢ Polynomial.eval (↑x) (↑(Nat.choose n ν) * Polynomial.X ^ ν * (1 - Polynomial.X) ^ (n - ν)) =
↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν)
[PROOFSTEP]
simp
[GOAL]
n ν : ℕ
x : ↑I
⊢ 0 ≤ ↑(bernstein n ν) x
[PROOFSTEP]
simp only [bernstein_apply]
[GOAL]
n ν : ℕ
x : ↑I
⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν)
[PROOFSTEP]
have h₁ : (0 : ℝ) ≤ x := by unit_interval
[GOAL]
n ν : ℕ
x : ↑I
⊢ 0 ≤ ↑x
[PROOFSTEP]
unit_interval
[GOAL]
n ν : ℕ
x : ↑I
h₁ : 0 ≤ ↑x
⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν)
[PROOFSTEP]
have h₂ : (0 : ℝ) ≤ 1 - x := by unit_interval
[GOAL]
n ν : ℕ
x : ↑I
h₁ : 0 ≤ ↑x
⊢ 0 ≤ 1 - ↑x
[PROOFSTEP]
unit_interval
[GOAL]
n ν : ℕ
x : ↑I
h₁ : 0 ≤ ↑x
h₂ : 0 ≤ 1 - ↑x
⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν)
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
k : Fin (n + 1)
⊢ ↑↑k / ↑n ∈ I
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
k : Fin (Nat.zero + 1)
⊢ ↑↑k / ↑Nat.zero ∈ I
[PROOFSTEP]
norm_num
[GOAL]
case succ
n : ℕ
k : Fin (Nat.succ n + 1)
⊢ ↑↑k / ↑(Nat.succ n) ∈ I
[PROOFSTEP]
have h₁ : 0 < (n.succ : ℝ) := by exact_mod_cast Nat.succ_pos _
[GOAL]
n : ℕ
k : Fin (Nat.succ n + 1)
⊢ 0 < ↑(Nat.succ n)
[PROOFSTEP]
exact_mod_cast Nat.succ_pos _
[GOAL]
case succ
n : ℕ
k : Fin (Nat.succ n + 1)
h₁ : 0 < ↑(Nat.succ n)
⊢ ↑↑k / ↑(Nat.succ n) ∈ I
[PROOFSTEP]
have h₂ : ↑k ≤ n.succ := by exact_mod_cast Fin.le_last k
[GOAL]
n : ℕ
k : Fin (Nat.succ n + 1)
h₁ : 0 < ↑(Nat.succ n)
⊢ ↑k ≤ Nat.succ n
[PROOFSTEP]
exact_mod_cast Fin.le_last k
[GOAL]
case succ
n : ℕ
k : Fin (Nat.succ n + 1)
h₁ : 0 < ↑(Nat.succ n)
h₂ : ↑k ≤ Nat.succ n
⊢ ↑↑k / ↑(Nat.succ n) ∈ I
[PROOFSTEP]
rw [Set.mem_Icc, le_div_iff h₁, div_le_iff h₁]
[GOAL]
case succ
n : ℕ
k : Fin (Nat.succ n + 1)
h₁ : 0 < ↑(Nat.succ n)
h₂ : ↑k ≤ Nat.succ n
⊢ 0 * ↑(Nat.succ n) ≤ ↑↑k ∧ ↑↑k ≤ 1 * ↑(Nat.succ n)
[PROOFSTEP]
norm_cast
[GOAL]
case succ
n : ℕ
k : Fin (Nat.succ n + 1)
h₁ : 0 < ↑(Nat.succ n)
h₂ : ↑k ≤ Nat.succ n
⊢ 0 * Nat.succ n ≤ ↑k ∧ ↑k ≤ 1 * Nat.succ n
[PROOFSTEP]
simp [h₂]
[GOAL]
n : ℕ
x : ↑I
⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1
[PROOFSTEP]
have := bernsteinPolynomial.sum ℝ n
[GOAL]
n : ℕ
x : ↑I
this : ∑ ν in Finset.range (n + 1), bernsteinPolynomial ℝ n ν = 1
⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1
[PROOFSTEP]
apply_fun fun p => Polynomial.aeval (x : ℝ) p at this
[GOAL]
n : ℕ
x : ↑I
this : ↑(Polynomial.aeval ↑x) (∑ ν in Finset.range (n + 1), bernsteinPolynomial ℝ n ν) = ↑(Polynomial.aeval ↑x) 1
⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1
[PROOFSTEP]
simp [AlgHom.map_sum, Finset.sum_range] at this
[GOAL]
n : ℕ
x : ↑I
this : ∑ x_1 : Fin (n + 1), Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = 1
⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1
[PROOFSTEP]
exact this
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n
[PROOFSTEP]
have h' : (n : ℝ) ≠ 0 := ne_of_gt h
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n
[PROOFSTEP]
have h'' := GroupWithZero.mul_right_injective h'
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n
[PROOFSTEP]
apply h''
[GOAL]
case a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ (fun y => y * ↑n) (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) =
(fun y => y * ↑n) (↑x * (1 - ↑x) / ↑n)
[PROOFSTEP]
apply h''
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ (fun y => y * ↑n) ((fun y => y * ↑n) (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x)) =
(fun y => y * ↑n) ((fun y => y * ↑n) (↑x * (1 - ↑x) / ↑n))
[PROOFSTEP]
dsimp
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n = ↑x * (1 - ↑x) / ↑n * ↑n * ↑n
[PROOFSTEP]
conv_lhs => simp only [Finset.sum_mul, z]
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n
[PROOFSTEP]
simp only [Finset.sum_mul, z]
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n
[PROOFSTEP]
simp only [Finset.sum_mul, z]
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n
[PROOFSTEP]
simp only [Finset.sum_mul, z]
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) / ↑n * ↑n * ↑n
[PROOFSTEP]
conv_rhs => rw [div_mul_cancel _ h']
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| ↑x * (1 - ↑x) / ↑n * ↑n * ↑n
[PROOFSTEP]
rw [div_mul_cancel _ h']
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| ↑x * (1 - ↑x) / ↑n * ↑n * ↑n
[PROOFSTEP]
rw [div_mul_cancel _ h']
[GOAL]
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
| ↑x * (1 - ↑x) / ↑n * ↑n * ↑n
[PROOFSTEP]
rw [div_mul_cancel _ h']
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n
[PROOFSTEP]
have := bernsteinPolynomial.variance ℝ n
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ ν in Finset.range (n + 1), (n • Polynomial.X - ↑ν) ^ 2 * bernsteinPolynomial ℝ n ν =
n • Polynomial.X * (1 - Polynomial.X)
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n
[PROOFSTEP]
apply_fun fun p => Polynomial.aeval (x : ℝ) p at this
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
↑(Polynomial.aeval ↑x) (∑ ν in Finset.range (n + 1), (n • Polynomial.X - ↑ν) ^ 2 * bernsteinPolynomial ℝ n ν) =
↑(Polynomial.aeval ↑x) (n • Polynomial.X * (1 - Polynomial.X))
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n
[PROOFSTEP]
simp [AlgHom.map_sum, Finset.sum_range, ← Polynomial.nat_cast_mul] at this
[GOAL]
case a.a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_2
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n =
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_2.e_f
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
⊢ (fun x_1 => (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n) = fun x_1 =>
(↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1)
[PROOFSTEP]
funext k
[GOAL]
case h.e'_2.e_f.h
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
k : Fin (n + 1)
⊢ (↑x - ↑↑k / ↑n) ^ 2 * ↑(bernstein n ↑k) x * ↑n * ↑n =
(↑n * ↑x - ↑↑k) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑k)
[PROOFSTEP]
rw [mul_comm _ (n : ℝ), mul_comm _ (n : ℝ), ← mul_assoc, ← mul_assoc]
[GOAL]
case h.e'_2.e_f.h
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
k : Fin (n + 1)
⊢ ↑n * ↑n * (↑x - ↑↑k / ↑n) ^ 2 * ↑(bernstein n ↑k) x =
(↑n * ↑x - ↑↑k) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑k)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_2.e_f.h.e_a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
k : Fin (n + 1)
⊢ ↑n * ↑n * (↑x - ↑↑k / ↑n) ^ 2 = (↑n * ↑x - ↑↑k) ^ 2
[PROOFSTEP]
field_simp [h]
[GOAL]
case h.e'_2.e_f.h.e_a
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
k : Fin (n + 1)
⊢ ↑n * ↑n * (↑x * ↑n - ↑↑k) ^ 2 = (↑n * ↑x - ↑↑k) ^ 2 * ↑n ^ 2
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
n : ℕ
h : 0 < ↑n
x : ↑I
h' : ↑n ≠ 0
h'' : Function.Injective fun y => y * ↑n
this :
∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x)
⊢ ↑x * (1 - ↑x) * ↑n = ↑n * ↑x * (1 - ↑x)
[PROOFSTEP]
ring
[GOAL]
n : ℕ
f : C(↑I, ℝ)
x : ↑I
⊢ ↑(bernsteinApproximation n f) x = ∑ k : Fin (n + 1), ↑f k/ₙ * ↑(bernstein n ↑k) x
[PROOFSTEP]
simp [bernsteinApproximation]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
n : ℕ
x : ↑I
k : Fin (n + 1)
m : k ∈ S f ε h n x
⊢ |↑f k/ₙ - ↑f x| < ε / 2
[PROOFSTEP]
apply
f.dist_lt_of_dist_lt_modulus (ε / 2)
(half_pos h)
-- Porting note: `simp` fails to apply `Set.mem_toFinset` on its own
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
n : ℕ
x : ↑I
k : Fin (n + 1)
m : k ∈ S f ε h n x
⊢ dist k/ₙ x < ContinuousMap.modulus f (ε / 2) (_ : 0 < ε / 2)
[PROOFSTEP]
simpa [S, (Set.mem_toFinset)] using m
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
n : ℕ
x : ↑I
k : Fin (n + 1)
m : k ∈ (S f ε h n x)ᶜ
⊢ 1 ≤ δ f ε h ^ (-2) * (↑x - ↑k/ₙ) ^ 2
[PROOFSTEP]
simp only [Finset.mem_compl, not_lt, (Set.mem_toFinset), Set.mem_setOf_eq, S] at m
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
n : ℕ
x : ↑I
k : Fin (n + 1)
m : δ f ε h ≤ dist k/ₙ x
⊢ 1 ≤ δ f ε h ^ (-2) * (↑x - ↑k/ₙ) ^ 2
[PROOFSTEP]
rw [zpow_neg, ← div_eq_inv_mul, zpow_two, ← pow_two, one_le_div (pow_pos δ_pos 2), sq_le_sq, abs_of_pos δ_pos]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
n : ℕ
x : ↑I
k : Fin (n + 1)
m : δ f ε h ≤ dist k/ₙ x
⊢ δ f ε h ≤ |↑x - ↑k/ₙ|
[PROOFSTEP]
rwa [dist_comm] at m
[GOAL]
f : C(↑I, ℝ)
⊢ Tendsto (fun n => bernsteinApproximation n f) atTop (𝓝 f)
[PROOFSTEP]
simp only [Metric.nhds_basis_ball.tendsto_right_iff, Metric.mem_ball, dist_eq_norm]
[GOAL]
f : C(↑I, ℝ)
⊢ ∀ (i : ℝ), 0 < i → ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < i
[PROOFSTEP]
intro ε h
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε
[PROOFSTEP]
let δ := δ f ε h
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε
[PROOFSTEP]
have nhds_zero := tendsto_const_div_atTop_nhds_0_nat (2 * ‖f‖ * δ ^ (-2 : ℤ))
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε
[PROOFSTEP]
filter_upwards [nhds_zero.eventually (gt_mem_nhds (half_pos h)), eventually_gt_atTop 0] with n nh npos'
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
⊢ ‖bernsteinApproximation n f - f‖ < ε
[PROOFSTEP]
have npos : 0 < (n : ℝ) := by positivity
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
⊢ 0 < ↑n
[PROOFSTEP]
positivity
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
⊢ ‖bernsteinApproximation n f - f‖ < ε
[PROOFSTEP]
have w₂ : 0 ≤ δ ^ (-2 : ℤ) :=
zpow_neg_two_nonneg
_
-- TODO: need a positivity extension for `zpow`
-- As `[0,1]` is compact, it suffices to check the inequality pointwise.
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
⊢ ‖bernsteinApproximation n f - f‖ < ε
[PROOFSTEP]
rw [ContinuousMap.norm_lt_iff _ h]
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
⊢ ∀ (x : ↑I), ‖↑(bernsteinApproximation n f - f) x‖ < ε
[PROOFSTEP]
intro x
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
⊢ ‖↑(bernsteinApproximation n f - f) x‖ < ε
[PROOFSTEP]
let S := S f ε h n x
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ‖↑(bernsteinApproximation n f - f) x‖ < ε
[PROOFSTEP]
calc
|(bernsteinApproximation n f - f) x| = |bernsteinApproximation n f x - f x| := rfl
_ = |bernsteinApproximation n f x - f x * 1| := by rw [mul_one]
_ = |bernsteinApproximation n f x - f x * ∑ k : Fin (n + 1), bernstein n k x| := by rw [bernstein.probability]
_ = |∑ k : Fin (n + 1), (f k/ₙ - f x) * bernstein n k x| := by simp [bernsteinApproximation, Finset.mul_sum, sub_mul]
_ ≤ ∑ k : Fin (n + 1), |(f k/ₙ - f x) * bernstein n k x| := (Finset.abs_sum_le_sum_abs _ _)
_ = ∑ k : Fin (n + 1), |f k/ₙ - f x| * bernstein n k x := by simp_rw [abs_mul, abs_eq_self.mpr bernstein_nonneg]
_ = (∑ k in S, |f k/ₙ - f x| * bernstein n k x) + ∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x :=
(S.sum_add_sum_compl _).symm
_ < ε / 2 + ε / 2 := (add_lt_add_of_le_of_lt ?_ ?_)
_ = ε := add_halves ε
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ |↑(bernsteinApproximation n f) x - ↑f x| = |↑(bernsteinApproximation n f) x - ↑f x * 1|
[PROOFSTEP]
rw [mul_one]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ |↑(bernsteinApproximation n f) x - ↑f x * 1| =
|↑(bernsteinApproximation n f) x - ↑f x * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x|
[PROOFSTEP]
rw [bernstein.probability]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ |↑(bernsteinApproximation n f) x - ↑f x * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x| =
|∑ k : Fin (n + 1), (↑f k/ₙ - ↑f x) * ↑(bernstein n ↑k) x|
[PROOFSTEP]
simp [bernsteinApproximation, Finset.mul_sum, sub_mul]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k : Fin (n + 1), |(↑f k/ₙ - ↑f x) * ↑(bernstein n ↑k) x| = ∑ k : Fin (n + 1), |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x
[PROOFSTEP]
simp_rw [abs_mul, abs_eq_self.mpr bernstein_nonneg]
[GOAL]
case h.calc_1
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in S, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ε / 2
[PROOFSTEP]
calc
∑ k in S, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in S, ε / 2 * bernstein n k x :=
by
gcongr with _ m
exact le_of_lt (lt_of_mem_S m)
_ = ε / 2 * ∑ k in S, bernstein n k x := by
rw [Finset.mul_sum]
-- In this step we increase the sum over `S` back to a sum over all of `Fin (n+1)`,
-- so that we can use `bernstein.probability`.
_ ≤ ε / 2 * ∑ k : Fin (n + 1), bernstein n k x := by
gcongr
exact Finset.sum_le_univ_sum_of_nonneg fun k => bernstein_nonneg
_ = ε / 2 := by rw [bernstein.probability, mul_one]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in S, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ∑ k in S, ε / 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
gcongr with _ m
[GOAL]
case h.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ S
⊢ |↑f i✝/ₙ - ↑f x| ≤ ε / 2
[PROOFSTEP]
exact le_of_lt (lt_of_mem_S m)
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in S, ε / 2 * ↑(bernstein n ↑k) x = ε / 2 * ∑ k in S, ↑(bernstein n ↑k) x
[PROOFSTEP]
rw [Finset.mul_sum]
-- In this step we increase the sum over `S` back to a sum over all of `Fin (n+1)`,
-- so that we can use `bernstein.probability`.
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ε / 2 * ∑ k in S, ↑(bernstein n ↑k) x ≤ ε / 2 * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x
[PROOFSTEP]
gcongr
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in S, ↑(bernstein n ↑k) x ≤ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x
[PROOFSTEP]
exact Finset.sum_le_univ_sum_of_nonneg fun k => bernstein_nonneg
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ε / 2 * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = ε / 2
[PROOFSTEP]
rw [bernstein.probability, mul_one]
[GOAL]
case h.calc_2
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in Sᶜ, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x < ε / 2
[PROOFSTEP]
calc
∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in Sᶜ, 2 * ‖f‖ * bernstein n k x :=
by
gcongr
apply f.dist_le_two_norm
_ = 2 * ‖f‖ * ∑ k in Sᶜ, bernstein n k x := by rw [Finset.mul_sum]
_ ≤ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x :=
by
gcongr with _ m
conv_lhs => rw [← one_mul (bernstein _ _ _)]
gcongr
exact le_of_mem_S_compl m
_ ≤ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x :=
by
gcongr
refine Finset.sum_le_univ_sum_of_nonneg <| fun k => ?_
positivity
_ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * ∑ k : Fin (n + 1), ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by
conv_rhs =>
rw [mul_assoc, Finset.mul_sum]
simp only [← mul_assoc]
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
_ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * x * (1 - x) / n := by rw [variance npos]; ring
_ ≤ 2 * ‖f‖ * δ ^ (-2 : ℤ) * 1 * 1 / n := by gcongr <;> unit_interval
_ < ε / 2 := by simp only [mul_one]; exact nh
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in Sᶜ, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ∑ k in Sᶜ, 2 * ‖f‖ * ↑(bernstein n ↑k) x
[PROOFSTEP]
gcongr
[GOAL]
case h.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
a✝ : i✝ ∈ Sᶜ
⊢ |↑f i✝/ₙ - ↑f x| ≤ 2 * ‖f‖
[PROOFSTEP]
apply f.dist_le_two_norm
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in Sᶜ, 2 * ‖f‖ * ↑(bernstein n ↑k) x = 2 * ‖f‖ * ∑ k in Sᶜ, ↑(bernstein n ↑k) x
[PROOFSTEP]
rw [Finset.mul_sum]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * ∑ k in Sᶜ, ↑(bernstein n ↑k) x ≤ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
gcongr with _ m
[GOAL]
case h.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
⊢ ↑(bernstein n ↑i✝) x ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2 * ↑(bernstein n ↑i✝) x
[PROOFSTEP]
conv_lhs => rw [← one_mul (bernstein _ _ _)]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
| ↑(bernstein n ↑i✝) x
[PROOFSTEP]
rw [← one_mul (bernstein _ _ _)]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
| ↑(bernstein n ↑i✝) x
[PROOFSTEP]
rw [← one_mul (bernstein _ _ _)]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
| ↑(bernstein n ↑i✝) x
[PROOFSTEP]
rw [← one_mul (bernstein _ _ _)]
[GOAL]
case h.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
⊢ 1 * ↑(bernstein n ↑i✝) x ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2 * ↑(bernstein n ↑i✝) x
[PROOFSTEP]
gcongr
[GOAL]
case h.h.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
i✝ : Fin (n + 1)
m : i✝ ∈ Sᶜ
⊢ 1 ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2
[PROOFSTEP]
exact le_of_mem_S_compl m
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x ≤
2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
gcongr
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x ≤
∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
refine Finset.sum_le_univ_sum_of_nonneg <| fun k => ?_
[GOAL]
case h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
k : Fin (n + 1)
⊢ 0 ≤ δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
positivity
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x =
2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
conv_rhs =>
rw [mul_assoc, Finset.mul_sum]
simp only [← mul_assoc]
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
| 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
rw [mul_assoc, Finset.mul_sum]
simp only [← mul_assoc]
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
| 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
rw [mul_assoc, Finset.mul_sum]
simp only [← mul_assoc]
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
| 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x
[PROOFSTEP]
rw [mul_assoc, Finset.mul_sum]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
| 2 * ‖f‖ * ∑ x_1 : Fin (n + 1), δ ^ (-2) * ((↑x - ↑x_1/ₙ) ^ 2 * ↑(bernstein n ↑x_1) x)
[PROOFSTEP]
simp only [← mul_assoc]
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x =
2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n
[PROOFSTEP]
rw [variance npos]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * δ ^ (-2) * (↑x * (1 - ↑x) / ↑n) = 2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n
[PROOFSTEP]
ring
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n ≤ 2 * ‖f‖ * δ ^ (-2) * 1 * 1 / ↑n
[PROOFSTEP]
gcongr
[GOAL]
case h.c0
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 0 ≤ 1 - ↑x
[PROOFSTEP]
unit_interval
[GOAL]
case h.h₁.h
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ ↑x ≤ 1
[PROOFSTEP]
unit_interval
[GOAL]
case h.h₂
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 1 - ↑x ≤ 1
[PROOFSTEP]
unit_interval
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * δ ^ (-2) * 1 * 1 / ↑n < ε / 2
[PROOFSTEP]
simp only [mul_one]
[GOAL]
f : C(↑I, ℝ)
ε : ℝ
h : 0 < ε
δ : ℝ := bernsteinApproximation.δ f ε h
nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0)
n : ℕ
nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
npos' : 0 < n
npos : 0 < ↑n
w₂ : 0 ≤ δ ^ (-2)
x : ↑I
S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x
⊢ 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2
[PROOFSTEP]
exact nh
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Bernstein", "llama_tokens": 20478} |
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
⊢ centerMass ∅ w z = 0
[PROOFSTEP]
simp only [centerMass, sum_empty, smul_zero]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hne : i ≠ j
⊢ centerMass {i, j} w z = (w i / (w i + w j)) • z i + (w j / (w i + w j)) • z j
[PROOFSTEP]
simp only [centerMass, sum_pair hne, smul_add, (mul_smul _ _ _).symm, div_eq_inv_mul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
ha : ¬i ∈ t
hw : ∑ j in t, w j ≠ 0
⊢ centerMass (insert i t) w z =
(w i / (w i + ∑ j in t, w j)) • z i + ((∑ j in t, w j) / (w i + ∑ j in t, w j)) • centerMass t w z
[PROOFSTEP]
simp only [centerMass, sum_insert ha, smul_add, (mul_smul _ _ _).symm, ← div_eq_inv_mul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
ha : ¬i ∈ t
hw : ∑ j in t, w j ≠ 0
⊢ (w i / (w i + ∑ i in t, w i)) • z i + (w i + ∑ i in t, w i)⁻¹ • ∑ i in t, w i • z i =
(w i / (w i + ∑ i in t, w i)) • z i +
((∑ i in t, w i) / (w i + ∑ i in t, w i) * (∑ i in t, w i)⁻¹) • ∑ i in t, w i • z i
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
ha : ¬i ∈ t
hw : ∑ j in t, w j ≠ 0
⊢ (w i + ∑ i in t, w i)⁻¹ = (∑ i in t, w i) / (w i + ∑ i in t, w i) * (∑ i in t, w i)⁻¹
[PROOFSTEP]
rw [div_mul_eq_mul_div, mul_inv_cancel hw, one_div]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hw : w i ≠ 0
⊢ centerMass {i} w z = z i
[PROOFSTEP]
rw [centerMass, sum_singleton, sum_singleton, ← mul_smul, inv_mul_cancel hw, one_smul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hw : ∑ i in t, w i = 1
⊢ centerMass t w z = ∑ i in t, w i • z i
[PROOFSTEP]
simp only [Finset.centerMass, hw, inv_one, one_smul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
⊢ (centerMass t w fun i => c • z i) = c • centerMass t w z
[PROOFSTEP]
simp only [Finset.centerMass, Finset.smul_sum, (mul_smul _ _ _).symm, mul_comm c, mul_assoc]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s : Finset ι
t : Finset ι'
ws : ι → R
zs : ι → E
wt : ι' → R
zt : ι' → E
hws : ∑ i in s, ws i = 1
hwt : ∑ i in t, wt i = 1
a b : R
hab : a + b = 1
⊢ a • centerMass s ws zs + b • centerMass t wt zt =
centerMass (disjSum s t) (Sum.elim (fun i => a * ws i) fun j => b * wt j) (Sum.elim zs zt)
[PROOFSTEP]
rw [s.centerMass_eq_of_sum_1 _ hws, t.centerMass_eq_of_sum_1 _ hwt, smul_sum, smul_sum, ← Finset.sum_sum_elim,
Finset.centerMass_eq_of_sum_1]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s : Finset ι
t : Finset ι'
ws : ι → R
zs : ι → E
wt : ι' → R
zt : ι' → E
hws : ∑ i in s, ws i = 1
hwt : ∑ i in t, wt i = 1
a b : R
hab : a + b = 1
⊢ ∑ x in disjSum s t, Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) x =
∑ i in disjSum s t, Sum.elim (fun i => a * ws i) (fun j => b * wt j) i • Sum.elim zs zt i
[PROOFSTEP]
congr with ⟨⟩
[GOAL]
case e_f.h.inl
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s : Finset ι
t : Finset ι'
ws : ι → R
zs : ι → E
wt : ι' → R
zt : ι' → E
hws : ∑ i in s, ws i = 1
hwt : ∑ i in t, wt i = 1
a b : R
hab : a + b = 1
val✝ : ι
⊢ Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) (Sum.inl val✝) =
Sum.elim (fun i => a * ws i) (fun j => b * wt j) (Sum.inl val✝) • Sum.elim zs zt (Sum.inl val✝)
[PROOFSTEP]
simp only [Sum.elim_inl, Sum.elim_inr, mul_smul]
[GOAL]
case e_f.h.inr
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s : Finset ι
t : Finset ι'
ws : ι → R
zs : ι → E
wt : ι' → R
zt : ι' → E
hws : ∑ i in s, ws i = 1
hwt : ∑ i in t, wt i = 1
a b : R
hab : a + b = 1
val✝ : ι'
⊢ Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) (Sum.inr val✝) =
Sum.elim (fun i => a * ws i) (fun j => b * wt j) (Sum.inr val✝) • Sum.elim zs zt (Sum.inr val✝)
[PROOFSTEP]
simp only [Sum.elim_inl, Sum.elim_inr, mul_smul]
[GOAL]
case hw
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s : Finset ι
t : Finset ι'
ws : ι → R
zs : ι → E
wt : ι' → R
zt : ι' → E
hws : ∑ i in s, ws i = 1
hwt : ∑ i in t, wt i = 1
a b : R
hab : a + b = 1
⊢ ∑ i in disjSum s t, Sum.elim (fun i => a * ws i) (fun j => b * wt j) i = 1
[PROOFSTEP]
rw [sum_sum_elim, ← mul_sum, ← mul_sum, hws, hwt, mul_one, mul_one, hab]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z✝ : ι → E
s : Finset ι
w₁ w₂ : ι → R
z : ι → E
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
a b : R
hab : a + b = 1
⊢ a • centerMass s w₁ z + b • centerMass s w₂ z = centerMass s (fun i => a * w₁ i + b * w₂ i) z
[PROOFSTEP]
have hw : (∑ i in s, (a * w₁ i + b * w₂ i)) = 1 := by simp only [mul_sum.symm, sum_add_distrib, mul_one, *]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z✝ : ι → E
s : Finset ι
w₁ w₂ : ι → R
z : ι → E
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
a b : R
hab : a + b = 1
⊢ ∑ i in s, (a * w₁ i + b * w₂ i) = 1
[PROOFSTEP]
simp only [mul_sum.symm, sum_add_distrib, mul_one, *]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z✝ : ι → E
s : Finset ι
w₁ w₂ : ι → R
z : ι → E
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
a b : R
hab : a + b = 1
hw : ∑ i in s, (a * w₁ i + b * w₂ i) = 1
⊢ a • centerMass s w₁ z + b • centerMass s w₂ z = centerMass s (fun i => a * w₁ i + b * w₂ i) z
[PROOFSTEP]
simp only [Finset.centerMass_eq_of_sum_1, Finset.centerMass_eq_of_sum_1 _ _ hw, smul_sum, sum_add_distrib, add_smul,
mul_smul, *]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ centerMass t (fun j => if i = j then 1 else 0) z = z i
[PROOFSTEP]
rw [Finset.centerMass_eq_of_sum_1]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = z i
case hw
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1
[PROOFSTEP]
trans ∑ j in t, if i = j then z i else 0
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = ∑ j in t, if i = j then z i else 0
[PROOFSTEP]
congr with i
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i✝ ∈ t
i : ι
⊢ (if i✝ = i then 1 else 0) • z i = if i✝ = i then z i✝ else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i✝ ∈ t
i : ι
h : i✝ = i
⊢ 1 • z i = z i✝
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i✝ ∈ t
i : ι
h : ¬i✝ = i
⊢ 0 • z i = 0
[PROOFSTEP]
exacts [h ▸ one_smul _ _, zero_smul _ _]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ (∑ j in t, if i = j then z i else 0) = z i
[PROOFSTEP]
rw [sum_ite_eq, if_pos hi]
[GOAL]
case hw
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hi : i ∈ t
⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1
[PROOFSTEP]
rw [sum_ite_eq, if_pos hi]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
t' : Finset ι
ht : t ⊆ t'
h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0
⊢ centerMass t w z = centerMass t' w z
[PROOFSTEP]
rw [centerMass, sum_subset ht h, smul_sum, centerMass, smul_sum]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
t' : Finset ι
ht : t ⊆ t'
h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0
⊢ ∑ x in t, (∑ x in t', w x)⁻¹ • w x • z x = ∑ x in t', (∑ i in t', w i)⁻¹ • w x • z x
[PROOFSTEP]
apply sum_subset ht
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
t' : Finset ι
ht : t ⊆ t'
h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0
⊢ ∀ (x : ι), x ∈ t' → ¬x ∈ t → (∑ x in t', w x)⁻¹ • w x • z x = 0
[PROOFSTEP]
intro i hit' hit
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
t' : Finset ι
ht : t ⊆ t'
h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0
i : ι
hit' : i ∈ t'
hit : ¬i ∈ t
⊢ (∑ x in t', w x)⁻¹ • w i • z i = 0
[PROOFSTEP]
rw [h i hit' hit, zero_smul, smul_zero]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
i : ι
hit : i ∈ t
hit' : ¬i ∈ filter (fun i => w i ≠ 0) t
⊢ w i = 0
[PROOFSTEP]
simpa only [hit, mem_filter, true_and_iff, Ne.def, Classical.not_not] using hit'
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : 0 < ∑ i in s, w i
⊢ s ≠ ∅
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ ∅ → 0 ≤ w i
hw₁ : 0 < ∑ i in ∅, w i
⊢ False
[PROOFSTEP]
simp at hw₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : 0 < ∑ i in s, w i
⊢ centerMass s w f ≤ sup' s (_ : Finset.Nonempty s) f
[PROOFSTEP]
rw [centerMass, inv_smul_le_iff hw₁, sum_smul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : 0 < ∑ i in s, w i
⊢ ∑ i in s, w i • f i ≤ ∑ i in s, w i • sup' s (_ : Finset.Nonempty s) f
[PROOFSTEP]
exact sum_le_sum fun i hi => smul_le_smul_of_nonneg (le_sup' _ hi) <| hw₀ i hi
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : 0 < ∑ i in s, w i
⊢ s ≠ ∅
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
f : ι → α
w : ι → R
hw₀ : ∀ (i : ι), i ∈ ∅ → 0 ≤ w i
hw₁ : 0 < ∑ i in ∅, w i
⊢ False
[PROOFSTEP]
simp at hw₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
⊢ (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
[PROOFSTEP]
induction' t using Finset.induction with i t hi ht
[GOAL]
case empty
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
⊢ (∀ (i : ι), i ∈ ∅ → 0 ≤ w i) → 0 < ∑ i in ∅, w i → (∀ (i : ι), i ∈ ∅ → z i ∈ s) → centerMass ∅ w z ∈ s
[PROOFSTEP]
simp [lt_irrefl]
[GOAL]
case insert
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
⊢ (∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1) →
0 < ∑ i in insert i t, w i → (∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s) → centerMass (insert i t) w z ∈ s
[PROOFSTEP]
intro h₀ hpos hmem
[GOAL]
case insert
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < ∑ i in insert i t, w i
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
have zi : z i ∈ s := hmem _ (mem_insert_self _ _)
[GOAL]
case insert
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < ∑ i in insert i t, w i
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
have hs₀ : ∀ j ∈ t, 0 ≤ w j := fun j hj => h₀ j <| mem_insert_of_mem hj
[GOAL]
case insert
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < ∑ i in insert i t, w i
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
rw [sum_insert hi] at hpos
[GOAL]
case insert
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
by_cases hsum_t : ∑ j in t, w j = 0
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
have ws : ∀ j ∈ t, w j = 0 := (sum_eq_zero_iff_of_nonneg hs₀).1 hsum_t
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
have wz : ∑ j in t, w j • z j = 0 := sum_eq_zero fun i hi => by simp [ws i hi]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝¹ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i✝ : ι
t : Finset ι
hi✝ : ¬i✝ ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i : ι), i ∈ insert i✝ t → 0 ≤ w i
hpos : 0 < w i✝ + ∑ x in t, w x
hmem : ∀ (i : ι), i ∈ insert i✝ t → z i ∈ s
zi : z i✝ ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
i : ι
hi : i ∈ t
⊢ w i • z i = 0
[PROOFSTEP]
simp [ws i hi]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
wz : ∑ j in t, w j • z j = 0
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
simp only [centerMass, sum_insert hi, wz, hsum_t, add_zero]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
wz : ∑ j in t, w j • z j = 0
⊢ (w i)⁻¹ • w i • z i ∈ s
[PROOFSTEP]
simp only [hsum_t, add_zero] at hpos
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
wz : ∑ j in t, w j • z j = 0
hpos : 0 < w i
⊢ (w i)⁻¹ • w i • z i ∈ s
[PROOFSTEP]
rw [← mul_smul, inv_mul_cancel (ne_of_gt hpos), one_smul]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : ∑ j in t, w j = 0
ws : ∀ (j : ι), j ∈ t → w j = 0
wz : ∑ j in t, w j • z j = 0
hpos : 0 < w i
⊢ z i ∈ s
[PROOFSTEP]
exact zi
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
⊢ centerMass (insert i t) w z ∈ s
[PROOFSTEP]
rw [Finset.centerMass_insert _ _ _ hi hsum_t]
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
⊢ (w i / (w i + ∑ j in t, w j)) • z i + ((∑ j in t, w j) / (w i + ∑ j in t, w j)) • centerMass t (fun j => w j) z ∈ s
[PROOFSTEP]
refine' convex_iff_div.1 hs zi (ht hs₀ _ _) _ (sum_nonneg hs₀) hpos
[GOAL]
case neg.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
⊢ 0 < ∑ i in t, w i
[PROOFSTEP]
exact lt_of_le_of_ne (sum_nonneg hs₀) (Ne.symm hsum_t)
[GOAL]
case neg.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
⊢ ∀ (i : ι), i ∈ t → z i ∈ s
[PROOFSTEP]
intro j hj
[GOAL]
case neg.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j✝ : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
j : ι
hj : j ∈ t
⊢ z j ∈ s
[PROOFSTEP]
exact hmem j (mem_insert_of_mem hj)
[GOAL]
case neg.refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
i : ι
t : Finset ι
hi : ¬i ∈ t
ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s
h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1
hpos : 0 < w i + ∑ x in t, w x
hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s
zi : z i ∈ s
hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j
hsum_t : · j in t, w j = 0
⊢ 0 ≤ w i
[PROOFSTEP]
exact h₀ _ (mem_insert_self _ _)
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
hs : Convex R s
h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
h₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ ∑ i in t, w i • z i ∈ s
[PROOFSTEP]
simpa only [h₁, centerMass, inv_one, one_smul] using hs.centerMass_mem h₀ (h₁.symm ▸ zero_lt_one) hz
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
⊢ ∑ᶠ (i : ι), w i • z i ∈ s
[PROOFSTEP]
have hfin_w : (support (w ∘ PLift.down)).Finite := by
by_contra H
rw [finsum, dif_neg H] at h₁
exact zero_ne_one h₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
⊢ Set.Finite (support (w ∘ PLift.down))
[PROOFSTEP]
by_contra H
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
H : ¬Set.Finite (support (w ∘ PLift.down))
⊢ False
[PROOFSTEP]
rw [finsum, dif_neg H] at h₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : 0 = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
H : ¬Set.Finite (support (w ∘ PLift.down))
⊢ False
[PROOFSTEP]
exact zero_ne_one h₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
hfin_w : Set.Finite (support (w ∘ PLift.down))
⊢ ∑ᶠ (i : ι), w i • z i ∈ s
[PROOFSTEP]
have hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ hfin_w.toFinset :=
(support_smul_subset_left _ _).trans hfin_w.coe_toFinset.ge
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
hfin_w : Set.Finite (support (w ∘ PLift.down))
hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w)
⊢ ∑ᶠ (i : ι), w i • z i ∈ s
[PROOFSTEP]
rw [finsum_eq_sum_pLift_of_support_subset hsub]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
hfin_w : Set.Finite (support (w ∘ PLift.down))
hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w)
⊢ ∑ i in Finite.toFinset hfin_w, w i.down • z i.down ∈ s
[PROOFSTEP]
refine' hs.sum_mem (fun _ _ => h₀ _) _ fun i hi => hz _ _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
hfin_w : Set.Finite (support (w ∘ PLift.down))
hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w)
⊢ ∑ i in Finite.toFinset hfin_w, w i.down = 1
[PROOFSTEP]
rwa [finsum, dif_pos hfin_w] at h₁
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
ι : Sort u_7
w : ι → R
z : ι → E
s : Set E
hs : Convex R s
h₀ : ∀ (i : ι), 0 ≤ w i
h₁ : ∑ᶠ (i : ι), w i = 1
hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s
hfin_w : Set.Finite (support (w ∘ PLift.down))
hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w)
i : PLift ι
hi : i ∈ Finite.toFinset hfin_w
⊢ w i.down ≠ 0
[PROOFSTEP]
rwa [hfin_w.mem_toFinset] at hi
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
⊢ Convex R s ↔
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
[PROOFSTEP]
refine' ⟨fun hs t w hw₀ hw₁ hts => hs.sum_mem hw₀ hw₁ hts, _⟩
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
⊢ (∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s) →
Convex R s
[PROOFSTEP]
intro h x hx y hy a b ha hb hab
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • x + b • y ∈ s
[PROOFSTEP]
by_cases h_cases : x = y
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : x = y
⊢ a • x + b • y ∈ s
[PROOFSTEP]
rw [h_cases, ← add_smul, hab, one_smul]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : x = y
⊢ y ∈ s
[PROOFSTEP]
exact hy
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ a • x + b • y ∈ s
[PROOFSTEP]
convert
h { x, y } (fun z => if z = y then b else a) _ _
_
-- Porting note: Original proof had 2 `simp_intro i hi`
[GOAL]
case h.e'_4
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ a • x + b • y = ∑ x in {x, y}, (if x = y then b else a) • x
[PROOFSTEP]
simp only [sum_pair h_cases, if_neg h_cases, if_pos trivial]
[GOAL]
case neg.convert_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ ∀ (i : E), i ∈ {x, y} → 0 ≤ (fun z => if z = y then b else a) i
[PROOFSTEP]
intro i _
[GOAL]
case neg.convert_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
a✝ : i ∈ {x, y}
⊢ 0 ≤ (fun z => if z = y then b else a) i
[PROOFSTEP]
simp only
[GOAL]
case neg.convert_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
a✝ : i ∈ {x, y}
⊢ 0 ≤ if i = y then b else a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
a✝ : i ∈ {x, y}
h✝ : i = y
⊢ 0 ≤ b
[PROOFSTEP]
assumption
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
a✝ : i ∈ {x, y}
h✝ : ¬i = y
⊢ 0 ≤ a
[PROOFSTEP]
assumption
[GOAL]
case neg.convert_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ ∑ i in {x, y}, (fun z => if z = y then b else a) i = 1
[PROOFSTEP]
simp only [sum_pair h_cases, if_neg h_cases, if_pos trivial, hab]
[GOAL]
case neg.convert_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ ∀ (x_1 : E), x_1 ∈ {x, y} → x_1 ∈ s
[PROOFSTEP]
intro i hi
[GOAL]
case neg.convert_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
hi : i ∈ {x, y}
⊢ i ∈ s
[PROOFSTEP]
simp only [Finset.mem_singleton, Finset.mem_insert] at hi
[GOAL]
case neg.convert_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
hi : i = x ∨ i = y
⊢ i ∈ s
[PROOFSTEP]
cases hi
[GOAL]
case neg.convert_3.inl
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
h✝ : i = x
⊢ i ∈ s
[PROOFSTEP]
subst i
[GOAL]
case neg.convert_3.inr
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
i : E
h✝ : i = y
⊢ i ∈ s
[PROOFSTEP]
subst i
[GOAL]
case neg.convert_3.inl
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ x ∈ s
[PROOFSTEP]
assumption
[GOAL]
case neg.convert_3.inr
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
h :
∀ (t : Finset E) (w : E → R),
(∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
h_cases : ¬x = y
⊢ y ∈ s
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
ι : Type u_7
t : Finset ι
p : ι → E
w : ι → R
hw₂ : ∑ i in t, w i = 1
⊢ ↑(affineCombination R t p) w = centerMass t w p
[PROOFSTEP]
rw [affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one _ w _ hw₂ (0 : E), Finset.weightedVSubOfPoint_apply,
vadd_eq_add, add_zero, t.centerMass_eq_of_sum_1 _ hw₂]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
ι : Type u_7
t : Finset ι
p : ι → E
w : ι → R
hw₂ : ∑ i in t, w i = 1
⊢ ∑ i in t, w i • (p i -ᵥ 0) = ∑ i in t, w i • p i
[PROOFSTEP]
simp_rw [vsub_eq_sub, sub_zero]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
v : ι → E
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
⊢ ↑(affineCombination R s v) w ∈ ↑(convexHull R) (Set.range v)
[PROOFSTEP]
rw [affineCombination_eq_centerMass hw₁]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
v : ι → E
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
⊢ centerMass s (fun i => w i) v ∈ ↑(convexHull R) (Set.range v)
[PROOFSTEP]
apply s.centerMass_mem_convexHull hw₀
[GOAL]
case hws
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
v : ι → E
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
⊢ 0 < ∑ i in s, w i
[PROOFSTEP]
simp [hw₁]
[GOAL]
case hz
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset ι
v : ι → E
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
⊢ ∀ (i : ι), i ∈ s → v i ∈ Set.range v
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
⊢ centroid R s id ∈ ↑(convexHull R) ↑s
[PROOFSTEP]
rw [s.centroid_eq_centerMass hs]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
⊢ centerMass s (centroidWeights R s) id ∈ ↑(convexHull R) ↑s
[PROOFSTEP]
apply s.centerMass_id_mem_convexHull
[GOAL]
case hw₀
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
⊢ ∀ (i : E), i ∈ s → 0 ≤ centroidWeights R s i
[PROOFSTEP]
simp only [inv_nonneg, imp_true_iff, Nat.cast_nonneg, Finset.centroidWeights_apply]
[GOAL]
case hws
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
⊢ 0 < ∑ i in s, centroidWeights R s i
[PROOFSTEP]
have hs_card : (s.card : R) ≠ 0 := by simp [Finset.nonempty_iff_ne_empty.mp hs]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
⊢ ↑(card s) ≠ 0
[PROOFSTEP]
simp [Finset.nonempty_iff_ne_empty.mp hs]
[GOAL]
case hws
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
hs : Finset.Nonempty s
hs_card : ↑(card s) ≠ 0
⊢ 0 < ∑ i in s, centroidWeights R s i
[PROOFSTEP]
simp only [hs_card, Finset.sum_const, nsmul_eq_mul, mul_inv_cancel, Ne.def, not_false_iff, Finset.centroidWeights_apply,
zero_lt_one]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
⊢ ↑(convexHull R) (Set.range v) = {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
refine' Subset.antisymm (convexHull_min _ _) _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
⊢ Set.range v ⊆ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
x : E
hx : x ∈ Set.range v
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
obtain ⟨i, hi⟩ := Set.mem_range.mp hx
[GOAL]
case refine'_1.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
x : E
hx : x ∈ Set.range v
i : ι
hi : v i = x
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
refine' ⟨{ i }, Function.const ι (1 : R), by simp, by simp, by simp [hi]⟩
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
x : E
hx : x ∈ Set.range v
i : ι
hi : v i = x
⊢ ∀ (i_1 : ι), i_1 ∈ {i} → 0 ≤ const ι 1 i_1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
x : E
hx : x ∈ Set.range v
i : ι
hi : v i = x
⊢ Finset.sum {i} (const ι 1) = 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
x : E
hx : x ∈ Set.range v
i : ι
hi : v i = x
⊢ ↑(affineCombination R {i} v) (const ι 1) = x
[PROOFSTEP]
simp [hi]
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
⊢ Convex R {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
rintro x ⟨s, w, hw₀, hw₁, rfl⟩ y ⟨s', w', hw₀', hw₁', rfl⟩ a b ha hb hab
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈
{x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
let W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈
{x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
have hW₁ : (s ∪ s').sum W = 1 := by
rw [sum_add_distrib, ← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s'),
sum_ite_of_true _ _ fun i hi => hi, sum_ite_of_true _ _ fun i hi => hi, ← mul_sum, ← mul_sum, hw₁, hw₁', ←
add_mul, hab, mul_one] <;>
intro i _ hi' <;>
simp [hi']
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
⊢ Finset.sum (s ∪ s') W = 1
[PROOFSTEP]
rw [sum_add_distrib, ← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s'),
sum_ite_of_true _ _ fun i hi => hi, sum_ite_of_true _ _ fun i hi => hi, ← mul_sum, ← mul_sum, hw₁, hw₁', ← add_mul,
hab, mul_one]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s' → (if x ∈ s' then b * w' x else 0) = 0
[PROOFSTEP]
intro i _ hi'
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s → (if x ∈ s then a * w x else 0) = 0
[PROOFSTEP]
intro i _ hi'
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
i : ι
a✝ : i ∈ s ∪ s'
hi' : ¬i ∈ s'
⊢ (if i ∈ s' then b * w' i else 0) = 0
[PROOFSTEP]
simp [hi']
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
i : ι
a✝ : i ∈ s ∪ s'
hi' : ¬i ∈ s
⊢ (if i ∈ s then a * w i else 0) = 0
[PROOFSTEP]
simp [hi']
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈
{x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x}
[PROOFSTEP]
refine' ⟨s ∪ s', W, _, hW₁, _⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ∀ (i : ι), i ∈ s ∪ s' → 0 ≤ W i
[PROOFSTEP]
rintro i -
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
⊢ 0 ≤ W i
[PROOFSTEP]
by_cases hi : i ∈ s
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : i ∈ s
⊢ 0 ≤ W i
[PROOFSTEP]
by_cases hi' : i ∈ s'
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : ¬i ∈ s
⊢ 0 ≤ W i
[PROOFSTEP]
by_cases hi' : i ∈ s'
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : i ∈ s
hi' : i ∈ s'
⊢ 0 ≤ W i
[PROOFSTEP]
simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)]
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : i ∈ s
hi' : ¬i ∈ s'
⊢ 0 ≤ W i
[PROOFSTEP]
simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : ¬i ∈ s
hi' : i ∈ s'
⊢ 0 ≤ W i
[PROOFSTEP]
simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)]
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
hi : ¬i ∈ s
hi' : ¬i ∈ s'
⊢ 0 ≤ W i
[PROOFSTEP]
simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ↑(affineCombination R (s ∪ s') v) W = a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w'
[PROOFSTEP]
simp_rw [affineCombination_eq_linear_combination (s ∪ s') v _ hW₁, affineCombination_eq_linear_combination s v w hw₁,
affineCombination_eq_linear_combination s' v w' hw₁', add_smul, sum_add_distrib]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ∑ x in s ∪ s', (if x ∈ s then a * w x else 0) • v x + ∑ x in s ∪ s', (if x ∈ s' then b * w' x else 0) • v x =
a • ∑ i in s, w i • v i + b • ∑ i in s', w' i • v i
[PROOFSTEP]
rw [← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s')]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ∑ x in s, (if x ∈ s then a * w x else 0) • v x + ∑ x in s', (if x ∈ s' then b * w' x else 0) • v x =
a • ∑ i in s, w i • v i + b • ∑ i in s', w' i • v i
[PROOFSTEP]
simp only [ite_smul, sum_ite_of_true _ _ fun _ hi => hi, mul_smul, ← smul_sum]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s' → (if x ∈ s' then b * w' x else 0) • v x = 0
[PROOFSTEP]
intro i _ hi'
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
a✝ : i ∈ s ∪ s'
hi' : ¬i ∈ s'
⊢ (if i ∈ s' then b * w' i else 0) • v i = 0
[PROOFSTEP]
simp [hi']
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s → (if x ∈ s then a * w x else 0) • v x = 0
[PROOFSTEP]
intro i _ hi'
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
s' : Finset ι
w' : ι → R
hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i
hw₁' : Finset.sum s' w' = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0
hW₁ : Finset.sum (s ∪ s') W = 1
i : ι
a✝ : i ∈ s ∪ s'
hi' : ¬i ∈ s
⊢ (if i ∈ s then a * w i else 0) • v i = 0
[PROOFSTEP]
simp [hi']
[GOAL]
case refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z v : ι → E
⊢ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} ⊆ ↑(convexHull R) (Set.range v)
[PROOFSTEP]
rintro x ⟨s, w, hw₀, hw₁, rfl⟩
[GOAL]
case refine'_3.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z v : ι → E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
⊢ ↑(affineCombination R s v) w ∈ ↑(convexHull R) (Set.range v)
[PROOFSTEP]
exact affineCombination_mem_convexHull hw₀ hw₁
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ ↑(convexHull R) s = {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
refine' Subset.antisymm (convexHull_min _ _) _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ s ⊆ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
x : E
hx : x ∈ s
⊢ x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
use PUnit, { PUnit.unit }, fun _ => 1, fun _ => x, fun _ _ => zero_le_one, Finset.sum_singleton, fun _ _ => hx
[GOAL]
case h
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
x : E
hx : x ∈ s
⊢ (centerMass {PUnit.unit} (fun x => 1) fun x_1 => x) = x
[PROOFSTEP]
simp only [Finset.centerMass, Finset.sum_singleton, inv_one, one_smul]
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ Convex R {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
rintro x ⟨ι, sx, wx, zx, hwx₀, hwx₁, hzx, rfl⟩ y ⟨ι', sy, wy, zy, hwy₀, hwy₁, hzy, rfl⟩ a b ha hb hab
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • centerMass sx wx zx + b • centerMass sy wy zy ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
rw [Finset.centerMass_segment' _ _ _ _ _ _ hwx₁ hwy₁ _ _ hab]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ centerMass (disjSum sx sy) (Sum.elim (fun i => a * wx i) fun j => b * wy j) (Sum.elim zx zy) ∈
{x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
[PROOFSTEP]
refine' ⟨_, _, _, _, _, _, _, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∀ (i : ι ⊕ ι'), i ∈ disjSum sx sy → 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i
[PROOFSTEP]
rintro i hi
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι ⊕ ι'
hi : i ∈ disjSum sx sy
⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i
[PROOFSTEP]
rw [Finset.mem_disjSum] at hi
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι ⊕ ι'
hi : (∃ a, a ∈ sx ∧ Sum.inl a = i) ∨ ∃ b, b ∈ sy ∧ Sum.inr b = i
⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i
[PROOFSTEP]
rcases hi with (⟨j, hj, rfl⟩ | ⟨j, hj, rfl⟩)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inl.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι
hj : j ∈ sx
⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) (Sum.inl j)
[PROOFSTEP]
simp only [Sum.elim_inl, Sum.elim_inr]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inr.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι'
hj : j ∈ sy
⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) (Sum.inr j)
[PROOFSTEP]
simp only [Sum.elim_inl, Sum.elim_inr]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inl.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι
hj : j ∈ sx
⊢ 0 ≤ a * wx j
[PROOFSTEP]
apply_rules [mul_nonneg, hwx₀, hwy₀]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inr.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι'
hj : j ∈ sy
⊢ 0 ≤ b * wy j
[PROOFSTEP]
apply_rules [mul_nonneg, hwx₀, hwy₀]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∑ i in disjSum sx sy, Sum.elim (fun i => a * wx i) (fun j => b * wy j) i = 1
[PROOFSTEP]
simp [Finset.sum_sum_elim, Finset.mul_sum.symm, *]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∀ (i : ι ⊕ ι'), i ∈ disjSum sx sy → Sum.elim zx zy i ∈ s
[PROOFSTEP]
intro i hi
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι ⊕ ι'
hi : i ∈ disjSum sx sy
⊢ Sum.elim zx zy i ∈ s
[PROOFSTEP]
rw [Finset.mem_disjSum] at hi
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : ι ⊕ ι'
hi : (∃ a, a ∈ sx ∧ Sum.inl a = i) ∨ ∃ b, b ∈ sy ∧ Sum.inr b = i
⊢ Sum.elim zx zy i ∈ s
[PROOFSTEP]
rcases hi with (⟨j, hj, rfl⟩ | ⟨j, hj, rfl⟩)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.inl.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι
hj : j ∈ sx
⊢ Sum.elim zx zy (Sum.inl j) ∈ s
[PROOFSTEP]
apply_rules [hzx, hzy]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.inr.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι'✝ : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j✝ : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
s : Set E
ι : Type
sx : Finset ι
wx : ι → R
zx : ι → E
hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i
hwx₁ : ∑ i in sx, wx i = 1
hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s
ι' : Type
sy : Finset ι'
wy : ι' → R
zy : ι' → E
hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i
hwy₁ : ∑ i in sy, wy i = 1
hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
j : ι'
hj : j ∈ sy
⊢ Sum.elim zx zy (Sum.inr j) ∈ s
[PROOFSTEP]
apply_rules [hzx, hzy]
[GOAL]
case refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} ⊆ ↑(convexHull R) s
[PROOFSTEP]
rintro _ ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩
[GOAL]
case refine'_3.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ centerMass t w z ∈ ↑(convexHull R) s
[PROOFSTEP]
exact t.centerMass_mem_convexHull hw₀ (hw₁.symm ▸ zero_lt_one) hz
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
⊢ ↑(convexHull R) ↑s = {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
refine' Set.Subset.antisymm (convexHull_min _ _) _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
⊢ ↑s ⊆ {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ ↑s
⊢ x ∈ {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
rw [Finset.mem_coe] at hx
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
⊢ x ∈ {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
refine' ⟨_, _, _, Finset.centerMass_ite_eq _ _ _ hx⟩
[GOAL]
case refine'_1.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
⊢ ∀ (y : E), y ∈ s → 0 ≤ if x = y then 1 else 0
[PROOFSTEP]
intros
[GOAL]
case refine'_1.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
y✝ : E
a✝ : y✝ ∈ s
⊢ 0 ≤ if x = y✝ then 1 else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
y✝ : E
a✝ : y✝ ∈ s
h✝ : x = y✝
⊢ 0 ≤ 1
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
y✝ : E
a✝ : y✝ ∈ s
h✝ : ¬x = y✝
⊢ 0 ≤ 0
[PROOFSTEP]
exacts [zero_le_one, le_refl 0]
[GOAL]
case refine'_1.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
hx : x ∈ s
⊢ (∑ y in s, if x = y then 1 else 0) = 1
[PROOFSTEP]
rw [Finset.sum_ite_eq, if_pos hx]
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
⊢ Convex R {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
rintro x ⟨wx, hwx₀, hwx₁, rfl⟩ y ⟨wy, hwy₀, hwy₁, rfl⟩ a b ha hb hab
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
wx : E → R
hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y
hwx₁ : ∑ y in s, wx y = 1
wy : E → R
hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y
hwy₁ : ∑ y in s, wy y = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • centerMass s wx id + b • centerMass s wy id ∈ {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
rw [Finset.centerMass_segment _ _ _ _ hwx₁ hwy₁ _ _ hab]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
wx : E → R
hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y
hwx₁ : ∑ y in s, wx y = 1
wy : E → R
hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y
hwy₁ : ∑ y in s, wy y = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ centerMass s (fun i => a * wx i + b * wy i) id ∈ {x | ∃ w x_1 x_2, centerMass s w id = x}
[PROOFSTEP]
refine' ⟨_, _, _, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
wx : E → R
hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y
hwx₁ : ∑ y in s, wx y = 1
wy : E → R
hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y
hwy₁ : ∑ y in s, wy y = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∀ (y : E), y ∈ s → 0 ≤ a * wx y + b * wy y
[PROOFSTEP]
rintro i hi
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
wx : E → R
hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y
hwx₁ : ∑ y in s, wx y = 1
wy : E → R
hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y
hwy₁ : ∑ y in s, wy y = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
i : E
hi : i ∈ s
⊢ 0 ≤ a * wx i + b * wy i
[PROOFSTEP]
apply_rules [add_nonneg, mul_nonneg, hwx₀, hwy₀]
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
wx : E → R
hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y
hwx₁ : ∑ y in s, wx y = 1
wy : E → R
hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y
hwy₁ : ∑ y in s, wy y = 1
a b : R
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∑ y in s, (a * wx y + b * wy y) = 1
[PROOFSTEP]
simp only [Finset.sum_add_distrib, Finset.mul_sum.symm, mul_one, *]
[GOAL]
case refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
⊢ {x | ∃ w x_1 x_2, centerMass s w id = x} ⊆ ↑(convexHull R) ↑s
[PROOFSTEP]
rintro _ ⟨w, hw₀, hw₁, rfl⟩
[GOAL]
case refine'_3.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
s : Finset E
w : E → R
hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y
hw₁ : ∑ y in s, w y = 1
⊢ centerMass s w id ∈ ↑(convexHull R) ↑s
[PROOFSTEP]
exact s.centerMass_mem_convexHull (fun x hx => hw₀ _ hx) (hw₁.symm ▸ zero_lt_one) fun x hx => hx
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Finset E
x : E
⊢ x ∈ ↑(convexHull R) ↑s ↔ ∃ w x_1 x_2, centerMass s w id = x
[PROOFSTEP]
rw [Finset.convexHull_eq, Set.mem_setOf_eq]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
hs : Set.Finite s
⊢ ↑(convexHull R) s = {x | ∃ w x_1 x_2, centerMass (Finite.toFinset hs) w id = x}
[PROOFSTEP]
simpa only [Set.Finite.coe_toFinset, Set.Finite.mem_toFinset, exists_prop] using hs.toFinset.convexHull_eq
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ ↑(convexHull R) s = ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t
[PROOFSTEP]
refine' Subset.antisymm _ _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ ↑(convexHull R) s ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t
[PROOFSTEP]
rw [_root_.convexHull_eq]
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t
[PROOFSTEP]
rintro x ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ centerMass t w z ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t
[PROOFSTEP]
simp only [mem_iUnion]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ ∃ i i_1, centerMass t w z ∈ ↑(convexHull R) ↑i
[PROOFSTEP]
refine' ⟨t.image z, _, _⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ ↑(Finset.image z t) ⊆ s
[PROOFSTEP]
rw [coe_image, Set.image_subset_iff]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ ↑t ⊆ z ⁻¹' s
[PROOFSTEP]
exact hz
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ centerMass t w z ∈ ↑(convexHull R) ↑(Finset.image z t)
[PROOFSTEP]
apply t.centerMass_mem_convexHull hw₀
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2.hws
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ 0 < ∑ i in t, w i
[PROOFSTEP]
simp only [hw₁, zero_lt_one]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2.hz
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z✝ : ι✝ → E
s : Set E
ι : Type
t : Finset ι
w : ι → R
z : ι → E
hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i
hw₁ : ∑ i in t, w i = 1
hz : ∀ (i : ι), i ∈ t → z i ∈ s
⊢ ∀ (i : ι), i ∈ t → z i ∈ ↑(Finset.image z t)
[PROOFSTEP]
exact fun i hi => Finset.mem_coe.2 (Finset.mem_image_of_mem _ hi)
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
s : Set E
⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t ⊆ ↑(convexHull R) s
[PROOFSTEP]
exact iUnion_subset fun i => iUnion_subset convexHull_mono
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
t : Set F
x : E
y : F
hx : x ∈ ↑(convexHull R) s
hy : y ∈ ↑(convexHull R) t
⊢ (x, y) ∈ ↑(convexHull R) (s ×ˢ t)
[PROOFSTEP]
rw [_root_.convexHull_eq] at hx hy ⊢
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
t : Set F
x : E
y : F
hx : x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x}
hy : y ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
[PROOFSTEP]
obtain ⟨ι, a, w, S, hw, hw', hS, hSp⟩ := hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
hy : y ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
[PROOFSTEP]
obtain ⟨κ, b, v, T, hv, hv', hT, hTp⟩ := hy
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
[PROOFSTEP]
have h_sum : ∑ i : ι × κ in a ×ˢ b, w i.fst * v i.snd = 1 :=
by
rw [Finset.sum_product, ← hw']
congr
ext i
have : ∑ y : κ in b, w i * v y = ∑ y : κ in b, v y * w i :=
by
congr
ext
simp [mul_comm]
rw [this, ← Finset.sum_mul, hv']
simp
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
⊢ ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
[PROOFSTEP]
rw [Finset.sum_product, ← hw']
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
⊢ ∑ x in a, ∑ y in b, w (x, y).fst * v (x, y).snd = ∑ i in a, w i
[PROOFSTEP]
congr
[GOAL]
case e_f
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
⊢ (fun x => ∑ y in b, w (x, y).fst * v (x, y).snd) = fun i => w i
[PROOFSTEP]
ext i
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
⊢ ∑ y in b, w (i, y).fst * v (i, y).snd = w i
[PROOFSTEP]
have : ∑ y : κ in b, w i * v y = ∑ y : κ in b, v y * w i :=
by
congr
ext
simp [mul_comm]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
⊢ ∑ y in b, w i * v y = ∑ y in b, v y * w i
[PROOFSTEP]
congr
[GOAL]
case e_f
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
⊢ (fun y => w i * v y) = fun y => v y * w i
[PROOFSTEP]
ext
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
x✝ : κ
⊢ w i * v x✝ = v x✝ * w i
[PROOFSTEP]
simp [mul_comm]
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
this : ∑ y in b, w i * v y = ∑ y in b, v y * w i
⊢ ∑ y in b, w (i, y).fst * v (i, y).snd = w i
[PROOFSTEP]
rw [this, ← Finset.sum_mul, hv']
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
i : ι
this : ∑ y in b, w i * v y = ∑ y in b, v y * w i
⊢ 1 * w i = w i
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x}
[PROOFSTEP]
refine' ⟨ι × κ, a ×ˢ b, fun p => w p.1 * v p.2, fun p => (S p.1, T p.2), fun p hp => _, h_sum, fun p hp => _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
p : ι × κ
hp : p ∈ a ×ˢ b
⊢ 0 ≤ (fun p => w p.fst * v p.snd) p
[PROOFSTEP]
rw [mem_product] at hp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
p : ι × κ
hp : p.fst ∈ a ∧ p.snd ∈ b
⊢ 0 ≤ (fun p => w p.fst * v p.snd) p
[PROOFSTEP]
exact mul_nonneg (hw p.1 hp.1) (hv p.2 hp.2)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
p : ι × κ
hp : p ∈ a ×ˢ b
⊢ (fun p => (S p.fst, T p.snd)) p ∈ s ×ˢ t
[PROOFSTEP]
rw [mem_product] at hp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
p : ι × κ
hp : p.fst ∈ a ∧ p.snd ∈ b
⊢ (fun p => (S p.fst, T p.snd)) p ∈ s ×ˢ t
[PROOFSTEP]
exact ⟨hS p.1 hp.1, hT p.2 hp.2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)) = (x, y)
[PROOFSTEP]
ext
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)).fst = (x, y).fst
[PROOFSTEP]
rw [← hSp, Finset.centerMass_eq_of_sum_1 _ _ hw', Finset.centerMass_eq_of_sum_1 _ _ h_sum]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (∑ i in a ×ˢ b, (w i.fst * v i.snd) • (S i.fst, T i.snd)).fst = (∑ i in a, w i • S i, y).fst
[PROOFSTEP]
simp_rw [Prod.fst_sum, Prod.smul_mk]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ ∑ x in a ×ˢ b, (w x.fst * v x.snd) • S x.fst = ∑ i in a, w i • S i
[PROOFSTEP]
rw [Finset.sum_product]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ ∑ x in a, ∑ y in b, (w (x, y).fst * v (x, y).snd) • S (x, y).fst = ∑ i in a, w i • S i
[PROOFSTEP]
congr
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (fun x => ∑ y in b, (w (x, y).fst * v (x, y).snd) • S (x, y).fst) = fun i => w i • S i
[PROOFSTEP]
ext i
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
i : ι
⊢ ∑ y in b, (w (i, y).fst * v (i, y).snd) • S (i, y).fst = w i • S i
[PROOFSTEP]
have : (∑ j : κ in b, (w i * v j) • S i) = ∑ j : κ in b, v j • w i • S i :=
by
congr
ext
rw [mul_smul, smul_comm]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
i : ι
⊢ ∑ j in b, (w i * v j) • S i = ∑ j in b, v j • w i • S i
[PROOFSTEP]
congr
[GOAL]
case e_f
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
i : ι
⊢ (fun j => (w i * v j) • S i) = fun j => v j • w i • S i
[PROOFSTEP]
ext
[GOAL]
case e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
i : ι
x✝ : κ
⊢ (w i * v x✝) • S i = v x✝ • w i • S i
[PROOFSTEP]
rw [mul_smul, smul_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i✝ j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
i : ι
this : ∑ j in b, (w i * v j) • S i = ∑ j in b, v j • w i • S i
⊢ ∑ y in b, (w (i, y).fst * v (i, y).snd) • S (i, y).fst = w i • S i
[PROOFSTEP]
rw [this, ← Finset.sum_smul, hv', one_smul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)).snd = (x, y).snd
[PROOFSTEP]
rw [← hTp, Finset.centerMass_eq_of_sum_1 _ _ hv', Finset.centerMass_eq_of_sum_1 _ _ h_sum]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (∑ i in a ×ˢ b, (w i.fst * v i.snd) • (S i.fst, T i.snd)).snd = (x, ∑ i in b, v i • T i).snd
[PROOFSTEP]
simp_rw [Prod.snd_sum, Prod.smul_mk]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ ∑ x in a ×ˢ b, (w x.fst * v x.snd) • T x.snd = ∑ i in b, v i • T i
[PROOFSTEP]
rw [Finset.sum_product, Finset.sum_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ ∑ y in b, ∑ x in a, (w (x, y).fst * v (x, y).snd) • T (x, y).snd = ∑ i in b, v i • T i
[PROOFSTEP]
congr
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
⊢ (fun y => ∑ x in a, (w (x, y).fst * v (x, y).snd) • T (x, y).snd) = fun i => v i • T i
[PROOFSTEP]
ext j
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j✝ : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
j : κ
⊢ ∑ x in a, (w (x, j).fst * v (x, j).snd) • T (x, j).snd = v j • T j
[PROOFSTEP]
simp_rw [mul_smul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f.h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s : Set E
i j✝ : ι✝
c : R
t✝ : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
t : Set F
x : E
y : F
ι : Type
a : Finset ι
w : ι → R
S : ι → E
hw : ∀ (i : ι), i ∈ a → 0 ≤ w i
hw' : ∑ i in a, w i = 1
hS : ∀ (i : ι), i ∈ a → S i ∈ s
hSp : centerMass a w S = x
κ : Type
b : Finset κ
v : κ → R
T : κ → F
hv : ∀ (i : κ), i ∈ b → 0 ≤ v i
hv' : ∑ i in b, v i = 1
hT : ∀ (i : κ), i ∈ b → T i ∈ t
hTp : centerMass b v T = y
h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1
j : κ
⊢ ∑ x in a, w x • v j • T j = v j • T j
[PROOFSTEP]
rw [← Finset.sum_smul, hw', one_smul]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s t : Set E
⊢ ↑(convexHull R) (s + t) = ↑(convexHull R) s + ↑(convexHull R) t
[PROOFSTEP]
simp_rw [← image2_add, ← image_prod, IsLinearMap.isLinearMap_add.convexHull_image, convexHull_prod]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁷ : LinearOrderedField R
inst✝⁶ : AddCommGroup E
inst✝⁵ : AddCommGroup F
inst✝⁴ : LinearOrderedAddCommGroup α
inst✝³ : Module R E
inst✝² : Module R F
inst✝¹ : Module R α
inst✝ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t✝ : Finset ι
w : ι → R
z : ι → E
s t : Set E
⊢ ↑(convexHull R) (s - t) = ↑(convexHull R) s - ↑(convexHull R) t
[PROOFSTEP]
simp_rw [sub_eq_add_neg, convexHull_add, convexHull_neg]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
⊢ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0) = stdSimplex R ι
[PROOFSTEP]
refine' Subset.antisymm (convexHull_min _ (convex_stdSimplex R ι)) _
[GOAL]
case refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
⊢ (Set.range fun i j => if i = j then 1 else 0) ⊆ stdSimplex R ι
[PROOFSTEP]
rintro _ ⟨i, rfl⟩
[GOAL]
case refine'_1.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i✝ j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
i : ι
⊢ (fun i j => if i = j then 1 else 0) i ∈ stdSimplex R ι
[PROOFSTEP]
exact ite_eq_mem_stdSimplex R i
[GOAL]
case refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
⊢ stdSimplex R ι ⊆ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0)
[PROOFSTEP]
rintro w ⟨hw₀, hw₁⟩
[GOAL]
case refine'_2.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
inst✝ : Fintype ι
f w : ι → R
hw₀ : ∀ (x : ι), 0 ≤ w x
hw₁ : ∑ x : ι, w x = 1
⊢ w ∈ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0)
[PROOFSTEP]
rw [pi_eq_sum_univ w, ← Finset.univ.centerMass_eq_of_sum_1 _ hw₁]
[GOAL]
case refine'_2.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι
c : R
t : Finset ι
w✝ : ι → R
z : ι → E
inst✝ : Fintype ι
f w : ι → R
hw₀ : ∀ (x : ι), 0 ≤ w x
hw₁ : ∑ x : ι, w x = 1
⊢ (centerMass Finset.univ (fun i => w i) fun i j => if i = j then 1 else 0) ∈
↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0)
[PROOFSTEP]
exact Finset.univ.centerMass_mem_convexHull (fun i _ => hw₀ i) (hw₁.symm ▸ zero_lt_one) fun i _ => mem_range_self i
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
s : Set E
hs : Set.Finite s
⊢ ↑(convexHull R) s = ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) '' stdSimplex R ↑s
[PROOFSTEP]
rw [← @convexHull_basis_eq_stdSimplex _ _ _ hs.fintype, ← LinearMap.convexHull_image, ← Set.range_comp]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
s : Set E
hs : Set.Finite s
⊢ ↑(convexHull R) s =
↑(convexHull R) (range (↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) ∘ fun i j => if i = j then 1 else 0))
[PROOFSTEP]
simp_rw [Function.comp]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
s : Set E
hs : Set.Finite s
⊢ ↑(convexHull R) s =
↑(convexHull R)
(range fun x => ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x = j then 1 else 0)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
s : Set E
hs : Set.Finite s
⊢ s = range fun x => ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x = j then 1 else 0
[PROOFSTEP]
convert Subtype.range_coe.symm
[GOAL]
case h.e'_3.h.e'_3.h
R : Type u_1
E : Type u_2
F : Type u_3
ι : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι
c : R
t : Finset ι
w : ι → R
z : ι → E
inst✝ : Fintype ι
f : ι → R
s : Set E
hs : Set.Finite s
x✝ : ↑s
⊢ (↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x✝ = j then 1 else 0) = ↑x✝
[PROOFSTEP]
simp [LinearMap.sum_apply, ite_smul _ (1 : R), Finset.filter_eq, @Finset.mem_univ _ hs.fintype _]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
⊢ ↑(convexHull R) (Set.range ↑b) = {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
[PROOFSTEP]
rw [convexHull_range_eq_exists_affineCombination]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
⊢ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} = {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} ↔ x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
[PROOFSTEP]
refine' ⟨_, fun hx => _⟩
[GOAL]
case h.refine'_1
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} → x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
[PROOFSTEP]
rintro ⟨s, w, hw₀, hw₁, rfl⟩ i
[GOAL]
case h.refine'_1.intro.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
i : ι
⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w)
[PROOFSTEP]
by_cases hi : i ∈ s
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
i : ι
hi : i ∈ s
⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w)
[PROOFSTEP]
rw [b.coord_apply_combination_of_mem hi hw₁]
[GOAL]
case pos
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
i : ι
hi : i ∈ s
⊢ 0 ≤ w i
[PROOFSTEP]
exact hw₀ i hi
[GOAL]
case neg
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i
hw₁ : Finset.sum s w = 1
i : ι
hi : ¬i ∈ s
⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w)
[PROOFSTEP]
rw [b.coord_apply_combination_of_not_mem hi hw₁]
[GOAL]
case h.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x}
[PROOFSTEP]
have hx' : x ∈ affineSpan R (range b) := by
rw [b.tot]
exact AffineSubspace.mem_top R E x
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
⊢ x ∈ affineSpan R (Set.range ↑b)
[PROOFSTEP]
rw [b.tot]
[GOAL]
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
⊢ x ∈ ⊤
[PROOFSTEP]
exact AffineSubspace.mem_top R E x
[GOAL]
case h.refine'_2
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s : Set E
i j : ι✝
c : R
t : Finset ι✝
w : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
x : E
hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
hx' : x ∈ affineSpan R (Set.range ↑b)
⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x}
[PROOFSTEP]
obtain ⟨s, w, hw₁, rfl⟩ := (mem_affineSpan_iff_eq_affineCombination R E).mp hx'
[GOAL]
case h.refine'_2.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₁ : ∑ i in s, w i = 1
hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b)
⊢ ↑(affineCombination R s ↑b) w ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x}
[PROOFSTEP]
refine' ⟨s, w, _, hw₁, rfl⟩
[GOAL]
case h.refine'_2.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₁ : ∑ i in s, w i = 1
hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b)
⊢ ∀ (i : ι), i ∈ s → 0 ≤ w i
[PROOFSTEP]
intro i hi
[GOAL]
case h.refine'_2.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₁ : ∑ i in s, w i = 1
hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x}
hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b)
i : ι
hi : i ∈ s
⊢ 0 ≤ w i
[PROOFSTEP]
specialize hx i
[GOAL]
case h.refine'_2.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₁ : ∑ i in s, w i = 1
hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b)
i : ι
hi : i ∈ s
hx : 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w)
⊢ 0 ≤ w i
[PROOFSTEP]
rw [b.coord_apply_combination_of_mem hi hw₁] at hx
[GOAL]
case h.refine'_2.intro.intro.intro
R : Type u_1
E : Type u_2
F : Type u_3
ι✝ : Type u_4
ι' : Type u_5
α : Type u_6
inst✝⁸ : LinearOrderedField R
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : LinearOrderedAddCommGroup α
inst✝⁴ : Module R E
inst✝³ : Module R F
inst✝² : Module R α
inst✝¹ : OrderedSMul R α
s✝ : Set E
i✝ j : ι✝
c : R
t : Finset ι✝
w✝ : ι✝ → R
z : ι✝ → E
inst✝ : Fintype ι✝
f : ι✝ → R
ι : Type u_7
b : AffineBasis ι R E
s : Finset ι
w : ι → R
hw₁ : ∑ i in s, w i = 1
hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b)
i : ι
hi : i ∈ s
hx : 0 ≤ w i
⊢ 0 ≤ w i
[PROOFSTEP]
exact hx
| {"mathlib_filename": "Mathlib.Analysis.Convex.Combination", "llama_tokens": 93746} |
[GOAL]
x : ℝ
h : cos x ≠ 0
⊢ HasStrictDerivAt tan (↑1 / cos x ^ 2) x
[PROOFSTEP]
exact_mod_cast (Complex.hasStrictDerivAt_tan (by exact_mod_cast h)).real_of_complex
[GOAL]
x : ℝ
h : cos x ≠ 0
⊢ Complex.cos ↑x ≠ 0
[PROOFSTEP]
exact_mod_cast h
[GOAL]
x : ℝ
h : cos x ≠ 0
⊢ HasDerivAt tan (↑1 / cos x ^ 2) x
[PROOFSTEP]
exact_mod_cast (Complex.hasDerivAt_tan (by exact_mod_cast h)).real_of_complex
[GOAL]
x : ℝ
h : cos x ≠ 0
⊢ Complex.cos ↑x ≠ 0
[PROOFSTEP]
exact_mod_cast h
[GOAL]
x : ℝ
hx : cos x = 0
⊢ Tendsto (fun x => |tan x|) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
have hx : Complex.cos x = 0 := by exact_mod_cast hx
[GOAL]
x : ℝ
hx : cos x = 0
⊢ Complex.cos ↑x = 0
[PROOFSTEP]
exact_mod_cast hx
[GOAL]
x : ℝ
hx✝ : cos x = 0
hx : Complex.cos ↑x = 0
⊢ Tendsto (fun x => |tan x|) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
simp only [← Complex.abs_ofReal, Complex.ofReal_tan]
[GOAL]
x : ℝ
hx✝ : cos x = 0
hx : Complex.cos ↑x = 0
⊢ Tendsto (fun x => ↑Complex.abs (Complex.tan ↑x)) (𝓝[{x}ᶜ] x) atTop
[PROOFSTEP]
refine' (Complex.tendsto_abs_tan_of_cos_eq_zero hx).comp _
[GOAL]
x : ℝ
hx✝ : cos x = 0
hx : Complex.cos ↑x = 0
⊢ Tendsto (fun x => ↑x) (𝓝[{x}ᶜ] x) (𝓝[{↑x}ᶜ] ↑x)
[PROOFSTEP]
refine' Tendsto.inf Complex.continuous_ofReal.continuousAt _
[GOAL]
x : ℝ
hx✝ : cos x = 0
hx : Complex.cos ↑x = 0
⊢ Tendsto (fun x => ↑x) (𝓟 {x}ᶜ) (𝓟 {↑x}ᶜ)
[PROOFSTEP]
exact tendsto_principal_principal.2 fun y => mt Complex.ofReal_inj.1
[GOAL]
x : ℝ
⊢ ContinuousAt tan x ↔ cos x ≠ 0
[PROOFSTEP]
refine' ⟨fun hc h₀ => _, fun h => (hasDerivAt_tan h).continuousAt⟩
[GOAL]
x : ℝ
hc : ContinuousAt tan x
h₀ : cos x = 0
⊢ False
[PROOFSTEP]
exact not_tendsto_nhds_of_tendsto_atTop (tendsto_abs_tan_of_cos_eq_zero h₀) _ (hc.norm.tendsto.mono_left inf_le_left)
[GOAL]
x : ℝ
h : cos x = 0
⊢ deriv tan x = ↑1 / cos x ^ 2
[PROOFSTEP]
have : ¬DifferentiableAt ℝ tan x := mt differentiableAt_tan.1 (Classical.not_not.2 h)
[GOAL]
x : ℝ
h : cos x = 0
this : ¬DifferentiableAt ℝ tan x
⊢ deriv tan x = ↑1 / cos x ^ 2
[PROOFSTEP]
simp [deriv_zero_of_not_differentiableAt this, h, sq]
[GOAL]
n : ℕ∞
x : ℝ
h : cos x ≠ 0
⊢ Complex.cos ↑x ≠ 0
[PROOFSTEP]
exact_mod_cast h
[GOAL]
x : ℝ
⊢ HasStrictDerivAt arctan (↑1 / (↑1 + x ^ 2)) x
[PROOFSTEP]
have A : cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne'
[GOAL]
x : ℝ
A : cos (arctan x) ≠ 0
⊢ HasStrictDerivAt arctan (↑1 / (↑1 + x ^ 2)) x
[PROOFSTEP]
simpa [cos_sq_arctan] using tanLocalHomeomorph.hasStrictDerivAt_symm trivial (by simpa) (hasStrictDerivAt_tan A)
[GOAL]
x : ℝ
A : cos (arctan x) ≠ 0
⊢ ↑1 / cos (↑(LocalHomeomorph.symm tanLocalHomeomorph) x) ^ 2 ≠ 0
[PROOFSTEP]
simpa
[GOAL]
n : ℕ∞
x : ℝ
this : cos (arctan x) ≠ 0
⊢ ↑1 / cos (↑(LocalHomeomorph.symm tanLocalHomeomorph) x) ^ 2 ≠ 0
[PROOFSTEP]
simpa
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv", "llama_tokens": 1433} |
[GOAL]
⊢ ∀ ⦃x : ℂ⦄, x ∈ {z | z.im ∈ Ioo (-π) π} → exp x ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
[PROOFSTEP]
rintro ⟨x, y⟩ ⟨h₁ : -π < y, h₂ : y < π⟩
[GOAL]
case mk.intro
x y : ℝ
h₁ : -π < y
h₂ : y < π
⊢ exp { re := x, im := y } ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
[PROOFSTEP]
refine' (not_or_of_imp fun hz => _).symm
[GOAL]
case mk.intro
x y : ℝ
h₁ : -π < y
h₂ : y < π
hz : (exp { re := x, im := y }).im = 0
⊢ exp { re := x, im := y } ∈ {z | 0 < z.re}
[PROOFSTEP]
obtain rfl : y = 0 := by
rw [exp_im] at hz
simpa [(Real.exp_pos _).ne', Real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz
[GOAL]
x y : ℝ
h₁ : -π < y
h₂ : y < π
hz : (exp { re := x, im := y }).im = 0
⊢ y = 0
[PROOFSTEP]
rw [exp_im] at hz
[GOAL]
x y : ℝ
h₁ : -π < y
h₂ : y < π
hz : Real.exp { re := x, im := y }.re * Real.sin { re := x, im := y }.im = 0
⊢ y = 0
[PROOFSTEP]
simpa [(Real.exp_pos _).ne', Real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz
[GOAL]
case mk.intro
x : ℝ
h₁ : -π < 0
h₂ : 0 < π
hz : (exp { re := x, im := 0 }).im = 0
⊢ exp { re := x, im := 0 } ∈ {z | 0 < z.re}
[PROOFSTEP]
rw [mem_setOf_eq, ← ofReal_def, exp_ofReal_re]
[GOAL]
case mk.intro
x : ℝ
h₁ : -π < 0
h₂ : 0 < π
hz : (exp { re := x, im := 0 }).im = 0
⊢ 0 < Real.exp x
[PROOFSTEP]
exact Real.exp_pos x
[GOAL]
z : ℂ
h : z ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
⊢ log z ∈ {z | z.im ∈ Ioo (-π) π}
[PROOFSTEP]
simp only [mem_setOf, log_im, mem_Ioo, neg_pi_lt_arg, arg_lt_pi_iff, true_and]
[GOAL]
z : ℂ
h : z ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
⊢ 0 ≤ z.re ∨ z.im ≠ 0
[PROOFSTEP]
exact h.imp_left le_of_lt
[GOAL]
x : ℂ
hx : x ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
⊢ x ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
hx : 0 ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0}
⊢ False
[PROOFSTEP]
simp [lt_irrefl] at hx
[GOAL]
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ x ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
h : 0 < 0.re ∨ 0.im ≠ 0
⊢ False
[PROOFSTEP]
simp [lt_irrefl] at h
[GOAL]
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h0 : x ≠ 0
⊢ HasStrictDerivAt (↑expLocalHomeomorph) x (↑(LocalHomeomorph.symm expLocalHomeomorph) x)
[PROOFSTEP]
simpa [exp_log h0] using hasStrictDerivAt_exp (log x)
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
h₁ : HasStrictDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasStrictDerivAt (fun t => log (f t)) (f' / f x) x
[PROOFSTEP]
rw [div_eq_inv_mul]
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
h₁ : HasStrictDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasStrictDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x
[PROOFSTEP]
exact (hasStrictDerivAt_log h₂).comp x h₁
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → ℂ
x : ℝ
f' : ℂ
h₁ : HasStrictDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasStrictDerivAt (fun t => log (f t)) (f' / f x) x
[PROOFSTEP]
simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).comp_hasStrictDerivAt x h₁
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
h₁ : HasDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivAt (fun t => log (f t)) (f' / f x) x
[PROOFSTEP]
rw [div_eq_inv_mul]
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
h₁ : HasDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x
[PROOFSTEP]
exact (hasStrictDerivAt_log h₂).hasDerivAt.comp x h₁
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → ℂ
x : ℝ
f' : ℂ
h₁ : HasDerivAt f f' x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivAt (fun t => log (f t)) (f' / f x) x
[PROOFSTEP]
simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).hasFDerivAt.comp_hasDerivAt x h₁
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
s : Set ℂ
h₁ : HasDerivWithinAt f f' s x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivWithinAt (fun t => log (f t)) (f' / f x) s x
[PROOFSTEP]
rw [div_eq_inv_mul]
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → ℂ
f' x : ℂ
s : Set ℂ
h₁ : HasDerivWithinAt f f' s x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivWithinAt (fun t => log (f t)) ((f x)⁻¹ * f') s x
[PROOFSTEP]
exact (hasStrictDerivAt_log h₂).hasDerivAt.comp_hasDerivWithinAt x h₁
[GOAL]
α : Type u_1
inst✝² : TopologicalSpace α
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → ℂ
s : Set ℝ
x : ℝ
f' : ℂ
h₁ : HasDerivWithinAt f f' s x
h₂ : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivWithinAt (fun t => log (f t)) (f' / f x) s x
[PROOFSTEP]
simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).hasFDerivAt.comp_hasDerivWithinAt x h₁
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv", "llama_tokens": 2727} |
[GOAL]
x : ℂ
⊢ (log x).re = Real.log (↑abs x)
[PROOFSTEP]
simp [log]
[GOAL]
x : ℂ
⊢ (log x).im = arg x
[PROOFSTEP]
simp [log]
[GOAL]
x : ℂ
⊢ -π < (log x).im
[PROOFSTEP]
simp only [log_im, neg_pi_lt_arg]
[GOAL]
x : ℂ
⊢ (log x).im ≤ π
[PROOFSTEP]
simp only [log_im, arg_le_pi]
[GOAL]
x : ℂ
hx : x ≠ 0
⊢ exp (log x) = x
[PROOFSTEP]
rw [log, exp_add_mul_I, ← ofReal_sin, sin_arg, ← ofReal_cos, cos_arg hx, ← ofReal_exp, Real.exp_log (abs.pos hx),
mul_add, ofReal_div, ofReal_div, mul_div_cancel' _ (ofReal_ne_zero.2 <| abs.ne_zero hx), ← mul_assoc,
mul_div_cancel' _ (ofReal_ne_zero.2 <| abs.ne_zero hx), re_add_im]
[GOAL]
x : ℂ
⊢ x ∈ Set.range exp → x ∈ {0}ᶜ
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case intro
x : ℂ
⊢ exp x ∈ {0}ᶜ
[PROOFSTEP]
exact exp_ne_zero x
[GOAL]
x : ℂ
hx₁ : -π < x.im
hx₂ : x.im ≤ π
⊢ log (exp x) = x
[PROOFSTEP]
rw [log, abs_exp, Real.log_exp, exp_eq_exp_re_mul_sin_add_cos, ← ofReal_exp,
arg_mul_cos_add_sin_mul_I (Real.exp_pos _) ⟨hx₁, hx₂⟩, re_add_im]
[GOAL]
x y : ℂ
hx₁ : -π < x.im
hx₂ : x.im ≤ π
hy₁ : -π < y.im
hy₂ : y.im ≤ π
hxy : exp x = exp y
⊢ x = y
[PROOFSTEP]
rw [← log_exp hx₁ hx₂, ← log_exp hy₁ hy₂, hxy]
[GOAL]
x : ℝ
hx : 0 ≤ x
⊢ (↑(Real.log x)).re = (log ↑x).re
[PROOFSTEP]
rw [log_re, ofReal_re, abs_of_nonneg hx]
[GOAL]
x : ℝ
hx : 0 ≤ x
⊢ (↑(Real.log x)).im = (log ↑x).im
[PROOFSTEP]
rw [ofReal_im, log_im, arg_ofReal_of_nonneg hx]
[GOAL]
x : ℝ
⊢ (log ↑x).re = Real.log x
[PROOFSTEP]
simp [log_re]
[GOAL]
r : ℝ
hr : 0 < r
x : ℂ
hx : x ≠ 0
⊢ log (↑r * x) = ↑(Real.log r) + log x
[PROOFSTEP]
replace hx := Complex.abs.ne_zero_iff.mpr hx
[GOAL]
r : ℝ
hr : 0 < r
x : ℂ
hx : ↑abs x ≠ 0
⊢ log (↑r * x) = ↑(Real.log r) + log x
[PROOFSTEP]
simp_rw [log, map_mul, abs_ofReal, arg_real_mul _ hr, abs_of_pos hr, Real.log_mul hr.ne' hx, ofReal_add, add_assoc]
[GOAL]
r : ℝ
hr : 0 < r
x : ℂ
hx : x ≠ 0
⊢ log (x * ↑r) = ↑(Real.log r) + log x
[PROOFSTEP]
rw [mul_comm, log_ofReal_mul hr hx, add_comm]
[GOAL]
⊢ log 0 = 0
[PROOFSTEP]
simp [log]
[GOAL]
⊢ log 1 = 0
[PROOFSTEP]
simp [log]
[GOAL]
⊢ log (-1) = ↑π * I
[PROOFSTEP]
simp [log]
[GOAL]
⊢ log I = ↑π / 2 * I
[PROOFSTEP]
simp [log]
[GOAL]
⊢ log (-I) = -(↑π / 2) * I
[PROOFSTEP]
simp [log]
[GOAL]
x : ℂ
⊢ log (↑(starRingEnd ℂ) x) = if arg x = π then log x else ↑(starRingEnd ℂ) (log x)
[PROOFSTEP]
simp_rw [log, abs_conj, arg_conj, map_add, map_mul, conj_ofReal]
[GOAL]
x : ℂ
⊢ ↑(Real.log (↑abs x)) + ↑(if arg x = π then π else -arg x) * I =
if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + ↑(arg x) * ↑(starRingEnd ℂ) I
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
x : ℂ
hx : arg x = π
⊢ ↑(Real.log (↑abs x)) + ↑π * I = ↑(Real.log (↑abs x)) + ↑(arg x) * I
[PROOFSTEP]
rw [hx]
[GOAL]
case neg
x : ℂ
hx : ¬arg x = π
⊢ ↑(Real.log (↑abs x)) + ↑(-arg x) * I = ↑(Real.log (↑abs x)) + ↑(arg x) * ↑(starRingEnd ℂ) I
[PROOFSTEP]
simp_rw [ofReal_neg, conj_I, mul_neg, neg_mul]
[GOAL]
x : ℂ
h : arg x ≠ π
⊢ log (↑(starRingEnd ℂ) x) = ↑(starRingEnd ℂ) (log x)
[PROOFSTEP]
rw [log_conj_eq_ite, if_neg h]
[GOAL]
x : ℂ
⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
x : ℂ
hx : x = 0
⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x
[PROOFSTEP]
rw [inv_def, log_mul_ofReal, Real.log_inv, ofReal_neg, ← sub_eq_neg_add, log_conj_eq_ite]
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ (if arg x = π then log x else ↑(starRingEnd ℂ) (log x)) - ↑(Real.log (↑normSq x)) =
if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x
[PROOFSTEP]
simp_rw [log, map_add, map_mul, conj_ofReal, conj_I, normSq_eq_abs, Real.log_pow, Nat.cast_two, ofReal_mul, neg_add,
mul_neg, neg_neg]
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) -
↑2 * ↑(Real.log (↑abs x)) =
if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I)
[PROOFSTEP]
norm_num
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) -
2 * ↑(Real.log (↑abs x)) =
if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I)
[PROOFSTEP]
rw [two_mul]
-- Porting note: added to simplify `↑2`
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) -
(↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) =
if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℂ
hx : ¬x = 0
h✝ : arg x = π
⊢ ↑(Real.log (↑abs x)) + ↑(arg x) * I - (↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) =
-↑(Real.log (↑abs x)) + ↑(arg x) * I
[PROOFSTEP]
rw [add_sub_right_comm, sub_add_cancel']
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
h✝ : ¬arg x = π
⊢ ↑(Real.log (↑abs x)) + -(↑(arg x) * I) - (↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) =
-↑(Real.log (↑abs x)) + -(↑(arg x) * I)
[PROOFSTEP]
rw [add_sub_right_comm, sub_add_cancel']
[GOAL]
case neg.hr
x : ℂ
hx : ¬x = 0
⊢ 0 < (↑normSq x)⁻¹
[PROOFSTEP]
rwa [inv_pos, Complex.normSq_pos]
[GOAL]
case neg.hx
x : ℂ
hx : ¬x = 0
⊢ ↑(starRingEnd ℂ) x ≠ 0
[PROOFSTEP]
rwa [map_ne_zero]
[GOAL]
x : ℂ
hx : arg x ≠ π
⊢ log x⁻¹ = -log x
[PROOFSTEP]
rw [log_inv_eq_ite, if_neg hx]
[GOAL]
⊢ 2 * ↑π * I ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
⊢ ¬(π = 0 ∨ I = 0)
[PROOFSTEP]
simp [Real.pi_ne_zero, I_ne_zero]
[GOAL]
x : ℂ
⊢ exp x = 1 ↔ ∃ n, x = ↑n * (2 * ↑π * I)
[PROOFSTEP]
constructor
[GOAL]
case mp
x : ℂ
⊢ exp x = 1 → ∃ n, x = ↑n * (2 * ↑π * I)
[PROOFSTEP]
intro h
[GOAL]
case mp
x : ℂ
h : exp x = 1
⊢ ∃ n, x = ↑n * (2 * ↑π * I)
[PROOFSTEP]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos x.im (-π) with ⟨n, hn, -⟩
[GOAL]
case mp.intro.intro
x : ℂ
h : exp x = 1
n : ℤ
hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
⊢ ∃ n, x = ↑n * (2 * ↑π * I)
[PROOFSTEP]
use-n
[GOAL]
case h
x : ℂ
h : exp x = 1
n : ℤ
hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
⊢ x = ↑(-n) * (2 * ↑π * I)
[PROOFSTEP]
rw [Int.cast_neg, neg_mul, eq_neg_iff_add_eq_zero]
[GOAL]
case h
x : ℂ
h : exp x = 1
n : ℤ
hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
⊢ x + ↑n * (2 * ↑π * I) = 0
[PROOFSTEP]
have : (x + n * (2 * π * I)).im ∈ Set.Ioc (-π) π := by simpa [two_mul, mul_add] using hn
[GOAL]
x : ℂ
h : exp x = 1
n : ℤ
hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
⊢ (x + ↑n * (2 * ↑π * I)).im ∈ Set.Ioc (-π) π
[PROOFSTEP]
simpa [two_mul, mul_add] using hn
[GOAL]
case h
x : ℂ
h : exp x = 1
n : ℤ
hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
this : (x + ↑n * (2 * ↑π * I)).im ∈ Set.Ioc (-π) π
⊢ x + ↑n * (2 * ↑π * I) = 0
[PROOFSTEP]
rw [← log_exp this.1 this.2, exp_periodic.int_mul n, h, log_one]
[GOAL]
case mpr
x : ℂ
⊢ (∃ n, x = ↑n * (2 * ↑π * I)) → exp x = 1
[PROOFSTEP]
rintro ⟨n, rfl⟩
[GOAL]
case mpr.intro
n : ℤ
⊢ exp (↑n * (2 * ↑π * I)) = 1
[PROOFSTEP]
exact (exp_periodic.int_mul n).eq.trans exp_zero
[GOAL]
x y : ℂ
⊢ exp x = exp y ↔ exp (x - y) = 1
[PROOFSTEP]
rw [exp_sub, div_eq_one_iff_eq (exp_ne_zero _)]
[GOAL]
x y : ℂ
⊢ exp x = exp y ↔ ∃ n, x = y + ↑n * (2 * ↑π * I)
[PROOFSTEP]
simp only [exp_eq_exp_iff_exp_sub_eq_one, exp_eq_one_iff, sub_eq_iff_eq_add']
[GOAL]
s : Set ℂ
⊢ Set.Countable (exp ⁻¹' s) ↔ Set.Countable s
[PROOFSTEP]
refine' ⟨fun hs => _, fun hs => _⟩
[GOAL]
case refine'_1
s : Set ℂ
hs : Set.Countable (exp ⁻¹' s)
⊢ Set.Countable s
[PROOFSTEP]
refine' ((hs.image exp).insert 0).mono _
[GOAL]
case refine'_1
s : Set ℂ
hs : Set.Countable (exp ⁻¹' s)
⊢ s ⊆ insert 0 (exp '' (exp ⁻¹' s))
[PROOFSTEP]
rw [Set.image_preimage_eq_inter_range, range_exp, ← Set.diff_eq, ← Set.union_singleton, Set.diff_union_self]
[GOAL]
case refine'_1
s : Set ℂ
hs : Set.Countable (exp ⁻¹' s)
⊢ s ⊆ s ∪ {0}
[PROOFSTEP]
exact Set.subset_union_left _ _
[GOAL]
case refine'_2
s : Set ℂ
hs : Set.Countable s
⊢ Set.Countable (exp ⁻¹' s)
[PROOFSTEP]
rw [← Set.biUnion_preimage_singleton]
[GOAL]
case refine'_2
s : Set ℂ
hs : Set.Countable s
⊢ Set.Countable (⋃ (y : ℂ) (_ : y ∈ s), exp ⁻¹' {y})
[PROOFSTEP]
refine' hs.biUnion fun z hz => _
[GOAL]
case refine'_2
s : Set ℂ
hs : Set.Countable s
z : ℂ
hz : z ∈ s
⊢ Set.Countable (exp ⁻¹' {z})
[PROOFSTEP]
rcases em (∃ w, exp w = z) with (⟨w, rfl⟩ | hne)
[GOAL]
case refine'_2.inl.intro
s : Set ℂ
hs : Set.Countable s
w : ℂ
hz : exp w ∈ s
⊢ Set.Countable (exp ⁻¹' {exp w})
[PROOFSTEP]
simp only [Set.preimage, Set.mem_singleton_iff, exp_eq_exp_iff_exists_int, Set.setOf_exists]
[GOAL]
case refine'_2.inl.intro
s : Set ℂ
hs : Set.Countable s
w : ℂ
hz : exp w ∈ s
⊢ Set.Countable (⋃ (i : ℤ), {x | x = w + ↑i * (2 * ↑π * I)})
[PROOFSTEP]
exact Set.countable_iUnion fun m => Set.countable_singleton _
[GOAL]
case refine'_2.inr
s : Set ℂ
hs : Set.Countable s
z : ℂ
hz : z ∈ s
hne : ¬∃ w, exp w = z
⊢ Set.Countable (exp ⁻¹' {z})
[PROOFSTEP]
push_neg at hne
[GOAL]
case refine'_2.inr
s : Set ℂ
hs : Set.Countable s
z : ℂ
hz : z ∈ s
hne : ∀ (w : ℂ), exp w ≠ z
⊢ Set.Countable (exp ⁻¹' {z})
[PROOFSTEP]
simp [Set.preimage, hne]
[GOAL]
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto log (𝓝[{z | z.im < 0}] z) (𝓝 (↑(Real.log (↑abs z)) - ↑π * I))
[PROOFSTEP]
convert
(continuous_ofReal.continuousAt.comp_continuousWithinAt (continuous_abs.continuousWithinAt.log _)).tendsto.add
(((continuous_ofReal.tendsto _).comp <| tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero hre him).mul
tendsto_const_nhds) using
1
[GOAL]
case h.e'_5
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ 𝓝 (↑(Real.log (↑abs z)) - ↑π * I) = 𝓝 ((ofReal' ∘ fun x => Real.log (↑abs x)) z + ↑(-π) * I)
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
case convert_1
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ↑abs z ≠ 0
[PROOFSTEP]
lift z to ℝ using him
[GOAL]
case convert_1.intro
z : ℝ
hre : (↑z).re < 0
⊢ ↑abs ↑z ≠ 0
[PROOFSTEP]
simpa using hre.ne
[GOAL]
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ContinuousWithinAt log {z | 0 ≤ z.im} z
[PROOFSTEP]
convert
(continuous_ofReal.continuousAt.comp_continuousWithinAt (continuous_abs.continuousWithinAt.log _)).tendsto.add
((continuous_ofReal.continuousAt.comp_continuousWithinAt <| continuousWithinAt_arg_of_re_neg_of_im_zero hre him).mul
tendsto_const_nhds) using
1
[GOAL]
case convert_1
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ↑abs z ≠ 0
[PROOFSTEP]
lift z to ℝ using him
[GOAL]
case convert_1.intro
z : ℝ
hre : (↑z).re < 0
⊢ ↑abs ↑z ≠ 0
[PROOFSTEP]
simpa using hre.ne
[GOAL]
z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto log (𝓝[{z | 0 ≤ z.im}] z) (𝓝 (↑(Real.log (↑abs z)) + ↑π * I))
[PROOFSTEP]
simpa only [log, arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_log_of_re_neg_of_im_zero hre him).tendsto
[GOAL]
⊢ map exp (comap re atBot) = 𝓝[{0}ᶜ] 0
[PROOFSTEP]
rw [← comap_exp_nhds_zero, map_comap, range_exp, nhdsWithin]
[GOAL]
⊢ map exp (comap re atTop) = comap (↑abs) atTop
[PROOFSTEP]
rw [← comap_exp_comap_abs_atTop, map_comap, range_exp, inf_eq_left, le_principal_iff]
[GOAL]
⊢ {0}ᶜ ∈ comap (↑abs) atTop
[PROOFSTEP]
exact eventually_ne_of_tendsto_norm_atTop tendsto_comap 0
[GOAL]
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt log x
[PROOFSTEP]
refine' ContinuousAt.add _ _
[GOAL]
case refine'_1
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt (fun x => ↑(Real.log (↑Complex.abs x))) x
[PROOFSTEP]
refine' continuous_ofReal.continuousAt.comp _
[GOAL]
case refine'_1
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt (fun x => Real.log (↑Complex.abs x)) x
[PROOFSTEP]
refine' (Real.continuousAt_log _).comp Complex.continuous_abs.continuousAt
[GOAL]
case refine'_1
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ↑Complex.abs x ≠ 0
[PROOFSTEP]
rw [Complex.abs.ne_zero_iff]
[GOAL]
case refine'_1
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ x ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_1
α : Type u_1
h : 0 < 0.re ∨ 0.im ≠ 0
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case refine'_2
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt (fun x => ↑(arg x) * I) x
[PROOFSTEP]
have h_cont_mul : Continuous fun x : ℂ => x * I := continuous_id'.mul continuous_const
[GOAL]
case refine'_2
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h_cont_mul : Continuous fun x => x * I
⊢ ContinuousAt (fun x => ↑(arg x) * I) x
[PROOFSTEP]
refine' h_cont_mul.continuousAt.comp (continuous_ofReal.continuousAt.comp _)
[GOAL]
case refine'_2
α : Type u_1
x : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h_cont_mul : Continuous fun x => x * I
⊢ ContinuousAt (fun x => arg x) x
[PROOFSTEP]
exact continuousAt_arg h
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Log", "llama_tokens": 6741} |
[GOAL]
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y)
[PROOFSTEP]
simpa only [← Complex.ofReal_inj, Complex.ofReal_sub, Complex.ofReal_add, Complex.ofReal_div, Complex.ofReal_mul,
Complex.ofReal_tan] using @Complex.tan_add (x : ℂ) (y : ℂ) (by convert h <;> norm_cast)
[GOAL]
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
⊢ ((∀ (k : ℤ), ↑x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑y ≠ (2 * ↑l + 1) * ↑π / 2) ∨
(∃ k, ↑x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑y = (2 * ↑l + 1) * ↑π / 2
[PROOFSTEP]
convert h
[GOAL]
case h.e'_1.h.e'_1.h.h.a
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
a✝ : ℤ
⊢ ↑x = (2 * ↑a✝ + 1) * ↑π / 2 ↔ x = (2 * ↑a✝ + 1) * π / 2
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_1.h.e'_2.h.h.a
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
a✝ : ℤ
⊢ ↑y = (2 * ↑a✝ + 1) * ↑π / 2 ↔ y = (2 * ↑a✝ + 1) * π / 2
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_2.h.e'_1.h.e'_2.h.a
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
x✝ : ℤ
⊢ ↑x = (2 * ↑x✝ + 1) * ↑π / 2 ↔ x = (2 * ↑x✝ + 1) * π / 2
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_2.h.e'_2.h.e'_2.h.a
x y : ℝ
h :
((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨
(∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2
x✝ : ℤ
⊢ ↑y = (2 * ↑x✝ + 1) * ↑π / 2 ↔ y = (2 * ↑x✝ + 1) * π / 2
[PROOFSTEP]
norm_cast
[GOAL]
x : ℝ
⊢ tan (2 * x) = ↑2 * tan x / (↑1 - tan x ^ 2)
[PROOFSTEP]
have := @Complex.tan_two_mul x
[GOAL]
x : ℝ
this : Complex.tan (2 * ↑x) = 2 * Complex.tan ↑x / (1 - Complex.tan ↑x ^ 2)
⊢ tan (2 * x) = ↑2 * tan x / (↑1 - tan x ^ 2)
[PROOFSTEP]
norm_cast at *
[GOAL]
θ : ℝ
⊢ tan θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * π / 2
[PROOFSTEP]
rw [← Complex.ofReal_ne_zero, Complex.ofReal_tan, Complex.tan_ne_zero_iff]
[GOAL]
θ : ℝ
⊢ (∀ (k : ℤ), ↑θ ≠ ↑k * ↑π / 2) ↔ ∀ (k : ℤ), θ ≠ ↑k * π / 2
[PROOFSTEP]
norm_cast
[GOAL]
θ : ℝ
⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * π / 2
[PROOFSTEP]
rw [← not_iff_not, not_exists, ← Ne, tan_ne_zero_iff]
[GOAL]
n : ℤ
⊢ ∃ k, ↑n * π / 2 = ↑k * π / 2
[PROOFSTEP]
use n
[GOAL]
⊢ ContinuousOn tan {x | cos x ≠ 0}
[PROOFSTEP]
suffices ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
by
have h_eq : (fun x => sin x / cos x) = tan := by ext1 x; rw [tan_eq_sin_div_cos]
rwa [h_eq] at this
[GOAL]
this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
⊢ ContinuousOn tan {x | cos x ≠ 0}
[PROOFSTEP]
have h_eq : (fun x => sin x / cos x) = tan := by ext1 x; rw [tan_eq_sin_div_cos]
[GOAL]
this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
⊢ (fun x => sin x / cos x) = tan
[PROOFSTEP]
ext1 x
[GOAL]
case h
this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
x : ℝ
⊢ sin x / cos x = tan x
[PROOFSTEP]
rw [tan_eq_sin_div_cos]
[GOAL]
this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
h_eq : (fun x => sin x / cos x) = tan
⊢ ContinuousOn tan {x | cos x ≠ 0}
[PROOFSTEP]
rwa [h_eq] at this
[GOAL]
⊢ ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0}
[PROOFSTEP]
exact continuousOn_sin.div continuousOn_cos fun x => id
[GOAL]
⊢ ContinuousOn tan (Ioo (-(π / 2)) (π / 2))
[PROOFSTEP]
refine' ContinuousOn.mono continuousOn_tan fun x => _
[GOAL]
x : ℝ
⊢ x ∈ Ioo (-(π / 2)) (π / 2) → x ∈ {x | cos x ≠ 0}
[PROOFSTEP]
simp only [and_imp, mem_Ioo, mem_setOf_eq, Ne.def]
[GOAL]
x : ℝ
⊢ -(π / 2) < x → x < π / 2 → ¬cos x = 0
[PROOFSTEP]
rw [cos_eq_zero_iff]
[GOAL]
x : ℝ
⊢ -(π / 2) < x → x < π / 2 → ¬∃ k, x = (2 * ↑k + 1) * π / 2
[PROOFSTEP]
rintro hx_gt hx_lt ⟨r, hxr_eq⟩
[GOAL]
case intro
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
⊢ False
[PROOFSTEP]
cases' le_or_lt 0 r with h h
[GOAL]
case intro.inl
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : 0 ≤ r
⊢ False
[PROOFSTEP]
rw [lt_iff_not_ge] at hx_lt
[GOAL]
case intro.inl
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : ¬x ≥ π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : 0 ≤ r
⊢ False
[PROOFSTEP]
refine' hx_lt _
[GOAL]
case intro.inl
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : ¬x ≥ π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : 0 ≤ r
⊢ x ≥ π / 2
[PROOFSTEP]
rw [hxr_eq, ← one_mul (π / 2), mul_div_assoc, ge_iff_le, mul_le_mul_right (half_pos pi_pos)]
[GOAL]
case intro.inl
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : ¬x ≥ π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : 0 ≤ r
⊢ 1 ≤ 2 * ↑r + 1
[PROOFSTEP]
simp [h]
[GOAL]
case intro.inr
x : ℝ
hx_gt : -(π / 2) < x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
⊢ False
[PROOFSTEP]
rw [lt_iff_not_ge] at hx_gt
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
⊢ False
[PROOFSTEP]
refine' hx_gt _
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
⊢ -(π / 2) ≥ x
[PROOFSTEP]
rw [hxr_eq, ← one_mul (π / 2), mul_div_assoc, ge_iff_le, neg_mul_eq_neg_mul, mul_le_mul_right (half_pos pi_pos)]
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
⊢ 2 * ↑r + 1 ≤ -1
[PROOFSTEP]
have hr_le : r ≤ -1 := by rwa [Int.lt_iff_add_one_le, ← le_neg_iff_add_nonpos_right] at h
[GOAL]
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
⊢ r ≤ -1
[PROOFSTEP]
rwa [Int.lt_iff_add_one_le, ← le_neg_iff_add_nonpos_right] at h
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
hr_le : r ≤ -1
⊢ 2 * ↑r + 1 ≤ -1
[PROOFSTEP]
rw [← le_sub_iff_add_le, mul_comm, ← le_div_iff]
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
hr_le : r ≤ -1
⊢ ↑r ≤ (-1 - 1) / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
hr_le : r ≤ -1
⊢ ↑r ≤ -1
[PROOFSTEP]
rw [← Int.cast_one, ← Int.cast_neg]
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
hr_le : r ≤ -1
⊢ ↑r ≤ ↑(-1)
[PROOFSTEP]
norm_cast
[GOAL]
case intro.inr
x : ℝ
hx_gt : ¬-(π / 2) ≥ x
hx_lt : x < π / 2
r : ℤ
hxr_eq : x = (2 * ↑r + 1) * π / 2
h : r < 0
hr_le : r ≤ -1
⊢ 0 < 2
[PROOFSTEP]
exact zero_lt_two
[GOAL]
this : -(π / 2) < π / 2
⊢ Tendsto (fun x => tan ↑x) atBot atBot
[PROOFSTEP]
rw [tendsto_comp_coe_Ioo_atBot this]
[GOAL]
this : -(π / 2) < π / 2
⊢ Tendsto tan (𝓝[Ioi (-(π / 2))] (-(π / 2))) atBot
[PROOFSTEP]
exact tendsto_tan_neg_pi_div_two
[GOAL]
this : -(π / 2) < π / 2
⊢ Tendsto (fun x => tan ↑x) atTop atTop
[PROOFSTEP]
rw [tendsto_comp_coe_Ioo_atTop this]
[GOAL]
this : -(π / 2) < π / 2
⊢ Tendsto tan (𝓝[Iio (π / 2)] (π / 2)) atTop
[PROOFSTEP]
exact tendsto_tan_pi_div_two
[GOAL]
x : ℝ
⊢ cos (arctan x) ^ 2 = ↑1 / (↑1 + x ^ 2)
[PROOFSTEP]
rw_mod_cast [one_div, ← inv_one_add_tan_sq (cos_arctan_pos x).ne', tan_arctan]
[GOAL]
x : ℝ
⊢ sin (arctan x) = x / sqrt (↑1 + x ^ 2)
[PROOFSTEP]
rw_mod_cast [← tan_div_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan]
[GOAL]
x : ℝ
⊢ cos (arctan x) = ↑1 / sqrt (↑1 + x ^ 2)
[PROOFSTEP]
rw_mod_cast [one_div, ← inv_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan]
[GOAL]
x : ℝ
h : x ∈ Ioo (-1) 1
⊢ arcsin x = arctan (x / sqrt (↑1 - x ^ 2))
[PROOFSTEP]
rw_mod_cast [arctan_eq_arcsin, div_pow, sq_sqrt, one_add_div, div_div, ← sqrt_mul, mul_div_cancel', sub_add_cancel,
sqrt_one, div_one]
[GOAL]
case hb
x : ℝ
h : x ∈ Ioo (↑(Int.negSucc 0)) 1
⊢ 1 - x ^ 2 ≠ 0
[PROOFSTEP]
simp at h
[GOAL]
case hx
x : ℝ
h : x ∈ Ioo (↑(Int.negSucc 0)) 1
⊢ 0 ≤ 1 - x ^ 2
[PROOFSTEP]
simp at h
[GOAL]
x : ℝ
h : x ∈ Ioo (↑(Int.negSucc 0)) 1
⊢ 1 - x ^ 2 ≠ 0
[PROOFSTEP]
simp at h
[GOAL]
x : ℝ
h : x ∈ Ioo (↑(Int.negSucc 0)) 1
⊢ 0 ≤ 1 - x ^ 2
[PROOFSTEP]
simp at h
[GOAL]
case hb
x : ℝ
h : -1 < x ∧ x < 1
⊢ 1 - x ^ 2 ≠ 0
[PROOFSTEP]
nlinarith [h.1, h.2]
[GOAL]
case hx
x : ℝ
h : -1 < x ∧ x < 1
⊢ 0 ≤ 1 - x ^ 2
[PROOFSTEP]
nlinarith [h.1, h.2]
[GOAL]
x : ℝ
h : -1 < x ∧ x < 1
⊢ 1 - x ^ 2 ≠ 0
[PROOFSTEP]
nlinarith [h.1, h.2]
[GOAL]
x : ℝ
h : -1 < x ∧ x < 1
⊢ 0 ≤ 1 - x ^ 2
[PROOFSTEP]
nlinarith [h.1, h.2]
[GOAL]
⊢ arctan 0 = 0
[PROOFSTEP]
simp [arctan_eq_arcsin]
[GOAL]
x y : ℝ
h : tan x = y
hx : x ∈ Ioo (-(π / 2)) (π / 2)
⊢ tan (arctan y) = tan x
[PROOFSTEP]
rw [tan_arctan, h]
[GOAL]
⊢ π / 4 ∈ Ioo (-(π / 2)) (π / 2)
[PROOFSTEP]
constructor
[GOAL]
case left
⊢ -(π / 2) < π / 4
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case right
⊢ π / 4 < π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
x : ℝ
⊢ arctan (-x) = -arctan x
[PROOFSTEP]
simp [arctan_eq_arcsin, neg_div]
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ arctan x = arccos (sqrt (↑1 + x ^ 2))⁻¹
[PROOFSTEP]
rw [arctan_eq_arcsin, arccos_eq_arcsin]
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ arcsin (x / sqrt (↑1 + x ^ 2)) = arcsin (sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2))
x : ℝ h : 0 ≤ x ⊢ 0 ≤ (sqrt (↑1 + x ^ 2))⁻¹
[PROOFSTEP]
swap
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ 0 ≤ (sqrt (↑1 + x ^ 2))⁻¹
[PROOFSTEP]
exact inv_nonneg.2 (sqrt_nonneg _)
[GOAL]
x : ℝ
h : 0 ≤ x
⊢ arcsin (x / sqrt (↑1 + x ^ 2)) = arcsin (sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
x : ℝ
h : 0 ≤ x
⊢ x / sqrt (↑1 + x ^ 2) = sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2)
[PROOFSTEP]
rw_mod_cast [← sqrt_inv, sq_sqrt, ← one_div, one_sub_div, add_sub_cancel', sqrt_div, sqrt_sq h]
[GOAL]
case e_a.hx
x : ℝ
h : 0 ≤ x
⊢ 0 ≤ x ^ 2
case e_a
x : ℝ
h : 0 ≤ x
⊢ 1 + x ^ 2 ≠ 0
case e_a x : ℝ h : 0 ≤ x ⊢ 0 ≤ (1 + x ^ 2)⁻¹
[PROOFSTEP]
all_goals positivity
[GOAL]
case e_a.hx
x : ℝ
h : 0 ≤ x
⊢ 0 ≤ x ^ 2
[PROOFSTEP]
positivity
[GOAL]
case e_a
x : ℝ
h : 0 ≤ x
⊢ 1 + x ^ 2 ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case e_a
x : ℝ
h : 0 ≤ x
⊢ 0 ≤ (1 + x ^ 2)⁻¹
[PROOFSTEP]
positivity
[GOAL]
x : ℝ
h : 0 < x
⊢ arccos x = arctan (sqrt (↑1 - x ^ 2) / x)
[PROOFSTEP]
rw [arccos, eq_comm]
[GOAL]
x : ℝ
h : 0 < x
⊢ arctan (sqrt (↑1 - x ^ 2) / x) = π / 2 - arcsin x
[PROOFSTEP]
refine' arctan_eq_of_tan_eq _ ⟨_, _⟩
[GOAL]
case refine'_1
x : ℝ
h : 0 < x
⊢ tan (π / 2 - arcsin x) = sqrt (↑1 - x ^ 2) / x
[PROOFSTEP]
rw_mod_cast [tan_pi_div_two_sub, tan_arcsin, inv_div]
[GOAL]
case refine'_2
x : ℝ
h : 0 < x
⊢ -(π / 2) < π / 2 - arcsin x
[PROOFSTEP]
linarith only [arcsin_le_pi_div_two x, pi_pos]
[GOAL]
case refine'_3
x : ℝ
h : 0 < x
⊢ π / 2 - arcsin x < π / 2
[PROOFSTEP]
linarith only [arcsin_pos.2 h]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Arctan", "llama_tokens": 6686} |
[GOAL]
⊢ ∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π
[PROOFSTEP]
rintro ⟨x, y⟩ hxy
[GOAL]
case mk
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y) ∈ Ioi 0 ×ˢ Ioo (-π) π
[PROOFSTEP]
simp only [prod_mk_mem_set_prod_eq, mem_Ioi, sqrt_pos, mem_Ioo, Complex.neg_pi_lt_arg, true_and_iff,
Complex.arg_lt_pi_iff]
[GOAL]
case mk
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ 0 < x ^ 2 + y ^ 2 ∧ (0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0)
[PROOFSTEP]
constructor
[GOAL]
case mk.left
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ 0 < x ^ 2 + y ^ 2
[PROOFSTEP]
cases' hxy with hxy hxy
[GOAL]
case mk.left.inl
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst}
⊢ 0 < x ^ 2 + y ^ 2
[PROOFSTEP]
dsimp at hxy
[GOAL]
case mk.left.inl
x y : ℝ
hxy : 0 < x
⊢ 0 < x ^ 2 + y ^ 2
[PROOFSTEP]
linarith [sq_pos_of_ne_zero _ hxy.ne', sq_nonneg y]
[GOAL]
case mk.left.inr
x y : ℝ
hxy : (x, y) ∈ {q | q.snd ≠ 0}
⊢ 0 < x ^ 2 + y ^ 2
[PROOFSTEP]
linarith [sq_nonneg x, sq_pos_of_ne_zero _ hxy]
[GOAL]
case mk.right
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0
[PROOFSTEP]
cases' hxy with hxy hxy
[GOAL]
case mk.right.inl
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst}
⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0
[PROOFSTEP]
exact Or.inl (le_of_lt hxy)
[GOAL]
case mk.right.inr
x y : ℝ
hxy : (x, y) ∈ {q | q.snd ≠ 0}
⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0
[PROOFSTEP]
exact Or.inr hxy
[GOAL]
⊢ ∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
[PROOFSTEP]
rintro ⟨r, θ⟩ ⟨hr, hθ⟩
[GOAL]
case mk.intro
r θ : ℝ
hr : (r, θ).fst ∈ Ioi 0
hθ : (r, θ).snd ∈ Ioo (-π) π
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
[PROOFSTEP]
dsimp at hr hθ
[GOAL]
case mk.intro
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
[PROOFSTEP]
rcases eq_or_ne θ 0 with (rfl | h'θ)
[GOAL]
case mk.intro.inl
r : ℝ
hr : r ∈ Ioi 0
hθ : 0 ∈ Ioo (-π) π
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, 0) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
[PROOFSTEP]
simpa using hr
[GOAL]
case mk.intro.inr
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
h'θ : θ ≠ 0
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
[PROOFSTEP]
right
[GOAL]
case mk.intro.inr.h
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
h'θ : θ ≠ 0
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | q.snd ≠ 0}
[PROOFSTEP]
simp at hr
[GOAL]
case mk.intro.inr.h
r θ : ℝ
hθ : θ ∈ Ioo (-π) π
h'θ : θ ≠ 0
hr : 0 < r
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | q.snd ≠ 0}
[PROOFSTEP]
simpa only [ne_of_gt hr, Ne.def, mem_setOf_eq, mul_eq_zero, false_or_iff, sin_eq_zero_iff_of_lt_of_lt hθ.1 hθ.2] using
h'θ
[GOAL]
⊢ ∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x
[PROOFSTEP]
rintro ⟨x, y⟩ _
[GOAL]
case mk
x y : ℝ
a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) =
(x, y)
[PROOFSTEP]
have A : sqrt (x ^ 2 + y ^ 2) = Complex.abs (x + y * Complex.I) := by
simp [Complex.abs_def, Complex.normSq, pow_two, MonoidWithZeroHom.coe_mk, Complex.add_re, Complex.ofReal_re,
Complex.mul_re, Complex.I_re, mul_zero, Complex.ofReal_im, Complex.I_im, sub_self, add_zero, Complex.add_im,
Complex.mul_im, mul_one, zero_add]
[GOAL]
x y : ℝ
a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I)
[PROOFSTEP]
simp [Complex.abs_def, Complex.normSq, pow_two, MonoidWithZeroHom.coe_mk, Complex.add_re, Complex.ofReal_re,
Complex.mul_re, Complex.I_re, mul_zero, Complex.ofReal_im, Complex.I_im, sub_self, add_zero, Complex.add_im,
Complex.mul_im, mul_one, zero_add]
[GOAL]
case mk
x y : ℝ
a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I)
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) =
(x, y)
[PROOFSTEP]
have Z := Complex.abs_mul_cos_add_sin_mul_I (x + y * Complex.I)
[GOAL]
case mk
x y : ℝ
a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I)
Z :
↑(↑Complex.abs (↑x + ↑y * Complex.I)) *
(Complex.cos ↑(Complex.arg (↑x + ↑y * Complex.I)) +
Complex.sin ↑(Complex.arg (↑x + ↑y * Complex.I)) * Complex.I) =
↑x + ↑y * Complex.I
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) =
(x, y)
[PROOFSTEP]
simp only [← Complex.ofReal_cos, ← Complex.ofReal_sin, mul_add, ← Complex.ofReal_mul, ← mul_assoc] at Z
[GOAL]
case mk
x y : ℝ
a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I)
Z :
↑(↑Complex.abs (↑x + ↑y * Complex.I) * cos (Complex.arg (↑x + ↑y * Complex.I))) +
↑(↑Complex.abs (↑x + ↑y * Complex.I) * sin (Complex.arg (↑x + ↑y * Complex.I))) * Complex.I =
↑x + ↑y * Complex.I
⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) =
(x, y)
[PROOFSTEP]
simpa [A, -Complex.ofReal_cos, -Complex.ofReal_sin] using Complex.ext_iff.1 Z
[GOAL]
⊢ ∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x
[PROOFSTEP]
rintro ⟨r, θ⟩ ⟨hr, hθ⟩
[GOAL]
case mk.intro
r θ : ℝ
hr : (r, θ).fst ∈ Ioi 0
hθ : (r, θ).snd ∈ Ioo (-π) π
⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ)) =
(r, θ)
[PROOFSTEP]
dsimp at hr hθ
[GOAL]
case mk.intro
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ)) =
(r, θ)
[PROOFSTEP]
simp only [Prod.mk.inj_iff]
[GOAL]
case mk.intro
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = r ∧ Complex.arg (↑Complex.equivRealProd.symm (r * cos θ, r * sin θ)) = θ
[PROOFSTEP]
constructor
[GOAL]
case mk.intro.left
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = r
[PROOFSTEP]
conv_rhs => rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ]
[GOAL]
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
| r
[PROOFSTEP]
rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ]
[GOAL]
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
| r
[PROOFSTEP]
rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ]
[GOAL]
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
| r
[PROOFSTEP]
rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ]
[GOAL]
case mk.intro.left
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = sqrt ((sin θ ^ 2 + cos θ ^ 2) * r ^ 2)
[PROOFSTEP]
congr 1
[GOAL]
case mk.intro.left.e_x
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ (r * cos θ) ^ 2 + (r * sin θ) ^ 2 = (sin θ ^ 2 + cos θ ^ 2) * r ^ 2
[PROOFSTEP]
ring
[GOAL]
case mk.intro.right
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ Complex.arg (↑Complex.equivRealProd.symm (r * cos θ, r * sin θ)) = θ
[PROOFSTEP]
convert Complex.arg_mul_cos_add_sin_mul_I hr ⟨hθ.1, hθ.2.le⟩
[GOAL]
case h.e'_2.h.e'_1
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ ↑Complex.equivRealProd.symm (r * cos θ, r * sin θ) = ↑r * (Complex.cos ↑θ + Complex.sin ↑θ * Complex.I)
[PROOFSTEP]
simp only [Complex.equivRealProd_symm_apply, Complex.ofReal_mul, Complex.ofReal_cos, Complex.ofReal_sin]
[GOAL]
case h.e'_2.h.e'_1
r θ : ℝ
hr : r ∈ Ioi 0
hθ : θ ∈ Ioo (-π) π
⊢ ↑r * Complex.cos ↑θ + ↑r * Complex.sin ↑θ * Complex.I = ↑r * (Complex.cos ↑θ + Complex.sin ↑θ * Complex.I)
[PROOFSTEP]
ring
[GOAL]
⊢ ContinuousOn
↑{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)),
invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0},
target := Ioi 0 ×ˢ Ioo (-π) π,
map_source' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈
Ioi 0 ×ˢ Ioo (-π) π),
map_target' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}),
left_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x),
right_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x) }
{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)),
invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0},
target := Ioi 0 ×ˢ Ioo (-π) π,
map_source' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈
Ioi 0 ×ˢ Ioo (-π) π),
map_target' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}),
left_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x),
right_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x) }.source
[PROOFSTEP]
apply ((continuous_fst.pow 2).add (continuous_snd.pow 2)).sqrt.continuousOn.prod
[GOAL]
⊢ ContinuousOn (fun x => Complex.arg (↑Complex.equivRealProd.symm x))
{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)),
invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0},
target := Ioi 0 ×ˢ Ioo (-π) π,
map_source' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈
Ioi 0 ×ˢ Ioo (-π) π),
map_target' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}),
left_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x),
right_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x) }.source
[PROOFSTEP]
have A : MapsTo Complex.equivRealProd.symm ({q : ℝ × ℝ | 0 < q.1} ∪ {q : ℝ × ℝ | q.2 ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} :=
by rintro ⟨x, y⟩ hxy; simpa only using hxy
[GOAL]
⊢ MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0}
[PROOFSTEP]
rintro ⟨x, y⟩ hxy
[GOAL]
case mk
x y : ℝ
hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}
⊢ ↑Complex.equivRealProd.symm (x, y) ∈ {z | 0 < z.re ∨ z.im ≠ 0}
[PROOFSTEP]
simpa only using hxy
[GOAL]
A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0}
⊢ ContinuousOn (fun x => Complex.arg (↑Complex.equivRealProd.symm x))
{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)),
invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0},
target := Ioi 0 ×ˢ Ioo (-π) π,
map_source' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈
Ioi 0 ×ˢ Ioo (-π) π),
map_target' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}),
left_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x),
right_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x) }.source
[PROOFSTEP]
refine' ContinuousOn.comp (f := Complex.equivRealProd.symm) (g := Complex.arg) (fun z hz => _) _ A
[GOAL]
case refine'_1
A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0}
z : ℂ
hz : z ∈ {z | 0 < z.re ∨ z.im ≠ 0}
⊢ ContinuousWithinAt Complex.arg {z | 0 < z.re ∨ z.im ≠ 0} z
[PROOFSTEP]
exact (Complex.continuousAt_arg hz).continuousWithinAt
[GOAL]
case refine'_2
A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0}
⊢ ContinuousOn ↑Complex.equivRealProd.symm
{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)),
invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0},
target := Ioi 0 ×ˢ Ioo (-π) π,
map_source' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈
Ioi 0 ×ˢ Ioo (-π) π),
map_target' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}),
left_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} →
(fun p => (p.fst * cos p.snd, p.fst * sin p.snd))
((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) =
x),
right_inv' :=
(_ :
∀ ⦃x : ℝ × ℝ⦄,
x ∈ Ioi 0 ×ˢ Ioo (-π) π →
(fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)))
((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) =
x) }.source
[PROOFSTEP]
exact Complex.equivRealProdClm.symm.continuous.continuousOn
[GOAL]
p : ℝ × ℝ
⊢ HasFDerivAt (↑(LocalHomeomorph.symm polarCoord))
(↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])))
p
[PROOFSTEP]
rw [Matrix.toLin_finTwoProd_toContinuousLinearMap]
[GOAL]
p : ℝ × ℝ
⊢ HasFDerivAt (↑(LocalHomeomorph.symm polarCoord))
(ContinuousLinearMap.prod
(cos p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (-p.fst * sin p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ)
(sin p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.fst * cos p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ))
p
[PROOFSTEP]
convert
HasFDerivAt.prod (𝕜 := ℝ) (hasFDerivAt_fst.mul ((hasDerivAt_cos p.2).comp_hasFDerivAt p hasFDerivAt_snd))
(hasFDerivAt_fst.mul ((hasDerivAt_sin p.2).comp_hasFDerivAt p hasFDerivAt_snd)) using
2
[GOAL]
case h.e'_10.h.e'_15.h.h.h
p : ℝ × ℝ
e_4✝ : instTopologicalSpaceProd = UniformSpace.toTopologicalSpace
e_5✝ : Prod.instAddCommMonoid = AddCommGroup.toAddCommMonoid
e_8✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = AddCommGroup.toAddCommMonoid
he✝¹ : Prod.instModule = NormedSpace.toModule
he✝ : NormedSpace.toModule = NormedSpace.toModule
⊢ cos p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (-p.fst * sin p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ =
p.fst • -sin p.snd • ContinuousLinearMap.snd ℝ ℝ ℝ + (cos ∘ Prod.snd) p • ContinuousLinearMap.fst ℝ ℝ ℝ
[PROOFSTEP]
simp [smul_smul, add_comm, neg_mul, neg_smul, smul_neg]
[GOAL]
case h.e'_10.h.e'_16.h.h.h
p : ℝ × ℝ
e_4✝ : instTopologicalSpaceProd = UniformSpace.toTopologicalSpace
e_5✝ : Prod.instAddCommMonoid = AddCommGroup.toAddCommMonoid
e_11✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = AddCommGroup.toAddCommMonoid
he✝¹ : Prod.instModule = NormedSpace.toModule
he✝ : NormedSpace.toModule = NormedSpace.toModule
⊢ sin p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.fst * cos p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ =
p.fst • cos p.snd • ContinuousLinearMap.snd ℝ ℝ ℝ + (sin ∘ Prod.snd) p • ContinuousLinearMap.fst ℝ ℝ ℝ
[PROOFSTEP]
simp [smul_smul, add_comm, neg_mul, neg_smul, smul_neg]
[GOAL]
⊢ polarCoord.source =ᵐ[volume] univ
[PROOFSTEP]
have A : polarCoord.sourceᶜ ⊆ LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) :=
by
intro x hx
simp only [polarCoord_source, compl_union, mem_inter_iff, mem_compl_iff, mem_setOf_eq, not_lt, Classical.not_not] at
hx
exact hx.2
[GOAL]
⊢ polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
[PROOFSTEP]
intro x hx
[GOAL]
x : ℝ × ℝ
hx : x ∈ polarCoord.sourceᶜ
⊢ x ∈ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
[PROOFSTEP]
simp only [polarCoord_source, compl_union, mem_inter_iff, mem_compl_iff, mem_setOf_eq, not_lt, Classical.not_not] at hx
[GOAL]
x : ℝ × ℝ
hx : x.fst ≤ 0 ∧ x.snd = 0
⊢ x ∈ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
[PROOFSTEP]
exact hx.2
[GOAL]
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
⊢ polarCoord.source =ᵐ[volume] univ
[PROOFSTEP]
have B : volume (LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) : Set (ℝ × ℝ)) = 0 :=
by
apply Measure.addHaar_submodule
rw [Ne.def, LinearMap.ker_eq_top]
intro h
have : (LinearMap.snd ℝ ℝ ℝ) (0, 1) = (0 : ℝ × ℝ →ₗ[ℝ] ℝ) (0, 1) := by rw [h]
simp at this
[GOAL]
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
⊢ ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0
[PROOFSTEP]
apply Measure.addHaar_submodule
[GOAL]
case hs
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
⊢ LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) ≠ ⊤
[PROOFSTEP]
rw [Ne.def, LinearMap.ker_eq_top]
[GOAL]
case hs
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
⊢ ¬LinearMap.snd ℝ ℝ ℝ = 0
[PROOFSTEP]
intro h
[GOAL]
case hs
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
h : LinearMap.snd ℝ ℝ ℝ = 0
⊢ False
[PROOFSTEP]
have : (LinearMap.snd ℝ ℝ ℝ) (0, 1) = (0 : ℝ × ℝ →ₗ[ℝ] ℝ) (0, 1) := by rw [h]
[GOAL]
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
h : LinearMap.snd ℝ ℝ ℝ = 0
⊢ ↑(LinearMap.snd ℝ ℝ ℝ) (0, 1) = ↑0 (0, 1)
[PROOFSTEP]
rw [h]
[GOAL]
case hs
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
h : LinearMap.snd ℝ ℝ ℝ = 0
this : ↑(LinearMap.snd ℝ ℝ ℝ) (0, 1) = ↑0 (0, 1)
⊢ False
[PROOFSTEP]
simp at this
[GOAL]
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
B : ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0
⊢ polarCoord.source =ᵐ[volume] univ
[PROOFSTEP]
simp only [ae_eq_univ]
[GOAL]
A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ))
B : ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0
⊢ ↑↑volume polarCoord.sourceᶜ = 0
[PROOFSTEP]
exact le_antisymm ((measure_mono A).trans (le_of_eq B)) bot_le
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p
[PROOFSTEP]
set B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p =>
LinearMap.toContinuousLinearMap
(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ) !![cos p.2, -p.1 * sin p.2; sin p.2, p.1 * cos p.2])
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p
[PROOFSTEP]
have A : ∀ p ∈ polarCoord.symm.source, HasFDerivAt polarCoord.symm (B p) p := fun p _ => hasFDerivAt_polarCoord_symm p
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p
[PROOFSTEP]
have B_det : ∀ p, (B p).det = p.1 := by
intro p
conv_rhs => rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2]
simp only [neg_mul, LinearMap.det_toContinuousLinearMap, LinearMap.det_toLin, Matrix.det_fin_two_of, sub_neg_eq_add]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
⊢ ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
[PROOFSTEP]
intro p
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
⊢ ContinuousLinearMap.det (B p) = p.fst
[PROOFSTEP]
conv_rhs => rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
| p.fst
[PROOFSTEP]
rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
| p.fst
[PROOFSTEP]
rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
| p.fst
[PROOFSTEP]
rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
⊢ ContinuousLinearMap.det (B p) = (cos p.snd ^ 2 + sin p.snd ^ 2) * p.fst
[PROOFSTEP]
simp only [neg_mul, LinearMap.det_toContinuousLinearMap, LinearMap.det_toLin, Matrix.det_fin_two_of, sub_neg_eq_add]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
p : ℝ × ℝ
⊢ cos p.snd * (p.fst * cos p.snd) + p.fst * sin p.snd * sin p.snd = (cos p.snd ^ 2 + sin p.snd ^ 2) * p.fst
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p
[PROOFSTEP]
symm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (p : ℝ × ℝ), f p = ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p)
[PROOFSTEP]
calc
∫ p, f p = ∫ p in polarCoord.source, f p := by
rw [← integral_univ]
apply set_integral_congr_set_ae
exact polarCoord_source_ae_eq_univ.symm
_ = ∫ p in polarCoord.target, abs (B p).det • f (polarCoord.symm p) := by
apply integral_target_eq_integral_abs_det_fderiv_smul volume A
_ = ∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) :=
by
apply set_integral_congr polarCoord.open_target.measurableSet fun x hx => ?_
rw [B_det, abs_of_pos]
exact hx.1
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (p : ℝ × ℝ), f p = ∫ (p : ℝ × ℝ) in polarCoord.source, f p
[PROOFSTEP]
rw [← integral_univ]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (x : ℝ × ℝ) in univ, f x = ∫ (p : ℝ × ℝ) in polarCoord.source, f p
[PROOFSTEP]
apply set_integral_congr_set_ae
[GOAL]
case hst
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ univ =ᵐ[volume] polarCoord.source
[PROOFSTEP]
exact polarCoord_source_ae_eq_univ.symm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (p : ℝ × ℝ) in polarCoord.source, f p =
∫ (p : ℝ × ℝ) in polarCoord.target, |ContinuousLinearMap.det (B p)| • f (↑(LocalHomeomorph.symm polarCoord) p)
[PROOFSTEP]
apply integral_target_eq_integral_abs_det_fderiv_smul volume A
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, |ContinuousLinearMap.det (B p)| • f (↑(LocalHomeomorph.symm polarCoord) p) =
∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p)
[PROOFSTEP]
apply set_integral_congr polarCoord.open_target.measurableSet fun x hx => ?_
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
x : ℝ × ℝ
hx : x ∈ polarCoord.target
⊢ |ContinuousLinearMap.det (B x)| • f (↑(LocalHomeomorph.symm polarCoord) x) =
x.fst • f (↑(LocalHomeomorph.symm polarCoord) x)
[PROOFSTEP]
rw [B_det, abs_of_pos]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℝ × ℝ → E
B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ :=
fun p =>
↑LinearMap.toContinuousLinearMap
(↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))
A :
∀ (p : ℝ × ℝ),
p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p
B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst
x : ℝ × ℝ
hx : x ∈ polarCoord.target
⊢ 0 < x.fst
[PROOFSTEP]
exact hx.1
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.PolarCoord", "llama_tokens": 17567} |
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝³ : NontriviallyNormedField 𝕂
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ HasStrictFDerivAt (exp 𝕂) 1 0
[PROOFSTEP]
convert (hasFPowerSeriesAt_exp_zero_of_radius_pos h).hasStrictFDerivAt
[GOAL]
case h.e'_10
𝕂 : Type u_1
𝔸 : Type u_2
inst✝³ : NontriviallyNormedField 𝕂
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ 1 = ↑(continuousMultilinearCurryFin1 𝕂 𝔸 𝔸) (expSeries 𝕂 𝔸 1)
[PROOFSTEP]
ext x
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝔸 : Type u_2
inst✝³ : NontriviallyNormedField 𝕂
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
x : 𝔸
⊢ ↑1 x = ↑(↑(continuousMultilinearCurryFin1 𝕂 𝔸 𝔸) (expSeries 𝕂 𝔸 1)) x
[PROOFSTEP]
change x = expSeries 𝕂 𝔸 1 fun _ => x
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝔸 : Type u_2
inst✝³ : NontriviallyNormedField 𝕂
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
x : 𝔸
⊢ x = ↑(expSeries 𝕂 𝔸 1) fun x_1 => x
[PROOFSTEP]
simp [expSeries_apply_eq]
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x
[PROOFSTEP]
have hpos : 0 < (expSeries 𝕂 𝔸).radius := (zero_le _).trans_lt hx
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x
[PROOFSTEP]
rw [hasFDerivAt_iff_isLittleO_nhds_zero]
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ (fun h => exp 𝕂 (x + h) - exp 𝕂 x - ↑(exp 𝕂 x • 1) h) =o[𝓝 0] fun h => h
[PROOFSTEP]
suffices
(fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ContinuousLinearMap.id 𝕂 𝔸 h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ContinuousLinearMap.id 𝕂 𝔸 h
by
refine' (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _)
rw [← hasFDerivAt_iff_isLittleO_nhds_zero]
exact hasFDerivAt_exp_zero_of_radius_pos hpos
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h
⊢ (fun h => exp 𝕂 (x + h) - exp 𝕂 x - ↑(exp 𝕂 x • 1) h) =o[𝓝 0] fun h => h
[PROOFSTEP]
refine' (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _)
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h
⊢ (fun x => exp 𝕂 (0 + x) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) x) =o[𝓝 0] fun h => h
[PROOFSTEP]
rw [← hasFDerivAt_iff_isLittleO_nhds_zero]
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h
⊢ HasFDerivAt (exp 𝕂) (ContinuousLinearMap.id 𝕂 𝔸) 0
[PROOFSTEP]
exact hasFDerivAt_exp_zero_of_radius_pos hpos
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h
[PROOFSTEP]
have : ∀ᶠ h in 𝓝 (0 : 𝔸), h ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius := EMetric.ball_mem_nhds _ hpos
[GOAL]
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h =>
exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h
[PROOFSTEP]
filter_upwards [this] with _ hh
[GOAL]
case h
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
a✝ : 𝔸
hh : a✝ ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ exp 𝕂 x * (exp 𝕂 (0 + a✝) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) a✝) =
exp 𝕂 (x + a✝) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) a✝
[PROOFSTEP]
rw [exp_add_of_mem_ball hx hh, exp_zero, zero_add, ContinuousLinearMap.id_apply, smul_eq_mul]
[GOAL]
case h
𝕂 : Type u_1
𝔸 : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕂
inst✝³ : NormedCommRing 𝔸
inst✝² : NormedAlgebra 𝕂 𝔸
inst✝¹ : CompleteSpace 𝔸
inst✝ : CharZero 𝕂
x : 𝔸
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
a✝ : 𝔸
hh : a✝ ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ exp 𝕂 x * (exp 𝕂 a✝ - 1 - a✝) = exp 𝕂 x * exp 𝕂 a✝ - exp 𝕂 x - exp 𝕂 x * a✝
[PROOFSTEP]
ring
[GOAL]
𝕂 : Type u_1
inst✝² : NontriviallyNormedField 𝕂
inst✝¹ : CompleteSpace 𝕂
inst✝ : CharZero 𝕂
x : 𝕂
hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝕂))
⊢ HasStrictDerivAt (exp 𝕂) (exp 𝕂 x) x
[PROOFSTEP]
simpa using (hasStrictFDerivAt_exp_of_mem_ball hx).hasStrictDerivAt
[GOAL]
⊢ exp = _root_.exp ℂ
[PROOFSTEP]
refine' funext fun x => _
[GOAL]
x : ℂ
⊢ exp x = _root_.exp ℂ x
[PROOFSTEP]
rw [Complex.exp, exp_eq_tsum_div]
[GOAL]
x : ℂ
⊢ CauSeq.lim (exp' x) = (fun x => ∑' (n : ℕ), x ^ n / ↑n !) x
[PROOFSTEP]
have : CauSeq.IsComplete ℂ norm := Complex.instIsComplete
[GOAL]
x : ℂ
this : CauSeq.IsComplete ℂ norm
⊢ CauSeq.lim (exp' x) = (fun x => ∑' (n : ℕ), x ^ n / ↑n !) x
[PROOFSTEP]
exact tendsto_nhds_unique x.exp'.tendsto_limit (expSeries_div_summable ℝ x).hasSum.tendsto_sum_nat
[GOAL]
⊢ exp = _root_.exp ℝ
[PROOFSTEP]
ext x
[GOAL]
case h
x : ℝ
⊢ exp x = _root_.exp ℝ x
[PROOFSTEP]
exact_mod_cast congr_fun Complex.exp_eq_exp_ℂ x
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t
[PROOFSTEP]
have hpos : 0 < (expSeries 𝕂 𝔸).radius := (zero_le _).trans_lt htx
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t
[PROOFSTEP]
rw [hasFDerivAt_iff_isLittleO_nhds_zero]
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ (fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h) =o[𝓝 0]
fun h => h
[PROOFSTEP]
suffices
(fun (h : 𝕊) => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 ((0 : 𝕊) • x) - ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - (exp 𝕂 (t • x) • (1 : 𝕊 →L[𝕂] 𝕊).smulRight x) h
by
apply (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _)
rw [← @hasFDerivAt_iff_isLittleO_nhds_zero _ _ _ _ _ _ _ _ (fun u => exp 𝕂 (u • x)) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) 0]
have : HasFDerivAt (exp 𝕂) (1 : 𝔸 →L[𝕂] 𝔸) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x 0) :=
by
rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul]
exact hasFDerivAt_exp_zero_of_radius_pos hpos
exact this.comp 0 ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x).hasFDerivAt
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
⊢ (fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h) =o[𝓝 0]
fun h => h
[PROOFSTEP]
apply (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _)
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
⊢ (fun x_1 => exp 𝕂 ((0 + x_1) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) x_1) =o[𝓝 0] fun h => h
[PROOFSTEP]
rw [← @hasFDerivAt_iff_isLittleO_nhds_zero _ _ _ _ _ _ _ _ (fun u => exp 𝕂 (u • x)) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) 0]
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight 1 x) 0
[PROOFSTEP]
have : HasFDerivAt (exp 𝕂) (1 : 𝔸 →L[𝕂] 𝔸) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x 0) :=
by
rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul]
exact hasFDerivAt_exp_zero_of_radius_pos hpos
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
⊢ HasFDerivAt (exp 𝕂) 1 (↑(ContinuousLinearMap.smulRight 1 x) 0)
[PROOFSTEP]
rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul]
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
⊢ HasFDerivAt (exp 𝕂) 1 0
[PROOFSTEP]
exact hasFDerivAt_exp_zero_of_radius_pos hpos
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this✝ :
(fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
this : HasFDerivAt (exp 𝕂) 1 (↑(ContinuousLinearMap.smulRight 1 x) 0)
⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight 1 x) 0
[PROOFSTEP]
exact this.comp 0 ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x).hasFDerivAt
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
[PROOFSTEP]
have : Tendsto (fun h : 𝕊 => h • x) (𝓝 0) (𝓝 0) :=
by
rw [← zero_smul 𝕊 x]
exact tendsto_id.smul_const x
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ Tendsto (fun h => h • x) (𝓝 0) (𝓝 0)
[PROOFSTEP]
rw [← zero_smul 𝕊 x]
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
⊢ Tendsto (fun h => h • x) (𝓝 0) (𝓝 (0 • x))
[PROOFSTEP]
exact tendsto_id.smul_const x
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0)
⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
[PROOFSTEP]
have : ∀ᶠ h in 𝓝 (0 : 𝕊), h • x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius :=
this.eventually (EMetric.ball_mem_nhds _ hpos)
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this✝ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0)
this : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0]
fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
[PROOFSTEP]
filter_upwards [this] with h hh
[GOAL]
case h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this✝ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0)
this : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
h : 𝕊
hh : h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h) =
exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
[PROOFSTEP]
have : Commute (t • x) (h • x) := ((Commute.refl x).smul_left t).smul_right h
[GOAL]
case h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)
this✝¹ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0)
this✝ : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
h : 𝕊
hh : h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
this : Commute (t • x) (h • x)
⊢ exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h) =
exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h
[PROOFSTEP]
rw [add_smul t h, exp_add_of_commute_of_mem_ball this htx hh, zero_add, zero_smul, exp_zero,
ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, ContinuousLinearMap.smul_apply,
ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, smul_eq_mul, mul_sub_left_distrib,
mul_sub_left_distrib, mul_one]
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasFDerivAt (fun u => exp 𝕂 (u • x))
(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t
[PROOFSTEP]
convert hasFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1
[GOAL]
case h.e'_10
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) =
exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x
[PROOFSTEP]
ext t'
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
t' : 𝕊
⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' =
↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t'
[PROOFSTEP]
show Commute (t' • x) (exp 𝕂 (t • x))
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
t' : 𝕊
⊢ Commute (t' • x) (exp 𝕂 (t • x))
[PROOFSTEP]
exact (((Commute.refl x).smul_left t').smul_right t).exp_right 𝕂
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x))
(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t
[PROOFSTEP]
let ⟨_, _⟩ := analyticAt_exp_of_mem_ball (t • x) htx
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸
h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)
⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x))
(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t
[PROOFSTEP]
convert hasStrictFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1
[GOAL]
case h.e'_10
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸
h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)
⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) =
exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x
[PROOFSTEP]
ext t'
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸
h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)
t' : 𝕊
⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' =
↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t'
[PROOFSTEP]
show Commute (t' • x) (exp 𝕂 (t • x))
[GOAL]
case h.e'_10.h
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕊
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸
h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)
t' : 𝕊
⊢ Commute (t' • x) (exp 𝕂 (t • x))
[PROOFSTEP]
exact (((Commute.refl x).smul_left t').smul_right t).exp_right 𝕂
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕂
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasStrictDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) * x) t
[PROOFSTEP]
simpa using (hasStrictFDerivAt_exp_smul_const_of_mem_ball 𝕂 x t htx).hasStrictDerivAt
[GOAL]
𝕂 : Type u_1
𝕊 : Type u_2
𝔸 : Type u_3
inst✝⁹ : NontriviallyNormedField 𝕂
inst✝⁸ : CharZero 𝕂
inst✝⁷ : NormedCommRing 𝕊
inst✝⁶ : NormedRing 𝔸
inst✝⁵ : NormedSpace 𝕂 𝕊
inst✝⁴ : NormedAlgebra 𝕂 𝔸
inst✝³ : Algebra 𝕊 𝔸
inst✝² : ContinuousSMul 𝕊 𝔸
inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸
inst✝ : CompleteSpace 𝔸
x : 𝔸
t : 𝕂
htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))
⊢ HasStrictDerivAt (fun u => exp 𝕂 (u • x)) (x * exp 𝕂 (t • x)) t
[PROOFSTEP]
simpa using (hasStrictFDerivAt_exp_smul_const_of_mem_ball' 𝕂 x t htx).hasStrictDerivAt
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Exponential", "llama_tokens": 17961} |
[GOAL]
x y : ℝ
⊢ MonotoneOn (fun x => log x * x) {x | 1 ≤ x}
[PROOFSTEP]
simp only [MonotoneOn, mem_setOf_eq]
[GOAL]
x y : ℝ
⊢ ∀ ⦃a : ℝ⦄, 1 ≤ a → ∀ ⦃b : ℝ⦄, 1 ≤ b → a ≤ b → log a * a ≤ log b * b
[PROOFSTEP]
intro x hex y hey hxy
[GOAL]
x✝ y✝ x : ℝ
hex : 1 ≤ x
y : ℝ
hey : 1 ≤ y
hxy : x ≤ y
⊢ log x * x ≤ log y * y
[PROOFSTEP]
have x_pos : 0 < x := lt_of_lt_of_le zero_lt_one hex
[GOAL]
x✝ y✝ x : ℝ
hex : 1 ≤ x
y : ℝ
hey : 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
⊢ log x * x ≤ log y * y
[PROOFSTEP]
have y_pos : 0 < y := lt_of_lt_of_le zero_lt_one hey
[GOAL]
x✝ y✝ x : ℝ
hex : 1 ≤ x
y : ℝ
hey : 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
⊢ log x * x ≤ log y * y
[PROOFSTEP]
refine' mul_le_mul ((log_le_log x_pos y_pos).mpr hxy) hxy (le_of_lt x_pos) _
[GOAL]
x✝ y✝ x : ℝ
hex : 1 ≤ x
y : ℝ
hey : 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
⊢ 0 ≤ log y
[PROOFSTEP]
rwa [le_log_iff_exp_le y_pos, Real.exp_zero]
[GOAL]
x y : ℝ
⊢ AntitoneOn (fun x => log x / x) {x | exp 1 ≤ x}
[PROOFSTEP]
simp only [AntitoneOn, mem_setOf_eq]
[GOAL]
x y : ℝ
⊢ ∀ ⦃a : ℝ⦄, exp 1 ≤ a → ∀ ⦃b : ℝ⦄, exp 1 ≤ b → a ≤ b → log b / b ≤ log a / a
[PROOFSTEP]
intro x hex y hey hxy
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
⊢ log y / y ≤ log x / x
[PROOFSTEP]
have x_pos : 0 < x := (exp_pos 1).trans_le hex
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
⊢ log y / y ≤ log x / x
[PROOFSTEP]
have y_pos : 0 < y := (exp_pos 1).trans_le hey
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
⊢ log y / y ≤ log x / x
[PROOFSTEP]
have hlogx : 1 ≤ log x := by rwa [le_log_iff_exp_le x_pos]
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
⊢ 1 ≤ log x
[PROOFSTEP]
rwa [le_log_iff_exp_le x_pos]
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
⊢ log y / y ≤ log x / x
[PROOFSTEP]
have hyx : 0 ≤ y / x - 1 := by rwa [le_sub_iff_add_le, le_div_iff x_pos, zero_add, one_mul]
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
⊢ 0 ≤ y / x - 1
[PROOFSTEP]
rwa [le_sub_iff_add_le, le_div_iff x_pos, zero_add, one_mul]
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
hyx : 0 ≤ y / x - 1
⊢ log y / y ≤ log x / x
[PROOFSTEP]
rw [div_le_iff y_pos, ← sub_le_sub_iff_right (log x)]
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
hyx : 0 ≤ y / x - 1
⊢ log y - log x ≤ log x / x * y - log x
[PROOFSTEP]
calc
log y - log x = log (y / x) := by rw [log_div y_pos.ne' x_pos.ne']
_ ≤ y / x - 1 := (log_le_sub_one_of_pos (div_pos y_pos x_pos))
_ ≤ log x * (y / x - 1) := (le_mul_of_one_le_left hyx hlogx)
_ = log x / x * y - log x := by ring
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
hyx : 0 ≤ y / x - 1
⊢ log y - log x = log (y / x)
[PROOFSTEP]
rw [log_div y_pos.ne' x_pos.ne']
[GOAL]
x✝ y✝ x : ℝ
hex : exp 1 ≤ x
y : ℝ
hey : exp 1 ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
hlogx : 1 ≤ log x
hyx : 0 ≤ y / x - 1
⊢ log x * (y / x - 1) = log x / x * y - log x
[PROOFSTEP]
ring
[GOAL]
x y a : ℝ
ha : 0 < a
⊢ AntitoneOn (fun x => log x / x ^ a) {x | exp (1 / a) ≤ x}
[PROOFSTEP]
simp only [AntitoneOn, mem_setOf_eq]
[GOAL]
x y a : ℝ
ha : 0 < a
⊢ ∀ ⦃a_1 : ℝ⦄, exp (1 / a) ≤ a_1 → ∀ ⦃b : ℝ⦄, exp (1 / a) ≤ b → a_1 ≤ b → log b / b ^ a ≤ log a_1 / a_1 ^ a
[PROOFSTEP]
intro x hex y _ hxy
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
⊢ log y / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
have x_pos : 0 < x := lt_of_lt_of_le (exp_pos (1 / a)) hex
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
⊢ log y / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
have y_pos : 0 < y := by linarith
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
⊢ 0 < y
[PROOFSTEP]
linarith
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
⊢ log y / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
have x_nonneg : 0 ≤ x := le_trans (le_of_lt (exp_pos (1 / a))) hex
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
⊢ log y / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
have y_nonneg : 0 ≤ y := by linarith
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
⊢ 0 ≤ y
[PROOFSTEP]
linarith
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ log y / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
nth_rw 1 [← rpow_one y]
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ log (y ^ 1) / y ^ a ≤ log x / x ^ a
[PROOFSTEP]
nth_rw 1 [← rpow_one x]
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ log (y ^ 1) / y ^ a ≤ log (x ^ 1) / x ^ a
[PROOFSTEP]
rw [← div_self (ne_of_lt ha).symm, div_eq_mul_one_div a a, rpow_mul y_nonneg, rpow_mul x_nonneg,
log_rpow (rpow_pos_of_pos y_pos a), log_rpow (rpow_pos_of_pos x_pos a), mul_div_assoc, mul_div_assoc,
mul_le_mul_left (one_div_pos.mpr ha)]
[GOAL]
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ log (y ^ a) / y ^ a ≤ log (x ^ a) / x ^ a
[PROOFSTEP]
refine' log_div_self_antitoneOn _ _ _
[GOAL]
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ x ^ a ∈ {x | exp 1 ≤ x}
[PROOFSTEP]
simp only [Set.mem_setOf_eq]
[GOAL]
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 ≤ x ^ a
[PROOFSTEP]
convert rpow_le_rpow _ hex (le_of_lt ha) using 1
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 = exp (1 / a) ^ a
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
rw [← exp_mul]
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 = exp (1 / a * a)
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
simp only [Real.exp_eq_exp]
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 1 = 1 / a * a
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
field_simp [(ne_of_lt ha).symm]
[GOAL]
case refine'_1
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
exact le_of_lt (exp_pos (1 / a))
[GOAL]
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ y ^ a ∈ {x | exp 1 ≤ x}
[PROOFSTEP]
simp only [Set.mem_setOf_eq]
[GOAL]
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 ≤ y ^ a
[PROOFSTEP]
convert rpow_le_rpow _ (_root_.trans hex hxy) (le_of_lt ha) using 1
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 = exp (1 / a) ^ a
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
rw [← exp_mul]
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ exp 1 = exp (1 / a * a)
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
simp only [Real.exp_eq_exp]
[GOAL]
case h.e'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 1 = 1 / a * a
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
field_simp [(ne_of_lt ha).symm]
[GOAL]
case refine'_2
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ 0 ≤ exp (1 / a)
[PROOFSTEP]
exact le_of_lt (exp_pos (1 / a))
[GOAL]
case refine'_3
x✝¹ y✝ a : ℝ
ha : 0 < a
x : ℝ
hex : exp (1 / a) ≤ x
y : ℝ
x✝ : exp (1 / a) ≤ y
hxy : x ≤ y
x_pos : 0 < x
y_pos : 0 < y
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
⊢ x ^ a ≤ y ^ a
[PROOFSTEP]
exact rpow_le_rpow x_nonneg hxy (le_of_lt ha)
[GOAL]
x y : ℝ
⊢ AntitoneOn (fun x => log x / sqrt x) {x | exp 2 ≤ x}
[PROOFSTEP]
simp_rw [sqrt_eq_rpow]
[GOAL]
x y : ℝ
⊢ AntitoneOn (fun x => log x / x ^ (1 / 2)) {x | exp 2 ≤ x}
[PROOFSTEP]
convert @log_div_self_rpow_antitoneOn (1 / 2) (by norm_num)
[GOAL]
x y : ℝ
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_6.h.e'_2.h.h.e'_3.h.e'_1
x y x✝ : ℝ
⊢ 2 = 1 / (1 / 2)
[PROOFSTEP]
norm_num
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Monotone", "llama_tokens": 6697} |
[GOAL]
⊢ stirlingSeq 0 = 0
[PROOFSTEP]
rw [stirlingSeq, cast_zero, mul_zero, Real.sqrt_zero, zero_mul, div_zero]
[GOAL]
⊢ stirlingSeq 1 = exp 1 / Real.sqrt 2
[PROOFSTEP]
rw [stirlingSeq, pow_one, factorial_one, cast_one, mul_one, mul_one_div, one_div_div]
[GOAL]
n : ℕ
⊢ Real.log (stirlingSeq (succ n)) =
Real.log ↑(succ n)! - 1 / 2 * Real.log (2 * ↑(succ n)) - ↑(succ n) * Real.log (↑(succ n) / exp 1)
[PROOFSTEP]
rw [stirlingSeq, log_div, log_mul, sqrt_eq_rpow, log_rpow, Real.log_pow, tsub_tsub]
[GOAL]
case hx
n : ℕ
⊢ 0 < 2 * ↑(succ n)
[PROOFSTEP]
positivity
[GOAL]
case hx
n : ℕ
⊢ Real.sqrt (2 * ↑(succ n)) ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case hy
n : ℕ
⊢ (↑(succ n) / exp 1) ^ succ n ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case hx
n : ℕ
⊢ ↑(succ n)! ≠ 0
[PROOFSTEP]
positivity
[GOAL]
case hy
n : ℕ
⊢ Real.sqrt (2 * ↑(succ n)) * (↑(succ n) / exp 1) ^ succ n ≠ 0
[PROOFSTEP]
positivity
[GOAL]
m : ℕ
⊢ HasSum (fun k => 1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ succ k)
(Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))))
[PROOFSTEP]
change HasSum ((fun b : ℕ => (1 : ℝ) / ((2 : ℝ) * b + (1 : ℝ)) * (((1 : ℝ) / (2 * m.succ + 1)) ^ 2) ^ b) ∘ succ) _
[GOAL]
m : ℕ
⊢ HasSum ((fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b) ∘ succ)
(Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))))
[PROOFSTEP]
refine'
(hasSum_nat_add_iff (a := _ - _)
-- Porting note: must give implicit arguments (f :=
(fun b : ℕ => ↑1 / (↑2 * b + ↑1) * (((1 : ℝ) / (2 * m.succ + 1)) ^ 2) ^ b)) 1).mpr
_
[GOAL]
m : ℕ
⊢ HasSum (fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b)
(Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) +
∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i)
[PROOFSTEP]
convert (hasSum_log_one_add_inv <| cast_pos.mpr (succ_pos m)).mul_left ((m.succ : ℝ) + 1 / 2) using 1
[GOAL]
case h.e'_5
m : ℕ
⊢ (fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b) = fun i =>
(↑(succ m) + 1 / 2) * (2 * (1 / (2 * ↑i + 1)) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * i + 1))
[PROOFSTEP]
ext k
[GOAL]
case h.e'_5.h
m k : ℕ
⊢ 1 / (2 * ↑k + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ k =
(↑(succ m) + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * k + 1))
[PROOFSTEP]
rw [← pow_mul, pow_add]
[GOAL]
case h.e'_5.h
m k : ℕ
⊢ 1 / (2 * ↑k + 1) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * k) =
(↑(succ m) + 1 / 2) *
(2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * ↑(succ m) + 1)) ^ (2 * k) * (1 / (2 * ↑(succ m) + 1)) ^ 1))
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_5.h
m k : ℕ
⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) =
(↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1))
[PROOFSTEP]
have : 2 * (k : ℝ) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * k)
[GOAL]
m k : ℕ
⊢ 2 * ↑k + 1 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
m k : ℕ
⊢ ¬2 * k + 1 = 0
[PROOFSTEP]
exact succ_ne_zero (2 * k)
[GOAL]
case h.e'_5.h
m k : ℕ
this : 2 * ↑k + 1 ≠ 0
⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) =
(↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1))
[PROOFSTEP]
have : 2 * ((m : ℝ) + 1) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * m.succ)
[GOAL]
m k : ℕ
this : 2 * ↑k + 1 ≠ 0
⊢ 2 * (↑m + 1) + 1 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
m k : ℕ
this : 2 * ↑k + 1 ≠ 0
⊢ ¬2 * (m + 1) + 1 = 0
[PROOFSTEP]
exact succ_ne_zero (2 * m.succ)
[GOAL]
case h.e'_5.h
m k : ℕ
this✝ : 2 * ↑k + 1 ≠ 0
this : 2 * (↑m + 1) + 1 ≠ 0
⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) =
(↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1))
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_5.h
m k : ℕ
this✝ : 2 * ↑k + 1 ≠ 0
this : 2 * (↑m + 1) + 1 ≠ 0
⊢ (2 * ↑k + 1) * ((2 * (↑m + 1) + 1) ^ (2 * k) * (2 * (↑m + 1) + 1)) =
((↑m + 1) * 2 + 1) * ((2 * ↑k + 1) * (2 * (↑m + 1) + 1) ^ (2 * k))
[PROOFSTEP]
ring
[GOAL]
case h.e'_6
m : ℕ
⊢ Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) +
∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i =
(↑(succ m) + 1 / 2) * Real.log (1 + (↑(succ m))⁻¹)
[PROOFSTEP]
have h : ∀ (x : ℝ) (_ : x ≠ 0), 1 + x⁻¹ = (x + 1) / x := by intro x hx; rw [_root_.add_div, div_self hx, inv_eq_one_div]
[GOAL]
m : ℕ
⊢ ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x
[PROOFSTEP]
intro x hx
[GOAL]
m : ℕ
x : ℝ
hx : x ≠ 0
⊢ 1 + x⁻¹ = (x + 1) / x
[PROOFSTEP]
rw [_root_.add_div, div_self hx, inv_eq_one_div]
[GOAL]
case h.e'_6
m : ℕ
h : ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x
⊢ Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) +
∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i =
(↑(succ m) + 1 / 2) * Real.log (1 + (↑(succ m))⁻¹)
[PROOFSTEP]
simp (disch :=
norm_cast <;> apply_rules [mul_ne_zero, succ_ne_zero, factorial_ne_zero, exp_ne_zero]) only [log_stirlingSeq_formula,
log_div, log_mul, log_exp, factorial_succ, cast_mul, cast_succ, cast_zero, range_one, sum_singleton, h]
[GOAL]
case h.e'_6
m : ℕ
h : ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x
⊢ Real.log (↑m + 1) + Real.log ↑m ! - 1 / 2 * (Real.log 2 + Real.log (↑m + 1)) - (↑m + 1) * (Real.log (↑m + 1) - 1) -
(Real.log (↑m + 1 + 1) + (Real.log (↑m + 1) + Real.log ↑m !) - 1 / 2 * (Real.log 2 + Real.log (↑m + 1 + 1)) -
(↑m + 1 + 1) * (Real.log (↑m + 1 + 1) - 1)) +
1 / (2 * 0 + 1) * ((1 / (2 * (↑m + 1) + 1)) ^ 2) ^ 0 =
(↑m + 1 + 1 / 2) * (Real.log (↑m + 1 + 1) - Real.log (↑m + 1))
[PROOFSTEP]
ring
[GOAL]
n m : ℕ
⊢ 0 ≤ 1 / (2 * ↑(succ m) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ m
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤
(1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)
[PROOFSTEP]
have h_nonneg : ↑0 ≤ ((1 : ℝ) / (2 * n.succ + 1)) ^ 2 := sq_nonneg _
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤
(1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)
[PROOFSTEP]
have g :
HasSum (fun k : ℕ => (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ)
(((1 : ℝ) / (2 * n.succ + 1)) ^ 2 / (↑1 - ((1 : ℝ) / (2 * n.succ + 1)) ^ 2)) :=
by
have := (hasSum_geometric_of_lt_1 h_nonneg ?_).mul_left (((1 : ℝ) / (2 * n.succ + 1)) ^ 2)
· simp_rw [← _root_.pow_succ] at this
exact this
rw [one_div, inv_pow]
exact inv_lt_one (one_lt_pow ((lt_add_iff_pos_left 1).mpr <| by positivity) two_ne_zero)
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
[PROOFSTEP]
have := (hasSum_geometric_of_lt_1 h_nonneg ?_).mul_left (((1 : ℝ) / (2 * n.succ + 1)) ^ 2)
[GOAL]
case refine_2
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
this :
HasSum (fun i => (1 / (2 * ↑(succ n) + 1)) ^ 2 * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ i)
((1 / (2 * ↑(succ n) + 1)) ^ 2 * (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)⁻¹)
⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
[PROOFSTEP]
simp_rw [← _root_.pow_succ] at this
[GOAL]
case refine_2
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
this :
HasSum (fun i => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ (i + 1))
((1 / (2 * ↑(succ n) + 1)) ^ 2 * (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)⁻¹)
⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
[PROOFSTEP]
exact this
[GOAL]
case refine_1
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
⊢ (1 / (2 * ↑(succ n) + 1)) ^ 2 < 1
[PROOFSTEP]
rw [one_div, inv_pow]
[GOAL]
case refine_1
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
⊢ ((2 * ↑(succ n) + 1) ^ 2)⁻¹ < 1
[PROOFSTEP]
exact inv_lt_one (one_lt_pow ((lt_add_iff_pos_left 1).mpr <| by positivity) two_ne_zero)
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
⊢ 0 < 2 * ↑(succ n)
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤
(1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)
[PROOFSTEP]
have hab :
∀ k : ℕ,
(1 : ℝ) / (↑2 * k.succ + ↑1) * (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ ≤
(((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ :=
by
refine' fun k => mul_le_of_le_one_left (pow_nonneg h_nonneg k.succ) _
rw [one_div]
exact inv_le_one (le_add_of_nonneg_left <| by positivity)
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
⊢ ∀ (k : ℕ),
1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k ≤ ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k
[PROOFSTEP]
refine' fun k => mul_le_of_le_one_left (pow_nonneg h_nonneg k.succ) _
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
k : ℕ
⊢ 1 / (2 * ↑(succ k) + 1) ≤ 1
[PROOFSTEP]
rw [one_div]
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
k : ℕ
⊢ (2 * ↑(succ k) + 1)⁻¹ ≤ 1
[PROOFSTEP]
exact inv_le_one (le_add_of_nonneg_left <| by positivity)
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
k : ℕ
⊢ 0 ≤ 2 * ↑(succ k)
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2
g :
HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k)
((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2))
hab :
∀ (k : ℕ),
1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k ≤ ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤
(1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)
[PROOFSTEP]
exact hasSum_le hab (log_stirlingSeq_diff_hasSum n) g
[GOAL]
n : ℕ
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2)
[PROOFSTEP]
have h₁ : ↑0 < ↑4 * ((n : ℝ) + 1) ^ 2 := by positivity
[GOAL]
n : ℕ
⊢ 0 < 4 * (↑n + 1) ^ 2
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2)
[PROOFSTEP]
have h₃ : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 := by positivity
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
⊢ 0 < (2 * (↑n + 1) + 1) ^ 2
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2)
[PROOFSTEP]
have h₂ : ↑0 < ↑1 - (1 / (2 * ((n : ℝ) + 1) + 1)) ^ 2 :=
by
rw [← mul_lt_mul_right h₃]
have H : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 - 1 := by nlinarith [@cast_nonneg ℝ _ n]
convert H using 1 <;> field_simp [h₃.ne']
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
⊢ 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
[PROOFSTEP]
rw [← mul_lt_mul_right h₃]
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 < (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2
[PROOFSTEP]
have H : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 - 1 := by nlinarith [@cast_nonneg ℝ _ n]
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
⊢ 0 < (2 * (↑n + 1) + 1) ^ 2 - 1
[PROOFSTEP]
nlinarith [@cast_nonneg ℝ _ n]
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1
⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 < (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2
[PROOFSTEP]
convert H using 1
[GOAL]
case h.e'_3
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1
⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 = 0
[PROOFSTEP]
field_simp [h₃.ne']
[GOAL]
case h.e'_4
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1
⊢ (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2 = (2 * (↑n + 1) + 1) ^ 2 - 1
[PROOFSTEP]
field_simp [h₃.ne']
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2)
[PROOFSTEP]
refine' (log_stirlingSeq_diff_le_geo_sum n).trans _
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) ≤ 1 / (4 * ↑(succ n) ^ 2)
[PROOFSTEP]
push_cast
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ (1 / (2 * (↑n + 1) + 1)) ^ 2 / (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) ≤ 1 / (4 * (↑n + 1) ^ 2)
[PROOFSTEP]
rw [div_le_div_iff h₂ h₁]
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ (1 / (2 * (↑n + 1) + 1)) ^ 2 * (4 * (↑n + 1) ^ 2) ≤ 1 * (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2)
[PROOFSTEP]
field_simp [h₃.ne']
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ 4 * (↑n + 1) ^ 2 / (2 * (↑n + 1) + 1) ^ 2 ≤ ((2 * (↑n + 1) + 1) ^ 2 - 1) / (2 * (↑n + 1) + 1) ^ 2
[PROOFSTEP]
rw [div_le_div_right h₃]
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ 4 * (↑n + 1) ^ 2 ≤ (2 * (↑n + 1) + 1) ^ 2 - 1
[PROOFSTEP]
ring_nf
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ 4 + ↑n * 8 + ↑n ^ 2 * 4 ≤ 8 + ↑n * 12 + ↑n ^ 2 * 4
[PROOFSTEP]
norm_cast
[GOAL]
n : ℕ
h₁ : 0 < 4 * (↑n + 1) ^ 2
h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2
h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2
⊢ 4 + n * 8 + n ^ 2 * 4 ≤ 8 + n * 12 + n ^ 2 * 4
[PROOFSTEP]
linarith
[GOAL]
⊢ ∃ c, ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ c
[PROOFSTEP]
let d := ∑' k : ℕ, ↑1 / (k.succ : ℝ) ^ 2
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
⊢ ∃ c, ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ c
[PROOFSTEP]
use(1 / 4 * d : ℝ)
[GOAL]
case h
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
⊢ ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d
[PROOFSTEP]
let log_stirlingSeq' : ℕ → ℝ := fun k => log (stirlingSeq k.succ)
[GOAL]
case h
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
⊢ ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d
[PROOFSTEP]
intro n
[GOAL]
case h
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d
[PROOFSTEP]
have h₁ : ∀ k, log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ ↑1 / ↑4 * (↑1 / (k.succ : ℝ) ^ 2) := by intro k;
convert log_stirlingSeq_sub_log_stirlingSeq_succ k using 1; field_simp
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
⊢ ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
[PROOFSTEP]
intro k
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n k : ℕ
⊢ log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
[PROOFSTEP]
convert log_stirlingSeq_sub_log_stirlingSeq_succ k using 1
[GOAL]
case h.e'_4
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n k : ℕ
⊢ 1 / 4 * (1 / ↑(succ k) ^ 2) = 1 / (4 * ↑(succ k) ^ 2)
[PROOFSTEP]
field_simp
[GOAL]
case h
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d
[PROOFSTEP]
have h₂ : (∑ k : ℕ in range n, ↑1 / (k.succ : ℝ) ^ 2) ≤ d :=
by
have := (summable_nat_add_iff 1).mpr <| Real.summable_one_div_nat_pow.mpr one_lt_two
simp only [rpow_nat_cast] at this
exact sum_le_tsum (range n) (fun k _ => by positivity) this
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
[PROOFSTEP]
have := (summable_nat_add_iff 1).mpr <| Real.summable_one_div_nat_pow.mpr one_lt_two
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
this : Summable fun n => 1 / ↑(n + 1) ^ 2
⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
[PROOFSTEP]
simp only [rpow_nat_cast] at this
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
this : Summable fun n => 1 / ↑(n + 1) ^ 2
⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
[PROOFSTEP]
exact sum_le_tsum (range n) (fun k _ => by positivity) this
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
this : Summable fun n => 1 / ↑(n + 1) ^ 2
k : ℕ
x✝ : ¬k ∈ range n
⊢ 0 ≤ 1 / ↑(succ k) ^ 2
[PROOFSTEP]
positivity
[GOAL]
case h
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d
[PROOFSTEP]
calc
log (stirlingSeq 1) - log (stirlingSeq n.succ) = log_stirlingSeq' 0 - log_stirlingSeq' n := rfl
_ = ∑ k in range n, (log_stirlingSeq' k - log_stirlingSeq' (k + 1)) := by rw [← sum_range_sub' log_stirlingSeq' n]
_ ≤ ∑ k in range n, ↑1 / ↑4 * (↑1 / ↑(k.succ) ^ 2) := (sum_le_sum fun k _ => h₁ k)
_ = ↑1 / ↑4 * ∑ k in range n, ↑1 / ↑(k.succ) ^ 2 := by rw [mul_sum]
_ ≤ 1 / 4 * d := mul_le_mul_of_nonneg_left h₂ <| by positivity
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
⊢ log_stirlingSeq' 0 - log_stirlingSeq' n = ∑ k in range n, (log_stirlingSeq' k - log_stirlingSeq' (k + 1))
[PROOFSTEP]
rw [← sum_range_sub' log_stirlingSeq' n]
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
⊢ ∑ k in range n, 1 / 4 * (1 / ↑(succ k) ^ 2) = 1 / 4 * ∑ k in range n, 1 / ↑(succ k) ^ 2
[PROOFSTEP]
rw [mul_sum]
[GOAL]
d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2
log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k))
n : ℕ
h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2)
h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d
⊢ 0 ≤ 1 / 4
[PROOFSTEP]
positivity
[GOAL]
⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))
[PROOFSTEP]
obtain ⟨d, h⟩ := log_stirlingSeq_bounded_aux
[GOAL]
case intro
d : ℝ
h : ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ d
⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))
[PROOFSTEP]
exact ⟨log (stirlingSeq 1) - d, fun n => sub_le_comm.mp (h n)⟩
[GOAL]
n : ℕ
⊢ 0 < stirlingSeq (succ n)
[PROOFSTEP]
unfold stirlingSeq
[GOAL]
n : ℕ
⊢ 0 < ↑(succ n)! / (Real.sqrt (2 * ↑(succ n)) * (↑(succ n) / exp 1) ^ succ n)
[PROOFSTEP]
positivity
[GOAL]
⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n)
[PROOFSTEP]
cases' log_stirlingSeq_bounded_by_constant with c h
[GOAL]
case intro
c : ℝ
h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))
⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n)
[PROOFSTEP]
refine' ⟨exp c, exp_pos _, fun n => _⟩
[GOAL]
case intro
c : ℝ
h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))
n : ℕ
⊢ exp c ≤ stirlingSeq (succ n)
[PROOFSTEP]
rw [← le_log_iff_exp_le (stirlingSeq'_pos n)]
[GOAL]
case intro
c : ℝ
h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))
n : ℕ
⊢ c ≤ Real.log (stirlingSeq (succ n))
[PROOFSTEP]
exact h n
[GOAL]
⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a)
[PROOFSTEP]
obtain ⟨x, x_pos, hx⟩ := stirlingSeq'_bounded_by_pos_constant
[GOAL]
case intro.intro
x : ℝ
x_pos : 0 < x
hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n)
⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a)
[PROOFSTEP]
have hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) := by simpa [lowerBounds] using hx
[GOAL]
x : ℝ
x_pos : 0 < x
hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n)
⊢ x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ))
[PROOFSTEP]
simpa [lowerBounds] using hx
[GOAL]
case intro.intro
x : ℝ
x_pos : 0 < x
hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n)
hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ))
⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a)
[PROOFSTEP]
refine' ⟨_, lt_of_lt_of_le x_pos (le_csInf (Set.range_nonempty _) hx'), _⟩
[GOAL]
case intro.intro
x : ℝ
x_pos : 0 < x
hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n)
hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ))
⊢ Tendsto stirlingSeq atTop (𝓝 (sInf (Set.range (stirlingSeq ∘ succ))))
[PROOFSTEP]
rw [← Filter.tendsto_add_atTop_iff_nat 1]
[GOAL]
case intro.intro
x : ℝ
x_pos : 0 < x
hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n)
hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ))
⊢ Tendsto (fun n => stirlingSeq (n + 1)) atTop (𝓝 (sInf (Set.range (stirlingSeq ∘ succ))))
[PROOFSTEP]
exact tendsto_atTop_ciInf stirlingSeq'_antitone ⟨x, hx'⟩
[GOAL]
⊢ Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2))
[PROOFSTEP]
conv =>
congr
·skip
·skip
rw [one_div, ← add_zero (2 : ℝ)]
[GOAL]
| Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2))
[PROOFSTEP]
congr
·skip
·skip
rw [one_div, ← add_zero (2 : ℝ)]
[GOAL]
| Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2))
[PROOFSTEP]
congr
·skip
·skip
rw [one_div, ← add_zero (2 : ℝ)]
[GOAL]
| Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2))
[PROOFSTEP]
congr
[GOAL]
case f
| fun n => ↑n / (2 * ↑n + 1)
case l₁
| atTop
case l₂ | 𝓝 (1 / 2)
[PROOFSTEP]
·skip
[GOAL]
case f
| fun n => ↑n / (2 * ↑n + 1)
[PROOFSTEP]
skip
[GOAL]
case f
| fun n => ↑n / (2 * ↑n + 1)
[PROOFSTEP]
skip
[GOAL]
case f
| fun n => ↑n / (2 * ↑n + 1)
[PROOFSTEP]
skip
[GOAL]
case l₁
| atTop
case l₂ | 𝓝 (1 / 2)
[PROOFSTEP]
·skip
[GOAL]
case l₁
| atTop
[PROOFSTEP]
skip
[GOAL]
case l₁
| atTop
[PROOFSTEP]
skip
[GOAL]
case l₁
| atTop
[PROOFSTEP]
skip
[GOAL]
case l₂
| 𝓝 (1 / 2)
[PROOFSTEP]
rw [one_div, ← add_zero (2 : ℝ)]
[GOAL]
⊢ Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (2 + 0)⁻¹)
[PROOFSTEP]
refine'
(((tendsto_const_div_atTop_nhds_0_nat 1).const_add (2 : ℝ)).inv₀ ((add_zero (2 : ℝ)).symm ▸ two_ne_zero)).congr'
(eventually_atTop.mpr ⟨1, fun n hn => _⟩)
[GOAL]
n : ℕ
hn : n ≥ 1
⊢ (2 + 1 / ↑n)⁻¹ = (fun n => ↑n / (2 * ↑n + 1)) n
[PROOFSTEP]
rw [add_div' (1 : ℝ) 2 n (cast_ne_zero.mpr (one_le_iff_ne_zero.mp hn)), inv_div]
[GOAL]
n : ℕ
hn : n ≠ 0
⊢ stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1)) = Wallis.W n
[PROOFSTEP]
have : 4 = 2 * 2 := by rfl
[GOAL]
n : ℕ
hn : n ≠ 0
⊢ 4 = 2 * 2
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1)) = Wallis.W n
[PROOFSTEP]
rw [stirlingSeq, this, pow_mul, stirlingSeq, Wallis.W_eq_factorial_ratio]
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ ((↑n ! / (Real.sqrt (2 * ↑n) * (↑n / exp 1) ^ n)) ^ 2) ^ 2 /
(↑(2 * n)! / (Real.sqrt (2 * ↑(2 * n)) * (↑(2 * n) / exp 1) ^ (2 * n))) ^ 2 *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
simp_rw [div_pow, mul_pow]
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ (↑n ! ^ 2) ^ 2 / ((Real.sqrt (2 * ↑n) ^ 2) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (Real.sqrt (2 * ↑(2 * n)) ^ 2 * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
rw [sq_sqrt, sq_sqrt]
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ 0 ≤ 2 * ↑(2 * n)
n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ 0 ≤ 2 * ↑n
[PROOFSTEP]
any_goals positivity
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ 0 ≤ 2 * ↑(2 * n)
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ 0 ≤ 2 * ↑n
[PROOFSTEP]
positivity
[GOAL]
n : ℕ
hn : n ≠ 0
this : 4 = 2 * 2
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
have : (n : ℝ) ≠ 0 := cast_ne_zero.mpr hn
[GOAL]
n : ℕ
hn : n ≠ 0
this✝ : 4 = 2 * 2
this : ↑n ≠ 0
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
have : exp 1 ≠ 0 := exp_ne_zero 1
[GOAL]
n : ℕ
hn : n ≠ 0
this✝¹ : 4 = 2 * 2
this✝ : ↑n ≠ 0
this : exp 1 ≠ 0
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
have : ((2 * n)! : ℝ) ≠ 0 := cast_ne_zero.mpr (factorial_ne_zero (2 * n))
[GOAL]
n : ℕ
hn : n ≠ 0
this✝² : 4 = 2 * 2
this✝¹ : ↑n ≠ 0
this✝ : exp 1 ≠ 0
this : ↑(2 * n)! ≠ 0
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
have : 2 * (n : ℝ) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * n)
[GOAL]
n : ℕ
hn : n ≠ 0
this✝² : 4 = 2 * 2
this✝¹ : ↑n ≠ 0
this✝ : exp 1 ≠ 0
this : ↑(2 * n)! ≠ 0
⊢ 2 * ↑n + 1 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
n : ℕ
hn : n ≠ 0
this✝² : 4 = 2 * 2
this✝¹ : ↑n ≠ 0
this✝ : exp 1 ≠ 0
this : ↑(2 * n)! ≠ 0
⊢ ¬2 * n + 1 = 0
[PROOFSTEP]
exact succ_ne_zero (2 * n)
[GOAL]
n : ℕ
hn : n ≠ 0
this✝³ : 4 = 2 * 2
this✝² : ↑n ≠ 0
this✝¹ : exp 1 ≠ 0
this✝ : ↑(2 * n)! ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) /
(↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) *
(↑n / (2 * ↑n + 1)) =
↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
field_simp
[GOAL]
n : ℕ
hn : n ≠ 0
this✝³ : 4 = 2 * 2
this✝² : ↑n ≠ 0
this✝¹ : exp 1 ≠ 0
this✝ : ↑(2 * n)! ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ (↑n ! ^ 2) ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2 * (2 * (2 * ↑n) * ((2 * ↑n) ^ (2 * n)) ^ 2) * ↑n *
(↑(2 * n)! ^ 2 * (2 * ↑n + 1)) =
2 ^ (4 * n) * ↑n ! ^ 4 *
((2 * ↑n) ^ 2 * ((↑n ^ n) ^ 2) ^ 2 * (↑(2 * n)! ^ 2 * (exp 1 ^ (2 * n)) ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
simp only [mul_pow, mul_comm 2 n, mul_comm 4 n, pow_mul]
[GOAL]
n : ℕ
hn : n ≠ 0
this✝³ : 4 = 2 * 2
this✝² : ↑n ≠ 0
this✝¹ : exp 1 ≠ 0
this✝ : ↑(2 * n)! ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ (↑n ! ^ 2) ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2 * (2 * (2 * ↑n) * (((2 ^ n) ^ 2) ^ 2 * ((↑n ^ n) ^ 2) ^ 2)) * ↑n *
(↑(n * 2)! ^ 2 * (2 * ↑n + 1)) =
(2 ^ n) ^ 4 * ↑n ! ^ 4 *
(2 ^ 2 * ↑n ^ 2 * ((↑n ^ n) ^ 2) ^ 2 * (↑(n * 2)! ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2) * (2 * ↑n + 1))
[PROOFSTEP]
ring
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
⊢ Tendsto Wallis.W atTop (𝓝 (a ^ 2 / 2))
[PROOFSTEP]
refine'
Tendsto.congr'
(eventually_atTop.mpr ⟨1, fun n hn => stirlingSeq_pow_four_div_stirlingSeq_pow_two_eq n (one_le_iff_ne_zero.mp hn)⟩)
_
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop (𝓝 (a ^ 2 / 2))
[PROOFSTEP]
have h : a ^ 2 / ↑2 = a ^ 4 / a ^ 2 * (1 / 2) :=
by
rw [mul_one_div, ← mul_one_div (a ^ 4) (a ^ 2), one_div, ← pow_sub_of_lt a]
norm_num
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
⊢ a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2)
[PROOFSTEP]
rw [mul_one_div, ← mul_one_div (a ^ 4) (a ^ 2), one_div, ← pow_sub_of_lt a]
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
⊢ 2 < 4
[PROOFSTEP]
norm_num
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
h : a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2)
⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop (𝓝 (a ^ 2 / 2))
[PROOFSTEP]
rw [h]
[GOAL]
a : ℝ
hane : a ≠ 0
ha : Tendsto stirlingSeq atTop (𝓝 a)
h : a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2)
⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop
(𝓝 (a ^ 4 / a ^ 2 * (1 / 2)))
[PROOFSTEP]
exact
((ha.pow 4).div ((ha.comp (tendsto_id.const_mul_atTop' two_pos)).pow 2) (pow_ne_zero 2 hane)).mul
tendsto_self_div_two_mul_self_add_one
[GOAL]
⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π))
[PROOFSTEP]
obtain ⟨a, hapos, halimit⟩ := stirlingSeq_has_pos_limit_a
[GOAL]
case intro.intro
a : ℝ
hapos : 0 < a
halimit : Tendsto stirlingSeq atTop (𝓝 a)
⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π))
[PROOFSTEP]
have hπ : π / 2 = a ^ 2 / 2 :=
tendsto_nhds_unique Wallis.tendsto_W_nhds_pi_div_two (second_wallis_limit a hapos.ne' halimit)
[GOAL]
case intro.intro
a : ℝ
hapos : 0 < a
halimit : Tendsto stirlingSeq atTop (𝓝 a)
hπ : π / ↑2 = a ^ 2 / 2
⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π))
[PROOFSTEP]
rwa [(div_left_inj' (two_ne_zero' ℝ)).mp hπ, sqrt_sq hapos.le]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Stirling", "llama_tokens": 18516} |
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : V
⊢ affineSegment R x y = segment R x y
[PROOFSTEP]
rw [segment_eq_image_lineMap, affineSegment]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
⊢ affineSegment R x y = affineSegment R y x
[PROOFSTEP]
refine' Set.ext fun z => _
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
⊢ z ∈ affineSegment R x y ↔ z ∈ affineSegment R y x
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
⊢ z ∈ affineSegment R x y → z ∈ affineSegment R y x
[PROOFSTEP]
rintro ⟨t, ht, hxy⟩
[GOAL]
case mp.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap x y) t = z
⊢ z ∈ affineSegment R y x
[PROOFSTEP]
refine' ⟨1 - t, _, _⟩
[GOAL]
case mp.intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap x y) t = z
⊢ 1 - t ∈ Set.Icc 0 1
[PROOFSTEP]
rwa [Set.sub_mem_Icc_iff_right, sub_self, sub_zero]
[GOAL]
case mp.intro.intro.refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap x y) t = z
⊢ ↑(lineMap y x) (1 - t) = z
[PROOFSTEP]
rwa [lineMap_apply_one_sub]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
⊢ z ∈ affineSegment R y x → z ∈ affineSegment R x y
[PROOFSTEP]
rintro ⟨t, ht, hxy⟩
[GOAL]
case mpr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap y x) t = z
⊢ z ∈ affineSegment R x y
[PROOFSTEP]
refine' ⟨1 - t, _, _⟩
[GOAL]
case mpr.intro.intro.refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap y x) t = z
⊢ 1 - t ∈ Set.Icc 0 1
[PROOFSTEP]
rwa [Set.sub_mem_Icc_iff_right, sub_self, sub_zero]
[GOAL]
case mpr.intro.intro.refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
t : R
ht : t ∈ Set.Icc 0 1
hxy : ↑(lineMap y x) t = z
⊢ ↑(lineMap x y) (1 - t) = z
[PROOFSTEP]
rwa [lineMap_apply_one_sub]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : P
⊢ affineSegment R x x = {x}
[PROOFSTEP]
rw [affineSegment]
-- Note: when adding "simp made no progress" in lean4#2336,
-- had to change `lineMap_same` to `lineMap_same _`. Not sure why?
-- porting note: added `_ _` and `Function.const`
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : P
⊢ ↑(lineMap x x) '' Set.Icc 0 1 = {x}
[PROOFSTEP]
simp_rw [lineMap_same _, AffineMap.coe_const _ _, Function.const, (Set.nonempty_Icc.mpr zero_le_one).image_const]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
f : P →ᵃ[R] P'
x y : P
⊢ ↑f '' affineSegment R x y = affineSegment R (↑f x) (↑f y)
[PROOFSTEP]
rw [affineSegment, affineSegment, Set.image_image, ← comp_lineMap]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
f : P →ᵃ[R] P'
x y : P
⊢ (fun x_1 => ↑f (↑(lineMap x y) x_1)) '' Set.Icc 0 1 = ↑(comp f (lineMap x y)) '' Set.Icc 0 1
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
v : V
⊢ v +ᵥ z ∈ affineSegment R (v +ᵥ x) (v +ᵥ y) ↔ z ∈ affineSegment R x y
[PROOFSTEP]
rw [← affineSegment_const_vadd_image, (AddAction.injective v).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : V
p : P
⊢ z +ᵥ p ∈ affineSegment R (x +ᵥ p) (y +ᵥ p) ↔ z ∈ affineSegment R x y
[PROOFSTEP]
rw [← affineSegment_vadd_const_image, (vadd_right_injective p).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p : P
⊢ p -ᵥ z ∈ affineSegment R (p -ᵥ x) (p -ᵥ y) ↔ z ∈ affineSegment R x y
[PROOFSTEP]
rw [← affineSegment_const_vsub_image, (vsub_right_injective p).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p : P
⊢ z -ᵥ p ∈ affineSegment R (x -ᵥ p) (y -ᵥ p) ↔ z ∈ affineSegment R x y
[PROOFSTEP]
rw [← affineSegment_vsub_const_image, (vsub_left_injective p).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Wbtw R x y z
f : P →ᵃ[R] P'
⊢ Wbtw R (↑f x) (↑f y) (↑f z)
[PROOFSTEP]
rw [Wbtw, ← affineSegment_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Wbtw R x y z
f : P →ᵃ[R] P'
⊢ ↑f y ∈ ↑f '' affineSegment R x z
[PROOFSTEP]
exact Set.mem_image_of_mem _ h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P →ᵃ[R] P'
hf : Injective ↑f
⊢ Wbtw R (↑f x) (↑f y) (↑f z) ↔ Wbtw R x y z
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.map _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P →ᵃ[R] P'
hf : Injective ↑f
h : Wbtw R (↑f x) (↑f y) (↑f z)
⊢ Wbtw R x y z
[PROOFSTEP]
rwa [Wbtw, ← affineSegment_image, hf.mem_set_image] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P →ᵃ[R] P'
hf : Injective ↑f
⊢ Sbtw R (↑f x) (↑f y) (↑f z) ↔ Sbtw R x y z
[PROOFSTEP]
simp_rw [Sbtw, hf.wbtw_map_iff, hf.ne_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P ≃ᵃ[R] P'
⊢ Wbtw R (↑f x) (↑f y) (↑f z) ↔ Wbtw R x y z
[PROOFSTEP]
refine' Function.Injective.wbtw_map_iff (_ : Function.Injective f.toAffineMap)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P ≃ᵃ[R] P'
⊢ Function.Injective ↑↑f
[PROOFSTEP]
exact f.injective
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P ≃ᵃ[R] P'
⊢ Sbtw R (↑f x) (↑f y) (↑f z) ↔ Sbtw R x y z
[PROOFSTEP]
refine' Function.Injective.sbtw_map_iff (_ : Function.Injective f.toAffineMap)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
f : P ≃ᵃ[R] P'
⊢ Function.Injective ↑↑f
[PROOFSTEP]
exact f.injective
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
v : V
⊢ Sbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) ↔ Sbtw R x y z
[PROOFSTEP]
rw [Sbtw, Sbtw, wbtw_const_vadd_iff, (AddAction.injective v).ne_iff, (AddAction.injective v).ne_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : V
p : P
⊢ Sbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) ↔ Sbtw R x y z
[PROOFSTEP]
rw [Sbtw, Sbtw, wbtw_vadd_const_iff, (vadd_right_injective p).ne_iff, (vadd_right_injective p).ne_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p : P
⊢ Sbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) ↔ Sbtw R x y z
[PROOFSTEP]
rw [Sbtw, Sbtw, wbtw_const_vsub_iff, (vsub_right_injective p).ne_iff, (vsub_right_injective p).ne_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z p : P
⊢ Sbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) ↔ Sbtw R x y z
[PROOFSTEP]
rw [Sbtw, Sbtw, wbtw_vsub_const_iff, (vsub_left_injective p).ne_iff, (vsub_left_injective p).ne_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Sbtw R x y z
⊢ y ∈ ↑(lineMap x z) '' Set.Ioo 0 1
[PROOFSTEP]
rcases h with ⟨⟨t, ht, rfl⟩, hyx, hyz⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
t : R
ht : t ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
⊢ ↑(lineMap x z) t ∈ ↑(lineMap x z) '' Set.Ioo 0 1
[PROOFSTEP]
rcases Set.eq_endpoints_or_mem_Ioo_of_mem_Icc ht with (rfl | rfl | ho)
[GOAL]
case intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
ht : 0 ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) 0 ≠ x
hyz : ↑(lineMap x z) 0 ≠ z
⊢ ↑(lineMap x z) 0 ∈ ↑(lineMap x z) '' Set.Ioo 0 1
[PROOFSTEP]
exfalso
[GOAL]
case intro.intro.intro.intro.inl.h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
ht : 0 ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) 0 ≠ x
hyz : ↑(lineMap x z) 0 ≠ z
⊢ False
[PROOFSTEP]
exact hyx (lineMap_apply_zero _ _)
[GOAL]
case intro.intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
ht : 1 ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) 1 ≠ x
hyz : ↑(lineMap x z) 1 ≠ z
⊢ ↑(lineMap x z) 1 ∈ ↑(lineMap x z) '' Set.Ioo 0 1
[PROOFSTEP]
exfalso
[GOAL]
case intro.intro.intro.intro.inr.inl.h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
ht : 1 ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) 1 ≠ x
hyz : ↑(lineMap x z) 1 ≠ z
⊢ False
[PROOFSTEP]
exact hyz (lineMap_apply_one _ _)
[GOAL]
case intro.intro.intro.intro.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
t : R
ht : t ∈ Set.Icc 0 1
hyx : ↑(lineMap x z) t ≠ x
hyz : ↑(lineMap x z) t ≠ z
ho : t ∈ Set.Ioo 0 1
⊢ ↑(lineMap x z) t ∈ ↑(lineMap x z) '' Set.Ioo 0 1
[PROOFSTEP]
exact ⟨t, ho, rfl⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Wbtw R x y z
⊢ y ∈ affineSpan R {x, z}
[PROOFSTEP]
rcases h with ⟨r, ⟨-, rfl⟩⟩
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x z : P
r : R
⊢ ↑(lineMap x z) r ∈ affineSpan R {x, z}
[PROOFSTEP]
exact lineMap_mem_affineSpan_pair _ _ _
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
⊢ Wbtw R x y z ↔ Wbtw R z y x
[PROOFSTEP]
rw [Wbtw, Wbtw, affineSegment_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
⊢ Sbtw R x y z ↔ Sbtw R z y x
[PROOFSTEP]
rw [Sbtw, Sbtw, wbtw_comm, ← and_assoc, ← and_assoc, and_right_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
⊢ Wbtw R x y x ↔ y = x
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : Wbtw R x y x
⊢ y = x
[PROOFSTEP]
have ⟨_, _, h₂⟩ := h
[GOAL]
case refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : Wbtw R x y x
w✝ : R
left✝ : w✝ ∈ Set.Icc 0 1
h₂ : ↑(lineMap x x) w✝ = y
⊢ y = x
[PROOFSTEP]
rw [h₂.symm, lineMap_same_apply]
[GOAL]
case refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : y = x
⊢ Wbtw R x y x
[PROOFSTEP]
rw [h]
[GOAL]
case refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : y = x
⊢ Wbtw R x x x
[PROOFSTEP]
exact wbtw_self_left R x x
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Wbtw R x y z
hne : y ≠ x
⊢ x ≠ z
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
hne : y ≠ x
h : Wbtw R x y x
⊢ False
[PROOFSTEP]
rw [wbtw_self_iff] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
hne : y ≠ x
h : y = x
⊢ False
[PROOFSTEP]
exact hne h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y z : P
h : Wbtw R x y z
hne : y ≠ z
⊢ x ≠ z
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : Wbtw R x y x
hne : y ≠ x
⊢ False
[PROOFSTEP]
rw [wbtw_self_iff] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x y : P
h : y = x
hne : y ≠ x
⊢ False
[PROOFSTEP]
exact hne h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Sbtw R x y z ↔ y ∈ ↑(lineMap x z) '' Set.Ioo 0 1 ∧ x ≠ z
[PROOFSTEP]
refine' ⟨fun h => ⟨h.mem_image_Ioo, h.left_ne_right⟩, fun h => _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
h : y ∈ ↑(lineMap x z) '' Set.Ioo 0 1 ∧ x ≠ z
⊢ Sbtw R x y z
[PROOFSTEP]
rcases h with ⟨⟨t, ht, rfl⟩, hxz⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
hxz : x ≠ z
t : R
ht : t ∈ Set.Ioo 0 1
⊢ Sbtw R x (↑(lineMap x z) t) z
[PROOFSTEP]
refine' ⟨⟨t, Set.mem_Icc_of_Ioo ht, rfl⟩, _⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
hxz : x ≠ z
t : R
ht : t ∈ Set.Ioo 0 1
⊢ ↑(lineMap x z) t ≠ x ∧ ↑(lineMap x z) t ≠ z
[PROOFSTEP]
rw [lineMap_apply, ← @vsub_ne_zero V, ← @vsub_ne_zero V _ _ _ _ z, vadd_vsub_assoc, vsub_self, vadd_vsub_assoc, ←
neg_vsub_eq_vsub_rev z x, ← @neg_one_smul R, ← add_smul, ← sub_eq_add_neg]
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
hxz : x ≠ z
t : R
ht : t ∈ Set.Ioo 0 1
⊢ t • (z -ᵥ x) + 0 ≠ 0 ∧ (t - 1) • (z -ᵥ x) ≠ 0
[PROOFSTEP]
simp [smul_ne_zero, sub_eq_zero, ht.1.ne.symm, ht.2.ne, hxz.symm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Wbtw R x y z ∧ Wbtw R y x z ↔ x = y
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Wbtw R x y z ∧ Wbtw R y x z → x = y
[PROOFSTEP]
rintro ⟨hxyz, hyxz⟩
[GOAL]
case mp.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
hxyz : Wbtw R x y z
hyxz : Wbtw R y x z
⊢ x = y
[PROOFSTEP]
rcases hxyz with ⟨ty, hty, rfl⟩
[GOAL]
case mp.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
hyxz : Wbtw R (↑(lineMap x z) ty) x z
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rcases hyxz with ⟨tx, htx, hx⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
hx : ↑(lineMap (↑(lineMap x z) ty) z) tx = x
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rw [lineMap_apply, lineMap_apply, ← add_vadd] at hx
[GOAL]
case mp.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
hx : tx • (z -ᵥ (ty • (z -ᵥ x) +ᵥ x)) + ty • (z -ᵥ x) +ᵥ x = x
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rw [← @vsub_eq_zero_iff_eq V, vadd_vsub, vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ← sub_smul, ← add_smul,
smul_eq_zero] at hx
[GOAL]
case mp.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
hx : tx - tx * ty + ty = 0 ∨ z -ᵥ x = 0
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rcases hx with (h | h)
[GOAL]
case mp.intro.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : tx - tx * ty + ty = 0
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
nth_rw 1 [← mul_one tx] at h
[GOAL]
case mp.intro.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : tx * 1 - tx * ty + ty = 0
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rw [← mul_sub, add_eq_zero_iff_neg_eq] at h
[GOAL]
case mp.intro.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : -(tx * (1 - ty)) = ty
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
have h' : ty = 0 := by
refine' le_antisymm _ hty.1
rw [← h, Left.neg_nonpos_iff]
exact mul_nonneg htx.1 (sub_nonneg.2 hty.2)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : -(tx * (1 - ty)) = ty
⊢ ty = 0
[PROOFSTEP]
refine' le_antisymm _ hty.1
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : -(tx * (1 - ty)) = ty
⊢ ty ≤ 0
[PROOFSTEP]
rw [← h, Left.neg_nonpos_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : -(tx * (1 - ty)) = ty
⊢ 0 ≤ tx * (1 - ty)
[PROOFSTEP]
exact mul_nonneg htx.1 (sub_nonneg.2 hty.2)
[GOAL]
case mp.intro.intro.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : -(tx * (1 - ty)) = ty
h' : ty = 0
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
simp [h']
[GOAL]
case mp.intro.intro.intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : z -ᵥ x = 0
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case mp.intro.intro.intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
ty : R
hty : ty ∈ Set.Icc 0 1
tx : R
htx : tx ∈ Set.Icc 0 1
h : z = x
⊢ x = ↑(lineMap x z) ty
[PROOFSTEP]
rw [h, lineMap_same_apply]
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ x = y → Wbtw R x y z ∧ Wbtw R y x z
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x z : P
⊢ Wbtw R x x z ∧ Wbtw R x x z
[PROOFSTEP]
exact ⟨wbtw_self_left _ _ _, wbtw_self_left _ _ _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Wbtw R x y z ∧ Wbtw R x z y ↔ y = z
[PROOFSTEP]
rw [wbtw_comm, wbtw_comm (z := y), eq_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Wbtw R z y x ∧ Wbtw R y z x ↔ z = y
[PROOFSTEP]
exact wbtw_swap_left_iff R x
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
⊢ Wbtw R x y z ∧ Wbtw R z x y ↔ x = y
[PROOFSTEP]
rw [wbtw_comm, wbtw_swap_right_iff, eq_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
h : Wbtw R x y z
⊢ Wbtw R y x z ↔ x = y
[PROOFSTEP]
rw [← wbtw_swap_left_iff R z, and_iff_right h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
h : Wbtw R x y z
⊢ Wbtw R x z y ↔ y = z
[PROOFSTEP]
rw [← wbtw_swap_right_iff R x, and_iff_right h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y z : P
h : Wbtw R x y z
⊢ Wbtw R z x y ↔ x = y
[PROOFSTEP]
rw [← wbtw_rotate_iff R x, and_iff_right h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1
[PROOFSTEP]
by_cases hxy : x = y
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
hxy : x = y
⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1
[PROOFSTEP]
rw [hxy, lineMap_same_apply]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
hxy : x = y
⊢ Wbtw R y y y ↔ y = y ∨ r ∈ Set.Icc 0 1
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
hxy : ¬x = y
⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1
[PROOFSTEP]
rw [or_iff_right hxy, Wbtw, affineSegment, (lineMap_injective R hxy).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
⊢ Sbtw R x (↑(lineMap x y) r) y ↔ x ≠ y ∧ r ∈ Set.Ioo 0 1
[PROOFSTEP]
rw [sbtw_iff_mem_image_Ioo_and_ne, and_comm, and_congr_right]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
⊢ x ≠ y → (↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1)
[PROOFSTEP]
intro hxy
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
x y : P
r : R
hxy : x ≠ y
⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1
[PROOFSTEP]
rw [(lineMap_injective R hxy).mem_set_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ Wbtw R 0 x 1 ↔ x ∈ Set.Icc 0 1
[PROOFSTEP]
rw [Wbtw, affineSegment, Set.mem_image]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ (∃ x_1, x_1 ∈ Set.Icc 0 1 ∧ ↑(lineMap 0 1) x_1 = x) ↔ x ∈ Set.Icc 0 1
[PROOFSTEP]
simp_rw [lineMap_apply_ring]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ (∃ x_1, x_1 ∈ Set.Icc 0 1 ∧ (1 - x_1) * 0 + x_1 * 1 = x) ↔ x ∈ Set.Icc 0 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ Wbtw R 1 x 0 ↔ x ∈ Set.Icc 0 1
[PROOFSTEP]
rw [wbtw_comm, wbtw_zero_one_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ Sbtw R 0 x 1 ↔ x ∈ Set.Ioo 0 1
[PROOFSTEP]
rw [Sbtw, wbtw_zero_one_iff, Set.mem_Icc, Set.mem_Ioo]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ (0 ≤ x ∧ x ≤ 1) ∧ x ≠ 0 ∧ x ≠ 1 ↔ 0 < x ∧ x < 1
[PROOFSTEP]
exact ⟨fun h => ⟨h.1.1.lt_of_ne (Ne.symm h.2.1), h.1.2.lt_of_ne h.2.2⟩, fun h => ⟨⟨h.1.le, h.2.le⟩, h.1.ne', h.2.ne⟩⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
x : R
⊢ Sbtw R 1 x 0 ↔ x ∈ Set.Ioo 0 1
[PROOFSTEP]
rw [sbtw_comm, sbtw_zero_one_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w x y z : P
h₁ : Wbtw R w y z
h₂ : Wbtw R w x y
⊢ Wbtw R w x z
[PROOFSTEP]
rcases h₁ with ⟨t₁, ht₁, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w x z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
h₂ : Wbtw R w x (↑(lineMap w z) t₁)
⊢ Wbtw R w x z
[PROOFSTEP]
rcases h₂ with ⟨t₂, ht₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ Wbtw R w (↑(lineMap w (↑(lineMap w z) t₁)) t₂) z
[PROOFSTEP]
refine' ⟨t₂ * t₁, ⟨mul_nonneg ht₂.1 ht₁.1, mul_le_one ht₂.2 ht₁.1 ht₁.2⟩, _⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ ↑(lineMap w z) (t₂ * t₁) = ↑(lineMap w (↑(lineMap w z) t₁)) t₂
[PROOFSTEP]
rw [lineMap_apply, lineMap_apply, lineMap_vsub_left, smul_smul]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w x y z : P
h₁ : Wbtw R w x z
h₂ : Wbtw R x y z
⊢ Wbtw R w y z
[PROOFSTEP]
rw [wbtw_comm] at *
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁶ : OrderedRing R
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module R V
inst✝³ : AddTorsor V P
inst✝² : AddCommGroup V'
inst✝¹ : Module R V'
inst✝ : AddTorsor V' P'
w x y z : P
h₁ : Wbtw R z x w
h₂ : Wbtw R z y x
⊢ Wbtw R z y w
[PROOFSTEP]
exact h₁.trans_left h₂
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R w y z
h₂ : Sbtw R w x y
⊢ Sbtw R w x z
[PROOFSTEP]
refine' ⟨h₁.trans_left h₂.wbtw, h₂.ne_left, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R w y z
h₂ : Sbtw R w x y
⊢ x ≠ z
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y : P
h₂ : Sbtw R w x y
h₁ : Wbtw R w y x
⊢ False
[PROOFSTEP]
exact h₂.right_ne ((wbtw_swap_right_iff R w).1 ⟨h₁, h₂.wbtw⟩)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R w x z
h₂ : Sbtw R x y z
⊢ Sbtw R w y z
[PROOFSTEP]
rw [wbtw_comm] at *
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R z x w
h₂ : Sbtw R x y z
⊢ Sbtw R w y z
[PROOFSTEP]
rw [sbtw_comm] at *
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R z x w
h₂ : Sbtw R z y x
⊢ Sbtw R z y w
[PROOFSTEP]
exact h₁.trans_sbtw_left h₂
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R w y z
h₂ : Wbtw R w x y
h : y ≠ z
⊢ x ≠ z
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y : P
h₂ : Wbtw R w x y
h₁ : Wbtw R w y x
h : y ≠ x
⊢ False
[PROOFSTEP]
exact h (h₁.swap_right_iff.1 h₂)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x y z : P
h₁ : Wbtw R w x z
h₂ : Wbtw R x y z
h : w ≠ x
⊢ w ≠ y
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁷ : OrderedRing R
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module R V
inst✝⁴ : AddTorsor V P
inst✝³ : AddCommGroup V'
inst✝² : Module R V'
inst✝¹ : AddTorsor V' P'
inst✝ : NoZeroSMulDivisors R V
w x z : P
h₁ : Wbtw R w x z
h : w ≠ x
h₂ : Wbtw R x w z
⊢ False
[PROOFSTEP]
exact h (h₁.swap_left_iff.1 h₂)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
h :
↑(Finset.affineCombination R s p) w ∈
affineSpan R {↑(Finset.affineCombination R s p) w₁, ↑(Finset.affineCombination R s p) w₂}
i : ι
his : i ∈ s
hs : Sbtw R (w₁ i) (w i) (w₂ i)
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
rw [affineCombination_mem_affineSpan_pair ha hw hw₁ hw₂] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
h : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i
i : ι
his : i ∈ s
hs : Sbtw R (w₁ i) (w i) (w₂ i)
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
rcases h with ⟨r, hr⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
hs : Sbtw R (w₁ i) (w i) (w₂ i)
r : R
hr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
rw [hr i his, sbtw_mul_sub_add_iff] at hs
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
change ∀ i ∈ s, w i = (r • (w₂ - w₁) + w₁) i at hr
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
rw [s.affineCombination_congr hr fun _ _ => rfl]
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)
(↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
dsimp only
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)
(↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)
(↑(Finset.affineCombination R s p) w₂)
[PROOFSTEP]
rw [← s.weightedVSub_vadd_affineCombination, s.weightedVSub_const_smul, ← s.affineCombination_vsub, ← lineMap_apply,
sbtw_lineMap_iff, and_iff_left hs.2, ← @vsub_ne_zero V, s.affineCombination_vsub]
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
⊢ ↑(Finset.weightedVSub s p) (w₁ - w₂) ≠ 0
[PROOFSTEP]
intro hz
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0
⊢ False
[PROOFSTEP]
have hw₁w₂ : (∑ i in s, (w₁ - w₂) i) = 0 := by simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0
⊢ ∑ i in s, (w₁ - w₂) i = 0
[PROOFSTEP]
simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self]
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0
hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0
⊢ False
[PROOFSTEP]
refine' hs.1 _
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0
hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0
⊢ w₁ i = w₂ i
[PROOFSTEP]
have ha' := ha s (w₁ - w₂) hw₁w₂ hz i his
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁸ : OrderedRing R
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module R V
inst✝⁵ : AddTorsor V P
inst✝⁴ : AddCommGroup V'
inst✝³ : Module R V'
inst✝² : AddTorsor V' P'
inst✝¹ : NoZeroDivisors R
inst✝ : NoZeroSMulDivisors R V
ι : Type u_6
p : ι → P
ha : AffineIndependent R p
w w₁ w₂ : ι → R
s : Finset ι
hw : ∑ i in s, w i = 1
hw₁ : ∑ i in s, w₁ i = 1
hw₂ : ∑ i in s, w₂ i = 1
i : ι
his : i ∈ s
r : R
hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1
hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i
hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0
hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0
ha' : (w₁ - w₂) i = 0
⊢ w₁ i = w₂ i
[PROOFSTEP]
rwa [Pi.sub_apply, sub_eq_zero] at ha'
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ SameRay R (y -ᵥ x) (z -ᵥ y)
[PROOFSTEP]
rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
⊢ SameRay R (↑(lineMap x z) t -ᵥ x) (z -ᵥ ↑(lineMap x z) t)
[PROOFSTEP]
simp_rw [lineMap_apply]
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
rcases ht0.lt_or_eq with (ht0' | rfl)
[GOAL]
case intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
case intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
ht0 : 0 ≤ 0
ht1 : 0 ≤ 1
⊢ SameRay R (0 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (0 • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
swap
[GOAL]
case intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
ht0 : 0 ≤ 0
ht1 : 0 ≤ 1
⊢ SameRay R (0 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (0 • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
rcases ht1.lt_or_eq with (ht1' | rfl)
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
ht1' : t < 1
⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
case intro.intro.intro.inl.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
ht0' : 0 < 1
⊢ SameRay R (1 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (1 • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
swap
[GOAL]
case intro.intro.intro.inl.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
ht0 : 0 ≤ 1
ht1 : 1 ≤ 1
ht0' : 0 < 1
⊢ SameRay R (1 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (1 • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
ht1' : t < 1
⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
refine' Or.inr (Or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩)
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
ht1' : t < 1
⊢ (1 - t) • (t • (z -ᵥ x) +ᵥ x -ᵥ x) = t • (z -ᵥ (t • (z -ᵥ x) +ᵥ x))
[PROOFSTEP]
simp [vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ← sub_smul]
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
ht1 : t ≤ 1
ht0' : 0 < t
ht1' : t < 1
⊢ ((1 - t) * t) • (z -ᵥ x) = (t - t * t) • (z -ᵥ x)
[PROOFSTEP]
ring_nf
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ SameRay R (y -ᵥ x) (z -ᵥ x)
[PROOFSTEP]
rcases h with ⟨t, ⟨ht0, _⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
ht0 : 0 ≤ t
right✝ : t ≤ 1
⊢ SameRay R (↑(lineMap x z) t -ᵥ x) (z -ᵥ x)
[PROOFSTEP]
simpa [lineMap_apply] using SameRay.sameRay_nonneg_smul_left (z -ᵥ x) ht0
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ SameRay R (z -ᵥ x) (z -ᵥ y)
[PROOFSTEP]
rcases h with ⟨t, ⟨_, ht1⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : StrictOrderedCommRing R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
left✝ : 0 ≤ t
ht1 : t ≤ 1
⊢ SameRay R (z -ᵥ x) (z -ᵥ ↑(lineMap x z) t)
[PROOFSTEP]
simpa [lineMap_apply, vsub_vadd_eq_vsub_sub, sub_smul] using
SameRay.sameRay_nonneg_smul_right (z -ᵥ x) (sub_nonneg.2 ht1)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
letI : DecidableRel ((· < ·) : R → R → Prop) := LinearOrderedRing.decidableLT
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have h₁₃ : i₁ ≠ i₃ := by
rintro rfl
simp at h₂
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
⊢ i₁ ≠ i₃
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₁)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₁)
⊢ False
[PROOFSTEP]
simp at h₂
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have h₂₃ : i₂ ≠ i₃ := by
rintro rfl
simp at h₁
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
⊢ i₂ ≠ i₃
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₂)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₂)
h₁₃ : i₁ ≠ i₂
⊢ False
[PROOFSTEP]
simp at h₁
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have h3 : ∀ i : Fin 3, i = i₁ ∨ i = i₂ ∨ i = i₃ :=
by
clear h₁ h₂ h₁' h₂'
intro i
fin_cases i <;> fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
[PROOFSTEP]
clear h₁ h₂ h₁' h₂'
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
[PROOFSTEP]
intro i
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
i : Fin 3
⊢ i = i₁ ∨ i = i₂ ∨ i = i₃
[PROOFSTEP]
fin_cases i
[GOAL]
case head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ { val := 0, isLt := (_ : 0 < 3) } = i₁ ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₁
[GOAL]
case tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₁ ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₁
[GOAL]
case tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₁ ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₁
[GOAL]
case head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₂
[GOAL]
case head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } =
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have hu : (Finset.univ : Finset (Fin 3)) = { i₁, i₂, i₃ } :=
by
clear h₁ h₂ h₁' h₂'
fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
⊢ Finset.univ = {i₁, i₂, i₃}
[PROOFSTEP]
clear h₁ h₂ h₁' h₂'
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
⊢ Finset.univ = {i₁, i₂, i₃}
[PROOFSTEP]
fin_cases i₁
[GOAL]
case head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₂ ∨ i = i₃
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₂ ∨ i = i₃
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₂ ∨ i = i₃
⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₂, i₃}
[PROOFSTEP]
fin_cases i₂
[GOAL]
case head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃
⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃
⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃
⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₃ : Fin 3
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃}
[PROOFSTEP]
fin_cases i₃
[GOAL]
case head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 0, isLt := (_ : 0 < 3) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h₁₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 1, isLt := (_ : (fun a => a < 3) 1) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
case tail.tail.head.tail.tail.head.tail.tail.head
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
p₁ p₂ p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₂ h₁₃ h₂₃ :
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
h3 :
∀ (i : Fin 3),
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨
i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }
⊢ Finset.univ =
{{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) },
{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }}
[PROOFSTEP]
simp at h₁₂ h₁₃ h₂₃ ⊢
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have hp : p ∈ affineSpan R (Set.range t.points) :=
by
have hle : line[R, t.points i₁, p₁] ≤ affineSpan R (Set.range t.points) :=
by
refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _
have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) :=
by
refine' affineSpan_mono R _
simp [Set.insert_subset_iff]
rw [AffineSubspace.le_def'] at hle
exact hle _ h₁.wbtw.mem_affineSpan
rw [AffineSubspace.le_def'] at hle
exact hle _ h₁'
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ p ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
have hle : line[R, t.points i₁, p₁] ≤ affineSpan R (Set.range t.points) :=
by
refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _
have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) :=
by
refine' affineSpan_mono R _
simp [Set.insert_subset_iff]
rw [AffineSubspace.le_def'] at hle
exact hle _ h₁.wbtw.mem_affineSpan
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ affineSpan R {Affine.Simplex.points t i₁, p₁} ≤ affineSpan R (Set.range t.points)
[PROOFSTEP]
refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ p₁ ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) :=
by
refine' affineSpan_mono R _
simp [Set.insert_subset_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ≤ affineSpan R (Set.range t.points)
[PROOFSTEP]
refine' affineSpan_mono R _
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
⊢ {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ⊆ Set.range t.points
[PROOFSTEP]
simp [Set.insert_subset_iff]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hle : affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ≤ affineSpan R (Set.range t.points)
⊢ p₁ ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
rw [AffineSubspace.le_def'] at hle
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hle :
∀ (p : P),
p ∈ affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} → p ∈ affineSpan R (Set.range t.points)
⊢ p₁ ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
exact hle _ h₁.wbtw.mem_affineSpan
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hle : affineSpan R {Affine.Simplex.points t i₁, p₁} ≤ affineSpan R (Set.range t.points)
⊢ p ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
rw [AffineSubspace.le_def'] at hle
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hle : ∀ (p : P), p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} → p ∈ affineSpan R (Set.range t.points)
⊢ p ∈ affineSpan R (Set.range t.points)
[PROOFSTEP]
exact hle _ h₁'
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have h₁i := h₁.mem_image_Ioo
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
h₁i : p₁ ∈ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
have h₂i := h₂.mem_image_Ioo
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
h₁i : p₁ ∈ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1
h₂i : p₂ ∈ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
rw [Set.mem_image] at h₁i h₂i
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₁ p₂ p : P
h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃)
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁}
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
h₁i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) x = p₁
h₂i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) x = p₂
⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁
[PROOFSTEP]
rcases h₁i with ⟨r₁, ⟨hr₁0, hr₁1⟩, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p₂ p : P
h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃)
h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂}
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
h₂i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) x = p₂
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
h₁' :
p ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁}
⊢ Sbtw R (Affine.Simplex.points t i₁) p (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
[PROOFSTEP]
rcases h₂i with ⟨r₂, ⟨hr₂0, hr₂1⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
p : P
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
hp : p ∈ affineSpan R (Set.range t.points)
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
h₁' :
p ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁}
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
h₂' :
p ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
⊢ Sbtw R (Affine.Simplex.points t i₁) p (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
[PROOFSTEP]
rcases eq_affineCombination_of_mem_affineSpan_of_fintype hp with ⟨w, hw, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w)
(↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
[PROOFSTEP]
have h₁s :=
sign_eq_of_affineCombination_mem_affineSpan_single_lineMap t.Independent hw (Finset.mem_univ _) (Finset.mem_univ _)
(Finset.mem_univ _) h₁₂ h₁₃ h₂₃ hr₁0 hr₁1 h₁'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w)
(↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
[PROOFSTEP]
have h₂s :=
sign_eq_of_affineCombination_mem_affineSpan_single_lineMap t.Independent hw (Finset.mem_univ _) (Finset.mem_univ _)
(Finset.mem_univ _) h₁₂.symm h₂₃ h₁₃ hr₂0 hr₂1 h₂'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w)
(↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
[PROOFSTEP]
rw [← Finset.univ.affineCombination_affineCombinationSingleWeights R t.points (Finset.mem_univ i₁), ←
Finset.univ.affineCombination_affineCombinationLineMapWeights t.points (Finset.mem_univ _) (Finset.mem_univ _)] at h₁'
⊢
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
⊢ Sbtw R (↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁))
(↑(Finset.affineCombination R Finset.univ t.points) w)
(↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁))
[PROOFSTEP]
refine'
Sbtw.affineCombination_of_mem_affineSpan_pair t.Independent hw
(Finset.univ.sum_affineCombinationSingleWeights R (Finset.mem_univ _))
(Finset.univ.sum_affineCombinationLineMapWeights (Finset.mem_univ _) (Finset.mem_univ _) _) h₁' (Finset.mem_univ i₁)
_
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
⊢ Sbtw R (Finset.affineCombinationSingleWeights R i₁ i₁) (w i₁) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁ i₁)
[PROOFSTEP]
rw [Finset.affineCombinationSingleWeights_apply_self, Finset.affineCombinationLineMapWeights_apply_of_ne h₁₂ h₁₃,
sbtw_one_zero_iff]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
have hs : ∀ i : Fin 3, SignType.sign (w i) = SignType.sign (w i₃) :=
by
intro i
rcases h3 i with (rfl | rfl | rfl)
· exact h₂s
· exact h₁s
· rfl
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
⊢ ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
[PROOFSTEP]
intro i
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
i : Fin 3
⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
[PROOFSTEP]
rcases h3 i with (rfl | rfl | rfl)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₂ i₃ : Fin 3
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₂₃ : i₂ ≠ i₃
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
i : Fin 3
h₁₂ : i ≠ i₂
h₁₃ : i ≠ i₃
h3 : ∀ (i_1 : Fin 3), i_1 = i ∨ i_1 = i₂ ∨ i_1 = i₃
hu : Finset.univ = {i, i₂, i₃}
h₂ :
Sbtw R (Affine.Simplex.points t i) (↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₂}
h₂s : ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
[PROOFSTEP]
exact h₂s
[GOAL]
case inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₃ : Fin 3
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
i : Fin 3
h₁₂ : i₁ ≠ i
h₂₃ : i ≠ i₃
h3 : ∀ (i_1 : Fin 3), i_1 = i₁ ∨ i_1 = i ∨ i_1 = i₃
hu : Finset.univ = {i₁, i, i₃}
h₁ :
Sbtw R (Affine.Simplex.points t i) (↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
[PROOFSTEP]
exact h₁s
[GOAL]
case inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
i : Fin 3
h₁₃ : i₁ ≠ i
h₂₃ : i₂ ≠ i
h3 : ∀ (i_1 : Fin 3), i_1 = i₁ ∨ i_1 = i₂ ∨ i_1 = i
hu : Finset.univ = {i₁, i₂, i}
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i)) r₁)
(Affine.Simplex.points t i)
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i)) r₂)
(Affine.Simplex.points t i)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i)
⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i)
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
have hss : SignType.sign (∑ i, w i) = 1 := by simp [hw]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
⊢ ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1
[PROOFSTEP]
simp [hw]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
have hs' := sign_sum Finset.univ_nonempty (SignType.sign (w i₃)) fun i _ => hs i
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
rw [hs'] at hss
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
simp_rw [hss, sign_eq_one_iff] at hs
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ w i₁ ∈ Set.Ioo 0 1
[PROOFSTEP]
refine' ⟨hs i₁, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i : Fin (2 + 1), w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ w i₁ < 1
[PROOFSTEP]
rw [hu] at hw
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i in {i₁, i₂, i₃}, w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ w i₁ < 1
[PROOFSTEP]
rw [Finset.sum_insert, Finset.sum_insert, Finset.sum_singleton] at hw
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : w i₁ + (w i₂ + w i₃) = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ w i₁ < 1
[PROOFSTEP]
by_contra hle
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : w i₁ + (w i₂ + w i₃) = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
hle : ¬w i₁ < 1
⊢ False
[PROOFSTEP]
rw [not_lt] at hle
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : w i₁ + (w i₂ + w i₃) = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
hle : 1 ≤ w i₁
⊢ False
[PROOFSTEP]
exact (hle.trans_lt (lt_add_of_pos_right _ (Left.add_pos (hs i₂) (hs i₃)))).ne' hw
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : w i₁ + ∑ x in {i₂, i₃}, w x = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ ¬i₂ ∈ {i₃}
[PROOFSTEP]
simpa using h₂₃
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝⁴ : LinearOrderedRing R
inst✝³ : AddCommGroup V
inst✝² : Module R V
inst✝¹ : AddTorsor V P
inst✝ : NoZeroSMulDivisors R V
t : Affine.Triangle R P
i₁ i₂ i₃ : Fin 3
h₁₂ : i₁ ≠ i₂
this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT
h₁₃ : i₁ ≠ i₃
h₂₃ : i₂ ≠ i₃
h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃
hu : Finset.univ = {i₁, i₂, i₃}
r₁ : R
hr₁0 : 0 < r₁
hr₁1 : r₁ < 1
h₁ :
Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁)
(Affine.Simplex.points t i₃)
r₂ : R
hr₂0 : 0 < r₂
hr₂1 : r₂ < 1
h₂ :
Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂)
(Affine.Simplex.points t i₃)
w : Fin (2 + 1) → R
hw : ∑ i in {i₁, i₂, i₃}, w i = 1
hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points)
h₁' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R
{↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁),
↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)}
h₂' :
↑(Finset.affineCombination R Finset.univ t.points) w ∈
affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂}
h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃)
h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃)
hss : ↑SignType.sign (w i₃) = 1
hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃)
hs : ∀ (i : Fin 3), 0 < w i
⊢ ¬i₁ ∈ {i₂, i₃}
[PROOFSTEP]
simpa [not_or] using ⟨h₁₂, h₁₃⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
⊢ Wbtw R x y z ↔ x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1
[PROOFSTEP]
rcases h with ⟨r, ⟨hr0, hr1⟩, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
r : R
hr0 : 0 ≤ r
hr1 : r ≤ 1
⊢ x = ↑(lineMap x z) r ∨ z ∈ ↑(lineMap x (↑(lineMap x z) r)) '' Set.Ici 1
[PROOFSTEP]
rcases hr0.lt_or_eq with (hr0' | rfl)
[GOAL]
case refine'_1.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
r : R
hr0 : 0 ≤ r
hr1 : r ≤ 1
hr0' : 0 < r
⊢ x = ↑(lineMap x z) r ∨ z ∈ ↑(lineMap x (↑(lineMap x z) r)) '' Set.Ici 1
[PROOFSTEP]
rw [Set.mem_image]
[GOAL]
case refine'_1.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
r : R
hr0 : 0 ≤ r
hr1 : r ≤ 1
hr0' : 0 < r
⊢ x = ↑(lineMap x z) r ∨ ∃ x_1, x_1 ∈ Set.Ici 1 ∧ ↑(lineMap x (↑(lineMap x z) r)) x_1 = z
[PROOFSTEP]
refine' Or.inr ⟨r⁻¹, one_le_inv hr0' hr1, _⟩
[GOAL]
case refine'_1.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
r : R
hr0 : 0 ≤ r
hr1 : r ≤ 1
hr0' : 0 < r
⊢ ↑(lineMap x (↑(lineMap x z) r)) r⁻¹ = z
[PROOFSTEP]
simp only [lineMap_apply, smul_smul, vadd_vsub]
[GOAL]
case refine'_1.intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
r : R
hr0 : 0 ≤ r
hr1 : r ≤ 1
hr0' : 0 < r
⊢ (r⁻¹ * r) • (z -ᵥ x) +ᵥ x = z
[PROOFSTEP]
rw [inv_mul_cancel hr0'.ne', one_smul, vsub_vadd]
[GOAL]
case refine'_1.intro.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
hr0 : 0 ≤ 0
hr1 : 0 ≤ 1
⊢ x = ↑(lineMap x z) 0 ∨ z ∈ ↑(lineMap x (↑(lineMap x z) 0)) '' Set.Ici 1
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1
⊢ Wbtw R x y z
[PROOFSTEP]
rcases h with (rfl | ⟨r, ⟨hr, rfl⟩⟩)
[GOAL]
case refine'_2.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
⊢ Wbtw R x x z
[PROOFSTEP]
exact wbtw_self_left _ _ _
[GOAL]
case refine'_2.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : r ∈ Set.Ici 1
⊢ Wbtw R x y (↑(lineMap x y) r)
[PROOFSTEP]
rw [Set.mem_Ici] at hr
[GOAL]
case refine'_2.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : 1 ≤ r
⊢ Wbtw R x y (↑(lineMap x y) r)
[PROOFSTEP]
refine' ⟨r⁻¹, ⟨inv_nonneg.2 (zero_le_one.trans hr), inv_le_one hr⟩, _⟩
[GOAL]
case refine'_2.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : 1 ≤ r
⊢ ↑(lineMap x (↑(lineMap x y) r)) r⁻¹ = y
[PROOFSTEP]
simp only [lineMap_apply, smul_smul, vadd_vsub]
[GOAL]
case refine'_2.inr.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : 1 ≤ r
⊢ (r⁻¹ * r) • (y -ᵥ x) +ᵥ x = y
[PROOFSTEP]
rw [inv_mul_cancel (one_pos.trans_le hr).ne', one_smul, vsub_vadd]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
hne : x ≠ y
⊢ z ∈ affineSpan R {x, y}
[PROOFSTEP]
rcases h.right_mem_image_Ici_of_left_ne hne with ⟨r, ⟨-, rfl⟩⟩
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
h : Wbtw R x y (↑(lineMap x y) r)
⊢ ↑(lineMap x y) r ∈ affineSpan R {x, y}
[PROOFSTEP]
exact lineMap_mem_affineSpan_pair _ _ _
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
⊢ Sbtw R x y z ↔ x ≠ y ∧ z ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
refine' ⟨fun h => ⟨h.left_ne, _⟩, fun h => _⟩
[GOAL]
case refine'_1
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Sbtw R x y z
⊢ z ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
obtain ⟨r, ⟨hr, rfl⟩⟩ := h.wbtw.right_mem_image_Ici_of_left_ne h.left_ne
[GOAL]
case refine'_1.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : r ∈ Set.Ici 1
h : Sbtw R x y (↑(lineMap x y) r)
⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
rw [Set.mem_Ici] at hr
[GOAL]
case refine'_1.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : 1 ≤ r
h : Sbtw R x y (↑(lineMap x y) r)
⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
rcases hr.lt_or_eq with (hrlt | rfl)
[GOAL]
case refine'_1.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
r : R
hr : 1 ≤ r
h : Sbtw R x y (↑(lineMap x y) r)
hrlt : 1 < r
⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
exact Set.mem_image_of_mem _ hrlt
[GOAL]
case refine'_1.intro.intro.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hr : 1 ≤ 1
h : Sbtw R x y (↑(lineMap x y) 1)
⊢ ↑(lineMap x y) 1 ∈ ↑(lineMap x y) '' Set.Ioi 1
[PROOFSTEP]
exfalso
[GOAL]
case refine'_1.intro.intro.inr.h
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hr : 1 ≤ 1
h : Sbtw R x y (↑(lineMap x y) 1)
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case refine'_2
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : x ≠ y ∧ z ∈ ↑(lineMap x y) '' Set.Ioi 1
⊢ Sbtw R x y z
[PROOFSTEP]
rcases h with ⟨hne, r, hr, rfl⟩
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : r ∈ Set.Ioi 1
⊢ Sbtw R x y (↑(lineMap x y) r)
[PROOFSTEP]
rw [Set.mem_Ioi] at hr
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : 1 < r
⊢ Sbtw R x y (↑(lineMap x y) r)
[PROOFSTEP]
refine'
⟨wbtw_iff_left_eq_or_right_mem_image_Ici.2
(Or.inr (Set.mem_image_of_mem _ (Set.mem_of_mem_of_subset hr Set.Ioi_subset_Ici_self))),
hne.symm, _⟩
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : 1 < r
⊢ y ≠ ↑(lineMap x y) r
[PROOFSTEP]
rw [lineMap_apply, ← @vsub_ne_zero V, vsub_vadd_eq_vsub_sub]
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : 1 < r
⊢ y -ᵥ x - r • (y -ᵥ x) ≠ 0
[PROOFSTEP]
nth_rw 1 [← one_smul R (y -ᵥ x)]
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : 1 < r
⊢ 1 • (y -ᵥ x) - r • (y -ᵥ x) ≠ 0
[PROOFSTEP]
rw [← sub_smul, smul_ne_zero_iff, vsub_ne_zero, sub_ne_zero]
[GOAL]
case refine'_2.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
hne : x ≠ y
r : R
hr : 1 < r
⊢ 1 ≠ r ∧ y ≠ x
[PROOFSTEP]
exact ⟨hr.ne, hne.symm⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
⊢ Wbtw R x y z ↔ z = y ∨ x ∈ ↑(lineMap z y) '' Set.Ici 1
[PROOFSTEP]
rw [wbtw_comm, wbtw_iff_left_eq_or_right_mem_image_Ici]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
⊢ Sbtw R x y z ↔ z ≠ y ∧ x ∈ ↑(lineMap z y) '' Set.Ioi 1
[PROOFSTEP]
rw [sbtw_comm, sbtw_iff_left_ne_and_right_mem_image_Ioi]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₁ ≤ r₂
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x)
[PROOFSTEP]
refine' ⟨r₁ / r₂, ⟨div_nonneg hr₁ (hr₁.trans hr₂), div_le_one_of_le hr₂ (hr₁.trans hr₂)⟩, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₁ ≤ r₂
⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x
[PROOFSTEP]
by_cases h : r₁ = 0
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₁ ≤ r₂
h : r₁ = 0
⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x
[PROOFSTEP]
simp [h]
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₁ ≤ r₂
h : ¬r₁ = 0
⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x
[PROOFSTEP]
simp [lineMap_apply, smul_smul, ((hr₁.lt_of_ne' h).trans_le hr₂).ne.symm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : 0 ≤ r₂
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
rcases le_total r₁ r₂ with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : 0 ≤ r₂
h : r₁ ≤ r₂
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
exact Or.inl (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₁ h)
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : 0 ≤ r₂
h : r₂ ≤ r₁
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
exact Or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₂ h)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ r₁
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x)
[PROOFSTEP]
convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x (-v) (Left.nonneg_neg_iff.2 hr₁) (neg_le_neg_iff.2 hr₂) using 1
[GOAL]
case h.e'_9
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ r₁
⊢ r₁ • v +ᵥ x = -r₁ • -v +ᵥ x
[PROOFSTEP]
rw [neg_smul_neg]
[GOAL]
case h.e'_10
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ r₁
⊢ r₂ • v +ᵥ x = -r₂ • -v +ᵥ x
[PROOFSTEP]
rw [neg_smul_neg]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ 0
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
rcases le_total r₁ r₂ with (h | h)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ 0
h : r₁ ≤ r₂
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
exact Or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₂ h)
[GOAL]
case inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : r₂ ≤ 0
h : r₂ ≤ r₁
⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x)
[PROOFSTEP]
exact Or.inl (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₁ h)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : 0 ≤ r₂
⊢ Wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x)
[PROOFSTEP]
convert
wbtw_smul_vadd_smul_vadd_of_nonneg_of_le (r₁ • v +ᵥ x) v (Left.nonneg_neg_iff.2 hr₁)
(neg_le_sub_iff_le_add.2 ((le_add_iff_nonneg_left r₁).2 hr₂)) using
1
[GOAL]
case h.e'_9
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : 0 ≤ r₂
⊢ x = -r₁ • v +ᵥ (r₁ • v +ᵥ x)
[PROOFSTEP]
simp [sub_smul, ← add_vadd]
[GOAL]
case h.e'_10
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : r₁ ≤ 0
hr₂ : 0 ≤ r₂
⊢ r₂ • v +ᵥ x = (r₂ - r₁) • v +ᵥ (r₁ • v +ᵥ x)
[PROOFSTEP]
simp [sub_smul, ← add_vadd]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₂ ≤ 0
⊢ Wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x)
[PROOFSTEP]
rw [wbtw_comm]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
r₁ r₂ : R
hr₁ : 0 ≤ r₁
hr₂ : r₂ ≤ 0
⊢ Wbtw R (r₂ • v +ᵥ x) x (r₁ • v +ᵥ x)
[PROOFSTEP]
exact wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg x v hr₂ hr₁
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w x y z : P
h₁ : Wbtw R w y z
h₂ : Wbtw R w x y
⊢ Wbtw R x y z
[PROOFSTEP]
rcases h₁ with ⟨t₁, ht₁, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w x z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
h₂ : Wbtw R w x (↑(lineMap w z) t₁)
⊢ Wbtw R x (↑(lineMap w z) t₁) z
[PROOFSTEP]
rcases h₂ with ⟨t₂, ht₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ Wbtw R (↑(lineMap w (↑(lineMap w z) t₁)) t₂) (↑(lineMap w z) t₁) z
[PROOFSTEP]
refine'
⟨(t₁ - t₂ * t₁) / (1 - t₂ * t₁),
⟨div_nonneg (sub_nonneg.2 (mul_le_of_le_one_left ht₁.1 ht₂.2)) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2)),
div_le_one_of_le (sub_le_sub_right ht₁.2 _) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2))⟩,
_⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ ↑(lineMap (↑(lineMap w (↑(lineMap w z) t₁)) t₂) z) ((t₁ - t₂ * t₁) / (1 - t₂ * t₁)) = ↑(lineMap w z) t₁
[PROOFSTEP]
simp only [lineMap_apply, smul_smul, ← add_vadd, vsub_vadd_eq_vsub_sub, smul_sub, ← sub_smul, ← add_smul, vadd_vsub,
vadd_right_cancel_iff, div_mul_eq_mul_div, div_sub_div_same]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ ((t₁ - t₂ * t₁ - (t₁ - t₂ * t₁) * (t₂ * t₁)) / (1 - t₂ * t₁) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
nth_rw 1 [← mul_one (t₁ - t₂ * t₁)]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ (((t₁ - t₂ * t₁) * 1 - (t₁ - t₂ * t₁) * (t₂ * t₁)) / (1 - t₂ * t₁) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
rw [← mul_sub, mul_div_assoc]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
by_cases h : 1 - t₂ * t₁ = 0
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : 1 - t₂ * t₁ = 0
⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
rw [sub_eq_zero, eq_comm] at h
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : t₂ * t₁ = 1
⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
rw [h]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : t₂ * t₁ = 1
⊢ ((t₁ - 1) * ((1 - 1) / (1 - 1)) + 1) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
suffices t₁ = 1 by simp [this]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : t₂ * t₁ = 1
this : t₁ = 1
⊢ ((t₁ - 1) * ((1 - 1) / (1 - 1)) + 1) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
simp [this]
[GOAL]
case pos
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : t₂ * t₁ = 1
⊢ t₁ = 1
[PROOFSTEP]
exact eq_of_le_of_not_lt ht₁.2 fun ht₁lt => (mul_lt_one_of_nonneg_of_lt_one_right ht₂.2 ht₁.1 ht₁lt).ne h
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : ¬1 - t₂ * t₁ = 0
⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
rw [div_self h]
[GOAL]
case neg
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w z : P
t₁ : R
ht₁ : t₁ ∈ Set.Icc 0 1
t₂ : R
ht₂ : t₂ ∈ Set.Icc 0 1
h : ¬1 - t₂ * t₁ = 0
⊢ ((t₁ - t₂ * t₁) * 1 + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
[PROOFSTEP]
ring_nf
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w x y z : P
h₁ : Wbtw R w x z
h₂ : Wbtw R x y z
⊢ Wbtw R w x y
[PROOFSTEP]
rw [wbtw_comm] at *
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
w x y z : P
h₁ : Wbtw R z x w
h₂ : Wbtw R z y x
⊢ Wbtw R y x w
[PROOFSTEP]
exact h₁.trans_left_right h₂
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ Collinear R {x, y, z}
[PROOFSTEP]
rw [collinear_iff_exists_forall_eq_smul_vadd]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ ∃ p₀ v, ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ p₀
[PROOFSTEP]
refine' ⟨x, z -ᵥ x, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
⊢ ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • (z -ᵥ x) +ᵥ x
[PROOFSTEP]
intro p hp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
p : P
hp : p ∈ {x, y, z}
⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x
[PROOFSTEP]
simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at hp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Wbtw R x y z
p : P
hp : p = x ∨ p = y ∨ p = z
⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x
[PROOFSTEP]
rcases hp with (rfl | rfl | rfl)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
y z p : P
h : Wbtw R p y z
⊢ ∃ r, p = r • (z -ᵥ p) +ᵥ p
[PROOFSTEP]
refine' ⟨0, _⟩
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
y z p : P
h : Wbtw R p y z
⊢ p = 0 • (z -ᵥ p) +ᵥ p
[PROOFSTEP]
simp
[GOAL]
case inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z p : P
h : Wbtw R x p z
⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x
[PROOFSTEP]
rcases h with ⟨t, -, rfl⟩
[GOAL]
case inr.inl.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
t : R
⊢ ∃ r, ↑(lineMap x z) t = r • (z -ᵥ x) +ᵥ x
[PROOFSTEP]
exact ⟨t, rfl⟩
[GOAL]
case inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y p : P
h : Wbtw R x y p
⊢ ∃ r, p = r • (p -ᵥ x) +ᵥ x
[PROOFSTEP]
refine' ⟨1, _⟩
[GOAL]
case inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y p : P
h : Wbtw R x y p
⊢ p = 1 • (p -ᵥ x) +ᵥ x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : Collinear R {x, y, z}
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
rw [collinear_iff_of_mem (Set.mem_insert _ _)] at h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : ∃ v, ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
rcases h with ⟨v, h⟩
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
v : V
h : ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at h
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
v : V
h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
have hy := h y (Or.inr (Or.inl rfl))
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
v : V
h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x
hy : ∃ r, y = r • v +ᵥ x
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
have hz := h z (Or.inr (Or.inr rfl))
[GOAL]
case intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
v : V
h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x
hy : ∃ r, y = r • v +ᵥ x
hz : ∃ r, z = r • v +ᵥ x
⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y
[PROOFSTEP]
rcases hy with ⟨ty, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x z : P
v : V
hz : ∃ r, z = r • v +ᵥ x
ty : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = z → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x (ty • v +ᵥ x) z ∨ Wbtw R (ty • v +ᵥ x) z x ∨ Wbtw R z x (ty • v +ᵥ x)
[PROOFSTEP]
rcases hz with ⟨tz, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rcases lt_trichotomy ty 0 with (hy0 | rfl | hy0)
[GOAL]
case intro.intro.intro.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : ty < 0
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rcases lt_trichotomy tz 0 with (hz0 | rfl | hz0)
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : ty < 0
hz0 : tz < 0
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rw [wbtw_comm (z := x)]
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : ty < 0
hz0 : tz < 0
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rw [← or_assoc]
[GOAL]
case intro.intro.intro.inl.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : ty < 0
hz0 : tz < 0
⊢ (Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x)) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
exact Or.inl (wbtw_or_wbtw_smul_vadd_of_nonpos _ _ hy0.le hz0.le)
[GOAL]
case intro.intro.intro.inl.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty : R
hy0 : ty < 0
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = 0 • v +ᵥ x → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x (ty • v +ᵥ x) (0 • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (0 • v +ᵥ x) x ∨ Wbtw R (0 • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inl.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : ty < 0
hz0 : 0 < tz
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
exact Or.inr (Or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos _ _ hz0.le hy0.le))
[GOAL]
case intro.intro.intro.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
tz : R
h : ∀ (p : P), p = x ∨ p = 0 • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x (0 • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (0 • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (0 • v +ᵥ x)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : 0 < ty
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rcases lt_trichotomy tz 0 with (hz0 | rfl | hz0)
[GOAL]
case intro.intro.intro.inr.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : 0 < ty
hz0 : tz < 0
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
refine' Or.inr (Or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg _ _ hz0.le hy0.le))
[GOAL]
case intro.intro.intro.inr.inr.inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty : R
hy0 : 0 < ty
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = 0 • v +ᵥ x → ∃ r, p = r • v +ᵥ x
⊢ Wbtw R x (ty • v +ᵥ x) (0 • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (0 • v +ᵥ x) x ∨ Wbtw R (0 • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.inr.inr.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : 0 < ty
hz0 : 0 < tz
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rw [wbtw_comm (z := x)]
[GOAL]
case intro.intro.intro.inr.inr.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : 0 < ty
hz0 : 0 < tz
⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
rw [← or_assoc]
[GOAL]
case intro.intro.intro.inr.inr.inr.inr
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x : P
v : V
ty tz : R
h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x
hy0 : 0 < ty
hz0 : 0 < tz
⊢ (Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x)) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x)
[PROOFSTEP]
exact Or.inl (wbtw_or_wbtw_smul_vadd_of_nonneg _ _ hy0.le hz0.le)
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
⊢ Wbtw R x y z ↔ SameRay R (y -ᵥ x) (z -ᵥ y)
[PROOFSTEP]
refine' ⟨Wbtw.sameRay_vsub, fun h => _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : SameRay R (y -ᵥ x) (z -ᵥ y)
⊢ Wbtw R x y z
[PROOFSTEP]
rcases h with (h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩)
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : y -ᵥ x = 0
⊢ Wbtw R x y z
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : y = x
⊢ Wbtw R x y z
[PROOFSTEP]
simp [h]
[GOAL]
case inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : z -ᵥ y = 0
⊢ Wbtw R x y z
[PROOFSTEP]
rw [vsub_eq_zero_iff_eq] at h
[GOAL]
case inr.inl
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
h : z = y
⊢ Wbtw R x y z
[PROOFSTEP]
simp [h]
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
⊢ Wbtw R x y z
[PROOFSTEP]
refine'
⟨r₂ / (r₁ + r₂),
⟨div_nonneg hr₂.le (add_nonneg hr₁.le hr₂.le),
div_le_one_of_le (le_add_of_nonneg_left hr₁.le) (add_nonneg hr₁.le hr₂.le)⟩,
_⟩
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
⊢ ↑(lineMap x z) (r₂ / (r₁ + r₂)) = y
[PROOFSTEP]
have h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y := by simp [h, hr₂.ne']
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
⊢ z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
[PROOFSTEP]
simp [h, hr₂.ne']
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
⊢ ↑(lineMap x z) (r₂ / (r₁ + r₂)) = y
[PROOFSTEP]
rw [eq_comm]
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
⊢ y = ↑(lineMap x z) (r₂ / (r₁ + r₂))
[PROOFSTEP]
simp only [lineMap_apply, h', vadd_vsub_assoc, smul_smul, ← add_smul, eq_vadd_iff_vsub_eq, smul_add]
[GOAL]
case inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
⊢ y -ᵥ x = (r₂ / (r₁ + r₂) * (r₂⁻¹ * r₁) + r₂ / (r₁ + r₂)) • (y -ᵥ x)
[PROOFSTEP]
convert (one_smul R (y -ᵥ x)).symm
[GOAL]
case h.e'_3.h.e'_5
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
⊢ r₂ / (r₁ + r₂) * (r₂⁻¹ * r₁) + r₂ / (r₁ + r₂) = 1
[PROOFSTEP]
field_simp [(add_pos hr₁ hr₂).ne', hr₂.ne']
[GOAL]
case h.e'_3.h.e'_5
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y z : P
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y)
h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y
⊢ r₂ * r₁ * (r₁ + r₂) + r₂ * ((r₁ + r₂) * r₂) = (r₁ + r₂) * r₂ * (r₁ + r₂)
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ Wbtw R y x (↑(pointReflection R x) y)
[PROOFSTEP]
refine' ⟨2⁻¹, ⟨by norm_num, by norm_num⟩, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ 0 ≤ 2⁻¹
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ 2⁻¹ ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ ↑(lineMap y (↑(pointReflection R x) y)) 2⁻¹ = x
[PROOFSTEP]
rw [lineMap_apply, pointReflection_apply, vadd_vsub_assoc, ← two_smul R (x -ᵥ y)]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ 2⁻¹ • 2 • (x -ᵥ y) +ᵥ y = x
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h : x ≠ y
⊢ Sbtw R y x (↑(pointReflection R x) y)
[PROOFSTEP]
refine' ⟨wbtw_pointReflection _ _ _, h, _⟩
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h : x ≠ y
⊢ x ≠ ↑(pointReflection R x) y
[PROOFSTEP]
nth_rw 1 [← pointReflection_self R x]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h : x ≠ y
⊢ ↑(pointReflection R x) x ≠ ↑(pointReflection R x) y
[PROOFSTEP]
exact (pointReflection_involutive R x).injective.ne h
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ Wbtw R x (midpoint R x y) y
[PROOFSTEP]
convert wbtw_pointReflection R (midpoint R x y) x
[GOAL]
case h.e'_10
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ y = ↑(pointReflection R (midpoint R x y)) x
[PROOFSTEP]
rw [pointReflection_midpoint_left]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h : x ≠ y
⊢ Sbtw R x (midpoint R x y) y
[PROOFSTEP]
have h : midpoint R x y ≠ x := by simp [h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h : x ≠ y
⊢ midpoint R x y ≠ x
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h✝ : x ≠ y
h : midpoint R x y ≠ x
⊢ Sbtw R x (midpoint R x y) y
[PROOFSTEP]
convert sbtw_pointReflection_of_ne R h
[GOAL]
case h.e'_10
R : Type u_1
V : Type u_2
V' : Type u_3
P : Type u_4
P' : Type u_5
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
h✝ : x ≠ y
h : midpoint R x y ≠ x
⊢ y = ↑(pointReflection R (midpoint R x y)) x
[PROOFSTEP]
rw [pointReflection_midpoint_left]
| {"mathlib_filename": "Mathlib.Analysis.Convex.Between", "llama_tokens": 164742} |
[GOAL]
b x y : ℝ
⊢ logb b 0 = 0
[PROOFSTEP]
simp [logb]
[GOAL]
b x y : ℝ
⊢ logb b 1 = 0
[PROOFSTEP]
simp [logb]
[GOAL]
b x✝ y x : ℝ
⊢ logb b |x| = logb b x
[PROOFSTEP]
rw [logb, logb, log_abs]
[GOAL]
b x✝ y x : ℝ
⊢ logb b (-x) = logb b x
[PROOFSTEP]
rw [← logb_abs x, ← logb_abs (-x), abs_neg]
[GOAL]
b x y : ℝ
hx : x ≠ 0
hy : y ≠ 0
⊢ logb b (x * y) = logb b x + logb b y
[PROOFSTEP]
simp_rw [logb, log_mul hx hy, add_div]
[GOAL]
b x y : ℝ
hx : x ≠ 0
hy : y ≠ 0
⊢ logb b (x / y) = logb b x - logb b y
[PROOFSTEP]
simp_rw [logb, log_div hx hy, sub_div]
[GOAL]
b x✝ y x : ℝ
⊢ logb b x⁻¹ = -logb b x
[PROOFSTEP]
simp [logb, neg_div]
[GOAL]
b✝ x y a b : ℝ
⊢ (logb a b)⁻¹ = logb b a
[PROOFSTEP]
simp_rw [logb, inv_div]
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹
[PROOFSTEP]
simp_rw [inv_logb]
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ logb c (a * b) = logb c a + logb c b
[PROOFSTEP]
exact logb_mul h₁ h₂
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹
[PROOFSTEP]
simp_rw [inv_logb]
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ logb c (a / b) = logb c a - logb c b
[PROOFSTEP]
exact logb_div h₁ h₂
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹
[PROOFSTEP]
rw [← inv_logb_mul_base h₁ h₂ c, inv_inv]
[GOAL]
b✝ x y a b : ℝ
h₁ : a ≠ 0
h₂ : b ≠ 0
c : ℝ
⊢ logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹
[PROOFSTEP]
rw [← inv_logb_div_base h₁ h₂ c, inv_inv]
[GOAL]
b✝ x y a b c : ℝ
h₁ : b ≠ 0
h₂ : b ≠ 1
h₃ : b ≠ -1
⊢ logb a b * logb b c = logb a c
[PROOFSTEP]
unfold logb
[GOAL]
b✝ x y a b c : ℝ
h₁ : b ≠ 0
h₂ : b ≠ 1
h₃ : b ≠ -1
⊢ log b / log a * (log c / log b) = log c / log a
[PROOFSTEP]
rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
⊢ log b ≠ 0
[PROOFSTEP]
have b_ne_zero : b ≠ 0
[GOAL]
case b_ne_zero
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
⊢ b ≠ 0
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 ⊢ log b ≠ 0
[PROOFSTEP]
linarith
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
b_ne_zero : b ≠ 0
⊢ log b ≠ 0
[PROOFSTEP]
have b_ne_minus_one : b ≠ -1
[GOAL]
case b_ne_minus_one
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
b_ne_zero : b ≠ 0
⊢ b ≠ -1
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 b_ne_minus_one : b ≠ -1 ⊢ log b ≠ 0
[PROOFSTEP]
linarith
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
b_ne_zero : b ≠ 0
b_ne_minus_one : b ≠ -1
⊢ log b ≠ 0
[PROOFSTEP]
simp [b_ne_one, b_ne_zero, b_ne_minus_one]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
⊢ logb b (b ^ x) = x
[PROOFSTEP]
rw [logb, div_eq_iff, log_rpow b_pos]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
⊢ log b ≠ 0
[PROOFSTEP]
exact log_b_ne_zero b_pos b_ne_one
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ b ^ logb b x = |x|
[PROOFSTEP]
apply log_injOn_pos
[GOAL]
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ b ^ logb b x ∈ Ioi 0
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ |x| ∈ Ioi 0
case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x|
[PROOFSTEP]
simp only [Set.mem_Ioi]
[GOAL]
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ 0 < b ^ logb b x
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ |x| ∈ Ioi 0
case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x|
[PROOFSTEP]
apply rpow_pos_of_pos b_pos
[GOAL]
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ |x| ∈ Ioi 0
case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x|
[PROOFSTEP]
simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff]
[GOAL]
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ log (b ^ logb b x) = log |x|
[PROOFSTEP]
rw [log_rpow b_pos, logb, log_abs]
[GOAL]
case a
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x ≠ 0
⊢ log x / log b * log b = log x
[PROOFSTEP]
field_simp [log_b_ne_zero b_pos b_ne_one]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : 0 < x
⊢ b ^ logb b x = x
[PROOFSTEP]
rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne']
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : 0 < x
⊢ |x| = x
[PROOFSTEP]
exact abs_of_pos hx
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x < 0
⊢ b ^ logb b x = -x
[PROOFSTEP]
rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x < 0
⊢ |x| = -x
[PROOFSTEP]
exact abs_of_neg hx
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
⊢ SurjOn (logb b) (Iio 0) univ
[PROOFSTEP]
intro x _
[GOAL]
b x✝ y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
x : ℝ
a✝ : x ∈ univ
⊢ x ∈ logb b '' Iio 0
[PROOFSTEP]
use-b ^ x
[GOAL]
case h
b x✝ y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
x : ℝ
a✝ : x ∈ univ
⊢ -b ^ x ∈ Iio 0 ∧ logb b (-b ^ x) = x
[PROOFSTEP]
constructor
[GOAL]
case h.left
b x✝ y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
x : ℝ
a✝ : x ∈ univ
⊢ -b ^ x ∈ Iio 0
[PROOFSTEP]
simp only [Right.neg_neg_iff, Set.mem_Iio]
[GOAL]
case h.left
b x✝ y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
x : ℝ
a✝ : x ∈ univ
⊢ 0 < b ^ x
[PROOFSTEP]
apply rpow_pos_of_pos b_pos
[GOAL]
case h.right
b x✝ y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
x : ℝ
a✝ : x ∈ univ
⊢ logb b (-b ^ x) = x
[PROOFSTEP]
rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one]
[GOAL]
b x y : ℝ
hb : 1 < b
⊢ 0 < b
[PROOFSTEP]
linarith
-- Porting note: prime added to avoid clashing with `b_ne_one` further down the file
[GOAL]
b x y : ℝ
hb : 1 < b
⊢ b ≠ 1
[PROOFSTEP]
linarith
[GOAL]
b x y : ℝ
hb : 1 < b
h : 0 < x
h₁ : 0 < y
⊢ logb b x ≤ logb b y ↔ x ≤ y
[PROOFSTEP]
rw [logb, logb, div_le_div_right (log_pos hb), log_le_log h h₁]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
hxy : x < y
⊢ logb b x < logb b y
[PROOFSTEP]
rw [logb, logb, div_lt_div_right (log_pos hb)]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
hxy : x < y
⊢ log x < log y
[PROOFSTEP]
exact log_lt_log hx hxy
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
hy : 0 < y
⊢ logb b x < logb b y ↔ x < y
[PROOFSTEP]
rw [logb, logb, div_lt_div_right (log_pos hb)]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
hy : 0 < y
⊢ log x < log y ↔ x < y
[PROOFSTEP]
exact log_lt_log_iff hx hy
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ logb b x ≤ y ↔ x ≤ b ^ y
[PROOFSTEP]
rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ logb b x < y ↔ x < b ^ y
[PROOFSTEP]
rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx]
[GOAL]
b x y : ℝ
hb : 1 < b
hy : 0 < y
⊢ x ≤ logb b y ↔ b ^ x ≤ y
[PROOFSTEP]
rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy]
[GOAL]
b x y : ℝ
hb : 1 < b
hy : 0 < y
⊢ x < logb b y ↔ b ^ x < y
[PROOFSTEP]
rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ 0 < logb b x ↔ 1 < x
[PROOFSTEP]
rw [← @logb_one b]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ logb b 1 < logb b x ↔ 1 < x
[PROOFSTEP]
rw [logb_lt_logb_iff hb zero_lt_one hx]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 1 < x
⊢ 0 < logb b x
[PROOFSTEP]
rw [logb_pos_iff hb (lt_trans zero_lt_one hx)]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 1 < x
⊢ 1 < x
[PROOFSTEP]
exact hx
[GOAL]
b x y : ℝ
hb : 1 < b
h : 0 < x
⊢ logb b x < 0 ↔ x < 1
[PROOFSTEP]
rw [← logb_one]
[GOAL]
b x y : ℝ
hb : 1 < b
h : 0 < x
⊢ logb b x < logb ?m.14910 1 ↔ x < 1
b x y : ℝ hb : 1 < b h : 0 < x ⊢ ℝ
[PROOFSTEP]
exact logb_lt_logb_iff hb h zero_lt_one
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ 0 ≤ logb b x ↔ 1 ≤ x
[PROOFSTEP]
rw [← not_lt, logb_neg_iff hb hx, not_lt]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 < x
⊢ logb b x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
rw [← not_lt, logb_pos_iff hb hx, not_lt]
[GOAL]
b x y : ℝ
hb : 1 < b
hx : 0 ≤ x
⊢ logb b x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hx)
[GOAL]
case inl
b y : ℝ
hb : 1 < b
hx : 0 ≤ 0
⊢ logb b 0 ≤ 0 ↔ 0 ≤ 1
[PROOFSTEP]
simp [le_refl, zero_le_one]
[GOAL]
case inr
b x y : ℝ
hb : 1 < b
hx✝ : 0 ≤ x
hx : 0 < x
⊢ logb b x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
exact logb_nonpos_iff hb hx
[GOAL]
b x y : ℝ
hb : 1 < b
⊢ StrictAntiOn (logb b) (Iio 0)
[PROOFSTEP]
rintro x (hx : x < 0) y (hy : y < 0) hxy
[GOAL]
b x✝ y✝ : ℝ
hb : 1 < b
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ logb b y < logb b x
[PROOFSTEP]
rw [← logb_abs y, ← logb_abs x]
[GOAL]
b x✝ y✝ : ℝ
hb : 1 < b
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ logb b |y| < logb b |x|
[PROOFSTEP]
refine' logb_lt_logb hb (abs_pos.2 hy.ne) _
[GOAL]
b x✝ y✝ : ℝ
hb : 1 < b
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ |y| < |x|
[PROOFSTEP]
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
⊢ b ≠ 1
[PROOFSTEP]
linarith
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
h : 0 < x
h₁ : 0 < y
⊢ logb b x ≤ logb b y ↔ y ≤ x
[PROOFSTEP]
rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log h₁ h]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hxy : x < y
⊢ logb b y < logb b x
[PROOFSTEP]
rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hxy : x < y
⊢ log x < log y
[PROOFSTEP]
exact log_lt_log hx hxy
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hy : 0 < y
⊢ logb b x < logb b y ↔ y < x
[PROOFSTEP]
rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hy : 0 < y
⊢ log y < log x ↔ y < x
[PROOFSTEP]
exact log_lt_log_iff hy hx
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
⊢ logb b x ≤ y ↔ b ^ y ≤ x
[PROOFSTEP]
rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
⊢ logb b x < y ↔ b ^ y < x
[PROOFSTEP]
rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hy : 0 < y
⊢ x ≤ logb b y ↔ y ≤ b ^ x
[PROOFSTEP]
rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hy : 0 < y
⊢ x < logb b y ↔ y < b ^ x
[PROOFSTEP]
rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
⊢ 0 < logb b x ↔ x < 1
[PROOFSTEP]
rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hx' : x < 1
⊢ 0 < logb b x
[PROOFSTEP]
rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hx' : x < 1
⊢ x < 1
[PROOFSTEP]
exact hx'
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
h : 0 < x
⊢ logb b x < 0 ↔ 1 < x
[PROOFSTEP]
rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
⊢ 0 ≤ logb b x ↔ x ≤ 1
[PROOFSTEP]
rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hx' : x ≤ 1
⊢ 0 ≤ logb b x
[PROOFSTEP]
rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
hx' : x ≤ 1
⊢ x ≤ 1
[PROOFSTEP]
exact hx'
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
hx : 0 < x
⊢ logb b x ≤ 0 ↔ 1 ≤ x
[PROOFSTEP]
rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
⊢ StrictMonoOn (logb b) (Iio 0)
[PROOFSTEP]
rintro x (hx : x < 0) y (hy : y < 0) hxy
[GOAL]
b x✝ y✝ : ℝ
b_pos : 0 < b
b_lt_one : b < 1
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ logb b x < logb b y
[PROOFSTEP]
rw [← logb_abs y, ← logb_abs x]
[GOAL]
b x✝ y✝ : ℝ
b_pos : 0 < b
b_lt_one : b < 1
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ logb b |x| < logb b |y|
[PROOFSTEP]
refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _
[GOAL]
b x✝ y✝ : ℝ
b_pos : 0 < b
b_lt_one : b < 1
x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ |y| < |x|
[PROOFSTEP]
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
⊢ Tendsto (logb b) atTop atBot
[PROOFSTEP]
rw [tendsto_atTop_atBot]
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
⊢ ∀ (b_1 : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ b_1
[PROOFSTEP]
intro e
[GOAL]
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e : ℝ
⊢ ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ e
[PROOFSTEP]
use 1 ⊔ b ^ e
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e : ℝ
⊢ ∀ (a : ℝ), 1 ⊔ b ^ e ≤ a → logb b a ≤ e
[PROOFSTEP]
intro a
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e a : ℝ
⊢ 1 ⊔ b ^ e ≤ a → logb b a ≤ e
[PROOFSTEP]
simp only [and_imp, sup_le_iff]
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e a : ℝ
⊢ 1 ≤ a → b ^ e ≤ a → logb b a ≤ e
[PROOFSTEP]
intro ha
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e a : ℝ
ha : 1 ≤ a
⊢ b ^ e ≤ a → logb b a ≤ e
[PROOFSTEP]
rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one]
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e a : ℝ
ha : 1 ≤ a
⊢ b ^ e ≤ a → b ^ e ≤ a
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ 0 < a
[PROOFSTEP]
tauto
[GOAL]
case h
b x y : ℝ
b_pos : 0 < b
b_lt_one : b < 1
e a : ℝ
ha : 1 ≤ a
⊢ 0 < a
[PROOFSTEP]
exact lt_of_lt_of_le zero_lt_one ha
[GOAL]
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr : 0 ≤ r
⊢ ⌊logb (↑b) r⌋ = Int.log b r
[PROOFSTEP]
obtain rfl | hr := hr.eq_or_lt
[GOAL]
case inl
b✝ x y : ℝ
b : ℕ
hb : 1 < b
hr : 0 ≤ 0
⊢ ⌊logb (↑b) 0⌋ = Int.log b 0
[PROOFSTEP]
rw [logb_zero, Int.log_zero_right, Int.floor_zero]
[GOAL]
case inr
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
⊢ ⌊logb (↑b) r⌋ = Int.log b r
[PROOFSTEP]
have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
[GOAL]
case inr
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ⌊logb (↑b) r⌋ = Int.log b r
[PROOFSTEP]
apply le_antisymm
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ⌊logb (↑b) r⌋ ≤ Int.log b r
[PROOFSTEP]
rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b]
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ r
[PROOFSTEP]
refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr)
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ ↑b ^ logb (↑b) r
[PROOFSTEP]
exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _)
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ Int.log b r ≤ ⌊logb (↑b) r⌋
[PROOFSTEP]
rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast]
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ↑b ^ Int.log b r ≤ r
[PROOFSTEP]
exact Int.zpow_log_le_self hb hr
[GOAL]
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr : 0 ≤ r
⊢ ⌈logb (↑b) r⌉ = Int.clog b r
[PROOFSTEP]
obtain rfl | hr := hr.eq_or_lt
[GOAL]
case inl
b✝ x y : ℝ
b : ℕ
hb : 1 < b
hr : 0 ≤ 0
⊢ ⌈logb (↑b) 0⌉ = Int.clog b 0
[PROOFSTEP]
rw [logb_zero, Int.clog_zero_right, Int.ceil_zero]
[GOAL]
case inr
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
⊢ ⌈logb (↑b) r⌉ = Int.clog b r
[PROOFSTEP]
have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
[GOAL]
case inr
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ⌈logb (↑b) r⌉ = Int.clog b r
[PROOFSTEP]
apply le_antisymm
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ⌈logb (↑b) r⌉ ≤ Int.clog b r
[PROOFSTEP]
rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast]
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ r ≤ ↑b ^ Int.clog b r
[PROOFSTEP]
refine' Int.self_le_zpow_clog hb r
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ Int.clog b r ≤ ⌈logb (↑b) r⌉
[PROOFSTEP]
rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b]
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ r ≤ ↑b ^ ↑⌈logb (↑b) r⌉
[PROOFSTEP]
refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _
[GOAL]
case inr.a
b✝ x y : ℝ
b : ℕ
r : ℝ
hb : 1 < b
hr✝ : 0 ≤ r
hr : 0 < r
hb1' : 1 < ↑b
⊢ ↑b ^ logb (↑b) r ≤ ↑b ^ ↑⌈logb (↑b) r⌉
[PROOFSTEP]
exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _)
[GOAL]
b x y : ℝ
⊢ logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
simp_rw [logb, div_eq_zero_iff, log_eq_zero]
[GOAL]
b x y : ℝ
⊢ (x = 0 ∨ x = 1 ∨ x = -1) ∨ b = 0 ∨ b = 1 ∨ b = -1 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
tauto
[GOAL]
b x y : ℝ
α : Type u_1
s : Finset α
f : α → ℝ
hf : ∀ (x : α), x ∈ s → f x ≠ 0
⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
[PROOFSTEP]
classical
induction' s using Finset.induction_on with a s ha ih
· simp
simp only [Finset.mem_insert, forall_eq_or_imp] at hf
simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
[GOAL]
b x y : ℝ
α : Type u_1
s : Finset α
f : α → ℝ
hf : ∀ (x : α), x ∈ s → f x ≠ 0
⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
[PROOFSTEP]
induction' s using Finset.induction_on with a s ha ih
[GOAL]
case empty
b x y : ℝ
α : Type u_1
s : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s → f x ≠ 0
hf : ∀ (x : α), x ∈ ∅ → f x ≠ 0
⊢ logb b (∏ i in ∅, f i) = ∑ i in ∅, logb b (f i)
[PROOFSTEP]
simp
[GOAL]
case insert
b x y : ℝ
α : Type u_1
s✝ : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0
a : α
s : Finset α
ha : ¬a ∈ s
ih : (∀ (x : α), x ∈ s → f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
hf : ∀ (x : α), x ∈ insert a s → f x ≠ 0
⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i)
[PROOFSTEP]
simp only [Finset.mem_insert, forall_eq_or_imp] at hf
[GOAL]
case insert
b x y : ℝ
α : Type u_1
s✝ : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0
a : α
s : Finset α
ha : ¬a ∈ s
ih : (∀ (x : α), x ∈ s → f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
hf : f a ≠ 0 ∧ ∀ (a : α), a ∈ s → f a ≠ 0
⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i)
[PROOFSTEP]
simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Base", "llama_tokens": 11375} |
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul : ∀ (a : 𝕜) (x : E), f (a • x) = ‖a‖ * f x
⊢ f 0 = 0
[PROOFSTEP]
rw [← zero_smul 𝕜 (0 : E), smul, norm_zero, zero_mul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul : ∀ (a : 𝕜) (x : E), f (a • x) = ‖a‖ * f x
x : E
⊢ f (-x) = f x
[PROOFSTEP]
rw [← neg_one_smul 𝕜, smul, norm_neg, ← smul, one_smul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
⊢ f (r • x) = ‖r‖ * f x
[PROOFSTEP]
refine' le_antisymm (smul_le r x) _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
⊢ ‖r‖ * f x ≤ f (r • x)
[PROOFSTEP]
by_cases h : r = 0
[GOAL]
case pos
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
h : r = 0
⊢ ‖r‖ * f x ≤ f (r • x)
[PROOFSTEP]
simp [h, map_zero]
[GOAL]
case neg
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
h : ¬r = 0
⊢ ‖r‖ * f x ≤ f (r • x)
[PROOFSTEP]
rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
[GOAL]
case neg
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
h : ¬r = 0
⊢ ‖r‖⁻¹ * (‖r‖ * f x) ≤ ‖r‖⁻¹ * f (r • x)
[PROOFSTEP]
rw [inv_mul_cancel_left₀ (norm_ne_zero_iff.mpr h)]
[GOAL]
case neg
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x
r : 𝕜
x : E
h : ¬r = 0
⊢ f x ≤ ‖r‖⁻¹ * f (r • x)
[PROOFSTEP]
specialize smul_le r⁻¹ (r • x)
[GOAL]
case neg
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
r : 𝕜
x : E
h : ¬r = 0
smul_le : f (r⁻¹ • r • x) ≤ ‖r⁻¹‖ * f (r • x)
⊢ f x ≤ ‖r‖⁻¹ * f (r • x)
[PROOFSTEP]
rw [norm_inv] at smul_le
[GOAL]
case neg
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
r : 𝕜
x : E
h : ¬r = 0
smul_le : f (r⁻¹ • r • x) ≤ ‖r‖⁻¹ * f (r • x)
⊢ f x ≤ ‖r‖⁻¹ * f (r • x)
[PROOFSTEP]
convert smul_le
[GOAL]
case h.e'_3.h.e'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
f : E → ℝ
map_zero : f 0 = 0
add_le : ∀ (x y : E), f (x + y) ≤ f x + f y
r : 𝕜
x : E
h : ¬r = 0
smul_le : f (r⁻¹ • r • x) ≤ ‖r‖⁻¹ * f (r • x)
⊢ x = r⁻¹ • r • x
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddGroup E
inst✝ : SMul 𝕜 E
f g : Seminorm 𝕜 E
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨⟨_⟩⟩
[GOAL]
case mk.mk
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddGroup E
inst✝ : SMul 𝕜 E
g : Seminorm 𝕜 E
toFun✝ : E → ℝ
map_zero'✝ : toFun✝ 0 = 0
add_le'✝ : ∀ (r s : E), toFun✝ (r + s) ≤ toFun✝ r + toFun✝ s
neg'✝ : ∀ (r : E), toFun✝ (-r) = toFun✝ r
smul'✝ :
∀ (a : 𝕜) (x : E),
AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } (a • x) =
‖a‖ * AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } x
h :
(fun f => f.toFun)
{ toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ },
smul' := smul'✝ } =
(fun f => f.toFun) g
⊢ { toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ },
smul' := smul'✝ } =
g
[PROOFSTEP]
rcases g with ⟨⟨_⟩⟩
[GOAL]
case mk.mk.mk.mk
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddGroup E
inst✝ : SMul 𝕜 E
toFun✝¹ : E → ℝ
map_zero'✝¹ : toFun✝¹ 0 = 0
add_le'✝¹ : ∀ (r s : E), toFun✝¹ (r + s) ≤ toFun✝¹ r + toFun✝¹ s
neg'✝¹ : ∀ (r : E), toFun✝¹ (-r) = toFun✝¹ r
smul'✝¹ :
∀ (a : 𝕜) (x : E),
AddGroupSeminorm.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ } x
toFun✝ : E → ℝ
map_zero'✝ : toFun✝ 0 = 0
add_le'✝ : ∀ (r s : E), toFun✝ (r + s) ≤ toFun✝ r + toFun✝ s
neg'✝ : ∀ (r : E), toFun✝ (-r) = toFun✝ r
smul'✝ :
∀ (a : 𝕜) (x : E),
AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } (a • x) =
‖a‖ * AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } x
h :
(fun f => f.toFun)
{ toAddGroupSeminorm := { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ },
smul' := smul'✝¹ } =
(fun f => f.toFun)
{ toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ },
smul' := smul'✝ }
⊢ { toAddGroupSeminorm := { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ },
smul' := smul'✝¹ } =
{ toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ },
smul' := smul'✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : SeminormedRing 𝕜
inst✝⁴ : AddGroup E
inst✝³ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
c : 𝕜
x y : E
r✝ : ℝ
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
r : R
p : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := r • p.toAddGroupSeminorm
x✝¹ : 𝕜
x✝ : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => r • ↑p x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(x✝¹ • x✝) =
‖x✝¹‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => r • ↑p x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x✝
[PROOFSTEP]
simp only [← smul_one_smul ℝ≥0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : SeminormedRing 𝕜
inst✝⁴ : AddGroup E
inst✝³ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
c : 𝕜
x y : E
r✝ : ℝ
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
r : R
p : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := r • p.toAddGroupSeminorm
x✝¹ : 𝕜
x✝ : E
⊢ ↑(r • 1) * ↑p (x✝¹ • x✝) = ‖x✝¹‖ * (↑(r • 1) * ↑p x✝)
[PROOFSTEP]
rw [map_smul_eq_mul, mul_left_comm]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
c : 𝕜
x✝ y : E
r : ℝ
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm + q.toAddGroupSeminorm
a : 𝕜
x : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ↑p x + ↑q x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ↑p x + ↑q x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x
[PROOFSTEP]
simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
x✝¹ : Seminorm 𝕜 E
x✝ : ℕ
⊢ ↑(x✝ • x✝¹) = x✝ • ↑x✝¹
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Monoid R
inst✝² : MulAction R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(c • x) = c • ↑x
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Monoid R
inst✝² : MulAction R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
c✝ : R
x✝ : Seminorm 𝕜 E
⊢ ↑(c✝ • x✝) = c✝ • ↑x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Monoid R
inst✝² : DistribMulAction R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(coeFnAddMonoidHom 𝕜 E) (c • x) = c • ↑(coeFnAddMonoidHom 𝕜 E) x
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Monoid R
inst✝² : DistribMulAction R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
c✝ : R
x✝ : Seminorm 𝕜 E
⊢ ↑(coeFnAddMonoidHom 𝕜 E) (c✝ • x✝) = c✝ • ↑(coeFnAddMonoidHom 𝕜 E) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Semiring R
inst✝² : Module R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(coeFnAddMonoidHom 𝕜 E) (c • x) = c • ↑(coeFnAddMonoidHom 𝕜 E) x
[PROOFSTEP]
intros
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddGroup E
inst✝⁴ : SMul 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
x y : E
r : ℝ
inst✝³ : Semiring R
inst✝² : Module R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
c✝ : R
x✝ : Seminorm 𝕜 E
⊢ ↑(coeFnAddMonoidHom 𝕜 E) (c✝ • x✝) = c✝ • ↑(coeFnAddMonoidHom 𝕜 E) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : SeminormedRing 𝕜
inst✝⁴ : AddGroup E
inst✝³ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
c : 𝕜
x✝ y✝ : E
r✝ : ℝ
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
r : R
p q : Seminorm 𝕜 E
x y : ℝ
⊢ r • max x y = max (r • x) (r • y)
[PROOFSTEP]
simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝ≥0 r (_ : ℝ)] using
mul_max_of_nonneg x y (r • (1 : ℝ≥0) : ℝ≥0).coe_nonneg
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
src✝ : AddGroupSeminorm E := AddGroupSeminorm.comp p.toAddGroupSeminorm (LinearMap.toAddMonoidHom f)
x✝¹ : 𝕜
x✝ : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ↑p (↑f x), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(x✝¹ • x✝) =
‖x✝¹‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ↑p (↑f x), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x✝
[PROOFSTEP]
simp only [map_smulₛₗ]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
src✝ : AddGroupSeminorm E := AddGroupSeminorm.comp p.toAddGroupSeminorm (LinearMap.toAddMonoidHom f)
x✝¹ : 𝕜
x✝ : E
⊢ ↑p (↑σ₁₂ x✝¹ • ↑f x✝) = ‖x✝¹‖ * ↑p (↑f x✝)
[PROOFSTEP]
rw [map_smul_eq_mul, RingHomIsometric.is_iso]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p q : Seminorm 𝕜 E
a b : ℝ≥0
hpq : p ≤ q
hab : a ≤ b
⊢ a • p ≤ b • q
[PROOFSTEP]
simp_rw [le_def]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p q : Seminorm 𝕜 E
a b : ℝ≥0
hpq : p ≤ q
hab : a ≤ b
⊢ ∀ (x : E), ↑(a • p) x ≤ ↑(b • q) x
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p q : Seminorm 𝕜 E
a b : ℝ≥0
hpq : p ≤ q
hab : a ≤ b
x : E
⊢ ↑(a • p) x ≤ ↑(b • q) x
[PROOFSTEP]
exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
⊢ ↑(Finset.sup s p) x = ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) })
[PROOFSTEP]
induction' s using Finset.cons_induction_on with a s ha ih
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
x : E
⊢ ↑(Finset.sup ∅ p) x = ↑(Finset.sup ∅ fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) })
[PROOFSTEP]
rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
x : E
⊢ 0 = ↑0
[PROOFSTEP]
norm_cast
[GOAL]
case h₂
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
x : E
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : ↑(Finset.sup s p) x = ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) })
⊢ ↑(Finset.sup (Finset.cons a s ha) p) x =
↑(Finset.sup (Finset.cons a s ha) fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) })
[PROOFSTEP]
rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, coe_mk, ih]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
hs : Finset.Nonempty s
x : E
⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x
[PROOFSTEP]
rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝ≥0)) with ⟨i, hi, hix⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
hs : Finset.Nonempty s
x : E
i : ι
hi : i ∈ s
hix :
(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) =
{ val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }
⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x
[PROOFSTEP]
rw [finset_sup_apply]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
hs : Finset.Nonempty s
x : E
i : ι
hi : i ∈ s
hix :
(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) =
{ val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }
⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) = ↑(p i) x
[PROOFSTEP]
exact ⟨i, hi, congr_arg _ hix⟩
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
⊢ ↑(Finset.sup s p) x = 0 ∨ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x
[PROOFSTEP]
rcases Finset.eq_empty_or_nonempty s with (rfl | hs)
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
x : E
⊢ ↑(Finset.sup ∅ p) x = 0 ∨ ∃ i, i ∈ ∅ ∧ ↑(Finset.sup ∅ p) x = ↑(p i) x
[PROOFSTEP]
left
[GOAL]
case inl.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
x : E
⊢ ↑(Finset.sup ∅ p) x = 0
[PROOFSTEP]
rfl
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
hs : Finset.Nonempty s
⊢ ↑(Finset.sup s p) x = 0 ∨ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x
[PROOFSTEP]
right
[GOAL]
case inr.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
hs : Finset.Nonempty s
⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x
[PROOFSTEP]
exact exists_apply_eq_finset_sup p hs x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
C : ℝ≥0
⊢ Finset.sup s (C • p) = C • Finset.sup s p
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
C : ℝ≥0
x : E
⊢ ↑(Finset.sup s (C • p)) x = ↑(C • Finset.sup s p) x
[PROOFSTEP]
rw [smul_apply, finset_sup_apply, finset_sup_apply]
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
C : ℝ≥0
x : E
⊢ ↑(Finset.sup s fun i => { val := ↑((C • p) i) x, property := (_ : 0 ≤ ↑((C • p) i) x) }) =
C • ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) })
[PROOFSTEP]
symm
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
C : ℝ≥0
x : E
⊢ C • ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) =
↑(Finset.sup s fun i => { val := ↑((C • p) i) x, property := (_ : 0 ≤ ↑((C • p) i) x) })
[PROOFSTEP]
exact congr_arg ((↑) : ℝ≥0 → ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩))
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
⊢ Finset.sup s p ≤ ∑ i in s, p i
[PROOFSTEP]
classical
refine' Finset.sup_le_iff.mpr _
intro i hi
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
exact bot_le
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
⊢ Finset.sup s p ≤ ∑ i in s, p i
[PROOFSTEP]
refine' Finset.sup_le_iff.mpr _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
⊢ ∀ (b : ι), b ∈ s → p b ≤ ∑ i in s, p i
[PROOFSTEP]
intro i hi
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
i : ι
hi : i ∈ s
⊢ p i ≤ ∑ i in s, p i
[PROOFSTEP]
rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
i : ι
hi : i ∈ s
⊢ 0 ≤ ∑ x in s \ {i}, p x
[PROOFSTEP]
exact bot_le
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ
ha : 0 ≤ a
h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ a
⊢ ↑(Finset.sup s p) x ≤ a
[PROOFSTEP]
lift a to ℝ≥0 using ha
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ≥0
h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ ↑a
⊢ ↑(Finset.sup s p) x ≤ ↑a
[PROOFSTEP]
rw [finset_sup_apply, NNReal.coe_le_coe]
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ≥0
h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ ↑a
⊢ (Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) ≤ a
[PROOFSTEP]
exact Finset.sup_le h
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ
ha : 0 < a
h : ∀ (i : ι), i ∈ s → ↑(p i) x < a
⊢ ↑(Finset.sup s p) x < a
[PROOFSTEP]
lift a to ℝ≥0 using ha.le
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ≥0
ha : 0 < ↑a
h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a
⊢ ↑(Finset.sup s p) x < ↑a
[PROOFSTEP]
rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ≥0
ha : 0 < ↑a
h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a
⊢ ∀ (b : ι), b ∈ s → { val := ↑(p b) x, property := (_ : 0 ≤ ↑(p b) x) } < a
[PROOFSTEP]
exact h
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝¹⁸ : SeminormedRing 𝕜
inst✝¹⁷ : SeminormedRing 𝕜₂
inst✝¹⁶ : SeminormedRing 𝕜₃
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹⁵ : RingHomIsometric σ₁₂
σ₂₃ : 𝕜₂ →+* 𝕜₃
inst✝¹⁴ : RingHomIsometric σ₂₃
σ₁₃ : 𝕜 →+* 𝕜₃
inst✝¹³ : RingHomIsometric σ₁₃
inst✝¹² : AddCommGroup E
inst✝¹¹ : AddCommGroup E₂
inst✝¹⁰ : AddCommGroup E₃
inst✝⁹ : AddCommGroup F
inst✝⁸ : AddCommGroup G
inst✝⁷ : Module 𝕜 E
inst✝⁶ : Module 𝕜₂ E₂
inst✝⁵ : Module 𝕜₃ E₃
inst✝⁴ : Module 𝕜 F
inst✝³ : Module 𝕜 G
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
a : ℝ≥0
ha : 0 < ↑a
h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a
⊢ ⊥ < a
[PROOFSTEP]
exact NNReal.coe_pos.mpr ha
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : SeminormedCommRing 𝕜₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝⁴ : RingHomIsometric σ₁₂
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜₂ E₂
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
c : 𝕜₂
x✝ : E
⊢ ↑(comp p (c • f)) x✝ = ↑(‖c‖₊ • comp p f) x✝
[PROOFSTEP]
rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
⊢ 0 ∈ lowerBounds (range fun u => ↑p u + ↑q (x - u))
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ x : E
⊢ 0 ≤ (fun u => ↑p u + ↑q (x✝ - u)) x
[PROOFSTEP]
dsimp
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ x : E
⊢ 0 ≤ ↑p x + ↑q (x✝ - x)
[PROOFSTEP]
positivity
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
⊢ ∀ (a : 𝕜) (x : E),
AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x
[PROOFSTEP]
intro a x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
a : 𝕜
x : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x
[PROOFSTEP]
obtain rfl | ha := eq_or_ne a 0
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
x : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(0 • x) =
‖0‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x
[PROOFSTEP]
rw [norm_zero, zero_mul, zero_smul]
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
x : E
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
0 =
0
[PROOFSTEP]
refine'
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx =>
⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝¹ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
x✝ : E
x : ℝ
hx : 0 < x
⊢ ↑p 0 + ↑q (0 - 0) < x
[PROOFSTEP]
rwa [map_zero, sub_zero, map_zero, add_zero]
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
a : 𝕜
x : E
ha : a ≠ 0
⊢ AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun
{ toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0),
add_le' :=
(_ :
∀ (r s : E),
AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s),
neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) }
x
[PROOFSTEP]
simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub]
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
a : 𝕜
x : E
ha : a ≠ 0
⊢ ⨅ (u : E), ↑p u + ↑q (a • x - u) = ⨅ (i : E), ↑p (a • i) + ↑q (a • x - a • i)
[PROOFSTEP]
refine' Function.Surjective.iInf_congr ((a⁻¹ • ·) : E → E) (fun u => ⟨a • u, inv_smul_smul₀ ha u⟩) fun u => _
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
p q : Seminorm 𝕜 E
src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm
a : 𝕜
x : E
ha : a ≠ 0
u : E
⊢ ↑p (a • (fun x => a⁻¹ • x) u) + ↑q (a • x - a • (fun x => a⁻¹ • x) u) = ↑p u + ↑q (a • x - u)
[PROOFSTEP]
rw [smul_inv_smul₀ ha]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup
p q : Seminorm 𝕜 E
x : E
⊢ ↑p x + ↑q (x - x) ≤ (fun f => ↑f) p x
[PROOFSTEP]
simp only [sub_self, map_zero, add_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup
p q : Seminorm 𝕜 E
x : E
⊢ ↑p x ≤ ↑p x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup
p q : Seminorm 𝕜 E
x : E
⊢ ↑p 0 + ↑q (x - 0) ≤ (fun f => ↑f) q x
[PROOFSTEP]
simp only [sub_self, map_zero, zero_add, sub_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup
p q : Seminorm 𝕜 E
x : E
⊢ ↑q x ≤ ↑q x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x : E
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
r : R
p q : Seminorm 𝕜 E
⊢ r • (p ⊓ q) = r • p ⊓ r • q
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x : E
inst✝² : SMul R ℝ
inst✝¹ : SMul R ℝ≥0
inst✝ : IsScalarTower R ℝ≥0 ℝ
r : R
p q : Seminorm 𝕜 E
x✝ : E
⊢ ↑(r • (p ⊓ q)) x✝ = ↑(r • p ⊓ r • q) x✝
[PROOFSTEP]
simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝ≥0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul,
Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
⊢ iSup (fun p => ↑↑p) 0 = 0
[PROOFSTEP]
rw [iSup_apply, ← @Real.ciSup_const_zero s]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
⊢ ⨆ (i : ↑s), ↑↑i 0 = ⨆ (x : ↑s), 0
[PROOFSTEP]
congr!
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x✝ : ↑s
⊢ ↑↑x✝ 0 = 0
[PROOFSTEP]
rename_i _ _ _ i
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
i : ↑s
⊢ ↑↑i 0 = 0
[PROOFSTEP]
exact map_zero i.1
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x y : E
⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y
[PROOFSTEP]
rcases h with ⟨q, hq⟩
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y
[PROOFSTEP]
obtain rfl | h := s.eq_empty_or_nonempty
[GOAL]
case intro.inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' ∅)
⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y
[PROOFSTEP]
simp [Real.ciSup_empty]
[GOAL]
case intro.inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y
[PROOFSTEP]
haveI : Nonempty ↑s := h.coe_sort
[GOAL]
case intro.inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y
[PROOFSTEP]
simp only [iSup_apply]
[GOAL]
case intro.inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
⊢ ⨆ (i : ↑s), ↑↑i (x + y) ≤ (⨆ (i : ↑s), ↑↑i x) + ⨆ (i : ↑s), ↑↑i y
[PROOFSTEP]
refine'
ciSup_le fun i =>
((i : Seminorm 𝕜 E).add_le' x y).trans <|
add_le_add (le_ciSup (f := fun i => (Subtype.val i : Seminorm 𝕜 E).toFun x) ⟨q x, _⟩ i)
(le_ciSup (f := fun i => (Subtype.val i : Seminorm 𝕜 E).toFun y) ⟨q y, _⟩ i)
[GOAL]
case intro.inr.refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
i : ↑s
⊢ q x ∈ upperBounds (range fun i => AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm x)
[PROOFSTEP]
rw [mem_upperBounds, forall_range_iff]
[GOAL]
case intro.inr.refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
i : ↑s
⊢ q y ∈ upperBounds (range fun i => AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm y)
[PROOFSTEP]
rw [mem_upperBounds, forall_range_iff]
[GOAL]
case intro.inr.refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
i : ↑s
⊢ ∀ (i : { x // x ∈ s }), AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm x ≤ q x
[PROOFSTEP]
exact fun j => hq (mem_image_of_mem _ j.2) _
[GOAL]
case intro.inr.refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
x y : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
h : Set.Nonempty s
this : Nonempty ↑s
i : ↑s
⊢ ∀ (i : { x // x ∈ s }), AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm y ≤ q y
[PROOFSTEP]
exact fun j => hq (mem_image_of_mem _ j.2) _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x : E
⊢ iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x
[PROOFSTEP]
simp only [iSup_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x : E
⊢ ⨆ (i : ↑s), ↑↑i (-x) = ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
congr! 2
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝¹ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x : E
x✝ : ↑s
⊢ ↑↑x✝ (-x) = ↑↑x✝ x
[PROOFSTEP]
rename_i _ _ _ i
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
x : E
i : ↑s
⊢ ↑↑i (-x) = ↑↑i x
[PROOFSTEP]
exact i.1.neg' _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
a : 𝕜
x : E
⊢ AddGroupSeminorm.toFun
{ toFun := ⨆ (p : ↑s), ↑↑p, map_zero' := (_ : iSup (fun p => ↑↑p) 0 = 0),
add_le' := (_ : ∀ (x y : E), iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y),
neg' := (_ : ∀ (x : E), iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x) }
(a • x) =
‖a‖ *
AddGroupSeminorm.toFun
{ toFun := ⨆ (p : ↑s), ↑↑p, map_zero' := (_ : iSup (fun p => ↑↑p) 0 = 0),
add_le' := (_ : ∀ (x y : E), iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y),
neg' := (_ : ∀ (x : E), iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x) }
x
[PROOFSTEP]
simp only [iSup_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
a : 𝕜
x : E
⊢ ⨆ (i : ↑s), ↑↑i (a • x) = ‖a‖ * ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm 𝕜 E) x]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
a : 𝕜
x : E
⊢ ⨆ (i : ↑s), ↑↑i (a • x) = ⨆ (i : ↑s), ‖a‖ • ↑↑i x
[PROOFSTEP]
congr!
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝¹ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
a : 𝕜
x : E
x✝ : ↑s
⊢ ↑↑x✝ (a • x) = ‖a‖ • ↑↑x✝ x
[PROOFSTEP]
rename_i _ _ _ i
[GOAL]
case h.e'_4.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
h : BddAbove (FunLike.coe '' s)
a : 𝕜
x : E
i : ↑s
⊢ ↑↑i (a • x) = ‖a‖ • ↑↑i x
[PROOFSTEP]
exact i.1.smul' a x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
H : BddAbove (FunLike.coe '' s)
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
H : BddAbove (FunLike.coe '' s)
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
⊢ ↑p x ≤ ↑(sSup s) x
[PROOFSTEP]
rw [Seminorm.coe_sSup_eq' H, iSup_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
H : BddAbove (FunLike.coe '' s)
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
rcases H with ⟨q, hq⟩
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
q : E → ℝ
hq : q ∈ upperBounds (FunLike.coe '' s)
⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x : E
p : ι → Seminorm 𝕜 E
⊢ BddAbove (range p) ↔ ∀ (x : E), BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x : E
p : ι → Seminorm 𝕜 E
⊢ (∀ (a : E), BddAbove (range fun i => (FunLike.coe ∘ p) i a)) ↔ ∀ (x : E), BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι✝ : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x : E
ι : Type u_13
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
⊢ ↑(⨆ (i : ι), p i) = ⨆ (i : ι), ↑(p i)
[PROOFSTEP]
rw [← sSup_range, Seminorm.coe_sSup_eq hp]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι✝ : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x : E
ι : Type u_13
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
⊢ ⨆ (p_1 : ↑(range p)), ↑↑p_1 = ⨆ (i : ι), ↑(p i)
[PROOFSTEP]
exact iSup_range' (fun p : Seminorm 𝕜 E => (p : E → ℝ)) p
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hp : BddAbove s
x : E
⊢ ↑(sSup s) x = ⨆ (p : ↑s), ↑↑p x
[PROOFSTEP]
rw [Seminorm.coe_sSup_eq hp, iSup_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι✝ : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
ι : Type u_13
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
x : E
⊢ ↑(⨆ (i : ι), p i) x = ⨆ (i : ι), ↑(p i) x
[PROOFSTEP]
rw [Seminorm.coe_iSup_eq hp, iSup_apply]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
⊢ sSup ∅ = ⊥
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x x✝ : E
⊢ ↑(sSup ∅) x✝ = ↑⊥ x✝
[PROOFSTEP]
rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty]
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x x✝ : E
⊢ 0 = ↑⊥ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
x : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
⊢ IsLUB s (sSup s)
[PROOFSTEP]
refine' ⟨fun p hp x => _, fun p hp x => _⟩
[GOAL]
case refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x
[PROOFSTEP]
haveI : Nonempty ↑s := hs₂.coe_sort
[GOAL]
case refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ upperBounds s
x : E
⊢ (fun f => ↑f) (sSup s) x ≤ (fun f => ↑f) p x
[PROOFSTEP]
haveI : Nonempty ↑s := hs₂.coe_sort
[GOAL]
case refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
this : Nonempty ↑s
⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x
[PROOFSTEP]
dsimp
[GOAL]
case refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ upperBounds s
x : E
this : Nonempty ↑s
⊢ (fun f => ↑f) (sSup s) x ≤ (fun f => ↑f) p x
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
this : Nonempty ↑s
⊢ ↑p x ≤ ↑(sSup s) x
[PROOFSTEP]
rw [Seminorm.coe_sSup_eq hs₁, iSup_apply]
[GOAL]
case refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ upperBounds s
x : E
this : Nonempty ↑s
⊢ ↑(sSup s) x ≤ ↑p x
[PROOFSTEP]
rw [Seminorm.coe_sSup_eq hs₁, iSup_apply]
[GOAL]
case refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
this : Nonempty ↑s
⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
rcases hs₁ with ⟨q, hq⟩
[GOAL]
case refine'_1.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q✝ : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ s
x : E
this : Nonempty ↑s
q : Seminorm 𝕜 E
hq : q ∈ upperBounds s
⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x
[PROOFSTEP]
exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩
[GOAL]
case refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ q : Seminorm 𝕜 E
x✝ : E
s : Set (Seminorm 𝕜 E)
hs₁ : BddAbove s
hs₂ : Set.Nonempty s
p : Seminorm 𝕜 E
hp : p ∈ upperBounds s
x : E
this : Nonempty ↑s
⊢ ⨆ (i : ↑s), ↑↑i x ≤ ↑p x
[PROOFSTEP]
exact ciSup_le fun q => hp q.2 x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x y : E
r : ℝ
hr : 0 < r
⊢ x ∈ ball p x r
[PROOFSTEP]
simp [hr]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x y : E
r : ℝ
hr : 0 ≤ r
⊢ x ∈ closedBall p x r
[PROOFSTEP]
simp [hr]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x y : E
r : ℝ
⊢ y ∈ ball p 0 r ↔ ↑p y < r
[PROOFSTEP]
rw [mem_ball, sub_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x y : E
r : ℝ
⊢ y ∈ closedBall p 0 r ↔ ↑p y ≤ r
[PROOFSTEP]
rw [mem_closedBall, sub_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x✝ y : E
r✝ : ℝ
x : E
r : ℝ
⊢ closedBall p x r = ⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x✝ y✝ : E
r✝ : ℝ
x : E
r : ℝ
y : E
⊢ y ∈ closedBall p x r ↔ y ∈ ⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ
[PROOFSTEP]
simp_rw [mem_closedBall, mem_iInter₂, mem_ball, ← forall_lt_iff_le']
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x✝ y : E
r : ℝ
x : E
hr : 0 < r
⊢ ball 0 x r = univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall, ball]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p : Seminorm 𝕜 E
x✝ y : E
r : ℝ
x : E
hr : 0 < r
⊢ ∀ (x_1 : E), x_1 ∈ {y | ↑0 (y - x) < r}
[PROOFSTEP]
simp [hr]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x✝ y : E
r✝ : ℝ
p : Seminorm 𝕜 E
c : ℝ≥0
hc : 0 < c
r : ℝ
x : E
⊢ ball (c • p) x r = ball p x (r / ↑c)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x✝¹ y : E
r✝ : ℝ
p : Seminorm 𝕜 E
c : ℝ≥0
hc : 0 < c
r : ℝ
x x✝ : E
⊢ x✝ ∈ ball (c • p) x r ↔ x✝ ∈ ball p x (r / ↑c)
[PROOFSTEP]
rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x✝ y : E
r✝ : ℝ
p : Seminorm 𝕜 E
c : ℝ≥0
hc : 0 < c
r : ℝ
x : E
⊢ closedBall (c • p) x r = closedBall p x (r / ↑c)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x✝¹ y : E
r✝ : ℝ
p : Seminorm 𝕜 E
c : ℝ≥0
hc : 0 < c
r : ℝ
x x✝ : E
⊢ x✝ ∈ closedBall (c • p) x r ↔ x✝ ∈ closedBall p x (r / ↑c)
[PROOFSTEP]
rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
le_div_iff (NNReal.coe_pos.mpr hc)]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p q : Seminorm 𝕜 E
e : E
r : ℝ
⊢ ball (p ⊔ q) e r = ball p e r ∩ ball q e r
[PROOFSTEP]
simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p q : Seminorm 𝕜 E
e : E
r : ℝ
⊢ closedBall (p ⊔ q) e r = closedBall p e r ∩ closedBall q e r
[PROOFSTEP]
simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
H : Finset.Nonempty s
e : E
r : ℝ
⊢ ball (Finset.sup' s H p) e r = Finset.inf' s H fun i => ball (p i) e r
[PROOFSTEP]
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
[GOAL]
case h₀
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
e : E
r : ℝ
a : ι
⊢ ball (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r =
Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => ball (p i) e r
[PROOFSTEP]
classical simp
[GOAL]
case h₀
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
e : E
r : ℝ
a : ι
⊢ ball (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r =
Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => ball (p i) e r
[PROOFSTEP]
simp
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s✝ : Finset ι
e : E
r : ℝ
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Finset.Nonempty s
ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r
⊢ ball (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r =
Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => ball (p i) e r
[PROOFSTEP]
rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s✝ : Finset ι
e : E
r : ℝ
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Finset.Nonempty s
ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r
⊢ ball (p a) e r ∩ ball (Finset.sup' s hs p) e r = ball (p a) e r ⊓ Finset.inf' s hs fun i => ball (p i) e r
[PROOFSTEP]
simp only [inf_eq_inter, ih]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
H : Finset.Nonempty s
e : E
r : ℝ
⊢ closedBall (Finset.sup' s H p) e r = Finset.inf' s H fun i => closedBall (p i) e r
[PROOFSTEP]
induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih
[GOAL]
case h₀
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
e : E
r : ℝ
a : ι
⊢ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r =
Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r
[PROOFSTEP]
classical simp
[GOAL]
case h₀
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s : Finset ι
e : E
r : ℝ
a : ι
⊢ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r =
Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r
[PROOFSTEP]
simp
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s✝ : Finset ι
e : E
r : ℝ
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Finset.Nonempty s
ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r
⊢ closedBall (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r =
Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => closedBall (p i) e r
[PROOFSTEP]
rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
-- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
[GOAL]
case h₁
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r✝ : ℝ
p : ι → Seminorm 𝕜 E
s✝ : Finset ι
e : E
r : ℝ
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Finset.Nonempty s
ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r
⊢ closedBall (p a) e r ∩ closedBall (Finset.sup' s hs p) e r =
closedBall (p a) e r ⊓ Finset.inf' s hs fun i => closedBall (p i) e r
[PROOFSTEP]
simp only [inf_eq_inter, ih]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ : E
⊢ ball p x₁ r₁ + ball p x₂ r₂ ⊆ ball p (x₁ + x₂) (r₁ + r₂)
[PROOFSTEP]
rintro x ⟨y₁, y₂, hy₁, hy₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ y₁ y₂ : E
hy₁ : y₁ ∈ ball p x₁ r₁
hy₂ : y₂ ∈ ball p x₂ r₂
⊢ (fun x x_1 => x + x_1) y₁ y₂ ∈ ball p (x₁ + x₂) (r₁ + r₂)
[PROOFSTEP]
rw [mem_ball, add_sub_add_comm]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ y₁ y₂ : E
hy₁ : y₁ ∈ ball p x₁ r₁
hy₂ : y₂ ∈ ball p x₂ r₂
⊢ ↑p (y₁ - x₁ + (y₂ - x₂)) < r₁ + r₂
[PROOFSTEP]
exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hy₂)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ : E
⊢ closedBall p x₁ r₁ + closedBall p x₂ r₂ ⊆ closedBall p (x₁ + x₂) (r₁ + r₂)
[PROOFSTEP]
rintro x ⟨y₁, y₂, hy₁, hy₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ y₁ y₂ : E
hy₁ : y₁ ∈ closedBall p x₁ r₁
hy₂ : y₂ ∈ closedBall p x₂ r₂
⊢ (fun x x_1 => x + x_1) y₁ y₂ ∈ closedBall p (x₁ + x₂) (r₁ + r₂)
[PROOFSTEP]
rw [mem_closedBall, add_sub_add_comm]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y : E
r : ℝ
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x₁ x₂ y₁ y₂ : E
hy₁ : y₁ ∈ closedBall p x₁ r₁
hy₂ : y₂ ∈ closedBall p x₂ r₂
⊢ ↑p (y₁ - x₁ + (y₂ - x₂)) ≤ r₁ + r₂
[PROOFSTEP]
exact (map_add_le_add p _ _).trans (add_le_add hy₁ hy₂)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : SMul 𝕜 E
p✝ : Seminorm 𝕜 E
x y✝ : E
r✝ : ℝ
p : Seminorm 𝕜 E
x₁ x₂ y : E
r : ℝ
⊢ x₁ - x₂ ∈ ball p y r ↔ x₁ ∈ ball p (x₂ + y) r
[PROOFSTEP]
simp_rw [mem_ball, sub_sub]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
x : E
r : ℝ
⊢ ball (comp p f) x r = ↑f ⁻¹' ball p (↑f x) r
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
x : E
r : ℝ
x✝ : E
⊢ x✝ ∈ ball (comp p f) x r ↔ x✝ ∈ ↑f ⁻¹' ball p (↑f x) r
[PROOFSTEP]
simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
x : E
r : ℝ
⊢ closedBall (comp p f) x r = ↑f ⁻¹' closedBall p (↑f x) r
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜₂ E₂
f : E →ₛₗ[σ₁₂] E₂
x : E
r : ℝ
x✝ : E
⊢ x✝ ∈ closedBall (comp p f) x r ↔ x✝ ∈ ↑f ⁻¹' closedBall p (↑f x) r
[PROOFSTEP]
simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ ↑p ⁻¹' Metric.ball 0 r = {x | ↑p x < r}
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
x : E
⊢ x ∈ ↑p ⁻¹' Metric.ball 0 r ↔ x ∈ {x | ↑p x < r}
[PROOFSTEP]
simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ ↑p ⁻¹' Metric.closedBall 0 r = {x | ↑p x ≤ r}
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
x : E
⊢ x ∈ ↑p ⁻¹' Metric.closedBall 0 r ↔ x ∈ {x | ↑p x ≤ r}
[PROOFSTEP]
simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ ball p 0 r = ↑p ⁻¹' Metric.ball 0 r
[PROOFSTEP]
rw [ball_zero_eq, preimage_metric_ball]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ closedBall p 0 r = ↑p ⁻¹' Metric.closedBall 0 r
[PROOFSTEP]
rw [closedBall_zero_eq, preimage_metric_closedBall]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ Balanced 𝕜 (ball p 0 r)
[PROOFSTEP]
rintro a ha x ⟨y, hy, hx⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ ball p 0 r
hx : (fun x => a • x) y = x
⊢ x ∈ ball p 0 r
[PROOFSTEP]
rw [mem_ball_zero, ← hx, map_smul_eq_mul]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ ball p 0 r
hx : (fun x => a • x) y = x
⊢ ‖a‖ * ↑p y < r
[PROOFSTEP]
calc
_ ≤ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ < r := by rwa [mem_ball_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ ball p 0 r
hx : (fun x => a • x) y = x
⊢ ↑p y < r
[PROOFSTEP]
rwa [mem_ball_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
⊢ Balanced 𝕜 (closedBall p 0 r)
[PROOFSTEP]
rintro a ha x ⟨y, hy, hx⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ closedBall p 0 r
hx : (fun x => a • x) y = x
⊢ x ∈ closedBall p 0 r
[PROOFSTEP]
rw [mem_closedBall_zero, ← hx, map_smul_eq_mul]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ closedBall p 0 r
hx : (fun x => a • x) y = x
⊢ ‖a‖ * ↑p y ≤ r
[PROOFSTEP]
calc
_ ≤ p y := mul_le_of_le_one_left (map_nonneg p _) ha
_ ≤ r := by rwa [mem_closedBall_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
r : ℝ
a : 𝕜
ha : ‖a‖ ≤ 1
x y : E
hy : y ∈ closedBall p 0 r
hx : (fun x => a • x) y = x
⊢ ↑p y ≤ r
[PROOFSTEP]
rwa [mem_closedBall_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 < r
⊢ ball (Finset.sup s p) x r = ⋂ (i : ι) (_ : i ∈ s), ball (p i) x r
[PROOFSTEP]
lift r to NNReal using hr.le
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ≥0
hr : 0 < ↑r
⊢ ball (Finset.sup s p) x ↑r = ⋂ (i : ι) (_ : i ∈ s), ball (p i) x ↑r
[PROOFSTEP]
simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show ⊥ < r from hr), ←
NNReal.coe_lt_coe, coe_mk]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 ≤ r
⊢ closedBall (Finset.sup s p) x r = ⋂ (i : ι) (_ : i ∈ s), closedBall (p i) x r
[PROOFSTEP]
lift r to NNReal using hr
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ≥0
⊢ closedBall (Finset.sup s p) x ↑r = ⋂ (i : ι) (_ : i ∈ s), closedBall (p i) x ↑r
[PROOFSTEP]
simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, coe_mk]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 < r
⊢ ball (Finset.sup s p) x r = Finset.inf s fun i => ball (p i) x r
[PROOFSTEP]
rw [Finset.inf_eq_iInf]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 < r
⊢ ball (Finset.sup s p) x r = ⨅ (a : ι) (_ : a ∈ s), ball (p a) x r
[PROOFSTEP]
exact ball_finset_sup_eq_iInter _ _ _ hr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 ≤ r
⊢ closedBall (Finset.sup s p) x r = Finset.inf s fun i => closedBall (p i) x r
[PROOFSTEP]
rw [Finset.inf_eq_iInf]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ : Seminorm 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
x : E
r : ℝ
hr : 0 ≤ r
⊢ closedBall (Finset.sup s p) x r = ⨅ (a : ι) (_ : a ∈ s), closedBall (p a) x r
[PROOFSTEP]
exact closedBall_finset_sup_eq_iInter _ _ _ hr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
⊢ Metric.ball 0 r₁ • ball p 0 r₂ ⊆ ball p 0 (r₁ * r₂)
[PROOFSTEP]
rw [Set.subset_def]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
⊢ ∀ (x : E), x ∈ Metric.ball 0 r₁ • ball p 0 r₂ → x ∈ ball p 0 (r₁ * r₂)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
hx : x ∈ Metric.ball 0 r₁ • ball p 0 r₂
⊢ x ∈ ball p 0 (r₁ * r₂)
[PROOFSTEP]
rw [Set.mem_smul] at hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
hx : ∃ x_1 y, x_1 ∈ Metric.ball 0 r₁ ∧ y ∈ ball p 0 r₂ ∧ x_1 • y = x
⊢ x ∈ ball p 0 (r₁ * r₂)
[PROOFSTEP]
rcases hx with ⟨a, y, ha, hy, hx⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.ball 0 r₁
hy : y ∈ ball p 0 r₂
hx : a • y = x
⊢ x ∈ ball p 0 (r₁ * r₂)
[PROOFSTEP]
rw [← hx, mem_ball_zero, map_smul_eq_mul]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.ball 0 r₁
hy : y ∈ ball p 0 r₂
hx : a • y = x
⊢ ‖a‖ * ↑p y < r₁ * r₂
[PROOFSTEP]
gcongr
[GOAL]
case intro.intro.intro.intro.a
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.ball 0 r₁
hy : y ∈ ball p 0 r₂
hx : a • y = x
⊢ ‖a‖ < r₁
[PROOFSTEP]
exact mem_ball_zero_iff.mp ha
[GOAL]
case intro.intro.intro.intro.a
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.ball 0 r₁
hy : y ∈ ball p 0 r₂
hx : a • y = x
⊢ ↑p y < r₂
[PROOFSTEP]
exact p.mem_ball_zero.mp hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
⊢ Metric.closedBall 0 r₁ • closedBall p 0 r₂ ⊆ closedBall p 0 (r₁ * r₂)
[PROOFSTEP]
rw [Set.subset_def]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
⊢ ∀ (x : E), x ∈ Metric.closedBall 0 r₁ • closedBall p 0 r₂ → x ∈ closedBall p 0 (r₁ * r₂)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
hx : x ∈ Metric.closedBall 0 r₁ • closedBall p 0 r₂
⊢ x ∈ closedBall p 0 (r₁ * r₂)
[PROOFSTEP]
rw [Set.mem_smul] at hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
hx : ∃ x_1 y, x_1 ∈ Metric.closedBall 0 r₁ ∧ y ∈ closedBall p 0 r₂ ∧ x_1 • y = x
⊢ x ∈ closedBall p 0 (r₁ * r₂)
[PROOFSTEP]
rcases hx with ⟨a, y, ha, hy, hx⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.closedBall 0 r₁
hy : y ∈ closedBall p 0 r₂
hx : a • y = x
⊢ x ∈ closedBall p 0 (r₁ * r₂)
[PROOFSTEP]
rw [← hx, mem_closedBall_zero, map_smul_eq_mul]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : a ∈ Metric.closedBall 0 r₁
hy : y ∈ closedBall p 0 r₂
hx : a • y = x
⊢ ‖a‖ * ↑p y ≤ r₁ * r₂
[PROOFSTEP]
rw [mem_closedBall_zero_iff] at ha
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : ‖a‖ ≤ r₁
hy : y ∈ closedBall p 0 r₂
hx : a • y = x
⊢ ‖a‖ * ↑p y ≤ r₁ * r₂
[PROOFSTEP]
gcongr
[GOAL]
case intro.intro.intro.intro.b0
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : ‖a‖ ≤ r₁
hy : y ∈ closedBall p 0 r₂
hx : a • y = x
⊢ 0 ≤ r₁
[PROOFSTEP]
exact (norm_nonneg a).trans ha
[GOAL]
case intro.intro.intro.intro.h₂
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r₁ r₂ : ℝ
x : E
a : 𝕜
y : E
ha : ‖a‖ ≤ r₁
hy : y ∈ closedBall p 0 r₂
hx : a • y = x
⊢ ↑p y ≤ r₂
[PROOFSTEP]
exact p.mem_closedBall_zero.mp hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r ≤ 0
⊢ ball p x r = ∅
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r ≤ 0
x✝ : E
⊢ x✝ ∈ ball p x r ↔ x✝ ∈ ∅
[PROOFSTEP]
rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt]
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r ≤ 0
x✝ : E
⊢ r ≤ ↑p (x✝ - x)
[PROOFSTEP]
exact hr.trans (map_nonneg p _)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r < 0
⊢ closedBall p x r = ∅
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r < 0
x✝ : E
⊢ x✝ ∈ closedBall p x r ↔ x✝ ∈ ∅
[PROOFSTEP]
rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le]
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
x : E
r : ℝ
hr : r < 0
x✝ : E
⊢ r < ↑p (x✝ - x)
[PROOFSTEP]
exact hr.trans_le (map_nonneg _ _)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p : Seminorm 𝕜 E
x : E
r : ℝ
hx : x ∈ ball p 0 r
⊢ -x ∈ ball p 0 r
[PROOFSTEP]
simpa only [mem_ball_zero, map_neg_eq_map] using hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r : ℝ
x : E
⊢ -ball p x r = ball p (-x) r
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : SeminormedRing 𝕜
inst✝⁵ : AddCommGroup E
inst✝⁴ : Module 𝕜 E
inst✝³ : SeminormedRing 𝕜₂
inst✝² : AddCommGroup E₂
inst✝¹ : Module 𝕜₂ E₂
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝ : RingHomIsometric σ₁₂
p✝ p : Seminorm 𝕜 E
r : ℝ
x x✝ : E
⊢ x✝ ∈ -ball p x r ↔ x✝ ∈ ball p (-x) r
[PROOFSTEP]
rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
h✝ : IsEmpty ι
⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r
[PROOFSTEP]
rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
h✝ : IsEmpty ι
⊢ closedBall ⊥ e r = univ
[PROOFSTEP]
exact closedBall_bot _ hr
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
h✝ : Nonempty ι
⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r
[PROOFSTEP]
ext x
[GOAL]
case inr.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
h✝ : Nonempty ι
x : E
⊢ x ∈ closedBall (⨆ (i : ι), p i) e r ↔ x ∈ ⋂ (i : ι), closedBall (p i) e r
[PROOFSTEP]
have := Seminorm.bddAbove_range_iff.mp hp (x - e)
[GOAL]
case inr.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : ι → Seminorm 𝕜 E
hp : BddAbove (range p)
e : E
r : ℝ
hr : 0 < r
h✝ : Nonempty ι
x : E
this : BddAbove (range fun i => ↑(p i) (x - e))
⊢ x ∈ closedBall (⨆ (i : ι), p i) e r ↔ x ∈ ⋂ (i : ι), closedBall (p i) e r
[PROOFSTEP]
simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
⊢ ball p 0 (‖k‖ * r) ⊆ k • ball p 0 r
[PROOFSTEP]
rcases eq_or_ne k 0 with (rfl | hk)
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
r : ℝ
⊢ ball p 0 (‖0‖ * r) ⊆ 0 • ball p 0 r
[PROOFSTEP]
rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
[GOAL]
case inl
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
r : ℝ
⊢ ∅ ⊆ 0 • ball p 0 r
[PROOFSTEP]
exact empty_subset _
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
⊢ ball p 0 (‖k‖ * r) ⊆ k • ball p 0 r
[PROOFSTEP]
intro x
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
x : E
⊢ x ∈ ball p 0 (‖k‖ * r) → x ∈ k • ball p 0 r
[PROOFSTEP]
rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
[GOAL]
case inr
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
x : E
⊢ ↑p x < ‖k‖ * r → ∃ y, y ∈ ball p 0 r ∧ k • y = x
[PROOFSTEP]
refine' fun hx => ⟨k⁻¹ • x, _, _⟩
[GOAL]
case inr.refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
x : E
hx : ↑p x < ‖k‖ * r
⊢ k⁻¹ • x ∈ ball p 0 r
[PROOFSTEP]
rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ←
div_eq_mul_inv ‖k‖ ‖k‖, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
[GOAL]
case inr.refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
x : E
hx : ↑p x < ‖k‖ * r
⊢ k • k⁻¹ • x = x
[PROOFSTEP]
rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
⊢ k • ball p 0 r = ball p 0 (‖k‖ * r)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : k ≠ 0
x✝ : E
⊢ x✝ ∈ k • ball p 0 r ↔ x✝ ∈ ball p 0 (‖k‖ * r)
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul,
div_lt_iff (norm_pos_iff.2 hk), mul_comm]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
⊢ k • closedBall p 0 r ⊆ closedBall p 0 (‖k‖ * r)
[PROOFSTEP]
rintro x ⟨y, hy, h⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
x y : E
hy : y ∈ closedBall p 0 r
h : (fun x => k • x) y = x
⊢ x ∈ closedBall p 0 (‖k‖ * r)
[PROOFSTEP]
rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
x y : E
hy : y ∈ closedBall p 0 r
h : (fun x => k • x) y = x
⊢ ‖k‖ * ↑p y ≤ ‖k‖ * r
[PROOFSTEP]
rw [Seminorm.mem_closedBall_zero] at hy
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
x y : E
hy : ↑p y ≤ r
h : (fun x => k • x) y = x
⊢ ‖k‖ * ↑p y ≤ ‖k‖ * r
[PROOFSTEP]
gcongr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
⊢ k • closedBall p 0 r = closedBall p 0 (‖k‖ * r)
[PROOFSTEP]
refine' subset_antisymm smul_closedBall_subset _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
⊢ closedBall p 0 (‖k‖ * r) ⊆ k • closedBall p 0 r
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
x : E
⊢ x ∈ closedBall p 0 (‖k‖ * r) → x ∈ k • closedBall p 0 r
[PROOFSTEP]
rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
x : E
⊢ ↑p x ≤ ‖k‖ * r → ∃ y, y ∈ closedBall p 0 r ∧ k • y = x
[PROOFSTEP]
refine' fun hx => ⟨k⁻¹ • x, _, _⟩
[GOAL]
case refine'_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
x : E
hx : ↑p x ≤ ‖k‖ * r
⊢ k⁻¹ • x ∈ closedBall p 0 r
[PROOFSTEP]
rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ←
div_eq_mul_inv ‖k‖ ‖k‖, div_self (ne_of_gt hk), one_mul]
[GOAL]
case refine'_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
k : 𝕜
r : ℝ
hk : 0 < ‖k‖
x : E
hx : ↑p x ≤ ‖k‖ * r
⊢ k • k⁻¹ • x = x
[PROOFSTEP]
rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
⊢ Absorbs 𝕜 (ball p 0 r₁) (ball p 0 r₂)
[PROOFSTEP]
rcases exists_pos_lt_mul hr₁ r₂ with ⟨r, hr₀, hr⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
r : ℝ
hr₀ : 0 < r
hr : r₂ < r * r₁
⊢ Absorbs 𝕜 (ball p 0 r₁) (ball p 0 r₂)
[PROOFSTEP]
refine' ⟨r, hr₀, fun a ha x hx => _⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a✝ : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
r : ℝ
hr₀ : 0 < r
hr : r₂ < r * r₁
a : 𝕜
ha : r ≤ ‖a‖
x : E
hx : x ∈ ball p 0 r₂
⊢ x ∈ a • ball p 0 r₁
[PROOFSTEP]
rw [smul_ball_zero (norm_pos_iff.1 <| hr₀.trans_le ha), p.mem_ball_zero]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a✝ : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
r : ℝ
hr₀ : 0 < r
hr : r₂ < r * r₁
a : 𝕜
ha : r ≤ ‖a‖
x : E
hx : x ∈ ball p 0 r₂
⊢ ↑p x < ‖a‖ * r₁
[PROOFSTEP]
rw [p.mem_ball_zero] at hx
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a✝ : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
r : ℝ
hr₀ : 0 < r
hr : r₂ < r * r₁
a : 𝕜
ha : r ≤ ‖a‖
x : E
hx : ↑p x < r₂
⊢ ↑p x < ‖a‖ * r₁
[PROOFSTEP]
exact hx.trans (hr.trans_le <| by gcongr)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a✝ : 𝕜
r✝ : ℝ
x✝ : E
p : Seminorm 𝕜 E
r₁ r₂ : ℝ
hr₁ : 0 < r₁
r : ℝ
hr₀ : 0 < r
hr : r₂ < r * r₁
a : 𝕜
ha : r ≤ ‖a‖
x : E
hx : ↑p x < r₂
⊢ r * r₁ ≤ ‖a‖ * r₁
[PROOFSTEP]
gcongr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
⊢ Absorbent 𝕜 (ball p x r)
[PROOFSTEP]
refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
y : E
hy : y ∈ ball p 0 (r - ↑p x)
⊢ y ∈ ball p x r
[PROOFSTEP]
rw [p.mem_ball_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
y : E
hy : ↑p y < r - ↑p x
⊢ y ∈ ball p x r
[PROOFSTEP]
exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
⊢ Absorbent 𝕜 (closedBall p x r)
[PROOFSTEP]
refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
y : E
hy : y ∈ closedBall p 0 (r - ↑p x)
⊢ y ∈ closedBall p x r
[PROOFSTEP]
rw [p.mem_closedBall_zero] at hy
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
A B : Set E
a : 𝕜
r : ℝ
x : E
hpr : ↑p x < r
y : E
hy : ↑p y ≤ r - ↑p x
⊢ y ∈ closedBall p x r
[PROOFSTEP]
exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p✝ : Seminorm 𝕜 E
A B : Set E
a✝ : 𝕜
r✝ : ℝ
x : E
p : Seminorm 𝕜 E
y : E
r : ℝ
a : 𝕜
ha : a ≠ 0
x✝ : E
⊢ x✝ ∈ (fun x x_1 => x • x_1) a ⁻¹' ball p y r ↔ x✝ ∈ ball p (a⁻¹ • y) (r / ‖a‖)
[PROOFSTEP]
rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, ← map_smul_eq_mul p, smul_sub,
smul_inv_smul₀ ha]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : SMul ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
⊢ ConvexOn ℝ univ ↑p
[PROOFSTEP]
refine' ⟨convex_univ, fun x _ y _ a b ha hb _ => _⟩
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : SMul ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
x✝² : x ∈ univ
y : E
x✝¹ : y ∈ univ
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
x✝ : a + b = 1
⊢ ↑p (a • x + b • y) ≤ a • ↑p x + b • ↑p y
[PROOFSTEP]
calc
p (a • x + b • y) ≤ p (a • x) + p (b • y) := map_add_le_add p _ _
_ = ‖a • (1 : 𝕜)‖ * p x + ‖b • (1 : 𝕜)‖ * p y := by
rw [← map_smul_eq_mul p, ← map_smul_eq_mul p, smul_one_smul, smul_one_smul]
_ = a * p x + b * p y := by
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : SMul ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
x✝² : x ∈ univ
y : E
x✝¹ : y ∈ univ
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
x✝ : a + b = 1
⊢ ↑p (a • x) + ↑p (b • y) = ‖a • 1‖ * ↑p x + ‖b • 1‖ * ↑p y
[PROOFSTEP]
rw [← map_smul_eq_mul p, ← map_smul_eq_mul p, smul_one_smul, smul_one_smul]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : SMul ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
x✝² : x ∈ univ
y : E
x✝¹ : y ∈ univ
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
x✝ : a + b = 1
⊢ ‖a • 1‖ * ↑p x + ‖b • 1‖ * ↑p y = a * ↑p x + b * ↑p y
[PROOFSTEP]
rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
⊢ Convex ℝ (ball p x r)
[PROOFSTEP]
convert (p.convexOn.translate_left (-x)).convex_lt r
[GOAL]
case h.e'_6
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
⊢ ball p x r = {x_1 | x_1 ∈ (fun z => -x + z) ⁻¹' univ ∧ (↑p ∘ fun z => z + -x) x_1 < r}
[PROOFSTEP]
ext y
[GOAL]
case h.e'_6.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
y : E
⊢ y ∈ ball p x r ↔ y ∈ {x_1 | x_1 ∈ (fun z => -x + z) ⁻¹' univ ∧ (↑p ∘ fun z => z + -x) x_1 < r}
[PROOFSTEP]
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
[GOAL]
case h.e'_6.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
y : E
⊢ ↑p (y + -x) < r ↔ y ∈ {x_1 | (↑p ∘ fun z => z + -x) x_1 < r}
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
⊢ Convex ℝ (closedBall p x r)
[PROOFSTEP]
rw [closedBall_eq_biInter_ball]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NormedField 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : NormedSpace ℝ 𝕜
inst✝² : Module 𝕜 E
inst✝¹ : Module ℝ E
inst✝ : IsScalarTower ℝ 𝕜 E
p : Seminorm 𝕜 E
x : E
r : ℝ
⊢ Convex ℝ (⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ)
[PROOFSTEP]
exact convex_iInter₂ fun _ _ => convex_ball _ _ _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
𝕜' : Type u_13
inst✝⁷ : NormedField 𝕜
inst✝⁶ : SeminormedRing 𝕜'
inst✝⁵ : NormedAlgebra 𝕜 𝕜'
inst✝⁴ : NormOneClass 𝕜'
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜' E
inst✝¹ : SMul 𝕜 E
inst✝ : IsScalarTower 𝕜 𝕜' E
p : Seminorm 𝕜' E
a : 𝕜
x : E
⊢ AddGroupSeminorm.toFun p.toAddGroupSeminorm (a • x) = ‖a‖ * AddGroupSeminorm.toFun p.toAddGroupSeminorm x
[PROOFSTEP]
rw [← smul_one_smul 𝕜' a x, p.smul', norm_smul, norm_one, mul_one]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : SeminormedRing 𝕝
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕝 E
inst✝ : TopologicalSpace E
p : Seminorm 𝕝 E
hp : ∀ (r : ℝ), r > 0 → closedBall p 0 r ∈ 𝓝 0
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : SeminormedRing 𝕝
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕝 E
inst✝ : TopologicalSpace E
p : Seminorm 𝕝 E
hp : ∀ (r : ℝ), r > 0 → ↑p ⁻¹' Metric.closedBall 0 r ∈ 𝓝 0
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
let r' := max 1 r
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
have hr' : 0 < r' := lt_max_of_lt_left one_pos
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
have hp' : p.closedBall 0 r' ∈ (𝓝 0 : Filter E) := mem_of_superset hp (closedBall_mono <| le_max_right _ _)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
⊢ ContinuousAt (↑p) 0
[PROOFSTEP]
refine' continuousAt_zero_of_forall' _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
⊢ ∀ (r : ℝ), r > 0 → closedBall p 0 r ∈ 𝓝 0
[PROOFSTEP]
intro ε hε
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
⊢ closedBall p 0 ε ∈ 𝓝 0
[PROOFSTEP]
rcases exists_norm_lt 𝕜 (div_pos hε hr') with ⟨k, hk0, hkε⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
⊢ closedBall p 0 ε ∈ 𝓝 0
[PROOFSTEP]
have hk0' := norm_pos_iff.mp hk0
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
hk0' : k ≠ 0
⊢ closedBall p 0 ε ∈ 𝓝 0
[PROOFSTEP]
have := (set_smul_mem_nhds_zero_iff hk0').mpr hp'
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
hk0' : k ≠ 0
this : k • closedBall p 0 r' ∈ 𝓝 0
⊢ closedBall p 0 ε ∈ 𝓝 0
[PROOFSTEP]
refine' Filter.mem_of_superset this (smul_set_subset_iff.mpr fun x hx => _)
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
hk0' : k ≠ 0
this : k • closedBall p 0 r' ∈ 𝓝 0
x : E
hx : x ∈ closedBall p 0 r'
⊢ k • x ∈ closedBall p 0 ε
[PROOFSTEP]
rw [mem_closedBall_zero, map_smul_eq_mul, ← div_mul_cancel ε hr'.ne.symm]
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
hk0' : k ≠ 0
this : k • closedBall p 0 r' ∈ 𝓝 0
x : E
hx : x ∈ closedBall p 0 r'
⊢ ‖k‖ * ↑p x ≤ ε / r' * r'
[PROOFSTEP]
gcongr
[GOAL]
case intro.intro.h₂
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : ContinuousConstSMul 𝕜 E
p : Seminorm 𝕜 E
r : ℝ
hp : closedBall p 0 r ∈ 𝓝 0
r' : ℝ := max 1 r
hr' : 0 < r'
hp' : closedBall p 0 r' ∈ 𝓝 0
ε : ℝ
hε : ε > 0
k : 𝕜
hk0 : 0 < ‖k‖
hkε : ‖k‖ < ε / r'
hk0' : k ≠ 0
this : k • closedBall p 0 r' ∈ 𝓝 0
x : E
hx : x ∈ closedBall p 0 r'
⊢ ↑p x ≤ r'
[PROOFSTEP]
exact p.mem_closedBall_zero.mp hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : UniformSpace E
inst✝ : UniformAddGroup E
p : Seminorm 𝕝 E
hp : ContinuousAt (↑p) 0
⊢ UniformContinuous ↑p
[PROOFSTEP]
have hp : Filter.Tendsto p (𝓝 0) (𝓝 0) := map_zero p ▸ hp
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : UniformSpace E
inst✝ : UniformAddGroup E
p : Seminorm 𝕝 E
hp✝ : ContinuousAt (↑p) 0
hp : Tendsto (↑p) (𝓝 0) (𝓝 0)
⊢ UniformContinuous ↑p
[PROOFSTEP]
rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped, Metric.uniformity_eq_comap_nhds_zero,
Filter.tendsto_comap_iff]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : UniformSpace E
inst✝ : UniformAddGroup E
p : Seminorm 𝕝 E
hp✝ : ContinuousAt (↑p) 0
hp : Tendsto (↑p) (𝓝 0) (𝓝 0)
⊢ Tendsto ((fun p => dist p.fst p.snd) ∘ fun x => (↑p x.fst, ↑p x.snd)) (comap (fun x => x.fst - x.snd) (𝓝 0)) (𝓝 0)
[PROOFSTEP]
exact
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap) (fun xy => dist_nonneg)
fun xy => p.norm_sub_map_le_sub _ _
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p : Seminorm 𝕝 E
hp : ContinuousAt (↑p) 0
⊢ Continuous ↑p
[PROOFSTEP]
letI := TopologicalAddGroup.toUniformSpace E
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p : Seminorm 𝕝 E
hp : ContinuousAt (↑p) 0
this : UniformSpace E := TopologicalAddGroup.toUniformSpace E
⊢ Continuous ↑p
[PROOFSTEP]
haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p : Seminorm 𝕝 E
hp : ContinuousAt (↑p) 0
this✝ : UniformSpace E := TopologicalAddGroup.toUniformSpace E
this : UniformAddGroup E
⊢ Continuous ↑p
[PROOFSTEP]
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p q : Seminorm 𝕝 E
hq : Continuous ↑q
hpq : p ≤ q
⊢ Continuous ↑p
[PROOFSTEP]
refine
Seminorm.continuous_of_forall
(fun r hr ↦ Filter.mem_of_superset (IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p q : Seminorm 𝕝 E
hq : Continuous ↑q
hpq : p ≤ q
r : ℝ
hr : r > 0
⊢ IsOpen (ball q 0 r)
[PROOFSTEP]
rw [ball_zero_eq]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁶ : NontriviallyNormedField 𝕜
inst✝⁵ : SeminormedRing 𝕝
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕝 E
inst✝¹ : TopologicalSpace E
inst✝ : TopologicalAddGroup E
p q : Seminorm 𝕝 E
hq : Continuous ↑q
hpq : p ≤ q
r : ℝ
hr : r > 0
⊢ IsOpen {y | ↑q y < r}
[PROOFSTEP]
exact isOpen_lt hq continuous_const
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : SeminormedRing 𝕝
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕝 E
inst✝ : TopologicalSpace E
p : Seminorm 𝕝 E
hp : Continuous ↑p
r : ℝ
hr : 0 < r
this : Tendsto (↑p) (𝓝 0) (𝓝 0)
⊢ ball p 0 r ∈ 𝓝 0
[PROOFSTEP]
simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
have xεpos : 0 < (p x) / ε := div_pos ((Ne.symm hx).le_iff_lt.1 (map_nonneg p x)) εpos
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
rcases exists_mem_Ico_zpow xεpos hc with ⟨n, hn⟩
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
have cpos : 0 < ‖c‖ := lt_trans (zero_lt_one : (0 : ℝ) < 1) hc
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
have cnpos : 0 < ‖c ^ (n + 1)‖ := by rw [norm_zpow]; exact lt_trans xεpos hn.2
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
⊢ 0 < ‖c ^ (n + 1)‖
[PROOFSTEP]
rw [norm_zpow]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
⊢ 0 < ‖c‖ ^ (n + 1)
[PROOFSTEP]
exact lt_trans xεpos hn.2
[GOAL]
case intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
refine ⟨-(n + 1), ?_, ?_, ?_, ?_⟩
[GOAL]
case intro.refine_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ c ^ (-(n + 1)) ≠ 0
[PROOFSTEP]
show c ^ (-(n + 1)) ≠ 0
[GOAL]
case intro.refine_1
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ c ^ (-(n + 1)) ≠ 0
[PROOFSTEP]
exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
[GOAL]
case intro.refine_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ↑p (c ^ (-(n + 1)) • x) < ε
[PROOFSTEP]
show p ((c ^ (-(n + 1))) • x) < ε
[GOAL]
case intro.refine_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ↑p (c ^ (-(n + 1)) • x) < ε
[PROOFSTEP]
rw [map_smul_eq_mul, zpow_neg, norm_inv, ← div_eq_inv_mul, div_lt_iff cnpos, mul_comm, norm_zpow]
[GOAL]
case intro.refine_2
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ↑p x < ‖c‖ ^ (n + 1) * ε
[PROOFSTEP]
exact (div_lt_iff εpos).1 (hn.2)
[GOAL]
case intro.refine_3
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ε / ‖c‖ ≤ ↑p (c ^ (-(n + 1)) • x)
[PROOFSTEP]
show ε / ‖c‖ ≤ p (c ^ (-(n + 1)) • x)
[GOAL]
case intro.refine_3
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ε / ‖c‖ ≤ ↑p (c ^ (-(n + 1)) • x)
[PROOFSTEP]
rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_add₀ (ne_of_gt cpos), zpow_one, mul_inv_rev,
mul_comm, ← mul_assoc, ← mul_assoc, mul_inv_cancel (ne_of_gt cpos), one_mul, ← div_eq_inv_mul,
le_div_iff (zpow_pos_of_pos cpos _), mul_comm]
[GOAL]
case intro.refine_3
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ‖c‖ ^ n * ε ≤ ↑p x
[PROOFSTEP]
exact (le_div_iff εpos).1 hn.1
[GOAL]
case intro.refine_4
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
show ‖(c ^ (-(n + 1)))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x
[GOAL]
case intro.refine_4
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
have : ε⁻¹ * ‖c‖ * p x = ε⁻¹ * p x * ‖c‖ := by ring
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
⊢ ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖
[PROOFSTEP]
ring
[GOAL]
case intro.refine_4
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
this : ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖
⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x
[PROOFSTEP]
rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_add₀ (ne_of_gt cpos), zpow_one, this, ← div_eq_inv_mul]
[GOAL]
case intro.refine_4
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : Seminorm 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
ε : ℝ
εpos : 0 < ε
x : E
hx : ↑p x ≠ 0
xεpos : 0 < ↑p x / ε
n : ℤ
hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1))
cpos : 0 < ‖c‖
cnpos : 0 < ‖c ^ (n + 1)‖
this : ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖
⊢ ‖c‖ ^ n * ‖c‖ ≤ ↑p x / ε * ‖c‖
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
ε C : ℝ
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), ε / ‖c‖ ≤ ↑p x → ↑p x < ε → ↑q x ≤ C * ↑p x
x : E
hx : ↑p x ≠ 0
⊢ ↑q x ≤ C * ↑p x
[PROOFSTEP]
rcases p.rescale_to_shell hc ε_pos hx with ⟨δ, hδ, δxle, leδx, -⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p q : Seminorm 𝕜 E
ε C : ℝ
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), ε / ‖c‖ ≤ ↑p x → ↑p x < ε → ↑q x ≤ C * ↑p x
x : E
hx : ↑p x ≠ 0
δ : 𝕜
hδ : δ ≠ 0
δxle : ↑p (δ • x) < ε
leδx : ε / ‖c‖ ≤ ↑p (δ • x)
⊢ ↑q x ≤ C * ↑p x
[PROOFSTEP]
simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hδ)] using hf (δ • x) leδx δxle
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
hx : ∃ j, j ∈ s ∧ ↑(p j) x ≠ 0
⊢ ↑q x ≤ ↑(C • Finset.sup s p) x
[PROOFSTEP]
rcases hx with ⟨j, hj, hjx⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
j : ι
hj : j ∈ s
hjx : ↑(p j) x ≠ 0
⊢ ↑q x ≤ ↑(C • Finset.sup s p) x
[PROOFSTEP]
have : (s.sup p) x ≠ 0 := ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj))
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
j : ι
hj : j ∈ s
hjx : ↑(p j) x ≠ 0
this : ↑(Finset.sup s p) x ≠ 0
⊢ ↑q x ≤ ↑(C • Finset.sup s p) x
[PROOFSTEP]
refine (s.sup p).bound_of_shell_smul q ε_pos hc (fun y hle hlt ↦ ?_) this
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
j : ι
hj : j ∈ s
hjx : ↑(p j) x ≠ 0
this : ↑(Finset.sup s p) x ≠ 0
y : E
hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y
hlt : ↑(Finset.sup s p) y < ε
⊢ ↑q y ≤ ↑(C • Finset.sup s p) y
[PROOFSTEP]
rcases exists_apply_eq_finset_sup p ⟨j, hj⟩ y with ⟨i, hi, hiy⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
j : ι
hj : j ∈ s
hjx : ↑(p j) x ≠ 0
this : ↑(Finset.sup s p) x ≠ 0
y : E
hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y
hlt : ↑(Finset.sup s p) y < ε
i : ι
hi : i ∈ s
hiy : ↑(Finset.sup s p) y = ↑(p i) y
⊢ ↑q y ≤ ↑(C • Finset.sup s p) y
[PROOFSTEP]
rw [smul_apply, hiy]
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Finset ι
q : Seminorm 𝕜 E
ε : ℝ
C : ℝ≥0
ε_pos : 0 < ε
c : 𝕜
hc : 1 < ‖c‖
hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x
x : E
j : ι
hj : j ∈ s
hjx : ↑(p j) x ≠ 0
this : ↑(Finset.sup s p) x ≠ 0
y : E
hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y
hlt : ↑(Finset.sup s p) y < ε
i : ι
hi : i ∈ s
hiy : ↑(Finset.sup s p) y = ↑(p i) y
⊢ ↑q y ≤ C • ↑(p i) y
[PROOFSTEP]
exact hf y (fun k hk ↦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy ▸ hle)
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
⊢ BddAbove (range p)
[PROOFSTEP]
rw [Seminorm.bddAbove_range_iff]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
⊢ ∀ (x : E), BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
intro x
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
rcases hs x with ⟨r, hr, hrx⟩
[GOAL]
case intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
rcases exists_lt_norm 𝕜 r with ⟨k, hk⟩
[GOAL]
case intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
have hk0 : k ≠ 0 := norm_pos_iff.mp (hr.trans hk)
[GOAL]
case intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
have : k⁻¹ • x ∈ s := by
rw [← mem_smul_set_iff_inv_smul_mem₀ hk0]
exact hrx k hk.le
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
⊢ k⁻¹ • x ∈ s
[PROOFSTEP]
rw [← mem_smul_set_iff_inv_smul_mem₀ hk0]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
⊢ x ∈ k • s
[PROOFSTEP]
exact hrx k hk.le
[GOAL]
case intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
this : k⁻¹ • x ∈ s
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
rcases h (k⁻¹ • x) this with ⟨M, hM⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
this : k⁻¹ • x ∈ s
M : ℝ
hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x))
⊢ BddAbove (range fun i => ↑(p i) x)
[PROOFSTEP]
refine ⟨‖k‖ * M, forall_range_iff.mpr fun i ↦ ?_⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
this : k⁻¹ • x ∈ s
M : ℝ
hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x))
i : ι
⊢ ↑(p i) x ≤ ‖k‖ * M
[PROOFSTEP]
have := (forall_range_iff.mp hM) i
[GOAL]
case intro.intro.intro.intro
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
p : ι → Seminorm 𝕜 E
s : Set E
hs : Absorbent 𝕜 s
h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x)
x : E
r : ℝ
hr : 0 < r
hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s
k : 𝕜
hk : r < ‖k‖
hk0 : k ≠ 0
this✝ : k⁻¹ • x ∈ s
M : ℝ
hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x))
i : ι
this : ↑(p i) (k⁻¹ • x) ≤ M
⊢ ↑(p i) x ≤ ‖k‖ * M
[PROOFSTEP]
rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
⊢ Seminorm.ball (normSeminorm 𝕜 E) = Metric.ball
[PROOFSTEP]
ext x r y
[GOAL]
case h.h.h
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r✝ : ℝ
x : E
r : ℝ
y : E
⊢ y ∈ Seminorm.ball (normSeminorm 𝕜 E) x r ↔ y ∈ Metric.ball x r
[PROOFSTEP]
simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
hr : 0 < r
⊢ Absorbent 𝕜 (Metric.ball 0 r)
[PROOFSTEP]
rw [← ball_normSeminorm 𝕜]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
hr : 0 < r
⊢ Absorbent 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r)
[PROOFSTEP]
exact (normSeminorm _ _).absorbent_ball_zero hr
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
hx : ‖x‖ < r
⊢ Absorbent 𝕜 (Metric.ball x r)
[PROOFSTEP]
rw [← ball_normSeminorm 𝕜]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
hx : ‖x‖ < r
⊢ Absorbent 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) x r)
[PROOFSTEP]
exact (normSeminorm _ _).absorbent_ball hx
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
⊢ Balanced 𝕜 (Metric.ball 0 r)
[PROOFSTEP]
rw [← ball_normSeminorm 𝕜]
[GOAL]
R : Type u_1
R' : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
𝕜₃ : Type u_5
𝕝 : Type u_6
E : Type u_7
E₂ : Type u_8
E₃ : Type u_9
F : Type u_10
G : Type u_11
ι : Type u_12
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
x : E
⊢ Balanced 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r)
[PROOFSTEP]
exact (normSeminorm _ _).balanced_ball_zero r
| {"mathlib_filename": "Mathlib.Analysis.Seminorm", "llama_tokens": 104359} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a✝ b✝ : 𝕜
s : Set 𝕜
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E →L[𝕜] F
g : 𝕜 → E
a b : 𝕜
H : a = b → DifferentiableAt 𝕜 g a
⊢ dslope (↑f ∘ g) a b = ↑f (dslope g a b)
[PROOFSTEP]
rcases eq_or_ne b a with (rfl | hne)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a b✝ : 𝕜
s : Set 𝕜
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E →L[𝕜] F
g : 𝕜 → E
b : 𝕜
H : b = b → DifferentiableAt 𝕜 g b
⊢ dslope (↑f ∘ g) b b = ↑f (dslope g b b)
[PROOFSTEP]
simp only [dslope_same]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a b✝ : 𝕜
s : Set 𝕜
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E →L[𝕜] F
g : 𝕜 → E
b : 𝕜
H : b = b → DifferentiableAt 𝕜 g b
⊢ deriv (↑f ∘ g) b = ↑f (deriv g b)
[PROOFSTEP]
exact (f.hasFDerivAt.comp_hasDerivAt b (H rfl).hasDerivAt).deriv
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a✝ b✝ : 𝕜
s : Set 𝕜
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E →L[𝕜] F
g : 𝕜 → E
a b : 𝕜
H : a = b → DifferentiableAt 𝕜 g a
hne : b ≠ a
⊢ dslope (↑f ∘ g) a b = ↑f (dslope g a b)
[PROOFSTEP]
simpa only [dslope_of_ne _ hne] using f.toLinearMap.slope_comp g a b
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a✝ b✝ : 𝕜
s : Set 𝕜
f : 𝕜 → E
a b : 𝕜
⊢ (b - a) • dslope f a b = f b - f a
[PROOFSTEP]
rcases eq_or_ne b a with (rfl | hne)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a b✝ : 𝕜
s : Set 𝕜
f : 𝕜 → E
b : 𝕜
⊢ (b - b) • dslope f b b = f b - f b
[PROOFSTEP]
simp [dslope_of_ne, *]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a✝ b✝ : 𝕜
s : Set 𝕜
f : 𝕜 → E
a b : 𝕜
hne : b ≠ a
⊢ (b - a) • dslope f a b = f b - f a
[PROOFSTEP]
simp [dslope_of_ne, *]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ : 𝕜 → E
a b : 𝕜
s : Set 𝕜
f : 𝕜 → E
h : b ≠ a
⊢ dslope (fun x => (x - a) • f x) a b = f b
[PROOFSTEP]
rw [dslope_of_ne _ h, slope_sub_smul _ h.symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
⊢ ContinuousAt (dslope f a) a ↔ DifferentiableAt 𝕜 f a
[PROOFSTEP]
simp only [dslope, continuousAt_update_same, ← hasDerivAt_deriv_iff, hasDerivAt_iff_tendsto_slope]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : ContinuousWithinAt (dslope f a) s b
⊢ ContinuousWithinAt f s b
[PROOFSTEP]
have : ContinuousWithinAt (fun x => (x - a) • dslope f a x + f a) s b :=
((continuousWithinAt_id.sub continuousWithinAt_const).smul h).add continuousWithinAt_const
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : ContinuousWithinAt (dslope f a) s b
this : ContinuousWithinAt (fun x => (x - a) • dslope f a x + f a) s b
⊢ ContinuousWithinAt f s b
[PROOFSTEP]
simpa only [sub_smul_dslope, sub_add_cancel] using this
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
⊢ ContinuousWithinAt (dslope f a) s b ↔ ContinuousWithinAt f s b
[PROOFSTEP]
refine' ⟨ContinuousWithinAt.of_dslope, fun hc => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
hc : ContinuousWithinAt f s b
⊢ ContinuousWithinAt (dslope f a) s b
[PROOFSTEP]
simp only [dslope, continuousWithinAt_update_of_ne h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
hc : ContinuousWithinAt f s b
⊢ ContinuousWithinAt (slope f a) s b
[PROOFSTEP]
exact
((continuousWithinAt_id.sub continuousWithinAt_const).inv₀ (sub_ne_zero.2 h)).smul (hc.sub continuousWithinAt_const)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
⊢ ContinuousAt (dslope f a) b ↔ ContinuousAt f b
[PROOFSTEP]
simp only [← continuousWithinAt_univ, continuousWithinAt_dslope_of_ne h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : s ∈ 𝓝 a
⊢ ContinuousOn (dslope f a) s ↔ ContinuousOn f s ∧ DifferentiableAt 𝕜 f a
[PROOFSTEP]
refine' ⟨fun hc => ⟨hc.of_dslope, continuousAt_dslope_same.1 <| hc.continuousAt h⟩, _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : s ∈ 𝓝 a
⊢ ContinuousOn f s ∧ DifferentiableAt 𝕜 f a → ContinuousOn (dslope f a) s
[PROOFSTEP]
rintro ⟨hc, hd⟩ x hx
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : s ∈ 𝓝 a
hc : ContinuousOn f s
hd : DifferentiableAt 𝕜 f a
x : 𝕜
hx : x ∈ s
⊢ ContinuousWithinAt (dslope f a) s x
[PROOFSTEP]
rcases eq_or_ne x a with (rfl | hne)
[GOAL]
case intro.inl
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
b : 𝕜
s : Set 𝕜
hc : ContinuousOn f s
x : 𝕜
hx : x ∈ s
h : s ∈ 𝓝 x
hd : DifferentiableAt 𝕜 f x
⊢ ContinuousWithinAt (dslope f x) s x
case intro.inr
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : s ∈ 𝓝 a
hc : ContinuousOn f s
hd : DifferentiableAt 𝕜 f a
x : 𝕜
hx : x ∈ s
hne : x ≠ a
⊢ ContinuousWithinAt (dslope f a) s x
[PROOFSTEP]
exacts [(continuousAt_dslope_same.2 hd).continuousWithinAt, (continuousWithinAt_dslope_of_ne hne).2 (hc x hx)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : DifferentiableWithinAt 𝕜 (dslope f a) s b
⊢ DifferentiableWithinAt 𝕜 f s b
[PROOFSTEP]
simpa only [id, sub_smul_dslope f a, sub_add_cancel] using
((differentiableWithinAt_id.sub_const a).smul h).add_const (f a)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
⊢ DifferentiableWithinAt 𝕜 (dslope f a) s b ↔ DifferentiableWithinAt 𝕜 f s b
[PROOFSTEP]
refine' ⟨DifferentiableWithinAt.of_dslope, fun hd => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
hd : DifferentiableWithinAt 𝕜 f s b
⊢ DifferentiableWithinAt 𝕜 (dslope f a) s b
[PROOFSTEP]
refine'
(((differentiableWithinAt_id.sub_const a).inv (sub_ne_zero.2 h)).smul (hd.sub_const (f a))).congr_of_eventuallyEq _
(dslope_of_ne _ h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
hd : DifferentiableWithinAt 𝕜 f s b
⊢ dslope f a =ᶠ[𝓝[s] b] fun y => (id y - a)⁻¹ • (f y - f a)
[PROOFSTEP]
refine' (eqOn_dslope_slope _ _).eventuallyEq_of_mem _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
hd : DifferentiableWithinAt 𝕜 f s b
⊢ {a}ᶜ ∈ 𝓝[s] b
[PROOFSTEP]
exact mem_nhdsWithin_of_mem_nhds (isOpen_ne.mem_nhds h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
a b : 𝕜
s : Set 𝕜
h : b ≠ a
⊢ DifferentiableAt 𝕜 (dslope f a) b ↔ DifferentiableAt 𝕜 f b
[PROOFSTEP]
simp only [← differentiableWithinAt_univ, differentiableWithinAt_dslope_of_ne h]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Dslope", "llama_tokens": 4419} |
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedAddCommGroup W
inst✝ : NormedSpace 𝕜 W
n : ℕ∞
f : V →A[𝕜] W
⊢ ContDiff 𝕜 n ↑f
[PROOFSTEP]
rw [f.decomp]
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedAddCommGroup W
inst✝ : NormedSpace 𝕜 W
n : ℕ∞
f : V →A[𝕜] W
⊢ ContDiff 𝕜 n (↑(contLinear f) + Function.const V (↑f 0))
[PROOFSTEP]
apply f.contLinear.contDiff.add
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedAddCommGroup W
inst✝ : NormedSpace 𝕜 W
n : ℕ∞
f : V →A[𝕜] W
⊢ ContDiff 𝕜 n fun x => Function.const V (↑f 0) x
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
V : Type u_2
W : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedAddCommGroup W
inst✝ : NormedSpace 𝕜 W
n : ℕ∞
f : V →A[𝕜] W
⊢ ContDiff 𝕜 n fun x => Function.const V (↑f 0) x
[PROOFSTEP]
exact contDiff_const
| {"mathlib_filename": "Mathlib.Analysis.Calculus.AffineMap", "llama_tokens": 574} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f g : E → F
s t : Set E
x✝ : E
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
h : DiffContOnCl 𝕜 f (ball x r)
⊢ ContinuousOn f (closedBall x r)
[PROOFSTEP]
rcases eq_or_ne r 0 with (rfl | hr)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f g : E → F
s t : Set E
x✝ : E
inst✝ : NormedSpace ℝ E
x : E
h : DiffContOnCl 𝕜 f (ball x 0)
⊢ ContinuousOn f (closedBall x 0)
[PROOFSTEP]
rw [closedBall_zero]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f g : E → F
s t : Set E
x✝ : E
inst✝ : NormedSpace ℝ E
x : E
h : DiffContOnCl 𝕜 f (ball x 0)
⊢ ContinuousOn f {x}
[PROOFSTEP]
exact continuousOn_singleton f x
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f g : E → F
s t : Set E
x✝ : E
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
h : DiffContOnCl 𝕜 f (ball x r)
hr : r ≠ 0
⊢ ContinuousOn f (closedBall x r)
[PROOFSTEP]
rw [← closure_ball x hr]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f g : E → F
s t : Set E
x✝ : E
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
h : DiffContOnCl 𝕜 f (ball x r)
hr : r ≠ 0
⊢ ContinuousOn f (closure (ball x r))
[PROOFSTEP]
exact h.continuousOn
| {"mathlib_filename": "Mathlib.Analysis.Calculus.DiffContOnCl", "llama_tokens": 1106} |
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
rcases hab.eq_or_lt with (rfl | hab')
[GOAL]
case inl
a : ℝ
f f' : ℝ → ℝ
m : ℝ
hma : f' a < m
hab : a ≤ a
hf : ∀ (x : ℝ), x ∈ Icc a a → HasDerivWithinAt f (f' x) (Icc a a) x
hmb : m < f' a
⊢ m ∈ f' '' Ioo a a
[PROOFSTEP]
exact (lt_asymm hma hmb).elim
[GOAL]
case inr
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
set g : ℝ → ℝ := fun x => f x - m * x
[GOAL]
case inr
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
have hg : ∀ x ∈ Icc a b, HasDerivWithinAt g (f' x - m) (Icc a b) x :=
by
intro x hx
simpa using (hf x hx).sub ((hasDerivWithinAt_id x _).const_mul m)
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
⊢ ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
x : ℝ
hx : x ∈ Icc a b
⊢ HasDerivWithinAt g (f' x - m) (Icc a b) x
[PROOFSTEP]
simpa using (hf x hx).sub ((hasDerivWithinAt_id x _).const_mul m)
[GOAL]
case inr
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
obtain ⟨c, cmem, hc⟩ : ∃ c ∈ Icc a b, IsMinOn g (Icc a b) c
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
⊢ ∃ c, c ∈ Icc a b ∧ IsMinOn g (Icc a b) c
case inr.intro.intro
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
exact isCompact_Icc.exists_forall_le (nonempty_Icc.2 <| hab) fun x hx => (hg x hx).continuousWithinAt
[GOAL]
case inr.intro.intro
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
have cmem' : c ∈ Ioo a b :=
by
rcases cmem.1.eq_or_lt with
(rfl | hac)
-- Show that `c` can't be equal to `a`
· refine' absurd (sub_nonneg.1 <| nonneg_of_mul_nonneg_right _ (sub_pos.2 hab')) (not_le_of_lt hma)
have : b - a ∈ posTangentConeAt (Icc a b) a :=
mem_posTangentConeAt_of_segment_subset (segment_eq_Icc hab ▸ Subset.refl _)
simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using
hc.localize.hasFDerivWithinAt_nonneg (hg a (left_mem_Icc.2 hab)) this
rcases cmem.2.eq_or_gt with
(rfl | hcb)
-- Show that `c` can't be equal to `b`
· refine' absurd (sub_nonpos.1 <| nonpos_of_mul_nonneg_right _ (sub_lt_zero.2 hab')) (not_le_of_lt hmb)
have : a - b ∈ posTangentConeAt (Icc a b) b :=
mem_posTangentConeAt_of_segment_subset (by rw [segment_symm, segment_eq_Icc hab])
simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using
hc.localize.hasFDerivWithinAt_nonneg (hg b (right_mem_Icc.2 hab)) this
exact ⟨hac, hcb⟩
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
⊢ c ∈ Ioo a b
[PROOFSTEP]
rcases cmem.1.eq_or_lt with
(rfl | hac)
-- Show that `c` can't be equal to `a`
[GOAL]
case inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : a ∈ Icc a b
hc : IsMinOn g (Icc a b) a
⊢ a ∈ Ioo a b
[PROOFSTEP]
refine' absurd (sub_nonneg.1 <| nonneg_of_mul_nonneg_right _ (sub_pos.2 hab')) (not_le_of_lt hma)
[GOAL]
case inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : a ∈ Icc a b
hc : IsMinOn g (Icc a b) a
⊢ 0 ≤ (b - a) * (f' a - m)
[PROOFSTEP]
have : b - a ∈ posTangentConeAt (Icc a b) a :=
mem_posTangentConeAt_of_segment_subset (segment_eq_Icc hab ▸ Subset.refl _)
[GOAL]
case inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : a ∈ Icc a b
hc : IsMinOn g (Icc a b) a
this : b - a ∈ posTangentConeAt (Icc a b) a
⊢ 0 ≤ (b - a) * (f' a - m)
[PROOFSTEP]
simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using
hc.localize.hasFDerivWithinAt_nonneg (hg a (left_mem_Icc.2 hab)) this
[GOAL]
case inr
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
hac : a < c
⊢ c ∈ Ioo a b
[PROOFSTEP]
rcases cmem.2.eq_or_gt with
(rfl | hcb)
-- Show that `c` can't be equal to `b`
[GOAL]
case inr.inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : b ∈ Icc a b
hc : IsMinOn g (Icc a b) b
hac : a < b
⊢ b ∈ Ioo a b
[PROOFSTEP]
refine' absurd (sub_nonpos.1 <| nonpos_of_mul_nonneg_right _ (sub_lt_zero.2 hab')) (not_le_of_lt hmb)
[GOAL]
case inr.inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : b ∈ Icc a b
hc : IsMinOn g (Icc a b) b
hac : a < b
⊢ 0 ≤ (a - b) * (f' b - m)
[PROOFSTEP]
have : a - b ∈ posTangentConeAt (Icc a b) b :=
mem_posTangentConeAt_of_segment_subset (by rw [segment_symm, segment_eq_Icc hab])
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : b ∈ Icc a b
hc : IsMinOn g (Icc a b) b
hac : a < b
⊢ segment ℝ b a ⊆ Icc a b
[PROOFSTEP]
rw [segment_symm, segment_eq_Icc hab]
[GOAL]
case inr.inl
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
cmem : b ∈ Icc a b
hc : IsMinOn g (Icc a b) b
hac : a < b
this : a - b ∈ posTangentConeAt (Icc a b) b
⊢ 0 ≤ (a - b) * (f' b - m)
[PROOFSTEP]
simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using
hc.localize.hasFDerivWithinAt_nonneg (hg b (right_mem_Icc.2 hab)) this
[GOAL]
case inr.inr
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
hac : a < c
hcb : c < b
⊢ c ∈ Ioo a b
[PROOFSTEP]
exact ⟨hac, hcb⟩
[GOAL]
case inr.intro.intro
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
cmem' : c ∈ Ioo a b
⊢ m ∈ f' '' Ioo a b
[PROOFSTEP]
use c, cmem'
[GOAL]
case right
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
cmem' : c ∈ Ioo a b
⊢ f' c = m
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
case right
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
cmem' : c ∈ Ioo a b
⊢ f' c - m = 0
[PROOFSTEP]
have : Icc a b ∈ 𝓝 c := by rwa [← mem_interior_iff_mem_nhds, interior_Icc]
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
cmem' : c ∈ Ioo a b
⊢ Icc a b ∈ 𝓝 c
[PROOFSTEP]
rwa [← mem_interior_iff_mem_nhds, interior_Icc]
[GOAL]
case right
a b : ℝ
f f' : ℝ → ℝ
hab : a ≤ b
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
m : ℝ
hma : f' a < m
hmb : m < f' b
hab' : a < b
g : ℝ → ℝ := fun x => f x - m * x
hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x
c : ℝ
cmem : c ∈ Icc a b
hc : IsMinOn g (Icc a b) c
cmem' : c ∈ Ioo a b
this : Icc a b ∈ 𝓝 c
⊢ f' c - m = 0
[PROOFSTEP]
exact (hc.isLocalMin this).hasDerivAt_eq_zero ((hg c cmem).hasDerivAt this)
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
⊢ OrdConnected (f' '' s)
[PROOFSTEP]
apply ordConnected_of_Ioo
[GOAL]
case hs
a b : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
⊢ ∀ (x : ℝ), x ∈ f' '' s → ∀ (y : ℝ), y ∈ f' '' s → x < y → Ioo x y ⊆ f' '' s
[PROOFSTEP]
rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ - m ⟨hma, hmb⟩
[GOAL]
case hs.intro.intro.intro.intro.intro
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
⊢ m ∈ f' '' s
[PROOFSTEP]
cases' le_total a b with hab hab
[GOAL]
case hs.intro.intro.intro.intro.intro.inl
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : a ≤ b
⊢ m ∈ f' '' s
[PROOFSTEP]
have : Icc a b ⊆ s := hs.out ha hb
[GOAL]
case hs.intro.intro.intro.intro.intro.inl
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : a ≤ b
this : Icc a b ⊆ s
⊢ m ∈ f' '' s
[PROOFSTEP]
rcases exists_hasDerivWithinAt_eq_of_gt_of_lt hab (fun x hx => (hf x <| this hx).mono this) hma hmb with ⟨c, cmem, hc⟩
[GOAL]
case hs.intro.intro.intro.intro.intro.inl.intro.intro
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : a ≤ b
this : Icc a b ⊆ s
c : ℝ
cmem : c ∈ Ioo a b
hc : (fun x => f' x) c = m
⊢ m ∈ f' '' s
[PROOFSTEP]
exact ⟨c, this <| Ioo_subset_Icc_self cmem, hc⟩
[GOAL]
case hs.intro.intro.intro.intro.intro.inr
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : b ≤ a
⊢ m ∈ f' '' s
[PROOFSTEP]
have : Icc b a ⊆ s := hs.out hb ha
[GOAL]
case hs.intro.intro.intro.intro.intro.inr
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : b ≤ a
this : Icc b a ⊆ s
⊢ m ∈ f' '' s
[PROOFSTEP]
rcases exists_hasDerivWithinAt_eq_of_lt_of_gt hab (fun x hx => (hf x <| this hx).mono this) hmb hma with ⟨c, cmem, hc⟩
[GOAL]
case hs.intro.intro.intro.intro.intro.inr.intro.intro
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : OrdConnected s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
a : ℝ
ha : a ∈ s
b : ℝ
hb : b ∈ s
m : ℝ
hma : f' a < m
hmb : m < f' b
hab : b ≤ a
this : Icc b a ⊆ s
c : ℝ
cmem : c ∈ Ioo b a
hc : (fun x => f' x) c = m
⊢ m ∈ f' '' s
[PROOFSTEP]
exact ⟨c, this <| Ioo_subset_Icc_self cmem, hc⟩
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : Convex ℝ s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
m : ℝ
hf' : ∀ (x : ℝ), x ∈ s → f' x ≠ m
⊢ (∀ (x : ℝ), x ∈ s → f' x < m) ∨ ∀ (x : ℝ), x ∈ s → m < f' x
[PROOFSTEP]
contrapose! hf'
[GOAL]
a b : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : Convex ℝ s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
m : ℝ
hf' : (∃ x, x ∈ s ∧ m ≤ f' x) ∧ ∃ x, x ∈ s ∧ f' x ≤ m
⊢ ∃ x, x ∈ s ∧ f' x = m
[PROOFSTEP]
rcases hf' with ⟨⟨b, hb, hmb⟩, ⟨a, ha, hma⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
a✝ b✝ : ℝ
f f' : ℝ → ℝ
s : Set ℝ
hs : Convex ℝ s
hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x
m b : ℝ
hb : b ∈ s
hmb : m ≤ f' b
a : ℝ
ha : a ∈ s
hma : f' a ≤ m
⊢ ∃ x, x ∈ s ∧ f' x = m
[PROOFSTEP]
exact (hs.ordConnected.image_hasDerivWithinAt hf).out (mem_image_of_mem f' ha) (mem_image_of_mem f' hb) ⟨hma, hmb⟩
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Darboux", "llama_tokens": 8317} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_3
s : Set E
f g : E → β
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : SMul 𝕜 E
inst✝² : AddCommMonoid E
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
hf : ConvexOn 𝕜 s f
hfg : EqOn f g s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ g (a • x + b • y) ≤ a • g x + b • g y
[PROOFSTEP]
simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha hb hab)] using hf.2 hx hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_3
s : Set E
f g : E → β
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : SMul 𝕜 E
inst✝² : AddCommMonoid E
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
hf : ConcaveOn 𝕜 s f
hfg : EqOn f g s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
a b : 𝕜
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ a • g x + b • g y ≤ g (a • x + b • y)
[PROOFSTEP]
simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha hb hab)] using hf.2 hx hy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_3
s : Set E
f g : E → β
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : SMul 𝕜 E
inst✝² : AddCommMonoid E
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
hf : StrictConvexOn 𝕜 s f
hfg : EqOn f g s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ g (a • x + b • y) < a • g x + b • g y
[PROOFSTEP]
simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha.le hb.le hab)] using hf.2 hx hy hxy ha hb hab
[GOAL]
𝕜 : Type u_1
E : Type u_2
β : Type u_3
s : Set E
f g : E → β
inst✝⁴ : OrderedSemiring 𝕜
inst✝³ : SMul 𝕜 E
inst✝² : AddCommMonoid E
inst✝¹ : OrderedAddCommMonoid β
inst✝ : SMul 𝕜 β
hf : StrictConcaveOn 𝕜 s f
hfg : EqOn f g s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • g x + b • g y < g (a • x + b • y)
[PROOFSTEP]
simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha.le hb.le hab)] using hf.2 hx hy hxy ha hb hab
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
let f : ℝ → ℝ → ℝ → ℝ := fun c u x => exp (-c * x) * x ^ (c * (u - 1))
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have e : IsConjugateExponent (1 / a) (1 / b) := Real.isConjugateExponent_one_div ha hb hab
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have hab' : b = 1 - a := by linarith
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
⊢ b = 1 - a
[PROOFSTEP]
linarith
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have hst : 0 < a * s + b * t :=
add_pos (mul_pos ha hs)
(mul_pos hb ht)
-- some properties of f:
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have posf : ∀ c u x : ℝ, x ∈ Ioi (0 : ℝ) → 0 ≤ f c u x := fun c u x hx =>
mul_nonneg (exp_pos _).le (rpow_pos_of_pos hx _).le
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have posf' : ∀ c u : ℝ, ∀ᵐ x : ℝ ∂volume.restrict (Ioi 0), 0 ≤ f c u x := fun c u =>
(ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ (posf c u))
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have fpow : ∀ {c x : ℝ} (_ : 0 < c) (u : ℝ) (_ : 0 < x), exp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) :=
by
intro c x hc u hx
dsimp only
rw [mul_rpow (exp_pos _).le ((rpow_nonneg_of_nonneg hx.le) _), ← exp_mul, ← rpow_mul hx.le]
congr 2 <;>
· field_simp [hc.ne'];
ring
-- show `f c u` is in `ℒp` for `p = 1/c`:
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
⊢ ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
[PROOFSTEP]
intro c x hc u hx
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
[PROOFSTEP]
dsimp only
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ rexp (-x) * x ^ (u - 1) = (rexp (-c * x) * x ^ (c * (u - 1))) ^ (1 / c)
[PROOFSTEP]
rw [mul_rpow (exp_pos _).le ((rpow_nonneg_of_nonneg hx.le) _), ← exp_mul, ← rpow_mul hx.le]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ rexp (-x) * x ^ (u - 1) = rexp (-c * x * (1 / c)) * x ^ (c * (u - 1) * (1 / c))
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_x
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ -x = -c * x * (1 / c)
[PROOFSTEP]
field_simp [hc.ne']
[GOAL]
case e_a.e_x
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ x * c = c * x
[PROOFSTEP]
ring
-- show `f c u` is in `ℒp` for `p = 1/c`:
[GOAL]
case e_a.e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ u - 1 = c * (u - 1) * (1 / c)
[PROOFSTEP]
field_simp [hc.ne']
[GOAL]
case e_a.e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
c x : ℝ
hc : 0 < c
u : ℝ
hx : 0 < x
⊢ (u - 1) * c = c * (u - 1)
[PROOFSTEP]
ring
-- show `f c u` is in `ℒp` for `p = 1/c`:
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
have f_mem_Lp :
∀ {c u : ℝ} (hc : 0 < c) (hu : 0 < u), Memℒp (f c u) (ENNReal.ofReal (1 / c)) (volume.restrict (Ioi 0)) :=
by
intro c u hc hu
have A : ENNReal.ofReal (1 / c) ≠ 0 := by rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos]
have B : ENNReal.ofReal (1 / c) ≠ ∞ := ENNReal.ofReal_ne_top
rw [← memℒp_norm_rpow_iff _ A B, ENNReal.toReal_ofReal (one_div_nonneg.mpr hc.le), ENNReal.div_self A B,
memℒp_one_iff_integrable]
· apply Integrable.congr (GammaIntegral_convergent hu)
refine' eventuallyEq_of_mem (self_mem_ae_restrict measurableSet_Ioi) fun x hx => _
dsimp only
rw [fpow hc u hx]
congr 1
exact (norm_of_nonneg (posf _ _ x hx)).symm
· refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi
refine' (Continuous.continuousOn _).mul (ContinuousAt.continuousOn fun x hx => _)
· exact continuous_exp.comp (continuous_const.mul continuous_id')
·
exact
continuousAt_rpow_const _ _
(Or.inl (mem_Ioi.mp hx).ne')
-- now apply Hölder:
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
⊢ ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
[PROOFSTEP]
intro c u hc hu
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c))
[PROOFSTEP]
have A : ENNReal.ofReal (1 / c) ≠ 0 := by rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
⊢ ENNReal.ofReal (1 / c) ≠ 0
[PROOFSTEP]
rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c))
[PROOFSTEP]
have B : ENNReal.ofReal (1 / c) ≠ ∞ := ENNReal.ofReal_ne_top
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c))
[PROOFSTEP]
rw [← memℒp_norm_rpow_iff _ A B, ENNReal.toReal_ofReal (one_div_nonneg.mpr hc.le), ENNReal.div_self A B,
memℒp_one_iff_integrable]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ Integrable fun x => ‖f c u x‖ ^ (1 / c)
[PROOFSTEP]
apply Integrable.congr (GammaIntegral_convergent hu)
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ (fun x => rexp (-x) * x ^ (u - 1)) =ᵐ[Measure.restrict volume (Ioi 0)] fun x => ‖f c u x‖ ^ (1 / c)
[PROOFSTEP]
refine' eventuallyEq_of_mem (self_mem_ae_restrict measurableSet_Ioi) fun x hx => _
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
x : ℝ
hx : x ∈ Ioi 0
⊢ rexp (-x) * x ^ (u - 1) = ‖f c u x‖ ^ (1 / c)
[PROOFSTEP]
dsimp only
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
x : ℝ
hx : x ∈ Ioi 0
⊢ rexp (-x) * x ^ (u - 1) = ‖rexp (-c * x) * x ^ (c * (u - 1))‖ ^ (1 / c)
[PROOFSTEP]
rw [fpow hc u hx]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
x : ℝ
hx : x ∈ Ioi 0
⊢ f c u x ^ (1 / c) = ‖rexp (-c * x) * x ^ (c * (u - 1))‖ ^ (1 / c)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
x : ℝ
hx : x ∈ Ioi 0
⊢ f c u x = ‖rexp (-c * x) * x ^ (c * (u - 1))‖
[PROOFSTEP]
exact (norm_of_nonneg (posf _ _ x hx)).symm
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ AEStronglyMeasurable (f c u) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ ContinuousOn (f c u) (Ioi 0)
[PROOFSTEP]
refine' (Continuous.continuousOn _).mul (ContinuousAt.continuousOn fun x hx => _)
[GOAL]
case refine'_1
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
⊢ Continuous fun x => rexp (-c * x)
[PROOFSTEP]
exact continuous_exp.comp (continuous_const.mul continuous_id')
[GOAL]
case refine'_2
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
c u : ℝ
hc : 0 < c
hu : 0 < u
A : ENNReal.ofReal (1 / c) ≠ 0
B : ENNReal.ofReal (1 / c) ≠ ⊤
x : ℝ
hx : x ∈ Ioi 0
⊢ ContinuousAt (fun x => x ^ (c * (u - 1))) x
[PROOFSTEP]
exact
continuousAt_rpow_const _ _
(Or.inl (mem_Ioi.mp hx).ne')
-- now apply Hölder:
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b
[PROOFSTEP]
rw [Gamma_eq_integral hs, Gamma_eq_integral ht, Gamma_eq_integral hst]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (a * s + b * t - 1) ≤
(∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b
[PROOFSTEP]
convert
MeasureTheory.integral_mul_le_Lp_mul_Lq_of_nonneg e (posf' a s) (posf' b t) (f_mem_Lp ha hs) (f_mem_Lp hb ht) using 1
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (a * s + b * t - 1) = ∫ (a_1 : ℝ) in Ioi 0, f a s a_1 * f b t a_1
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun x hx => _
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
⊢ rexp (-x) * x ^ (a * s + b * t - 1) = f a s x * f b t x
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1)))
[PROOFSTEP]
have A : exp (-x) = exp (-a * x) * exp (-b * x) := by rw [← exp_add, ← add_mul, ← neg_add, hab, neg_one_mul]
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
⊢ rexp (-x) = rexp (-a * x) * rexp (-b * x)
[PROOFSTEP]
rw [← exp_add, ← add_mul, ← neg_add, hab, neg_one_mul]
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1)))
[PROOFSTEP]
have B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1)) := by rw [← rpow_add hx, hab']; congr 1; ring
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
⊢ x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1))
[PROOFSTEP]
rw [← rpow_add hx, hab']
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
⊢ x ^ (a * s + (1 - a) * t - 1) = x ^ (a * (s - 1) + (1 - a) * (t - 1))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
⊢ a * s + (1 - a) * t - 1 = a * (s - 1) + (1 - a) * (t - 1)
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1))
⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1)))
[PROOFSTEP]
rw [A, B]
[GOAL]
case h.e'_3
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
A : rexp (-x) = rexp (-a * x) * rexp (-b * x)
B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1))
⊢ rexp (-a * x) * rexp (-b * x) * (x ^ (a * (s - 1)) * x ^ (b * (t - 1))) =
rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1)))
[PROOFSTEP]
ring
[GOAL]
case h.e'_4
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b =
(∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a)) ^ (1 / (1 / a)) *
(∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b)) ^ (1 / (1 / b))
[PROOFSTEP]
rw [one_div_one_div, one_div_one_div]
[GOAL]
case h.e'_4
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b =
(∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a)) ^ a * (∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b)) ^ b
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_4.e_a.e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1) = ∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a)
[PROOFSTEP]
exact set_integral_congr measurableSet_Ioi fun x hx => fpow (by assumption) _ hx
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
⊢ 0 < a
[PROOFSTEP]
assumption
[GOAL]
case h.e'_4.e_a.e_a
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1) = ∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b)
[PROOFSTEP]
exact set_integral_congr measurableSet_Ioi fun x hx => fpow (by assumption) _ hx
[GOAL]
s t a b : ℝ
hs : 0 < s
ht : 0 < t
ha : 0 < a
hb : 0 < b
hab : a + b = 1
f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1))
e : IsConjugateExponent (1 / a) (1 / b)
hab' : b = 1 - a
hst : 0 < a * s + b * t
posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x
posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x
fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c)
f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c))
x : ℝ
hx : x ∈ Ioi 0
⊢ 0 < b
[PROOFSTEP]
assumption
[GOAL]
⊢ ConvexOn ℝ (Ioi 0) (log ∘ Gamma)
[PROOFSTEP]
refine' convexOn_iff_forall_pos.mpr ⟨convex_Ioi _, fun x hx y hy a b ha hb hab => _⟩
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ (log ∘ Gamma) (a • x + b • y) ≤ a • (log ∘ Gamma) x + b • (log ∘ Gamma) y
[PROOFSTEP]
have : b = 1 - a := by linarith
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ b = 1 - a
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a b : ℝ
ha : 0 < a
hb : 0 < b
hab : a + b = 1
this : b = 1 - a
⊢ (log ∘ Gamma) (a • x + b • y) ≤ a • (log ∘ Gamma) x + b • (log ∘ Gamma) y
[PROOFSTEP]
subst this
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a : ℝ
ha : 0 < a
hb : 0 < 1 - a
hab : a + (1 - a) = 1
⊢ (log ∘ Gamma) (a • x + (1 - a) • y) ≤ a • (log ∘ Gamma) x + (1 - a) • (log ∘ Gamma) y
[PROOFSTEP]
simp_rw [Function.comp_apply, smul_eq_mul]
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a : ℝ
ha : 0 < a
hb : 0 < 1 - a
hab : a + (1 - a) = 1
⊢ log (Gamma (a * x + (1 - a) * y)) ≤ a * log (Gamma x) + (1 - a) * log (Gamma y)
[PROOFSTEP]
rw [← log_rpow (Gamma_pos_of_pos hy), ← log_rpow (Gamma_pos_of_pos hx), ←
log_mul (rpow_pos_of_pos (Gamma_pos_of_pos hx) _).ne' (rpow_pos_of_pos (Gamma_pos_of_pos hy) _).ne',
log_le_log (Gamma_pos_of_pos (add_pos (mul_pos ha hx) (mul_pos hb hy)))
(mul_pos (rpow_pos_of_pos (Gamma_pos_of_pos hx) _) (rpow_pos_of_pos (Gamma_pos_of_pos hy) _))]
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : y ∈ Ioi 0
a : ℝ
ha : 0 < a
hb : 0 < 1 - a
hab : a + (1 - a) = 1
⊢ Gamma (a * x + (1 - a) * y) ≤ Gamma x ^ a * Gamma y ^ (1 - a)
[PROOFSTEP]
exact Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma hx hy ha hb hab
[GOAL]
⊢ ConvexOn ℝ (Ioi 0) Gamma
[PROOFSTEP]
refine'
((convexOn_exp.subset (subset_univ _) _).comp convexOn_log_Gamma (exp_monotone.monotoneOn _)).congr fun x hx =>
exp_log (Gamma_pos_of_pos hx)
[GOAL]
⊢ Convex ℝ (log ∘ Gamma '' Ioi 0)
[PROOFSTEP]
rw [convex_iff_isPreconnected]
[GOAL]
⊢ IsPreconnected (log ∘ Gamma '' Ioi 0)
[PROOFSTEP]
refine' isPreconnected_Ioi.image _ fun x hx => ContinuousAt.continuousWithinAt _
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
⊢ ContinuousAt (log ∘ Gamma) x
[PROOFSTEP]
refine' (differentiableAt_Gamma fun m => _).continuousAt.log (Gamma_pos_of_pos hx).ne'
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
m : ℕ
⊢ x ≠ -↑m
[PROOFSTEP]
exact (neg_lt_iff_pos_add.mpr (add_pos_of_pos_of_nonneg (mem_Ioi.mp hx) (Nat.cast_nonneg m))).ne'
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
⊢ f ↑n = f 1 + log ↑(n - 1)!
[PROOFSTEP]
refine' Nat.le_induction (by simp) (fun m hm IH => _) n (Nat.one_le_iff_ne_zero.2 hn)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
⊢ f ↑1 = f 1 + log ↑(1 - 1)!
[PROOFSTEP]
simp
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
⊢ f ↑(m + 1) = f 1 + log ↑(m + 1 - 1)!
[PROOFSTEP]
have A : 0 < (m : ℝ) := Nat.cast_pos.2 hm
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
⊢ f ↑(m + 1) = f 1 + log ↑(m + 1 - 1)!
[PROOFSTEP]
simp only [hf_feq A, Nat.cast_add, Nat.cast_one, Nat.add_succ_sub_one, add_zero]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
⊢ f ↑m + log ↑m = f 1 + log ↑m !
[PROOFSTEP]
rw [IH, add_assoc, ← log_mul (Nat.cast_ne_zero.mpr (Nat.factorial_ne_zero _)) A.ne', ← Nat.cast_mul]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
⊢ f 1 + log ↑((m - 1)! * m) = f 1 + log ↑m !
[PROOFSTEP]
conv_rhs => rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
| f 1 + log ↑m !
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
| f 1 + log ↑m !
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
| f 1 + log ↑m !
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
⊢ f 1 + log ↑((m - 1)! * m) = f 1 + log ↑((Nat.pred m)! * (Nat.pred m + 1))
[PROOFSTEP]
congr
[GOAL]
case e_a.e_x.e_a.e_a
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
m : ℕ
hm : 1 ≤ m
IH : f ↑m = f 1 + log ↑(m - 1)!
A : 0 < ↑m
⊢ m = Nat.pred m + 1
[PROOFSTEP]
exact (Nat.succ_pred_eq_of_pos hm).symm
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
⊢ f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
⊢ f (x + ↑Nat.zero) = f x + ∑ m in Finset.range Nat.zero, log (x + ↑m)
[PROOFSTEP]
simp
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
⊢ f (x + ↑(Nat.succ n)) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m)
[PROOFSTEP]
have : x + n.succ = x + n + 1 := by push_cast ; ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
⊢ x + ↑(Nat.succ n) = x + ↑n + 1
[PROOFSTEP]
push_cast
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
⊢ x + (↑n + 1) = x + ↑n + 1
[PROOFSTEP]
ring
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ f (x + ↑(Nat.succ n)) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m)
[PROOFSTEP]
rw [this, hf_feq, hn]
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m)
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ 0 < x + ↑n
[PROOFSTEP]
rw [Finset.range_succ, Finset.sum_insert Finset.not_mem_range_self]
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) =
f x + (log (x + ↑n) + ∑ x_1 in Finset.range n, log (x + ↑x_1))
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ 0 < x + ↑n
[PROOFSTEP]
abel
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) =
f x + (log (x + ↑n) + ∑ x_1 in Finset.range n, log (x + ↑x_1))
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ 0 < x + ↑n
[PROOFSTEP]
abel
[GOAL]
case succ
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
n : ℕ
hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m)
this : x + ↑(Nat.succ n) = x + ↑n + 1
⊢ 0 < x + ↑n
[PROOFSTEP]
linarith [(Nat.cast_nonneg n : 0 ≤ (n : ℝ))]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
⊢ f (↑n + x) ≤ f ↑n + x * log ↑n
[PROOFSTEP]
have hn' : 0 < (n : ℝ) := Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
⊢ f (↑n + x) ≤ f ↑n + x * log ↑n
[PROOFSTEP]
have : f n + x * log n = (1 - x) * f n + x * f (n + 1) := by rw [hf_feq hn']; ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
⊢ f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
[PROOFSTEP]
rw [hf_feq hn']
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
⊢ f ↑n + x * log ↑n = (1 - x) * f ↑n + x * (f ↑n + log ↑n)
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ f (↑n + x) ≤ f ↑n + x * log ↑n
[PROOFSTEP]
rw [this, (by ring : (n : ℝ) + x = (1 - x) * n + x * (n + 1))]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ ↑n + x = (1 - x) * ↑n + x * (↑n + 1)
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ f ((1 - x) * ↑n + x * (↑n + 1)) ≤ (1 - x) * f ↑n + x * f (↑n + 1)
[PROOFSTEP]
simpa only [smul_eq_mul] using
hf_conv.2 hn' (by linarith : 0 < (n + 1 : ℝ)) (by linarith : 0 ≤ 1 - x) hx.le (by linarith)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ 0 < ↑n + 1
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ 0 ≤ 1 - x
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : n ≠ 0
hx : 0 < x
hx' : x ≤ 1
hn' : 0 < ↑n
this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1)
⊢ 1 - x + x = 1
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x)
[PROOFSTEP]
have npos : 0 < (n : ℝ) - 1 := by rw [← Nat.cast_one, sub_pos, Nat.cast_lt]; linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
⊢ 0 < ↑n - 1
[PROOFSTEP]
rw [← Nat.cast_one, sub_pos, Nat.cast_lt]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
⊢ 1 < n
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x)
[PROOFSTEP]
have c :=
(convexOn_iff_slope_mono_adjacent.mp <| hf_conv).2 npos (by linarith : 0 < (n : ℝ) + x)
(by linarith : (n : ℝ) - 1 < (n : ℝ)) (by linarith)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
⊢ 0 < ↑n + x
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
⊢ ↑n - 1 < ↑n
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
⊢ ↑n < ↑n + x
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
c : (f ↑n - f (↑n - 1)) / (↑n - (↑n - 1)) ≤ (f (↑n + x) - f ↑n) / (↑n + x - ↑n)
⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x)
[PROOFSTEP]
rw [add_sub_cancel', sub_sub_cancel, div_one] at c
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x
⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x)
[PROOFSTEP]
have : f (↑n - 1) = f n - log (↑n - 1) := by
-- Porting note: was
-- nth_rw_rhs 1 [(by ring : (n : ℝ) = ↑n - 1 + 1)]
-- rw [hf_feq npos, add_sub_cancel]rw [eq_sub_iff_add_eq, ← hf_feq npos, sub_add_cancel]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x
⊢ f (↑n - 1) = f ↑n - log (↑n - 1)
[PROOFSTEP]
rw [eq_sub_iff_add_eq, ← hf_feq npos, sub_add_cancel]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hn : 2 ≤ n
hx : 0 < x
npos : 0 < ↑n - 1
c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x
this : f (↑n - 1) = f ↑n - log (↑n - 1)
⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x)
[PROOFSTEP]
rwa [this, le_div_iff hx, sub_sub_cancel, le_sub_iff_add_le, mul_comm _ x, add_comm] at c
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ logGammaSeq (x + 1) n = logGammaSeq x (n + 1) + log x - (x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
dsimp only [Nat.factorial_succ, logGammaSeq]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
conv_rhs => rw [Finset.sum_range_succ', Nat.cast_zero, add_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
| x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [Finset.sum_range_succ', Nat.cast_zero, add_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
| x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [Finset.sum_range_succ', Nat.cast_zero, add_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
| x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [Finset.sum_range_succ', Nat.cast_zero, add_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log ↑(n + 1) + log ↑((n + 1) * n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [Nat.cast_mul, log_mul]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
case hx
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ ↑(n + 1) ≠ 0
case hy f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ↑n ! ≠ 0
[PROOFSTEP]
rotate_left
[GOAL]
case hx
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ ↑(n + 1) ≠ 0
[PROOFSTEP]
rw [Nat.cast_ne_zero]
[GOAL]
case hx
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ n + 1 ≠ 0
[PROOFSTEP]
exact Nat.succ_ne_zero n
[GOAL]
case hy
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ ↑n ! ≠ 0
[PROOFSTEP]
rw [Nat.cast_ne_zero]
[GOAL]
case hy
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ n ! ≠ 0
[PROOFSTEP]
exact Nat.factorial_ne_zero n
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
have : ∑ m : ℕ in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k : ℕ in Finset.range (n + 1), log (x + ↑(k + 1)) :=
by
refine' Finset.sum_congr (by rfl) fun m _ => _
congr 1
push_cast
abel
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1))
[PROOFSTEP]
refine' Finset.sum_congr (by rfl) fun m _ => _
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
⊢ Finset.range (n + 1) = Finset.range (n + 1)
[PROOFSTEP]
rfl
[GOAL]
f : ℝ → ℝ
x✝¹ : ℝ
n✝ : ℕ
x : ℝ
n m : ℕ
x✝ : m ∈ Finset.range (n + 1)
⊢ log (x + 1 + ↑m) = log (x + ↑(m + 1))
[PROOFSTEP]
congr 1
[GOAL]
case e_x
f : ℝ → ℝ
x✝¹ : ℝ
n✝ : ℕ
x : ℝ
n m : ℕ
x✝ : m ∈ Finset.range (n + 1)
⊢ x + 1 + ↑m = x + ↑(m + 1)
[PROOFSTEP]
push_cast
[GOAL]
case e_x
f : ℝ → ℝ
x✝¹ : ℝ
n✝ : ℕ
x : ℝ
n m : ℕ
x✝ : m ∈ Finset.range (n + 1)
⊢ x + 1 + ↑m = x + (↑m + 1)
[PROOFSTEP]
abel
[GOAL]
case e_x
f : ℝ → ℝ
x✝¹ : ℝ
n✝ : ℕ
x : ℝ
n m : ℕ
x✝ : m ∈ Finset.range (n + 1)
⊢ x + 1 + ↑m = x + (↑m + 1)
[PROOFSTEP]
abel
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
this : ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1))
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [← this, Nat.cast_add_one n]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
x : ℝ
n : ℕ
this : ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1))
⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) =
x * log (↑n + 1) + (log (↑n + 1) + log ↑n !) - (∑ m in Finset.range (n + 1), log (x + 1 + ↑m) + log x) + log x -
(x + 1) * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f x ≤ f 1 + x * log (↑n + 1) - x * log ↑n + logGammaSeq x n
[PROOFSTEP]
rw [logGammaSeq, ← add_sub_assoc, le_sub_iff_add_le, ← f_add_nat_eq (@hf_feq) hx, add_comm x]
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f (↑(n + 1) + x) ≤ f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !)
[PROOFSTEP]
refine' (f_add_nat_le hf_conv (@hf_feq) (Nat.add_one_ne_zero n) hx hx').trans (le_of_eq _)
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f ↑(n + 1) + x * log ↑(n + 1) = f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !)
[PROOFSTEP]
rw [f_nat_eq @hf_feq (by linarith : n + 1 ≠ 0), Nat.add_sub_cancel, Nat.cast_add_one]
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ n + 1 ≠ 0
[PROOFSTEP]
linarith
[GOAL]
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f 1 + log ↑n ! + x * log (↑n + 1) = f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !)
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ f 1 + logGammaSeq x n ≤ f x
[PROOFSTEP]
dsimp [logGammaSeq]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ f 1 + (x * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + ↑m)) ≤ f x
[PROOFSTEP]
rw [← add_sub_assoc, sub_le_iff_le_add, ← f_add_nat_eq (@hf_feq) hx, add_comm x _]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ f 1 + (x * log ↑n + log ↑n !) ≤ f (↑(n + 1) + x)
[PROOFSTEP]
refine' le_trans (le_of_eq _) (f_add_nat_ge hf_conv @hf_feq _ hx)
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ f 1 + (x * log ↑n + log ↑n !) = f ↑(n + 1) + x * log (↑(n + 1) - 1)
[PROOFSTEP]
rw [f_nat_eq @hf_feq, Nat.add_sub_cancel, Nat.cast_add_one, add_sub_cancel]
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ f 1 + (x * log ↑n + log ↑n !) = f 1 + log ↑n ! + x * log ↑n
[PROOFSTEP]
ring
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ n + 1 ≠ 0
[PROOFSTEP]
exact Nat.succ_ne_zero _
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ 2 ≤ n + 1
[PROOFSTEP]
apply Nat.succ_le_succ
[GOAL]
case refine'_2.a
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hn : n ≠ 0
⊢ 1 ≤ n
[PROOFSTEP]
linarith [Nat.pos_of_ne_zero hn]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
refine'
tendsto_of_tendsto_of_tendsto_of_le_of_le' _ tendsto_const_nhds _
_
-- Porting note: `show` no longer reorders goals
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ℕ → ℝ
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1))
case refine'_3
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b
case refine'_4
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, logGammaSeq x b ≤ f x - f 1
[PROOFSTEP]
pick_goal 4
[GOAL]
case refine'_4
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, logGammaSeq x b ≤ f x - f 1
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ℕ → ℝ
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1))
case refine'_3
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b
[PROOFSTEP]
show ∀ᶠ n : ℕ in atTop, logGammaSeq x n ≤ f x - f 1
[GOAL]
case refine'_4
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (n : ℕ) in atTop, logGammaSeq x n ≤ f x - f 1
[PROOFSTEP]
refine' Eventually.mp (eventually_ne_atTop 0) (eventually_of_forall fun n hn => _)
[GOAL]
case refine'_4
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
hn : n ≠ 0
⊢ logGammaSeq x n ≤ f x - f 1
[PROOFSTEP]
exact
le_sub_iff_add_le'.mpr
(ge_logGammaSeq hf_conv (@hf_feq) hx hn)
-- Porting note: `show` no longer reorders goals
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ℕ → ℝ
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1))
case refine'_3
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b
[PROOFSTEP]
pick_goal 3
[GOAL]
case refine'_3
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ℕ → ℝ
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1))
[PROOFSTEP]
show ∀ᶠ n : ℕ in atTop, f x - f 1 - x * (log (n + 1) - log n) ≤ logGammaSeq x n
[GOAL]
case refine'_3
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ ∀ᶠ (n : ℕ) in atTop, f x - f 1 - x * (log (↑n + 1) - log ↑n) ≤ logGammaSeq x n
[PROOFSTEP]
refine' eventually_of_forall fun n => _
[GOAL]
case refine'_3
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f x - f 1 - x * (log (↑n + 1) - log ↑n) ≤ logGammaSeq x n
[PROOFSTEP]
rw [sub_le_iff_le_add', sub_le_iff_le_add']
[GOAL]
case refine'_3
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f x ≤ f 1 + (x * (log (↑n + 1) - log ↑n) + logGammaSeq x n)
[PROOFSTEP]
convert le_logGammaSeq hf_conv (@hf_feq) hx hx' n using 1
[GOAL]
case h.e'_4
f : ℝ → ℝ
x : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
n : ℕ
⊢ f 1 + (x * (log (↑n + 1) - log ↑n) + logGammaSeq x n) = f 1 + x * log (↑n + 1) - x * log ↑n + logGammaSeq x n
[PROOFSTEP]
ring
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
have : f x - f 1 = f x - f 1 - x * 0 := by ring
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
⊢ f x - f 1 = f x - f 1 - x * 0
[PROOFSTEP]
ring
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
this : f x - f 1 = f x - f 1 - x * 0
⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
nth_rw 2 [this]
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
hx' : x ≤ 1
this : f x - f 1 = f x - f 1 - x * 0
⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1 - x * 0))
[PROOFSTEP]
exact Tendsto.sub tendsto_const_nhds (tendsto_log_nat_add_one_sub_log.const_mul _)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
suffices ∀ m : ℕ, ↑m < x → x ≤ m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 <| f x - f 1)
by
refine' this ⌈x - 1⌉₊ _ _
· rcases lt_or_le x 1 with ⟨⟩
· rwa [Nat.ceil_eq_zero.mpr (by linarith : x - 1 ≤ 0), Nat.cast_zero]
· convert Nat.ceil_lt_add_one (by linarith : 0 ≤ x - 1)
abel
· rw [← sub_le_iff_le_add]; exact Nat.le_ceil _
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
refine' this ⌈x - 1⌉₊ _ _
[GOAL]
case refine'_1
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
⊢ ↑⌈x - 1⌉₊ < x
[PROOFSTEP]
rcases lt_or_le x 1 with ⟨⟩
[GOAL]
case refine'_1.inl
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : x < 1
⊢ ↑⌈x - 1⌉₊ < x
[PROOFSTEP]
rwa [Nat.ceil_eq_zero.mpr (by linarith : x - 1 ≤ 0), Nat.cast_zero]
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : x < 1
⊢ x - 1 ≤ 0
[PROOFSTEP]
linarith
[GOAL]
case refine'_1.inr
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : 1 ≤ x
⊢ ↑⌈x - 1⌉₊ < x
[PROOFSTEP]
convert Nat.ceil_lt_add_one (by linarith : 0 ≤ x - 1)
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : 1 ≤ x
⊢ 0 ≤ x - 1
[PROOFSTEP]
linarith
[GOAL]
case h.e'_4
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : 1 ≤ x
⊢ x = x - 1 + 1
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
h✝ : 1 ≤ x
⊢ x = x - 1 + 1
[PROOFSTEP]
abel
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
⊢ x ≤ ↑⌈x - 1⌉₊ + 1
[PROOFSTEP]
rw [← sub_le_iff_le_add]
[GOAL]
case refine'_2
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
⊢ x - 1 ≤ ↑⌈x - 1⌉₊
[PROOFSTEP]
exact Nat.le_ceil _
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
⊢ ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
intro m
[GOAL]
f : ℝ → ℝ
x : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx : 0 < x
m : ℕ
⊢ ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
induction' m with m hm generalizing x
[GOAL]
case zero
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
x : ℝ
hx : 0 < x
⊢ ↑Nat.zero < x → x ≤ ↑Nat.zero + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
rw [Nat.cast_zero, zero_add]
[GOAL]
case zero
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
x : ℝ
hx : 0 < x
⊢ 0 < x → x ≤ 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
exact fun _ hx' => tendsto_logGammaSeq_of_le_one hf_conv (@hf_feq) hx hx'
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
x : ℝ
hx : 0 < x
⊢ ↑(Nat.succ m) < x → x ≤ ↑(Nat.succ m) + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
intro hy hy'
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
x : ℝ
hx : 0 < x
hy : ↑(Nat.succ m) < x
hy' : x ≤ ↑(Nat.succ m) + 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
rw [Nat.cast_succ, ← sub_le_iff_le_add] at hy'
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
x : ℝ
hx : 0 < x
hy : ↑(Nat.succ m) < x
hy' : x - 1 ≤ ↑m + 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
rw [Nat.cast_succ, ← lt_sub_iff_add_lt] at hy
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
specialize hm ((Nat.cast_nonneg _).trans_lt hy) hy hy'
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
have :
∀ᶠ n : ℕ in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) :=
by
refine' Eventually.mp (eventually_ge_atTop 1) (eventually_of_forall fun n hn => _)
have := logGammaSeq_add_one (x - 1) (n - 1)
rw [sub_add_cancel, Nat.sub_add_cancel hn] at this
rw [this]
ring
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
⊢ ∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
[PROOFSTEP]
refine' Eventually.mp (eventually_ge_atTop 1) (eventually_of_forall fun n hn => _)
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
n : ℕ
hn : 1 ≤ n
⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
[PROOFSTEP]
have := logGammaSeq_add_one (x - 1) (n - 1)
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
n : ℕ
hn : 1 ≤ n
this :
logGammaSeq (x - 1 + 1) (n - 1) =
logGammaSeq (x - 1) (n - 1 + 1) + log (x - 1) - (x - 1 + 1) * (log (↑(n - 1) + 1) - log ↑(n - 1))
⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
[PROOFSTEP]
rw [sub_add_cancel, Nat.sub_add_cancel hn] at this
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
n : ℕ
hn : 1 ≤ n
this : logGammaSeq x (n - 1) = logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1))
⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
[PROOFSTEP]
rw [this]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
n : ℕ
hn : 1 ≤ n
this : logGammaSeq x (n - 1) = logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1))
⊢ logGammaSeq (x - 1) n =
logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1)) +
x * (log (↑(n - 1) + 1) - log ↑(n - 1)) -
log (x - 1)
[PROOFSTEP]
ring
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1))
this :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
replace hm :=
((Tendsto.congr' this hm).add (tendsto_const_nhds : Tendsto (fun _ => log (x - 1)) _ _)).comp
(tendsto_add_atTop_nat 1)
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm :
Tendsto
((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘
fun a => a + 1)
atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
have :
((fun x_1 : ℕ =>
(fun n : ℕ => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b : ℕ => log (x - 1)) x_1) ∘
fun a : ℕ => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) :=
by
ext1 n
dsimp only [Function.comp_apply]
rw [sub_add_cancel, Nat.add_sub_cancel]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm :
Tendsto
((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘
fun a => a + 1)
atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
⊢ ((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
ext1 n
[GOAL]
case h
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm :
Tendsto
((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘
fun a => a + 1)
atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
n : ℕ
⊢ ((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1)
n =
logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
dsimp only [Function.comp_apply]
[GOAL]
case h
f : ℝ → ℝ
x✝ : ℝ
n✝ : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm :
Tendsto
((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘
fun a => a + 1)
atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
n : ℕ
⊢ logGammaSeq x (n + 1 - 1) + x * (log (↑(n + 1 - 1) + 1) - log ↑(n + 1 - 1)) - log (x - 1) + log (x - 1) =
logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
[PROOFSTEP]
rw [sub_add_cancel, Nat.add_sub_cancel]
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm :
Tendsto
((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘
fun a => a + 1)
atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
rw [this] at hm
[GOAL]
case succ
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
[PROOFSTEP]
convert hm.sub (tendsto_log_nat_add_one_sub_log.const_mul x) using 2
[GOAL]
case h.e'_3.h
f : ℝ → ℝ
x✝¹ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝¹
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
x✝ : ℕ
⊢ logGammaSeq x x✝ = logGammaSeq x x✝ + x * (log (↑x✝ + 1) - log ↑x✝) - x * (log (↑x✝ + 1) - log ↑x✝)
[PROOFSTEP]
ring
[GOAL]
case h.e'_5.h.e'_3
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0
[PROOFSTEP]
have := hf_feq ((Nat.cast_nonneg m).trans_lt hy)
[GOAL]
case h.e'_5.h.e'_3
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝¹ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this✝ :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
this : f (x - 1 + 1) = f (x - 1) + log (x - 1)
⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0
[PROOFSTEP]
rw [sub_add_cancel] at this
[GOAL]
case h.e'_5.h.e'_3
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝¹ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this✝ :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
this : f x = f (x - 1) + log (x - 1)
⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0
[PROOFSTEP]
rw [this]
[GOAL]
case h.e'_5.h.e'_3
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
hf_conv : ConvexOn ℝ (Ioi 0) f
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y
hx✝ : 0 < x✝
m : ℕ
x : ℝ
hx : 0 < x
hy : ↑m < x - 1
hy' : x - 1 ≤ ↑m + 1
this✝¹ :
∀ᶠ (n : ℕ) in atTop,
logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)
hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1)))
this✝ :
((fun x_1 =>
(fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 +
(fun b => log (x - 1)) x_1) ∘
fun a => a + 1) =
fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)
this : f x = f (x - 1) + log (x - 1)
⊢ f (x - 1) + log (x - 1) - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
x : ℝ
hx : 0 < x
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (log (Gamma x)))
[PROOFSTEP]
have : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 := by
simp_rw [Function.comp_apply, Gamma_one, log_one, sub_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
x : ℝ
hx : 0 < x
⊢ log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1
[PROOFSTEP]
simp_rw [Function.comp_apply, Gamma_one, log_one, sub_zero]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
x : ℝ
hx : 0 < x
this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 (log (Gamma x)))
[PROOFSTEP]
rw [this]
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
x : ℝ
hx : 0 < x
this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1
⊢ Tendsto (logGammaSeq x) atTop (𝓝 ((log ∘ Gamma) x - (log ∘ Gamma) 1))
[PROOFSTEP]
refine' BohrMollerup.tendsto_logGammaSeq convexOn_log_Gamma (fun {y} hy => _) hx
[GOAL]
f : ℝ → ℝ
x✝ : ℝ
n : ℕ
x : ℝ
hx : 0 < x
this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1
y : ℝ
hy : 0 < y
⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y
[PROOFSTEP]
rw [Function.comp_apply, Gamma_add_one hy.ne', log_mul hy.ne' (Gamma_pos_of_pos hy).ne', add_comm, Function.comp_apply]
[GOAL]
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
⊢ EqOn f Gamma (Ioi 0)
[PROOFSTEP]
suffices : EqOn (log ∘ f) (log ∘ Gamma) (Ioi (0 : ℝ))
[GOAL]
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
this : EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0)
⊢ EqOn f Gamma (Ioi 0)
case this
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
⊢ EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0)
[PROOFSTEP]
exact fun x hx => log_injOn_pos (hf_pos hx) (Gamma_pos_of_pos hx) (this hx)
[GOAL]
case this
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
⊢ EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0)
[PROOFSTEP]
intro x hx
[GOAL]
case this
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
⊢ (log ∘ f) x = (log ∘ Gamma) x
[PROOFSTEP]
have e1 := BohrMollerup.tendsto_logGammaSeq hf_conv ?_ hx
[GOAL]
case this.refine_2
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
e1 : Tendsto (BohrMollerup.logGammaSeq x) atTop (𝓝 ((log ∘ f) x - (log ∘ f) 1))
⊢ (log ∘ f) x = (log ∘ Gamma) x
[PROOFSTEP]
rw [Function.comp_apply (f := log) (g := f) (x := 1), hf_one, log_one, sub_zero] at e1
[GOAL]
case this.refine_2
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
e1 : Tendsto (BohrMollerup.logGammaSeq x) atTop (𝓝 ((log ∘ f) x))
⊢ (log ∘ f) x = (log ∘ Gamma) x
[PROOFSTEP]
exact tendsto_nhds_unique e1 (BohrMollerup.tendsto_log_gamma hx)
[GOAL]
case this.refine_1
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
⊢ ∀ {y : ℝ}, 0 < y → (log ∘ f) (y + 1) = (log ∘ f) y + log y
[PROOFSTEP]
intro y hy
[GOAL]
case this.refine_1
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : 0 < y
⊢ (log ∘ f) (y + 1) = (log ∘ f) y + log y
[PROOFSTEP]
rw [Function.comp_apply, Function.comp_apply, hf_feq hy, log_mul hy.ne' (hf_pos hy).ne']
[GOAL]
case this.refine_1
f : ℝ → ℝ
hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f)
hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y
hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y
hf_one : f 1 = 1
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
hy : 0 < y
⊢ log y + log (f y) = log (f y) + log y
[PROOFSTEP]
ring
[GOAL]
⊢ Gamma 2 = 1
[PROOFSTEP]
simpa [one_add_one_eq_two] using Gamma_nat_eq_factorial 1
[GOAL]
⊢ Gamma (3 / 2) < 1
[PROOFSTEP]
have A : (0 : ℝ) < 3 / 2 := by norm_num
[GOAL]
⊢ 0 < 3 / 2
[PROOFSTEP]
norm_num
[GOAL]
A : 0 < 3 / 2
⊢ Gamma (3 / 2) < 1
[PROOFSTEP]
have :=
BohrMollerup.f_add_nat_le convexOn_log_Gamma (fun {y} hy => ?_) two_ne_zero one_half_pos
(by norm_num : 1 / 2 ≤ (1 : ℝ))
[GOAL]
A : 0 < 3 / 2
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
case refine_2
A : 0 < 3 / 2
this : (log ∘ Gamma) (↑2 + 1 / 2) ≤ (log ∘ Gamma) ↑2 + 1 / 2 * log ↑2
⊢ Gamma (3 / 2) < 1
case refine_1 A : 0 < 3 / 2 y : ℝ hy : 0 < y ⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y
[PROOFSTEP]
swap
[GOAL]
case refine_1
A : 0 < 3 / 2
y : ℝ
hy : 0 < y
⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y
[PROOFSTEP]
rw [Function.comp_apply, Gamma_add_one hy.ne', log_mul hy.ne' (Gamma_pos_of_pos hy).ne', add_comm, Function.comp_apply]
[GOAL]
case refine_2
A : 0 < 3 / 2
this : (log ∘ Gamma) (↑2 + 1 / 2) ≤ (log ∘ Gamma) ↑2 + 1 / 2 * log ↑2
⊢ Gamma (3 / 2) < 1
[PROOFSTEP]
rw [Function.comp_apply, Function.comp_apply, Nat.cast_two, Gamma_two, log_one, zero_add,
(by norm_num : (2 : ℝ) + 1 / 2 = 3 / 2 + 1), Gamma_add_one A.ne', log_mul A.ne' (Gamma_pos_of_pos A).ne', ←
le_sub_iff_add_le', log_le_iff_le_exp (Gamma_pos_of_pos A)] at this
[GOAL]
A : 0 < 3 / 2
this : log (Gamma (2 + 1 / 2)) ≤ 1 / 2 * log 2
⊢ 2 + 1 / 2 = 3 / 2 + 1
[PROOFSTEP]
norm_num
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ Gamma (3 / 2) < 1
[PROOFSTEP]
refine' this.trans_lt (exp_lt_one_iff.mpr _)
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ 1 / 2 * log 2 - log (3 / 2) < 0
[PROOFSTEP]
rw [mul_comm, ← mul_div_assoc, div_sub' _ _ (2 : ℝ) two_ne_zero]
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ (log 2 * 1 - 2 * log (3 / 2)) / 2 < 0
[PROOFSTEP]
refine' div_neg_of_neg_of_pos _ two_pos
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ log 2 * 1 - 2 * log (3 / 2) < 0
[PROOFSTEP]
rw [sub_neg, mul_one, ← Nat.cast_two, ← log_pow, ← exp_lt_exp, Nat.cast_two, exp_log two_pos, exp_log]
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ 2 < (3 / 2) ^ 2
[PROOFSTEP]
norm_num
[GOAL]
case refine_2
A : 0 < 3 / 2
this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2))
⊢ 0 < (3 / 2) ^ 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ StrictMonoOn Gamma (Ici 2)
[PROOFSTEP]
convert
convexOn_Gamma.strict_mono_of_lt (by norm_num : (0 : ℝ) < 3 / 2) (by norm_num : (3 / 2 : ℝ) < 2)
(Gamma_two.symm ▸ Gamma_three_div_two_lt_one)
[GOAL]
⊢ 0 < 3 / 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ 3 / 2 < 2
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_6
⊢ Ici 2 = Ioi 0 ∩ Ici 2
[PROOFSTEP]
symm
[GOAL]
case h.e'_6
⊢ Ioi 0 ∩ Ici 2 = Ici 2
[PROOFSTEP]
rw [inter_eq_right_iff_subset]
[GOAL]
case h.e'_6
⊢ Ici 2 ⊆ Ioi 0
[PROOFSTEP]
exact fun x hx => two_pos.trans_le <| mem_Ici.mp hx
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ doublingGamma (s + 1) = s * doublingGamma s
[PROOFSTEP]
rw [doublingGamma, doublingGamma, (by abel : s + 1 - 1 = s - 1 + 1), add_div, add_assoc, add_halves (1 : ℝ),
Gamma_add_one (div_ne_zero hs two_ne_zero), rpow_add two_pos, rpow_one]
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ s + 1 - 1 = s - 1 + 1
[PROOFSTEP]
abel
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ s + 1 - 1 = s - 1 + 1
[PROOFSTEP]
abel
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ Gamma (s / 2 + 1 / 2) * (s / 2 * Gamma (s / 2)) * (2 ^ (s - 1) * 2) / sqrt π =
s * (Gamma (s / 2) * Gamma (s / 2 + 1 / 2) * 2 ^ (s - 1) / sqrt π)
[PROOFSTEP]
ring
[GOAL]
⊢ doublingGamma 1 = 1
[PROOFSTEP]
simp_rw [doublingGamma, Gamma_one_half_eq, add_halves (1 : ℝ), sub_self, Gamma_one, mul_one, rpow_zero, mul_one,
div_self (sqrt_ne_zero'.mpr pi_pos)]
[GOAL]
⊢ EqOn (log ∘ doublingGamma) (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π))
(Ioi 0)
[PROOFSTEP]
intro s hs
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
⊢ (log ∘ doublingGamma) s =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s
[PROOFSTEP]
have h1 : sqrt π ≠ 0 := sqrt_ne_zero'.mpr pi_pos
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
h1 : sqrt π ≠ 0
⊢ (log ∘ doublingGamma) s =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s
[PROOFSTEP]
have h2 : Gamma (s / 2) ≠ 0 := (Gamma_pos_of_pos <| div_pos hs two_pos).ne'
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
h1 : sqrt π ≠ 0
h2 : Gamma (s / 2) ≠ 0
⊢ (log ∘ doublingGamma) s =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s
[PROOFSTEP]
have h3 : Gamma (s / 2 + 1 / 2) ≠ 0 := (Gamma_pos_of_pos <| add_pos (div_pos hs two_pos) one_half_pos).ne'
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
h1 : sqrt π ≠ 0
h2 : Gamma (s / 2) ≠ 0
h3 : Gamma (s / 2 + 1 / 2) ≠ 0
⊢ (log ∘ doublingGamma) s =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s
[PROOFSTEP]
have h4 : (2 : ℝ) ^ (s - 1) ≠ 0 := (rpow_pos_of_pos two_pos _).ne'
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
h1 : sqrt π ≠ 0
h2 : Gamma (s / 2) ≠ 0
h3 : Gamma (s / 2 + 1 / 2) ≠ 0
h4 : 2 ^ (s - 1) ≠ 0
⊢ (log ∘ doublingGamma) s =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s
[PROOFSTEP]
rw [Function.comp_apply, doublingGamma, log_div (mul_ne_zero (mul_ne_zero h2 h3) h4) h1, log_mul (mul_ne_zero h2 h3) h4,
log_mul h2 h3, log_rpow two_pos, log_mul two_ne_zero h1]
[GOAL]
s : ℝ
hs : s ∈ Ioi 0
h1 : sqrt π ≠ 0
h2 : Gamma (s / 2) ≠ 0
h3 : Gamma (s / 2 + 1 / 2) ≠ 0
h4 : 2 ^ (s - 1) ≠ 0
⊢ log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + (s - 1) * log 2 - log (sqrt π) =
(fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - (log 2 + log (sqrt π))) s
[PROOFSTEP]
ring_nf
[GOAL]
⊢ ConvexOn ℝ (Ioi 0) (log ∘ doublingGamma)
[PROOFSTEP]
refine' (((ConvexOn.add _ _).add _).add_const _).congr log_doublingGamma_eq.symm
[GOAL]
case refine'_1
⊢ ConvexOn ℝ (Ioi 0) fun s => log (Gamma (s / 2))
[PROOFSTEP]
convert convexOn_log_Gamma.comp_affineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2 : ℝ)).toAffineMap using 1
[GOAL]
case h.e'_9
⊢ Ioi 0 = ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2))) ⁻¹' Ioi 0
[PROOFSTEP]
simpa only [zero_div] using (preimage_const_mul_Ioi (0 : ℝ) one_half_pos).symm
[GOAL]
case h.e'_10
⊢ (fun s => log (Gamma (s / 2))) = (log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)))
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_10.h
x : ℝ
⊢ log (Gamma (x / 2)) = ((log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)))) x
[PROOFSTEP]
simp only [LinearMap.coe_toAffineMap, Function.comp_apply, DistribMulAction.toLinearMap_apply]
[GOAL]
case h.e'_10.h
x : ℝ
⊢ log (Gamma (x / 2)) = log (Gamma ((1 / 2) • x))
[PROOFSTEP]
rw [smul_eq_mul, mul_comm, mul_one_div]
[GOAL]
case refine'_2
⊢ ConvexOn ℝ (Ioi 0) fun s => log (Gamma (s / 2 + 1 / 2))
[PROOFSTEP]
refine' ConvexOn.subset _ (Ioi_subset_Ioi <| neg_one_lt_zero.le) (convex_Ioi _)
[GOAL]
case refine'_2
⊢ ConvexOn ℝ (Ioi (-1)) fun s => log (Gamma (s / 2 + 1 / 2))
[PROOFSTEP]
convert
convexOn_log_Gamma.comp_affineMap
((DistribMulAction.toLinearMap ℝ ℝ (1 / 2 : ℝ)).toAffineMap + AffineMap.const ℝ ℝ (1 / 2 : ℝ)) using
1
[GOAL]
case h.e'_9
⊢ Ioi (-1) = ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2)) ⁻¹' Ioi 0
[PROOFSTEP]
change Ioi (-1 : ℝ) = ((fun x : ℝ => x + 1 / 2) ∘ fun x : ℝ => (1 / 2 : ℝ) * x) ⁻¹' Ioi 0
[GOAL]
case h.e'_9
⊢ Ioi (-1) = ((fun x => x + 1 / 2) ∘ fun x => 1 / 2 * x) ⁻¹' Ioi 0
[PROOFSTEP]
rw [preimage_comp, preimage_add_const_Ioi, zero_sub, preimage_const_mul_Ioi (_ : ℝ) one_half_pos, neg_div,
div_self (@one_half_pos ℝ _).ne']
[GOAL]
case h.e'_10
⊢ (fun s => log (Gamma (s / 2 + 1 / 2))) =
(log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2))
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_10.h
x : ℝ
⊢ log (Gamma (x / 2 + 1 / 2)) =
((log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2)))
x
[PROOFSTEP]
change log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2 : ℝ) • x + 1 / 2))
[GOAL]
case h.e'_10.h
x : ℝ
⊢ log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2) • x + 1 / 2))
[PROOFSTEP]
rw [smul_eq_mul, mul_comm, mul_one_div]
[GOAL]
case refine'_3
⊢ ConvexOn ℝ (Ioi 0) fun s => s * log 2
[PROOFSTEP]
simpa only [mul_comm _ (log _)] using (convexOn_id (convex_Ioi (0 : ℝ))).smul (log_pos one_lt_two).le
[GOAL]
s : ℝ
hs : 0 < s
⊢ doublingGamma s = Gamma s
[PROOFSTEP]
refine'
eq_Gamma_of_log_convex doublingGamma_log_convex_Ioi (fun {y} hy => doublingGamma_add_one y hy.ne') (fun {y} hy => _)
doublingGamma_one hs
[GOAL]
s : ℝ
hs : 0 < s
y : ℝ
hy : 0 < y
⊢ 0 < doublingGamma y
[PROOFSTEP]
apply_rules [mul_pos, Gamma_pos_of_pos, add_pos, inv_pos_of_pos, rpow_pos_of_pos, two_pos, one_pos,
sqrt_pos_of_pos pi_pos]
[GOAL]
s : ℝ
hs : 0 < s
⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π
[PROOFSTEP]
rw [← doublingGamma_eq_Gamma (mul_pos two_pos hs), doublingGamma, mul_div_cancel_left _ (two_ne_zero' ℝ),
(by abel : 1 - 2 * s = -(2 * s - 1)), rpow_neg zero_le_two]
[GOAL]
s : ℝ
hs : 0 < s
⊢ 1 - 2 * s = -(2 * s - 1)
[PROOFSTEP]
abel
[GOAL]
s : ℝ
hs : 0 < s
⊢ 1 - 2 * s = -(2 * s - 1)
[PROOFSTEP]
abel
[GOAL]
s : ℝ
hs : 0 < s
⊢ Gamma s * Gamma (s + 1 / 2) = Gamma s * Gamma (s + 1 / 2) * 2 ^ (2 * s - 1) / sqrt π * (2 ^ (2 * s - 1))⁻¹ * sqrt π
[PROOFSTEP]
field_simp [(sqrt_pos_of_pos pi_pos).ne', (rpow_pos_of_pos two_pos (2 * s - 1)).ne']
[GOAL]
s : ℝ
hs : 0 < s
⊢ Gamma s * Gamma ((s * 2 + 1) / 2) * (sqrt π * 2 ^ (2 * s - 1)) =
Gamma s * Gamma ((s * 2 + 1) / 2) * 2 ^ (2 * s - 1) * sqrt π
[PROOFSTEP]
ring
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup", "llama_tokens": 55891} |
[GOAL]
x y : ℝ
hx : 0 < x
⊢ log x = ↑(OrderIso.symm expOrderIso) { val := x, property := hx }
[PROOFSTEP]
rw [log_of_ne_zero hx.ne']
[GOAL]
x y : ℝ
hx : 0 < x
⊢ ↑(OrderIso.symm expOrderIso) { val := |x|, property := (_ : 0 < |x|) } =
↑(OrderIso.symm expOrderIso) { val := x, property := hx }
[PROOFSTEP]
congr
[GOAL]
case h.e_6.h.e_val
x y : ℝ
hx : 0 < x
⊢ |x| = x
[PROOFSTEP]
exact abs_of_pos hx
[GOAL]
x y : ℝ
hx : x ≠ 0
⊢ exp (log x) = |x|
[PROOFSTEP]
rw [log_of_ne_zero hx, ← coe_expOrderIso_apply, OrderIso.apply_symm_apply, Subtype.coe_mk]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ exp (log x) = x
[PROOFSTEP]
rw [exp_log_eq_abs hx.ne']
[GOAL]
x y : ℝ
hx : 0 < x
⊢ |x| = x
[PROOFSTEP]
exact abs_of_pos hx
[GOAL]
x y : ℝ
hx : x < 0
⊢ exp (log x) = -x
[PROOFSTEP]
rw [exp_log_eq_abs (ne_of_lt hx)]
[GOAL]
x y : ℝ
hx : x < 0
⊢ |x| = -x
[PROOFSTEP]
exact abs_of_neg hx
[GOAL]
x✝ y x : ℝ
⊢ x ≤ exp (log x)
[PROOFSTEP]
by_cases h_zero : x = 0
[GOAL]
case pos
x✝ y x : ℝ
h_zero : x = 0
⊢ x ≤ exp (log x)
[PROOFSTEP]
rw [h_zero, log, dif_pos rfl, exp_zero]
[GOAL]
case pos
x✝ y x : ℝ
h_zero : x = 0
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le_one
[GOAL]
case neg
x✝ y x : ℝ
h_zero : ¬x = 0
⊢ x ≤ exp (log x)
[PROOFSTEP]
rw [exp_log_eq_abs h_zero]
[GOAL]
case neg
x✝ y x : ℝ
h_zero : ¬x = 0
⊢ x ≤ |x|
[PROOFSTEP]
exact le_abs_self _
[GOAL]
x y : ℝ
⊢ exp (log 1) = exp 0
[PROOFSTEP]
rw [exp_log zero_lt_one, exp_zero]
[GOAL]
x✝ y x : ℝ
⊢ log |x| = log x
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
x✝ y x : ℝ
h : x = 0
⊢ log |x| = log x
[PROOFSTEP]
simp [h]
[GOAL]
case neg
x✝ y x : ℝ
h : ¬x = 0
⊢ log |x| = log x
[PROOFSTEP]
rw [← exp_eq_exp, exp_log_eq_abs h, exp_log_eq_abs (abs_pos.2 h).ne', abs_abs]
[GOAL]
x✝ y x : ℝ
⊢ log (-x) = log x
[PROOFSTEP]
rw [← log_abs x, ← log_abs (-x), abs_neg]
[GOAL]
x✝ y x : ℝ
hx : 0 < x
⊢ sinh (log x) = (x - x⁻¹) / 2
[PROOFSTEP]
rw [sinh_eq, exp_neg, exp_log hx]
[GOAL]
x✝ y x : ℝ
hx : 0 < x
⊢ cosh (log x) = (x + x⁻¹) / 2
[PROOFSTEP]
rw [cosh_eq, exp_neg, exp_log hx]
[GOAL]
x✝¹ y x : ℝ
x✝ : x ∈ univ
⊢ log (-exp x) = x
[PROOFSTEP]
rw [log_neg_eq_log, log_exp]
[GOAL]
x y : ℝ
hx : x ≠ 0
hy : y ≠ 0
⊢ exp (log (x * y)) = exp (log x + log y)
[PROOFSTEP]
rw [exp_log_eq_abs (mul_ne_zero hx hy), exp_add, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_mul]
[GOAL]
x y : ℝ
hx : x ≠ 0
hy : y ≠ 0
⊢ exp (log (x / y)) = exp (log x - log y)
[PROOFSTEP]
rw [exp_log_eq_abs (div_ne_zero hx hy), exp_sub, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_div]
[GOAL]
x✝ y x : ℝ
⊢ log x⁻¹ = -log x
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
x✝ y x : ℝ
hx : x = 0
⊢ log x⁻¹ = -log x
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
x✝ y x : ℝ
hx : ¬x = 0
⊢ log x⁻¹ = -log x
[PROOFSTEP]
rw [← exp_eq_exp, exp_log_eq_abs (inv_ne_zero hx), exp_neg, exp_log_eq_abs hx, abs_inv]
[GOAL]
x y : ℝ
h : 0 < x
h₁ : 0 < y
⊢ log x ≤ log y ↔ x ≤ y
[PROOFSTEP]
rw [← exp_le_exp, exp_log h, exp_log h₁]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ x < y → log x < log y
[PROOFSTEP]
intro h
[GOAL]
x y : ℝ
hx : 0 < x
h : x < y
⊢ log x < log y
[PROOFSTEP]
rwa [← exp_lt_exp, exp_log hx, exp_log (lt_trans hx h)]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ x ≤ y → log x ≤ log y
[PROOFSTEP]
intro hxy
[GOAL]
x y : ℝ
hx : 0 < x
hxy : x ≤ y
⊢ log x ≤ log y
[PROOFSTEP]
cases hxy.eq_or_lt with
| inl h_eq => simp [h_eq]
| inr hlt => exact le_of_lt <| log_lt_log hx hlt
[GOAL]
x y : ℝ
hx : 0 < x
hxy : x ≤ y
x✝ : x = y ∨ x < y
⊢ log x ≤ log y
[PROOFSTEP]
cases hxy.eq_or_lt with
| inl h_eq => simp [h_eq]
| inr hlt => exact le_of_lt <| log_lt_log hx hlt
[GOAL]
case inl
x y : ℝ
hx : 0 < x
hxy : x ≤ y
h_eq : x = y
⊢ log x ≤ log y
[PROOFSTEP]
| inl h_eq => simp [h_eq]
[GOAL]
case inl
x y : ℝ
hx : 0 < x
hxy : x ≤ y
h_eq : x = y
⊢ log x ≤ log y
[PROOFSTEP]
simp [h_eq]
[GOAL]
case inr
x y : ℝ
hx : 0 < x
hxy : x ≤ y
hlt : x < y
⊢ log x ≤ log y
[PROOFSTEP]
| inr hlt => exact le_of_lt <| log_lt_log hx hlt
[GOAL]
case inr
x y : ℝ
hx : 0 < x
hxy : x ≤ y
hlt : x < y
⊢ log x ≤ log y
[PROOFSTEP]
exact le_of_lt <| log_lt_log hx hlt
[GOAL]
x y : ℝ
hx : 0 < x
hy : 0 < y
⊢ log x < log y ↔ x < y
[PROOFSTEP]
rw [← exp_lt_exp, exp_log hx, exp_log hy]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ log x ≤ y ↔ x ≤ exp y
[PROOFSTEP]
rw [← exp_le_exp, exp_log hx]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ log x < y ↔ x < exp y
[PROOFSTEP]
rw [← exp_lt_exp, exp_log hx]
[GOAL]
x y : ℝ
hy : 0 < y
⊢ x ≤ log y ↔ exp x ≤ y
[PROOFSTEP]
rw [← exp_le_exp, exp_log hy]
[GOAL]
x y : ℝ
hy : 0 < y
⊢ x < log y ↔ exp x < y
[PROOFSTEP]
rw [← exp_lt_exp, exp_log hy]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ 0 < log x ↔ 1 < x
[PROOFSTEP]
rw [← log_one]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ log 1 < log x ↔ 1 < x
[PROOFSTEP]
exact log_lt_log_iff zero_lt_one hx
[GOAL]
x y : ℝ
hx : x < -1
⊢ 0 < log x
[PROOFSTEP]
rw [← neg_neg x, log_neg_eq_log]
[GOAL]
x y : ℝ
hx : x < -1
⊢ 0 < log (-x)
[PROOFSTEP]
have : 1 < -x := by linarith
[GOAL]
x y : ℝ
hx : x < -1
⊢ 1 < -x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx : x < -1
this : 1 < -x
⊢ 0 < log (-x)
[PROOFSTEP]
exact log_pos this
[GOAL]
x y : ℝ
h : 0 < x
⊢ log x < 0 ↔ x < 1
[PROOFSTEP]
rw [← log_one]
[GOAL]
x y : ℝ
h : 0 < x
⊢ log x < log 1 ↔ x < 1
[PROOFSTEP]
exact log_lt_log_iff h zero_lt_one
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
⊢ log x < 0
[PROOFSTEP]
rw [← neg_neg x, log_neg_eq_log]
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
⊢ log (-x) < 0
[PROOFSTEP]
have h0' : 0 < -x := by linarith
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
⊢ 0 < -x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
h0' : 0 < -x
⊢ log (-x) < 0
[PROOFSTEP]
have h1' : -x < 1 := by linarith
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
h0' : 0 < -x
⊢ -x < 1
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
h0 : x < 0
h1 : -1 < x
h0' : 0 < -x
h1' : -x < 1
⊢ log (-x) < 0
[PROOFSTEP]
exact log_neg h0' h1'
[GOAL]
x y : ℝ
hx : 0 < x
⊢ 0 ≤ log x ↔ 1 ≤ x
[PROOFSTEP]
rw [← not_lt, log_neg_iff hx, not_lt]
[GOAL]
x y : ℝ
hx : 0 < x
⊢ log x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
rw [← not_lt, log_pos_iff hx, not_lt]
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ log x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hx)
[GOAL]
case inl
y : ℝ
hx : 0 ≤ 0
⊢ log 0 ≤ 0 ↔ 0 ≤ 1
[PROOFSTEP]
simp [le_refl, zero_le_one]
[GOAL]
case inr
x y : ℝ
hx✝ : 0 ≤ x
hx : 0 < x
⊢ log x ≤ 0 ↔ x ≤ 1
[PROOFSTEP]
exact log_nonpos_iff hx
[GOAL]
x y : ℝ
n : ℕ
⊢ 0 ≤ log ↑n
[PROOFSTEP]
by_cases hn : n = 0
[GOAL]
case pos
x y : ℝ
n : ℕ
hn : n = 0
⊢ 0 ≤ log ↑n
case neg x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 0 ≤ log ↑n
[PROOFSTEP]
case pos => simp [hn]
[GOAL]
x y : ℝ
n : ℕ
hn : n = 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
case pos => simp [hn]
[GOAL]
x y : ℝ
n : ℕ
hn : n = 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
simp [hn]
[GOAL]
case neg
x y : ℝ
n : ℕ
hn : ¬n = 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
case neg =>
have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn
exact log_nonneg this
[GOAL]
x y : ℝ
n : ℕ
hn : ¬n = 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
case neg =>
have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn
exact log_nonneg this
[GOAL]
x y : ℝ
n : ℕ
hn : ¬n = 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn
[GOAL]
x y : ℝ
n : ℕ
hn : ¬n = 0
⊢ 1 ≤ ↑n
[PROOFSTEP]
exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn
[GOAL]
x y : ℝ
n : ℕ
hn : ¬n = 0
this : 1 ≤ ↑n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
exact log_nonneg this
[GOAL]
x y : ℝ
n : ℕ
⊢ 0 ≤ log (-↑n)
[PROOFSTEP]
rw [← log_neg_eq_log, neg_neg]
[GOAL]
x y : ℝ
n : ℕ
⊢ 0 ≤ log ↑n
[PROOFSTEP]
exact log_nat_cast_nonneg _
[GOAL]
x y : ℝ
n : ℤ
⊢ 0 ≤ log ↑n
[PROOFSTEP]
cases lt_trichotomy 0 n with
| inl hn =>
have : (1 : ℝ) ≤ n := by exact_mod_cast hn
exact log_nonneg this
| inr hn =>
cases hn with
| inl hn => simp [hn.symm]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
x y : ℝ
n : ℤ
x✝ : 0 < n ∨ 0 = n ∨ n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
cases lt_trichotomy 0 n with
| inl hn =>
have : (1 : ℝ) ≤ n := by exact_mod_cast hn
exact log_nonneg this
| inr hn =>
cases hn with
| inl hn => simp [hn.symm]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
case inl
x y : ℝ
n : ℤ
hn : 0 < n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
| inl hn =>
have : (1 : ℝ) ≤ n := by exact_mod_cast hn
exact log_nonneg this
[GOAL]
case inl
x y : ℝ
n : ℤ
hn : 0 < n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
have : (1 : ℝ) ≤ n := by exact_mod_cast hn
[GOAL]
x y : ℝ
n : ℤ
hn : 0 < n
⊢ 1 ≤ ↑n
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
case inl
x y : ℝ
n : ℤ
hn : 0 < n
this : 1 ≤ ↑n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
exact log_nonneg this
[GOAL]
case inr
x y : ℝ
n : ℤ
hn : 0 = n ∨ n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
| inr hn =>
cases hn with
| inl hn => simp [hn.symm]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
case inr
x y : ℝ
n : ℤ
hn : 0 = n ∨ n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
cases hn with
| inl hn => simp [hn.symm]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
case inr
x y : ℝ
n : ℤ
hn : 0 = n ∨ n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
cases hn with
| inl hn => simp [hn.symm]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
case inr.inl
x y : ℝ
n : ℤ
hn : 0 = n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
| inl hn => simp [hn.symm]
[GOAL]
case inr.inl
x y : ℝ
n : ℤ
hn : 0 = n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
simp [hn.symm]
[GOAL]
case inr.inr
x y : ℝ
n : ℤ
hn : n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
| inr hn =>
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
rw [← log_neg_eq_log]
exact log_nonneg this
[GOAL]
case inr.inr
x y : ℝ
n : ℤ
hn : n < 0
⊢ 0 ≤ log ↑n
[PROOFSTEP]
have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn
[GOAL]
x y : ℝ
n : ℤ
hn : n < 0
⊢ 1 ≤ -↑n
[PROOFSTEP]
rw [← neg_zero, ← lt_neg] at hn
[GOAL]
x y : ℝ
n : ℤ
hn : 0 < -n
⊢ 1 ≤ -↑n
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
case inr.inr
x y : ℝ
n : ℤ
hn : n < 0
this : 1 ≤ -↑n
⊢ 0 ≤ log ↑n
[PROOFSTEP]
rw [← log_neg_eq_log]
[GOAL]
case inr.inr
x y : ℝ
n : ℤ
hn : n < 0
this : 1 ≤ -↑n
⊢ 0 ≤ log (-↑n)
[PROOFSTEP]
exact log_nonneg this
[GOAL]
x y : ℝ
⊢ StrictAntiOn log (Iio 0)
[PROOFSTEP]
rintro x (hx : x < 0) y (hy : y < 0) hxy
[GOAL]
x✝ y✝ x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ log y < log x
[PROOFSTEP]
rw [← log_abs y, ← log_abs x]
[GOAL]
x✝ y✝ x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ log |y| < log |x|
[PROOFSTEP]
refine' log_lt_log (abs_pos.2 hy.ne) _
[GOAL]
x✝ y✝ x : ℝ
hx : x < 0
y : ℝ
hy : y < 0
hxy : x < y
⊢ |y| < |x|
[PROOFSTEP]
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
[GOAL]
x y : ℝ
hx1 : 0 < x
hx2 : x ≠ 1
⊢ log x < x - 1
[PROOFSTEP]
have h : log x ≠ 0
[GOAL]
case h
x y : ℝ
hx1 : 0 < x
hx2 : x ≠ 1
⊢ log x ≠ 0
[PROOFSTEP]
rwa [← log_one, log_injOn_pos.ne_iff hx1]
[GOAL]
case h
x y : ℝ
hx1 : 0 < x
hx2 : x ≠ 1
⊢ 1 ∈ Ioi 0
[PROOFSTEP]
exact mem_Ioi.mpr zero_lt_one
[GOAL]
x y : ℝ
hx1 : 0 < x
hx2 : x ≠ 1
h : log x ≠ 0
⊢ log x < x - 1
[PROOFSTEP]
linarith [add_one_lt_exp_of_nonzero h, exp_log hx1]
[GOAL]
x✝ y x : ℝ
⊢ log x = 0 ↔ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
constructor
[GOAL]
case mp
x✝ y x : ℝ
⊢ log x = 0 → x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
intro h
[GOAL]
case mp
x✝ y x : ℝ
h : log x = 0
⊢ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
rcases lt_trichotomy x 0 with (x_lt_zero | rfl | x_gt_zero)
[GOAL]
case mp.inl
x✝ y x : ℝ
h : log x = 0
x_lt_zero : x < 0
⊢ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
refine' Or.inr (Or.inr (neg_eq_iff_eq_neg.mp _))
[GOAL]
case mp.inl
x✝ y x : ℝ
h : log x = 0
x_lt_zero : x < 0
⊢ -x = 1
[PROOFSTEP]
rw [← log_neg_eq_log x] at h
[GOAL]
case mp.inl
x✝ y x : ℝ
h : log (-x) = 0
x_lt_zero : x < 0
⊢ -x = 1
[PROOFSTEP]
exact eq_one_of_pos_of_log_eq_zero (neg_pos.mpr x_lt_zero) h
[GOAL]
case mp.inr.inl
x y : ℝ
h : log 0 = 0
⊢ 0 = 0 ∨ 0 = 1 ∨ 0 = -1
[PROOFSTEP]
exact Or.inl rfl
[GOAL]
case mp.inr.inr
x✝ y x : ℝ
h : log x = 0
x_gt_zero : 0 < x
⊢ x = 0 ∨ x = 1 ∨ x = -1
[PROOFSTEP]
exact Or.inr (Or.inl (eq_one_of_pos_of_log_eq_zero x_gt_zero h))
[GOAL]
case mpr
x✝ y x : ℝ
⊢ x = 0 ∨ x = 1 ∨ x = -1 → log x = 0
[PROOFSTEP]
rintro (rfl | rfl | rfl)
[GOAL]
case mpr.inl
x y : ℝ
⊢ log 0 = 0
[PROOFSTEP]
simp only [log_one, log_zero, log_neg_eq_log]
[GOAL]
case mpr.inr.inl
x y : ℝ
⊢ log 1 = 0
[PROOFSTEP]
simp only [log_one, log_zero, log_neg_eq_log]
[GOAL]
case mpr.inr.inr
x y : ℝ
⊢ log (-1) = 0
[PROOFSTEP]
simp only [log_one, log_zero, log_neg_eq_log]
[GOAL]
x✝ y x : ℝ
⊢ log x ≠ 0 ↔ x ≠ 0 ∧ x ≠ 1 ∧ x ≠ -1
[PROOFSTEP]
simpa only [not_or] using log_eq_zero.not
[GOAL]
x✝ y x : ℝ
n : ℕ
⊢ log (x ^ n) = ↑n * log x
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
x✝ y x : ℝ
⊢ log (x ^ Nat.zero) = ↑Nat.zero * log x
[PROOFSTEP]
simp
[GOAL]
case succ
x✝ y x : ℝ
n : ℕ
ih : log (x ^ n) = ↑n * log x
⊢ log (x ^ Nat.succ n) = ↑(Nat.succ n) * log x
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case succ.inl
x y : ℝ
n : ℕ
ih : log (0 ^ n) = ↑n * log 0
⊢ log (0 ^ Nat.succ n) = ↑(Nat.succ n) * log 0
[PROOFSTEP]
simp
[GOAL]
case succ.inr
x✝ y x : ℝ
n : ℕ
ih : log (x ^ n) = ↑n * log x
hx : x ≠ 0
⊢ log (x ^ Nat.succ n) = ↑(Nat.succ n) * log x
[PROOFSTEP]
rw [pow_succ', log_mul (pow_ne_zero _ hx) hx, ih, Nat.cast_succ, add_mul, one_mul]
[GOAL]
x✝ y x : ℝ
n : ℤ
⊢ log (x ^ n) = ↑n * log x
[PROOFSTEP]
induction n
[GOAL]
case ofNat
x✝ y x : ℝ
a✝ : ℕ
⊢ log (x ^ Int.ofNat a✝) = ↑(Int.ofNat a✝) * log x
[PROOFSTEP]
rw [Int.ofNat_eq_coe, zpow_ofNat, log_pow, Int.cast_ofNat]
[GOAL]
case negSucc
x✝ y x : ℝ
a✝ : ℕ
⊢ log (x ^ Int.negSucc a✝) = ↑(Int.negSucc a✝) * log x
[PROOFSTEP]
rw [zpow_negSucc, log_inv, log_pow, Int.cast_negSucc, Nat.cast_add_one, neg_mul_eq_neg_mul]
[GOAL]
x✝ y x : ℝ
hx : 0 ≤ x
⊢ log (sqrt x) = log x / 2
[PROOFSTEP]
rw [eq_div_iff, mul_comm, ← Nat.cast_two, ← log_pow, sq_sqrt hx]
[GOAL]
x✝ y x : ℝ
hx : 0 ≤ x
⊢ 2 ≠ 0
[PROOFSTEP]
exact two_ne_zero
[GOAL]
x✝ y x : ℝ
hx : 0 < x
⊢ log x ≤ x - 1
[PROOFSTEP]
rw [le_sub_iff_add_le]
[GOAL]
x✝ y x : ℝ
hx : 0 < x
⊢ log x + 1 ≤ x
[PROOFSTEP]
convert add_one_le_exp (log x)
[GOAL]
case h.e'_4
x✝ y x : ℝ
hx : 0 < x
⊢ x = exp (log x)
[PROOFSTEP]
rw [exp_log hx]
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
⊢ |log x * x| < 1
[PROOFSTEP]
have : 0 < 1 / x := by simpa only [one_div, inv_pos] using h1
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
⊢ 0 < 1 / x
[PROOFSTEP]
simpa only [one_div, inv_pos] using h1
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : 0 < 1 / x
⊢ |log x * x| < 1
[PROOFSTEP]
replace := log_le_sub_one_of_pos this
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : log (1 / x) ≤ 1 / x - 1
⊢ |log x * x| < 1
[PROOFSTEP]
replace : log (1 / x) < 1 / x := by linarith
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : log (1 / x) ≤ 1 / x - 1
⊢ log (1 / x) < 1 / x
[PROOFSTEP]
linarith
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : log (1 / x) < 1 / x
⊢ |log x * x| < 1
[PROOFSTEP]
rw [log_div one_ne_zero h1.ne', log_one, zero_sub, lt_div_iff h1] at this
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ |log x * x| < 1
[PROOFSTEP]
have aux : 0 ≤ -log x * x := by
refine' mul_nonneg _ h1.le
rw [← log_inv]
apply log_nonneg
rw [← le_inv h1 zero_lt_one, inv_one]
exact h2
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ 0 ≤ -log x * x
[PROOFSTEP]
refine' mul_nonneg _ h1.le
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ 0 ≤ -log x
[PROOFSTEP]
rw [← log_inv]
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ 0 ≤ log x⁻¹
[PROOFSTEP]
apply log_nonneg
[GOAL]
case hx
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ 1 ≤ x⁻¹
[PROOFSTEP]
rw [← le_inv h1 zero_lt_one, inv_one]
[GOAL]
case hx
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
⊢ x ≤ 1
[PROOFSTEP]
exact h2
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : -log x * x < 1
aux : 0 ≤ -log x * x
⊢ |log x * x| < 1
[PROOFSTEP]
rw [← abs_of_nonneg aux, neg_mul, abs_neg] at this
[GOAL]
x✝ y x : ℝ
h1 : 0 < x
h2 : x ≤ 1
this : |log x * x| < 1
aux : 0 ≤ -log x * x
⊢ |log x * x| < 1
[PROOFSTEP]
exact this
[GOAL]
x y : ℝ
⊢ Tendsto (fun x => log (exp x)) atTop atTop
[PROOFSTEP]
simpa only [log_exp] using tendsto_id
[GOAL]
x y : ℝ
⊢ Tendsto log (𝓝[{0}ᶜ] 0) atBot
[PROOFSTEP]
rw [← show _ = log from funext log_abs]
[GOAL]
x y : ℝ
⊢ Tendsto (fun x => log |x|) (𝓝[{0}ᶜ] 0) atBot
[PROOFSTEP]
refine' Tendsto.comp (g := log) _ tendsto_abs_nhdsWithin_zero
[GOAL]
x y : ℝ
⊢ Tendsto log (𝓝[Ioi 0] 0) atBot
[PROOFSTEP]
simpa [← tendsto_comp_exp_atBot] using tendsto_id
[GOAL]
x y : ℝ
⊢ ContinuousOn log {0}ᶜ
[PROOFSTEP]
simp only [continuousOn_iff_continuous_restrict, restrict]
[GOAL]
x y : ℝ
⊢ Continuous fun x => log ↑x
[PROOFSTEP]
conv in log _ => rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)]
[GOAL]
x✝ y : ℝ
x : ↑{0}ᶜ
| log ↑x
[PROOFSTEP]
rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)]
[GOAL]
x✝ y : ℝ
x : ↑{0}ᶜ
| log ↑x
[PROOFSTEP]
rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)]
[GOAL]
x✝ y : ℝ
x : ↑{0}ᶜ
| log ↑x
[PROOFSTEP]
rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)]
[GOAL]
x y : ℝ
⊢ Continuous fun x => ↑(OrderIso.symm expOrderIso) { val := |↑x|, property := (_ : 0 < |↑x|) }
[PROOFSTEP]
exact expOrderIso.symm.continuous.comp (continuous_subtype_val.norm.subtype_mk _)
[GOAL]
x y : ℝ
⊢ ContinuousAt log x ↔ x ≠ 0
[PROOFSTEP]
refine' ⟨_, continuousAt_log⟩
[GOAL]
x y : ℝ
⊢ ContinuousAt log x → x ≠ 0
[PROOFSTEP]
rintro h rfl
[GOAL]
y : ℝ
h : ContinuousAt log 0
⊢ False
[PROOFSTEP]
exact not_tendsto_nhds_of_tendsto_atBot tendsto_log_nhdsWithin_zero _ (h.tendsto.mono_left inf_le_left)
[GOAL]
x y : ℝ
α : Type u_1
s : Finset α
f : α → ℝ
hf : ∀ (x : α), x ∈ s → f x ≠ 0
⊢ log (∏ i in s, f i) = ∑ i in s, log (f i)
[PROOFSTEP]
induction' s using Finset.cons_induction_on with a s ha ih
[GOAL]
case h₁
x y : ℝ
α : Type u_1
s : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s → f x ≠ 0
hf : ∀ (x : α), x ∈ ∅ → f x ≠ 0
⊢ log (∏ i in ∅, f i) = ∑ i in ∅, log (f i)
[PROOFSTEP]
simp
[GOAL]
case h₂
x y : ℝ
α : Type u_1
s✝ : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0
a : α
s : Finset α
ha : ¬a ∈ s
ih : (∀ (x : α), x ∈ s → f x ≠ 0) → log (∏ i in s, f i) = ∑ i in s, log (f i)
hf : ∀ (x : α), x ∈ Finset.cons a s ha → f x ≠ 0
⊢ log (∏ i in Finset.cons a s ha, f i) = ∑ i in Finset.cons a s ha, log (f i)
[PROOFSTEP]
rw [Finset.forall_mem_cons] at hf
[GOAL]
case h₂
x y : ℝ
α : Type u_1
s✝ : Finset α
f : α → ℝ
hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0
a : α
s : Finset α
ha : ¬a ∈ s
ih : (∀ (x : α), x ∈ s → f x ≠ 0) → log (∏ i in s, f i) = ∑ i in s, log (f i)
hf : f a ≠ 0 ∧ ∀ (x : α), x ∈ s → f x ≠ 0
⊢ log (∏ i in Finset.cons a s ha, f i) = ∑ i in Finset.cons a s ha, log (f i)
[PROOFSTEP]
simp [ih hf.2, log_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
[GOAL]
x y : ℝ
n : ℕ
⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => ↑t * log ↑p
[PROOFSTEP]
rcases eq_or_ne n 0 with (rfl | hn)
[GOAL]
case inl
x y : ℝ
⊢ log ↑0 = Finsupp.sum (Nat.factorization 0) fun p t => ↑t * log ↑p
[PROOFSTEP]
simp
-- relies on junk values of `log` and `Nat.factorization`
[GOAL]
case inr
x y : ℝ
n : ℕ
hn : n ≠ 0
⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => ↑t * log ↑p
[PROOFSTEP]
simp only [← log_pow, ← Nat.cast_pow]
[GOAL]
case inr
x y : ℝ
n : ℕ
hn : n ≠ 0
⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => log ↑(p ^ t)
[PROOFSTEP]
rw [← Finsupp.log_prod, ← Nat.cast_finsupp_prod, Nat.factorization_prod_pow_eq_self hn]
[GOAL]
case inr.hg
x y : ℝ
n : ℕ
hn : n ≠ 0
⊢ ∀ (a : ℕ), ↑(a ^ ↑(Nat.factorization n) a) = 0 → ↑(Nat.factorization n) a = 0
[PROOFSTEP]
intro p hp
[GOAL]
case inr.hg
x y : ℝ
n : ℕ
hn : n ≠ 0
p : ℕ
hp : ↑(p ^ ↑(Nat.factorization n) p) = 0
⊢ ↑(Nat.factorization n) p = 0
[PROOFSTEP]
rw [pow_eq_zero (Nat.cast_eq_zero.1 hp), Nat.factorization_zero_right]
[GOAL]
x y a b : ℝ
n : ℕ
ha : a ≠ 0
⊢ (fun x => x ^ n / (a * exp x + b)) ∘ log =ᶠ[atTop] fun x => log x ^ n / (a * x + b)
[PROOFSTEP]
filter_upwards [eventually_gt_atTop (0 : ℝ)] with x hx using by simp [exp_log hx]
[GOAL]
x✝ y a b : ℝ
n : ℕ
ha : a ≠ 0
x : ℝ
hx : 0 < x
⊢ ((fun x => x ^ n / (a * exp x + b)) ∘ log) x = log x ^ n / (a * x + b)
[PROOFSTEP]
simp [exp_log hx]
[GOAL]
x y : ℝ
n : ℕ
⊢ (fun x => log x ^ n) =o[atTop] id
[PROOFSTEP]
rw [Asymptotics.isLittleO_iff_tendsto']
[GOAL]
x y : ℝ
n : ℕ
⊢ Tendsto (fun x => log x ^ n / id x) atTop (𝓝 0)
[PROOFSTEP]
simpa using tendsto_pow_log_div_mul_add_atTop 1 0 n one_ne_zero
[GOAL]
x y : ℝ
n : ℕ
⊢ ∀ᶠ (x : ℝ) in atTop, id x = 0 → log x ^ n = 0
[PROOFSTEP]
filter_upwards [eventually_ne_atTop (0 : ℝ)] with x h₁ h₂ using (h₁ h₂).elim
[GOAL]
x y c : ℝ
⊢ (fun x => c) =o[atTop] log
[PROOFSTEP]
refine Asymptotics.isLittleO_of_tendsto' ?_ <| Tendsto.div_atTop (a := c) (by simp) tendsto_log_atTop
[GOAL]
x y c : ℝ
⊢ Tendsto (fun x => c) atTop (𝓝 c)
[PROOFSTEP]
simp
[GOAL]
x y c : ℝ
⊢ ∀ᶠ (x : ℝ) in atTop, log x = 0 → c = 0
[PROOFSTEP]
filter_upwards [eventually_gt_atTop 1] with x hx
[GOAL]
case h
x✝ y c x : ℝ
hx : 1 < x
⊢ log x = 0 → c = 0
[PROOFSTEP]
aesop (add safe forward log_pos)
[GOAL]
y : ℝ
⊢ Tendsto (fun x => log (x + y) - log x) atTop (𝓝 0)
[PROOFSTEP]
have : Tendsto (fun x ↦ 1 + y / x) atTop (𝓝 (1 + 0))
[GOAL]
case this
y : ℝ
⊢ Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
[PROOFSTEP]
exact tendsto_const_nhds.add (tendsto_const_nhds.div_atTop tendsto_id)
[GOAL]
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
⊢ Tendsto (fun x => log (x + y) - log x) atTop (𝓝 0)
[PROOFSTEP]
rw [← comap_exp_nhds_exp, exp_zero, tendsto_comap_iff, ← add_zero (1 : ℝ)]
[GOAL]
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
⊢ Tendsto (exp ∘ fun x => log (x + y) - log x) atTop (𝓝 (1 + 0))
[PROOFSTEP]
refine' this.congr' _
[GOAL]
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
⊢ (fun x => 1 + y / x) =ᶠ[atTop] exp ∘ fun x => log (x + y) - log x
[PROOFSTEP]
filter_upwards [eventually_gt_atTop (0 : ℝ), eventually_gt_atTop (-y)] with x hx₀ hxy
[GOAL]
case h
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
x : ℝ
hx₀ : 0 < x
hxy : -y < x
⊢ 1 + y / x = (exp ∘ fun x => log (x + y) - log x) x
[PROOFSTEP]
rw [comp_apply, exp_sub, exp_log, exp_log, one_add_div]
[GOAL]
case h
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
x : ℝ
hx₀ : 0 < x
hxy : -y < x
⊢ x ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case h
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
x : ℝ
hx₀ : 0 < x
hxy : -y < x
⊢ 0 < x
[PROOFSTEP]
linarith
[GOAL]
case h
y : ℝ
this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0))
x : ℝ
hx₀ : 0 < x
hxy : -y < x
⊢ 0 < x + y
[PROOFSTEP]
linarith
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsNat e n
⊢ 0 ≤ Real.log e
[PROOFSTEP]
rw [NormNum.IsNat.to_eq h rfl]
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsNat e n
⊢ 0 ≤ Real.log ↑n
[PROOFSTEP]
exact Real.log_nat_cast_nonneg _
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsNat e n
w : Nat.blt 1 n = true
⊢ 0 < Real.log e
[PROOFSTEP]
rw [NormNum.IsNat.to_eq h rfl]
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsNat e n
w : Nat.blt 1 n = true
⊢ 0 < Real.log ↑n
[PROOFSTEP]
apply Real.log_pos
[GOAL]
case hx
e : ℝ
n : ℕ
h : NormNum.IsNat e n
w : Nat.blt 1 n = true
⊢ 1 < ↑n
[PROOFSTEP]
simpa using w
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
⊢ 0 ≤ Real.log e
[PROOFSTEP]
rw [NormNum.IsInt.neg_to_eq h rfl]
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
⊢ 0 ≤ Real.log (-↑n)
[PROOFSTEP]
exact Real.log_neg_nat_cast_nonneg _
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
w : Nat.blt 1 n = true
⊢ 0 < Real.log e
[PROOFSTEP]
rw [NormNum.IsInt.neg_to_eq h rfl]
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
w : Nat.blt 1 n = true
⊢ 0 < Real.log (-↑n)
[PROOFSTEP]
rw [Real.log_neg_eq_log]
[GOAL]
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
w : Nat.blt 1 n = true
⊢ 0 < Real.log ↑n
[PROOFSTEP]
apply Real.log_pos
[GOAL]
case hx
e : ℝ
n : ℕ
h : NormNum.IsInt e (Int.negOfNat n)
w : Nat.blt 1 n = true
⊢ 1 < ↑n
[PROOFSTEP]
simpa using w
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (1 < ↑n / ↑d) = true
⊢ 0 < Real.log e
[PROOFSTEP]
rw [eq, invOf_eq_inv, ← div_eq_mul_inv]
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (1 < ↑n / ↑d) = true
⊢ 0 < Real.log (↑n / ↑d)
[PROOFSTEP]
have : 1 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (1 < ↑n / ↑d) = true
⊢ 1 < ↑n / ↑d
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (1 < ↑n / ↑d) = true
this : 1 < ↑n / ↑d
⊢ 0 < Real.log (↑n / ↑d)
[PROOFSTEP]
exact Real.log_pos this
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (↑n / ↑d < -1) = true
⊢ 0 < Real.log e
[PROOFSTEP]
rw [eq, invOf_eq_inv, ← div_eq_mul_inv]
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (↑n / ↑d < -1) = true
⊢ 0 < Real.log (↑n / ↑d)
[PROOFSTEP]
have : (n : ℝ) / d < -1 := by exact_mod_cast of_decide_eq_true h
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (↑n / ↑d < -1) = true
⊢ ↑n / ↑d < -1
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h : decide (↑n / ↑d < -1) = true
this : ↑n / ↑d < -1
⊢ 0 < Real.log (↑n / ↑d)
[PROOFSTEP]
exact Real.log_pos_of_lt_neg_one this
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
⊢ Real.log e ≠ 0
[PROOFSTEP]
rw [eq, invOf_eq_inv, ← div_eq_mul_inv]
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
have h₁' : 0 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h₁
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
⊢ 0 < ↑n / ↑d
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h₁
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
h₁' : 0 < ↑n / ↑d
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
have h₂' : (n : ℝ) / d < 1 := by exact_mod_cast of_decide_eq_true h₂
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
h₁' : 0 < ↑n / ↑d
⊢ ↑n / ↑d < 1
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h₂
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (0 < ↑n / ↑d) = true
h₂ : decide (↑n / ↑d < 1) = true
h₁' : 0 < ↑n / ↑d
h₂' : ↑n / ↑d < 1
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
exact ne_of_lt <| Real.log_neg h₁' h₂'
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
⊢ Real.log e ≠ 0
[PROOFSTEP]
rw [eq, invOf_eq_inv, ← div_eq_mul_inv]
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
have h₁' : (n : ℝ) / d < 0 := by exact_mod_cast of_decide_eq_true h₁
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
⊢ ↑n / ↑d < 0
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h₁
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
h₁' : ↑n / ↑d < 0
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
have h₂' : -1 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h₂
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
h₁' : ↑n / ↑d < 0
⊢ -1 < ↑n / ↑d
[PROOFSTEP]
exact_mod_cast of_decide_eq_true h₂
[GOAL]
e : ℝ
n : ℤ
d : ℕ
inv : Invertible ↑d
eq : e = ↑n * ⅟↑d
h₁ : decide (↑n / ↑d < 0) = true
h₂ : decide (-1 < ↑n / ↑d) = true
h₁' : ↑n / ↑d < 0
h₂' : -1 < ↑n / ↑d
⊢ Real.log (↑n / ↑d) ≠ 0
[PROOFSTEP]
exact ne_of_lt <| Real.log_neg_of_lt_zero h₁' h₂'
[GOAL]
$x✝ : Type x✝
«$_zα» : Zero $x✝
«$_pα» : PartialOrder $x✝
«$e» : $x✝
«$f» : ℝ → ℝ
«$a» : ℝ
«$n» : ℤ
«$d» : ℕ
«$i» : DivisionRing ℝ := Real.instDivisionRingReal
«$p» : NormNum.IsRat «$a» «$n» «$d»
⊢ Sort ?u.471336
[PROOFSTEP]
clear! «$i»
[GOAL]
$x✝ : Type x✝
«$_zα» : Zero $x✝
«$_pα» : PartialOrder $x✝
«$e» : $x✝
«$f» : ℝ → ℝ
«$a» : ℝ
«$n» : ℤ
«$d» : ℕ
⊢ Sort ?u.471336
[PROOFSTEP]
exact NormNum.IsRat «$a» «$n» «$d»
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Basic", "llama_tokens": 16598} |
[GOAL]
x : ℂ
⊢ x ^ 0 = 1
[PROOFSTEP]
simp [cpow_def]
[GOAL]
x y : ℂ
⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp only [cpow_def]
[GOAL]
x y : ℂ
⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x y : ℂ
h✝¹ : x = 0
h✝ : y = 0
⊢ 1 = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
case neg
x y : ℂ
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 0 = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
case neg
x y : ℂ
h✝ : ¬x = 0
⊢ exp (log x * y) = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
x : ℂ
h : x ≠ 0
⊢ 0 ^ x = 0
[PROOFSTEP]
simp [cpow_def, *]
[GOAL]
x a : ℂ
⊢ 0 ^ x = a ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
x a : ℂ
⊢ 0 ^ x = a → x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
intro hyp
[GOAL]
case mp
x a : ℂ
hyp : 0 ^ x = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
simp only [cpow_def, eq_self_iff_true, if_true] at hyp
[GOAL]
case mp
x a : ℂ
hyp : (if x = 0 then 1 else 0) = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
by_cases x = 0
[GOAL]
case mp
x a : ℂ
hyp : (if x = 0 then 1 else 0) = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
by_cases x = 0
[GOAL]
case pos
x a : ℂ
hyp : (if x = 0 then 1 else 0) = a
h : x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
subst h
[GOAL]
case pos
a : ℂ
hyp : (if 0 = 0 then 1 else 0) = a
⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1
[PROOFSTEP]
simp only [if_true, eq_self_iff_true] at hyp
[GOAL]
case pos
a : ℂ
hyp : 1 = a
⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1
[PROOFSTEP]
right
[GOAL]
case pos.h
a : ℂ
hyp : 1 = a
⊢ 0 = 0 ∧ a = 1
[PROOFSTEP]
exact ⟨rfl, hyp.symm⟩
[GOAL]
case neg
x a : ℂ
hyp : (if x = 0 then 1 else 0) = a
h : ¬x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
rw [if_neg h] at hyp
[GOAL]
case neg
x a : ℂ
hyp : 0 = a
h : ¬x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
left
[GOAL]
case neg.h
x a : ℂ
hyp : 0 = a
h : ¬x = 0
⊢ x ≠ 0 ∧ a = 0
[PROOFSTEP]
exact ⟨h, hyp.symm⟩
[GOAL]
case mpr
x a : ℂ
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 → 0 ^ x = a
[PROOFSTEP]
rintro (⟨h, rfl⟩ | ⟨rfl, rfl⟩)
[GOAL]
case mpr.inl.intro
x : ℂ
h : x ≠ 0
⊢ 0 ^ x = 0
[PROOFSTEP]
exact zero_cpow h
[GOAL]
case mpr.inr.intro
⊢ 0 ^ 0 = 1
[PROOFSTEP]
exact cpow_zero _
[GOAL]
x a : ℂ
⊢ a = 0 ^ x ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
rw [← zero_cpow_eq_iff, eq_comm]
[GOAL]
x : ℂ
hx : x = 0
⊢ x ^ 1 = x
[PROOFSTEP]
simp [hx, cpow_def]
[GOAL]
x : ℂ
hx : ¬x = 0
⊢ x ^ 1 = x
[PROOFSTEP]
rw [cpow_def, if_neg (one_ne_zero : (1 : ℂ) ≠ 0), if_neg hx, mul_one, exp_log hx]
[GOAL]
x : ℂ
⊢ 1 ^ x = 1
[PROOFSTEP]
rw [cpow_def]
[GOAL]
x : ℂ
⊢ (if 1 = 0 then if x = 0 then 1 else 0 else exp (log 1 * x)) = 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℂ
h✝¹ : 1 = 0
h✝ : x = 0
⊢ 1 = 1
[PROOFSTEP]
simp_all [one_ne_zero]
[GOAL]
case neg
x : ℂ
h✝¹ : 1 = 0
h✝ : ¬x = 0
⊢ 0 = 1
[PROOFSTEP]
simp_all [one_ne_zero]
[GOAL]
case neg
x : ℂ
h✝ : ¬1 = 0
⊢ exp (log 1 * x) = 1
[PROOFSTEP]
simp_all [one_ne_zero]
[GOAL]
x y z : ℂ
hx : x ≠ 0
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
simp only [cpow_def, ite_mul, boole_mul, mul_ite, mul_boole]
[GOAL]
x y z : ℂ
hx : x ≠ 0
⊢ (if x = 0 then if y + z = 0 then 1 else 0 else exp (log x * (y + z))) =
if x = 0 then
if z = 0 then if x = 0 then if y = 0 then 1 * 1 else 0 * 1 else exp (log x * y) * 1
else if x = 0 then if y = 0 then 1 * 0 else 0 * 0 else exp (log x * y) * 0
else if x = 0 then if y = 0 then 1 * exp (log x * z) else 0 * exp (log x * z) else exp (log x * y) * exp (log x * z)
[PROOFSTEP]
simp_all [exp_add, mul_add]
[GOAL]
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
⊢ x ^ (y * z) = (x ^ y) ^ z
[PROOFSTEP]
simp only [cpow_def]
[GOAL]
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
⊢ (if x = 0 then if y * z = 0 then 1 else 0 else exp (log x * (y * z))) =
if (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 then if z = 0 then 1 else 0
else exp (log (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) * z)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : y * z = 0
h✝² : y = 0
h✝¹ : 1 = 0
h✝ : z = 0
⊢ 1 = 1
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : y * z = 0
h✝² : y = 0
h✝¹ : 1 = 0
h✝ : ¬z = 0
⊢ 1 = 0
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝³ : x = 0
h✝² : y * z = 0
h✝¹ : y = 0
h✝ : ¬1 = 0
⊢ 1 = exp (log 1 * z)
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case pos
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : y * z = 0
h✝² : ¬y = 0
h✝¹ : 0 = 0
h✝ : z = 0
⊢ 1 = 1
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : y * z = 0
h✝² : ¬y = 0
h✝¹ : 0 = 0
h✝ : ¬z = 0
⊢ 1 = 0
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝³ : x = 0
h✝² : y * z = 0
h✝¹ : ¬y = 0
h✝ : ¬0 = 0
⊢ 1 = exp (log 0 * z)
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case pos
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : ¬y * z = 0
h✝² : y = 0
h✝¹ : 1 = 0
h✝ : z = 0
⊢ 0 = 1
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : ¬y * z = 0
h✝² : y = 0
h✝¹ : 1 = 0
h✝ : ¬z = 0
⊢ 0 = 0
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝³ : x = 0
h✝² : ¬y * z = 0
h✝¹ : y = 0
h✝ : ¬1 = 0
⊢ 0 = exp (log 1 * z)
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case pos
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : ¬y * z = 0
h✝² : ¬y = 0
h✝¹ : 0 = 0
h✝ : z = 0
⊢ 0 = 1
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝⁴ : x = 0
h✝³ : ¬y * z = 0
h✝² : ¬y = 0
h✝¹ : 0 = 0
h✝ : ¬z = 0
⊢ 0 = 0
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝³ : x = 0
h✝² : ¬y * z = 0
h✝¹ : ¬y = 0
h✝ : ¬0 = 0
⊢ 0 = exp (log 0 * z)
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case pos
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝² : ¬x = 0
h✝¹ : exp (log x * y) = 0
h✝ : z = 0
⊢ exp (log x * (y * z)) = 1
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝² : ¬x = 0
h✝¹ : exp (log x * y) = 0
h✝ : ¬z = 0
⊢ exp (log x * (y * z)) = 0
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
case neg
x y z : ℂ
h₁ : -π < (log x * y).im
h₂ : (log x * y).im ≤ π
h✝¹ : ¬x = 0
h✝ : ¬exp (log x * y) = 0
⊢ exp (log x * (y * z)) = exp (log (exp (log x * y)) * z)
[PROOFSTEP]
simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc]
[GOAL]
x y : ℂ
⊢ x ^ (-y) = (x ^ y)⁻¹
[PROOFSTEP]
simp only [cpow_def, neg_eq_zero, mul_neg]
[GOAL]
x y : ℂ
⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (-(log x * y))) =
(if x = 0 then if y = 0 then 1 else 0 else exp (log x * y))⁻¹
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x y : ℂ
h✝¹ : x = 0
h✝ : y = 0
⊢ 1 = 1⁻¹
[PROOFSTEP]
simp [exp_neg]
[GOAL]
case neg
x y : ℂ
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 0 = 0⁻¹
[PROOFSTEP]
simp [exp_neg]
[GOAL]
case neg
x y : ℂ
h✝ : ¬x = 0
⊢ exp (-(log x * y)) = (exp (log x * y))⁻¹
[PROOFSTEP]
simp [exp_neg]
[GOAL]
x y z : ℂ
hx : x ≠ 0
⊢ x ^ (y - z) = x ^ y / x ^ z
[PROOFSTEP]
rw [sub_eq_add_neg, cpow_add _ _ hx, cpow_neg, div_eq_mul_inv]
[GOAL]
x : ℂ
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
simpa using cpow_neg x 1
[GOAL]
x : ℂ
⊢ x ^ ↑0 = x ^ 0
[PROOFSTEP]
simp
[GOAL]
x : ℂ
n : ℕ
hx : x = 0
⊢ x ^ ↑(n + 1) = x ^ (n + 1)
[PROOFSTEP]
simp only [hx, pow_succ, Complex.zero_cpow (Nat.cast_ne_zero.2 (Nat.succ_ne_zero _)), zero_mul]
[GOAL]
x : ℂ
n : ℕ
hx : ¬x = 0
⊢ x ^ ↑(n + 1) = x ^ (n + 1)
[PROOFSTEP]
simp [cpow_add, hx, pow_add, cpow_nat_cast x n]
[GOAL]
x : ℂ
⊢ x ^ 2 = x ^ 2
[PROOFSTEP]
rw [← cpow_nat_cast]
[GOAL]
x : ℂ
⊢ x ^ 2 = x ^ ↑2
[PROOFSTEP]
simp only [Nat.cast_ofNat]
[GOAL]
x : ℂ
n : ℕ
⊢ x ^ ↑↑n = x ^ ↑n
[PROOFSTEP]
simp
[GOAL]
x : ℂ
n : ℕ
⊢ x ^ ↑-[n+1] = x ^ -[n+1]
[PROOFSTEP]
rw [zpow_negSucc]
[GOAL]
x : ℂ
n : ℕ
⊢ x ^ ↑-[n+1] = (x ^ (n + 1))⁻¹
[PROOFSTEP]
simp only [Int.negSucc_coe, Int.cast_neg, Complex.cpow_neg, inv_eq_one_div, Int.cast_ofNat, cpow_nat_cast]
[GOAL]
x : ℂ
n : ℕ
hn : n ≠ 0
⊢ (x ^ (↑n)⁻¹) ^ n = x
[PROOFSTEP]
suffices im (log x * (n⁻¹ : ℂ)) ∈ Ioc (-π) π
by
rw [← cpow_nat_cast, ← cpow_mul _ this.1 this.2, inv_mul_cancel, cpow_one]
exact_mod_cast hn
[GOAL]
x : ℂ
n : ℕ
hn : n ≠ 0
this : (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π
⊢ (x ^ (↑n)⁻¹) ^ n = x
[PROOFSTEP]
rw [← cpow_nat_cast, ← cpow_mul _ this.1 this.2, inv_mul_cancel, cpow_one]
[GOAL]
x : ℂ
n : ℕ
hn : n ≠ 0
this : (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π
⊢ ↑n ≠ 0
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
x : ℂ
n : ℕ
hn : n ≠ 0
⊢ (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π
[PROOFSTEP]
rw [mul_comm, ← ofReal_nat_cast, ← ofReal_inv, ofReal_mul_im, ← div_eq_inv_mul]
[GOAL]
x : ℂ
n : ℕ
hn : n ≠ 0
⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π
[PROOFSTEP]
rw [← pos_iff_ne_zero] at hn
[GOAL]
x : ℂ
n : ℕ
hn : 0 < n
⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π
[PROOFSTEP]
have hn' : 0 < (n : ℝ) := by assumption_mod_cast
[GOAL]
x : ℂ
n : ℕ
hn : 0 < n
⊢ 0 < ↑n
[PROOFSTEP]
assumption_mod_cast
[GOAL]
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π
[PROOFSTEP]
have hn1 : 1 ≤ (n : ℝ) := by exact_mod_cast Nat.succ_le_iff.2 hn
[GOAL]
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
⊢ 1 ≤ ↑n
[PROOFSTEP]
exact_mod_cast Nat.succ_le_iff.2 hn
[GOAL]
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
hn1 : 1 ≤ ↑n
⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π
[PROOFSTEP]
constructor
[GOAL]
case left
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
hn1 : 1 ≤ ↑n
⊢ -π < (log x).im / ↑n
[PROOFSTEP]
rw [lt_div_iff hn']
[GOAL]
case left
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
hn1 : 1 ≤ ↑n
⊢ -π * ↑n < (log x).im
[PROOFSTEP]
calc
-π * n ≤ -π * 1 := mul_le_mul_of_nonpos_left hn1 (neg_nonpos.2 Real.pi_pos.le)
_ = -π := (mul_one _)
_ < im (log x) := neg_pi_lt_log_im _
[GOAL]
case right
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
hn1 : 1 ≤ ↑n
⊢ (log x).im / ↑n ≤ π
[PROOFSTEP]
rw [div_le_iff hn']
[GOAL]
case right
x : ℂ
n : ℕ
hn : 0 < n
hn' : 0 < ↑n
hn1 : 1 ≤ ↑n
⊢ (log x).im ≤ π * ↑n
[PROOFSTEP]
calc
im (log x) ≤ π := log_im_le_pi _
_ = π * 1 := (mul_one π).symm
_ ≤ π * n := mul_le_mul_of_nonneg_left hn1 Real.pi_pos.le
[GOAL]
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
rcases eq_or_ne r 0 with (rfl | hr)
[GOAL]
case inl
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
⊢ (↑a * ↑b) ^ 0 = ↑a ^ 0 * ↑b ^ 0
[PROOFSTEP]
simp only [cpow_zero, mul_one]
[GOAL]
case inr
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
rcases eq_or_lt_of_le ha with (rfl | ha')
[GOAL]
case inr.inl
b : ℝ
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
ha : 0 ≤ 0
⊢ (↑0 * ↑b) ^ r = ↑0 ^ r * ↑b ^ r
[PROOFSTEP]
rw [ofReal_zero, zero_mul, zero_cpow hr, zero_mul]
[GOAL]
case inr.inr
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
ha' : 0 < a
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
rcases eq_or_lt_of_le hb with (rfl | hb')
[GOAL]
case inr.inr.inl
a : ℝ
ha : 0 ≤ a
r : ℂ
hr : r ≠ 0
ha' : 0 < a
hb : 0 ≤ 0
⊢ (↑a * ↑0) ^ r = ↑a ^ r * ↑0 ^ r
[PROOFSTEP]
rw [ofReal_zero, mul_zero, zero_cpow hr, mul_zero]
[GOAL]
case inr.inr.inr
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
ha' : 0 < a
hb' : 0 < b
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
have ha'' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha'.ne'
[GOAL]
case inr.inr.inr
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
ha' : 0 < a
hb' : 0 < b
ha'' : ↑a ≠ 0
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
have hb'' : (b : ℂ) ≠ 0 := ofReal_ne_zero.mpr hb'.ne'
[GOAL]
case inr.inr.inr
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
r : ℂ
hr : r ≠ 0
ha' : 0 < a
hb' : 0 < b
ha'' : ↑a ≠ 0
hb'' : ↑b ≠ 0
⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r
[PROOFSTEP]
rw [cpow_def_of_ne_zero (mul_ne_zero ha'' hb''), log_ofReal_mul ha' hb'', ofReal_log ha, add_mul, exp_add, ←
cpow_def_of_ne_zero ha'', ← cpow_def_of_ne_zero hb'']
[GOAL]
x n : ℂ
⊢ x⁻¹ ^ n = if arg x = π then ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)⁻¹ else (x ^ n)⁻¹
[PROOFSTEP]
simp_rw [Complex.cpow_def, log_inv_eq_ite, inv_eq_zero, map_eq_zero, ite_mul, neg_mul, IsROrC.conj_inv, apply_ite conj,
apply_ite exp, apply_ite Inv.inv, map_zero, map_one, exp_neg, inv_one, inv_zero, ← exp_conj, map_mul, conj_conj]
[GOAL]
x n : ℂ
⊢ (if x = 0 then if n = 0 then 1 else 0
else if arg x = π then (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ else (exp (log x * n))⁻¹) =
if arg x = π then if x = 0 then if n = 0 then 1 else 0 else (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹
else if x = 0 then if n = 0 then 1 else 0 else (exp (log x * n))⁻¹
[PROOFSTEP]
split_ifs with hx hn ha ha
[GOAL]
case pos
x n : ℂ
hx : x = 0
hn : n = 0
ha : arg x = π
⊢ 1 = 1
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hx : x = 0
hn : n = 0
ha : ¬arg x = π
⊢ 1 = 1
[PROOFSTEP]
rfl
[GOAL]
case pos
x n : ℂ
hx : x = 0
hn : ¬n = 0
ha : arg x = π
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hx : x = 0
hn : ¬n = 0
ha : ¬arg x = π
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
x n : ℂ
hx : ¬x = 0
h✝ : arg x = π
⊢ (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ = (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hx : ¬x = 0
h✝ : ¬arg x = π
⊢ (exp (log x * n))⁻¹ = (exp (log x * n))⁻¹
[PROOFSTEP]
rfl
[GOAL]
x n : ℂ
hx : arg x ≠ π
⊢ x⁻¹ ^ n = (x ^ n)⁻¹
[PROOFSTEP]
rw [inv_cpow_eq_ite, if_neg hx]
[GOAL]
x n : ℂ
⊢ (x ^ n)⁻¹ = if arg x = π then ↑(starRingEnd ℂ) (x⁻¹ ^ ↑(starRingEnd ℂ) n) else x⁻¹ ^ n
[PROOFSTEP]
rw [inv_cpow_eq_ite, apply_ite conj, conj_conj, conj_conj]
[GOAL]
x n : ℂ
⊢ (x ^ n)⁻¹ =
if arg x = π then if arg x = π then (x ^ n)⁻¹ else ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)⁻¹ else x⁻¹ ^ n
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
x n : ℂ
h : arg x = π
⊢ (x ^ n)⁻¹ = (x ^ n)⁻¹
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
h : ¬arg x = π
⊢ (x ^ n)⁻¹ = x⁻¹ ^ n
[PROOFSTEP]
rw [inv_cpow _ _ h]
[GOAL]
x n : ℂ
⊢ ↑(starRingEnd ℂ) x ^ n = if arg x = π then x ^ n else ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)
[PROOFSTEP]
simp_rw [cpow_def, map_eq_zero, apply_ite conj, map_one, map_zero, ← exp_conj, map_mul, conj_conj, log_conj_eq_ite]
[GOAL]
x n : ℂ
⊢ (if x = 0 then if n = 0 then 1 else 0 else exp ((if arg x = π then log x else ↑(starRingEnd ℂ) (log x)) * n)) =
if arg x = π then if x = 0 then if n = 0 then 1 else 0 else exp (log x * n)
else if x = 0 then if n = 0 then 1 else 0 else exp (↑(starRingEnd ℂ) (log x) * n)
[PROOFSTEP]
split_ifs with hcx hn hx
[GOAL]
case pos
x n : ℂ
hcx : x = 0
hn : n = 0
hx : arg x = π
⊢ 1 = 1
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hcx : x = 0
hn : n = 0
hx : ¬arg x = π
⊢ 1 = 1
[PROOFSTEP]
rfl
[GOAL]
case pos
x n : ℂ
hcx : x = 0
hn : ¬n = 0
h✝ : arg x = π
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hcx : x = 0
hn : ¬n = 0
h✝ : ¬arg x = π
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
x n : ℂ
hcx : ¬x = 0
h✝ : arg x = π
⊢ exp (log x * n) = exp (log x * n)
[PROOFSTEP]
rfl
[GOAL]
case neg
x n : ℂ
hcx : ¬x = 0
h✝ : ¬arg x = π
⊢ exp (↑(starRingEnd ℂ) (log x) * n) = exp (↑(starRingEnd ℂ) (log x) * n)
[PROOFSTEP]
rfl
[GOAL]
x n : ℂ
hx : arg x ≠ π
⊢ ↑(starRingEnd ℂ) x ^ n = ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)
[PROOFSTEP]
rw [conj_cpow_eq_ite, if_neg hx]
[GOAL]
x n : ℂ
hx : arg x ≠ π
⊢ x ^ ↑(starRingEnd ℂ) n = ↑(starRingEnd ((fun x => ℂ) x)) (↑(starRingEnd ℂ) x ^ n)
[PROOFSTEP]
rw [conj_cpow _ _ hx, conj_conj]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Complex", "llama_tokens": 9583} |
[GOAL]
y : ℝ
hy : 0 < y
⊢ Tendsto (fun x => x ^ y) atTop atTop
[PROOFSTEP]
rw [tendsto_atTop_atTop]
[GOAL]
y : ℝ
hy : 0 < y
⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a ^ y
[PROOFSTEP]
intro b
[GOAL]
y : ℝ
hy : 0 < y
b : ℝ
⊢ ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a ^ y
[PROOFSTEP]
use max b 0 ^ (1 / y)
[GOAL]
case h
y : ℝ
hy : 0 < y
b : ℝ
⊢ ∀ (a : ℝ), max b 0 ^ (1 / y) ≤ a → b ≤ a ^ y
[PROOFSTEP]
intro x hx
[GOAL]
case h
y : ℝ
hy : 0 < y
b x : ℝ
hx : max b 0 ^ (1 / y) ≤ x
⊢ b ≤ x ^ y
[PROOFSTEP]
exact
le_of_max_le_left
(by
convert rpow_le_rpow (rpow_nonneg_of_nonneg (le_max_right b 0) (1 / y)) hx (le_of_lt hy) using 1
rw [← rpow_mul (le_max_right b 0), (eq_div_iff (ne_of_gt hy)).mp rfl, Real.rpow_one])
[GOAL]
y : ℝ
hy : 0 < y
b x : ℝ
hx : max b 0 ^ (1 / y) ≤ x
⊢ max b ?m.773 ≤ x ^ y
[PROOFSTEP]
convert rpow_le_rpow (rpow_nonneg_of_nonneg (le_max_right b 0) (1 / y)) hx (le_of_lt hy) using 1
[GOAL]
case h.e'_3
y : ℝ
hy : 0 < y
b x : ℝ
hx : max b 0 ^ (1 / y) ≤ x
⊢ max b ?m.773 = (max b 0 ^ (1 / y)) ^ y
[PROOFSTEP]
rw [← rpow_mul (le_max_right b 0), (eq_div_iff (ne_of_gt hy)).mp rfl, Real.rpow_one]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
⊢ Tendsto (Real.rpow b) atTop (𝓝 0)
[PROOFSTEP]
show Tendsto (fun z => b ^ z) atTop (𝓝 0)
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
rcases lt_trichotomy b 0 with hb | rfl | hb
[GOAL]
case inl
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
case inr.inl
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0)
case inr.inr b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inl =>
-- b < 0
simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false]
rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm]
refine IsLittleO.mul_isBigO ?exp ?cos
case exp =>
rw [isLittleO_const_iff one_ne_zero]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
rw [← log_neg_eq_log, log_neg_iff (by linarith)]
linarith
case cos =>
rw [isBigO_iff]
exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inl =>
-- b < 0
simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false]
rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm]
refine IsLittleO.mul_isBigO ?exp ?cos
case exp =>
rw [isLittleO_const_iff one_ne_zero]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
rw [← log_neg_eq_log, log_neg_iff (by linarith)]
linarith
case cos =>
rw [isBigO_iff]
exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ Tendsto (fun z => exp (log b * z) * cos (z * π)) atTop (𝓝 0)
[PROOFSTEP]
rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => exp (log b * z) * cos (z * π)) =o[atTop] fun _x => 1 * 1
[PROOFSTEP]
refine IsLittleO.mul_isBigO ?exp ?cos
[GOAL]
case exp
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1
case cos b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1
[PROOFSTEP]
case exp =>
rw [isLittleO_const_iff one_ne_zero]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
rw [← log_neg_eq_log, log_neg_iff (by linarith)]
linarith
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1
[PROOFSTEP]
case exp =>
rw [isLittleO_const_iff one_ne_zero]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
rw [← log_neg_eq_log, log_neg_iff (by linarith)]
linarith
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1
[PROOFSTEP]
rw [isLittleO_const_iff one_ne_zero]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ Tendsto (fun z => exp (log b * z)) atTop (𝓝 0)
[PROOFSTEP]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ log b < 0
[PROOFSTEP]
rw [← log_neg_eq_log, log_neg_iff (by linarith)]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ 0 < -b
[PROOFSTEP]
linarith
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ -b < 1
[PROOFSTEP]
linarith
[GOAL]
case cos
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1
[PROOFSTEP]
case cos =>
rw [isBigO_iff]
exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1
[PROOFSTEP]
case cos =>
rw [isBigO_iff]
exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1
[PROOFSTEP]
rw [isBigO_iff]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
⊢ ∃ c, ∀ᶠ (x : ℝ) in atTop, ‖cos (x * π)‖ ≤ c * ‖1‖
[PROOFSTEP]
exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : b < 0
x : ℝ
⊢ ‖cos (x * π)‖ ≤ 1 * ‖1‖
[PROOFSTEP]
simp [Real.abs_cos_le_one]
[GOAL]
case inr.inl
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0)
case inr.inr b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inr.inl =>
-- b = 0
refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl)
rw [tendsto_pure]
filter_upwards [eventually_ne_atTop 0] with _ hx
simp [hx]
[GOAL]
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inr.inl =>
-- b = 0
refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl)
rw [tendsto_pure]
filter_upwards [eventually_ne_atTop 0] with _ hx
simp [hx]
[GOAL]
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0)
[PROOFSTEP]
refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl)
[GOAL]
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ Tendsto (fun z => 0 ^ z) atTop (pure 0)
[PROOFSTEP]
rw [tendsto_pure]
[GOAL]
hb₀ : -1 < 0
hb₁ : 0 < 1
⊢ ∀ᶠ (x : ℝ) in atTop, 0 ^ x = 0
[PROOFSTEP]
filter_upwards [eventually_ne_atTop 0] with _ hx
[GOAL]
case h
hb₀ : -1 < 0
hb₁ : 0 < 1
a✝ : ℝ
hx : a✝ ≠ 0
⊢ 0 ^ a✝ = 0
[PROOFSTEP]
simp [hx]
[GOAL]
case inr.inr
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : 0 < b
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inr.inr =>
-- b > 0
simp_rw [Real.rpow_def_of_pos hb]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
exact (log_neg_iff hb).mpr hb₁
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : 0 < b
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
case inr.inr =>
-- b > 0
simp_rw [Real.rpow_def_of_pos hb]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
exact (log_neg_iff hb).mpr hb₁
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : 0 < b
⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0)
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos hb]
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : 0 < b
⊢ Tendsto (fun z => exp (log b * z)) atTop (𝓝 0)
[PROOFSTEP]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id
[GOAL]
b : ℝ
hb₀ : -1 < b
hb₁ : b < 1
hb : 0 < b
⊢ log b < 0
[PROOFSTEP]
exact (log_neg_iff hb).mpr hb₁
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (Real.rpow b) atBot (𝓝 0)
[PROOFSTEP]
show Tendsto (fun z => b ^ z) atBot (nhds 0)
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (fun z => b ^ z) atBot (𝓝 0)
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)]
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < b
[PROOFSTEP]
positivity
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (fun z => exp (log b * z)) atBot (𝓝 0)
[PROOFSTEP]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_pos ?_).mpr tendsto_id
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < log b
[PROOFSTEP]
exact (log_pos_iff (by positivity)).mpr <| by aesop
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < b
[PROOFSTEP]
positivity
[GOAL]
b : ℝ
hb : 1 < b
⊢ 1 < b
[PROOFSTEP]
aesop
[GOAL]
b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ Tendsto (Real.rpow b) atBot atTop
[PROOFSTEP]
show Tendsto (fun z => b ^ z) atBot atTop
[GOAL]
b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ Tendsto (fun z => b ^ z) atBot atTop
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)]
[GOAL]
b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ 0 < b
[PROOFSTEP]
positivity
[GOAL]
b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ Tendsto (fun z => exp (log b * z)) atBot atTop
[PROOFSTEP]
refine tendsto_exp_atTop.comp <| (tendsto_const_mul_atTop_iff_neg <| tendsto_id (α := ℝ)).mpr ?_
[GOAL]
b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ log b < 0
[PROOFSTEP]
exact (log_neg_iff hb₀).mpr hb₁
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (Real.rpow b) atBot (𝓝 0)
[PROOFSTEP]
show Tendsto (fun z => b ^ z) atBot (𝓝 0)
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (fun z => b ^ z) atBot (𝓝 0)
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)]
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < b
[PROOFSTEP]
positivity
[GOAL]
b : ℝ
hb : 1 < b
⊢ Tendsto (fun z => exp (log b * z)) atBot (𝓝 0)
[PROOFSTEP]
refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_iff_pos <| tendsto_id (α := ℝ)).mpr ?_
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < log b
[PROOFSTEP]
exact (log_pos_iff (by positivity)).mpr <| by aesop
[GOAL]
b : ℝ
hb : 1 < b
⊢ 0 < b
[PROOFSTEP]
positivity
[GOAL]
b : ℝ
hb : 1 < b
⊢ 1 < b
[PROOFSTEP]
aesop
[GOAL]
a b c : ℝ
hb : 0 ≠ b
⊢ Tendsto (fun x => x ^ (a / (b * x + c))) atTop (𝓝 1)
[PROOFSTEP]
refine'
Tendsto.congr' _
((tendsto_exp_nhds_0_nhds_1.comp
(by
simpa only [mul_zero, pow_one] using
(@tendsto_const_nhds _ _ _ a _).mul (tendsto_div_pow_mul_exp_add_atTop b c 1 hb))).comp
tendsto_log_atTop)
[GOAL]
a b c : ℝ
hb : 0 ≠ b
⊢ Tendsto ?m.296219 atTop (𝓝 0)
[PROOFSTEP]
simpa only [mul_zero, pow_one] using (@tendsto_const_nhds _ _ _ a _).mul (tendsto_div_pow_mul_exp_add_atTop b c 1 hb)
[GOAL]
a b c : ℝ
hb : 0 ≠ b
⊢ (exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log =ᶠ[atTop] fun x => x ^ (a / (b * x + c))
[PROOFSTEP]
apply eventuallyEq_of_mem (Ioi_mem_atTop (0 : ℝ))
[GOAL]
a b c : ℝ
hb : 0 ≠ b
⊢ EqOn ((exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log) (fun x => x ^ (a / (b * x + c))) (Set.Ioi 0)
[PROOFSTEP]
intro x hx
[GOAL]
a b c : ℝ
hb : 0 ≠ b
x : ℝ
hx : x ∈ Set.Ioi 0
⊢ ((exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log) x = (fun x => x ^ (a / (b * x + c))) x
[PROOFSTEP]
simp only [Set.mem_Ioi, Function.comp_apply] at hx ⊢
[GOAL]
a b c : ℝ
hb : 0 ≠ b
x : ℝ
hx : 0 < x
⊢ exp (a * (log x / (b * exp (log x) + c))) = x ^ (a / (b * x + c))
[PROOFSTEP]
rw [exp_log hx, ← exp_log (rpow_pos_of_pos hx (a / (b * x + c))), log_rpow hx (a / (b * x + c))]
[GOAL]
a b c : ℝ
hb : 0 ≠ b
x : ℝ
hx : 0 < x
⊢ exp (a * (log x / (b * x + c))) = exp (a / (b * x + c) * log x)
[PROOFSTEP]
field_simp
[GOAL]
⊢ Tendsto (fun x => x ^ (1 / x)) atTop (𝓝 1)
[PROOFSTEP]
convert tendsto_rpow_div_mul_add (1 : ℝ) _ (0 : ℝ) zero_ne_one
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
funext
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
ring
[GOAL]
⊢ Tendsto (fun x => x ^ (-1 / x)) atTop (𝓝 1)
[PROOFSTEP]
convert tendsto_rpow_div_mul_add (-(1 : ℝ)) _ (0 : ℝ) zero_ne_one
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
funext
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
x✝ : ℝ
⊢ x✝ = 1 * x✝ + 0
[PROOFSTEP]
ring
[GOAL]
s : ℝ
⊢ Tendsto (fun x => exp x / x ^ s) atTop atTop
[PROOFSTEP]
cases' archimedean_iff_nat_lt.1 Real.instArchimedean s with n hn
[GOAL]
case intro
s : ℝ
n : ℕ
hn : s < ↑n
⊢ Tendsto (fun x => exp x / x ^ s) atTop atTop
[PROOFSTEP]
refine' tendsto_atTop_mono' _ _ (tendsto_exp_div_pow_atTop n)
[GOAL]
case intro
s : ℝ
n : ℕ
hn : s < ↑n
⊢ (fun x => exp x / x ^ n) ≤ᶠ[atTop] fun x => exp x / x ^ s
[PROOFSTEP]
filter_upwards [eventually_gt_atTop (0 : ℝ), eventually_ge_atTop (1 : ℝ)] with x hx₀ hx₁
[GOAL]
case h
s : ℝ
n : ℕ
hn : s < ↑n
x : ℝ
hx₀ : 0 < x
hx₁ : 1 ≤ x
⊢ exp x / x ^ n ≤ exp x / x ^ s
[PROOFSTEP]
rw [div_le_div_left (exp_pos _) (pow_pos hx₀ _) (rpow_pos_of_pos hx₀ _), ← Real.rpow_nat_cast]
[GOAL]
case h
s : ℝ
n : ℕ
hn : s < ↑n
x : ℝ
hx₀ : 0 < x
hx₁ : 1 ≤ x
⊢ x ^ s ≤ x ^ ↑n
[PROOFSTEP]
exact rpow_le_rpow_of_exponent_le hx₁ hn.le
[GOAL]
s b : ℝ
hb : 0 < b
⊢ Tendsto (fun x => exp (b * x) / x ^ s) atTop atTop
[PROOFSTEP]
refine' ((tendsto_rpow_atTop hb).comp (tendsto_exp_div_rpow_atTop (s / b))).congr' _
[GOAL]
s b : ℝ
hb : 0 < b
⊢ ((fun x => x ^ b) ∘ fun x => exp x / x ^ (s / b)) =ᶠ[atTop] fun x => exp (b * x) / x ^ s
[PROOFSTEP]
filter_upwards [eventually_ge_atTop (0 : ℝ)] with x hx₀
[GOAL]
case h
s b : ℝ
hb : 0 < b
x : ℝ
hx₀ : 0 ≤ x
⊢ ((fun x => x ^ b) ∘ fun x => exp x / x ^ (s / b)) x = exp (b * x) / x ^ s
[PROOFSTEP]
simp [Real.div_rpow, (exp_pos x).le, rpow_nonneg_of_nonneg, ← Real.rpow_mul, ← exp_mul, mul_comm x, hb.ne', *]
[GOAL]
s b : ℝ
hb : 0 < b
⊢ Tendsto (fun x => x ^ s * exp (-b * x)) atTop (𝓝 0)
[PROOFSTEP]
refine' (tendsto_exp_mul_div_rpow_atTop s b hb).inv_tendsto_atTop.congr' _
[GOAL]
s b : ℝ
hb : 0 < b
⊢ (fun x => exp (b * x) / x ^ s)⁻¹ =ᶠ[atTop] fun x => x ^ s * exp (-b * x)
[PROOFSTEP]
filter_upwards with x using by simp [exp_neg, inv_div, div_eq_mul_inv _ (exp _)]
[GOAL]
s b : ℝ
hb : 0 < b
x : ℝ
⊢ (fun x => exp (b * x) / x ^ s)⁻¹ x = x ^ s * exp (-b * x)
[PROOFSTEP]
simp [exp_neg, inv_div, div_eq_mul_inv _ (exp _)]
[GOAL]
y : ℝ
hy : 0 < y
⊢ Tendsto (fun x => ↑x ^ y) atTop atTop
[PROOFSTEP]
rw [Filter.tendsto_atTop_atTop]
[GOAL]
y : ℝ
hy : 0 < y
⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y
[PROOFSTEP]
intro b
[GOAL]
y : ℝ
hy : 0 < y
b : ℝ
⊢ ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y
[PROOFSTEP]
obtain ⟨c, hc⟩ := tendsto_atTop_atTop.mp (tendsto_rpow_atTop hy) b
[GOAL]
case intro
y : ℝ
hy : 0 < y
b c : ℝ
hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y
⊢ ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y
[PROOFSTEP]
use c.toNNReal
[GOAL]
case h
y : ℝ
hy : 0 < y
b c : ℝ
hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y
⊢ ∀ (a : ℝ≥0), toNNReal c ≤ a → b ≤ ↑a ^ y
[PROOFSTEP]
intro a ha
[GOAL]
case h
y : ℝ
hy : 0 < y
b c : ℝ
hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y
a : ℝ≥0
ha : toNNReal c ≤ a
⊢ b ≤ ↑a ^ y
[PROOFSTEP]
exact_mod_cast hc a (Real.toNNReal_le_iff_le_coe.mp ha)
[GOAL]
y : ℝ
hy : 0 < y
⊢ Tendsto (fun x => x ^ y) (𝓝 ⊤) (𝓝 ⊤)
[PROOFSTEP]
rw [ENNReal.tendsto_nhds_top_iff_nnreal]
[GOAL]
y : ℝ
hy : 0 < y
⊢ ∀ (x : ℝ≥0), ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y
[PROOFSTEP]
intro x
[GOAL]
y : ℝ
hy : 0 < y
x : ℝ≥0
⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y
[PROOFSTEP]
obtain ⟨c, _, hc⟩ := (atTop_basis_Ioi.tendsto_iff atTop_basis_Ioi).mp (NNReal.tendsto_rpow_atTop hy) x trivial
[GOAL]
case intro.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y
[PROOFSTEP]
have hc' : Set.Ioi ↑c ∈ 𝓝 (⊤ : ℝ≥0∞) := Ioi_mem_nhds ENNReal.coe_lt_top
[GOAL]
case intro.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y
[PROOFSTEP]
refine' eventually_of_mem hc' _
[GOAL]
case intro.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
⊢ ∀ (x_1 : ℝ≥0∞), x_1 ∈ Set.Ioi ↑c → ↑x < x_1 ^ y
[PROOFSTEP]
intro a ha
[GOAL]
case intro.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0∞
ha : a ∈ Set.Ioi ↑c
⊢ ↑x < a ^ y
[PROOFSTEP]
by_cases ha' : a = ⊤
[GOAL]
case pos
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0∞
ha : a ∈ Set.Ioi ↑c
ha' : a = ⊤
⊢ ↑x < a ^ y
[PROOFSTEP]
simp [ha', hy]
[GOAL]
case neg
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0∞
ha : a ∈ Set.Ioi ↑c
ha' : ¬a = ⊤
⊢ ↑x < a ^ y
[PROOFSTEP]
lift a to ℝ≥0 using ha'
[GOAL]
case neg.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0
ha : ↑a ∈ Set.Ioi ↑c
⊢ ↑x < ↑a ^ y
[PROOFSTEP]
simp only [Set.mem_Ioi, coe_lt_coe] at ha hc
[GOAL]
case neg.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0
ha : c < a
hc : ∀ (x_1 : ℝ≥0), c < x_1 → ↑x < ↑x_1 ^ y
⊢ ↑x < ↑a ^ y
[PROOFSTEP]
rw [ENNReal.coe_rpow_of_nonneg _ hy.le]
[GOAL]
case neg.intro
y : ℝ
hy : 0 < y
x c : ℝ≥0
left✝ : True
hc' : Set.Ioi ↑c ∈ 𝓝 ⊤
a : ℝ≥0
ha : c < a
hc : ∀ (x_1 : ℝ≥0), c < x_1 → ↑x < ↑x_1 ^ y
⊢ ↑x < ↑(a ^ y)
[PROOFSTEP]
exact_mod_cast hc a ha
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im|
⊢ (fun x => Real.exp (arg (f x) * (g x).im)) =Θ[l] fun x => 1
[PROOFSTEP]
rcases hl with ⟨b, hb⟩
[GOAL]
case intro
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℝ
hb : ∀ᶠ (x : ℝ) in Filter.map (fun x => |(g x).im|) l, (fun x x_1 => x ≤ x_1) x b
⊢ (fun x => Real.exp (arg (f x) * (g x).im)) =Θ[l] fun x => 1
[PROOFSTEP]
refine' Real.isTheta_exp_comp_one.2 ⟨π * b, _⟩
[GOAL]
case intro
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℝ
hb : ∀ᶠ (x : ℝ) in Filter.map (fun x => |(g x).im|) l, (fun x x_1 => x ≤ x_1) x b
⊢ ∀ᶠ (x : ℝ) in Filter.map (fun x => |arg (f x) * (g x).im|) l, (fun x x_1 => x ≤ x_1) x (π * b)
[PROOFSTEP]
rw [eventually_map] at hb ⊢
[GOAL]
case intro
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℝ
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b
⊢ ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |arg (f a) * (g a).im| (π * b)
[PROOFSTEP]
refine' hb.mono fun x hx => _
[GOAL]
case intro
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℝ
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b
x : α
hx : (fun x x_1 => x ≤ x_1) |(g x).im| b
⊢ (fun x x_1 => x ≤ x_1) |arg (f x) * (g x).im| (π * b)
[PROOFSTEP]
erw [abs_mul]
[GOAL]
case intro
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℝ
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b
x : α
hx : (fun x x_1 => x ≤ x_1) |(g x).im| b
⊢ (fun x x_1 => x ≤ x_1) (|arg (f x)| * |(g x).im|) (π * b)
[PROOFSTEP]
exact mul_le_mul (abs_arg_le_pi _) hx (abs_nonneg _) Real.pi_pos.le
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im|
⊢ (let_fun this := fun x => ↑abs (f x) ^ (g x).re / 1;
this) =ᶠ[l]
let_fun this := fun x => ↑abs (f x) ^ (g x).re;
this
[PROOFSTEP]
simp only [ofReal_one, div_one]
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im|
⊢ (fun x => ↑abs (f x) ^ (g x).re) =ᶠ[l] fun x => ↑abs (f x) ^ (g x).re
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
hl_im : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im|
hl : ∀ᶠ (x : α) in l, f x = 0 → (g x).re = 0 → g x = 0
⊢ (let_fun this := fun x => ↑abs (f x) ^ (g x).re / 1;
this) =ᶠ[l]
let_fun this := fun x => ↑abs (f x) ^ (g x).re;
this
[PROOFSTEP]
simp only [ofReal_one, div_one]
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
hl_im : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im|
hl : ∀ᶠ (x : α) in l, f x = 0 → (g x).re = 0 → g x = 0
⊢ (fun x => ↑abs (f x) ^ (g x).re) =ᶠ[l] fun x => ↑abs (f x) ^ (g x).re
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℂ
hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0
⊢ ∀ᶠ (x : α) in l, f x = 0 → b.re = 0 → b = 0
[PROOFSTEP]
convert hl
[GOAL]
case a
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℂ
hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∀ᶠ (x : α) in l, f x = 0 → b.re = 0 → b = 0) ↔ b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0
[PROOFSTEP]
rw [eventually_imp_distrib_right]
[GOAL]
case a
α : Type u_1
l : Filter α
f g : α → ℂ
b : ℂ
hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0
⊢ (∃ᶠ (x : α) in l, f x = 0) → b.re = 0 → b = 0 ↔ b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
r c : ℝ
l : Filter α
f g : α → ℝ
h : IsBigOWith c l f g
hc : 0 ≤ c
hr : 0 ≤ r
hg : 0 ≤ᶠ[l] g
⊢ IsBigOWith (c ^ r) l (fun x => f x ^ r) fun x => g x ^ r
[PROOFSTEP]
apply IsBigOWith.of_bound
[GOAL]
case a
α : Type u_1
r c : ℝ
l : Filter α
f g : α → ℝ
h : IsBigOWith c l f g
hc : 0 ≤ c
hr : 0 ≤ r
hg : 0 ≤ᶠ[l] g
⊢ ∀ᶠ (x : α) in l, ‖f x ^ r‖ ≤ c ^ r * ‖g x ^ r‖
[PROOFSTEP]
filter_upwards [hg, h.bound] with x hgx hx
[GOAL]
case h
α : Type u_1
r c : ℝ
l : Filter α
f g : α → ℝ
h : IsBigOWith c l f g
hc : 0 ≤ c
hr : 0 ≤ r
hg : 0 ≤ᶠ[l] g
x : α
hgx : OfNat.ofNat 0 x ≤ g x
hx : ‖f x‖ ≤ c * ‖g x‖
⊢ ‖f x ^ r‖ ≤ c ^ r * ‖g x ^ r‖
[PROOFSTEP]
calc
|f x ^ r| ≤ |f x| ^ r := abs_rpow_le_abs_rpow _ _
_ ≤ (c * |g x|) ^ r := (rpow_le_rpow (abs_nonneg _) hx hr)
_ = c ^ r * |g x ^ r| := by rw [mul_rpow hc (abs_nonneg _), abs_rpow_of_nonneg hgx]
[GOAL]
α : Type u_1
r c : ℝ
l : Filter α
f g : α → ℝ
h : IsBigOWith c l f g
hc : 0 ≤ c
hr : 0 ≤ r
hg : 0 ≤ᶠ[l] g
x : α
hgx : OfNat.ofNat 0 x ≤ g x
hx : ‖f x‖ ≤ c * ‖g x‖
⊢ (c * |g x|) ^ r = c ^ r * |g x ^ r|
[PROOFSTEP]
rw [mul_rpow hc (abs_nonneg _), abs_rpow_of_nonneg hgx]
[GOAL]
α : Type u_1
r c✝ : ℝ
l : Filter α
f g : α → ℝ
hr : 0 < r
hg : 0 ≤ᶠ[l] g
h : f =o[l] g
c : ℝ
hc : 0 < c
⊢ (c ^ r⁻¹) ^ r = c
[PROOFSTEP]
rw [← rpow_mul hc.le, inv_mul_cancel hr.ne', Real.rpow_one]
[GOAL]
s b : ℝ
hb : 0 < b
⊢ Tendsto (fun x => x ^ s / exp (b * x)) atTop (𝓝 0)
[PROOFSTEP]
simpa only [div_eq_mul_inv, exp_neg, neg_mul] using tendsto_rpow_mul_exp_neg_mul_atTop_nhds_0 s b hb
[GOAL]
k : ℤ
b : ℝ
hb : 0 < b
⊢ (fun x => x ^ ↑k) =o[atTop] fun x => exp (b * x)
[PROOFSTEP]
simpa only [rpow_int_cast] using isLittleO_rpow_exp_pos_mul_atTop k hb
[GOAL]
k : ℕ
b : ℝ
hb : 0 < b
⊢ (fun x => x ^ ↑k) =o[atTop] fun x => exp (b * x)
[PROOFSTEP]
simpa using isLittleO_zpow_exp_pos_mul_atTop k hb
[GOAL]
s : ℝ
⊢ (fun x => x ^ s) =o[atTop] exp
[PROOFSTEP]
simpa only [one_mul] using isLittleO_rpow_exp_pos_mul_atTop s one_pos
[GOAL]
a : ℝ
ha : 0 < a
b : ℝ
⊢ (fun x => exp (-a * x)) =o[atTop] fun x => x ^ b
[PROOFSTEP]
apply isLittleO_of_tendsto'
[GOAL]
case hgf
a : ℝ
ha : 0 < a
b : ℝ
⊢ ∀ᶠ (x : ℝ) in atTop, x ^ b = 0 → exp (-a * x) = 0
[PROOFSTEP]
refine' (eventually_gt_atTop 0).mp (eventually_of_forall fun t ht h => _)
[GOAL]
case hgf
a : ℝ
ha : 0 < a
b t : ℝ
ht : 0 < t
h : t ^ b = 0
⊢ exp (-a * t) = 0
[PROOFSTEP]
rw [rpow_eq_zero_iff_of_nonneg ht.le] at h
[GOAL]
case hgf
a : ℝ
ha : 0 < a
b t : ℝ
ht : 0 < t
h : t = 0 ∧ b ≠ 0
⊢ exp (-a * t) = 0
[PROOFSTEP]
exact (ht.ne' h.1).elim
[GOAL]
case a
a : ℝ
ha : 0 < a
b : ℝ
⊢ Tendsto (fun x => exp (-a * x) / x ^ b) atTop (𝓝 0)
[PROOFSTEP]
refine' (tendsto_exp_mul_div_rpow_atTop (-b) a ha).inv_tendsto_atTop.congr' _
[GOAL]
case a
a : ℝ
ha : 0 < a
b : ℝ
⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ =ᶠ[atTop] fun x => exp (-a * x) / x ^ b
[PROOFSTEP]
refine' (eventually_ge_atTop 0).mp (eventually_of_forall fun t ht => _)
[GOAL]
case a
a : ℝ
ha : 0 < a
b t : ℝ
ht : 0 ≤ t
⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ t = (fun x => exp (-a * x) / x ^ b) t
[PROOFSTEP]
dsimp only
[GOAL]
case a
a : ℝ
ha : 0 < a
b t : ℝ
ht : 0 ≤ t
⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ t = exp (-a * t) / t ^ b
[PROOFSTEP]
rw [Pi.inv_apply, inv_div, ← inv_div_inv, neg_mul, Real.exp_neg, rpow_neg ht, inv_inv]
[GOAL]
s r : ℝ
hs : 0 < s
r' : ℝ := max r 1
hr : 0 < r'
H : 0 < s / r'
x : ℝ
hx : 1 ≤ log x
⊢ ‖log x ^ r‖ ≤ 1 * ‖log x ^ r'‖
[PROOFSTEP]
have hx₀ : 0 ≤ log x := zero_le_one.trans hx
[GOAL]
s r : ℝ
hs : 0 < s
r' : ℝ := max r 1
hr : 0 < r'
H : 0 < s / r'
x : ℝ
hx : 1 ≤ log x
hx₀ : 0 ≤ log x
⊢ ‖log x ^ r‖ ≤ 1 * ‖log x ^ r'‖
[PROOFSTEP]
simp [norm_eq_abs, abs_rpow_of_nonneg, abs_rpow_of_nonneg hx₀, rpow_le_rpow_of_exponent_le (hx.trans (le_abs_self _))]
[GOAL]
s r : ℝ
hs : 0 < s
r' : ℝ := max r 1
hr : 0 < r'
H : 0 < s / r'
x : ℝ
hx : 0 ≤ x
⊢ (fun x => (x ^ (s / r')) ^ r') x = (fun x => x ^ s) x
[PROOFSTEP]
simp only [← rpow_mul hx, div_mul_cancel _ hr.ne']
[GOAL]
s r : ℝ
hs : s < 0
x : ℝ
hx : x ∈ Set.Icc 0 1
⊢ x ∈ {x | (fun x => ((fun x => log x ^ r) ∘ fun x => x⁻¹) x = (fun x => |log x| ^ r) x) x}
[PROOFSTEP]
simp [abs_of_nonpos, log_nonpos hx.1 hx.2]
[GOAL]
s r : ℝ
hs : s < 0
x : ℝ
hx : x ∈ Set.Ioi 0
⊢ ((fun x => x ^ (-s)) ∘ fun x => x⁻¹) x = (fun x => x ^ s) x
[PROOFSTEP]
rw [Function.comp_apply, inv_rpow hx.out.le, rpow_neg hx.out.le, inv_inv]
[GOAL]
r : ℝ
hr : r < 0
x : ℝ
hx : x ∈ Set.Icc 0 1
⊢ x ∈ {x | (fun x => (fun x => -|log x| ^ 1) x = log x) x}
[PROOFSTEP]
simp [abs_of_nonpos (log_nonpos hx.1 hx.2)]
[GOAL]
r : ℝ
hr : 0 < r
x : ℝ
hx : x ∈ Set.Ioi 0
⊢ log x / x ^ (-r) = (fun x => log x * x ^ r) x
[PROOFSTEP]
rw [rpow_neg hx.out.le, div_inv_eq_mul]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Asymptotics", "llama_tokens": 14394} |
[GOAL]
x : ℂ
⊢ Real.sin (arg x) = x.im / ↑abs x
[PROOFSTEP]
unfold arg
[GOAL]
x : ℂ
⊢ Real.sin
(if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then arcsin ((-x).im / ↑abs x) + π else arcsin ((-x).im / ↑abs x) - π) =
x.im / ↑abs x
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℂ
h✝ : 0 ≤ x.re
⊢ Real.sin (arcsin (x.im / ↑abs x)) = x.im / ↑abs x
[PROOFSTEP]
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div,
Real.arcsin_neg, Real.sin_neg]
[GOAL]
case pos
x : ℂ
h✝¹ : ¬0 ≤ x.re
h✝ : 0 ≤ x.im
⊢ Real.sin (arcsin ((-x).im / ↑abs x) + π) = x.im / ↑abs x
[PROOFSTEP]
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div,
Real.arcsin_neg, Real.sin_neg]
[GOAL]
case neg
x : ℂ
h✝¹ : ¬0 ≤ x.re
h✝ : ¬0 ≤ x.im
⊢ Real.sin (arcsin ((-x).im / ↑abs x) - π) = x.im / ↑abs x
[PROOFSTEP]
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div,
Real.arcsin_neg, Real.sin_neg]
[GOAL]
x : ℂ
hx : x ≠ 0
⊢ Real.cos (arg x) = x.re / ↑abs x
[PROOFSTEP]
rw [arg]
[GOAL]
x : ℂ
hx : x ≠ 0
⊢ Real.cos
(if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then arcsin ((-x).im / ↑abs x) + π else arcsin ((-x).im / ↑abs x) - π) =
x.re / ↑abs x
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
x : ℂ
hx : x ≠ 0
h₁ : 0 ≤ x.re
⊢ Real.cos (arcsin (x.im / ↑abs x)) = x.re / ↑abs x
[PROOFSTEP]
rw [Real.cos_arcsin]
[GOAL]
case pos
x : ℂ
hx : x ≠ 0
h₁ : 0 ≤ x.re
⊢ sqrt (1 - (x.im / ↑abs x) ^ 2) = x.re / ↑abs x
[PROOFSTEP]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
[GOAL]
case pos
x : ℂ
hx : x ≠ 0
h₁ : ¬0 ≤ x.re
h₂ : 0 ≤ x.im
⊢ Real.cos (arcsin ((-x).im / ↑abs x) + π) = x.re / ↑abs x
[PROOFSTEP]
rw [Real.cos_add_pi, Real.cos_arcsin]
[GOAL]
case pos
x : ℂ
hx : x ≠ 0
h₁ : ¬0 ≤ x.re
h₂ : 0 ≤ x.im
⊢ -sqrt (1 - ((-x).im / ↑abs x) ^ 2) = x.re / ↑abs x
[PROOFSTEP]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *]
[GOAL]
case neg
x : ℂ
hx : x ≠ 0
h₁ : ¬0 ≤ x.re
h₂ : ¬0 ≤ x.im
⊢ Real.cos (arcsin ((-x).im / ↑abs x) - π) = x.re / ↑abs x
[PROOFSTEP]
rw [Real.cos_sub_pi, Real.cos_arcsin]
[GOAL]
case neg
x : ℂ
hx : x ≠ 0
h₁ : ¬0 ≤ x.re
h₂ : ¬0 ≤ x.im
⊢ -sqrt (1 - ((-x).im / ↑abs x) ^ 2) = x.re / ↑abs x
[PROOFSTEP]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *]
[GOAL]
x : ℂ
⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
⊢ ↑(↑abs 0) * exp (↑(arg 0) * I) = 0
[PROOFSTEP]
simp
[GOAL]
case inr
x : ℂ
hx : x ≠ 0
⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x
[PROOFSTEP]
have : abs x ≠ 0 := abs.ne_zero hx
[GOAL]
case inr
x : ℂ
hx : x ≠ 0
this : ↑abs x ≠ 0
⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x
[PROOFSTEP]
ext
[GOAL]
case inr.a
x : ℂ
hx : x ≠ 0
this : ↑abs x ≠ 0
⊢ (↑(↑abs x) * exp (↑(arg x) * I)).re = x.re
[PROOFSTEP]
field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
[GOAL]
case inr.a
x : ℂ
hx : x ≠ 0
this : ↑abs x ≠ 0
⊢ (↑(↑abs x) * exp (↑(arg x) * I)).im = x.im
[PROOFSTEP]
field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
[GOAL]
x : ℂ
⊢ ↑(↑abs x) * (cos ↑(arg x) + sin ↑(arg x) * I) = x
[PROOFSTEP]
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
[GOAL]
z : ℂ
⊢ ↑abs z = 1 ↔ ∃ θ, exp (↑θ * I) = z
[PROOFSTEP]
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
[GOAL]
case refine'_1
z : ℂ
hz : ↑abs z = 1
⊢ exp (↑(arg z) * I) = z
[PROOFSTEP]
calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
[GOAL]
z : ℂ
hz : ↑abs z = 1
⊢ exp (↑(arg z) * I) = ↑(↑abs z) * exp (↑(arg z) * I)
[PROOFSTEP]
rw [hz, ofReal_one, one_mul]
[GOAL]
case refine'_2
z : ℂ
⊢ (∃ θ, exp (↑θ * I) = z) → ↑abs z = 1
[PROOFSTEP]
rintro ⟨θ, rfl⟩
[GOAL]
case refine'_2.intro
θ : ℝ
⊢ ↑abs (exp (↑θ * I)) = 1
[PROOFSTEP]
exact Complex.abs_exp_ofReal_mul_I θ
[GOAL]
⊢ (Set.range fun x => exp (↑x * I)) = Metric.sphere 0 1
[PROOFSTEP]
ext x
[GOAL]
case h
x : ℂ
⊢ (x ∈ Set.range fun x => exp (↑x * I)) ↔ x ∈ Metric.sphere 0 1
[PROOFSTEP]
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = θ
[PROOFSTEP]
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
⊢ (if 0 ≤ (↑r * (cos ↑θ + sin ↑θ * I)).re then arcsin ((↑r * (cos ↑θ + sin ↑θ * I)).im / r)
else
if 0 ≤ (↑r * (cos ↑θ + sin ↑θ * I)).im then arcsin ((-(↑r * (cos ↑θ + sin ↑θ * I))).im / r) + π
else arcsin ((-(↑r * (cos ↑θ + sin ↑θ * I))).im / r) - π) =
θ
[PROOFSTEP]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div,
mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
[GOAL]
case pos
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [if_pos]
[GOAL]
case pos
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
⊢ arcsin (Real.sin θ) = θ
case pos.hc r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) ⊢ 0 ≤ Real.cos θ
[PROOFSTEP]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
[GOAL]
case neg
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : ¬θ ∈ Set.Icc (-(π / 2)) (π / 2)
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
[GOAL]
case neg
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : θ < -(π / 2) ∨ π / 2 < θ
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
cases' h₁ with h₁ h₁
[GOAL]
case neg.inl
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : θ < -(π / 2)
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
replace hθ := hθ.1
[GOAL]
case neg.inl
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
⊢ Real.cos θ < 0
[PROOFSTEP]
rw [← neg_pos, ← Real.cos_add_pi]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
⊢ 0 < Real.cos (θ + π)
[PROOFSTEP]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩
[GOAL]
case refine'_1
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
⊢ -(π / 2) < θ + π
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
⊢ θ + π < π / 2
[PROOFSTEP]
linarith
[GOAL]
case neg.inl
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
⊢ θ < 0
[PROOFSTEP]
linarith
[GOAL]
case neg.inl
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le;
exact hcos.not_le]
[GOAL]
case neg.inl
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel]
[GOAL]
case neg.inl.hx₁
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ -(π / 2) ≤ θ + π
[PROOFSTEP]
linarith
[GOAL]
case neg.inl.hx₂
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ θ + π ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
case neg.inl.hnc
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ ¬0 ≤ Real.sin θ
[PROOFSTEP]
exact hsin.not_le
[GOAL]
case neg.inl.hnc
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : θ < -(π / 2)
hθ : -π < θ
hcos : Real.cos θ < 0
hsin : Real.sin θ < 0
⊢ ¬0 ≤ Real.cos θ
[PROOFSTEP]
exact hcos.not_le
[GOAL]
case neg.inr
r : ℝ
hr : 0 < r
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
h₁ : π / 2 < θ
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
replace hθ := hθ.2
[GOAL]
case neg.inr
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
⊢ θ < π + π / 2
[PROOFSTEP]
linarith
[GOAL]
case neg.inr
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
⊢ 0 ≤ θ
[PROOFSTEP]
linarith
[GOAL]
case neg.inr
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin;
exact hcos.not_le]
[GOAL]
case neg.inr
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ)
else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) =
θ
[PROOFSTEP]
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel]
[GOAL]
case neg.inr.hx₁
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ -(π / 2) ≤ θ - π
[PROOFSTEP]
linarith
[GOAL]
case neg.inr.hx₂
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ θ - π ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
case neg.inr.hc
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ 0 ≤ Real.sin θ
[PROOFSTEP]
exact hsin
[GOAL]
case neg.inr.hnc
r : ℝ
hr : 0 < r
θ : ℝ
h₁ : π / 2 < θ
hθ : θ ≤ π
hcos : Real.cos θ < 0
hsin : 0 ≤ Real.sin θ
⊢ ¬0 ≤ Real.cos θ
[PROOFSTEP]
exact hcos.not_le
[GOAL]
θ : ℝ
hθ : θ ∈ Set.Ioc (-π) π
⊢ arg (cos ↑θ + sin ↑θ * I) = θ
[PROOFSTEP]
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
[GOAL]
⊢ arg 0 = 0
[PROOFSTEP]
simp [arg, le_refl]
[GOAL]
x y : ℂ
h₁ : ↑abs x = ↑abs y
h₂ : arg x = arg y
⊢ x = y
[PROOFSTEP]
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
[GOAL]
z : ℂ
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
have hπ : 0 < π := Real.pi_pos
[GOAL]
z : ℂ
hπ : 0 < π
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | hz)
[GOAL]
case inl
hπ : 0 < π
⊢ arg 0 ∈ Set.Ioc (-π) π
case inr z : ℂ hπ : 0 < π hz : z ≠ 0 ⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
simp [hπ, hπ.le]
[GOAL]
case inr
z : ℂ
hπ : 0 < π
hz : z ≠ 0
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + N • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π)
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π
⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π
[PROOFSTEP]
simp only [← ofReal_one, ← ofReal_bit0, ← ofReal_mul, ← ofReal_add, ofReal_int_cast]
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π
⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π
[PROOFSTEP]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π
this : arg (↑(↑abs z) * (cos ↑(arg z + ↑N * (2 * π)) + sin ↑(arg z + ↑N * (2 * π)) * I)) = arg z + ↑N * (2 * π)
⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π
[PROOFSTEP]
push_cast at this
[GOAL]
case inr.intro.intro
z : ℂ
hπ : 0 < π
hz : z ≠ 0
N : ℤ
hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π
this : arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) = arg z + ↑N * (2 * π)
⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π
[PROOFSTEP]
rwa [this]
[GOAL]
z : ℂ
⊢ 0 ≤ arg z ↔ 0 ≤ z.im
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | h₀)
[GOAL]
case inl
⊢ 0 ≤ arg 0 ↔ 0 ≤ 0.im
[PROOFSTEP]
simp
[GOAL]
case inr
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ arg z ↔ 0 ≤ z.im
[PROOFSTEP]
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩,
by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
[GOAL]
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ Real.sin (arg z) → 0 ≤ arg z
[PROOFSTEP]
contrapose!
[GOAL]
z : ℂ
h₀ : z ≠ 0
⊢ arg z < 0 → Real.sin (arg z) < 0
[PROOFSTEP]
intro h
[GOAL]
z : ℂ
h₀ : z ≠ 0
h : arg z < 0
⊢ Real.sin (arg z) < 0
[PROOFSTEP]
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)
[GOAL]
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ Real.sin (arg z) ↔ 0 ≤ z.im
[PROOFSTEP]
rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
[GOAL]
x : ℂ
r : ℝ
hr : 0 < r
⊢ arg (↑r * x) = arg x
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
r : ℝ
hr : 0 < r
⊢ arg (↑r * 0) = arg 0
[PROOFSTEP]
rw [mul_zero]
[GOAL]
case inr
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
⊢ arg (↑r * x) = arg x
[PROOFSTEP]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
[GOAL]
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x)
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
[GOAL]
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x)
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
[GOAL]
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x)
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
[GOAL]
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ arg x = arg y ↔ ↑(↑abs y) / ↑(↑abs x) * x = y
[PROOFSTEP]
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true,
true_and_iff]
[GOAL]
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ arg x = arg y ↔ arg (↑(↑abs y) / ↑(↑abs x) * x) = arg y
[PROOFSTEP]
rw [← ofReal_div, arg_real_mul]
[GOAL]
case hr
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ 0 < ↑abs y / ↑abs x
[PROOFSTEP]
exact div_pos (abs.pos hy) (abs.pos hx)
[GOAL]
⊢ arg 1 = 0
[PROOFSTEP]
simp [arg, zero_le_one]
[GOAL]
⊢ arg (-1) = π
[PROOFSTEP]
simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
[GOAL]
⊢ arg I = π / 2
[PROOFSTEP]
simp [arg, le_refl]
[GOAL]
⊢ arg (-I) = -(π / 2)
[PROOFSTEP]
simp [arg, le_refl]
[GOAL]
x : ℂ
⊢ Real.tan (arg x) = x.im / x.re
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
x : ℂ
h : x = 0
⊢ Real.tan (arg x) = x.im / x.re
[PROOFSTEP]
simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
[GOAL]
case neg
x : ℂ
h : ¬x = 0
⊢ Real.tan (arg x) = x.im / x.re
[PROOFSTEP]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
[GOAL]
x : ℝ
hx : 0 ≤ x
⊢ arg ↑x = 0
[PROOFSTEP]
simp [arg, hx]
[GOAL]
z : ℂ
⊢ arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
z : ℂ
h : arg z = 0
⊢ 0 ≤ z.re ∧ z.im = 0
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I z, h]
[GOAL]
case refine'_1
z : ℂ
h : arg z = 0
⊢ 0 ≤ (↑(↑abs z) * (cos ↑0 + sin ↑0 * I)).re ∧ (↑(↑abs z) * (cos ↑0 + sin ↑0 * I)).im = 0
[PROOFSTEP]
simp [abs.nonneg]
[GOAL]
case refine'_2
z : ℂ
⊢ 0 ≤ z.re ∧ z.im = 0 → arg z = 0
[PROOFSTEP]
cases' z with x y
[GOAL]
case refine'_2.mk
x y : ℝ
⊢ 0 ≤ { re := x, im := y }.re ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = 0
[PROOFSTEP]
rintro ⟨h, rfl : y = 0⟩
[GOAL]
case refine'_2.mk.intro
x : ℝ
h : 0 ≤ { re := x, im := 0 }.re
⊢ arg { re := x, im := 0 } = 0
[PROOFSTEP]
exact arg_ofReal_of_nonneg h
[GOAL]
z : ℂ
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0
[PROOFSTEP]
by_cases h₀ : z = 0
[GOAL]
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0
case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0
[PROOFSTEP]
simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
[GOAL]
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π → z.re < 0 ∧ z.im = 0
[PROOFSTEP]
intro h
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π
⊢ z.re < 0 ∧ z.im = 0
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I z, h]
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π
⊢ (↑(↑abs z) * (cos ↑π + sin ↑π * I)).re < 0 ∧ (↑(↑abs z) * (cos ↑π + sin ↑π * I)).im = 0
[PROOFSTEP]
simp [h₀]
[GOAL]
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re < 0 ∧ z.im = 0 → arg z = π
[PROOFSTEP]
cases' z with x y
[GOAL]
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re < 0 ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = π
[PROOFSTEP]
rintro ⟨h : x < 0, rfl : y = 0⟩
[GOAL]
case neg.mpr.mk.intro
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ arg { re := x, im := 0 } = π
[PROOFSTEP]
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
[GOAL]
case neg.mpr.mk.intro
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ arg { re := x, im := 0 } = arg (↑(-x) * -1)
[PROOFSTEP]
simp [← ofReal_def]
[GOAL]
z : ℂ
⊢ arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0
[PROOFSTEP]
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
[GOAL]
z : ℂ
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im
[PROOFSTEP]
by_cases h₀ : z = 0
[GOAL]
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im
[PROOFSTEP]
simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
[GOAL]
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π / 2 → z.re = 0 ∧ 0 < z.im
[PROOFSTEP]
intro h
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π / 2
⊢ z.re = 0 ∧ 0 < z.im
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I z, h]
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π / 2
⊢ (↑(↑abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).re = 0 ∧ 0 < (↑(↑abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).im
[PROOFSTEP]
simp [h₀]
[GOAL]
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re = 0 ∧ 0 < z.im → arg z = π / 2
[PROOFSTEP]
cases' z with x y
[GOAL]
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re = 0 ∧ 0 < { re := x, im := y }.im → arg { re := x, im := y } = π / 2
[PROOFSTEP]
rintro ⟨rfl : x = 0, hy : 0 < y⟩
[GOAL]
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : 0 < y
⊢ arg { re := 0, im := y } = π / 2
[PROOFSTEP]
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
[GOAL]
z : ℂ
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0
[PROOFSTEP]
by_cases h₀ : z = 0
[GOAL]
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0
[PROOFSTEP]
simp [h₀, lt_irrefl, Real.pi_ne_zero]
[GOAL]
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = -(π / 2) → z.re = 0 ∧ z.im < 0
[PROOFSTEP]
intro h
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = -(π / 2)
⊢ z.re = 0 ∧ z.im < 0
[PROOFSTEP]
rw [← abs_mul_cos_add_sin_mul_I z, h]
[GOAL]
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = -(π / 2)
⊢ (↑(↑abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).re = 0 ∧
(↑(↑abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).im < 0
[PROOFSTEP]
simp [h₀]
[GOAL]
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re = 0 ∧ z.im < 0 → arg z = -(π / 2)
[PROOFSTEP]
cases' z with x y
[GOAL]
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re = 0 ∧ { re := x, im := y }.im < 0 → arg { re := x, im := y } = -(π / 2)
[PROOFSTEP]
rintro ⟨rfl : x = 0, hy : y < 0⟩
[GOAL]
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : y < 0
⊢ arg { re := 0, im := y } = -(π / 2)
[PROOFSTEP]
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
[GOAL]
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : y < 0
⊢ arg (↑0 + ↑y * I) = arg (↑(-y) * -I)
[PROOFSTEP]
simp
[GOAL]
x : ℂ
hx_re : x.re < 0
hx_im : 0 ≤ x.im
⊢ arg x = arcsin ((-x).im / ↑abs x) + π
[PROOFSTEP]
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
[GOAL]
x : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ arg x = arcsin ((-x).im / ↑abs x) - π
[PROOFSTEP]
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
[GOAL]
z : ℂ
h₁ : 0 ≤ z.im
h₂ : z ≠ 0
⊢ arg z = arccos (z.re / ↑abs z)
[PROOFSTEP]
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
[GOAL]
z : ℂ
hz : z.im < 0
⊢ arg z = -arccos (z.re / ↑abs z)
[PROOFSTEP]
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
[GOAL]
z : ℂ
hz : z.im < 0
h₀ : z ≠ 0
⊢ arg z = -arccos (z.re / ↑abs z)
[PROOFSTEP]
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
[GOAL]
case hx₁
z : ℂ
hz : z.im < 0
h₀ : z ≠ 0
⊢ 0 ≤ -arg z
case hx₂ z : ℂ hz : z.im < 0 h₀ : z ≠ 0 ⊢ -arg z ≤ π
[PROOFSTEP]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
[GOAL]
x : ℂ
⊢ arg (↑(starRingEnd ℂ) x) = if arg x = π then π else -arg x
[PROOFSTEP]
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg]
[GOAL]
x : ℂ
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
[GOAL]
case inl
x : ℂ
hr : x.re < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inr.inl
x : ℂ
hr : x.re = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inr.inr
x : ℂ
hr : 0 < x.re
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inl.inl
x : ℂ
hr : x.re < 0
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
[GOAL]
case inl.inr.inl
x : ℂ
hr : x.re < 0
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.not_le, hi]
[GOAL]
case inl.inr.inr
x : ℂ
hr : x.re < 0
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
[GOAL]
case inr.inl.inl
x : ℂ
hr : x.re = 0
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr]
[GOAL]
case inr.inl.inr.inl
x : ℂ
hr : x.re = 0
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr]
[GOAL]
case inr.inl.inr.inr
x : ℂ
hr : x.re = 0
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr]
[GOAL]
case inr.inr.inl
x : ℂ
hr : 0 < x.re
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.le, hi.ne]
[GOAL]
case inr.inr.inr.inl
x : ℂ
hr : 0 < x.re
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.le, hr.le.not_lt]
[GOAL]
case inr.inr.inr.inr
x : ℂ
hr : 0 < x.re
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x)
else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / ↑abs x)
else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π
[PROOFSTEP]
simp [hr, hr.le, hr.le.not_lt]
[GOAL]
x : ℂ
⊢ arg x⁻¹ = if arg x = π then π else -arg x
[PROOFSTEP]
rw [← arg_conj, inv_def, mul_comm]
[GOAL]
x : ℂ
⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
x : ℂ
hx : x = 0
⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x)
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
x : ℂ
hx : ¬x = 0
⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x)
[PROOFSTEP]
exact arg_real_mul (conj x) (by simp [hx])
[GOAL]
x : ℂ
hx : ¬x = 0
⊢ 0 < (↑normSq x)⁻¹
[PROOFSTEP]
simp [hx]
[GOAL]
z : ℂ
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0
[PROOFSTEP]
cases' le_or_lt 0 (re z) with hre hre
[GOAL]
case inl
z : ℂ
hre : 0 ≤ z.re
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0
[PROOFSTEP]
simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
[GOAL]
case inr
z : ℂ
hre : z.re < 0
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0
[PROOFSTEP]
simp only [hre.not_le, false_or_iff]
[GOAL]
case inr
z : ℂ
hre : z.re < 0
⊢ arg z ≤ π / 2 ↔ z.im < 0
[PROOFSTEP]
cases' le_or_lt 0 (im z) with him him
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ arg z ≤ π / 2 ↔ z.im < 0
[PROOFSTEP]
simp only [him.not_lt]
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ arg z ≤ π / 2 ↔ False
[PROOFSTEP]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs]
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ z.re ≠ 0
case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ 0 < ↑abs z
[PROOFSTEP]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arg z ≤ π / 2 ↔ z.im < 0
[PROOFSTEP]
simp only [him]
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arg z ≤ π / 2 ↔ True
[PROOFSTEP]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arcsin ((-z).im / ↑abs z) - π ≤ π / 2
[PROOFSTEP]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
[GOAL]
z : ℂ
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im
[PROOFSTEP]
cases' le_or_lt 0 (re z) with hre hre
[GOAL]
case inl
z : ℂ
hre : 0 ≤ z.re
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im
[PROOFSTEP]
simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
[GOAL]
case inr
z : ℂ
hre : z.re < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im
[PROOFSTEP]
simp only [hre.not_le, false_or_iff]
[GOAL]
case inr
z : ℂ
hre : z.re < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im
[PROOFSTEP]
cases' le_or_lt 0 (im z) with him him
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im
[PROOFSTEP]
simp only [him]
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arg z ↔ True
[PROOFSTEP]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
[GOAL]
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arcsin ((-z).im / ↑abs z) + π
[PROOFSTEP]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im
[PROOFSTEP]
simp only [him.not_le]
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ -(π / 2) ≤ arg z ↔ False
[PROOFSTEP]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half,
Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs]
[GOAL]
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ z.re ≠ 0
case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ 0 < ↑abs z
[PROOFSTEP]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
[GOAL]
z : ℂ
⊢ |arg z| ≤ π / 2 ↔ 0 ≤ z.re
[PROOFSTEP]
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff]
[GOAL]
x : ℂ
⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x)
[PROOFSTEP]
by_cases h : arg x = π
[GOAL]
case pos
x : ℂ
h : arg x = π
⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x)
[PROOFSTEP]
simp [arg_conj, h]
[GOAL]
case neg
x : ℂ
h : ¬arg x = π
⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x)
[PROOFSTEP]
simp [arg_conj, h]
[GOAL]
x : ℂ
⊢ ↑(arg x⁻¹) = -↑(arg x)
[PROOFSTEP]
by_cases h : arg x = π
[GOAL]
case pos
x : ℂ
h : arg x = π
⊢ ↑(arg x⁻¹) = -↑(arg x)
[PROOFSTEP]
simp [arg_inv, h]
[GOAL]
case neg
x : ℂ
h : ¬arg x = π
⊢ ↑(arg x⁻¹) = -↑(arg x)
[PROOFSTEP]
simp [arg_inv, h]
[GOAL]
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x - π
[PROOFSTEP]
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
[GOAL]
x : ℂ
hi : 0 < x.im
⊢ -arccos ((-x).re / ↑abs (-x)) = arccos (x.re / ↑abs x) - π
[PROOFSTEP]
simp [neg_div, Real.arccos_neg]
[GOAL]
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x + π
[PROOFSTEP]
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
[GOAL]
x : ℂ
hi : x.im < 0
⊢ arccos ((-x).re / ↑abs (-x)) = -arccos (x.re / ↑abs x) + π
[PROOFSTEP]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
[GOAL]
x : ℂ
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inl
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0
[PROOFSTEP]
simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
[GOAL]
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0
[PROOFSTEP]
rw [(ext rfl hi : x = x.re)]
[GOAL]
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
[GOAL]
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
[GOAL]
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ 0 = π - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
simp [hr]
[GOAL]
case inr.inl.inr.inl
x : ℂ
hi : x.im = 0
hr : x.re = 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
simp [hr, hi, Real.pi_ne_zero]
[GOAL]
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
[GOAL]
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ π = 0 - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0
[PROOFSTEP]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
[GOAL]
case inr.inr
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0
[PROOFSTEP]
simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
[GOAL]
x : ℂ
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inl
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re
[PROOFSTEP]
simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
[GOAL]
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re
[PROOFSTEP]
rw [(ext rfl hi : x = x.re)]
[GOAL]
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
[GOAL]
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
[GOAL]
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ 0 = π + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
[GOAL]
case inr.inl.inr.inl
x : ℂ
hi : x.im = 0
hr : x.re = 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
simp [hr, hi, Real.pi_ne_zero.symm]
[GOAL]
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
[GOAL]
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ π = 0 + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re
[PROOFSTEP]
simp [hr]
[GOAL]
case inr.inr
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re
[PROOFSTEP]
simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq,
Real.pi_ne_zero]
[GOAL]
x : ℂ
hx : x ≠ 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π
[PROOFSTEP]
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
[GOAL]
case inl
x : ℂ
hx : x ≠ 0
hi : x.im < 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π
[PROOFSTEP]
rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
[GOAL]
case inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π
[PROOFSTEP]
rw [(ext rfl hi : x = x.re)]
[GOAL]
case inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π
[PROOFSTEP]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
[GOAL]
case inr.inl.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : x.re < 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π
[PROOFSTEP]
rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ←
two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
[GOAL]
case inr.inl.inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : x.re = 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π
[PROOFSTEP]
exact False.elim (hx (ext hr hi))
[GOAL]
case inr.inl.inr.inr
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : 0 < x.re
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π
[PROOFSTEP]
rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add]
[GOAL]
case inr.inr
x : ℂ
hx : x ≠ 0
hi : 0 < x.im
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π
[PROOFSTEP]
rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ
[PROOFSTEP]
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π :=
by
convert toIocMod_mem_Ioc _ _ θ
ring
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
⊢ toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π
[PROOFSTEP]
convert toIocMod_mem_Ioc _ _ θ
[GOAL]
case h.e'_5.h.e'_4
r : ℝ
hr : 0 < r
θ : ℝ
⊢ π = -π + 2 * π
[PROOFSTEP]
ring
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ
[PROOFSTEP]
convert arg_mul_cos_add_sin_mul_I hr hi using 3
[GOAL]
case h.e'_2.h.e'_1.h.e'_6
r : ℝ
hr : 0 < r
θ : ℝ
hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π
⊢ cos ↑θ + sin ↑θ * I = cos ↑(toIocMod two_pi_pos (-π) θ) + sin ↑(toIocMod two_pi_pos (-π) θ) * I
[PROOFSTEP]
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
[GOAL]
θ : ℝ
⊢ arg (cos ↑θ + sin ↑θ * I) = toIocMod two_pi_pos (-π) θ
[PROOFSTEP]
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋
[PROOFSTEP]
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul]
[GOAL]
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ↑(- -⌊(-π + 2 * π - θ) / (2 * π)⌋) * (2 * π) = 2 * π * ↑⌊(π - θ) / (2 * π)⌋
[PROOFSTEP]
ring_nf
[GOAL]
θ : ℝ
⊢ arg (cos ↑θ + sin ↑θ * I) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋
[PROOFSTEP]
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
[GOAL]
r : ℝ
hr : 0 < r
θ : Angle
⊢ ↑(arg (↑r * (↑(Angle.cos θ) + ↑(Angle.sin θ) * I))) = θ
[PROOFSTEP]
induction' θ using Real.Angle.induction_on with θ
[GOAL]
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ↑(arg (↑r * (↑(Angle.cos ↑θ) + ↑(Angle.sin ↑θ) * I))) = ↑θ
[PROOFSTEP]
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
[GOAL]
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ∃ k, arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑k
[PROOFSTEP]
use⌊(π - θ) / (2 * π)⌋
[GOAL]
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋
[PROOFSTEP]
exact_mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
[GOAL]
θ : Angle
⊢ ↑(arg (↑(Angle.cos θ) + ↑(Angle.sin θ) * I)) = θ
[PROOFSTEP]
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
[GOAL]
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ ↑(arg (x * y)) = ↑(arg x) + ↑(arg y)
[PROOFSTEP]
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3
[GOAL]
case h.e'_2.h.e'_1.h.e'_1
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ x * y = ↑(↑abs x * ↑abs y) * (↑(Angle.cos (↑(arg x) + ↑(arg y))) + ↑(Angle.sin (↑(arg x) + ↑(arg y))) * I)
[PROOFSTEP]
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I,
ofReal_add, add_mul, exp_add, ofReal_mul]
[GOAL]
case h.e'_2.h.e'_1.h.e'_1
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ x * y = ↑(↑abs x) * ↑(↑abs y) * (exp (↑(arg x) * I) * exp (↑(arg y) * I))
[PROOFSTEP]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc,
abs_mul_exp_arg_mul_I]
[GOAL]
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ ↑(arg (x / y)) = ↑(arg x) - ↑(arg y)
[PROOFSTEP]
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
[GOAL]
z : ℂ
⊢ Angle.toReal ↑(arg z) = arg z
[PROOFSTEP]
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
[GOAL]
z : ℂ
⊢ arg z ∈ Set.Ioc (-π) π
[PROOFSTEP]
exact arg_mem_Ioc _
[GOAL]
z : ℂ
θ : Angle
⊢ ↑(arg z) = θ ↔ arg z = Angle.toReal θ
[PROOFSTEP]
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
[GOAL]
x y : ℂ
⊢ ↑(arg x) = ↑(arg y) ↔ arg x = arg y
[PROOFSTEP]
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
[GOAL]
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) + π
[PROOFSTEP]
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
[GOAL]
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) + π
case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im
[PROOFSTEP]
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
[GOAL]
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im
[PROOFSTEP]
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
[GOAL]
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ IsOpen fun y => y.re < 0 ∧ 0 < y.im
[PROOFSTEP]
exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
[GOAL]
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) - π
[PROOFSTEP]
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
[GOAL]
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) - π
case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0
[PROOFSTEP]
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
[GOAL]
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0
[PROOFSTEP]
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
[GOAL]
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ IsOpen fun y => y.re < 0 ∧ y.im < 0
[PROOFSTEP]
exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
[GOAL]
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt arg x
[PROOFSTEP]
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
[GOAL]
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ↑abs x ≠ 0
[PROOFSTEP]
rw [abs.ne_zero_iff]
[GOAL]
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ x ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
z : ℂ
h : 0 < 0.re ∨ 0.im ≠ 0
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h₀ : ↑abs x ≠ 0
⊢ ContinuousAt arg x
[PROOFSTEP]
rw [← lt_or_lt_iff_ne] at h
[GOAL]
x z : ℂ
h✝ : 0 < x.re ∨ x.im ≠ 0
h : 0 < x.re ∨ x.im < 0 ∨ 0 < x.im
h₀ : ↑abs x ≠ 0
⊢ ContinuousAt arg x
[PROOFSTEP]
rcases h with (hx_re | hx_im | hx_im)
[GOAL]
case inl
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h₀ : ↑abs x ≠ 0
hx_re : 0 < x.re
⊢ ContinuousAt arg x
case inr.inl
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h₀ : ↑abs x ≠ 0
hx_im : x.im < 0
⊢ ContinuousAt arg x
case inr.inr x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 h₀ : ↑abs x ≠ 0 hx_im : 0 < x.im ⊢ ContinuousAt arg x
[PROOFSTEP]
exacts
[(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
[PROOFSTEP]
suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{z : ℂ | z.im < 0}] z) (𝓝 (-π))
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
[PROOFSTEP]
refine' H.congr' _
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
⊢ (fun x => arcsin ((-x).im / ↑abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg
[PROOFSTEP]
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 :=
continuous_re.tendsto z
(gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
⊢ (fun x => arcsin ((-x).im / ↑abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | z.im < 0}), mem_nhdsWithin_of_mem_nhds this] with _ him hre
[GOAL]
case h
x z✝ z : ℂ
hre✝ : z.re < 0
him✝ : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
a✝ : ℂ
him : a✝.im < 0
hre : a✝.re < 0
⊢ arcsin ((-a✝).im / ↑abs a✝) - π = arg a✝
[PROOFSTEP]
rw [arg, if_neg hre.not_le, if_neg him.not_le]
[GOAL]
case H
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
[PROOFSTEP]
convert
(Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
continuous_abs.continuousWithinAt (s := {z : ℂ | z.im < 0}) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below).sub_const
π using
1
[GOAL]
case h.e'_5
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ 𝓝 (-π) = 𝓝 ((arcsin ∘ (im ∘ Neg.neg / ↑abs)) z - π)
[PROOFSTEP]
simp [him]
[GOAL]
case H
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ↑abs z ≠ 0
[PROOFSTEP]
lift z to ℝ using him
[GOAL]
case H.intro
x z✝ : ℂ
z : ℝ
hre : (↑z).re < 0
⊢ ↑abs ↑z ≠ 0
[PROOFSTEP]
simpa using hre.ne
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z
[PROOFSTEP]
have : arg =ᶠ[𝓝[{z : ℂ | 0 ≤ z.im}] z] fun x => Real.arcsin ((-x).im / abs x) + π :=
by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | 0 ≤ z.im}), mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him]
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
[PROOFSTEP]
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | 0 ≤ z.im}), mem_nhdsWithin_of_mem_nhds this] with _ him hre
[GOAL]
case h
x z✝ z : ℂ
hre✝ : z.re < 0
him✝ : z.im = 0
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
a✝ : ℂ
him : 0 ≤ a✝.im
hre : a✝.re < 0
⊢ arg a✝ = arcsin ((-a✝).im / ↑abs a✝) + π
[PROOFSTEP]
rw [arg, if_neg hre.not_le, if_pos him]
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z
[PROOFSTEP]
refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _
[GOAL]
case refine'_1
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
⊢ ContinuousWithinAt (fun x => arcsin ((-x).im / ↑abs x) + π) {z | 0 ≤ z.im} z
[PROOFSTEP]
refine'
(Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
continuous_abs.continuousWithinAt _)).add
tendsto_const_nhds
[GOAL]
case refine'_1
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
⊢ ↑abs z ≠ 0
[PROOFSTEP]
lift z to ℝ using him
[GOAL]
case refine'_1.intro
x z✝ : ℂ
z : ℝ
hre : (↑z).re < 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] ↑z] fun x => arcsin ((-x).im / ↑abs x) + π
⊢ ↑abs ↑z ≠ 0
[PROOFSTEP]
simpa using hre.ne
[GOAL]
case refine'_2
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π
⊢ arg z = arcsin ((-z).im / ↑abs z) + π
[PROOFSTEP]
rw [arg, if_neg hre.not_le, if_pos him.ge]
[GOAL]
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto arg (𝓝[{z | 0 ≤ z.im}] z) (𝓝 π)
[PROOFSTEP]
simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto
[GOAL]
x z : ℂ
h : x ≠ 0
⊢ ContinuousAt (Angle.coe ∘ arg) x
[PROOFSTEP]
by_cases hs : 0 < x.re ∨ x.im ≠ 0
[GOAL]
case pos
x z : ℂ
h : x ≠ 0
hs : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt (Angle.coe ∘ arg) x
[PROOFSTEP]
exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs)
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ContinuousAt (Angle.coe ∘ arg) x
[PROOFSTEP]
rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg),
(Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc]
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ContinuousAt (((Angle.coe ∘ arg) ∘ Neg.neg) ∘ Neg.neg) x
[PROOFSTEP]
refine' ContinuousAt.comp _ continuous_neg.continuousAt
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x)
[PROOFSTEP]
suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by
rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
[GOAL]
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
this : ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x)
⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x)
[PROOFSTEP]
rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x)
[PROOFSTEP]
have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π :=
by
rw [Function.update_eq_iff]
exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
[GOAL]
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
[PROOFSTEP]
rw [Function.update_eq_iff]
[GOAL]
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ↑π = ↑(arg 0) + ↑π ∧ ∀ (x : ℂ), x ≠ 0 → ((Angle.coe ∘ arg) ∘ Neg.neg) x = ↑(arg x) + ↑π
[PROOFSTEP]
exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
[GOAL]
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
⊢ ↑π = ↑(arg 0) + ↑π
[PROOFSTEP]
simp
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x)
[PROOFSTEP]
rw [ha]
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
hs : ¬(0 < x.re ∨ x.im ≠ 0)
ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x)
[PROOFSTEP]
push_neg at hs
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
hs : x.re ≤ 0 ∧ x.im = 0
⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x)
[PROOFSTEP]
refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
hs : x.re ≤ 0 ∧ x.im = 0
⊢ 0 < (-x).re
[PROOFSTEP]
rw [neg_re, neg_pos]
[GOAL]
case neg
x z : ℂ
h : x ≠ 0
ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
hs : x.re ≤ 0 ∧ x.im = 0
⊢ x.re < 0
[PROOFSTEP]
exact hs.1.lt_of_ne fun h0 => h (ext_iff.2 ⟨h0, hs.2⟩)
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Arg", "llama_tokens": 31299} |
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
r : 𝕜
hr₀ : r ≠ 0
hr : ‖r‖ < 1
hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s
⊢ y ∈ tangentConeAt 𝕜 s x
[PROOFSTEP]
refine ⟨fun n ↦ (r ^ n)⁻¹, fun n ↦ r ^ n • y, hs, ?_, ?_⟩
[GOAL]
case refine_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
r : 𝕜
hr₀ : r ≠ 0
hr : ‖r‖ < 1
hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s
⊢ Tendsto (fun n => ‖(fun n => (r ^ n)⁻¹) n‖) atTop atTop
[PROOFSTEP]
simp only [norm_inv, norm_pow, ← inv_pow]
[GOAL]
case refine_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
r : 𝕜
hr₀ : r ≠ 0
hr : ‖r‖ < 1
hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s
⊢ Tendsto (fun n => ‖r‖⁻¹ ^ n) atTop atTop
[PROOFSTEP]
exact tendsto_pow_atTop_atTop_of_one_lt <| one_lt_inv (norm_pos_iff.2 hr₀) hr
[GOAL]
case refine_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
r : 𝕜
hr₀ : r ≠ 0
hr : ‖r‖ < 1
hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s
⊢ Tendsto (fun n => (fun n => (r ^ n)⁻¹) n • (fun n => r ^ n • y) n) atTop (𝓝 y)
[PROOFSTEP]
simp only [inv_smul_smul₀ (pow_ne_zero _ hr₀), tendsto_const_nhds]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
h : s ⊆ t
⊢ tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 t x
[PROOFSTEP]
rintro y ⟨c, d, ds, ctop, clim⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : s ⊆ t
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ y ∈ tangentConeAt 𝕜 t x
[PROOFSTEP]
exact ⟨c, d, mem_of_superset ds fun n hn => h hn, ctop, clim⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
have A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) := tendsto_inv_atTop_zero.comp hc
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
have B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) := (continuous_norm.tendsto _).comp hd
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
have C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 (0 * ‖y‖)) := A.mul B
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 (0 * ‖y‖))
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
rw [zero_mul] at C
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
have : ∀ᶠ n in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ :=
by
refine (eventually_ne_of_tendsto_norm_atTop hc 0).mono fun n hn => ?_
rw [norm_smul, ← mul_assoc, inv_mul_cancel, one_mul]
rwa [Ne.def, norm_eq_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
⊢ ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖
[PROOFSTEP]
refine (eventually_ne_of_tendsto_norm_atTop hc 0).mono fun n hn => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
n : α
hn : c n ≠ 0
⊢ ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖
[PROOFSTEP]
rw [norm_smul, ← mul_assoc, inv_mul_cancel, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
n : α
hn : c n ≠ 0
⊢ ‖c n‖ ≠ 0
[PROOFSTEP]
rwa [Ne.def, norm_eq_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
have D : Tendsto (fun n => ‖d n‖) l (𝓝 0) := Tendsto.congr' this C
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖
D : Tendsto (fun n => ‖d n‖) l (𝓝 0)
⊢ Tendsto d l (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
α : Type u_5
l : Filter α
c : α → 𝕜
d : α → E
hc : Tendsto (fun n => ‖c n‖) l atTop
hd : Tendsto (fun n => c n • d n) l (𝓝 y)
A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0)
B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖)
C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0)
this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖
D : Tendsto (fun n => ‖d n‖) l (𝓝 0)
⊢ Tendsto (fun e => ‖d e‖) l (𝓝 0)
[PROOFSTEP]
exact D
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
⊢ tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 t x
[PROOFSTEP]
rintro y ⟨c, d, ds, ctop, clim⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ y ∈ tangentConeAt 𝕜 t x
[PROOFSTEP]
refine' ⟨c, d, _, ctop, clim⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ ∀ᶠ (n : ℕ) in atTop, x + d n ∈ t
[PROOFSTEP]
suffices : Tendsto (fun n => x + d n) atTop (𝓝[t] x)
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
this : Tendsto (fun n => x + d n) atTop (𝓝[t] x)
⊢ ∀ᶠ (n : ℕ) in atTop, x + d n ∈ t
case this
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ Tendsto (fun n => x + d n) atTop (𝓝[t] x)
[PROOFSTEP]
exact tendsto_principal.1 (tendsto_inf.1 this).2
[GOAL]
case this
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ Tendsto (fun n => x + d n) atTop (𝓝[t] x)
[PROOFSTEP]
refine' (tendsto_inf.2 ⟨_, tendsto_principal.2 ds⟩).mono_right h
[GOAL]
case this
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t : Set E
h : 𝓝[s] x ≤ 𝓝[t] x
y : E
c : ℕ → 𝕜
d : ℕ → E
ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
ctop : Tendsto (fun n => ‖c n‖) atTop atTop
clim : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ Tendsto (fun a => x + d a) atTop (𝓝 x)
[PROOFSTEP]
simpa only [add_zero] using tendsto_const_nhds.add (tangentConeAt.lim_zero atTop ctop clim)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
⊢ ↑(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
rintro _ ⟨v, ⟨c, d, hd, hc, hy⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
have : ∀ n, ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < ((1 : ℝ) / 2) ^ n :=
by
intro n
rcases mem_closure_iff_nhds.1 ht _ (eventually_nhds_norm_smul_sub_lt (c n) y (pow_pos one_half_pos n)) with
⟨z, hz, hzt⟩
exact ⟨z - y, by simpa using hzt, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
⊢ ∀ (n : ℕ), ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
intro n
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
n : ℕ
⊢ ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
rcases mem_closure_iff_nhds.1 ht _ (eventually_nhds_norm_smul_sub_lt (c n) y (pow_pos one_half_pos n)) with ⟨z, hz, hzt⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
n : ℕ
z : F
hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x}
hzt : z ∈ t
⊢ ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
exact ⟨z - y, by simpa using hzt, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
n : ℕ
z : F
hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x}
hzt : z ∈ t
⊢ y + (z - y) ∈ t
[PROOFSTEP]
simpa using hzt
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
n : ℕ
z : F
hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x}
hzt : z ∈ t
⊢ ‖c n • (z - y)‖ < (1 / 2) ^ n
[PROOFSTEP]
simpa using hz
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
this : ∀ (n : ℕ), ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
choose d' hd' using this
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
refine' ⟨c, fun n => (d n, d' n), _, hc, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (fun n => (d n, d' n)) n ∈ s ×ˢ t
case intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => c n • (fun n => (d n, d' n)) n) atTop (𝓝 (↑(LinearMap.inl 𝕜 E F) v))
[PROOFSTEP]
show ∀ᶠ n in atTop, (x, y) + (d n, d' n) ∈ s ×ˢ t
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (d n, d' n) ∈ s ×ˢ t
[PROOFSTEP]
filter_upwards [hd] with n hn
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
n : ℕ
hn : x + d n ∈ s
⊢ (x, y) + (d n, d' n) ∈ s ×ˢ t
[PROOFSTEP]
simp [hn, (hd' n).1]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => c n • (fun n => (d n, d' n)) n) atTop (𝓝 (↑(LinearMap.inl 𝕜 E F) v))
[PROOFSTEP]
apply Tendsto.prod_mk_nhds hy _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun c_1 => c c_1 • ((fun n => (d n, d' n)) c_1).snd) atTop (𝓝 (↑0 v))
[PROOFSTEP]
refine' squeeze_zero_norm (fun n => (hd' n).2.le) _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
ht : y ∈ closure t
v : E
c : ℕ → 𝕜
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 v)
d' : ℕ → F
hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
⊢ ↑(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y ⊆ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
rintro _ ⟨w, ⟨c, d, hd, hc, hy⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
have : ∀ n, ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < ((1 : ℝ) / 2) ^ n :=
by
intro n
rcases mem_closure_iff_nhds.1 hs _ (eventually_nhds_norm_smul_sub_lt (c n) x (pow_pos one_half_pos n)) with
⟨z, hz, hzs⟩
exact ⟨z - x, by simpa using hzs, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
⊢ ∀ (n : ℕ), ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
intro n
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
⊢ ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
rcases mem_closure_iff_nhds.1 hs _ (eventually_nhds_norm_smul_sub_lt (c n) x (pow_pos one_half_pos n)) with ⟨z, hz, hzs⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
z : E
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s
⊢ ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
exact ⟨z - x, by simpa using hzs, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
z : E
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s
⊢ x + (z - x) ∈ s
[PROOFSTEP]
simpa using hzs
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
z : E
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s
⊢ ‖c n • (z - x)‖ < (1 / 2) ^ n
[PROOFSTEP]
simpa using hz
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
this : ∀ (n : ℕ), ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
choose d' hd' using this
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
refine' ⟨c, fun n => (d' n, d n), _, hc, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (fun n => (d' n, d n)) n ∈ s ×ˢ t
case intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => c n • (fun n => (d' n, d n)) n) atTop (𝓝 (↑(LinearMap.inr 𝕜 E F) w))
[PROOFSTEP]
show ∀ᶠ n in atTop, (x, y) + (d' n, d n) ∈ s ×ˢ t
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (d' n, d n) ∈ s ×ˢ t
[PROOFSTEP]
filter_upwards [hd] with n hn
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
n : ℕ
hn : y + d n ∈ t
⊢ (x, y) + (d' n, d n) ∈ s ×ˢ t
[PROOFSTEP]
simp [hn, (hd' n).1]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => c n • (fun n => (d' n, d n)) n) atTop (𝓝 (↑(LinearMap.inr 𝕜 E F) w))
[PROOFSTEP]
apply Tendsto.prod_mk_nhds _ hy
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun c_1 => c c_1 • ((fun n => (d' n, d n)) c_1).fst) atTop (𝓝 (↑0 w))
[PROOFSTEP]
refine' squeeze_zero_norm (fun n => (hd' n).2.le) _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : x ∈ closure s
w : F
c : ℕ → 𝕜
d : ℕ → F
hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → E
hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n
⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
⊢ MapsTo (↑(LinearMap.single i)) (tangentConeAt 𝕜 (s i) (x i)) (tangentConeAt 𝕜 (Set.pi univ s) x)
[PROOFSTEP]
rintro w ⟨c, d, hd, hc, hy⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x
[PROOFSTEP]
have : ∀ (n) (j) (_ : j ≠ i), ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2 : ℝ) ^ n :=
by
intro n j hj
rcases mem_closure_iff_nhds.1 (hi j hj) _ (eventually_nhds_norm_smul_sub_lt (c n) (x j) (pow_pos one_half_pos n)) with
⟨z, hz, hzs⟩
exact ⟨z - x j, by simpa using hzs, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
⊢ ∀ (n : ℕ) (j : ι), j ≠ i → ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
intro n j hj
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
j : ι
hj : j ≠ i
⊢ ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
rcases mem_closure_iff_nhds.1 (hi j hj) _ (eventually_nhds_norm_smul_sub_lt (c n) (x j) (pow_pos one_half_pos n)) with
⟨z, hz, hzs⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
j : ι
hj : j ≠ i
z : E j
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s j
⊢ ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n
[PROOFSTEP]
exact ⟨z - x j, by simpa using hzs, by simpa using hz⟩
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
j : ι
hj : j ≠ i
z : E j
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s j
⊢ x j + (z - x j) ∈ s j
[PROOFSTEP]
simpa using hzs
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
n : ℕ
j : ι
hj : j ≠ i
z : E j
hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1}
hzs : z ∈ s j
⊢ ‖c n • (z - x j)‖ < (1 / 2) ^ n
[PROOFSTEP]
simpa using hz
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
this : ∀ (n : ℕ) (j : ι), j ≠ i → ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x
[PROOFSTEP]
choose! d' hd's hcd' using this
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x
[PROOFSTEP]
refine' ⟨c, fun n => Function.update (d' n) i (d n), hd.mono fun n hn j _ => _, hc, tendsto_pi_nhds.2 fun j => _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝¹ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
n : ℕ
hn : x i + d n ∈ s i
j : ι
x✝ : j ∈ univ
⊢ (x + (fun n => Function.update (d' n) i (d n)) n) j ∈ s j
[PROOFSTEP]
rcases em (j = i) with (rfl | hj)
[GOAL]
case intro.intro.intro.intro.refine'_1.inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝¹ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
c : ℕ → 𝕜
hc : Tendsto (fun n => ‖c n‖) atTop atTop
d' : ℕ → (j : ι) → E j
n : ℕ
j : ι
x✝ : j ∈ univ
hi : ∀ (j_1 : ι), j_1 ≠ j → x j_1 ∈ closure (s j_1)
w : E j
d : ℕ → E j
hd : ∀ᶠ (n : ℕ) in atTop, x j + d n ∈ s j
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
hd's : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → x j_1 + d' n j_1 ∈ s j_1
hcd' : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → ‖c n • d' n j_1‖ < (1 / 2) ^ n
hn : x j + d n ∈ s j
⊢ (x + (fun n => Function.update (d' n) j (d n)) n) j ∈ s j
[PROOFSTEP]
simp [*]
[GOAL]
case intro.intro.intro.intro.refine'_1.inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝¹ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
n : ℕ
hn : x i + d n ∈ s i
j : ι
x✝ : j ∈ univ
hj : ¬j = i
⊢ (x + (fun n => Function.update (d' n) i (d n)) n) j ∈ s j
[PROOFSTEP]
simp [*]
[GOAL]
case intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
j : ι
⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j))
[PROOFSTEP]
rcases em (j = i) with (rfl | hj)
[GOAL]
case intro.intro.intro.intro.refine'_2.inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
c : ℕ → 𝕜
hc : Tendsto (fun n => ‖c n‖) atTop atTop
d' : ℕ → (j : ι) → E j
j : ι
hi : ∀ (j_1 : ι), j_1 ≠ j → x j_1 ∈ closure (s j_1)
w : E j
d : ℕ → E j
hd : ∀ᶠ (n : ℕ) in atTop, x j + d n ∈ s j
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
hd's : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → x j_1 + d' n j_1 ∈ s j_1
hcd' : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → ‖c n • d' n j_1‖ < (1 / 2) ^ n
⊢ Tendsto (fun i => (c i • (fun n => Function.update (d' n) j (d n)) i) j) atTop (𝓝 (↑(LinearMap.single j) w j))
[PROOFSTEP]
simp [hy]
[GOAL]
case intro.intro.intro.intro.refine'_2.inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
j : ι
hj : ¬j = i
⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j))
[PROOFSTEP]
suffices Tendsto (fun n => c n • d' n j) atTop (𝓝 0) by simpa [hj]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
j : ι
hj : ¬j = i
this : Tendsto (fun n => c n • d' n j) atTop (𝓝 0)
⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j))
[PROOFSTEP]
simpa [hj]
[GOAL]
case intro.intro.intro.intro.refine'_2.inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
j : ι
hj : ¬j = i
⊢ Tendsto (fun n => c n • d' n j) atTop (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero_norm (fun n => (hcd' n j hj).le) _
[GOAL]
case intro.intro.intro.intro.refine'_2.inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : DecidableEq ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
i : ι
hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j)
w : E i
c : ℕ → 𝕜
d : ℕ → E i
hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i
hc : Tendsto (fun n => ‖c n‖) atTop atTop
hy : Tendsto (fun n => c n • d n) atTop (𝓝 w)
d' : ℕ → (j : ι) → E j
hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j
hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n
j : ι
hj : ¬j = i
⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
⊢ y - x ∈ tangentConeAt ℝ s x
[PROOFSTEP]
refine mem_tangentConeAt_of_pow_smul one_half_pos.ne' (by norm_num) ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
⊢ ‖1 / 2‖ < 1
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
⊢ ∀ᶠ (n : ℕ) in atTop, x + (1 / 2) ^ n • (y - x) ∈ s
[PROOFSTEP]
refine (eventually_ne_atTop 0).mono fun n hn ↦ (h ?_)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ x + (1 / 2) ^ n • (y - x) ∈ openSegment ℝ x y
[PROOFSTEP]
rw [openSegment_eq_image]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ x + (1 / 2) ^ n • (y - x) ∈ (fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1
[PROOFSTEP]
refine ⟨(1 / 2) ^ n, ⟨?_, ?_⟩, ?_⟩
[GOAL]
case refine_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ 0 < (1 / 2) ^ n
[PROOFSTEP]
exact pow_pos one_half_pos _
[GOAL]
case refine_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ (1 / 2) ^ n < 1
[PROOFSTEP]
exact pow_lt_one one_half_pos.le one_half_lt_one hn
[GOAL]
case refine_3
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ (fun θ => (1 - θ) • x + θ • y) ((1 / 2) ^ n) = x + (1 / 2) ^ n • (y - x)
[PROOFSTEP]
simp only [sub_smul, one_smul, smul_sub]
[GOAL]
case refine_3
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ x - (1 / 2) ^ n • x + (1 / 2) ^ n • y = x + ((1 / 2) ^ n • y - (1 / 2) ^ n • x)
[PROOFSTEP]
abel
[GOAL]
case refine_3
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
x y : G
h : openSegment ℝ x y ⊆ s
n : ℕ
hn : n ≠ 0
⊢ x - (1 / 2) ^ n • x + (1 / 2) ^ n • y = x + ((1 / 2) ^ n • y - (1 / 2) ^ n • x)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
⊢ UniqueDiffWithinAt 𝕜 univ x
[PROOFSTEP]
rw [uniqueDiffWithinAt_iff, tangentCone_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
⊢ Dense ↑(Submodule.span 𝕜 univ) ∧ x ∈ closure univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
h : UniqueDiffWithinAt 𝕜 s x
st : 𝓝[s] x ≤ 𝓝[t] x
⊢ UniqueDiffWithinAt 𝕜 t x
[PROOFSTEP]
simp only [uniqueDiffWithinAt_iff] at *
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
st : 𝓝[s] x ≤ 𝓝[t] x
h : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t x)) ∧ x ∈ closure t
[PROOFSTEP]
rw [mem_closure_iff_nhdsWithin_neBot] at h ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
st : 𝓝[s] x ≤ 𝓝[t] x
h : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ NeBot (𝓝[s] x)
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t x)) ∧ NeBot (𝓝[t] x)
[PROOFSTEP]
exact ⟨h.1.mono <| Submodule.span_mono <| tangentCone_mono_nhds st, h.2.mono st⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
h : s ∈ 𝓝 x
⊢ UniqueDiffWithinAt 𝕜 s x
[PROOFSTEP]
simpa only [univ_inter] using uniqueDiffWithinAt_univ.inter h
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : UniqueDiffWithinAt 𝕜 s x
ht : UniqueDiffWithinAt 𝕜 t y
⊢ UniqueDiffWithinAt 𝕜 (s ×ˢ t) (x, y)
[PROOFSTEP]
rw [uniqueDiffWithinAt_iff] at hs ht ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) ∧ (x, y) ∈ closure (s ×ˢ t)
[PROOFSTEP]
rw [closure_prod_eq]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) ∧ (x, y) ∈ closure s ×ˢ closure t
[PROOFSTEP]
refine' ⟨_, hs.2, ht.2⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)))
[PROOFSTEP]
have : _ ≤ Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)) :=
Submodule.span_mono (union_subset (subset_tangentCone_prod_left ht.2) (subset_tangentCone_prod_right hs.2))
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t
this :
Submodule.span 𝕜 (↑(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x ∪ ↑(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y) ≤
Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)))
[PROOFSTEP]
rw [LinearMap.span_inl_union_inr, SetLike.le_def] at this
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y✝ : E
s t✝ : Set E
t : Set F
y : F
hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s
ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t
this :
∀ ⦃x_1 : E × F⦄,
x_1 ∈ Submodule.prod (Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) (Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) →
x_1 ∈ Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)))
[PROOFSTEP]
exact (hs.1.prod ht.1).mono this
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), UniqueDiffWithinAt 𝕜 (s i) (x i)
⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ s) x
[PROOFSTEP]
classical
simp only [uniqueDiffWithinAt_iff, closure_pi_set] at h ⊢
refine' ⟨(dense_pi univ fun i _ => (h i).1).mono _, fun i _ => (h i).2⟩
norm_cast
simp only [← Submodule.iSup_map_single, iSup_le_iff, LinearMap.map_span, Submodule.span_le, ← mapsTo']
exact fun i => (mapsTo_tangentCone_pi fun j _ => (h j).2).mono Subset.rfl Submodule.subset_span
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), UniqueDiffWithinAt 𝕜 (s i) (x i)
⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ s) x
[PROOFSTEP]
simp only [uniqueDiffWithinAt_iff, closure_pi_set] at h ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i)
⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x)) ∧ x ∈ Set.pi univ fun i => closure (s i)
[PROOFSTEP]
refine' ⟨(dense_pi univ fun i _ => (h i).1).mono _, fun i _ => (h i).2⟩
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i)
⊢ (Set.pi univ fun i => ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i)))) ⊆
↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x))
[PROOFSTEP]
norm_cast
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i)
⊢ (Submodule.pi univ fun i => Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ≤
Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x)
[PROOFSTEP]
simp only [← Submodule.iSup_map_single, iSup_le_iff, LinearMap.map_span, Submodule.span_le, ← mapsTo']
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i)
⊢ ∀ (i : ι),
MapsTo (fun a => ↑(LinearMap.single i) a) (tangentConeAt 𝕜 (s i) (x i))
↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x))
[PROOFSTEP]
exact fun i => (mapsTo_tangentCone_pi fun j _ => (h j).2).mono Subset.rfl Submodule.subset_span
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
⊢ UniqueDiffWithinAt 𝕜 (Set.pi I s) x
[PROOFSTEP]
classical
rw [← Set.univ_pi_piecewise_univ]
refine' UniqueDiffWithinAt.univ_pi ι E _ _ fun i => _
by_cases hi : i ∈ I <;> simp [*, uniqueDiffWithinAt_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
⊢ UniqueDiffWithinAt 𝕜 (Set.pi I s) x
[PROOFSTEP]
rw [← Set.univ_pi_piecewise_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ (piecewise I s fun x => univ)) x
[PROOFSTEP]
refine' UniqueDiffWithinAt.univ_pi ι E _ _ fun i => _
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
i : ι
⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i)
[PROOFSTEP]
by_cases hi : i ∈ I
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
i : ι
hi : i ∈ I
⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i)
[PROOFSTEP]
simp [*, uniqueDiffWithinAt_univ]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝⁸ : NormedAddCommGroup E✝
inst✝⁷ : NormedSpace 𝕜 E✝
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace ℝ G
x✝ y : E✝
s✝ t : Set E✝
ι : Type u_5
inst✝² : Finite ι
E : ι → Type u_6
inst✝¹ : (i : ι) → NormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace 𝕜 (E i)
s : (i : ι) → Set (E i)
x : (i : ι) → E i
I : Set ι
h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i)
i : ι
hi : ¬i ∈ I
⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i)
[PROOFSTEP]
simp [*, uniqueDiffWithinAt_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
hs : Set.Nonempty (interior s)
x : G
hx : x ∈ closure s
⊢ UniqueDiffWithinAt ℝ s x
[PROOFSTEP]
rcases hs with ⟨y, hy⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : y ∈ interior s
⊢ UniqueDiffWithinAt ℝ s x
[PROOFSTEP]
suffices y - x ∈ interior (tangentConeAt ℝ s x)
by
refine' ⟨Dense.of_closure _, hx⟩
simp [(Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior'
⟨y - x, interior_mono Submodule.subset_span this⟩]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : y ∈ interior s
this : y - x ∈ interior (tangentConeAt ℝ s x)
⊢ UniqueDiffWithinAt ℝ s x
[PROOFSTEP]
refine' ⟨Dense.of_closure _, hx⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : y ∈ interior s
this : y - x ∈ interior (tangentConeAt ℝ s x)
⊢ Dense (closure ↑(Submodule.span ℝ (tangentConeAt ℝ s x)))
[PROOFSTEP]
simp [(Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior'
⟨y - x, interior_mono Submodule.subset_span this⟩]
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : y ∈ interior s
⊢ y - x ∈ interior (tangentConeAt ℝ s x)
[PROOFSTEP]
rw [mem_interior_iff_mem_nhds]
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : y ∈ interior s
⊢ tangentConeAt ℝ s x ∈ 𝓝 (y - x)
[PROOFSTEP]
replace hy : interior s ∈ 𝓝 y := IsOpen.mem_nhds isOpen_interior hy
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : interior s ∈ 𝓝 y
⊢ tangentConeAt ℝ s x ∈ 𝓝 (y - x)
[PROOFSTEP]
apply mem_of_superset ((isOpenMap_sub_right x).image_mem_nhds hy)
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : interior s ∈ 𝓝 y
⊢ (fun x_1 => x_1 - x) '' interior s ⊆ tangentConeAt ℝ s x
[PROOFSTEP]
rintro _ ⟨z, zs, rfl⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : interior s ∈ 𝓝 y
z : G
zs : z ∈ interior s
⊢ (fun x_1 => x_1 - x) z ∈ tangentConeAt ℝ s x
[PROOFSTEP]
refine' mem_tangentCone_of_openSegment_subset (Subset.trans _ interior_subset)
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x✝ y✝ : E
s✝ t : Set E
s : Set G
conv : Convex ℝ s
x : G
hx : x ∈ closure s
y : G
hy : interior s ∈ 𝓝 y
z : G
zs : z ∈ interior s
⊢ openSegment ℝ x z ⊆ interior s
[PROOFSTEP]
exact conv.openSegment_closure_interior_subset_interior hx zs
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ Set.Nonempty (interior (Ici a))
[PROOFSTEP]
simp only [interior_Ici, nonempty_Ioi]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ Set.Nonempty (interior (Iic a))
[PROOFSTEP]
simp only [interior_Iic, nonempty_Iio]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a b : ℝ
hab : a < b
⊢ Set.Nonempty (interior (Icc a b))
[PROOFSTEP]
simp only [interior_Icc, nonempty_Ioo, hab]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a b : ℝ
hab : a < b
⊢ Set.Nonempty (interior (Ico a b))
[PROOFSTEP]
simp only [interior_Ico, nonempty_Ioo, hab]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a b : ℝ
hab : ¬a < b
⊢ UniqueDiffOn ℝ (Ico a b)
[PROOFSTEP]
simp only [Ico_eq_empty hab, uniqueDiffOn_empty]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a b : ℝ
hab : a < b
⊢ Set.Nonempty (interior (Ioc a b))
[PROOFSTEP]
simp only [interior_Ioc, nonempty_Ioo, hab]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a b : ℝ
hab : ¬a < b
⊢ UniqueDiffOn ℝ (Ioc a b)
[PROOFSTEP]
simp only [Ioc_eq_empty hab, uniqueDiffOn_empty]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ Set.Nonempty (interior (Ioi a))
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ a ∈ closure (Ioi a)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ Set.Nonempty (interior (Iio a))
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
x y : E
s t : Set E
a : ℝ
⊢ a ∈ closure (Iio a)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.Calculus.TangentCone", "llama_tokens": 43127} |
[GOAL]
⊢ 0 < 2 * π
[PROOFSTEP]
norm_num
[GOAL]
⊢ 0 < π
[PROOFSTEP]
exact pi_pos
[GOAL]
x : ℝ
n : ℕ
⊢ ↑(↑n * x) = n • ↑x
[PROOFSTEP]
simpa only [nsmul_eq_mul] using coeHom.map_nsmul x n
[GOAL]
x : ℝ
n : ℤ
⊢ ↑(↑n * x) = n • ↑x
[PROOFSTEP]
simpa only [zsmul_eq_mul] using coeHom.map_zsmul x n
[GOAL]
ψ θ : ℝ
⊢ ↑θ = ↑ψ ↔ ∃ k, θ - ψ = 2 * π * ↑k
[PROOFSTEP]
simp only [QuotientAddGroup.eq, AddSubgroup.zmultiples_eq_closure, AddSubgroup.mem_closure_singleton, zsmul_eq_mul',
(sub_eq_neg_add _ _).symm, eq_comm]
-- Porting note: added `rw`, `simp [Angle.coe, QuotientAddGroup.eq]` doesn't fire otherwise
[GOAL]
ψ θ : ℝ
⊢ ↑ψ = ↑θ ↔ ∃ k, θ - ψ = 2 * π * ↑k
[PROOFSTEP]
rw [Angle.coe, Angle.coe, QuotientAddGroup.eq]
[GOAL]
ψ θ : ℝ
⊢ -ψ + θ ∈ AddSubgroup.zmultiples (2 * π) ↔ ∃ k, θ - ψ = 2 * π * ↑k
[PROOFSTEP]
simp only [AddSubgroup.zmultiples_eq_closure, AddSubgroup.mem_closure_singleton, zsmul_eq_mul',
(sub_eq_neg_add _ _).symm, eq_comm]
[GOAL]
⊢ 2 * π - 0 = 2 * π * ↑1
[PROOFSTEP]
rw [sub_zero, Int.cast_one, mul_one]
[GOAL]
⊢ -↑π = ↑π
[PROOFSTEP]
rw [← coe_neg, angle_eq_iff_two_pi_dvd_sub]
[GOAL]
⊢ ∃ k, -π - π = 2 * π * ↑k
[PROOFSTEP]
use-1
[GOAL]
case h
⊢ -π - π = 2 * π * ↑(-1)
[PROOFSTEP]
simp [two_mul, sub_eq_add_neg]
[GOAL]
θ : ℝ
⊢ 2 • ↑(θ / 2) = ↑θ
[PROOFSTEP]
rw [← coe_nsmul, two_nsmul, add_halves]
[GOAL]
θ : ℝ
⊢ 2 • ↑(θ / 2) = ↑θ
[PROOFSTEP]
rw [← coe_zsmul, two_zsmul, add_halves]
[GOAL]
⊢ 2 • ↑(-π / 2) = ↑π
[PROOFSTEP]
rw [two_nsmul_coe_div_two, coe_neg, neg_coe_pi]
[GOAL]
⊢ 2 • ↑(-π / 2) = ↑π
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, two_nsmul_neg_pi_div_two]
[GOAL]
θ : Angle
⊢ θ - ↑π = θ + ↑π
[PROOFSTEP]
rw [sub_eq_add_neg, neg_coe_pi]
[GOAL]
⊢ 2 • ↑π = 0
[PROOFSTEP]
simp [← coe_nat_mul_eq_nsmul]
[GOAL]
⊢ 2 • ↑π = 0
[PROOFSTEP]
simp [← coe_int_mul_eq_zsmul]
[GOAL]
⊢ ↑π + ↑π = 0
[PROOFSTEP]
rw [← two_nsmul, two_nsmul_coe_pi]
[GOAL]
ψ θ : Angle
⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π
[PROOFSTEP]
have : Int.natAbs 2 = 2 := rfl
[GOAL]
ψ θ : Angle
this : Int.natAbs 2 = 2
⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π
[PROOFSTEP]
rw [zsmul_eq_iff two_ne_zero, this, Fin.exists_fin_two, Fin.val_zero, Fin.val_one, zero_smul, coe_zero, add_zero,
one_smul, Int.cast_two, mul_div_cancel_left (_ : ℝ) two_ne_zero]
[GOAL]
ψ θ : Angle
⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π
[PROOFSTEP]
simp_rw [← coe_nat_zsmul, Nat.cast_ofNat, two_zsmul_eq_iff]
[GOAL]
θ : Angle
⊢ 2 • θ = 0 ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
convert two_nsmul_eq_iff
[GOAL]
case h.e'_1.h.e'_3
θ : Angle
⊢ 0 = 2 • 0
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h.e'_2.h.e'_3
θ : Angle
⊢ ↑π = 0 + ↑π
[PROOFSTEP]
simp
[GOAL]
θ : Angle
⊢ 2 • θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← two_nsmul_eq_zero_iff]
[GOAL]
θ : Angle
⊢ 2 • θ = 0 ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul, two_nsmul_eq_zero_iff]
[GOAL]
θ : Angle
⊢ 2 • θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← two_zsmul_eq_zero_iff]
[GOAL]
θ : Angle
⊢ θ = -θ ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
rw [← add_eq_zero_iff_eq_neg, ← two_nsmul, two_nsmul_eq_zero_iff]
[GOAL]
θ : Angle
⊢ θ ≠ -θ ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← eq_neg_self_iff.not]
[GOAL]
θ : Angle
⊢ -θ = θ ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
rw [eq_comm, eq_neg_self_iff]
[GOAL]
θ : Angle
⊢ -θ ≠ θ ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← neg_eq_self_iff.not]
[GOAL]
θ : Angle
⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
have h : (π : Angle) = (2 : ℕ) • (π / 2 : ℝ) := by rw [two_nsmul, add_halves]
[GOAL]
θ : Angle
⊢ ↑π = ↑(2 • (π / 2))
[PROOFSTEP]
rw [two_nsmul, add_halves]
[GOAL]
θ : Angle
h : ↑π = ↑(2 • (π / 2))
⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
nth_rw 1 [h]
[GOAL]
θ : Angle
h : ↑π = ↑(2 • (π / 2))
⊢ 2 • θ = ↑(2 • (π / 2)) ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
rw [coe_nsmul, two_nsmul_eq_iff]
-- Porting note: `congr` didn't simplify the goal of iff of `Or`s
[GOAL]
θ : Angle
h : ↑π = ↑(2 • (π / 2))
⊢ θ = ↑(π / 2) ∨ θ = ↑(π / 2) + ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
convert Iff.rfl
[GOAL]
case h.e'_2.h.e'_2.h.e'_3
θ : Angle
h : ↑π = ↑(2 • (π / 2))
⊢ ↑(-π / 2) = ↑(π / 2) + ↑π
[PROOFSTEP]
rw [add_comm, ← coe_add, ← sub_eq_zero, ← coe_sub, neg_div, ← neg_sub, sub_neg_eq_add, add_assoc, add_halves, ← two_mul,
coe_neg, coe_two_pi, neg_zero]
[GOAL]
θ : Angle
⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, two_nsmul_eq_pi_iff]
[GOAL]
θ ψ : ℝ
⊢ cos θ = cos ψ ↔ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
constructor
[GOAL]
case mp
θ ψ : ℝ
⊢ cos θ = cos ψ → ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
intro Hcos
[GOAL]
case mp
θ ψ : ℝ
Hcos : cos θ = cos ψ
⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
rw [← sub_eq_zero, cos_sub_cos, mul_eq_zero, mul_eq_zero, neg_eq_zero, eq_false (two_ne_zero' ℝ), false_or_iff,
sin_eq_zero_iff, sin_eq_zero_iff] at Hcos
[GOAL]
case mp
θ ψ : ℝ
Hcos✝ : cos θ = cos ψ
Hcos : (∃ n, ↑n * π = (θ + ψ) / 2) ∨ ∃ n, ↑n * π = (θ - ψ) / 2
⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
rcases Hcos with (⟨n, hn⟩ | ⟨n, hn⟩)
[GOAL]
case mp.inl.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π = (θ + ψ) / 2
⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
right
[GOAL]
case mp.inl.intro.h
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π = (θ + ψ) / 2
⊢ ↑θ = -↑ψ
[PROOFSTEP]
rw [eq_div_iff_mul_eq (two_ne_zero' ℝ), ← sub_eq_iff_eq_add] at hn
[GOAL]
case mp.inl.intro.h
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π * 2 - ψ = θ
⊢ ↑θ = -↑ψ
[PROOFSTEP]
rw [← hn, coe_sub, eq_neg_iff_add_eq_zero, sub_add_cancel, mul_assoc, coe_int_mul_eq_zsmul, mul_comm, coe_two_pi,
zsmul_zero]
[GOAL]
case mp.inr.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π = (θ - ψ) / 2
⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
[PROOFSTEP]
left
[GOAL]
case mp.inr.intro.h
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π = (θ - ψ) / 2
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [eq_div_iff_mul_eq (two_ne_zero' ℝ), eq_sub_iff_add_eq] at hn
[GOAL]
case mp.inr.intro.h
θ ψ : ℝ
Hcos : cos θ = cos ψ
n : ℤ
hn : ↑n * π * 2 + ψ = θ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [← hn, coe_add, mul_assoc, coe_int_mul_eq_zsmul, mul_comm, coe_two_pi, zsmul_zero, zero_add]
[GOAL]
case mpr
θ ψ : ℝ
⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ → cos θ = cos ψ
[PROOFSTEP]
rw [angle_eq_iff_two_pi_dvd_sub, ← coe_neg, angle_eq_iff_two_pi_dvd_sub]
[GOAL]
case mpr
θ ψ : ℝ
⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - -ψ = 2 * π * ↑k) → cos θ = cos ψ
[PROOFSTEP]
rintro (⟨k, H⟩ | ⟨k, H⟩)
[GOAL]
case mpr.inl.intro
θ ψ : ℝ
k : ℤ
H : θ - ψ = 2 * π * ↑k
⊢ cos θ = cos ψ
case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - -ψ = 2 * π * ↑k ⊢ cos θ = cos ψ
[PROOFSTEP]
rw [← sub_eq_zero, cos_sub_cos, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ), mul_comm π _,
sin_int_mul_pi, mul_zero]
[GOAL]
case mpr.inr.intro
θ ψ : ℝ
k : ℤ
H : θ - -ψ = 2 * π * ↑k
⊢ cos θ = cos ψ
[PROOFSTEP]
rw [← sub_eq_zero, cos_sub_cos, ← sub_neg_eq_add, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ),
mul_comm π _, sin_int_mul_pi, mul_zero, zero_mul]
[GOAL]
θ ψ : ℝ
⊢ sin θ = sin ψ ↔ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
constructor
[GOAL]
case mp
θ ψ : ℝ
⊢ sin θ = sin ψ → ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
intro Hsin
[GOAL]
case mp
θ ψ : ℝ
Hsin : sin θ = sin ψ
⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
rw [← cos_pi_div_two_sub, ← cos_pi_div_two_sub] at Hsin
[GOAL]
case mp
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
cases' cos_eq_iff_coe_eq_or_eq_neg.mp Hsin with h h
[GOAL]
case mp.inl
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑(π / 2 - θ) = ↑(π / 2 - ψ)
⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
left
[GOAL]
case mp.inl.h
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑(π / 2 - θ) = ↑(π / 2 - ψ)
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [coe_sub, coe_sub] at h
[GOAL]
case mp.inl.h
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑(π / 2) - ↑θ = ↑(π / 2) - ↑ψ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
exact sub_right_inj.1 h
[GOAL]
case mp.inr
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑(π / 2 - θ) = -↑(π / 2 - ψ)
⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
right
[GOAL]
case mp.inr.h
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑(π / 2 - θ) = -↑(π / 2 - ψ)
⊢ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
rw [coe_sub, coe_sub, eq_neg_iff_add_eq_zero, add_sub, sub_add_eq_add_sub, ← coe_add, add_halves, sub_sub,
sub_eq_zero] at h
[GOAL]
case mp.inr.h
θ ψ : ℝ
Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ)
h : ↑π = ↑θ + ↑ψ
⊢ ↑θ + ↑ψ = ↑π
[PROOFSTEP]
exact h.symm
[GOAL]
case mpr
θ ψ : ℝ
⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π → sin θ = sin ψ
[PROOFSTEP]
rw [angle_eq_iff_two_pi_dvd_sub, ← eq_sub_iff_add_eq, ← coe_sub, angle_eq_iff_two_pi_dvd_sub]
[GOAL]
case mpr
θ ψ : ℝ
⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - (π - ψ) = 2 * π * ↑k) → sin θ = sin ψ
[PROOFSTEP]
rintro (⟨k, H⟩ | ⟨k, H⟩)
[GOAL]
case mpr.inl.intro
θ ψ : ℝ
k : ℤ
H : θ - ψ = 2 * π * ↑k
⊢ sin θ = sin ψ
case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - (π - ψ) = 2 * π * ↑k ⊢ sin θ = sin ψ
[PROOFSTEP]
rw [← sub_eq_zero, sin_sub_sin, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ), mul_comm π _,
sin_int_mul_pi, mul_zero, zero_mul]
[GOAL]
case mpr.inr.intro
θ ψ : ℝ
k : ℤ
H : θ - (π - ψ) = 2 * π * ↑k
⊢ sin θ = sin ψ
[PROOFSTEP]
have H' : θ + ψ = 2 * k * π + π := by
rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ← mul_assoc] at H
[GOAL]
θ ψ : ℝ
k : ℤ
H : θ - (π - ψ) = 2 * π * ↑k
⊢ θ + ψ = 2 * ↑k * π + π
[PROOFSTEP]
rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ← mul_assoc] at H
[GOAL]
case mpr.inr.intro
θ ψ : ℝ
k : ℤ
H : θ - (π - ψ) = 2 * π * ↑k
H' : θ + ψ = 2 * ↑k * π + π
⊢ sin θ = sin ψ
[PROOFSTEP]
rw [← sub_eq_zero, sin_sub_sin, H', add_div, mul_assoc 2 _ π, mul_div_cancel_left _ (two_ne_zero' ℝ),
cos_add_pi_div_two, sin_int_mul_pi, neg_zero, mul_zero]
[GOAL]
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
cases' cos_eq_iff_coe_eq_or_eq_neg.mp Hcos with hc hc
[GOAL]
case inl
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑θ = ↑ψ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
exact hc
[GOAL]
case inr
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑θ = -↑ψ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
cases' sin_eq_iff_coe_eq_or_add_eq_pi.mp Hsin with hs hs
[GOAL]
case inr.inl
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑θ = -↑ψ
hs : ↑θ = ↑ψ
⊢ ↑θ = ↑ψ
[PROOFSTEP]
exact hs
[GOAL]
case inr.inr
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑θ = -↑ψ
hs : ↑θ + ↑ψ = ↑π
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [eq_neg_iff_add_eq_zero, hs] at hc
[GOAL]
case inr.inr
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑π = 0
hs : ↑θ + ↑ψ = ↑π
⊢ ↑θ = ↑ψ
[PROOFSTEP]
obtain ⟨n, hn⟩ : ∃ n, n • _ = _ := QuotientAddGroup.leftRel_apply.mp (Quotient.exact' hc)
[GOAL]
case inr.inr.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑π = 0
hs : ↑θ + ↑ψ = ↑π
n : ℤ
hn : n • (2 * π) = -π + 0
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [← neg_one_mul, add_zero, ← sub_eq_zero, zsmul_eq_mul, ← mul_assoc, ← sub_mul, mul_eq_zero,
eq_false (ne_of_gt pi_pos), or_false_iff, sub_neg_eq_add, ← Int.cast_zero, ← Int.cast_one, ← Int.int_cast_ofNat, ←
Int.cast_mul, ← Int.cast_add, Int.cast_inj] at hn
[GOAL]
case inr.inr.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑π = 0
hs : ↑θ + ↑ψ = ↑π
n : ℤ
hn✝ : n • (2 * π) = -1 * π
hn : n * 2 + 1 = 0
⊢ ↑θ = ↑ψ
[PROOFSTEP]
have : (n * 2 + 1) % (2 : ℤ) = 0 % (2 : ℤ) := congr_arg (· % (2 : ℤ)) hn
[GOAL]
case inr.inr.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑π = 0
hs : ↑θ + ↑ψ = ↑π
n : ℤ
hn✝ : n • (2 * π) = -1 * π
hn : n * 2 + 1 = 0
this : (n * 2 + 1) % 2 = 0 % 2
⊢ ↑θ = ↑ψ
[PROOFSTEP]
rw [add_comm, Int.add_mul_emod_self] at this
[GOAL]
case inr.inr.intro
θ ψ : ℝ
Hcos : cos θ = cos ψ
Hsin : sin θ = sin ψ
hc : ↑π = 0
hs : ↑θ + ↑ψ = ↑π
n : ℤ
hn✝ : n • (2 * π) = -1 * π
hn : n * 2 + 1 = 0
this : 1 % 2 = 0 % 2
⊢ ↑θ = ↑ψ
[PROOFSTEP]
exact absurd this one_ne_zero
[GOAL]
θ : Angle
ψ : ℝ
⊢ cos θ = Real.cos ψ ↔ θ = ↑ψ ∨ θ = -↑ψ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
ψ x✝ : ℝ
⊢ cos ↑x✝ = Real.cos ψ ↔ ↑x✝ = ↑ψ ∨ ↑x✝ = -↑ψ
[PROOFSTEP]
exact cos_eq_iff_coe_eq_or_eq_neg
[GOAL]
θ ψ : Angle
⊢ cos θ = cos ψ ↔ θ = ψ ∨ θ = -ψ
[PROOFSTEP]
induction ψ using Real.Angle.induction_on
[GOAL]
case h
θ : Angle
x✝ : ℝ
⊢ cos θ = cos ↑x✝ ↔ θ = ↑x✝ ∨ θ = -↑x✝
[PROOFSTEP]
exact cos_eq_real_cos_iff_eq_or_eq_neg
[GOAL]
θ : Angle
ψ : ℝ
⊢ sin θ = Real.sin ψ ↔ θ = ↑ψ ∨ θ + ↑ψ = ↑π
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
ψ x✝ : ℝ
⊢ sin ↑x✝ = Real.sin ψ ↔ ↑x✝ = ↑ψ ∨ ↑x✝ + ↑ψ = ↑π
[PROOFSTEP]
exact sin_eq_iff_coe_eq_or_add_eq_pi
[GOAL]
θ ψ : Angle
⊢ sin θ = sin ψ ↔ θ = ψ ∨ θ + ψ = ↑π
[PROOFSTEP]
induction ψ using Real.Angle.induction_on
[GOAL]
case h
θ : Angle
x✝ : ℝ
⊢ sin θ = sin ↑x✝ ↔ θ = ↑x✝ ∨ θ + ↑x✝ = ↑π
[PROOFSTEP]
exact sin_eq_real_sin_iff_eq_or_add_eq_pi
[GOAL]
⊢ sin 0 = 0
[PROOFSTEP]
rw [← coe_zero, sin_coe, Real.sin_zero]
[GOAL]
⊢ sin ↑π = 0
[PROOFSTEP]
rw [sin_coe, Real.sin_pi]
[GOAL]
θ : Angle
⊢ sin θ = 0 ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
nth_rw 1 [← sin_zero]
[GOAL]
θ : Angle
⊢ sin θ = sin 0 ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
rw [sin_eq_iff_eq_or_add_eq_pi]
[GOAL]
θ : Angle
⊢ θ = 0 ∨ θ + 0 = ↑π ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
simp
[GOAL]
θ : Angle
⊢ sin θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← sin_eq_zero_iff]
[GOAL]
θ : Angle
⊢ sin (-θ) = -sin θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ sin (-↑x✝) = -sin ↑x✝
[PROOFSTEP]
exact Real.sin_neg _
[GOAL]
⊢ Function.Antiperiodic sin ↑π
[PROOFSTEP]
intro θ
[GOAL]
θ : Angle
⊢ sin (θ + ↑π) = -sin θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ sin (↑x✝ + ↑π) = -sin ↑x✝
[PROOFSTEP]
exact Real.sin_antiperiodic _
[GOAL]
⊢ cos 0 = 1
[PROOFSTEP]
rw [← coe_zero, cos_coe, Real.cos_zero]
[GOAL]
⊢ cos ↑π = -1
[PROOFSTEP]
rw [cos_coe, Real.cos_pi]
[GOAL]
θ : Angle
⊢ cos (-θ) = cos θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos (-↑x✝) = cos ↑x✝
[PROOFSTEP]
exact Real.cos_neg _
[GOAL]
⊢ Function.Antiperiodic cos ↑π
[PROOFSTEP]
intro θ
[GOAL]
θ : Angle
⊢ cos (θ + ↑π) = -cos θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos (↑x✝ + ↑π) = -cos ↑x✝
[PROOFSTEP]
exact Real.cos_antiperiodic _
[GOAL]
θ : Angle
⊢ cos θ = 0 ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
rw [← cos_pi_div_two, ← cos_coe, cos_eq_iff_eq_or_eq_neg, ← coe_neg, ← neg_div]
[GOAL]
θ₁ θ₂ : Angle
⊢ sin (θ₁ + θ₂) = sin θ₁ * cos θ₂ + cos θ₁ * sin θ₂
[PROOFSTEP]
induction θ₁ using Real.Angle.induction_on
[GOAL]
case h
θ₂ : Angle
x✝ : ℝ
⊢ sin (↑x✝ + θ₂) = sin ↑x✝ * cos θ₂ + cos ↑x✝ * sin θ₂
[PROOFSTEP]
induction θ₂ using Real.Angle.induction_on
[GOAL]
case h.h
x✝¹ x✝ : ℝ
⊢ sin (↑x✝¹ + ↑x✝) = sin ↑x✝¹ * cos ↑x✝ + cos ↑x✝¹ * sin ↑x✝
[PROOFSTEP]
exact Real.sin_add _ _
[GOAL]
θ₁ θ₂ : Angle
⊢ cos (θ₁ + θ₂) = cos θ₁ * cos θ₂ - sin θ₁ * sin θ₂
[PROOFSTEP]
induction θ₂ using Real.Angle.induction_on
[GOAL]
case h
θ₁ : Angle
x✝ : ℝ
⊢ cos (θ₁ + ↑x✝) = cos θ₁ * cos ↑x✝ - sin θ₁ * sin ↑x✝
[PROOFSTEP]
induction θ₁ using Real.Angle.induction_on
[GOAL]
case h.h
x✝¹ x✝ : ℝ
⊢ cos (↑x✝ + ↑x✝¹) = cos ↑x✝ * cos ↑x✝¹ - sin ↑x✝ * sin ↑x✝¹
[PROOFSTEP]
exact Real.cos_add _ _
[GOAL]
θ : Angle
⊢ cos θ ^ 2 + sin θ ^ 2 = 1
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos ↑x✝ ^ 2 + sin ↑x✝ ^ 2 = 1
[PROOFSTEP]
exact Real.cos_sq_add_sin_sq _
[GOAL]
θ : Angle
⊢ sin (θ + ↑(π / 2)) = cos θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ sin (↑x✝ + ↑(π / 2)) = cos ↑x✝
[PROOFSTEP]
exact Real.sin_add_pi_div_two _
[GOAL]
θ : Angle
⊢ sin (θ - ↑(π / 2)) = -cos θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ sin (↑x✝ - ↑(π / 2)) = -cos ↑x✝
[PROOFSTEP]
exact Real.sin_sub_pi_div_two _
[GOAL]
θ : Angle
⊢ sin (↑(π / 2) - θ) = cos θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ sin (↑(π / 2) - ↑x✝) = cos ↑x✝
[PROOFSTEP]
exact Real.sin_pi_div_two_sub _
[GOAL]
θ : Angle
⊢ cos (θ + ↑(π / 2)) = -sin θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos (↑x✝ + ↑(π / 2)) = -sin ↑x✝
[PROOFSTEP]
exact Real.cos_add_pi_div_two _
[GOAL]
θ : Angle
⊢ cos (θ - ↑(π / 2)) = sin θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos (↑x✝ - ↑(π / 2)) = sin ↑x✝
[PROOFSTEP]
exact Real.cos_sub_pi_div_two _
[GOAL]
θ : Angle
⊢ cos (↑(π / 2) - θ) = sin θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ cos (↑(π / 2) - ↑x✝) = sin ↑x✝
[PROOFSTEP]
exact Real.cos_pi_div_two_sub _
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |sin θ| = |sin ψ|
[PROOFSTEP]
rw [two_nsmul_eq_iff] at h
[GOAL]
θ ψ : Angle
h : θ = ψ ∨ θ = ψ + ↑π
⊢ |sin θ| = |sin ψ|
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case inl
θ : Angle
⊢ |sin θ| = |sin θ|
[PROOFSTEP]
rfl
[GOAL]
case inr
ψ : Angle
⊢ |sin (ψ + ↑π)| = |sin ψ|
[PROOFSTEP]
rw [sin_add_pi, abs_neg]
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |sin θ| = |sin ψ|
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul] at h
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |sin θ| = |sin ψ|
[PROOFSTEP]
exact abs_sin_eq_of_two_nsmul_eq h
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |cos θ| = |cos ψ|
[PROOFSTEP]
rw [two_nsmul_eq_iff] at h
[GOAL]
θ ψ : Angle
h : θ = ψ ∨ θ = ψ + ↑π
⊢ |cos θ| = |cos ψ|
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case inl
θ : Angle
⊢ |cos θ| = |cos θ|
[PROOFSTEP]
rfl
[GOAL]
case inr
ψ : Angle
⊢ |cos (ψ + ↑π)| = |cos ψ|
[PROOFSTEP]
rw [cos_add_pi, abs_neg]
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |cos θ| = |cos ψ|
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul] at h
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ |cos θ| = |cos ψ|
[PROOFSTEP]
exact abs_cos_eq_of_two_nsmul_eq h
[GOAL]
θ ψ : ℝ
⊢ ↑(toIcoMod two_pi_pos ψ θ) = ↑θ
[PROOFSTEP]
rw [angle_eq_iff_two_pi_dvd_sub]
[GOAL]
θ ψ : ℝ
⊢ ∃ k, toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑k
[PROOFSTEP]
refine' ⟨-toIcoDiv two_pi_pos ψ θ, _⟩
[GOAL]
θ ψ : ℝ
⊢ toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIcoDiv two_pi_pos ψ θ)
[PROOFSTEP]
rw [toIcoMod_sub_self, zsmul_eq_mul, mul_comm]
[GOAL]
θ ψ : ℝ
⊢ ↑(toIocMod two_pi_pos ψ θ) = ↑θ
[PROOFSTEP]
rw [angle_eq_iff_two_pi_dvd_sub]
[GOAL]
θ ψ : ℝ
⊢ ∃ k, toIocMod two_pi_pos ψ θ - θ = 2 * π * ↑k
[PROOFSTEP]
refine' ⟨-toIocDiv two_pi_pos ψ θ, _⟩
[GOAL]
θ ψ : ℝ
⊢ toIocMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIocDiv two_pi_pos ψ θ)
[PROOFSTEP]
rw [toIocMod_sub_self, zsmul_eq_mul, mul_comm]
[GOAL]
θ : ℝ
⊢ toReal ↑θ = θ ↔ -π < θ ∧ θ ≤ π
[PROOFSTEP]
rw [toReal_coe, toIocMod_eq_self two_pi_pos]
[GOAL]
θ : ℝ
⊢ θ ∈ Set.Ioc (-π) (-π + 2 * π) ↔ -π < θ ∧ θ ≤ π
[PROOFSTEP]
ring_nf
[GOAL]
θ : ℝ
⊢ θ ∈ Set.Ioc (-π) π ↔ -π < θ ∧ θ ≤ π
[PROOFSTEP]
rfl
[GOAL]
θ : ℝ
⊢ toReal ↑θ = θ ↔ θ ∈ Set.Ioc (-π) π
[PROOFSTEP]
rw [toReal_coe_eq_self_iff, ← Set.mem_Ioc]
[GOAL]
⊢ Function.Injective toReal
[PROOFSTEP]
intro θ ψ h
[GOAL]
θ ψ : Angle
h : toReal θ = toReal ψ
⊢ θ = ψ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
ψ : Angle
x✝ : ℝ
h : toReal ↑x✝ = toReal ψ
⊢ ↑x✝ = ψ
[PROOFSTEP]
induction ψ using Real.Angle.induction_on
[GOAL]
case h.h
x✝¹ x✝ : ℝ
h : toReal ↑x✝¹ = toReal ↑x✝
⊢ ↑x✝¹ = ↑x✝
[PROOFSTEP]
simpa [toReal_coe, toIocMod_eq_toIocMod, zsmul_eq_mul, mul_comm _ (2 * π), ← angle_eq_iff_two_pi_dvd_sub, eq_comm] using
h
[GOAL]
θ : Angle
⊢ ↑(toReal θ) = θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ ↑(toReal ↑x✝) = ↑x✝
[PROOFSTEP]
exact coe_toIocMod _ _
[GOAL]
θ : Angle
⊢ -π < toReal θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ -π < toReal ↑x✝
[PROOFSTEP]
exact left_lt_toIocMod _ _ _
[GOAL]
θ : Angle
⊢ toReal θ ≤ π
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ toReal ↑x✝ ≤ π
[PROOFSTEP]
convert toIocMod_le_right two_pi_pos _ _
[GOAL]
case h.e'_4
x✝ : ℝ
⊢ π = -π + 2 * π
[PROOFSTEP]
ring
[GOAL]
θ : Angle
⊢ toIocMod two_pi_pos (-π) (toReal θ) = toReal θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ toIocMod two_pi_pos (-π) (toReal ↑x✝) = toReal ↑x✝
[PROOFSTEP]
rw [toReal_coe]
[GOAL]
case h
x✝ : ℝ
⊢ toIocMod two_pi_pos (-π) (toIocMod two_pi_pos (-π) x✝) = toIocMod two_pi_pos (-π) x✝
[PROOFSTEP]
exact toIocMod_toIocMod _ _ _ _
[GOAL]
⊢ toReal 0 = 0
[PROOFSTEP]
rw [← coe_zero, toReal_coe_eq_self_iff]
[GOAL]
⊢ -π < 0 ∧ 0 ≤ π
[PROOFSTEP]
exact ⟨Left.neg_neg_iff.2 Real.pi_pos, Real.pi_pos.le⟩
[GOAL]
θ : Angle
⊢ toReal θ = 0 ↔ θ = 0
[PROOFSTEP]
nth_rw 1 [← toReal_zero]
[GOAL]
θ : Angle
⊢ toReal θ = toReal 0 ↔ θ = 0
[PROOFSTEP]
exact toReal_inj
[GOAL]
⊢ toReal ↑π = π
[PROOFSTEP]
rw [toReal_coe_eq_self_iff]
[GOAL]
⊢ -π < π ∧ π ≤ π
[PROOFSTEP]
exact ⟨Left.neg_lt_self Real.pi_pos, le_refl _⟩
[GOAL]
θ : Angle
⊢ toReal θ = π ↔ θ = ↑π
[PROOFSTEP]
rw [← toReal_inj, toReal_pi]
[GOAL]
⊢ ↑π ≠ 0
[PROOFSTEP]
rw [← toReal_injective.ne_iff, toReal_pi, toReal_zero]
[GOAL]
⊢ π ≠ 0
[PROOFSTEP]
exact Real.pi_ne_zero
[GOAL]
⊢ -π < π / 2 ∧ π / 2 ≤ π
[PROOFSTEP]
constructor
[GOAL]
case left
⊢ -π < π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case right
⊢ π / 2 ≤ π
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
θ : Angle
⊢ toReal θ = π / 2 ↔ θ = ↑(π / 2)
[PROOFSTEP]
rw [← toReal_inj, toReal_pi_div_two]
[GOAL]
⊢ -π < -π / 2 ∧ -π / 2 ≤ π
[PROOFSTEP]
constructor
[GOAL]
case left
⊢ -π < -π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case right
⊢ -π / 2 ≤ π
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
θ : Angle
⊢ toReal θ = -π / 2 ↔ θ = ↑(-π / 2)
[PROOFSTEP]
rw [← toReal_inj, toReal_neg_pi_div_two]
[GOAL]
⊢ ↑(π / 2) ≠ 0
[PROOFSTEP]
rw [← toReal_injective.ne_iff, toReal_pi_div_two, toReal_zero]
[GOAL]
⊢ π / 2 ≠ 0
[PROOFSTEP]
exact div_ne_zero Real.pi_ne_zero two_ne_zero
[GOAL]
⊢ ↑(-π / 2) ≠ 0
[PROOFSTEP]
rw [← toReal_injective.ne_iff, toReal_neg_pi_div_two, toReal_zero]
[GOAL]
⊢ -π / 2 ≠ 0
[PROOFSTEP]
exact div_ne_zero (neg_ne_zero.2 Real.pi_ne_zero) two_ne_zero
[GOAL]
θ : ℝ
⊢ |toReal (-↑θ)| = θ ↔ 0 ≤ θ ∧ θ ≤ π
[PROOFSTEP]
refine' ⟨fun h => h ▸ ⟨abs_nonneg _, abs_toReal_le_pi _⟩, fun h => _⟩
[GOAL]
θ : ℝ
h : 0 ≤ θ ∧ θ ≤ π
⊢ |toReal (-↑θ)| = θ
[PROOFSTEP]
by_cases hnegpi : θ = π
[GOAL]
case pos
θ : ℝ
h : 0 ≤ θ ∧ θ ≤ π
hnegpi : θ = π
⊢ |toReal (-↑θ)| = θ
[PROOFSTEP]
simp [hnegpi, Real.pi_pos.le]
[GOAL]
case neg
θ : ℝ
h : 0 ≤ θ ∧ θ ≤ π
hnegpi : ¬θ = π
⊢ |toReal (-↑θ)| = θ
[PROOFSTEP]
rw [← coe_neg,
toReal_coe_eq_self_iff.2 ⟨neg_lt_neg (lt_of_le_of_ne h.2 hnegpi), (neg_nonpos.2 h.1).trans Real.pi_pos.le⟩, abs_neg,
abs_eq_self.2 h.1]
[GOAL]
θ : Angle
⊢ |toReal θ| = π / 2 ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2)
[PROOFSTEP]
rw [abs_eq (div_nonneg Real.pi_pos.le two_pos.le), ← neg_div, toReal_eq_pi_div_two_iff, toReal_eq_neg_pi_div_two_iff]
[GOAL]
n : ℕ
h : n ≠ 0
θ : Angle
⊢ toReal (n • θ) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n)
[PROOFSTEP]
nth_rw 1 [← coe_toReal θ]
[GOAL]
n : ℕ
h : n ≠ 0
θ : Angle
⊢ toReal (n • ↑(toReal θ)) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n)
[PROOFSTEP]
have h' : 0 < (n : ℝ) := by exact_mod_cast Nat.pos_of_ne_zero h
[GOAL]
n : ℕ
h : n ≠ 0
θ : Angle
⊢ 0 < ↑n
[PROOFSTEP]
exact_mod_cast Nat.pos_of_ne_zero h
[GOAL]
n : ℕ
h : n ≠ 0
θ : Angle
h' : 0 < ↑n
⊢ toReal (n • ↑(toReal θ)) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n)
[PROOFSTEP]
rw [← coe_nsmul, nsmul_eq_mul, toReal_coe_eq_self_iff, Set.mem_Ioc, div_lt_iff' h', le_div_iff' h']
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / 2) (π / 2)
[PROOFSTEP]
exact_mod_cast nsmul_toReal_eq_mul two_ne_zero
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / 2) (π / 2)
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul]
[GOAL]
θ : ℝ
k : ℤ
⊢ toReal ↑θ = θ - 2 * ↑k * π ↔ θ ∈ Set.Ioc ((2 * ↑k - 1) * π) ((2 * ↑k + 1) * π)
[PROOFSTEP]
rw [← sub_zero (θ : Angle), ← zsmul_zero k, ← coe_two_pi, ← coe_zsmul, ← coe_sub, zsmul_eq_mul, ← mul_assoc,
mul_comm (k : ℝ), toReal_coe_eq_self_iff, Set.mem_Ioc]
[GOAL]
θ : ℝ
k : ℤ
⊢ -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π ↔ (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π
[PROOFSTEP]
exact ⟨fun h => ⟨by linarith, by linarith⟩, fun h => ⟨by linarith, by linarith⟩⟩
[GOAL]
θ : ℝ
k : ℤ
h : -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π
⊢ (2 * ↑k - 1) * π < θ
[PROOFSTEP]
linarith
[GOAL]
θ : ℝ
k : ℤ
h : -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π
⊢ θ ≤ (2 * ↑k + 1) * π
[PROOFSTEP]
linarith
[GOAL]
θ : ℝ
k : ℤ
h : (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π
⊢ -π < θ - 2 * ↑k * π
[PROOFSTEP]
linarith
[GOAL]
θ : ℝ
k : ℤ
h : (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π
⊢ θ - 2 * ↑k * π ≤ π
[PROOFSTEP]
linarith
[GOAL]
θ : ℝ
⊢ toReal ↑θ = θ - 2 * π ↔ θ ∈ Set.Ioc π (3 * π)
[PROOFSTEP]
convert @toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff θ 1
[GOAL]
case h.e'_1.h.e'_3.h.e'_6.h.e'_5
θ : ℝ
⊢ 2 = 2 * ↑1
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_2.h.e'_5.h.e'_3
θ : ℝ
⊢ π = (2 * ↑1 - 1) * π
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_2.h.e'_5.h.e'_4.h.e'_5
θ : ℝ
⊢ 3 = 2 * ↑1 + 1
[PROOFSTEP]
norm_num
[GOAL]
θ : ℝ
⊢ toReal ↑θ = θ + 2 * π ↔ θ ∈ Set.Ioc (-3 * π) (-π)
[PROOFSTEP]
convert @toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff θ (-1) using 2
[GOAL]
case h.e'_1.h.e'_3
θ : ℝ
⊢ θ + 2 * π = θ - 2 * ↑(-1) * π
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_2.h.e'_5
θ : ℝ
⊢ Set.Ioc (-3 * π) (-π) = Set.Ioc ((2 * ↑(-1) - 1) * π) ((2 * ↑(-1) + 1) * π)
[PROOFSTEP]
norm_num
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ
[PROOFSTEP]
nth_rw 1 [← coe_toReal θ]
[GOAL]
θ : Angle
⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ
[PROOFSTEP]
rw [← coe_nsmul, two_nsmul, ← two_mul, toReal_coe_eq_self_sub_two_pi_iff, Set.mem_Ioc]
[GOAL]
θ : Angle
⊢ π < 2 * toReal θ ∧ 2 * toReal θ ≤ 3 * π ↔ π / 2 < toReal θ
[PROOFSTEP]
exact ⟨fun h => by linarith, fun h => ⟨(div_lt_iff' (zero_lt_two' ℝ)).1 h, by linarith [pi_pos, toReal_le_pi θ]⟩⟩
[GOAL]
θ : Angle
h : π < 2 * toReal θ ∧ 2 * toReal θ ≤ 3 * π
⊢ π / 2 < toReal θ
[PROOFSTEP]
linarith
[GOAL]
θ : Angle
h : π / 2 < toReal θ
⊢ 2 * toReal θ ≤ 3 * π
[PROOFSTEP]
linarith [pi_pos, toReal_le_pi θ]
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul_sub_two_pi]
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2
[PROOFSTEP]
nth_rw 1 [← coe_toReal θ]
[GOAL]
θ : Angle
⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2
[PROOFSTEP]
rw [← coe_nsmul, two_nsmul, ← two_mul, toReal_coe_eq_self_add_two_pi_iff, Set.mem_Ioc]
[GOAL]
θ : Angle
⊢ -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π ↔ toReal θ ≤ -π / 2
[PROOFSTEP]
refine' ⟨fun h => by linarith, fun h => ⟨by linarith [pi_pos, neg_pi_lt_toReal θ], (le_div_iff' (zero_lt_two' ℝ)).1 h⟩⟩
[GOAL]
θ : Angle
h : -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π
⊢ toReal θ ≤ -π / 2
[PROOFSTEP]
linarith
[GOAL]
θ : Angle
h : toReal θ ≤ -π / 2
⊢ -3 * π < 2 * toReal θ
[PROOFSTEP]
linarith [pi_pos, neg_pi_lt_toReal θ]
[GOAL]
θ : Angle
⊢ toReal (2 • θ) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul_add_two_pi]
[GOAL]
θ : Angle
⊢ Real.sin (toReal θ) = sin θ
[PROOFSTEP]
conv_rhs => rw [← coe_toReal θ, sin_coe]
[GOAL]
θ : Angle
| sin θ
[PROOFSTEP]
rw [← coe_toReal θ, sin_coe]
[GOAL]
θ : Angle
| sin θ
[PROOFSTEP]
rw [← coe_toReal θ, sin_coe]
[GOAL]
θ : Angle
| sin θ
[PROOFSTEP]
rw [← coe_toReal θ, sin_coe]
[GOAL]
θ : Angle
⊢ Real.cos (toReal θ) = cos θ
[PROOFSTEP]
conv_rhs => rw [← coe_toReal θ, cos_coe]
[GOAL]
θ : Angle
| cos θ
[PROOFSTEP]
rw [← coe_toReal θ, cos_coe]
[GOAL]
θ : Angle
| cos θ
[PROOFSTEP]
rw [← coe_toReal θ, cos_coe]
[GOAL]
θ : Angle
| cos θ
[PROOFSTEP]
rw [← coe_toReal θ, cos_coe]
[GOAL]
θ : Angle
⊢ 0 ≤ cos θ ↔ |toReal θ| ≤ π / 2
[PROOFSTEP]
nth_rw 1 [← coe_toReal θ]
[GOAL]
θ : Angle
⊢ 0 ≤ cos ↑(toReal θ) ↔ |toReal θ| ≤ π / 2
[PROOFSTEP]
rw [abs_le, cos_coe]
[GOAL]
θ : Angle
⊢ 0 ≤ Real.cos (toReal θ) ↔ -(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2
[PROOFSTEP]
refine' ⟨fun h => _, cos_nonneg_of_mem_Icc⟩
[GOAL]
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
⊢ -(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2
[PROOFSTEP]
by_contra hn
[GOAL]
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : ¬(-(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2)
⊢ False
[PROOFSTEP]
rw [not_and_or, not_le, not_le] at hn
[GOAL]
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2) ∨ π / 2 < toReal θ
⊢ False
[PROOFSTEP]
refine' (not_lt.2 h) _
[GOAL]
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2) ∨ π / 2 < toReal θ
⊢ Real.cos (toReal θ) < 0
[PROOFSTEP]
rcases hn with (hn | hn)
[GOAL]
case inl
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2)
⊢ Real.cos (toReal θ) < 0
[PROOFSTEP]
rw [← Real.cos_neg]
[GOAL]
case inl
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2)
⊢ Real.cos (-toReal θ) < 0
[PROOFSTEP]
refine' cos_neg_of_pi_div_two_lt_of_lt (by linarith) _
[GOAL]
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2)
⊢ π / 2 < -toReal θ
[PROOFSTEP]
linarith
[GOAL]
case inl
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : toReal θ < -(π / 2)
⊢ -toReal θ < π + π / 2
[PROOFSTEP]
linarith [neg_pi_lt_toReal θ]
[GOAL]
case inr
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : π / 2 < toReal θ
⊢ Real.cos (toReal θ) < 0
[PROOFSTEP]
refine' cos_neg_of_pi_div_two_lt_of_lt hn _
[GOAL]
case inr
θ : Angle
h : 0 ≤ Real.cos (toReal θ)
hn : π / 2 < toReal θ
⊢ toReal θ < π + π / 2
[PROOFSTEP]
linarith [toReal_le_pi θ]
[GOAL]
θ : Angle
⊢ 0 < cos θ ↔ |toReal θ| < π / 2
[PROOFSTEP]
rw [lt_iff_le_and_ne, lt_iff_le_and_ne, cos_nonneg_iff_abs_toReal_le_pi_div_two, ← and_congr_right]
[GOAL]
θ : Angle
⊢ |toReal θ| ≤ π / 2 → (|toReal θ| ≠ π / 2 ↔ 0 ≠ cos θ)
[PROOFSTEP]
rintro -
[GOAL]
θ : Angle
⊢ |toReal θ| ≠ π / 2 ↔ 0 ≠ cos θ
[PROOFSTEP]
rw [Ne.def, Ne.def, not_iff_not, @eq_comm ℝ 0, abs_toReal_eq_pi_div_two_iff, cos_eq_zero_iff]
[GOAL]
θ : Angle
⊢ cos θ < 0 ↔ π / 2 < |toReal θ|
[PROOFSTEP]
rw [← not_le, ← not_le, not_iff_not, cos_nonneg_iff_abs_toReal_le_pi_div_two]
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ |cos θ| = |sin ψ|
[PROOFSTEP]
rw [← eq_sub_iff_add_eq, ← two_nsmul_coe_div_two, ← nsmul_sub, two_nsmul_eq_iff] at h
[GOAL]
θ ψ : Angle
h : θ = ↑(π / 2) - ψ ∨ θ = ↑(π / 2) - ψ + ↑π
⊢ |cos θ| = |sin ψ|
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case inl
ψ : Angle
⊢ |cos (↑(π / 2) - ψ)| = |sin ψ|
[PROOFSTEP]
simp [cos_pi_div_two_sub]
[GOAL]
case inr
ψ : Angle
⊢ |cos (↑(π / 2) - ψ + ↑π)| = |sin ψ|
[PROOFSTEP]
simp [cos_pi_div_two_sub]
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ |cos θ| = |sin ψ|
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul] at h
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ |cos θ| = |sin ψ|
[PROOFSTEP]
exact abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi h
[GOAL]
x : ℝ
⊢ tan ↑x = Real.tan x
[PROOFSTEP]
rw [tan, sin_coe, cos_coe, Real.tan_eq_sin_div_cos]
[GOAL]
⊢ tan 0 = 0
[PROOFSTEP]
rw [← coe_zero, tan_coe, Real.tan_zero]
[GOAL]
⊢ tan ↑π = 0
[PROOFSTEP]
rw [tan_coe, Real.tan_pi]
[GOAL]
⊢ Function.Periodic tan ↑π
[PROOFSTEP]
intro θ
[GOAL]
θ : Angle
⊢ tan (θ + ↑π) = tan θ
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
x✝ : ℝ
⊢ tan (↑x✝ + ↑π) = tan ↑x✝
[PROOFSTEP]
rw [← coe_add, tan_coe, tan_coe]
[GOAL]
case h
x✝ : ℝ
⊢ Real.tan (x✝ + π) = Real.tan x✝
[PROOFSTEP]
exact Real.tan_periodic _
[GOAL]
θ : Angle
⊢ Real.tan (toReal θ) = tan θ
[PROOFSTEP]
conv_rhs => rw [← coe_toReal θ, tan_coe]
[GOAL]
θ : Angle
| tan θ
[PROOFSTEP]
rw [← coe_toReal θ, tan_coe]
[GOAL]
θ : Angle
| tan θ
[PROOFSTEP]
rw [← coe_toReal θ, tan_coe]
[GOAL]
θ : Angle
| tan θ
[PROOFSTEP]
rw [← coe_toReal θ, tan_coe]
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ tan θ = tan ψ
[PROOFSTEP]
rw [two_nsmul_eq_iff] at h
[GOAL]
θ ψ : Angle
h : θ = ψ ∨ θ = ψ + ↑π
⊢ tan θ = tan ψ
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case inl
θ : Angle
⊢ tan θ = tan θ
[PROOFSTEP]
rfl
[GOAL]
case inr
ψ : Angle
⊢ tan (ψ + ↑π) = tan ψ
[PROOFSTEP]
exact tan_add_pi _
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ tan θ = tan ψ
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul] at h
[GOAL]
θ ψ : Angle
h : 2 • θ = 2 • ψ
⊢ tan θ = tan ψ
[PROOFSTEP]
exact tan_eq_of_two_nsmul_eq h
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ tan ψ = (tan θ)⁻¹
[PROOFSTEP]
induction θ using Real.Angle.induction_on
[GOAL]
case h
ψ : Angle
x✝ : ℝ
h : 2 • ↑x✝ + 2 • ψ = ↑π
⊢ tan ψ = (tan ↑x✝)⁻¹
[PROOFSTEP]
induction ψ using Real.Angle.induction_on
[GOAL]
case h.h
x✝¹ x✝ : ℝ
h : 2 • ↑x✝¹ + 2 • ↑x✝ = ↑π
⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹
[PROOFSTEP]
rw [← smul_add, ← coe_add, ← coe_nsmul, two_nsmul, ← two_mul, angle_eq_iff_two_pi_dvd_sub] at h
[GOAL]
case h.h
x✝¹ x✝ : ℝ
h : ∃ k, 2 * (x✝¹ + x✝) - π = 2 * π * ↑k
⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹
[PROOFSTEP]
rcases h with ⟨k, h⟩
[GOAL]
case h.h.intro
x✝¹ x✝ : ℝ
k : ℤ
h : 2 * (x✝¹ + x✝) - π = 2 * π * ↑k
⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹
[PROOFSTEP]
rw [sub_eq_iff_eq_add, ← mul_inv_cancel_left₀ two_ne_zero π, mul_assoc, ← mul_add, mul_right_inj' (two_ne_zero' ℝ), ←
eq_sub_iff_add_eq', mul_inv_cancel_left₀ two_ne_zero π, inv_mul_eq_div, mul_comm] at h
[GOAL]
case h.h.intro
x✝¹ x✝ : ℝ
k : ℤ
h : x✝ = ↑k * π + π / 2 - x✝¹
⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹
[PROOFSTEP]
rw [tan_coe, tan_coe, ← tan_pi_div_two_sub, h, add_sub_assoc, add_comm]
[GOAL]
case h.h.intro
x✝¹ x✝ : ℝ
k : ℤ
h : x✝ = ↑k * π + π / 2 - x✝¹
⊢ Real.tan (π / 2 - x✝¹ + ↑k * π) = Real.tan (π / 2 - x✝¹)
[PROOFSTEP]
exact Real.tan_periodic.int_mul _ _
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ tan ψ = (tan θ)⁻¹
[PROOFSTEP]
simp_rw [two_zsmul, ← two_nsmul] at h
[GOAL]
θ ψ : Angle
h : 2 • θ + 2 • ψ = ↑π
⊢ tan ψ = (tan θ)⁻¹
[PROOFSTEP]
exact tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi h
[GOAL]
⊢ sign 0 = 0
[PROOFSTEP]
rw [sign, sin_zero, _root_.sign_zero]
[GOAL]
⊢ sign ↑π = 0
[PROOFSTEP]
rw [sign, sin_coe_pi, _root_.sign_zero]
[GOAL]
θ : Angle
⊢ sign (-θ) = -sign θ
[PROOFSTEP]
simp_rw [sign, sin_neg, Left.sign_neg]
[GOAL]
θ : Angle
⊢ sign (θ + ↑π) = -sign θ
[PROOFSTEP]
rw [sign, sign, sin_add_pi, Left.sign_neg]
[GOAL]
θ : Angle
⊢ sign (↑π + θ) = -sign θ
[PROOFSTEP]
rw [add_comm, sign_add_pi]
[GOAL]
θ : Angle
⊢ sign (↑π - θ) = sign θ
[PROOFSTEP]
simp [sign_antiperiodic.sub_eq']
[GOAL]
θ : Angle
⊢ sign θ = 0 ↔ θ = 0 ∨ θ = ↑π
[PROOFSTEP]
rw [sign, _root_.sign_eq_zero_iff, sin_eq_zero_iff]
[GOAL]
θ : Angle
⊢ sign θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π
[PROOFSTEP]
rw [← not_or, ← sign_eq_zero_iff]
[GOAL]
θ : Angle
⊢ toReal θ < 0 ↔ sign θ = -1
[PROOFSTEP]
rw [sign, ← sin_toReal, sign_eq_neg_one_iff]
[GOAL]
θ : Angle
⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0
[PROOFSTEP]
rcases lt_trichotomy θ.toReal 0 with (h | h | h)
[GOAL]
case inl
θ : Angle
h : toReal θ < 0
⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0
[PROOFSTEP]
exact ⟨fun _ => Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_toReal θ), fun _ => h⟩
[GOAL]
case inr.inl
θ : Angle
h : toReal θ = 0
⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0
[PROOFSTEP]
simp [h]
[GOAL]
case inr.inr
θ : Angle
h : 0 < toReal θ
⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0
[PROOFSTEP]
exact
⟨fun hn => False.elim (h.asymm hn), fun hn =>
False.elim (hn.not_le (sin_nonneg_of_nonneg_of_le_pi h.le (toReal_le_pi θ)))⟩
[GOAL]
θ : Angle
⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ
[PROOFSTEP]
rcases lt_trichotomy θ.toReal 0 with (h | h | h)
[GOAL]
case inl
θ : Angle
h : toReal θ < 0
⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ
[PROOFSTEP]
refine' ⟨fun hn => False.elim (h.not_le hn), fun hn => _⟩
[GOAL]
case inl
θ : Angle
h : toReal θ < 0
hn : 0 ≤ sign θ
⊢ 0 ≤ toReal θ
[PROOFSTEP]
rw [toReal_neg_iff_sign_neg.1 h] at hn
[GOAL]
case inl
θ : Angle
h : toReal θ < 0
hn : 0 ≤ -1
⊢ 0 ≤ toReal θ
[PROOFSTEP]
exact False.elim (hn.not_lt (by decide))
[GOAL]
θ : Angle
h : toReal θ < 0
hn : 0 ≤ -1
⊢ -1 < 0
[PROOFSTEP]
decide
[GOAL]
case inr.inl
θ : Angle
h : toReal θ = 0
⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ
[PROOFSTEP]
simp [h, sign, ← sin_toReal]
[GOAL]
case inr.inr
θ : Angle
h : 0 < toReal θ
⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ
[PROOFSTEP]
refine' ⟨fun _ => _, fun _ => h.le⟩
[GOAL]
case inr.inr
θ : Angle
h : 0 < toReal θ
x✝ : 0 ≤ toReal θ
⊢ 0 ≤ sign θ
[PROOFSTEP]
rw [sign, ← sin_toReal, sign_nonneg_iff]
[GOAL]
case inr.inr
θ : Angle
h : 0 < toReal θ
x✝ : 0 ≤ toReal θ
⊢ 0 ≤ Real.sin (toReal θ)
[PROOFSTEP]
exact sin_nonneg_of_nonneg_of_le_pi h.le (toReal_le_pi θ)
[GOAL]
θ : Angle
h : θ ≠ ↑π
⊢ ↑SignType.sign (toReal θ) = sign θ
[PROOFSTEP]
rcases lt_trichotomy θ.toReal 0 with (ht | ht | ht)
[GOAL]
case inl
θ : Angle
h : θ ≠ ↑π
ht : toReal θ < 0
⊢ ↑SignType.sign (toReal θ) = sign θ
[PROOFSTEP]
simp [ht, toReal_neg_iff_sign_neg.1 ht]
[GOAL]
case inr.inl
θ : Angle
h : θ ≠ ↑π
ht : toReal θ = 0
⊢ ↑SignType.sign (toReal θ) = sign θ
[PROOFSTEP]
simp [sign, ht, ← sin_toReal]
[GOAL]
case inr.inr
θ : Angle
h : θ ≠ ↑π
ht : 0 < toReal θ
⊢ ↑SignType.sign (toReal θ) = sign θ
[PROOFSTEP]
rw [sign, ← sin_toReal, sign_pos ht,
sign_pos (sin_pos_of_pos_of_lt_pi ht ((toReal_le_pi θ).lt_of_ne (toReal_eq_pi_iff.not.2 h)))]
[GOAL]
θ : Angle
h : 0 ≤ sign θ
⊢ ↑|toReal θ| = θ
[PROOFSTEP]
rw [abs_eq_self.2 (toReal_nonneg_iff_sign_nonneg.2 h), coe_toReal]
[GOAL]
θ : Angle
h : sign θ ≤ 0
⊢ -↑|toReal θ| = θ
[PROOFSTEP]
rw [SignType.nonpos_iff] at h
[GOAL]
θ : Angle
h : sign θ = -1 ∨ sign θ = 0
⊢ -↑|toReal θ| = θ
[PROOFSTEP]
rcases h with (h | h)
[GOAL]
case inl
θ : Angle
h : sign θ = -1
⊢ -↑|toReal θ| = θ
[PROOFSTEP]
rw [abs_of_neg (toReal_neg_iff_sign_neg.2 h), coe_neg, neg_neg, coe_toReal]
[GOAL]
case inr
θ : Angle
h : sign θ = 0
⊢ -↑|toReal θ| = θ
[PROOFSTEP]
rw [sign_eq_zero_iff] at h
[GOAL]
case inr
θ : Angle
h : θ = 0 ∨ θ = ↑π
⊢ -↑|toReal θ| = θ
[PROOFSTEP]
rcases h with (rfl | rfl)
[GOAL]
case inr.inl
⊢ -↑|toReal 0| = 0
[PROOFSTEP]
simp [abs_of_pos Real.pi_pos]
[GOAL]
case inr.inr
⊢ -↑|toReal ↑π| = ↑π
[PROOFSTEP]
simp [abs_of_pos Real.pi_pos]
[GOAL]
θ ψ : Angle
⊢ θ = ψ ↔ sign θ = sign ψ ∧ |toReal θ| = |toReal ψ|
[PROOFSTEP]
refine' ⟨_, fun h => _⟩
[GOAL]
case refine'_1
θ ψ : Angle
⊢ θ = ψ → sign θ = sign ψ ∧ |toReal θ| = |toReal ψ|
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_1
θ : Angle
⊢ sign θ = sign θ ∧ |toReal θ| = |toReal θ|
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
case refine'_2
θ ψ : Angle
h : sign θ = sign ψ ∧ |toReal θ| = |toReal ψ|
⊢ θ = ψ
[PROOFSTEP]
rcases h with ⟨hs, hr⟩
[GOAL]
case refine'_2.intro
θ ψ : Angle
hs : sign θ = sign ψ
hr : |toReal θ| = |toReal ψ|
⊢ θ = ψ
[PROOFSTEP]
rw [abs_eq_abs] at hr
[GOAL]
case refine'_2.intro
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = toReal ψ ∨ toReal θ = -toReal ψ
⊢ θ = ψ
[PROOFSTEP]
rcases hr with (hr | hr)
[GOAL]
case refine'_2.intro.inl
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = toReal ψ
⊢ θ = ψ
[PROOFSTEP]
exact toReal_injective hr
[GOAL]
case refine'_2.intro.inr
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -toReal ψ
⊢ θ = ψ
[PROOFSTEP]
by_cases h : θ = π
[GOAL]
case pos
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -toReal ψ
h : θ = ↑π
⊢ θ = ψ
[PROOFSTEP]
rw [h, toReal_pi, ← neg_eq_iff_eq_neg] at hr
[GOAL]
case pos
θ ψ : Angle
hs : sign θ = sign ψ
hr : -π = toReal ψ
h : θ = ↑π
⊢ θ = ψ
[PROOFSTEP]
exact False.elim ((neg_pi_lt_toReal ψ).ne hr)
[GOAL]
case neg
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -toReal ψ
h : ¬θ = ↑π
⊢ θ = ψ
[PROOFSTEP]
by_cases h' : ψ = π
[GOAL]
case pos
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -toReal ψ
h : ¬θ = ↑π
h' : ψ = ↑π
⊢ θ = ψ
[PROOFSTEP]
rw [h', toReal_pi] at hr
[GOAL]
case pos
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -π
h : ¬θ = ↑π
h' : ψ = ↑π
⊢ θ = ψ
[PROOFSTEP]
exact False.elim ((neg_pi_lt_toReal θ).ne hr.symm)
[GOAL]
case neg
θ ψ : Angle
hs : sign θ = sign ψ
hr : toReal θ = -toReal ψ
h : ¬θ = ↑π
h' : ¬ψ = ↑π
⊢ θ = ψ
[PROOFSTEP]
rw [← sign_toReal h, ← sign_toReal h', hr, Left.sign_neg, SignType.neg_eq_self_iff, _root_.sign_eq_zero_iff,
toReal_eq_zero_iff] at hs
[GOAL]
case neg
θ ψ : Angle
hs : ψ = 0
hr : toReal θ = -toReal ψ
h : ¬θ = ↑π
h' : ¬ψ = ↑π
⊢ θ = ψ
[PROOFSTEP]
rw [hs, toReal_zero, neg_zero, toReal_eq_zero_iff] at hr
[GOAL]
case neg
θ ψ : Angle
hs : ψ = 0
hr : θ = 0
h : ¬θ = ↑π
h' : ¬ψ = ↑π
⊢ θ = ψ
[PROOFSTEP]
rw [hr, hs]
[GOAL]
θ ψ : Angle
h : sign θ = sign ψ
⊢ θ = ψ ↔ |toReal θ| = |toReal ψ|
[PROOFSTEP]
simpa [h] using @eq_iff_sign_eq_and_abs_toReal_eq θ ψ
[GOAL]
⊢ sign ↑(π / 2) = 1
[PROOFSTEP]
rw [sign, sin_coe, sin_pi_div_two, sign_one]
[GOAL]
⊢ sign ↑(-π / 2) = -1
[PROOFSTEP]
rw [sign, sin_coe, neg_div, Real.sin_neg, sin_pi_div_two, Left.sign_neg, sign_one]
[GOAL]
θ : ℝ
h0 : 0 ≤ θ
hpi : θ ≤ π
⊢ 0 ≤ sign ↑θ
[PROOFSTEP]
rw [sign, sign_nonneg_iff]
[GOAL]
θ : ℝ
h0 : 0 ≤ θ
hpi : θ ≤ π
⊢ 0 ≤ sin ↑θ
[PROOFSTEP]
exact sin_nonneg_of_nonneg_of_le_pi h0 hpi
[GOAL]
θ : ℝ
h0 : 0 ≤ θ
hpi : θ ≤ π
⊢ sign (-↑θ) ≤ 0
[PROOFSTEP]
rw [sign, sign_nonpos_iff, sin_neg, Left.neg_nonpos_iff]
[GOAL]
θ : ℝ
h0 : 0 ≤ θ
hpi : θ ≤ π
⊢ 0 ≤ sin ↑θ
[PROOFSTEP]
exact sin_nonneg_of_nonneg_of_le_pi h0 hpi
[GOAL]
θ : Angle
⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2
[PROOFSTEP]
by_cases hpi : θ = π
[GOAL]
case pos
θ : Angle
hpi : θ = ↑π
⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2
[PROOFSTEP]
simp [hpi]
[GOAL]
case neg
θ : Angle
hpi : ¬θ = ↑π
⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2
[PROOFSTEP]
rw [or_iff_right hpi]
[GOAL]
case neg
θ : Angle
hpi : ¬θ = ↑π
⊢ sign (2 • θ) = sign θ ↔ |toReal θ| < π / 2
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case neg.refine'_1
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
⊢ |toReal θ| < π / 2
[PROOFSTEP]
by_contra hle
[GOAL]
case neg.refine'_1
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hle : ¬|toReal θ| < π / 2
⊢ False
[PROOFSTEP]
rw [not_lt, le_abs, le_neg] at hle
[GOAL]
case neg.refine'_1
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2)
⊢ False
[PROOFSTEP]
have hpi' : θ.toReal ≠ π := by simpa using hpi
[GOAL]
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2)
⊢ toReal θ ≠ π
[PROOFSTEP]
simpa using hpi
[GOAL]
case neg.refine'_1
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2)
hpi' : toReal θ ≠ π
⊢ False
[PROOFSTEP]
rcases hle with (hle | hle)
[GOAL]
case neg.refine'_1.inl
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
⊢ False
[PROOFSTEP]
rcases hle.eq_or_lt with (heq | hlt)
[GOAL]
case neg.refine'_1.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
⊢ False
[PROOFSTEP]
rcases hle.eq_or_lt with (heq | hlt)
[GOAL]
case neg.refine'_1.inl.inl
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
heq : π / 2 = toReal θ
⊢ False
[PROOFSTEP]
rw [← coe_toReal θ, ← heq] at h
[GOAL]
case neg.refine'_1.inl.inl
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • ↑(π / 2)) = sign ↑(π / 2)
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
heq : π / 2 = toReal θ
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
⊢ False
[PROOFSTEP]
rw [← sign_toReal hpi, sign_pos (pi_div_two_pos.trans hlt), ← sign_toReal, two_nsmul_toReal_eq_two_mul_sub_two_pi.2 hlt,
_root_.sign_neg] at h
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : -1 = 1
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (2 * toReal θ - 2 * π) = 1
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
⊢ 2 * toReal θ - 2 * π < 0
[PROOFSTEP]
rw [← mul_sub]
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (2 * toReal θ - 2 * π) = 1
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
⊢ 2 * (toReal θ - π) < 0
[PROOFSTEP]
exact mul_neg_of_pos_of_neg two_pos (sub_neg.2 ((toReal_le_pi _).lt_of_ne hpi'))
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = 1
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
⊢ 2 • θ ≠ ↑π
[PROOFSTEP]
intro he
[GOAL]
case neg.refine'_1.inl.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = 1
hpi' : toReal θ ≠ π
hle : π / 2 ≤ toReal θ
hlt : π / 2 < toReal θ
he : 2 • θ = ↑π
⊢ False
[PROOFSTEP]
simp [he] at h
[GOAL]
case neg.refine'_1.inr.inl
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
heq : toReal θ = -(π / 2)
⊢ False
[PROOFSTEP]
rw [← coe_toReal θ, heq] at h
[GOAL]
case neg.refine'_1.inr.inl
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • ↑(-(π / 2))) = sign ↑(-(π / 2))
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
heq : toReal θ = -(π / 2)
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = sign θ
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
⊢ False
[PROOFSTEP]
rw [← sign_toReal hpi, _root_.sign_neg (hlt.trans (Left.neg_neg_iff.2 pi_div_two_pos)), ← sign_toReal] at h
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (toReal (2 • θ)) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
⊢ False
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
⊢ 2 • θ ≠ ↑π
[PROOFSTEP]
swap
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
⊢ 2 • θ ≠ ↑π
[PROOFSTEP]
intro he
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : sign (2 • θ) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
he : 2 • θ = ↑π
⊢ False
[PROOFSTEP]
simp [he] at h
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (toReal (2 • θ)) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -(π / 2)
⊢ False
[PROOFSTEP]
rw [← neg_div] at hlt
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (toReal (2 • θ)) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -π / 2
⊢ False
[PROOFSTEP]
rw [two_nsmul_toReal_eq_two_mul_add_two_pi.2 hlt.le, sign_pos] at h
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : 1 = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -π / 2
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case neg.refine'_1.inr.inr
θ : Angle
hpi : ¬θ = ↑π
h : ↑SignType.sign (2 * toReal θ + 2 * π) = -1
hpi' : toReal θ ≠ π
hle : toReal θ ≤ -(π / 2)
hlt : toReal θ < -π / 2
⊢ 0 < 2 * toReal θ + 2 * π
[PROOFSTEP]
linarith [neg_pi_lt_toReal θ]
[GOAL]
case neg.refine'_2
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
⊢ sign (2 • θ) = sign θ
[PROOFSTEP]
have hpi' : (2 : ℕ) • θ ≠ π := by
rw [Ne.def, two_nsmul_eq_pi_iff, not_or]
constructor
· rintro rfl
simp [pi_pos, div_pos, abs_of_pos] at h
· rintro rfl
rw [toReal_neg_pi_div_two] at h
simp [pi_pos, div_pos, neg_div, abs_of_pos] at h
[GOAL]
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
⊢ 2 • θ ≠ ↑π
[PROOFSTEP]
rw [Ne.def, two_nsmul_eq_pi_iff, not_or]
[GOAL]
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
⊢ ¬θ = ↑(π / 2) ∧ ¬θ = ↑(-π / 2)
[PROOFSTEP]
constructor
[GOAL]
case left
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
⊢ ¬θ = ↑(π / 2)
[PROOFSTEP]
rintro rfl
[GOAL]
case left
hpi : ¬↑(π / 2) = ↑π
h : |toReal ↑(π / 2)| < π / 2
⊢ False
[PROOFSTEP]
simp [pi_pos, div_pos, abs_of_pos] at h
[GOAL]
case right
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
⊢ ¬θ = ↑(-π / 2)
[PROOFSTEP]
rintro rfl
[GOAL]
case right
hpi : ¬↑(-π / 2) = ↑π
h : |toReal ↑(-π / 2)| < π / 2
⊢ False
[PROOFSTEP]
rw [toReal_neg_pi_div_two] at h
[GOAL]
case right
hpi : ¬↑(-π / 2) = ↑π
h : |-π / 2| < π / 2
⊢ False
[PROOFSTEP]
simp [pi_pos, div_pos, neg_div, abs_of_pos] at h
[GOAL]
case neg.refine'_2
θ : Angle
hpi : ¬θ = ↑π
h : |toReal θ| < π / 2
hpi' : 2 • θ ≠ ↑π
⊢ sign (2 • θ) = sign θ
[PROOFSTEP]
rw [abs_lt, ← neg_div] at h
[GOAL]
case neg.refine'_2
θ : Angle
hpi : ¬θ = ↑π
h : -π / 2 < toReal θ ∧ toReal θ < π / 2
hpi' : 2 • θ ≠ ↑π
⊢ sign (2 • θ) = sign θ
[PROOFSTEP]
rw [← sign_toReal hpi, ← sign_toReal hpi', two_nsmul_toReal_eq_two_mul.2 ⟨h.1, h.2.le⟩, sign_mul,
sign_pos (zero_lt_two' ℝ), one_mul]
[GOAL]
θ : Angle
⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2
[PROOFSTEP]
rw [two_zsmul, ← two_nsmul, sign_two_nsmul_eq_sign_iff]
[GOAL]
α : Type u_1
inst✝ : TopologicalSpace α
f : α → Angle
s : Set α
hf : ContinuousOn f s
hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π
⊢ ContinuousOn (sign ∘ f) s
[PROOFSTEP]
refine' (ContinuousAt.continuousOn fun θ hθ => _).comp hf (Set.mapsTo_image f s)
[GOAL]
α : Type u_1
inst✝ : TopologicalSpace α
f : α → Angle
s : Set α
hf : ContinuousOn f s
hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π
θ : Angle
hθ : θ ∈ f '' s
⊢ ContinuousAt sign θ
[PROOFSTEP]
obtain ⟨z, hz, rfl⟩ := hθ
[GOAL]
case intro.intro
α : Type u_1
inst✝ : TopologicalSpace α
f : α → Angle
s : Set α
hf : ContinuousOn f s
hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π
z : α
hz : z ∈ s
⊢ ContinuousAt sign (f z)
[PROOFSTEP]
exact continuousAt_sign (hs _ hz).1 (hs _ hz).2
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle", "llama_tokens": 28825} |
[GOAL]
x : ℝ
hx : 0 < x
⊢ HasStrictDerivAt log x⁻¹ x
[PROOFSTEP]
have : HasStrictDerivAt log (exp <| log x)⁻¹ x :=
(hasStrictDerivAt_exp <| log x).of_local_left_inverse (continuousAt_log hx.ne') (ne_of_gt <| exp_pos _) <|
Eventually.mono (lt_mem_nhds hx) @exp_log
[GOAL]
x : ℝ
hx : 0 < x
this : HasStrictDerivAt log (exp (log x))⁻¹ x
⊢ HasStrictDerivAt log x⁻¹ x
[PROOFSTEP]
rwa [exp_log hx] at this
[GOAL]
x : ℝ
hx : x ≠ 0
⊢ HasStrictDerivAt log x⁻¹ x
[PROOFSTEP]
cases' hx.lt_or_lt with hx hx
[GOAL]
case inl
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
⊢ HasStrictDerivAt log x⁻¹ x
[PROOFSTEP]
convert (hasStrictDerivAt_log_of_pos (neg_pos.mpr hx)).comp x (hasStrictDerivAt_neg x) using 1
[GOAL]
case h.e'_6
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
⊢ log = log ∘ Neg.neg
[PROOFSTEP]
ext y
[GOAL]
case h.e'_6.h
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
y : ℝ
⊢ log y = (log ∘ Neg.neg) y
[PROOFSTEP]
exact (log_neg_eq_log y).symm
[GOAL]
case h.e'_7
x : ℝ
hx✝ : x ≠ 0
hx : x < 0
⊢ x⁻¹ = (-x)⁻¹ * -1
[PROOFSTEP]
field_simp [hx.ne]
[GOAL]
case inr
x : ℝ
hx✝ : x ≠ 0
hx : 0 < x
⊢ HasStrictDerivAt log x⁻¹ x
[PROOFSTEP]
exact hasStrictDerivAt_log_of_pos hx
[GOAL]
x✝ x : ℝ
hx : x = 0
⊢ deriv log x = x⁻¹
[PROOFSTEP]
rw [deriv_zero_of_not_differentiableAt (differentiableAt_log_iff.not_left.2 hx), hx, inv_zero]
[GOAL]
x : ℝ
n : ℕ∞
⊢ ContDiffOn ℝ n log {0}ᶜ
[PROOFSTEP]
suffices : ContDiffOn ℝ ⊤ log {0}ᶜ
[GOAL]
x : ℝ
n : ℕ∞
this : ContDiffOn ℝ ⊤ log {0}ᶜ
⊢ ContDiffOn ℝ n log {0}ᶜ
case this x : ℝ n : ℕ∞ ⊢ ContDiffOn ℝ ⊤ log {0}ᶜ
[PROOFSTEP]
exact this.of_le le_top
[GOAL]
case this
x : ℝ
n : ℕ∞
⊢ ContDiffOn ℝ ⊤ log {0}ᶜ
[PROOFSTEP]
refine' (contDiffOn_top_iff_deriv_of_open isOpen_compl_singleton).2 _
[GOAL]
case this
x : ℝ
n : ℕ∞
⊢ DifferentiableOn ℝ log {0}ᶜ ∧ ContDiffOn ℝ ⊤ (deriv log) {0}ᶜ
[PROOFSTEP]
simp [differentiableOn_log, contDiffOn_inv]
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hx : f x ≠ 0
⊢ HasDerivWithinAt (fun y => Real.log (f y)) (f' / f x) s x
[PROOFSTEP]
rw [div_eq_inv_mul]
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hx : f x ≠ 0
⊢ HasDerivWithinAt (fun y => Real.log (f y)) ((f x)⁻¹ * f') s x
[PROOFSTEP]
exact (hasDerivAt_log hx).comp_hasDerivWithinAt x hf
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasDerivAt f f' x
hx : f x ≠ 0
⊢ HasDerivAt (fun y => Real.log (f y)) (f' / f x) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' Set.univ x
hx : f x ≠ 0
⊢ HasDerivWithinAt (fun y => Real.log (f y)) (f' / f x) Set.univ x
[PROOFSTEP]
exact hf.log hx
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasStrictDerivAt f f' x
hx : f x ≠ 0
⊢ HasStrictDerivAt (fun y => Real.log (f y)) (f' / f x) x
[PROOFSTEP]
rw [div_eq_inv_mul]
[GOAL]
f : ℝ → ℝ
x f' : ℝ
s : Set ℝ
hf : HasStrictDerivAt f f' x
hx : f x ≠ 0
⊢ HasStrictDerivAt (fun y => Real.log (f y)) ((f x)⁻¹ * f') x
[PROOFSTEP]
exact (hasStrictDerivAt_log hx).comp x hf
[GOAL]
t : ℝ
⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t)
[PROOFSTEP]
have h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[≠] 0) (𝓝 t) := by
simpa [hasDerivAt_iff_tendsto_slope, slope_fun_def] using
(((hasDerivAt_id (0 : ℝ)).const_mul t).const_add 1).log (by simp)
[GOAL]
t : ℝ
⊢ Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t)
[PROOFSTEP]
simpa [hasDerivAt_iff_tendsto_slope, slope_fun_def] using
(((hasDerivAt_id (0 : ℝ)).const_mul t).const_add 1).log (by simp)
[GOAL]
t : ℝ
⊢ 1 + t * id 0 ≠ 0
[PROOFSTEP]
simp
[GOAL]
t : ℝ
h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t)
⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t)
[PROOFSTEP]
have h₂ : Tendsto (fun x : ℝ => x⁻¹) atTop (𝓝[≠] 0) :=
tendsto_inv_atTop_zero'.mono_right (nhdsWithin_mono _ fun x hx => (Set.mem_Ioi.mp hx).ne')
[GOAL]
t : ℝ
h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t)
h₂ : Tendsto (fun x => x⁻¹) atTop (𝓝[{0}ᶜ] 0)
⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t)
[PROOFSTEP]
simpa only [(· ∘ ·), inv_inv] using h₁.comp h₂
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
let F : ℝ → ℝ := fun x => (∑ i in range n, x ^ (i + 1) / (i + 1)) + log (1 - x)
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
let F' : ℝ → ℝ := fun x ↦
-x ^ n /
(1 - x)
-- Porting note: In `mathlib3`, the proof used `deriv`/`DifferentiableAt`. `simp` failed to
-- compute `deriv`, so I changed the proof to use `HasDerivAt` instead
-- First step: compute the derivative of `F`
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
have A : ∀ y ∈ Ioo (-1 : ℝ) 1, HasDerivAt F (F' y) y := fun y hy ↦
by
have : HasDerivAt F ((∑ i in range n, ↑(i + 1) * y ^ i / (↑i + 1)) + (-1) / (1 - y)) y :=
.add (.sum fun i _ ↦ (hasDerivAt_pow (i + 1) y).div_const ((i : ℝ) + 1))
(((hasDerivAt_id y).const_sub _).log <| sub_ne_zero.2 hy.2.ne')
convert this using 1
calc
-y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y) :=
by
field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne']
ring
_ = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) :=
by
congr with i
rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne']
-- second step: show that the derivative of `F` is small
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
⊢ HasDerivAt F (F' y) y
[PROOFSTEP]
have : HasDerivAt F ((∑ i in range n, ↑(i + 1) * y ^ i / (↑i + 1)) + (-1) / (1 - y)) y :=
.add (.sum fun i _ ↦ (hasDerivAt_pow (i + 1) y).div_const ((i : ℝ) + 1))
(((hasDerivAt_id y).const_sub _).log <| sub_ne_zero.2 hy.2.ne')
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
⊢ HasDerivAt F (F' y) y
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_7
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
⊢ F' y = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)
[PROOFSTEP]
calc
-y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y) :=
by
field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne']
ring
_ = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) :=
by
congr with i
rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne']
-- second step: show that the derivative of `F` is small
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
⊢ -y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y)
[PROOFSTEP]
field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne']
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
⊢ -(y ^ n * ((y - 1) * (1 - y))) = ((y ^ n - 1) * (1 - y) + (1 - y)) * (1 - y)
[PROOFSTEP]
ring
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
⊢ ∑ i in Finset.range n, y ^ i + -1 / (1 - y) = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)
[PROOFSTEP]
congr with i
[GOAL]
case e_a.e_f.h
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
y : ℝ
hy : y ∈ Set.Ioo (-1) 1
this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y
i : ℕ
⊢ y ^ i = ↑(i + 1) * y ^ i / (↑i + 1)
[PROOFSTEP]
rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne']
-- second step: show that the derivative of `F` is small
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
have B : ∀ y ∈ Icc (-|x|) |x|, |F' y| ≤ |x| ^ n / (1 - |x|) := fun y hy ↦
calc
|F' y| = |y| ^ n / |1 - y| := by simp [abs_div]
_ ≤ |x| ^ n / (1 - |x|) := by
have : |y| ≤ |x| := abs_le.2 hy
have : 1 - |x| ≤ |1 - y| := le_trans (by linarith [hy.2]) (le_abs_self _)
gcongr
exact sub_pos.2 h
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
⊢ |F' y| = |y| ^ n / |1 - y|
[PROOFSTEP]
simp [abs_div]
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|)
[PROOFSTEP]
have : |y| ≤ |x| := abs_le.2 hy
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
this : |y| ≤ |x|
⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|)
[PROOFSTEP]
have : 1 - |x| ≤ |1 - y| := le_trans (by linarith [hy.2]) (le_abs_self _)
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
this : |y| ≤ |x|
⊢ 1 - |x| ≤ 1 - y
[PROOFSTEP]
linarith [hy.2]
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
this✝ : |y| ≤ |x|
this : 1 - |x| ≤ |1 - y|
⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|)
[PROOFSTEP]
gcongr
[GOAL]
case hd
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
this✝ : |y| ≤ |x|
this : 1 - |x| ≤ |1 - y|
⊢ 0 < 1 - |x|
[PROOFSTEP]
exact sub_pos.2 h
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
have C : ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖ :=
by
refine
Convex.norm_image_sub_le_of_norm_hasDerivWithin_le (fun y hy ↦ (A _ ?_).hasDerivWithinAt) B (convex_Icc _ _) ?_ ?_
· exact Icc_subset_Ioo (neg_lt_neg h) h hy
· simp
·
simp [le_abs_self x, neg_le.mp (neg_le_abs_self x)]
-- fourth step: conclude by massaging the inequality of the third step
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
⊢ ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖
[PROOFSTEP]
refine
Convex.norm_image_sub_le_of_norm_hasDerivWithin_le (fun y hy ↦ (A _ ?_).hasDerivWithinAt) B (convex_Icc _ _) ?_ ?_
[GOAL]
case refine_1
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
y : ℝ
hy : y ∈ Set.Icc (-|x|) |x|
⊢ y ∈ Set.Ioo (-1) 1
[PROOFSTEP]
exact Icc_subset_Ioo (neg_lt_neg h) h hy
[GOAL]
case refine_2
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
⊢ 0 ∈ Set.Icc (-|x|) |x|
[PROOFSTEP]
simp
[GOAL]
case refine_3
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
⊢ x ∈ Set.Icc (-|x|) |x|
[PROOFSTEP]
simp [le_abs_self x, neg_le.mp (neg_le_abs_self x)]
-- fourth step: conclude by massaging the inequality of the third step
[GOAL]
x : ℝ
h : |x| < 1
n : ℕ
F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)
F' : ℝ → ℝ := fun x => -x ^ n / (1 - x)
A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y
B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|)
C : ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖
⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|)
[PROOFSTEP]
simpa [div_mul_eq_mul_div, pow_succ'] using C
[GOAL]
x : ℝ
h : |x| < 1
⊢ HasSum (fun n => x ^ (n + 1) / (↑n + 1)) (-log (1 - x))
[PROOFSTEP]
rw [Summable.hasSum_iff_tendsto_nat]
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1)) atTop (𝓝 (-log (1 - x)))
x : ℝ h : |x| < 1 ⊢ Summable fun n => x ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
show Tendsto (fun n : ℕ => ∑ i : ℕ in range n, x ^ (i + 1) / (i + 1)) atTop (𝓝 (-log (1 - x)))
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1)) atTop (𝓝 (-log (1 - x)))
[PROOFSTEP]
rw [tendsto_iff_norm_tendsto_zero]
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun e => ‖∑ i in Finset.range e, x ^ (i + 1) / (↑i + 1) - -log (1 - x)‖) atTop (𝓝 0)
[PROOFSTEP]
simp only [norm_eq_abs, sub_neg_eq_add]
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun e => |∑ i in Finset.range e, x ^ (i + 1) / (↑i + 1) + log (1 - x)|) atTop (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero (fun n => abs_nonneg _) (abs_log_sub_add_sum_range_le h) _
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 0)
[PROOFSTEP]
suffices Tendsto (fun t : ℕ => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|))) by simpa
[GOAL]
x : ℝ
h : |x| < 1
this : Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|)))
⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 0)
[PROOFSTEP]
simpa
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|)))
[PROOFSTEP]
simp only [pow_succ]
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun t => |x| * |x| ^ t / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|)))
[PROOFSTEP]
refine' (tendsto_const_nhds.mul _).div_const _
[GOAL]
x : ℝ
h : |x| < 1
⊢ Tendsto (fun t => |x| ^ t) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_pow_atTop_nhds_0_of_lt_1 (abs_nonneg _) h
[GOAL]
x : ℝ
h : |x| < 1
⊢ Summable fun n => x ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
show Summable fun n : ℕ => x ^ (n + 1) / (n + 1)
[GOAL]
x : ℝ
h : |x| < 1
⊢ Summable fun n => x ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
refine' summable_of_norm_bounded _ (summable_geometric_of_lt_1 (abs_nonneg _) h) fun i => _
[GOAL]
x : ℝ
h : |x| < 1
i : ℕ
⊢ ‖x ^ (i + 1) / (↑i + 1)‖ ≤ |x| ^ i
[PROOFSTEP]
calc
‖x ^ (i + 1) / (i + 1)‖ = |x| ^ (i + 1) / (i + 1) :=
by
have : (0 : ℝ) ≤ i + 1 := le_of_lt (Nat.cast_add_one_pos i)
rw [norm_eq_abs, abs_div, ← pow_abs, abs_of_nonneg this]
_ ≤ |x| ^ (i + 1) / (0 + 1) := by
gcongr
exact i.cast_nonneg
_ ≤ |x| ^ i := by simpa [pow_succ'] using mul_le_of_le_one_right (pow_nonneg (abs_nonneg x) i) (le_of_lt h)
[GOAL]
x : ℝ
h : |x| < 1
i : ℕ
⊢ ‖x ^ (i + 1) / (↑i + 1)‖ = |x| ^ (i + 1) / (↑i + 1)
[PROOFSTEP]
have : (0 : ℝ) ≤ i + 1 := le_of_lt (Nat.cast_add_one_pos i)
[GOAL]
x : ℝ
h : |x| < 1
i : ℕ
this : 0 ≤ ↑i + 1
⊢ ‖x ^ (i + 1) / (↑i + 1)‖ = |x| ^ (i + 1) / (↑i + 1)
[PROOFSTEP]
rw [norm_eq_abs, abs_div, ← pow_abs, abs_of_nonneg this]
[GOAL]
x : ℝ
h : |x| < 1
i : ℕ
⊢ |x| ^ (i + 1) / (↑i + 1) ≤ |x| ^ (i + 1) / (0 + 1)
[PROOFSTEP]
gcongr
[GOAL]
case h.bc
x : ℝ
h : |x| < 1
i : ℕ
⊢ 0 ≤ ↑i
[PROOFSTEP]
exact i.cast_nonneg
[GOAL]
x : ℝ
h : |x| < 1
i : ℕ
⊢ |x| ^ (i + 1) / (0 + 1) ≤ |x| ^ i
[PROOFSTEP]
simpa [pow_succ'] using mul_le_of_le_one_right (pow_nonneg (abs_nonneg x) i) (le_of_lt h)
[GOAL]
x : ℝ
h : |x| < 1
⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x))
[PROOFSTEP]
set term := fun n : ℕ => -1 * ((-x) ^ (n + 1) / ((n : ℝ) + 1)) + x ^ (n + 1) / (n + 1)
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x))
[PROOFSTEP]
have h_term_eq_goal : term ∘ (· * ·) 2 = fun k : ℕ => 2 * (1 / (2 * k + 1)) * x ^ (2 * k + 1) :=
by
ext n
dsimp only [(· ∘ ·)]
rw [Odd.neg_pow (⟨n, rfl⟩ : Odd (2 * n + 1)) x]
push_cast
ring_nf
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
⊢ term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
[PROOFSTEP]
ext n
[GOAL]
case h
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
n : ℕ
⊢ (term ∘ (fun x x_1 => x * x_1) 2) n = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1)
[PROOFSTEP]
dsimp only [(· ∘ ·)]
[GOAL]
case h
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
n : ℕ
⊢ -1 * ((-x) ^ (2 * n + 1) / (↑(2 * n) + 1)) + x ^ (2 * n + 1) / (↑(2 * n) + 1) =
2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1)
[PROOFSTEP]
rw [Odd.neg_pow (⟨n, rfl⟩ : Odd (2 * n + 1)) x]
[GOAL]
case h
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
n : ℕ
⊢ -1 * (-x ^ (2 * n + 1) / (↑(2 * n) + 1)) + x ^ (2 * n + 1) / (↑(2 * n) + 1) = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1)
[PROOFSTEP]
push_cast
[GOAL]
case h
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
n : ℕ
⊢ -1 * (-x ^ (2 * n + 1) / (2 * ↑n + 1)) + x ^ (2 * n + 1) / (2 * ↑n + 1) = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1)
[PROOFSTEP]
ring_nf
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x))
[PROOFSTEP]
rw [← h_term_eq_goal, (mul_right_injective₀ (two_ne_zero' ℕ)).hasSum_iff]
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
⊢ HasSum term (log (1 + x) - log (1 - x))
[PROOFSTEP]
have h₁ := (hasSum_pow_div_log_of_abs_lt_1 (Eq.trans_lt (abs_neg x) h)).mul_left (-1)
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
h₁ : HasSum (fun i => -1 * ((-x) ^ (i + 1) / (↑i + 1))) (-1 * -log (1 - -x))
⊢ HasSum term (log (1 + x) - log (1 - x))
[PROOFSTEP]
convert h₁.add (hasSum_pow_div_log_of_abs_lt_1 h) using 1
[GOAL]
case h.e'_6
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
h₁ : HasSum (fun i => -1 * ((-x) ^ (i + 1) / (↑i + 1))) (-1 * -log (1 - -x))
⊢ log (1 + x) - log (1 - x) = -1 * -log (1 - -x) + -log (1 - x)
[PROOFSTEP]
ring_nf
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
⊢ ∀ (x : ℕ), ¬x ∈ Set.range ((fun x x_1 => x * x_1) 2) → term x = 0
[PROOFSTEP]
intro m hm
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
m : ℕ
hm : ¬m ∈ Set.range ((fun x x_1 => x * x_1) 2)
⊢ term m = 0
[PROOFSTEP]
rw [range_two_mul, Set.mem_setOf_eq, ← Nat.even_add_one] at hm
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
m : ℕ
hm : Even (m + 1)
⊢ term m = 0
[PROOFSTEP]
dsimp
[GOAL]
x : ℝ
h : |x| < 1
term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1)
h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)
m : ℕ
hm : Even (m + 1)
⊢ -1 * ((-x) ^ (m + 1) / (↑m + 1)) + x ^ (m + 1) / (↑m + 1) = 0
[PROOFSTEP]
rw [Even.neg_pow hm, neg_one_mul, neg_add_self]
[GOAL]
a : ℝ
h : 0 < a
⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * (1 / (2 * a + 1)) ^ (2 * k + 1)) (log (1 + a⁻¹))
[PROOFSTEP]
have h₁ : |1 / (2 * a + 1)| < 1 := by
rw [abs_of_pos, div_lt_one]
· linarith
· linarith
· exact div_pos one_pos (by linarith)
[GOAL]
a : ℝ
h : 0 < a
⊢ |1 / (2 * a + 1)| < 1
[PROOFSTEP]
rw [abs_of_pos, div_lt_one]
[GOAL]
a : ℝ
h : 0 < a
⊢ 1 < 2 * a + 1
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
h : 0 < a
⊢ 0 < 2 * a + 1
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
h : 0 < a
⊢ 0 < 1 / (2 * a + 1)
[PROOFSTEP]
exact div_pos one_pos (by linarith)
[GOAL]
a : ℝ
h : 0 < a
⊢ 0 < 2 * a + 1
[PROOFSTEP]
linarith
[GOAL]
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * (1 / (2 * a + 1)) ^ (2 * k + 1)) (log (1 + a⁻¹))
[PROOFSTEP]
convert hasSum_log_sub_log_of_abs_lt_1 h₁ using 1
[GOAL]
case h.e'_6
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1))
[PROOFSTEP]
have h₂ : (2 : ℝ) * a + 1 ≠ 0 := by linarith
[GOAL]
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
⊢ 2 * a + 1 ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case h.e'_6
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1))
[PROOFSTEP]
have h₃ := h.ne'
[GOAL]
case h.e'_6
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1))
[PROOFSTEP]
rw [← log_div]
[GOAL]
case h.e'_6
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ log (1 + a⁻¹) = log ((1 + 1 / (2 * a + 1)) / (1 - 1 / (2 * a + 1)))
[PROOFSTEP]
congr
[GOAL]
case h.e'_6.e_x
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ 1 + a⁻¹ = (1 + 1 / (2 * a + 1)) / (1 - 1 / (2 * a + 1))
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_6.e_x
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ (a + 1) * (2 * a) = (2 * a + 1 + 1) * a
[PROOFSTEP]
linarith
[GOAL]
case h.e'_6.hx
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ 1 + 1 / (2 * a + 1) ≠ 0
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_6.hx
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ ¬2 * a + 1 + 1 = 0
[PROOFSTEP]
linarith
[GOAL]
case h.e'_6.hy
a : ℝ
h : 0 < a
h₁ : |1 / (2 * a + 1)| < 1
h₂ : 2 * a + 1 ≠ 0
h₃ : a ≠ 0
⊢ 1 - 1 / (2 * a + 1) ≠ 0
[PROOFSTEP]
field_simp
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Deriv", "llama_tokens": 14354} |
[GOAL]
s : ℝ
⊢ (fun x => exp (-x) * x ^ s) =o[atTop] fun x => exp (-(1 / 2) * x)
[PROOFSTEP]
refine' isLittleO_of_tendsto (fun x hx => _) _
[GOAL]
case refine'_1
s x : ℝ
hx : exp (-(1 / 2) * x) = 0
⊢ exp (-x) * x ^ s = 0
[PROOFSTEP]
exfalso
[GOAL]
case refine'_1.h
s x : ℝ
hx : exp (-(1 / 2) * x) = 0
⊢ False
[PROOFSTEP]
exact (exp_pos (-(1 / 2) * x)).ne' hx
[GOAL]
case refine'_2
s : ℝ
⊢ Tendsto (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) atTop (𝓝 0)
[PROOFSTEP]
have : (fun x : ℝ => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x : ℝ => exp (1 / 2 * x) / x ^ s)⁻¹ :=
by
ext1 x
field_simp [exp_ne_zero, exp_neg, ← Real.exp_add]
left
ring
[GOAL]
s : ℝ
⊢ (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹
[PROOFSTEP]
ext1 x
[GOAL]
case h
s x : ℝ
⊢ exp (-x) * x ^ s / exp (-(1 / 2) * x) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ x
[PROOFSTEP]
field_simp [exp_ne_zero, exp_neg, ← Real.exp_add]
[GOAL]
case h
s x : ℝ
⊢ x = x * 2 + -x ∨ x ^ s = 0
[PROOFSTEP]
left
[GOAL]
case h.h
s x : ℝ
⊢ x = x * 2 + -x
[PROOFSTEP]
ring
[GOAL]
case refine'_2
s : ℝ
this : (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹
⊢ Tendsto (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) atTop (𝓝 0)
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_2
s : ℝ
this : (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹
⊢ Tendsto (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ atTop (𝓝 0)
[PROOFSTEP]
exact (tendsto_exp_mul_div_rpow_atTop s (1 / 2) one_half_pos).inv_tendsto_atTop
[GOAL]
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
rw [← Ioc_union_Ioi_eq_Ioi (@zero_le_one ℝ _ _ _ _), integrableOn_union]
[GOAL]
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioc 0 1) ∧ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 1)
[PROOFSTEP]
constructor
[GOAL]
case left
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioc 0 1)
[PROOFSTEP]
rw [← integrableOn_Icc_iff_integrableOn_Ioc]
[GOAL]
case left
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Icc 0 1)
[PROOFSTEP]
refine' IntegrableOn.continuousOn_mul continuousOn_id.neg.exp _ isCompact_Icc
[GOAL]
case left
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => x ^ (s - 1)) (Icc 0 1)
[PROOFSTEP]
refine' (intervalIntegrable_iff_integrable_Icc_of_le zero_le_one).mp _
[GOAL]
case left
s : ℝ
h : 0 < s
⊢ IntervalIntegrable (fun x => x ^ (s - 1)) volume 0 1
[PROOFSTEP]
exact intervalIntegrable_rpow' (by linarith)
[GOAL]
s : ℝ
h : 0 < s
⊢ -1 < s - 1
[PROOFSTEP]
linarith
[GOAL]
case right
s : ℝ
h : 0 < s
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 1)
[PROOFSTEP]
refine' integrable_of_isBigO_exp_neg one_half_pos _ (Gamma_integrand_isLittleO _).isBigO
[GOAL]
case right
s : ℝ
h : 0 < s
⊢ ContinuousOn (fun x => exp (-x) * x ^ (s - 1)) (Ici 1)
[PROOFSTEP]
refine' continuousOn_id.neg.exp.mul (continuousOn_id.rpow_const _)
[GOAL]
case right
s : ℝ
h : 0 < s
⊢ ∀ (x : ℝ), x ∈ Ici 1 → id x ≠ 0 ∨ 0 ≤ s - 1
[PROOFSTEP]
intro x hx
[GOAL]
case right
s : ℝ
h : 0 < s
x : ℝ
hx : x ∈ Ici 1
⊢ id x ≠ 0 ∨ 0 ≤ s - 1
[PROOFSTEP]
exact Or.inl ((zero_lt_one : (0 : ℝ) < 1).trans_le hx).ne'
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ IntegrableOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
constructor
[GOAL]
case left
s : ℂ
hs : 0 < s.re
⊢ AEStronglyMeasurable (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi
[GOAL]
case left
s : ℂ
hs : 0 < s.re
⊢ ContinuousOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
apply (continuous_ofReal.comp continuous_neg.exp).continuousOn.mul
[GOAL]
case left
s : ℂ
hs : 0 < s.re
⊢ ContinuousOn (fun x => ↑x ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
apply ContinuousAt.continuousOn
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
⊢ ∀ (x : ℝ), x ∈ Ioi 0 → ContinuousAt (fun x => ↑x ^ (s - 1)) x
[PROOFSTEP]
intro x hx
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x
[PROOFSTEP]
have : ContinuousAt (fun x : ℂ => x ^ (s - 1)) ↑x := by apply continuousAt_cpow_const; rw [ofReal_re]; exact Or.inl hx
[GOAL]
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ ContinuousAt (fun x => x ^ (s - 1)) ↑x
[PROOFSTEP]
apply continuousAt_cpow_const
[GOAL]
case ha
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ 0 < (↑x).re ∨ (↑x).im ≠ 0
[PROOFSTEP]
rw [ofReal_re]
[GOAL]
case ha
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ 0 < x ∨ (↑x).im ≠ 0
[PROOFSTEP]
exact Or.inl hx
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
this : ContinuousAt (fun x => x ^ (s - 1)) ↑x
⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x
[PROOFSTEP]
exact ContinuousAt.comp this continuous_ofReal.continuousAt
[GOAL]
case right
s : ℂ
hs : 0 < s.re
⊢ HasFiniteIntegral fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)
[PROOFSTEP]
rw [← hasFiniteIntegral_norm_iff]
[GOAL]
case right
s : ℂ
hs : 0 < s.re
⊢ HasFiniteIntegral fun a => ‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖
[PROOFSTEP]
refine' HasFiniteIntegral.congr (Real.GammaIntegral_convergent hs).2 _
[GOAL]
case right
s : ℂ
hs : 0 < s.re
⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) =ᵐ[Measure.restrict volume (Ioi 0)] fun a =>
‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖
[PROOFSTEP]
refine' (ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ fun x hx => _)
[GOAL]
case right
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) x = (fun a => ‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖) x
[PROOFSTEP]
dsimp only
[GOAL]
case right
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ Real.exp (-x) * x ^ (s.re - 1) = ‖↑(Real.exp (-x)) * ↑x ^ (s - 1)‖
[PROOFSTEP]
rw [norm_eq_abs, map_mul, abs_of_nonneg <| le_of_lt <| exp_pos <| -x, abs_cpow_eq_rpow_re_of_pos hx _]
[GOAL]
case right
s : ℂ
hs : 0 < s.re
x : ℝ
hx : x ∈ Ioi 0
⊢ Real.exp (-x) * x ^ (s.re - 1) = Real.exp (-x) * x ^ (s - 1).re
[PROOFSTEP]
simp
[GOAL]
s : ℂ
⊢ GammaIntegral (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaIntegral s)
[PROOFSTEP]
rw [GammaIntegral, GammaIntegral, ← integral_conj]
[GOAL]
s : ℂ
⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) =
∫ (a : ℝ) in Ioi 0, ↑(starRingEnd ℂ) (↑(Real.exp (-a)) * ↑a ^ (s - 1))
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun x hx => _
[GOAL]
s : ℂ
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) = ↑(starRingEnd ℂ) (↑(Real.exp (-x)) * ↑x ^ (s - 1))
[PROOFSTEP]
dsimp only
[GOAL]
s : ℂ
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) = ↑(starRingEnd ℂ) (↑(Real.exp (-x)) * ↑x ^ (s - 1))
[PROOFSTEP]
rw [RingHom.map_mul, conj_ofReal, cpow_def_of_ne_zero (ofReal_ne_zero.mpr (ne_of_gt hx)),
cpow_def_of_ne_zero (ofReal_ne_zero.mpr (ne_of_gt hx)), ← exp_conj, RingHom.map_mul, ← ofReal_log (le_of_lt hx),
conj_ofReal, RingHom.map_sub, RingHom.map_one]
[GOAL]
s : ℝ
⊢ GammaIntegral ↑s = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
⊢ GammaIntegral ↑s = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [GammaIntegral]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
conv_rhs => rw [this, ← _root_.integral_ofReal]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
| ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [this, ← _root_.integral_ofReal]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
| ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [this, ← _root_.integral_ofReal]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
| ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [this, ← _root_.integral_ofReal]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ∫ (a : ℝ) in Ioi 0, ↑(Real.exp (-a) * a ^ (s - 1))
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi _
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
⊢ EqOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (↑s - 1)) (fun a => ↑(Real.exp (-a) * a ^ (s - 1))) (Ioi 0)
[PROOFSTEP]
intro x hx
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
⊢ (fun x => ↑(Real.exp (-x)) * ↑x ^ (↑s - 1)) x = (fun a => ↑(Real.exp (-a) * a ^ (s - 1))) x
[PROOFSTEP]
dsimp only
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
conv_rhs => rw [← this]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
| ↑(Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [← this]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
| ↑(Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [← this]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
| ↑(Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [← this]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [ofReal_mul, ofReal_cpow (mem_Ioi.mp hx).le]
[GOAL]
s : ℝ
this : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x)) * ↑x ^ ↑(s - 1)
[PROOFSTEP]
simp
[GOAL]
⊢ GammaIntegral 1 = 1
[PROOFSTEP]
simpa only [← ofReal_one, GammaIntegral_ofReal, ofReal_inj, sub_self, rpow_zero, mul_one] using
integral_exp_neg_Ioi_zero
[GOAL]
s : ℂ
X : ℝ
hs : 0 < s.re
hX : 0 ≤ X
⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) volume 0 X
[PROOFSTEP]
rw [intervalIntegrable_iff_integrable_Ioc_of_le hX]
[GOAL]
s : ℂ
X : ℝ
hs : 0 < s.re
hX : 0 ≤ X
⊢ IntegrableOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioc 0 X)
[PROOFSTEP]
exact IntegrableOn.mono_set (GammaIntegral_convergent hs) Ioc_subset_Ioi_self
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s)) volume 0 X
[PROOFSTEP]
convert (Gamma_integrand_interval_integrable (s + 1) _ hX).neg
[GOAL]
case h.e'_3.h
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x✝ : ℝ
⊢ -(↑(Real.exp (-x✝)) * ↑x✝ ^ s) = (-fun x => ↑(Real.exp (-x)) * ↑x ^ (s + 1 - 1)) x✝
[PROOFSTEP]
simp only [ofReal_exp, ofReal_neg, add_sub_cancel]
[GOAL]
case h.e'_3.h
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x✝ : ℝ
⊢ -(exp (-↑x✝) * ↑x✝ ^ s) = (-fun x => exp (-↑x) * ↑x ^ s) x✝
[PROOFSTEP]
rfl
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ 0 < (s + 1).re
[PROOFSTEP]
simp only [add_re, one_re]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ 0 < s.re + 1
[PROOFSTEP]
linarith
[GOAL]
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 Y
[PROOFSTEP]
have : (fun x => (-x).exp * (s * x ^ (s - 1)) : ℝ → ℂ) = (fun x => s * ((-x).exp * x ^ (s - 1)) : ℝ → ℂ) := by ext1;
ring
[GOAL]
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
⊢ (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
[PROOFSTEP]
ext1
[GOAL]
case h
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
x✝ : ℝ
⊢ ↑(Real.exp (-x✝)) * (s * ↑x✝ ^ (s - 1)) = s * (↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1))
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 Y
[PROOFSTEP]
rw [this, intervalIntegrable_iff_integrable_Ioc_of_le hY]
[GOAL]
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ IntegrableOn (fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) (Ioc 0 Y)
[PROOFSTEP]
constructor
[GOAL]
case left
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ AEStronglyMeasurable (fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) (Measure.restrict volume (Ioc 0 Y))
[PROOFSTEP]
refine' (continuousOn_const.mul _).aestronglyMeasurable measurableSet_Ioc
[GOAL]
case left
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ ContinuousOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioc 0 Y)
[PROOFSTEP]
apply (continuous_ofReal.comp continuous_neg.exp).continuousOn.mul
[GOAL]
case left
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ ContinuousOn (fun x => ↑x ^ (s - 1)) (Ioc 0 Y)
[PROOFSTEP]
apply ContinuousAt.continuousOn
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ ∀ (x : ℝ), x ∈ Ioc 0 Y → ContinuousAt (fun x => ↑x ^ (s - 1)) x
[PROOFSTEP]
intro x hx
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x
[PROOFSTEP]
refine' (_ : ContinuousAt (fun x : ℂ => x ^ (s - 1)) _).comp continuous_ofReal.continuousAt
[GOAL]
case left.hcont
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ ContinuousAt (fun x => x ^ (s - 1)) ↑x
[PROOFSTEP]
apply continuousAt_cpow_const
[GOAL]
case left.hcont.ha
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ 0 < (↑x).re ∨ (↑x).im ≠ 0
[PROOFSTEP]
rw [ofReal_re]
[GOAL]
case left.hcont.ha
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ 0 < x ∨ (↑x).im ≠ 0
[PROOFSTEP]
exact Or.inl hx.1
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ HasFiniteIntegral fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
[PROOFSTEP]
rw [← hasFiniteIntegral_norm_iff]
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ HasFiniteIntegral fun a => ‖s * (↑(Real.exp (-a)) * ↑a ^ (s - 1))‖
[PROOFSTEP]
simp_rw [norm_eq_abs, map_mul]
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ HasFiniteIntegral fun a => ↑abs s * (↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1)))
[PROOFSTEP]
refine' (((Real.GammaIntegral_convergent hs).mono_set Ioc_subset_Ioi_self).hasFiniteIntegral.congr _).const_mul _
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) =ᵐ[Measure.restrict volume (Ioc 0 Y)] fun a =>
↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1))
[PROOFSTEP]
rw [EventuallyEq, ae_restrict_iff']
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ ∀ᵐ (x : ℝ), x ∈ Ioc 0 Y → Real.exp (-x) * x ^ (s.re - 1) = ↑abs ↑(Real.exp (-x)) * ↑abs (↑x ^ (s - 1))
[PROOFSTEP]
apply ae_of_all
[GOAL]
case right.a
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ ∀ (a : ℝ), a ∈ Ioc 0 Y → Real.exp (-a) * a ^ (s.re - 1) = ↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1))
[PROOFSTEP]
intro x hx
[GOAL]
case right.a
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ Real.exp (-x) * x ^ (s.re - 1) = ↑abs ↑(Real.exp (-x)) * ↑abs (↑x ^ (s - 1))
[PROOFSTEP]
rw [abs_of_nonneg (exp_pos _).le, abs_cpow_eq_rpow_re_of_pos hx.1]
[GOAL]
case right.a
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
x : ℝ
hx : x ∈ Ioc 0 Y
⊢ Real.exp (-x) * x ^ (s.re - 1) = Real.exp (-x) * x ^ (s - 1).re
[PROOFSTEP]
simp
[GOAL]
case right
s : ℂ
hs : 0 < s.re
Y : ℝ
hY : 0 ≤ Y
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
⊢ MeasurableSet (Ioc 0 Y)
[PROOFSTEP]
exact measurableSet_Ioc
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ partialGamma (s + 1) X = s * partialGamma s X - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [partialGamma, partialGamma, add_sub_cancel]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have F_der_I :
∀ x : ℝ,
x ∈ Ioo 0 X →
HasDerivAt (fun x => (-x).exp * x ^ s : ℝ → ℂ) (-((-x).exp * x ^ s) + (-x).exp * (s * x ^ (s - 1))) x :=
by
intro x hx
have d1 : HasDerivAt (fun y : ℝ => (-y).exp) (-(-x).exp) x := by simpa using (hasDerivAt_neg x).exp
have d2 : HasDerivAt (fun y : ℝ => ↑y ^ s) (s * x ^ (s - 1)) x :=
by
have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_
simpa only [mul_one] using t.comp_ofReal
simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1
simpa only [ofReal_neg, neg_mul] using d1.ofReal_comp.mul d2
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
⊢ ∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
[PROOFSTEP]
intro x hx
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)))
x
[PROOFSTEP]
have d1 : HasDerivAt (fun y : ℝ => (-y).exp) (-(-x).exp) x := by simpa using (hasDerivAt_neg x).exp
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
⊢ HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
[PROOFSTEP]
simpa using (hasDerivAt_neg x).exp
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)))
x
[PROOFSTEP]
have d2 : HasDerivAt (fun y : ℝ => ↑y ^ s) (s * x ^ (s - 1)) x :=
by
have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_
simpa only [mul_one] using t.comp_ofReal
simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x
[PROOFSTEP]
have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_
[GOAL]
case refine_2
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
t : HasDerivAt (fun x => id x ^ s) (s * id ↑x ^ (s - 1) * 1) ↑x
⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x
case refine_1
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
⊢ 0 < (id ↑x).re ∨ (id ↑x).im ≠ 0
[PROOFSTEP]
simpa only [mul_one] using t.comp_ofReal
[GOAL]
case refine_1
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
⊢ 0 < (id ↑x).re ∨ (id ↑x).im ≠ 0
[PROOFSTEP]
simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
x : ℝ
hx : x ∈ Ioo 0 X
d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x
d2 : HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x
⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)))
x
[PROOFSTEP]
simpa only [ofReal_neg, neg_mul] using d1.ofReal_comp.mul d2
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have cont := (continuous_ofReal.comp continuous_neg.exp).mul (continuous_ofReal_cpow_const hs)
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have der_ible := (Gamma_integrand_deriv_integrable_A hs hX).add (Gamma_integrand_deriv_integrable_B hs hX)
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have int_eval := integral_eq_sub_of_hasDerivAt_of_le hX cont.continuousOn F_der_I der_ible
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
∫ (y : ℝ) in 0 ..X, -(↑(Real.exp (-y)) * ↑y ^ s) + ↑(Real.exp (-y)) * (s * ↑y ^ (s - 1)) =
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
apply_fun fun x : ℂ => -x at int_eval
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
-∫ (y : ℝ) in 0 ..X, -(↑(Real.exp (-y)) * ↑y ^ s) + ↑(Real.exp (-y)) * (s * ↑y ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [intervalIntegral.integral_add (Gamma_integrand_deriv_integrable_A hs hX) (Gamma_integrand_deriv_integrable_B hs hX),
intervalIntegral.integral_neg, neg_add, neg_neg] at int_eval
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [eq_sub_of_add_eq int_eval, sub_neg_eq_add, neg_sub, add_comm, add_sub]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
⊢ (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s -
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have : (fun x => (-x).exp * (s * x ^ (s - 1)) : ℝ → ℂ) = (fun x => s * (-x).exp * x ^ (s - 1) : ℝ → ℂ) := by ext1; ring
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
⊢ (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
[PROOFSTEP]
ext1
[GOAL]
case h
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
x✝ : ℝ
⊢ ↑(Real.exp (-x✝)) * (s * ↑x✝ ^ (s - 1)) = s * ↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1)
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s -
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [this]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s -
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
have t := @integral_const_mul 0 X volume _ _ s fun x : ℝ => (-x).exp * x ^ (s - 1)
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s -
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [← t, ofReal_zero, zero_cpow]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * 0 -
(ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
rw [mul_zero, add_zero]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s =
(∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_f
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ (fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))
[PROOFSTEP]
ext1
[GOAL]
case e_a.e_f.h
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
x✝ : ℝ
⊢ s * ↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1) = s * (↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1))
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
⊢ s ≠ 0
[PROOFSTEP]
contrapose! hs
[GOAL]
s : ℂ
X : ℝ
hX : 0 ≤ X
F_der_I :
∀ (x : ℝ),
x ∈ Ioo 0 X →
HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s)
(-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x
cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s
der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X
int_eval :
(∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) =
-((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s)
this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)
t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)
hs : s = 0
⊢ s.re ≤ 0
[PROOFSTEP]
rw [hs, zero_re]
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ GammaIntegral (s + 1) = s * GammaIntegral s
[PROOFSTEP]
suffices Tendsto (s + 1).partialGamma atTop (𝓝 <| s * GammaIntegral s)
by
refine' tendsto_nhds_unique _ this
apply tendsto_partialGamma; rw [add_re, one_re]; linarith
[GOAL]
s : ℂ
hs : 0 < s.re
this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
⊢ GammaIntegral (s + 1) = s * GammaIntegral s
[PROOFSTEP]
refine' tendsto_nhds_unique _ this
[GOAL]
s : ℂ
hs : 0 < s.re
this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (GammaIntegral (s + 1)))
[PROOFSTEP]
apply tendsto_partialGamma
[GOAL]
case hs
s : ℂ
hs : 0 < s.re
this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
⊢ 0 < (s + 1).re
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
case hs
s : ℂ
hs : 0 < s.re
this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
⊢ 0 < s.re + 1
[PROOFSTEP]
linarith
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
[PROOFSTEP]
have : (fun X : ℝ => s * partialGamma s X - X ^ s * (-X).exp) =ᶠ[atTop] (s + 1).partialGamma :=
by
apply eventuallyEq_of_mem (Ici_mem_atTop (0 : ℝ))
intro X hX
rw [partialGamma_add_one hs (mem_Ici.mp hX)]
ring_nf
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
[PROOFSTEP]
apply eventuallyEq_of_mem (Ici_mem_atTop (0 : ℝ))
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ EqOn (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) (partialGamma (s + 1)) (Ici 0)
[PROOFSTEP]
intro X hX
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : X ∈ Ici 0
⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) X = partialGamma (s + 1) X
[PROOFSTEP]
rw [partialGamma_add_one hs (mem_Ici.mp hX)]
[GOAL]
s : ℂ
hs : 0 < s.re
X : ℝ
hX : X ∈ Ici 0
⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) X = s * partialGamma s X - ↑(Real.exp (-X)) * ↑X ^ s
[PROOFSTEP]
ring_nf
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s))
[PROOFSTEP]
refine' Tendsto.congr' this _
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ Tendsto (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 (s * GammaIntegral s))
[PROOFSTEP]
suffices Tendsto (fun X => -X ^ s * (-X).exp : ℝ → ℂ) atTop (𝓝 0) by
simpa using Tendsto.add (Tendsto.const_mul s (tendsto_partialGamma hs)) this
[GOAL]
s : ℂ
hs : 0 < s.re
this✝ : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
this : Tendsto (fun X => -↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 0)
⊢ Tendsto (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 (s * GammaIntegral s))
[PROOFSTEP]
simpa using Tendsto.add (Tendsto.const_mul s (tendsto_partialGamma hs)) this
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ Tendsto (fun X => -↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ Tendsto (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) atTop (𝓝 0)
[PROOFSTEP]
have : (fun e : ℝ => ‖-(e : ℂ) ^ s * (-e).exp‖) =ᶠ[atTop] fun e : ℝ => e ^ s.re * (-1 * e).exp :=
by
refine' eventuallyEq_of_mem (Ioi_mem_atTop 0) _
intro x hx; dsimp only
rw [norm_eq_abs, map_mul, abs.map_neg, abs_cpow_eq_rpow_re_of_pos hx, abs_of_nonneg (exp_pos (-x)).le, neg_mul,
one_mul]
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) =ᶠ[atTop] fun e => e ^ s.re * Real.exp (-1 * e)
[PROOFSTEP]
refine' eventuallyEq_of_mem (Ioi_mem_atTop 0) _
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
⊢ EqOn (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) (fun e => e ^ s.re * Real.exp (-1 * e)) (Ioi 0)
[PROOFSTEP]
intro x hx
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
x : ℝ
hx : x ∈ Ioi 0
⊢ (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) x = (fun e => e ^ s.re * Real.exp (-1 * e)) x
[PROOFSTEP]
dsimp only
[GOAL]
s : ℂ
hs : 0 < s.re
this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
x : ℝ
hx : x ∈ Ioi 0
⊢ ‖-↑x ^ s * ↑(Real.exp (-x))‖ = x ^ s.re * Real.exp (-1 * x)
[PROOFSTEP]
rw [norm_eq_abs, map_mul, abs.map_neg, abs_cpow_eq_rpow_re_of_pos hx, abs_of_nonneg (exp_pos (-x)).le, neg_mul, one_mul]
[GOAL]
s : ℂ
hs : 0 < s.re
this✝ : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1)
this : (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) =ᶠ[atTop] fun e => e ^ s.re * Real.exp (-1 * e)
⊢ Tendsto (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) atTop (𝓝 0)
[PROOFSTEP]
exact (tendsto_congr' this).mpr (tendsto_rpow_mul_exp_neg_mul_atTop_nhds_0 _ _ zero_lt_one)
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
⊢ GammaAux n s = GammaAux n (s + 1) / s
[PROOFSTEP]
induction' n with n hn generalizing s
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : -s.re < ↑Nat.zero
⊢ GammaAux Nat.zero s = GammaAux Nat.zero (s + 1) / s
[PROOFSTEP]
simp only [Nat.zero_eq, CharP.cast_eq_zero, Left.neg_neg_iff] at h1
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : 0 < s.re
⊢ GammaAux Nat.zero s = GammaAux Nat.zero (s + 1) / s
[PROOFSTEP]
dsimp only [GammaAux]
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : 0 < s.re
⊢ GammaIntegral s = GammaIntegral (s + 1) / s
[PROOFSTEP]
rw [GammaIntegral_add_one h1]
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : 0 < s.re
⊢ GammaIntegral s = s * GammaIntegral s / s
[PROOFSTEP]
rw [mul_comm, mul_div_cancel]
[GOAL]
case zero.h
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : 0 < s.re
⊢ s ≠ 0
[PROOFSTEP]
contrapose! h1
[GOAL]
case zero.h
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : s = 0
⊢ s.re ≤ 0
[PROOFSTEP]
rw [h1]
[GOAL]
case zero.h
s✝ : ℂ
n : ℕ
h1✝ : -s✝.re < ↑n
s : ℂ
h1 : s = 0
⊢ 0.re ≤ 0
[PROOFSTEP]
simp
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑(Nat.succ n)
⊢ GammaAux (Nat.succ n) s = GammaAux (Nat.succ n) (s + 1) / s
[PROOFSTEP]
dsimp only [GammaAux]
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑(Nat.succ n)
⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s
[PROOFSTEP]
have hh1 : -(s + 1).re < n := by
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1
rw [add_re, one_re]; linarith
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑(Nat.succ n)
⊢ -(s + 1).re < ↑n
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑n + 1
⊢ -(s + 1).re < ↑n
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑n + 1
⊢ -(s.re + 1) < ↑n
[PROOFSTEP]
linarith
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : -s✝.re < ↑n✝
n : ℕ
hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s
s : ℂ
h1 : -s.re < ↑(Nat.succ n)
hh1 : -(s + 1).re < ↑n
⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s
[PROOFSTEP]
rw [← hn (s + 1) hh1]
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
⊢ GammaAux n s = GammaAux (n + 1) s
[PROOFSTEP]
cases' n with n n
[GOAL]
case zero
s : ℂ
h1 : -s.re < ↑Nat.zero
⊢ GammaAux Nat.zero s = GammaAux (Nat.zero + 1) s
[PROOFSTEP]
simp only [Nat.zero_eq, CharP.cast_eq_zero, Left.neg_neg_iff] at h1
[GOAL]
case zero
s : ℂ
h1 : 0 < s.re
⊢ GammaAux Nat.zero s = GammaAux (Nat.zero + 1) s
[PROOFSTEP]
dsimp only [GammaAux]
[GOAL]
case zero
s : ℂ
h1 : 0 < s.re
⊢ GammaIntegral s = GammaIntegral (s + 1) / s
[PROOFSTEP]
rw [GammaIntegral_add_one h1, mul_div_cancel_left]
[GOAL]
case zero.ha
s : ℂ
h1 : 0 < s.re
⊢ s ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
case zero.ha
h1 : 0 < 0.re
⊢ False
[PROOFSTEP]
rw [zero_re] at h1
[GOAL]
case zero.ha
h1 : 0 < 0
⊢ False
[PROOFSTEP]
exact h1.false
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
⊢ GammaAux (Nat.succ n) s = GammaAux (Nat.succ n + 1) s
[PROOFSTEP]
dsimp only [GammaAux]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s
[PROOFSTEP]
have : GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1) :=
by
have hh1 : -(s + 1).re < n :=
by
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1
rw [add_re, one_re]; linarith
rw [GammaAux_recurrence1 (s + 1) n hh1]
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
⊢ GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1)
[PROOFSTEP]
have hh1 : -(s + 1).re < n := by
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1
rw [add_re, one_re]; linarith
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
⊢ -(s + 1).re < ↑n
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n + 1
⊢ -(s + 1).re < ↑n
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n + 1
⊢ -(s.re + 1) < ↑n
[PROOFSTEP]
linarith
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
hh1 : -(s + 1).re < ↑n
⊢ GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1)
[PROOFSTEP]
rw [GammaAux_recurrence1 (s + 1) n hh1]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑(Nat.succ n)
this : GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1)
⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s
[PROOFSTEP]
rw [this]
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
⊢ Gamma s = GammaAux n s
[PROOFSTEP]
have u : ∀ k : ℕ, GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s :=
by
intro k; induction' k with k hk
· simp [Gamma]
· rw [← hk, Nat.succ_eq_add_one, ← add_assoc]
refine' (GammaAux_recurrence2 s (⌊1 - s.re⌋₊ + k) _).symm
rw [Nat.cast_add]
have i0 := Nat.sub_one_lt_floor (1 - s.re)
simp only [sub_sub_cancel_left] at i0
refine' lt_add_of_lt_of_nonneg i0 _
rw [← Nat.cast_zero, Nat.cast_le]; exact Nat.zero_le k
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
⊢ ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
[PROOFSTEP]
intro k
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
⊢ GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
[PROOFSTEP]
induction' k with k hk
[GOAL]
case zero
s : ℂ
n : ℕ
h1 : -s.re < ↑n
⊢ GammaAux (⌊1 - s.re⌋₊ + Nat.zero) s = Gamma s
[PROOFSTEP]
simp [Gamma]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ GammaAux (⌊1 - s.re⌋₊ + Nat.succ k) s = Gamma s
[PROOFSTEP]
rw [← hk, Nat.succ_eq_add_one, ← add_assoc]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ GammaAux (⌊1 - s.re⌋₊ + k + 1) s = GammaAux (⌊1 - s.re⌋₊ + k) s
[PROOFSTEP]
refine' (GammaAux_recurrence2 s (⌊1 - s.re⌋₊ + k) _).symm
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ -s.re < ↑(⌊1 - s.re⌋₊ + k)
[PROOFSTEP]
rw [Nat.cast_add]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k
[PROOFSTEP]
have i0 := Nat.sub_one_lt_floor (1 - s.re)
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
i0 : 1 - s.re - 1 < ↑⌊1 - s.re⌋₊
⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k
[PROOFSTEP]
simp only [sub_sub_cancel_left] at i0
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
i0 : -s.re < ↑⌊1 - s.re⌋₊
⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k
[PROOFSTEP]
refine' lt_add_of_lt_of_nonneg i0 _
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
i0 : -s.re < ↑⌊1 - s.re⌋₊
⊢ 0 ≤ ↑k
[PROOFSTEP]
rw [← Nat.cast_zero, Nat.cast_le]
[GOAL]
case succ
s : ℂ
n : ℕ
h1 : -s.re < ↑n
k : ℕ
hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
i0 : -s.re < ↑⌊1 - s.re⌋₊
⊢ 0 ≤ k
[PROOFSTEP]
exact Nat.zero_le k
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ Gamma s = GammaAux n s
[PROOFSTEP]
convert (u <| n - ⌊1 - s.re⌋₊).symm
[GOAL]
case h.e'_3.h.e'_1
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ n = ⌊1 - s.re⌋₊ + (n - ⌊1 - s.re⌋₊)
[PROOFSTEP]
rw [Nat.add_sub_of_le]
[GOAL]
case h.e'_3.h.e'_1
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ ⌊1 - s.re⌋₊ ≤ n
[PROOFSTEP]
by_cases 0 ≤ 1 - s.re
[GOAL]
case h.e'_3.h.e'_1
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
⊢ ⌊1 - s.re⌋₊ ≤ n
[PROOFSTEP]
by_cases 0 ≤ 1 - s.re
[GOAL]
case pos
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : 0 ≤ 1 - s.re
⊢ ⌊1 - s.re⌋₊ ≤ n
[PROOFSTEP]
apply Nat.le_of_lt_succ
[GOAL]
case pos.a
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : 0 ≤ 1 - s.re
⊢ ⌊1 - s.re⌋₊ < Nat.succ n
[PROOFSTEP]
exact_mod_cast lt_of_le_of_lt (Nat.floor_le h) (by linarith : 1 - s.re < n + 1)
[GOAL]
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : 0 ≤ 1 - s.re
⊢ 1 - s.re < ↑n + 1
[PROOFSTEP]
linarith
[GOAL]
case neg
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : ¬0 ≤ 1 - s.re
⊢ ⌊1 - s.re⌋₊ ≤ n
[PROOFSTEP]
rw [Nat.floor_of_nonpos]
[GOAL]
case neg
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : ¬0 ≤ 1 - s.re
⊢ 0 ≤ n
case neg
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : ¬0 ≤ 1 - s.re
⊢ 1 - s.re ≤ 0
[PROOFSTEP]
linarith
[GOAL]
case neg
s : ℂ
n : ℕ
h1 : -s.re < ↑n
u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s
h : ¬0 ≤ 1 - s.re
⊢ 1 - s.re ≤ 0
[PROOFSTEP]
linarith
[GOAL]
s : ℂ
h2 : s ≠ 0
⊢ Gamma (s + 1) = s * Gamma s
[PROOFSTEP]
let n := ⌊1 - s.re⌋₊
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
⊢ Gamma (s + 1) = s * Gamma s
[PROOFSTEP]
have t1 : -s.re < n := by simpa only [sub_sub_cancel_left] using Nat.sub_one_lt_floor (1 - s.re)
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
⊢ -s.re < ↑n
[PROOFSTEP]
simpa only [sub_sub_cancel_left] using Nat.sub_one_lt_floor (1 - s.re)
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
⊢ Gamma (s + 1) = s * Gamma s
[PROOFSTEP]
have t2 : -(s + 1).re < n := by rw [add_re, one_re]; linarith
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
⊢ -(s + 1).re < ↑n
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
⊢ -(s.re + 1) < ↑n
[PROOFSTEP]
linarith
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
t2 : -(s + 1).re < ↑n
⊢ Gamma (s + 1) = s * Gamma s
[PROOFSTEP]
rw [Gamma_eq_GammaAux s n t1, Gamma_eq_GammaAux (s + 1) n t2, GammaAux_recurrence1 s n t1]
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
t2 : -(s + 1).re < ↑n
⊢ GammaAux n (s + 1) = s * (GammaAux n (s + 1) / s)
[PROOFSTEP]
field_simp
[GOAL]
s : ℂ
h2 : s ≠ 0
n : ℕ := ⌊1 - s.re⌋₊
t1 : -s.re < ↑n
t2 : -(s + 1).re < ↑n
⊢ GammaAux ⌊1 - s.re⌋₊ (s + 1) * s = s * GammaAux ⌊1 - s.re⌋₊ (s + 1)
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ -s.re < ↑0
[PROOFSTEP]
norm_cast
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ -s.re < 0
[PROOFSTEP]
linarith
[GOAL]
⊢ Gamma 1 = 1
[PROOFSTEP]
rw [Gamma_eq_integral]
[GOAL]
⊢ GammaIntegral 1 = 1
⊢ 0 < 1.re
[PROOFSTEP]
simpa using GammaIntegral_one
[GOAL]
⊢ 0 < 1.re
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ Gamma (↑n + 1) = ↑n !
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
⊢ Gamma (↑Nat.zero + 1) = ↑Nat.zero !
[PROOFSTEP]
simpa using Gamma_one
[GOAL]
case succ
n : ℕ
hn : Gamma (↑n + 1) = ↑n !
⊢ Gamma (↑(Nat.succ n) + 1) = ↑(Nat.succ n)!
[PROOFSTEP]
rw [Gamma_add_one n.succ <| Nat.cast_ne_zero.mpr <| Nat.succ_ne_zero n]
[GOAL]
case succ
n : ℕ
hn : Gamma (↑n + 1) = ↑n !
⊢ ↑(Nat.succ n) * Gamma ↑(Nat.succ n) = ↑(Nat.succ n)!
[PROOFSTEP]
simp only [Nat.cast_succ, Nat.factorial_succ, Nat.cast_mul]
[GOAL]
case succ
n : ℕ
hn : Gamma (↑n + 1) = ↑n !
⊢ (↑n + 1) * Gamma (↑n + 1) = (↑n + 1) * ↑n !
[PROOFSTEP]
congr
[GOAL]
⊢ Gamma 0 = 0
[PROOFSTEP]
simp_rw [Gamma, zero_re, sub_zero, Nat.floor_one, GammaAux, div_zero]
[GOAL]
n : ℕ
⊢ Gamma (-↑n) = 0
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
⊢ Gamma (-↑Nat.zero) = 0
[PROOFSTEP]
rw [Nat.cast_zero, neg_zero, Gamma_zero]
[GOAL]
case succ
n : ℕ
IH : Gamma (-↑n) = 0
⊢ Gamma (-↑(Nat.succ n)) = 0
[PROOFSTEP]
have A : -(n.succ : ℂ) ≠ 0 := by
rw [neg_ne_zero, Nat.cast_ne_zero]
apply Nat.succ_ne_zero
[GOAL]
n : ℕ
IH : Gamma (-↑n) = 0
⊢ -↑(Nat.succ n) ≠ 0
[PROOFSTEP]
rw [neg_ne_zero, Nat.cast_ne_zero]
[GOAL]
n : ℕ
IH : Gamma (-↑n) = 0
⊢ Nat.succ n ≠ 0
[PROOFSTEP]
apply Nat.succ_ne_zero
[GOAL]
case succ
n : ℕ
IH : Gamma (-↑n) = 0
A : -↑(Nat.succ n) ≠ 0
⊢ Gamma (-↑(Nat.succ n)) = 0
[PROOFSTEP]
have : -(n : ℂ) = -↑n.succ + 1 := by simp
[GOAL]
n : ℕ
IH : Gamma (-↑n) = 0
A : -↑(Nat.succ n) ≠ 0
⊢ -↑n = -↑(Nat.succ n) + 1
[PROOFSTEP]
simp
[GOAL]
case succ
n : ℕ
IH : Gamma (-↑n) = 0
A : -↑(Nat.succ n) ≠ 0
this : -↑n = -↑(Nat.succ n) + 1
⊢ Gamma (-↑(Nat.succ n)) = 0
[PROOFSTEP]
rw [this, Gamma_add_one _ A] at IH
[GOAL]
case succ
n : ℕ
IH : -↑(Nat.succ n) * Gamma (-↑(Nat.succ n)) = 0
A : -↑(Nat.succ n) ≠ 0
this : -↑n = -↑(Nat.succ n) + 1
⊢ Gamma (-↑(Nat.succ n)) = 0
[PROOFSTEP]
contrapose! IH
[GOAL]
case succ
n : ℕ
A : -↑(Nat.succ n) ≠ 0
this : -↑n = -↑(Nat.succ n) + 1
IH : Gamma (-↑(Nat.succ n)) ≠ 0
⊢ -↑(Nat.succ n) * Gamma (-↑(Nat.succ n)) ≠ 0
[PROOFSTEP]
exact mul_ne_zero A IH
[GOAL]
s : ℂ
⊢ Gamma (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (Gamma s)
[PROOFSTEP]
suffices : ∀ (n : ℕ) (s : ℂ), GammaAux n (conj s) = conj (GammaAux n s)
[GOAL]
s : ℂ
this : ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
⊢ Gamma (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (Gamma s)
case this s : ℂ ⊢ ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
[PROOFSTEP]
exact this _ _
[GOAL]
case this
s : ℂ
⊢ ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
[PROOFSTEP]
intro n
[GOAL]
case this
s : ℂ
n : ℕ
⊢ ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case this.zero
s : ℂ
⊢ ∀ (s : ℂ), GammaAux Nat.zero (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux Nat.zero s)
[PROOFSTEP]
rw [GammaAux]
[GOAL]
case this.zero
s : ℂ
⊢ ∀ (s : ℂ), GammaIntegral (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaIntegral s)
[PROOFSTEP]
exact GammaIntegral_conj
[GOAL]
case this.succ
s : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
⊢ ∀ (s : ℂ), GammaAux (Nat.succ n) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux (Nat.succ n) s)
[PROOFSTEP]
intro s
[GOAL]
case this.succ
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
⊢ GammaAux (Nat.succ n) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux (Nat.succ n) s)
[PROOFSTEP]
rw [GammaAux]
[GOAL]
case this.succ
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
⊢ (fun s => GammaAux n (s + 1) / s) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) ((fun s => GammaAux n (s + 1) / s) s)
[PROOFSTEP]
dsimp only
[GOAL]
case this.succ
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1) / s)
[PROOFSTEP]
rw [div_eq_mul_inv _ s, RingHom.map_mul, conj_inv, ← div_eq_mul_inv]
[GOAL]
case this.succ
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1)) / ↑(starRingEnd ℂ) s
[PROOFSTEP]
suffices conj s + 1 = conj (s + 1) by rw [this, IH]
[GOAL]
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
this : ↑(starRingEnd ℂ) s + 1 = ↑(starRingEnd ℂ) (s + 1)
⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1)) / ↑(starRingEnd ℂ) s
[PROOFSTEP]
rw [this, IH]
[GOAL]
case this.succ
s✝ : ℂ
n : ℕ
IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s)
s : ℂ
⊢ ↑(starRingEnd ℂ) s + 1 = ↑(starRingEnd ℂ) (s + 1)
[PROOFSTEP]
rw [RingHom.map_add, RingHom.map_one]
[GOAL]
s : ℂ
⊢ GammaIntegral s = mellin (fun x => ↑(Real.exp (-x))) s
[PROOFSTEP]
simp only [mellin, GammaIntegral, smul_eq_mul, mul_comm]
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ HasDerivAt GammaIntegral (∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) * (↑(Real.log t) * ↑(Real.exp (-t)))) s
[PROOFSTEP]
rw [GammaIntegral_eq_mellin]
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ HasDerivAt (mellin fun x => ↑(Real.exp (-x))) (∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) * (↑(Real.log t) * ↑(Real.exp (-t))))
s
[PROOFSTEP]
convert (mellin_hasDerivAt_of_isBigO_rpow (E := ℂ) _ _ (lt_add_one _) _ hs).2
[GOAL]
case convert_2
s : ℂ
hs : 0 < s.re
⊢ LocallyIntegrableOn (fun x => ↑(Real.exp (-x))) (Ioi 0)
[PROOFSTEP]
refine' (Continuous.continuousOn _).locallyIntegrableOn measurableSet_Ioi
[GOAL]
case convert_2
s : ℂ
hs : 0 < s.re
⊢ Continuous fun x => ↑(Real.exp (-x))
[PROOFSTEP]
exact continuous_ofReal.comp (Real.continuous_exp.comp continuous_neg)
[GOAL]
case convert_3
s : ℂ
hs : 0 < s.re
⊢ (fun x => ↑(Real.exp (-x))) =O[atTop] fun x => x ^ (-(s.re + 1))
[PROOFSTEP]
rw [← isBigO_norm_left]
[GOAL]
case convert_3
s : ℂ
hs : 0 < s.re
⊢ (fun x => ‖↑(Real.exp (-x))‖) =O[atTop] fun x => x ^ (-(s.re + 1))
[PROOFSTEP]
simp_rw [Complex.norm_eq_abs, abs_ofReal, ← Real.norm_eq_abs, isBigO_norm_left]
[GOAL]
case convert_3
s : ℂ
hs : 0 < s.re
⊢ (fun x => Real.exp (-x)) =O[atTop] fun x => x ^ (-(s.re + 1))
[PROOFSTEP]
simpa only [neg_one_mul] using (isLittleO_exp_neg_mul_rpow_atTop zero_lt_one _).isBigO
[GOAL]
case convert_4
s : ℂ
hs : 0 < s.re
⊢ (fun x => ↑(Real.exp (-x))) =O[𝓝[Ioi 0] 0] fun x => x ^ (-0)
[PROOFSTEP]
simp_rw [neg_zero, rpow_zero]
[GOAL]
case convert_4
s : ℂ
hs : 0 < s.re
⊢ (fun x => ↑(Real.exp (-x))) =O[𝓝[Ioi 0] 0] fun x => 1
[PROOFSTEP]
refine' isBigO_const_of_tendsto (_ : Tendsto _ _ (𝓝 (1 : ℂ))) one_ne_zero
[GOAL]
case convert_4
s : ℂ
hs : 0 < s.re
⊢ Tendsto (fun x => ↑(Real.exp (-x))) (𝓝[Ioi 0] 0) (𝓝 1)
[PROOFSTEP]
rw [(by simp : (1 : ℂ) = Real.exp (-0))]
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ 1 = ↑(Real.exp (-0))
[PROOFSTEP]
simp
[GOAL]
case convert_4
s : ℂ
hs : 0 < s.re
⊢ Tendsto (fun x => ↑(Real.exp (-x))) (𝓝[Ioi 0] 0) (𝓝 ↑(Real.exp (-0)))
[PROOFSTEP]
exact (continuous_ofReal.comp (Real.continuous_exp.comp continuous_neg)).continuousWithinAt
[GOAL]
s : ℂ
n : ℕ
h1 : 1 - s.re < ↑n
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ (GammaAux n) s
[PROOFSTEP]
induction' n with n hn generalizing s
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : 1 - s✝.re < ↑n
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℂ
h1 : 1 - s.re < ↑Nat.zero
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ (GammaAux Nat.zero) s
[PROOFSTEP]
refine' (hasDerivAt_GammaIntegral _).differentiableAt
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : 1 - s✝.re < ↑n
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℂ
h1 : 1 - s.re < ↑Nat.zero
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ 0 < s.re
[PROOFSTEP]
rw [Nat.cast_zero] at h1
[GOAL]
case zero
s✝ : ℂ
n : ℕ
h1✝ : 1 - s✝.re < ↑n
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℂ
h1 : 1 - s.re < 0
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ 0 < s.re
[PROOFSTEP]
linarith
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
hn : ∀ (s : ℂ), 1 - s.re < ↑n → (∀ (m : ℕ), s ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) s
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ (GammaAux (Nat.succ n)) s
[PROOFSTEP]
dsimp only [GammaAux]
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
hn : ∀ (s : ℂ), 1 - s.re < ↑n → (∀ (m : ℕ), s ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) s
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s
[PROOFSTEP]
specialize hn (s + 1)
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s
[PROOFSTEP]
have a : 1 - (s + 1).re < ↑n := by rw [Nat.cast_succ] at h1 ; rw [Complex.add_re, Complex.one_re]; linarith
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
⊢ 1 - (s + 1).re < ↑n
[PROOFSTEP]
rw [Nat.cast_succ] at h1
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑n + 1
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
⊢ 1 - (s + 1).re < ↑n
[PROOFSTEP]
rw [Complex.add_re, Complex.one_re]
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑n + 1
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
⊢ 1 - (s.re + 1) < ↑n
[PROOFSTEP]
linarith
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s
[PROOFSTEP]
have b : ∀ m : ℕ, s + 1 ≠ -m := by
intro m; have := h2 (1 + m)
contrapose! this
rw [← eq_sub_iff_add_eq] at this
simpa using this
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
⊢ ∀ (m : ℕ), s + 1 ≠ -↑m
[PROOFSTEP]
intro m
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
m : ℕ
⊢ s + 1 ≠ -↑m
[PROOFSTEP]
have := h2 (1 + m)
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
m : ℕ
this : s ≠ -↑(1 + m)
⊢ s + 1 ≠ -↑m
[PROOFSTEP]
contrapose! this
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
m : ℕ
this : s + 1 = -↑m
⊢ s = -↑(1 + m)
[PROOFSTEP]
rw [← eq_sub_iff_add_eq] at this
[GOAL]
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
m : ℕ
this : s = -↑m - 1
⊢ s = -↑(1 + m)
[PROOFSTEP]
simpa using this
[GOAL]
case succ
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
b : ∀ (m : ℕ), s + 1 ≠ -↑m
⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s
[PROOFSTEP]
refine' DifferentiableAt.div (DifferentiableAt.comp _ (hn a b) _) _ _
[GOAL]
case succ.refine'_1
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
b : ∀ (m : ℕ), s + 1 ≠ -↑m
⊢ DifferentiableAt ℂ (fun s => s + 1) s
[PROOFSTEP]
rw [differentiableAt_add_const_iff (1 : ℂ)]
[GOAL]
case succ.refine'_1
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
b : ∀ (m : ℕ), s + 1 ≠ -↑m
⊢ DifferentiableAt ℂ (fun s => s) s
[PROOFSTEP]
exact differentiableAt_id
[GOAL]
case succ.refine'_2
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
b : ∀ (m : ℕ), s + 1 ≠ -↑m
⊢ DifferentiableAt ℂ (fun s => s) s
[PROOFSTEP]
exact differentiableAt_id
[GOAL]
case succ.refine'_3
s✝ : ℂ
n✝ : ℕ
h1✝ : 1 - s✝.re < ↑n✝
h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n : ℕ
s : ℂ
h1 : 1 - s.re < ↑(Nat.succ n)
h2 : ∀ (m : ℕ), s ≠ -↑m
hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1)
a : 1 - (s + 1).re < ↑n
b : ∀ (m : ℕ), s + 1 ≠ -↑m
⊢ s ≠ 0
[PROOFSTEP]
simpa using h2 0
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ Gamma s
[PROOFSTEP]
let n := ⌊1 - s.re⌋₊ + 1
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
⊢ DifferentiableAt ℂ Gamma s
[PROOFSTEP]
have hn : 1 - s.re < n := by exact_mod_cast Nat.lt_floor_add_one (1 - s.re)
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
⊢ 1 - s.re < ↑n
[PROOFSTEP]
exact_mod_cast Nat.lt_floor_add_one (1 - s.re)
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
⊢ DifferentiableAt ℂ Gamma s
[PROOFSTEP]
apply (differentiableAt_GammaAux s n hn hs).congr_of_eventuallyEq
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
⊢ Gamma =ᶠ[𝓝 s] GammaAux n
[PROOFSTEP]
let S := {t : ℂ | 1 - t.re < n}
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ Gamma =ᶠ[𝓝 s] GammaAux n
[PROOFSTEP]
have : S ∈ 𝓝 s := by
rw [mem_nhds_iff]; use S
refine' ⟨Subset.rfl, _, hn⟩
have : S = re ⁻¹' Ioi (1 - n : ℝ) := by ext; rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq];
exact sub_lt_comm
rw [this]
refine' Continuous.isOpen_preimage continuous_re _ isOpen_Ioi
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ S ∈ 𝓝 s
[PROOFSTEP]
rw [mem_nhds_iff]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ ∃ t, t ⊆ S ∧ IsOpen t ∧ s ∈ t
[PROOFSTEP]
use S
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ S ⊆ S ∧ IsOpen S ∧ s ∈ S
[PROOFSTEP]
refine' ⟨Subset.rfl, _, hn⟩
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ IsOpen S
[PROOFSTEP]
have : S = re ⁻¹' Ioi (1 - n : ℝ) := by ext; rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq];
exact sub_lt_comm
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
⊢ S = re ⁻¹' Ioi (1 - ↑n)
[PROOFSTEP]
ext
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
x✝ : ℂ
⊢ x✝ ∈ S ↔ x✝ ∈ re ⁻¹' Ioi (1 - ↑n)
[PROOFSTEP]
rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq]
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
x✝ : ℂ
⊢ 1 - x✝.re < ↑n ↔ 1 - ↑n < x✝.re
[PROOFSTEP]
exact sub_lt_comm
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S = re ⁻¹' Ioi (1 - ↑n)
⊢ IsOpen S
[PROOFSTEP]
rw [this]
[GOAL]
case h
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S = re ⁻¹' Ioi (1 - ↑n)
⊢ IsOpen (re ⁻¹' Ioi (1 - ↑n))
[PROOFSTEP]
refine' Continuous.isOpen_preimage continuous_re _ isOpen_Ioi
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S ∈ 𝓝 s
⊢ Gamma =ᶠ[𝓝 s] GammaAux n
[PROOFSTEP]
apply eventuallyEq_of_mem this
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S ∈ 𝓝 s
⊢ EqOn Gamma (GammaAux n) S
[PROOFSTEP]
intro t ht
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S ∈ 𝓝 s
t : ℂ
ht : t ∈ S
⊢ Gamma t = GammaAux n t
[PROOFSTEP]
rw [mem_setOf_eq] at ht
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S ∈ 𝓝 s
t : ℂ
ht : 1 - t.re < ↑n
⊢ Gamma t = GammaAux n t
[PROOFSTEP]
apply Gamma_eq_GammaAux
[GOAL]
case h1
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ := ⌊1 - s.re⌋₊ + 1
hn : 1 - s.re < ↑n
S : Set ℂ := {t | 1 - t.re < ↑n}
this : S ∈ 𝓝 s
t : ℂ
ht : 1 - t.re < ↑n
⊢ -t.re < ↑n
[PROOFSTEP]
linarith
[GOAL]
⊢ Tendsto (fun z => z * Gamma z) (𝓝[{0}ᶜ] 0) (𝓝 1)
[PROOFSTEP]
rw [show 𝓝 (1 : ℂ) = 𝓝 (Gamma (0 + 1)) by simp only [zero_add, Complex.Gamma_one]]
[GOAL]
⊢ 𝓝 1 = 𝓝 (Gamma (0 + 1))
[PROOFSTEP]
simp only [zero_add, Complex.Gamma_one]
[GOAL]
⊢ Tendsto (fun z => z * Gamma z) (𝓝[{0}ᶜ] 0) (𝓝 (Gamma (0 + 1)))
[PROOFSTEP]
convert (Tendsto.mono_left _ nhdsWithin_le_nhds).congr' (eventuallyEq_of_mem self_mem_nhdsWithin Complex.Gamma_add_one)
[GOAL]
case convert_1
⊢ Tendsto (fun x => Gamma (x + 1)) (𝓝 0) (𝓝 (Gamma (0 + 1)))
[PROOFSTEP]
refine' ContinuousAt.comp (g := Gamma) _ (continuous_id.add continuous_const).continuousAt
[GOAL]
case convert_1
⊢ ContinuousAt Gamma (0 + 1)
[PROOFSTEP]
refine' (Complex.differentiableAt_Gamma _ fun m => _).continuousAt
[GOAL]
case convert_1
m : ℕ
⊢ 0 + 1 ≠ -↑m
[PROOFSTEP]
rw [zero_add, ← ofReal_nat_cast, ← ofReal_neg, ← ofReal_one, Ne.def, ofReal_inj]
[GOAL]
case convert_1
m : ℕ
⊢ ¬1 = -↑m
[PROOFSTEP]
refine' (lt_of_le_of_lt _ zero_lt_one).ne'
[GOAL]
case convert_1
m : ℕ
⊢ -↑m ≤ 0
[PROOFSTEP]
exact neg_nonpos.mpr (Nat.cast_nonneg _)
[GOAL]
s : ℝ
hs : 0 < s
⊢ Gamma s = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
rw [Gamma, Complex.Gamma_eq_integral (by rwa [Complex.ofReal_re] : 0 < Complex.re s)]
[GOAL]
s : ℝ
hs : 0 < s
⊢ 0 < (↑s).re
[PROOFSTEP]
rwa [Complex.ofReal_re]
[GOAL]
s : ℝ
hs : 0 < s
⊢ (Complex.GammaIntegral ↑s).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
dsimp only [Complex.GammaIntegral]
[GOAL]
s : ℝ
hs : 0 < s
⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ (↑s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
simp_rw [← Complex.ofReal_one, ← Complex.ofReal_sub]
[GOAL]
s : ℝ
hs : 0 < s
⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
suffices
∫ x : ℝ in Ioi 0, ↑(exp (-x)) * (x : ℂ) ^ ((s - 1 : ℝ) : ℂ) = ∫ x : ℝ in Ioi 0, ((exp (-x) * x ^ (s - 1) : ℝ) : ℂ)
by
have cc : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl
conv_lhs => rw [this]; enter [1, 2, x]; rw [cc]
rw [_root_.integral_ofReal, ← cc, Complex.ofReal_re]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
have cc : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
conv_lhs => rw [this]; enter [1, 2, x]; rw [cc]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
| (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re
[PROOFSTEP]
rw [this]; enter [1, 2, x]; rw [cc]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
| (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re
[PROOFSTEP]
rw [this]; enter [1, 2, x]; rw [cc]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
| (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re
[PROOFSTEP]
rw [this]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
| (∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))).re
[PROOFSTEP]
enter [1, 2, x]
[GOAL]
case h
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
x : ℝ
| ↑(exp (-x) * x ^ (s - 1))
[PROOFSTEP]
rw [cc]
[GOAL]
s : ℝ
hs : 0 < s
this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
cc : ∀ (r : ℝ), ↑r = ↑r
⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
rw [_root_.integral_ofReal, ← cc, Complex.ofReal_re]
[GOAL]
s : ℝ
hs : 0 < s
⊢ ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun x hx => _
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ↑(exp (-x) * x ^ (s - 1))
[PROOFSTEP]
push_cast
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑(x ^ (s - 1))
[PROOFSTEP]
rw [Complex.ofReal_cpow (le_of_lt hx)]
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑x ^ ↑(s - 1)
[PROOFSTEP]
push_cast
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑x ^ (↑s - 1)
[PROOFSTEP]
rfl
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ Gamma (s + 1) = s * Gamma s
[PROOFSTEP]
simp_rw [Gamma]
[GOAL]
s : ℝ
hs : s ≠ 0
⊢ (Complex.Gamma ↑(s + 1)).re = s * (Complex.Gamma ↑s).re
[PROOFSTEP]
rw [Complex.ofReal_add, Complex.ofReal_one, Complex.Gamma_add_one, Complex.ofReal_mul_re]
[GOAL]
case h2
s : ℝ
hs : s ≠ 0
⊢ ↑s ≠ 0
[PROOFSTEP]
rwa [Complex.ofReal_ne_zero]
[GOAL]
⊢ Gamma 1 = 1
[PROOFSTEP]
rw [Gamma, Complex.ofReal_one, Complex.Gamma_one, Complex.one_re]
[GOAL]
s : ℝ
⊢ Complex.Gamma ↑s = ↑(Gamma s)
[PROOFSTEP]
rw [Gamma, eq_comm, ← Complex.conj_eq_iff_re, ← Complex.Gamma_conj, Complex.conj_ofReal]
[GOAL]
n : ℕ
⊢ Gamma (↑n + 1) = ↑n !
[PROOFSTEP]
rw [Gamma, Complex.ofReal_add, Complex.ofReal_nat_cast, Complex.ofReal_one, Complex.Gamma_nat_eq_factorial, ←
Complex.ofReal_nat_cast, Complex.ofReal_re]
[GOAL]
⊢ Gamma 0 = 0
[PROOFSTEP]
simpa only [← Complex.ofReal_zero, Complex.Gamma_ofReal, Complex.ofReal_inj] using Complex.Gamma_zero
[GOAL]
n : ℕ
⊢ Gamma (-↑n) = 0
[PROOFSTEP]
simpa only [← Complex.ofReal_nat_cast, ← Complex.ofReal_neg, Complex.Gamma_ofReal, Complex.ofReal_eq_zero] using
Complex.Gamma_neg_nat_eq_zero n
[GOAL]
s : ℝ
hs : 0 < s
⊢ 0 < Gamma s
[PROOFSTEP]
rw [Gamma_eq_integral hs]
[GOAL]
s : ℝ
hs : 0 < s
⊢ 0 < ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
have : (Function.support fun x : ℝ => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 :=
by
rw [inter_eq_right_iff_subset]
intro x hx
rw [Function.mem_support]
exact mul_ne_zero (exp_pos _).ne' (rpow_pos_of_pos hx _).ne'
[GOAL]
s : ℝ
hs : 0 < s
⊢ (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
[PROOFSTEP]
rw [inter_eq_right_iff_subset]
[GOAL]
s : ℝ
hs : 0 < s
⊢ Ioi 0 ⊆ Function.support fun x => exp (-x) * x ^ (s - 1)
[PROOFSTEP]
intro x hx
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ x ∈ Function.support fun x => exp (-x) * x ^ (s - 1)
[PROOFSTEP]
rw [Function.mem_support]
[GOAL]
s : ℝ
hs : 0 < s
x : ℝ
hx : x ∈ Ioi 0
⊢ exp (-x) * x ^ (s - 1) ≠ 0
[PROOFSTEP]
exact mul_ne_zero (exp_pos _).ne' (rpow_pos_of_pos hx _).ne'
[GOAL]
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ 0 < ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1)
[PROOFSTEP]
rw [set_integral_pos_iff_support_of_nonneg_ae]
[GOAL]
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ 0 < ↑↑volume ((Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0)
[PROOFSTEP]
rw [this, volume_Ioi, ← ENNReal.ofReal_zero]
[GOAL]
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ ENNReal.ofReal 0 < ⊤
[PROOFSTEP]
exact ENNReal.ofReal_lt_top
[GOAL]
case hf
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ 0 ≤ᵐ[Measure.restrict volume (Ioi 0)] fun x => exp (-x) * x ^ (s - 1)
[PROOFSTEP]
refine' eventually_of_mem (self_mem_ae_restrict measurableSet_Ioi) _
[GOAL]
case hf
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ ∀ (x : ℝ), x ∈ Ioi 0 → OfNat.ofNat 0 x ≤ (fun x => exp (-x) * x ^ (s - 1)) x
[PROOFSTEP]
exact fun x hx => (mul_pos (exp_pos _) (rpow_pos_of_pos hx _)).le
[GOAL]
case hfi
s : ℝ
hs : 0 < s
this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0
⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 0)
[PROOFSTEP]
exact GammaIntegral_convergent hs
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ Gamma s ≠ 0
[PROOFSTEP]
suffices ∀ {n : ℕ}, -(n : ℝ) < s → Gamma s ≠ 0 by
apply this
swap; exact ⌊-s⌋₊ + 1
rw [neg_lt, Nat.cast_add, Nat.cast_one]
exact Nat.lt_floor_add_one _
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
apply this
[GOAL]
case a
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
⊢ -↑?n < s
case n s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ ℕ
[PROOFSTEP]
swap
[GOAL]
case n
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
⊢ ℕ
case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -↑?n < s
[PROOFSTEP]
exact ⌊-s⌋₊ + 1
[GOAL]
case a
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
⊢ -↑(⌊-s⌋₊ + 1) < s
[PROOFSTEP]
rw [neg_lt, Nat.cast_add, Nat.cast_one]
[GOAL]
case a
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
⊢ -s < ↑⌊-s⌋₊ + 1
[PROOFSTEP]
exact Nat.lt_floor_add_one _
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0
[PROOFSTEP]
intro n
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
n : ℕ
⊢ -↑n < s → Gamma s ≠ 0
[PROOFSTEP]
induction' n with _ n_ih generalizing s
[GOAL]
case zero
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ -↑Nat.zero < s → Gamma s ≠ 0
[PROOFSTEP]
intro hs
[GOAL]
case zero
s✝ : ℝ
hs✝¹ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℝ
hs✝ : ∀ (m : ℕ), s ≠ -↑m
hs : -↑Nat.zero < s
⊢ Gamma s ≠ 0
[PROOFSTEP]
refine' (Gamma_pos_of_pos _).ne'
[GOAL]
case zero
s✝ : ℝ
hs✝¹ : ∀ (m : ℕ), s✝ ≠ -↑m
s : ℝ
hs✝ : ∀ (m : ℕ), s ≠ -↑m
hs : -↑Nat.zero < s
⊢ 0 < s
[PROOFSTEP]
rwa [Nat.cast_zero, neg_zero] at hs
[GOAL]
case succ
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ -↑(Nat.succ n✝) < s → Gamma s ≠ 0
[PROOFSTEP]
intro hs'
[GOAL]
case succ
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
⊢ Gamma s ≠ 0
[PROOFSTEP]
have : Gamma (s + 1) ≠ 0 := by
apply n_ih
· intro m
specialize hs (1 + m)
contrapose! hs
rw [← eq_sub_iff_add_eq] at hs
rw [hs]
push_cast
ring
· rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, neg_add] at hs'
linarith
[GOAL]
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
⊢ Gamma (s + 1) ≠ 0
[PROOFSTEP]
apply n_ih
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
⊢ ∀ (m : ℕ), s + 1 ≠ -↑m
[PROOFSTEP]
intro m
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
m : ℕ
⊢ s + 1 ≠ -↑m
[PROOFSTEP]
specialize hs (1 + m)
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs' : -↑(Nat.succ n✝) < s
m : ℕ
hs : s ≠ -↑(1 + m)
⊢ s + 1 ≠ -↑m
[PROOFSTEP]
contrapose! hs
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs' : -↑(Nat.succ n✝) < s
m : ℕ
hs : s + 1 = -↑m
⊢ s = -↑(1 + m)
[PROOFSTEP]
rw [← eq_sub_iff_add_eq] at hs
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs' : -↑(Nat.succ n✝) < s
m : ℕ
hs : s = -↑m - 1
⊢ s = -↑(1 + m)
[PROOFSTEP]
rw [hs]
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs' : -↑(Nat.succ n✝) < s
m : ℕ
hs : s = -↑m - 1
⊢ -↑m - 1 = -↑(1 + m)
[PROOFSTEP]
push_cast
[GOAL]
case hs
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs' : -↑(Nat.succ n✝) < s
m : ℕ
hs : s = -↑m - 1
⊢ -↑m - 1 = -(1 + ↑m)
[PROOFSTEP]
ring
[GOAL]
case a
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
⊢ -↑n✝ < s + 1
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, neg_add] at hs'
[GOAL]
case a
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑n✝ + -1 < s
⊢ -↑n✝ < s + 1
[PROOFSTEP]
linarith
[GOAL]
case succ
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
this : Gamma (s + 1) ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
rw [Gamma_add_one, mul_ne_zero_iff] at this
[GOAL]
case succ
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
this : s ≠ 0 ∧ Gamma s ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
exact this.2
[GOAL]
case succ
s✝ : ℝ
hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m
n✝ : ℕ
n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
hs' : -↑(Nat.succ n✝) < s
this : Gamma (s + 1) ≠ 0
⊢ s ≠ 0
[PROOFSTEP]
simpa using hs 0
[GOAL]
s : ℝ
⊢ Gamma s = 0 → ∃ m, s = -↑m
[PROOFSTEP]
contrapose!
[GOAL]
s : ℝ
⊢ (∀ (m : ℕ), s ≠ -↑m) → Gamma s ≠ 0
[PROOFSTEP]
exact Gamma_ne_zero
[GOAL]
s : ℝ
⊢ (∃ m, s = -↑m) → Gamma s = 0
[PROOFSTEP]
rintro ⟨m, rfl⟩
[GOAL]
case intro
m : ℕ
⊢ Gamma (-↑m) = 0
[PROOFSTEP]
exact Gamma_neg_nat_eq_zero m
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℝ Gamma s
[PROOFSTEP]
refine' (Complex.differentiableAt_Gamma _ _).hasDerivAt.real_of_complex.differentiableAt
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ ∀ (m : ℕ), ↑s ≠ -↑m
[PROOFSTEP]
simp_rw [← Complex.ofReal_nat_cast, ← Complex.ofReal_neg, Ne.def, Complex.ofReal_inj]
[GOAL]
s : ℝ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ ∀ (m : ℕ), ¬s = -↑m
[PROOFSTEP]
exact hs
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.Basic", "llama_tokens": 49468} |
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ Function.Injective fun A => ↑A.toSubring
[PROOFSTEP]
intro ⟨_, _⟩ ⟨_, _⟩ h
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
toSubring✝¹ : Subring K
mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier
toSubring✝ : Subring K
mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier
h :
(fun A => ↑A.toSubring) { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } =
(fun A => ↑A.toSubring) { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }
⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } =
{ toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }
[PROOFSTEP]
replace h := SetLike.coe_injective' h
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
toSubring✝¹ : Subring K
mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier
toSubring✝ : Subring K
mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier
h :
{ toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ }.toSubring =
{ toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring
⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } =
{ toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
K : Type u
inst✝ : Field K
A x y : ValuationSubring K
h : x.toSubring = y.toSubring
⊢ x = y
[PROOFSTEP]
cases x
[GOAL]
case mk
K : Type u
inst✝ : Field K
A y : ValuationSubring K
toSubring✝ : Subring K
mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier
h : { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring = y.toSubring
⊢ { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } = y
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
K : Type u
inst✝ : Field K
A : ValuationSubring K
toSubring✝¹ : Subring K
mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier
toSubring✝ : Subring K
mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier
h :
{ toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ }.toSubring =
{ toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring
⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } =
{ toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ CommRing { x // x ∈ A.toSubring }
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ IsDomain { x // x ∈ A.toSubring }
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases (b : K) = 0
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases (b : K) = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑b = 0
⊢ a * 0 = b ∨ b * 0 = a
[PROOFSTEP]
left
[GOAL]
case h.h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑b = 0
⊢ a * 0 = b
[PROOFSTEP]
ext
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑b = 0
⊢ ↑(a * 0) = ↑b
[PROOFSTEP]
simp [h]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ¬↑b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases (a : K) = 0
[GOAL]
case neg
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ¬↑b = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
by_cases (a : K) = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ↑a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ↑a = 0
⊢ a * 0 = b ∨ b * 0 = a
[PROOFSTEP]
right
[GOAL]
case h.h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ↑a = 0
⊢ b * 0 = a
[PROOFSTEP]
ext
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ↑a = 0
⊢ ↑(b * 0) = ↑a
[PROOFSTEP]
simp [h]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
cases' A.mem_or_inv_mem (a / b) with hh hh
[GOAL]
case neg.inl
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑a / ↑b ∈ A
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use⟨a / b, hh⟩
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑a / ↑b ∈ A
⊢ a * { val := ↑a / ↑b, property := hh } = b ∨ b * { val := ↑a / ↑b, property := hh } = a
[PROOFSTEP]
right
[GOAL]
case h.h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑a / ↑b ∈ A
⊢ b * { val := ↑a / ↑b, property := hh } = a
[PROOFSTEP]
ext
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑a / ↑b ∈ A
⊢ ↑(b * { val := ↑a / ↑b, property := hh }) = ↑a
[PROOFSTEP]
field_simp
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑a / ↑b ∈ A
⊢ ↑b * ↑a = ↑a * ↑b
[PROOFSTEP]
ring
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : (↑a / ↑b)⁻¹ ∈ A
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
rw [show (a / b : K)⁻¹ = b / a by field_simp] at hh
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : (↑a / ↑b)⁻¹ ∈ A
⊢ (↑a / ↑b)⁻¹ = ↑b / ↑a
[PROOFSTEP]
field_simp
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑b / ↑a ∈ A
⊢ ∃ c, a * c = b ∨ b * c = a
[PROOFSTEP]
use⟨b / a, hh⟩
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑b / ↑a ∈ A
⊢ a * { val := ↑b / ↑a, property := hh } = b ∨ b * { val := ↑b / ↑a, property := hh } = a
[PROOFSTEP]
left
[GOAL]
case h.h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑b / ↑a ∈ A
⊢ a * { val := ↑b / ↑a, property := hh } = b
[PROOFSTEP]
ext
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑b / ↑a ∈ A
⊢ ↑(a * { val := ↑b / ↑a, property := hh }) = ↑b
[PROOFSTEP]
field_simp
[GOAL]
case h.h.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h✝ : ¬↑b = 0
h : ¬↑a = 0
hh : ↑b / ↑a ∈ A
⊢ ↑a * ↑b = ↑b * ↑a
[PROOFSTEP]
ring
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ Algebra { x // x ∈ A.toSubring } K
[PROOFSTEP]
infer_instance
-- Porting note: Somehow it cannot find this instance and I'm too lazy to debug. wrong prio?
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
by_cases z = 0
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
by_cases z = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : z = 0
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
use(0, 1)
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : z = 0
⊢ z * ↑(algebraMap { x // x ∈ A } K) ↑(0, 1).snd = ↑(algebraMap { x // x ∈ A } K) (0, 1).fst
[PROOFSTEP]
simp [h]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : ¬z = 0
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
cases' A.mem_or_inv_mem z with hh hh
[GOAL]
case neg.inl
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : ¬z = 0
hh : z ∈ A
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
use(⟨z, hh⟩, 1)
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : ¬z = 0
hh : z ∈ A
⊢ z * ↑(algebraMap { x // x ∈ A } K) ↑({ val := z, property := hh }, 1).snd =
↑(algebraMap { x // x ∈ A } K) ({ val := z, property := hh }, 1).fst
[PROOFSTEP]
simp
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : ¬z = 0
hh : z⁻¹ ∈ A
⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst
[PROOFSTEP]
refine ⟨⟨1, ⟨⟨_, hh⟩, ?_⟩⟩, mul_inv_cancel h⟩
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A : ValuationSubring K
z : K
h : ¬z = 0
hh : z⁻¹ ∈ A
⊢ { val := z⁻¹, property := hh } ∈ nonZeroDivisors { x // x ∈ A }
[PROOFSTEP]
exact mem_nonZeroDivisors_iff_ne_zero.2 fun c => h (inv_eq_zero.mp (congr_arg Subtype.val c))
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑(algebraMap { x // x ∈ A } K) a = ↑(algebraMap { x // x ∈ A } K) b
⊢ ↑1 * a = ↑1 * b
[PROOFSTEP]
ext
[GOAL]
case a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ A }
h : ↑(algebraMap { x // x ∈ A } K) a = ↑(algebraMap { x // x ∈ A } K) b
⊢ ↑(↑1 * a) = ↑(↑1 * b)
[PROOFSTEP]
simpa using h
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ LinearOrderedCommGroupWithZero (ValueGroup A)
[PROOFSTEP]
unfold ValueGroup
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ LinearOrderedCommGroupWithZero (ValuationRing.ValueGroup { x // x ∈ A } K)
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }ˣ
⊢ ↑(valuation A) ↑↑a = 1
[PROOFSTEP]
rw [← A.valuation.map_one, valuation_eq_iff]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }ˣ
⊢ ∃ a_1, ↑↑a_1 * 1 = ↑↑a
[PROOFSTEP]
use a
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }ˣ
⊢ ↑↑a * 1 = ↑↑a
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
⊢ IsUnit a
[PROOFSTEP]
have ha : (a : K) ≠ 0
[GOAL]
case ha
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
⊢ ↑a ≠ 0
[PROOFSTEP]
intro c
[GOAL]
case ha
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
c : ↑a = 0
⊢ False
[PROOFSTEP]
rw [c, A.valuation.map_zero] at h
[GOAL]
case ha
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : 0 = 1
c : ↑a = 0
⊢ False
[PROOFSTEP]
exact zero_ne_one h
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
ha : ↑a ≠ 0
⊢ IsUnit a
[PROOFSTEP]
have ha' : (a : K)⁻¹ ∈ A := by rw [← valuation_le_one_iff, map_inv₀, h, inv_one]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
ha : ↑a ≠ 0
⊢ (↑a)⁻¹ ∈ A
[PROOFSTEP]
rw [← valuation_le_one_iff, map_inv₀, h, inv_one]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
ha : ↑a ≠ 0
ha' : (↑a)⁻¹ ∈ A
⊢ IsUnit a
[PROOFSTEP]
apply isUnit_of_mul_eq_one a ⟨a⁻¹, ha'⟩
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
ha : ↑a ≠ 0
ha' : (↑a)⁻¹ ∈ A
⊢ a * { val := (↑a)⁻¹, property := ha' } = 1
[PROOFSTEP]
ext
[GOAL]
case a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
h : ↑(valuation A) ↑a = 1
ha : ↑a ≠ 0
ha' : (↑a)⁻¹ ∈ A
⊢ ↑(a * { val := (↑a)⁻¹, property := ha' }) = ↑1
[PROOFSTEP]
field_simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
⊢ a ∈ LocalRing.maximalIdeal { x // x ∈ A } ↔ ↑(valuation A) ↑a < 1
[PROOFSTEP]
rw [LocalRing.mem_maximalIdeal]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
⊢ a ∈ nonunits { x // x ∈ A } ↔ ↑(valuation A) ↑a < 1
[PROOFSTEP]
dsimp [nonunits]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
⊢ ¬IsUnit a ↔ ↑(valuation A) ↑a < 1
[PROOFSTEP]
rw [valuation_eq_one_iff]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }
⊢ ¬↑(valuation A) ↑a = 1 ↔ ↑(valuation A) ↑a < 1
[PROOFSTEP]
exact (A.valuation_le_one a).lt_iff_ne.symm
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
⊢ ∀ (x y : ValueGroup R),
ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
(x * y) =
ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
x *
ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
y
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩
[GOAL]
case mk.mk
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x✝ : ValueGroup R
a✝¹ : K
y✝ : ValueGroup R
a✝ : K
⊢ ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
(Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) =
ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
(Quot.mk Setoid.r a✝¹) *
ZeroHom.toFun
{ toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)),
map_zero' :=
(_ :
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 =
Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) }
(Quot.mk Setoid.r a✝)
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
⊢ Monotone ↑(mapOfLE R S h)
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩ ⟨a, ha⟩
[GOAL]
case mk.mk.intro
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a✝² : ValueGroup R
a✝¹ : K
b✝ : ValueGroup R
a✝ : K
a : { x // x ∈ R }
ha : a • a✝ = a✝¹
⊢ ↑(mapOfLE R S h) (Quot.mk Setoid.r a✝¹) ≤ ↑(mapOfLE R S h) (Quot.mk Setoid.r a✝)
[PROOFSTEP]
exact ⟨R.inclusion S h a, ha⟩
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
⊢ ↑(mapOfLE R S h) ∘ ↑(valuation R) = ↑(valuation S)
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x✝ : K
⊢ (↑(mapOfLE R S h) ∘ ↑(valuation R)) x✝ = ↑(valuation S) x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
⊢ IsLocalization.AtPrime { x // x ∈ ofPrime A P } P
[PROOFSTEP]
apply Localization.subalgebra.isLocalization_ofField K P.primeCompl P.primeCompl_le_nonZeroDivisors
[GOAL]
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
x : { x // x ∈ A }
⊢ ↑(valuation (ofPrime A P)) ↑x = 1 ↔ x ∈ Ideal.primeCompl P
[PROOFSTEP]
rw [← IsLocalization.AtPrime.isUnit_to_map_iff (A.ofPrime P) P x, valuation_eq_one_iff]
[GOAL]
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
x : { x // x ∈ A }
⊢ ↑(valuation (ofPrime A P)) ↑x = 1 ↔
↑(valuation (ofPrime A P)) ↑(↑(algebraMap { x // x ∈ A } { x // x ∈ ofPrime A P }) x) = 1
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
⊢ idealOfLE A (ofPrime A P) (_ : A ≤ ofPrime A P) = P
[PROOFSTEP]
refine Ideal.ext (fun x => ?_)
[GOAL]
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
x : { x // x ∈ A }
⊢ x ∈ idealOfLE A (ofPrime A P) (_ : A ≤ ofPrime A P) ↔ x ∈ P
[PROOFSTEP]
apply IsLocalization.AtPrime.to_map_mem_maximal_iff
[GOAL]
case h
K : Type u
inst✝¹ : Field K
A✝ A : ValuationSubring K
P : Ideal { x // x ∈ A }
inst✝ : Ideal.IsPrime P
x : { x // x ∈ A }
⊢ optParam (LocalRing { x // x ∈ ofPrime A P }) (_ : LocalRing { x // x ∈ ofPrime A P })
[PROOFSTEP]
exact localRing (ofPrime A P)
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
⊢ ofPrime R (idealOfLE R S h) = S
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
⊢ x ∈ ofPrime R (idealOfLE R S h) ↔ x ∈ S
[PROOFSTEP]
constructor
[GOAL]
case h.mp
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
⊢ x ∈ ofPrime R (idealOfLE R S h) → x ∈ S
[PROOFSTEP]
rintro ⟨a, r, hr, rfl⟩
[GOAL]
case h.mp.intro.intro.intro
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ ↑(algebraMap { x // x ∈ R } K) a * (↑(algebraMap { x // x ∈ R } K) r)⁻¹ ∈ S
[PROOFSTEP]
apply mul_mem
[GOAL]
case h.mp.intro.intro.intro.a
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ ↑(algebraMap { x // x ∈ R } K) a ∈ S
[PROOFSTEP]
exact h a.2
[GOAL]
case h.mp.intro.intro.intro.a
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ (↑(algebraMap { x // x ∈ R } K) r)⁻¹ ∈ S
[PROOFSTEP]
rw [← valuation_le_one_iff, map_inv₀, ← inv_one, inv_le_inv₀]
[GOAL]
case h.mp.intro.intro.intro.a
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ 1 ≤ ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r)
[PROOFSTEP]
exact not_lt.1 ((not_iff_not.2 <| valuation_lt_one_iff S _).1 hr)
[GOAL]
case h.mp.intro.intro.intro.a.ha
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r) ≠ 0
[PROOFSTEP]
intro hh
[GOAL]
case h.mp.intro.intro.intro.a.ha
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
hh : ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r) = 0
⊢ False
[PROOFSTEP]
erw [Valuation.zero_iff, Subring.coe_eq_zero_iff] at hh
[GOAL]
case h.mp.intro.intro.intro.a.ha
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
hh : r = 0
⊢ False
[PROOFSTEP]
apply hr
[GOAL]
case h.mp.intro.intro.intro.a.ha
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
hh : r = 0
⊢ r ∈ ↑(idealOfLE R S h)
[PROOFSTEP]
rw [hh]
[GOAL]
case h.mp.intro.intro.intro.a.ha
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
hh : r = 0
⊢ 0 ∈ ↑(idealOfLE R S h)
[PROOFSTEP]
apply Ideal.zero_mem (R.idealOfLE S h)
[GOAL]
case h.mp.intro.intro.intro.a.hb
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
a r : { x // x ∈ R }
hr : r ∈ Ideal.primeCompl (idealOfLE R S h)
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
case h.mpr
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
⊢ x ∈ S → x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
⊢ x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
by_cases hr : x ∈ R
[GOAL]
case pos
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
hr : x ∈ R
⊢ x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
exact R.le_ofPrime _ hr
[GOAL]
case neg
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
hr : ¬x ∈ R
⊢ x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
have : x ≠ 0 := fun h => hr (by rw [h]; exact R.zero_mem)
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h✝ : R ≤ S
x : K
hx : x ∈ S
hr : ¬x ∈ R
h : x = 0
⊢ x ∈ R
[PROOFSTEP]
rw [h]
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h✝ : R ≤ S
x : K
hx : x ∈ S
hr : ¬x ∈ R
h : x = 0
⊢ 0 ∈ R
[PROOFSTEP]
exact R.zero_mem
[GOAL]
case neg
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
hr : ¬x ∈ R
this : x ≠ 0
⊢ x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
replace hr := (R.mem_or_inv_mem x).resolve_left hr
[GOAL]
case neg
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ x ∈ ofPrime R (idealOfLE R S h)
[PROOFSTEP]
use 1, ⟨x⁻¹, hr⟩
[GOAL]
case h
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ ∃ x_1, x = ↑(algebraMap { x // x ∈ R } K) 1 * (↑(algebraMap { x // x ∈ R } K) { val := x⁻¹, property := hr })⁻¹
[PROOFSTEP]
constructor
[GOAL]
case h.h
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ x = ↑(algebraMap { x // x ∈ R } K) 1 * (↑(algebraMap { x // x ∈ R } K) { val := x⁻¹, property := hr })⁻¹
[PROOFSTEP]
field_simp
[GOAL]
case h.w
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ { val := x⁻¹, property := hr } ∈ Ideal.primeCompl (idealOfLE R S h)
[PROOFSTEP]
change (⟨x⁻¹, h hr⟩ : S) ∉ nonunits S
[GOAL]
case h.w
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ ¬{ val := x⁻¹, property := (_ : x⁻¹ ∈ S) } ∈ nonunits { x // x ∈ S }
[PROOFSTEP]
rw [mem_nonunits_iff, Classical.not_not]
[GOAL]
case h.w
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ IsUnit { val := x⁻¹, property := (_ : x⁻¹ ∈ S) }
[PROOFSTEP]
apply isUnit_of_mul_eq_one _ (⟨x, hx⟩ : S)
[GOAL]
case h.w
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ { val := x⁻¹, property := (_ : x⁻¹ ∈ S) } * { val := x, property := hx } = 1
[PROOFSTEP]
ext
[GOAL]
case h.w.a
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
h : R ≤ S
x : K
hx : x ∈ S
this : x ≠ 0
hr : x⁻¹ ∈ R
⊢ ↑({ val := x⁻¹, property := (_ : x⁻¹ ∈ S) } * { val := x, property := hx }) = ↑1
[PROOFSTEP]
field_simp
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
hR : A ≤ R
hS : A ≤ S
h : R ≤ S
x : { x // x ∈ A }
hx : x ∈ idealOfLE A S hS
⊢ ↑(valuation R) ↑(↑(inclusion A R hR) x) < 1
[PROOFSTEP]
by_contra c
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
hR : A ≤ R
hS : A ≤ S
h : R ≤ S
x : { x // x ∈ A }
hx : x ∈ idealOfLE A S hS
c : ¬↑(valuation R) ↑(↑(inclusion A R hR) x) < 1
⊢ False
[PROOFSTEP]
push_neg at c
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
hR : A ≤ R
hS : A ≤ S
h : R ≤ S
x : { x // x ∈ A }
hx : x ∈ idealOfLE A S hS
c : 1 ≤ ↑(valuation R) ↑(↑(inclusion A R hR) x)
⊢ False
[PROOFSTEP]
replace c := monotone_mapOfLE R S h c
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
hR : A ≤ R
hS : A ≤ S
h : R ≤ S
x : { x // x ∈ A }
hx : x ∈ idealOfLE A S hS
c : ↑(mapOfLE R S h) 1 ≤ ↑(mapOfLE R S h) (↑(valuation R) ↑(↑(inclusion A R hR) x))
⊢ False
[PROOFSTEP]
rw [(mapOfLE _ _ _).map_one, mapOfLE_valuation_apply] at c
[GOAL]
K : Type u
inst✝ : Field K
A R S : ValuationSubring K
hR : A ≤ R
hS : A ≤ S
h : R ≤ S
x : { x // x ∈ A }
hx : x ∈ idealOfLE A S hS
c : 1 ≤ ↑(valuation S) ↑(↑(inclusion A R hR) x)
⊢ False
[PROOFSTEP]
apply not_le_of_lt ((valuation_lt_one_iff S _).1 hx) c
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
P : PrimeSpectrum { x // x ∈ A }
⊢ (fun S =>
{ asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}),
IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) })
((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) P) =
P
[PROOFSTEP]
ext1
[GOAL]
case asIdeal
K : Type u
inst✝ : Field K
A : ValuationSubring K
P : PrimeSpectrum { x // x ∈ A }
⊢ ((fun S =>
{ asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}),
IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) })
((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) P)).asIdeal =
P.asIdeal
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
S : ↑{S | A ≤ S}
⊢ (fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) })
((fun S =>
{ asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}),
IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) })
S) =
S
[PROOFSTEP]
ext1
[GOAL]
case a
K : Type u
inst✝ : Field K
A : ValuationSubring K
S : ↑{S | A ≤ S}
⊢ ↑((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) })
((fun S =>
{ asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}),
IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) })
S)) =
↑S
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h :
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
a✝ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
b✝
⊢ a✝ ≤ b✝
[PROOFSTEP]
dsimp at h
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ a✝ ≤ b✝
[PROOFSTEP]
have := idealOfLE_le_of_le A _ _ ?_ ?_ h
[GOAL]
case refine_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
this : idealOfLE A ↑(↑(primeSpectrumEquiv A) b✝) ?refine_2 ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1
⊢ a✝ ≤ b✝
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
iterate 2 erw [idealOfLE_ofPrime] at this
[GOAL]
case refine_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
this : idealOfLE A ↑(↑(primeSpectrumEquiv A) b✝) ?refine_2 ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1
⊢ a✝ ≤ b✝
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
erw [idealOfLE_ofPrime] at this
[GOAL]
case refine_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
this : b✝.asIdeal ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1
⊢ a✝ ≤ b✝
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
erw [idealOfLE_ofPrime] at this
[GOAL]
case refine_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
this : b✝.asIdeal ≤ a✝.asIdeal
⊢ a✝ ≤ b✝
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
exact this
[GOAL]
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
all_goals exact le_ofPrime A (PrimeSpectrum.asIdeal _)
[GOAL]
case refine_1
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝)
[PROOFSTEP]
exact le_ofPrime A (PrimeSpectrum.asIdeal _)
[GOAL]
case refine_2
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝
⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝)
[PROOFSTEP]
exact le_ofPrime A (PrimeSpectrum.asIdeal _)
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : a✝ ≤ b✝
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
a✝ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
b✝
[PROOFSTEP]
apply ofPrime_le_of_le
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A
a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ
h : a✝ ≤ b✝
⊢ b✝.asIdeal ≤ a✝.asIdeal
[PROOFSTEP]
exact h
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
⊢ ∀ (x : K),
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
intro x
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
⊢ x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
cases' le_or_lt (v x) 1 with h h
[GOAL]
case inl
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : ↑v x ≤ 1
⊢ x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
left
[GOAL]
case inl.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : ↑v x ≤ 1
⊢ x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact h
[GOAL]
case inr
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
right
[GOAL]
case inr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
change v x⁻¹ ≤ 1
[GOAL]
case inr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ ↑v x⁻¹ ≤ 1
[PROOFSTEP]
rw [map_inv₀ v, ← inv_one, inv_le_inv₀]
[GOAL]
case inr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ 1 ≤ ↑v x
[PROOFSTEP]
exact le_of_lt h
[GOAL]
case inr.h.ha
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ ↑v x ≠ 0
[PROOFSTEP]
intro c
[GOAL]
case inr.h.ha
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
c : ↑v x = 0
⊢ False
[PROOFSTEP]
simp [c] at h
[GOAL]
case inr.h.hb
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
src✝ : Subring K := integer v
x : K
h : 1 < ↑v x
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
⊢ IsEquiv v₁ v₂ ↔ valuationSubring v₁ = valuationSubring v₂
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
⊢ IsEquiv v₁ v₂ → valuationSubring v₁ = valuationSubring v₂
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : IsEquiv v₁ v₂
⊢ valuationSubring v₁ = valuationSubring v₂
[PROOFSTEP]
ext x
[GOAL]
case mp.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : IsEquiv v₁ v₂
x : K
⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂
[PROOFSTEP]
specialize h x 1
[GOAL]
case mp.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
x : K
h : ↑v₁ x ≤ ↑v₁ 1 ↔ ↑v₂ x ≤ ↑v₂ 1
⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂
[PROOFSTEP]
simpa using h
[GOAL]
case mpr
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
⊢ valuationSubring v₁ = valuationSubring v₂ → IsEquiv v₁ v₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : valuationSubring v₁ = valuationSubring v₂
⊢ IsEquiv v₁ v₂
[PROOFSTEP]
apply isEquiv_of_val_le_one
[GOAL]
case mpr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : valuationSubring v₁ = valuationSubring v₂
⊢ ∀ {x : K}, ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1
[PROOFSTEP]
intro x
[GOAL]
case mpr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : valuationSubring v₁ = valuationSubring v₂
x : K
⊢ ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1
[PROOFSTEP]
have : x ∈ v₁.valuationSubring ↔ x ∈ v₂.valuationSubring := by rw [h]
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : valuationSubring v₁ = valuationSubring v₂
x : K
⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂
[PROOFSTEP]
rw [h]
[GOAL]
case mpr.h
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
h : valuationSubring v₁ = valuationSubring v₂
x : K
this : x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂
⊢ ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1
[PROOFSTEP]
simpa using this
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
⊢ IsEquiv v (ValuationSubring.valuation (valuationSubring v))
[PROOFSTEP]
rw [isEquiv_iff_val_le_one]
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑(ValuationSubring.valuation (valuationSubring v)) x ≤ 1
[PROOFSTEP]
intro x
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
x : K
⊢ ↑v x ≤ 1 ↔ ↑(ValuationSubring.valuation (valuationSubring v)) x ≤ 1
[PROOFSTEP]
rw [ValuationSubring.valuation_le_one_iff]
[GOAL]
K : Type u
inst✝³ : Field K
Γ : Type u_1
Γ₁ : Type u_2
Γ₂ : Type u_3
inst✝² : LinearOrderedCommGroupWithZero Γ
inst✝¹ : LinearOrderedCommGroupWithZero Γ₁
inst✝ : LinearOrderedCommGroupWithZero Γ₂
v : Valuation K Γ
v₁ : Valuation K Γ₁
v₂ : Valuation K Γ₂
x : K
⊢ ↑v x ≤ 1 ↔ x ∈ valuationSubring v
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ Valuation.valuationSubring (valuation A) = A
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
x✝ : K
⊢ x✝ ∈ Valuation.valuationSubring (valuation A) ↔ x✝ ∈ A
[PROOFSTEP]
rw [← A.valuation_le_one_iff]
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
x✝ : K
⊢ x✝ ∈ Valuation.valuationSubring (valuation A) ↔ ↑(valuation A) x✝ ≤ 1
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
⊢ ↑({ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }) = ↑1
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
⊢ ↑({ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) }) = ↑1
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ unitGroup A }
⊢ (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) })
a) =
a
[PROOFSTEP]
ext
[GOAL]
case a.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ unitGroup A }
⊢ ↑↑((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) })
a)) =
↑↑a
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }ˣ
⊢ (fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) =
a
[PROOFSTEP]
ext
[GOAL]
case a.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : { x // x ∈ A }ˣ
⊢ ↑↑((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a)) =
↑↑a
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ unitGroup A }
⊢ Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) =
a) }
(a * b) =
Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) =
a) }
a *
Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) =
a) }
b
[PROOFSTEP]
ext
[GOAL]
case a.a
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : { x // x ∈ unitGroup A }
⊢ ↑↑(Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) =
a) }
(a * b)) =
↑↑(Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
a) =
a) }
a *
Equiv.toFun
{
toFun := fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) },
invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) },
left_inv :=
(_ :
∀ (a : { x // x ∈ unitGroup A }),
(fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
((fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
a) =
a),
right_inv :=
(_ :
∀ (a : { x // x ∈ A }ˣ),
(fun x =>
{ val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) },
inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) },
val_inv :=
(_ :
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } *
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } =
1),
inv_val :=
(_ :
{ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } *
{ val := ↑↑x, property := (_ : ↑↑x ∈ A) } =
1) })
((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) })
a) =
a) }
b)
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ unitGroup A ≤ unitGroup B ↔ A ≤ B
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ unitGroup A ≤ unitGroup B → A ≤ B
[PROOFSTEP]
intro h x hx
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : x ∈ A
⊢ x ∈ B
[PROOFSTEP]
rw [← A.valuation_le_one_iff x, le_iff_lt_or_eq] at hx
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1
⊢ x ∈ B
[PROOFSTEP]
by_cases h_1 : x = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1
h_1 : x = 0
⊢ x ∈ B
[PROOFSTEP]
simp only [h_1, zero_mem]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1
h_1 : ¬x = 0
⊢ x ∈ B
[PROOFSTEP]
by_cases h_2 : 1 + x = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1
h_1 : ¬x = 0
h_2 : 1 + x = 0
⊢ x ∈ B
[PROOFSTEP]
simp only [← add_eq_zero_iff_neg_eq.1 h_2, neg_mem _ _ (one_mem _)]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1
h_1 : ¬x = 0
h_2 : ¬1 + x = 0
⊢ x ∈ B
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case neg.inl
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
h_1 : ¬x = 0
h_2 : ¬1 + x = 0
hx : ↑(valuation A) x < 1
⊢ x ∈ B
[PROOFSTEP]
have := h (show Units.mk0 _ h_2 ∈ A.unitGroup from A.valuation.map_one_add_of_lt hx)
[GOAL]
case neg.inl
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
h_1 : ¬x = 0
h_2 : ¬1 + x = 0
hx : ↑(valuation A) x < 1
this : Units.mk0 (1 + x) h_2 ∈ unitGroup B
⊢ x ∈ B
[PROOFSTEP]
simpa using
B.add_mem _ _ (show 1 + x ∈ B from SetLike.coe_mem (B.unitGroupMulEquiv ⟨_, this⟩ : B)) (B.neg_mem _ B.one_mem)
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
h_1 : ¬x = 0
h_2 : ¬1 + x = 0
hx : ↑(valuation A) x = 1
⊢ x ∈ B
[PROOFSTEP]
have := h (show Units.mk0 x h_1 ∈ A.unitGroup from hx)
[GOAL]
case neg.inr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A ≤ unitGroup B
x : K
h_1 : ¬x = 0
h_2 : ¬1 + x = 0
hx : ↑(valuation A) x = 1
this : Units.mk0 x h_1 ∈ unitGroup B
⊢ x ∈ B
[PROOFSTEP]
refine' SetLike.coe_mem (B.unitGroupMulEquiv ⟨_, this⟩ : B)
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ A ≤ B → unitGroup A ≤ unitGroup B
[PROOFSTEP]
rintro h x (hx : A.valuation x = 1)
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : Kˣ
hx : ↑(valuation A) ↑x = 1
⊢ x ∈ unitGroup B
[PROOFSTEP]
apply_fun A.mapOfLE B h at hx
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : Kˣ
hx : ↑(mapOfLE A B h) (↑(valuation A) ↑x) = ↑(mapOfLE A B h) 1
⊢ x ∈ unitGroup B
[PROOFSTEP]
simpa using hx
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : unitGroup A = unitGroup B
⊢ A = B
[PROOFSTEP]
simpa only [le_antisymm_iff, unitGroup_le_unitGroup] using h
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ nonunits B ≤ nonunits A ↔ A ≤ B
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ nonunits B ≤ nonunits A → A ≤ B
[PROOFSTEP]
intro h x hx
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits B ≤ nonunits A
x : K
hx : x ∈ A
⊢ x ∈ B
[PROOFSTEP]
by_cases h_1 : x = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits B ≤ nonunits A
x : K
hx : x ∈ A
h_1 : x = 0
⊢ x ∈ B
[PROOFSTEP]
simp only [h_1, zero_mem]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits B ≤ nonunits A
x : K
hx : x ∈ A
h_1 : ¬x = 0
⊢ x ∈ B
[PROOFSTEP]
rw [← valuation_le_one_iff, ← not_lt, Valuation.one_lt_val_iff _ h_1] at hx ⊢
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits B ≤ nonunits A
x : K
hx : ¬↑(valuation A) x⁻¹ < 1
h_1 : ¬x = 0
⊢ ¬↑(valuation B) x⁻¹ < 1
[PROOFSTEP]
by_contra h_2
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits B ≤ nonunits A
x : K
hx : ¬↑(valuation A) x⁻¹ < 1
h_1 : ¬x = 0
h_2 : ↑(valuation B) x⁻¹ < 1
⊢ False
[PROOFSTEP]
exact hx (h h_2)
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ A ≤ B → nonunits B ≤ nonunits A
[PROOFSTEP]
intro h x hx
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : K
hx : x ∈ nonunits B
⊢ x ∈ nonunits A
[PROOFSTEP]
by_contra h_1
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : K
hx : x ∈ nonunits B
h_1 : ¬x ∈ nonunits A
⊢ False
[PROOFSTEP]
exact not_lt.2 (monotone_mapOfLE _ _ h (not_lt.1 h_1)) hx
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : nonunits A = nonunits B
⊢ A = B
[PROOFSTEP]
simpa only [le_antisymm_iff, nonunits_le_nonunits] using h.symm
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ Subtype.val '' ↑(LocalRing.maximalIdeal { x // x ∈ A }) = ↑(nonunits A)
[PROOFSTEP]
ext a
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : K
⊢ a ∈ Subtype.val '' ↑(LocalRing.maximalIdeal { x // x ∈ A }) ↔ a ∈ ↑(nonunits A)
[PROOFSTEP]
simp only [Set.mem_image, SetLike.mem_coe, mem_nonunits_iff_exists_mem_maximalIdeal]
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : K
⊢ (∃ x, x ∈ LocalRing.maximalIdeal { x // x ∈ A } ∧ ↑x = a) ↔
∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A }
[PROOFSTEP]
erw [Subtype.exists]
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : K
⊢ (∃ a_1 b,
{ val := a_1, property := b } ∈ LocalRing.maximalIdeal { x // x ∈ A } ∧ ↑{ val := a_1, property := b } = a) ↔
∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A }
[PROOFSTEP]
simp_rw [exists_and_right, exists_eq_right]
-- Porting note: added
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : K
⊢ (∃ x, { val := a, property := (_ : a ∈ ↑A) } ∈ LocalRing.maximalIdeal { x // x ∈ A }) ↔
∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A }
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ ∀ {a b : Kˣ},
a ∈ {x | ↑(valuation A) (↑x - 1) < 1} →
b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1}
[PROOFSTEP]
intro a b ha hb
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : Kˣ
ha : a ∈ {x | ↑(valuation A) (↑x - 1) < 1}
hb : b ∈ {x | ↑(valuation A) (↑x - 1) < 1}
⊢ a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1}
[PROOFSTEP]
rw [Set.mem_setOf] at ha hb
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
hb : ↑(valuation A) (↑b - 1) < 1
⊢ a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1}
[PROOFSTEP]
refine'
lt_of_le_of_lt _
(max_lt hb ha)
-- Porting note: `sub_add_sub_cancel` needed some help
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
hb : ↑(valuation A) (↑b - 1) < 1
⊢ ↑(valuation A) (↑(a * b) - 1) ≤ max (↑(valuation A) (↑b - 1)) (↑(valuation A) (↑a - 1))
[PROOFSTEP]
rw [← one_mul (A.valuation (b - 1)), ← A.valuation.map_one_add_of_lt ha, add_sub_cancel'_right, ← Valuation.map_mul,
mul_sub_one, ← sub_add_sub_cancel (↑(a * b) : K) _ 1]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
hb : ↑(valuation A) (↑b - 1) < 1
⊢ ↑(valuation A) (↑(a * b) - ?m.1681005 + (?m.1681005 - 1)) ≤
max (↑(valuation A) (↑a * ↑b - ↑a)) (↑(valuation A) (↑a - 1))
K : Type u
inst✝ : Field K
A : ValuationSubring K
a b : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
hb : ↑(valuation A) (↑b - 1) < 1
⊢ K
[PROOFSTEP]
exact A.valuation.map_add _ _
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ 1 ∈
{ carrier := {x | ↑(valuation A) (↑x - 1) < 1},
mul_mem' :=
(_ :
∀ {a b : Kˣ},
a ∈ {x | ↑(valuation A) (↑x - 1) < 1} →
b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) }.carrier
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ ∀ {x : Kˣ},
x ∈
{
toSubsemigroup :=
{ carrier := {x | ↑(valuation A) (↑x - 1) < 1},
mul_mem' :=
(_ :
∀ {a b : Kˣ},
a ∈ {x | ↑(valuation A) (↑x - 1) < 1} →
b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) },
one_mem' := (_ : ↑(valuation A) (1 - 1) < 1) }.toSubsemigroup.carrier →
x⁻¹ ∈
{
toSubsemigroup :=
{ carrier := {x | ↑(valuation A) (↑x - 1) < 1},
mul_mem' :=
(_ :
∀ {a b : Kˣ},
a ∈ {x | ↑(valuation A) (↑x - 1) < 1} →
b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) },
one_mem' := (_ : ↑(valuation A) (1 - 1) < 1) }.toSubsemigroup.carrier
[PROOFSTEP]
dsimp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ ∀ {x : Kˣ}, ↑(valuation A) (↑x - 1) < 1 → ↑(valuation A) (↑x⁻¹ - 1) < 1
[PROOFSTEP]
intro a ha
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
⊢ ↑(valuation A) (↑a⁻¹ - 1) < 1
[PROOFSTEP]
conv =>
lhs
rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
| ↑(valuation A) (↑a⁻¹ - 1) < 1
[PROOFSTEP]
lhs
rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
| ↑(valuation A) (↑a⁻¹ - 1) < 1
[PROOFSTEP]
lhs
rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
| ↑(valuation A) (↑a⁻¹ - 1) < 1
[PROOFSTEP]
lhs
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
| ↑(valuation A) (↑a⁻¹ - 1)
[PROOFSTEP]
rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
ha : ↑(valuation A) (↑a - 1) < 1
⊢ ↑(valuation A) (↑a⁻¹ - 1) * ↑(valuation A) (1 + (↑a - 1)) < 1
[PROOFSTEP]
rwa [add_sub_cancel'_right, ← Valuation.map_mul, sub_mul, Units.inv_mul, ← neg_sub, one_mul, Valuation.map_neg]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
a : Kˣ
h : a ∈ principalUnitGroup A
⊢ a ∈ unitGroup A
[PROOFSTEP]
simpa only [add_sub_cancel'_right] using A.valuation.map_one_add_of_lt h
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ principalUnitGroup B ≤ principalUnitGroup A ↔ A ≤ B
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ principalUnitGroup B ≤ principalUnitGroup A → A ≤ B
[PROOFSTEP]
intro h x hx
[GOAL]
case mp
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
⊢ x ∈ B
[PROOFSTEP]
by_cases h_1 : x = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
h_1 : x = 0
⊢ x ∈ B
[PROOFSTEP]
simp only [h_1, zero_mem]
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
h_1 : ¬x = 0
⊢ x ∈ B
[PROOFSTEP]
by_cases h_2 : x⁻¹ + 1 = 0
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
h_1 : ¬x = 0
h_2 : x⁻¹ + 1 = 0
⊢ x ∈ B
[PROOFSTEP]
rw [add_eq_zero_iff_eq_neg, inv_eq_iff_eq_inv, inv_neg, inv_one] at h_2
[GOAL]
case pos
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
h_1 : ¬x = 0
h_2 : x = -1
⊢ x ∈ B
[PROOFSTEP]
simpa only [h_2] using B.neg_mem _ B.one_mem
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx : x ∈ A
h_1 : ¬x = 0
h_2 : ¬x⁻¹ + 1 = 0
⊢ x ∈ B
[PROOFSTEP]
rw [← valuation_le_one_iff, ← not_lt, Valuation.one_lt_val_iff _ h_1, ← add_sub_cancel x⁻¹, ← Units.val_mk0 h_2, ←
mem_principalUnitGroup_iff] at hx ⊢
[GOAL]
case neg
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup B ≤ principalUnitGroup A
x : K
hx✝¹ : ¬↑(valuation A) x⁻¹ < 1
hx✝ : ¬↑(valuation A) (x⁻¹ + 1 - 1) < 1
h_1 : ¬x = 0
h_2 : ¬x⁻¹ + 1 = 0
hx : ¬Units.mk0 (x⁻¹ + 1) h_2 ∈ principalUnitGroup A
⊢ ¬Units.mk0 (x⁻¹ + 1) h_2 ∈ principalUnitGroup B
[PROOFSTEP]
simpa only [hx] using @h (Units.mk0 (x⁻¹ + 1) h_2)
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
⊢ A ≤ B → principalUnitGroup B ≤ principalUnitGroup A
[PROOFSTEP]
intro h x hx
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : Kˣ
hx : x ∈ principalUnitGroup B
⊢ x ∈ principalUnitGroup A
[PROOFSTEP]
by_contra h_1
[GOAL]
case mpr
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : A ≤ B
x : Kˣ
hx : x ∈ principalUnitGroup B
h_1 : ¬x ∈ principalUnitGroup A
⊢ False
[PROOFSTEP]
exact not_lt.2 (monotone_mapOfLE _ _ h (not_lt.1 h_1)) hx
[GOAL]
K : Type u
inst✝ : Field K
A✝ A B : ValuationSubring K
h : principalUnitGroup A = principalUnitGroup B
⊢ A = B
[PROOFSTEP]
simpa [le_antisymm_iff, principalUnitGroup_le_principalUnitGroup] using h.symm
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
⊢ ↑x ∈ principalUnitGroup A ↔ ↑(unitGroupMulEquiv A) x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))
[PROOFSTEP]
rw [MonoidHom.mem_ker, Units.ext_iff]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
⊢ ↑x ∈ principalUnitGroup A ↔ ↑(↑(Units.map ↑(LocalRing.residue { x // x ∈ A })) (↑(unitGroupMulEquiv A) x)) = ↑1
[PROOFSTEP]
let π := Ideal.Quotient.mk (LocalRing.maximalIdeal A)
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } :=
Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A })
⊢ ↑x ∈ principalUnitGroup A ↔ ↑(↑(Units.map ↑(LocalRing.residue { x // x ∈ A })) (↑(unitGroupMulEquiv A) x)) = ↑1
[PROOFSTEP]
convert_to _ ↔ π _ = 1
[GOAL]
case convert_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } :=
Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A })
⊢ ↑x ∈ principalUnitGroup A ↔ ↑π ↑(↑(unitGroupMulEquiv A) x) = 1
[PROOFSTEP]
rw [← π.map_one, ← sub_eq_zero, ← π.map_sub, Ideal.Quotient.eq_zero_iff_mem, valuation_lt_one_iff]
[GOAL]
case convert_3
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ unitGroup A }
π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } :=
Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A })
⊢ ↑x ∈ principalUnitGroup A ↔ ↑(valuation A) ↑(↑(↑(unitGroupMulEquiv A) x) - 1) < 1
[PROOFSTEP]
simp [mem_principalUnitGroup_iff]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }
⊢ ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A
[PROOFSTEP]
rw [A.coe_mem_principalUnitGroup_iff]
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }
⊢ ↑(unitGroupMulEquiv A) (↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))
[PROOFSTEP]
simpa using SetLike.coe_mem x
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ principalUnitGroup A }
⊢ (fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x) =
x
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }
⊢ (fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) =
x
[PROOFSTEP]
simp
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
x y : { x // x ∈ principalUnitGroup A }
⊢ Equiv.toFun
{
toFun := fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) },
invFun := fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) },
left_inv :=
(_ :
∀ (x : { x // x ∈ principalUnitGroup A }),
{
val :=
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)),
property :=
(_ :
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)) ∈
principalUnitGroup A) } =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }),
{
val :=
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } =
x) }
(x * y) =
Equiv.toFun
{
toFun := fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) },
invFun := fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) },
left_inv :=
(_ :
∀ (x : { x // x ∈ principalUnitGroup A }),
{
val :=
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)),
property :=
(_ :
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)) ∈
principalUnitGroup A) } =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }),
{
val :=
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ :
↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } =
x) }
x *
Equiv.toFun
{
toFun := fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) },
invFun := fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) },
left_inv :=
(_ :
∀ (x : { x // x ∈ principalUnitGroup A }),
{
val :=
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)),
property :=
(_ :
↑(↑(MulEquiv.symm (unitGroupMulEquiv A))
↑((fun x =>
{ val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) })
x)) ∈
principalUnitGroup A) } =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }),
{
val :=
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) },
property :=
(_ :
↑(unitGroupMulEquiv A)
{
val :=
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x),
property :=
(_ :
↑((fun x =>
{ val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x),
property :=
(_ :
↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) })
x) ∈
unitGroup A) } ∈
MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } =
x) }
y
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝ : Field K
A : ValuationSubring K
⊢ MonoidHom.ker (unitGroupToResidueFieldUnits A) =
Subgroup.comap (Subgroup.subtype (unitGroup A)) (principalUnitGroup A)
[PROOFSTEP]
ext
-- Porting note: simp fails but rw works
-- See https://github.com/leanprover-community/mathlib4/issues/5026
-- simp [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff]
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
x✝ : { x // x ∈ unitGroup A }
⊢ x✝ ∈ MonoidHom.ker (unitGroupToResidueFieldUnits A) ↔
x✝ ∈ Subgroup.comap (Subgroup.subtype (unitGroup A)) (principalUnitGroup A)
[PROOFSTEP]
rw [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff]
[GOAL]
case h
K : Type u
inst✝ : Field K
A : ValuationSubring K
x✝ : { x // x ∈ unitGroup A }
⊢ x✝ ∈ MonoidHom.ker (unitGroupToResidueFieldUnits A) ↔
↑(unitGroupMulEquiv A) x✝ ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))
[PROOFSTEP]
rfl
-- simp [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff]
[GOAL]
K : Type u
inst✝² : Field K
A : ValuationSubring K
G : Type u_1
inst✝¹ : Group G
inst✝ : MulSemiringAction G K
g : G
S : ValuationSubring K
src✝ : Subring K := g • S.toSubring
x : K
h : (g⁻¹ • x)⁻¹ ∈ S
⊢ g⁻¹ • x⁻¹ ∈ S.toSubring
[PROOFSTEP]
rwa [smul_inv'']
[GOAL]
K : Type u
inst✝² : Field K
A✝ : ValuationSubring K
L : Type u_1
J : Type u_2
inst✝¹ : Field L
inst✝ : Field J
A : ValuationSubring L
f : K →+* L
src✝ : Subring K := Subring.comap f A.toSubring
k : K
⊢ k ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨
k⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
simp [ValuationSubring.mem_or_inv_mem]
| {"mathlib_filename": "Mathlib.RingTheory.Valuation.ValuationSubring", "llama_tokens": 43928} |
[GOAL]
x : ℝ≥0
y : ℝ
⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
rw [← NNReal.coe_eq, coe_rpow, ← NNReal.coe_eq_zero]
[GOAL]
x : ℝ≥0
y : ℝ
⊢ ↑x ^ y = ↑0 ↔ ↑x = 0 ∧ y ≠ 0
[PROOFSTEP]
exact Real.rpow_eq_zero_iff_of_nonneg x.2
[GOAL]
x : ℝ≥0
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
simp [rpow_neg]
[GOAL]
y : ℝ
hy : y ≠ 0
x : ℝ≥0
⊢ (x ^ y) ^ (1 / y) = x
[PROOFSTEP]
field_simp [← rpow_mul]
[GOAL]
y : ℝ
hy : y ≠ 0
x : ℝ≥0
⊢ (x ^ (1 / y)) ^ y = x
[PROOFSTEP]
field_simp [← rpow_mul]
[GOAL]
x : ℝ≥0
⊢ ↑sqrt x = x ^ (1 / 2)
[PROOFSTEP]
refine' NNReal.eq _
[GOAL]
x : ℝ≥0
⊢ ↑(↑sqrt x) = ↑(x ^ (1 / 2))
[PROOFSTEP]
push_cast
[GOAL]
x : ℝ≥0
⊢ Real.sqrt ↑x = ↑x ^ (1 / 2)
[PROOFSTEP]
exact Real.sqrt_eq_rpow x.1
[GOAL]
x : ℝ≥0
n : ℕ
⊢ ↑(x ^ ↑n) = ↑(x ^ n)
[PROOFSTEP]
simpa only [coe_rpow, coe_pow] using Real.rpow_nat_cast x n
[GOAL]
x : ℝ≥0
⊢ x ^ 2 = x ^ 2
[PROOFSTEP]
rw [← rpow_nat_cast]
[GOAL]
x : ℝ≥0
⊢ x ^ 2 = x ^ ↑2
[PROOFSTEP]
simp only [Nat.cast_ofNat]
[GOAL]
ι : Type u_1
l : List ι
f : ι → ℝ≥0
r : ℝ
⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map f l) ^ r
[PROOFSTEP]
rw [← list_prod_map_rpow, List.map_map]
[GOAL]
ι : Type u_1
l : List ι
f : ι → ℝ≥0
r : ℝ
⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map ((fun x => x ^ r) ∘ f) l)
[PROOFSTEP]
rfl
[GOAL]
l : List ℝ
hl : ∀ (x : ℝ), x ∈ l → 0 ≤ x
r : ℝ
⊢ List.prod (List.map (fun x => x ^ r) l) = List.prod l ^ r
[PROOFSTEP]
lift l to List ℝ≥0 using hl
[GOAL]
case intro
r : ℝ
l : List ℝ≥0
⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r
[PROOFSTEP]
have := congr_arg ((↑) : ℝ≥0 → ℝ) (NNReal.list_prod_map_rpow l r)
[GOAL]
case intro
r : ℝ
l : List ℝ≥0
this : ↑(List.prod (List.map (fun x => x ^ r) l)) = ↑(List.prod l ^ r)
⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r
[PROOFSTEP]
push_cast at this
[GOAL]
case intro
r : ℝ
l : List ℝ≥0
this : List.prod (List.map toReal (List.map (fun x => x ^ r) l)) = List.prod (List.map toReal l) ^ r
⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r
[PROOFSTEP]
rw [List.map_map] at this ⊢
[GOAL]
case intro
r : ℝ
l : List ℝ≥0
this : List.prod (List.map (toReal ∘ fun x => x ^ r) l) = List.prod (List.map toReal l) ^ r
⊢ List.prod (List.map ((fun x => x ^ r) ∘ toReal) l) = List.prod (List.map toReal l) ^ r
[PROOFSTEP]
exact_mod_cast this
[GOAL]
ι : Type u_1
l : List ι
f : ι → ℝ
hl : ∀ (i : ι), i ∈ l → 0 ≤ f i
r : ℝ
⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map f l) ^ r
[PROOFSTEP]
rw [← Real.list_prod_map_rpow (l.map f) _ r, List.map_map]
[GOAL]
ι : Type u_1
l : List ι
f : ι → ℝ
hl : ∀ (i : ι), i ∈ l → 0 ≤ f i
r : ℝ
⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map ((fun x => x ^ r) ∘ f) l)
ι : Type u_1 l : List ι f : ι → ℝ hl : ∀ (i : ι), i ∈ l → 0 ≤ f i r : ℝ ⊢ ∀ (x : ℝ), x ∈ List.map f l → 0 ≤ x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
l : List ι
f : ι → ℝ
hl : ∀ (i : ι), i ∈ l → 0 ≤ f i
r : ℝ
⊢ ∀ (x : ℝ), x ∈ List.map f l → 0 ≤ x
[PROOFSTEP]
simpa using hl
[GOAL]
ι : Type u_1
s : Multiset ι
f : ι → ℝ
hs : ∀ (i : ι), i ∈ s → 0 ≤ f i
r : ℝ
⊢ Multiset.prod (Multiset.map (fun x => f x ^ r) s) = Multiset.prod (Multiset.map f s) ^ r
[PROOFSTEP]
induction' s using Quotient.inductionOn with l
[GOAL]
case h
ι : Type u_1
s : Multiset ι
f : ι → ℝ
hs✝ : ∀ (i : ι), i ∈ s → 0 ≤ f i
r : ℝ
l : List ι
hs : ∀ (i : ι), i ∈ Quotient.mk (List.isSetoid ι) l → 0 ≤ f i
⊢ Multiset.prod (Multiset.map (fun x => f x ^ r) (Quotient.mk (List.isSetoid ι) l)) =
Multiset.prod (Multiset.map f (Quotient.mk (List.isSetoid ι) l)) ^ r
[PROOFSTEP]
simpa using Real.list_prod_map_rpow' l f hs r
[GOAL]
x y : ℝ≥0
z : ℝ
hz : 0 < z
⊢ x ≤ y ^ (1 / z) ↔ x ^ z ≤ y
[PROOFSTEP]
rw [← rpow_le_rpow_iff hz, rpow_self_rpow_inv hz.ne']
[GOAL]
x y : ℝ≥0
z : ℝ
hz : 0 < z
⊢ x ^ (1 / z) ≤ y ↔ x ≤ y ^ z
[PROOFSTEP]
rw [← rpow_le_rpow_iff hz, rpow_self_rpow_inv hz.ne']
[GOAL]
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
⊢ 0 < x ^ p
[PROOFSTEP]
have rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p :=
by
intro p hp_pos
rw [← zero_rpow hp_pos.ne']
exact rpow_lt_rpow hx_pos hp_pos
[GOAL]
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
⊢ ∀ {p : ℝ}, 0 < p → 0 < x ^ p
[PROOFSTEP]
intro p hp_pos
[GOAL]
p✝ : ℝ
x : ℝ≥0
hx_pos : 0 < x
p : ℝ
hp_pos : 0 < p
⊢ 0 < x ^ p
[PROOFSTEP]
rw [← zero_rpow hp_pos.ne']
[GOAL]
p✝ : ℝ
x : ℝ≥0
hx_pos : 0 < x
p : ℝ
hp_pos : 0 < p
⊢ 0 ^ p < x ^ p
[PROOFSTEP]
exact rpow_lt_rpow hx_pos hp_pos
[GOAL]
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p
⊢ 0 < x ^ p
[PROOFSTEP]
rcases lt_trichotomy (0 : ℝ) p with (hp_pos | rfl | hp_neg)
[GOAL]
case inl
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p
hp_pos : 0 < p
⊢ 0 < x ^ p
[PROOFSTEP]
exact rpow_pos_of_nonneg hp_pos
[GOAL]
case inr.inl
x : ℝ≥0
hx_pos : 0 < x
rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p
⊢ 0 < x ^ 0
[PROOFSTEP]
simp only [zero_lt_one, rpow_zero]
[GOAL]
case inr.inr
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p
hp_neg : p < 0
⊢ 0 < x ^ p
[PROOFSTEP]
rw [← neg_neg p, rpow_neg, inv_pos]
[GOAL]
case inr.inr
p : ℝ
x : ℝ≥0
hx_pos : 0 < x
rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p
hp_neg : p < 0
⊢ 0 < x ^ (-p)
[PROOFSTEP]
exact rpow_pos_of_nonneg (neg_pos.mpr hp_neg)
[GOAL]
x : ℝ≥0
z : ℝ
hx : x ≤ 1
h_one_le : 1 ≤ z
⊢ x ^ z ≤ x
[PROOFSTEP]
rcases eq_bot_or_bot_lt x with (rfl | (h : 0 < x))
[GOAL]
case inl
z : ℝ
h_one_le : 1 ≤ z
hx : ⊥ ≤ 1
⊢ ⊥ ^ z ≤ ⊥
[PROOFSTEP]
have : z ≠ 0 := by linarith
[GOAL]
z : ℝ
h_one_le : 1 ≤ z
hx : ⊥ ≤ 1
⊢ z ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case inl
z : ℝ
h_one_le : 1 ≤ z
hx : ⊥ ≤ 1
this : z ≠ 0
⊢ ⊥ ^ z ≤ ⊥
[PROOFSTEP]
simp [this]
[GOAL]
case inr
x : ℝ≥0
z : ℝ
hx : x ≤ 1
h_one_le : 1 ≤ z
h : 0 < x
⊢ x ^ z ≤ x
[PROOFSTEP]
nth_rw 2 [← NNReal.rpow_one x]
[GOAL]
case inr
x : ℝ≥0
z : ℝ
hx : x ≤ 1
h_one_le : 1 ≤ z
h : 0 < x
⊢ x ^ z ≤ x ^ 1
[PROOFSTEP]
exact NNReal.rpow_le_rpow_of_exponent_ge h hx h_one_le
[GOAL]
x : ℝ
hx : x ≠ 0
y z : ℝ≥0
hyz : (fun y => y ^ x) y = (fun y => y ^ x) z
⊢ y = z
[PROOFSTEP]
simpa only [rpow_inv_rpow_self hx] using congr_arg (fun y => y ^ (1 / x)) hyz
[GOAL]
x : ℝ
hx : x ≠ 0
y : ℝ≥0
⊢ (fun y => y ^ x) (y ^ x⁻¹) = y
[PROOFSTEP]
simp_rw [← rpow_mul, _root_.inv_mul_cancel hx, rpow_one]
[GOAL]
x y : ℝ≥0
z : ℝ
hz : z ≠ 0
⊢ x = y ^ (1 / z) ↔ x ^ z = y
[PROOFSTEP]
rw [← rpow_eq_rpow_iff hz, rpow_self_rpow_inv hz]
[GOAL]
x y : ℝ≥0
z : ℝ
hz : z ≠ 0
⊢ x ^ (1 / z) = y ↔ x = y ^ z
[PROOFSTEP]
rw [← rpow_eq_rpow_iff hz, rpow_self_rpow_inv hz]
[GOAL]
x : ℝ≥0
n : ℕ
hn : n ≠ 0
⊢ (x ^ n) ^ (↑n)⁻¹ = x
[PROOFSTEP]
rw [← NNReal.coe_eq, coe_rpow, NNReal.coe_pow]
[GOAL]
x : ℝ≥0
n : ℕ
hn : n ≠ 0
⊢ (↑x ^ n) ^ (↑n)⁻¹ = ↑x
[PROOFSTEP]
exact Real.pow_nat_rpow_nat_inv x.2 hn
[GOAL]
x : ℝ≥0
n : ℕ
hn : n ≠ 0
⊢ (x ^ (↑n)⁻¹) ^ n = x
[PROOFSTEP]
rw [← NNReal.coe_eq, NNReal.coe_pow, coe_rpow]
[GOAL]
x : ℝ≥0
n : ℕ
hn : n ≠ 0
⊢ (↑x ^ (↑n)⁻¹) ^ n = ↑x
[PROOFSTEP]
exact Real.rpow_nat_inv_pow_nat x.2 hn
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ toNNReal (x ^ y) = toNNReal x ^ y
[PROOFSTEP]
nth_rw 1 [← Real.coe_toNNReal x hx]
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ toNNReal (↑(toNNReal x) ^ y) = toNNReal x ^ y
[PROOFSTEP]
rw [← NNReal.coe_rpow, Real.toNNReal_coe]
[GOAL]
z : ℝ
h : 0 < z
x y : ℝ≥0
hxy : x < y
⊢ (fun x => x ^ z) x < (fun x => x ^ z) y
[PROOFSTEP]
simp only [NNReal.rpow_lt_rpow hxy h, coe_lt_coe]
[GOAL]
z : ℝ
h : 0 ≤ z
h0 : 0 = z
⊢ Monotone fun x => x ^ 0
[PROOFSTEP]
simp only [rpow_zero, monotone_const]
[GOAL]
y : ℝ
hy : 0 < y
x : ℝ≥0
⊢ (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x
[PROOFSTEP]
dsimp
[GOAL]
y : ℝ
hy : 0 < y
x : ℝ≥0
⊢ (x ^ (1 / y)) ^ y = x
[PROOFSTEP]
rw [← rpow_mul, one_div_mul_cancel hy.ne.symm, rpow_one]
[GOAL]
y : ℝ
hy : 0 < y
⊢ OrderIso.symm (orderIsoRpow y hy) = orderIsoRpow (1 / y) (_ : 0 < 1 / y)
[PROOFSTEP]
simp only [orderIsoRpow, one_div_one_div]
[GOAL]
y : ℝ
hy : 0 < y
⊢ OrderIso.symm
(StrictMono.orderIsoOfRightInverse (fun x => x ^ y) (_ : StrictMono fun x => x ^ y) (fun x => x ^ (1 / y))
(_ : ∀ (x : ℝ≥0), (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x)) =
StrictMono.orderIsoOfRightInverse (fun x => x ^ (1 / y)) (_ : StrictMono fun x => x ^ (1 / y)) (fun x => x ^ y)
(_ : Function.RightInverse (fun x => x ^ y) fun x => x ^ (1 / y))
[PROOFSTEP]
rfl
[GOAL]
x : ℝ≥0∞
⊢ x ^ 0 = 1
[PROOFSTEP]
cases x
[GOAL]
case none
⊢ none ^ 0 = 1
[PROOFSTEP]
dsimp only [(· ^ ·), Pow.pow, rpow]
[GOAL]
case none
⊢ (if 0 < 0 then ⊤ else if 0 = 0 then 1 else 0) = 1
[PROOFSTEP]
simp [lt_irrefl]
[GOAL]
case some
val✝ : ℝ≥0
⊢ Option.some val✝ ^ 0 = 1
[PROOFSTEP]
dsimp only [(· ^ ·), Pow.pow, rpow]
[GOAL]
case some
val✝ : ℝ≥0
⊢ (if val✝ = 0 ∧ 0 < 0 then ⊤ else ↑(NNReal.rpow val✝ 0)) = 1
[PROOFSTEP]
simp [lt_irrefl]
[GOAL]
y : ℝ
h : 0 < y
⊢ ⊤ ^ y = ⊤
[PROOFSTEP]
simp [top_rpow_def, h]
[GOAL]
y : ℝ
h : y < 0
⊢ ⊤ ^ y = 0
[PROOFSTEP]
simp [top_rpow_def, asymm h, ne_of_lt h]
[GOAL]
y : ℝ
h : 0 < y
⊢ 0 ^ y = 0
[PROOFSTEP]
rw [← ENNReal.coe_zero, ← ENNReal.some_eq_coe]
[GOAL]
y : ℝ
h : 0 < y
⊢ Option.some 0 ^ y = Option.some 0
[PROOFSTEP]
dsimp only [(· ^ ·), rpow, Pow.pow]
[GOAL]
y : ℝ
h : 0 < y
⊢ (if 0 = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow 0 y)) = Option.some 0
[PROOFSTEP]
simp [h, asymm h, ne_of_gt h]
[GOAL]
y : ℝ
h : y < 0
⊢ 0 ^ y = ⊤
[PROOFSTEP]
rw [← ENNReal.coe_zero, ← ENNReal.some_eq_coe]
[GOAL]
y : ℝ
h : y < 0
⊢ Option.some 0 ^ y = ⊤
[PROOFSTEP]
dsimp only [(· ^ ·), rpow, Pow.pow]
[GOAL]
y : ℝ
h : y < 0
⊢ (if 0 = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow 0 y)) = ⊤
[PROOFSTEP]
simp [h, ne_of_gt h]
[GOAL]
y : ℝ
⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤
[PROOFSTEP]
rcases lt_trichotomy (0 : ℝ) y with (H | rfl | H)
[GOAL]
case inl
y : ℝ
H : 0 < y
⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤
[PROOFSTEP]
simp [H, ne_of_gt, zero_rpow_of_pos, lt_irrefl]
[GOAL]
case inr.inl
⊢ 0 ^ 0 = if 0 < 0 then 0 else if 0 = 0 then 1 else ⊤
[PROOFSTEP]
simp [lt_irrefl]
[GOAL]
case inr.inr
y : ℝ
H : y < 0
⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤
[PROOFSTEP]
simp [H, asymm H, ne_of_lt, zero_rpow_of_neg]
[GOAL]
y : ℝ
⊢ 0 ^ y * 0 ^ y = 0 ^ y
[PROOFSTEP]
rw [zero_rpow_def]
[GOAL]
y : ℝ
⊢ ((if 0 < y then 0 else if y = 0 then 1 else ⊤) * if 0 < y then 0 else if y = 0 then 1 else ⊤) =
if 0 < y then 0 else if y = 0 then 1 else ⊤
[PROOFSTEP]
split_ifs
[GOAL]
case pos
y : ℝ
h✝ : 0 < y
⊢ 0 * 0 = 0
case pos
y : ℝ
h✝¹ : ¬0 < y
h✝ : y = 0
⊢ 1 * 1 = 1
case neg y : ℝ h✝¹ : ¬0 < y h✝ : ¬y = 0 ⊢ ⊤ * ⊤ = ⊤
[PROOFSTEP]
exacts [zero_mul _, one_mul _, top_mul_top]
[GOAL]
x : ℝ≥0
h : x ≠ 0
y : ℝ
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
rw [← ENNReal.some_eq_coe]
[GOAL]
x : ℝ≥0
h : x ≠ 0
y : ℝ
⊢ Option.some x ^ y = ↑(x ^ y)
[PROOFSTEP]
dsimp only [(· ^ ·), Pow.pow, rpow]
[GOAL]
x : ℝ≥0
h : x ≠ 0
y : ℝ
⊢ (if x = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow x y)) = ↑(NNReal.rpow x y)
[PROOFSTEP]
simp [h]
[GOAL]
x : ℝ≥0
y : ℝ
h : 0 ≤ y
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
x : ℝ≥0
y : ℝ
h : 0 ≤ y
hx : x = 0
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
rcases le_iff_eq_or_lt.1 h with (H | H)
[GOAL]
case pos.inl
x : ℝ≥0
y : ℝ
h : 0 ≤ y
hx : x = 0
H : 0 = y
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
simp [hx, H.symm]
[GOAL]
case pos.inr
x : ℝ≥0
y : ℝ
h : 0 ≤ y
hx : x = 0
H : 0 < y
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
simp [hx, zero_rpow_of_pos H, NNReal.zero_rpow (ne_of_gt H)]
[GOAL]
case neg
x : ℝ≥0
y : ℝ
h : 0 ≤ y
hx : ¬x = 0
⊢ ↑x ^ y = ↑(x ^ y)
[PROOFSTEP]
exact coe_rpow_of_ne_zero hx _
[GOAL]
x : ℝ≥0∞
⊢ x ^ 1 = x
[PROOFSTEP]
cases x
[GOAL]
case none
⊢ none ^ 1 = none
[PROOFSTEP]
exact dif_pos zero_lt_one
[GOAL]
case some
val✝ : ℝ≥0
⊢ Option.some val✝ ^ 1 = Option.some val✝
[PROOFSTEP]
change ite _ _ _ = _
[GOAL]
case some
val✝ : ℝ≥0
⊢ (if val✝ = 0 ∧ 1 < 0 then ⊤ else ↑(val✝ ^ 1)) = Option.some val✝
[PROOFSTEP]
simp only [NNReal.rpow_one, some_eq_coe, ite_eq_right_iff, top_ne_coe, and_imp]
[GOAL]
case some
val✝ : ℝ≥0
⊢ val✝ = 0 → 1 < 0 → False
[PROOFSTEP]
exact fun _ => zero_le_one.not_lt
[GOAL]
x : ℝ
⊢ 1 ^ x = 1
[PROOFSTEP]
rw [← coe_one, coe_rpow_of_ne_zero one_ne_zero]
[GOAL]
x : ℝ
⊢ ↑(1 ^ x) = ↑1
[PROOFSTEP]
simp
[GOAL]
x : ℝ≥0∞
y : ℝ
⊢ x ^ y = 0 ↔ x = 0 ∧ 0 < y ∨ x = ⊤ ∧ y < 0
[PROOFSTEP]
cases' x with x
[GOAL]
case none
y : ℝ
⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case none.inl
y : ℝ
H : y < 0
⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case none.inr.inl
y : ℝ
H : y = 0
⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case none.inr.inr
y : ℝ
H : 0 < y
⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case some
y : ℝ
x : ℝ≥0
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
y : ℝ
x : ℝ≥0
h : x = 0
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case pos.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y < 0
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case pos.inr.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y = 0
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case pos.inr.inr
y : ℝ
x : ℝ≥0
h : x = 0
H : 0 < y
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case neg
y : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0
[PROOFSTEP]
simp [coe_rpow_of_ne_zero h, h]
[GOAL]
x : ℝ≥0∞
y : ℝ
⊢ x ^ y = ⊤ ↔ x = 0 ∧ y < 0 ∨ x = ⊤ ∧ 0 < y
[PROOFSTEP]
cases' x with x
[GOAL]
case none
y : ℝ
⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case none.inl
y : ℝ
H : y < 0
⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case none.inr.inl
y : ℝ
H : y = 0
⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case none.inr.inr
y : ℝ
H : 0 < y
⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt]
[GOAL]
case some
y : ℝ
x : ℝ≥0
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
y : ℝ
x : ℝ≥0
h : x = 0
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case pos.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y < 0
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case pos.inr.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y = 0
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case pos.inr.inr
y : ℝ
x : ℝ≥0
h : x = 0
H : 0 < y
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt]
[GOAL]
case neg
y : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y
[PROOFSTEP]
simp [coe_rpow_of_ne_zero h, h]
[GOAL]
x : ℝ≥0∞
y : ℝ
hy : 0 < y
⊢ x ^ y = ⊤ ↔ x = ⊤
[PROOFSTEP]
simp [rpow_eq_top_iff, hy, asymm hy]
[GOAL]
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
⊢ x ^ y = ⊤ → x = ⊤
[PROOFSTEP]
rw [ENNReal.rpow_eq_top_iff]
[GOAL]
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
⊢ x = 0 ∧ y < 0 ∨ x = ⊤ ∧ 0 < y → x = ⊤
[PROOFSTEP]
rintro (h | h)
[GOAL]
case inl
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
h : x = 0 ∧ y < 0
⊢ x = ⊤
[PROOFSTEP]
exfalso
[GOAL]
case inl.h
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
h : x = 0 ∧ y < 0
⊢ False
[PROOFSTEP]
rw [lt_iff_not_ge] at h
[GOAL]
case inl.h
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
h : x = 0 ∧ ¬y ≥ 0
⊢ False
[PROOFSTEP]
exact h.right hy0
[GOAL]
case inr
x : ℝ≥0∞
y : ℝ
hy0 : 0 ≤ y
h : x = ⊤ ∧ 0 < y
⊢ x = ⊤
[PROOFSTEP]
exact h.left
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx : x ≠ 0
h'x : x ≠ ⊤
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
cases' x with x
[GOAL]
case none
y z : ℝ
hx : none ≠ 0
h'x : none ≠ ⊤
⊢ none ^ (y + z) = none ^ y * none ^ z
[PROOFSTEP]
exact (h'x rfl).elim
[GOAL]
case some
y z : ℝ
x : ℝ≥0
hx : Option.some x ≠ 0
h'x : Option.some x ≠ ⊤
⊢ Option.some x ^ (y + z) = Option.some x ^ y * Option.some x ^ z
[PROOFSTEP]
have : x ≠ 0 := fun h => by simp [h] at hx
[GOAL]
y z : ℝ
x : ℝ≥0
hx : Option.some x ≠ 0
h'x : Option.some x ≠ ⊤
h : x = 0
⊢ False
[PROOFSTEP]
simp [h] at hx
[GOAL]
case some
y z : ℝ
x : ℝ≥0
hx : Option.some x ≠ 0
h'x : Option.some x ≠ ⊤
this : x ≠ 0
⊢ Option.some x ^ (y + z) = Option.some x ^ y * Option.some x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero this, NNReal.rpow_add this]
[GOAL]
x : ℝ≥0∞
y : ℝ
⊢ x ^ (-y) = (x ^ y)⁻¹
[PROOFSTEP]
cases' x with x
[GOAL]
case none
y : ℝ
⊢ none ^ (-y) = (none ^ y)⁻¹
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case none.inl
y : ℝ
H : y < 0
⊢ none ^ (-y) = (none ^ y)⁻¹
[PROOFSTEP]
simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case none.inr.inl
y : ℝ
H : y = 0
⊢ none ^ (-y) = (none ^ y)⁻¹
[PROOFSTEP]
simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case none.inr.inr
y : ℝ
H : 0 < y
⊢ none ^ (-y) = (none ^ y)⁻¹
[PROOFSTEP]
simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case some
y : ℝ
x : ℝ≥0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
y : ℝ
x : ℝ≥0
h : x = 0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
rcases lt_trichotomy y 0 with (H | H | H)
[GOAL]
case pos.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y < 0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case pos.inr.inl
y : ℝ
x : ℝ≥0
h : x = 0
H : y = 0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case pos.inr.inr
y : ℝ
x : ℝ≥0
h : x = 0
H : 0 < y
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr]
[GOAL]
case neg
y : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
have A : x ^ y ≠ 0 := by simp [h]
[GOAL]
y : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ x ^ y ≠ 0
[PROOFSTEP]
simp [h]
[GOAL]
case neg
y : ℝ
x : ℝ≥0
h : ¬x = 0
A : x ^ y ≠ 0
⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹
[PROOFSTEP]
simp [coe_rpow_of_ne_zero h, ← coe_inv A, NNReal.rpow_neg]
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx : x ≠ 0
h'x : x ≠ ⊤
⊢ x ^ (y - z) = x ^ y / x ^ z
[PROOFSTEP]
rw [sub_eq_add_neg, rpow_add _ _ hx h'x, rpow_neg, div_eq_mul_inv]
[GOAL]
x : ℝ≥0∞
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
simp [rpow_neg]
[GOAL]
x : ℝ≥0∞
y z : ℝ
⊢ x ^ (y * z) = (x ^ y) ^ z
[PROOFSTEP]
cases' x with x
[GOAL]
case none
y z : ℝ
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy y 0 with (Hy | Hy | Hy)
[GOAL]
case none.inl
y z : ℝ
Hy : y < 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inr.inl
y z : ℝ
Hy : y = 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inr.inr
y z : ℝ
Hy : 0 < y
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inl.inl
y z : ℝ
Hy : y < 0
Hz : z < 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inl.inr.inl
y z : ℝ
Hy : y < 0
Hz : z = 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inl.inr.inr
y z : ℝ
Hy : y < 0
Hz : 0 < z
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inl.inl
y z : ℝ
Hy : y = 0
Hz : z < 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inl.inr.inl
y z : ℝ
Hy : y = 0
Hz : z = 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inl.inr.inr
y z : ℝ
Hy : y = 0
Hz : 0 < z
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inr.inl
y z : ℝ
Hy : 0 < y
Hz : z < 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inr.inr.inl
y z : ℝ
Hy : 0 < y
Hz : z = 0
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case none.inr.inr.inr.inr
y z : ℝ
Hy : 0 < y
Hz : 0 < z
⊢ none ^ (y * z) = (none ^ y) ^ z
[PROOFSTEP]
simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case some
y z : ℝ
x : ℝ≥0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
y z : ℝ
x : ℝ≥0
h : x = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy y 0 with (Hy | Hy | Hy)
[GOAL]
case pos.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y < 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inr.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inr.inr
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : 0 < y
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inl.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y < 0
Hz : z < 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inl.inr.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y < 0
Hz : z = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inl.inr.inr
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y < 0
Hz : 0 < z
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inl.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y = 0
Hz : z < 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inl.inr.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y = 0
Hz : z = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inl.inr.inr
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : y = 0
Hz : 0 < z
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inr.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : 0 < y
Hz : z < 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inr.inr.inl
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : 0 < y
Hz : z = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case pos.inr.inr.inr.inr
y z : ℝ
x : ℝ≥0
h : x = 0
Hy : 0 < y
Hz : 0 < z
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg,
mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case neg
y z : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
have : x ^ y ≠ 0 := by simp [h]
[GOAL]
y z : ℝ
x : ℝ≥0
h : ¬x = 0
⊢ x ^ y ≠ 0
[PROOFSTEP]
simp [h]
[GOAL]
case neg
y z : ℝ
x : ℝ≥0
h : ¬x = 0
this : x ^ y ≠ 0
⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero h, coe_rpow_of_ne_zero this, NNReal.rpow_mul]
[GOAL]
x : ℝ≥0∞
n : ℕ
⊢ x ^ ↑n = x ^ n
[PROOFSTEP]
cases x
[GOAL]
case none
n : ℕ
⊢ none ^ ↑n = none ^ n
[PROOFSTEP]
cases n
[GOAL]
case none.zero
⊢ none ^ ↑Nat.zero = none ^ Nat.zero
[PROOFSTEP]
simp [top_rpow_of_pos (Nat.cast_add_one_pos _), top_pow (Nat.succ_pos _)]
[GOAL]
case none.succ
n✝ : ℕ
⊢ none ^ ↑(Nat.succ n✝) = none ^ Nat.succ n✝
[PROOFSTEP]
simp [top_rpow_of_pos (Nat.cast_add_one_pos _), top_pow (Nat.succ_pos _)]
[GOAL]
case some
n : ℕ
val✝ : ℝ≥0
⊢ Option.some val✝ ^ ↑n = Option.some val✝ ^ n
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ (Nat.cast_nonneg n)]
[GOAL]
x : ℝ≥0∞
⊢ x ^ 2 = x ^ 2
[PROOFSTEP]
rw [← rpow_nat_cast]
[GOAL]
x : ℝ≥0∞
⊢ x ^ 2 = x ^ ↑2
[PROOFSTEP]
simp only [Nat.cast_ofNat]
[GOAL]
x y : ℝ≥0∞
z : ℝ
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | hz)
[GOAL]
case inl
x y : ℝ≥0∞
⊢ (x * y) ^ 0 = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ 0 < 0 then ⊤ else x ^ 0 * y ^ 0
[PROOFSTEP]
simp
[GOAL]
case inr
x y : ℝ≥0∞
z : ℝ
hz : z ≠ 0
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
replace hz := hz.lt_or_lt
[GOAL]
case inr
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
wlog hxy : x ≤ y
[GOAL]
case inr.inr
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
this :
∀ (x y : ℝ≥0∞) (z : ℝ),
z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
hxy : ¬x ≤ y
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
convert this y x z hz (le_of_not_le hxy) using 2
[GOAL]
case h.e'_2.h.e'_5
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
this :
∀ (x y : ℝ≥0∞) (z : ℝ),
z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
hxy : ¬x ≤ y
⊢ x * y = y * x
[PROOFSTEP]
simp only [mul_comm, and_comm, or_comm]
[GOAL]
case h.e'_3.h₁.a
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
this :
∀ (x y : ℝ≥0∞) (z : ℝ),
z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
hxy : ¬x ≤ y
⊢ (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 ↔ (y = 0 ∧ x = ⊤ ∨ y = ⊤ ∧ x = 0) ∧ z < 0
[PROOFSTEP]
simp only [mul_comm, and_comm, or_comm]
[GOAL]
case h.e'_3.h₃
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
this :
∀ (x y : ℝ≥0∞) (z : ℝ),
z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
hxy : ¬x ≤ y
a✝ : ¬((y = 0 ∧ x = ⊤ ∨ y = ⊤ ∧ x = 0) ∧ z < 0)
⊢ x ^ z * y ^ z = y ^ z * x ^ z
[PROOFSTEP]
simp only [mul_comm, and_comm, or_comm]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hxy : x ≤ y
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx0)
[GOAL]
case inl
y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hxy : 0 ≤ y
⊢ (0 * y) ^ z = if (0 = 0 ∧ y = ⊤ ∨ 0 = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else 0 ^ z * y ^ z
[PROOFSTEP]
induction y using ENNReal.recTopCoe
[GOAL]
case inl.top
z : ℝ
hz : z < 0 ∨ 0 < z
hxy : 0 ≤ ⊤
⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z
[PROOFSTEP]
cases' hz with hz hz
[GOAL]
case inl.coe
z : ℝ
hz : z < 0 ∨ 0 < z
x✝ : ℝ≥0
hxy : 0 ≤ ↑x✝
⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z
[PROOFSTEP]
cases' hz with hz hz
[GOAL]
case inl.top.inl
z : ℝ
hxy : 0 ≤ ⊤
hz : z < 0
⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z
[PROOFSTEP]
simp [*, hz.not_lt]
[GOAL]
case inl.top.inr
z : ℝ
hxy : 0 ≤ ⊤
hz : 0 < z
⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z
[PROOFSTEP]
simp [*, hz.not_lt]
[GOAL]
case inl.coe.inl
z : ℝ
x✝ : ℝ≥0
hxy : 0 ≤ ↑x✝
hz : z < 0
⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z
[PROOFSTEP]
simp [*, hz.not_lt]
[GOAL]
case inl.coe.inr
z : ℝ
x✝ : ℝ≥0
hxy : 0 ≤ ↑x✝
hz : 0 < z
⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z
[PROOFSTEP]
simp [*, hz.not_lt]
[GOAL]
case inr
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hxy : x ≤ y
hx0 : x ≠ 0
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy0)
[GOAL]
case inr.inl
x : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hx0 : x ≠ 0
hxy : x ≤ 0
⊢ (x * 0) ^ z = if (x = 0 ∧ 0 = ⊤ ∨ x = ⊤ ∧ 0 = 0) ∧ z < 0 then ⊤ else x ^ z * 0 ^ z
[PROOFSTEP]
exact (hx0 (bot_unique hxy)).elim
[GOAL]
case inr.inr
x y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hxy : x ≤ y
hx0 : x ≠ 0
hy0 : y ≠ 0
⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
[PROOFSTEP]
induction x using ENNReal.recTopCoe
[GOAL]
case inr.inr.top
y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hy0 : y ≠ 0
hxy : ⊤ ≤ y
hx0 : ⊤ ≠ 0
⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z
[PROOFSTEP]
cases' hz with hz hz
[GOAL]
case inr.inr.top.inl
y : ℝ≥0∞
z : ℝ
hy0 : y ≠ 0
hxy : ⊤ ≤ y
hx0 : ⊤ ≠ 0
hz : z < 0
⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z
[PROOFSTEP]
simp [hz, top_unique hxy]
[GOAL]
case inr.inr.top.inr
y : ℝ≥0∞
z : ℝ
hy0 : y ≠ 0
hxy : ⊤ ≤ y
hx0 : ⊤ ≠ 0
hz : 0 < z
⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z
[PROOFSTEP]
simp [hz, top_unique hxy]
[GOAL]
case inr.inr.coe
y : ℝ≥0∞
z : ℝ
hz : z < 0 ∨ 0 < z
hy0 : y ≠ 0
x✝ : ℝ≥0
hxy : ↑x✝ ≤ y
hx0 : ↑x✝ ≠ 0
⊢ (↑x✝ * y) ^ z = if (↑x✝ = 0 ∧ y = ⊤ ∨ ↑x✝ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * y ^ z
[PROOFSTEP]
induction y using ENNReal.recTopCoe
[GOAL]
case inr.inr.coe.top
z : ℝ
hz : z < 0 ∨ 0 < z
x✝ : ℝ≥0
hx0 : ↑x✝ ≠ 0
hy0 : ⊤ ≠ 0
hxy : ↑x✝ ≤ ⊤
⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z
[PROOFSTEP]
rw [ne_eq, coe_eq_zero] at hx0
[GOAL]
case inr.inr.coe.top
z : ℝ
hz : z < 0 ∨ 0 < z
x✝ : ℝ≥0
hx0 : ¬x✝ = 0
hy0 : ⊤ ≠ 0
hxy : ↑x✝ ≤ ⊤
⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z
[PROOFSTEP]
cases' hz with hz hz
[GOAL]
case inr.inr.coe.top.inl
z : ℝ
x✝ : ℝ≥0
hx0 : ¬x✝ = 0
hy0 : ⊤ ≠ 0
hxy : ↑x✝ ≤ ⊤
hz : z < 0
⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr.coe.top.inr
z : ℝ
x✝ : ℝ≥0
hx0 : ¬x✝ = 0
hy0 : ⊤ ≠ 0
hxy : ↑x✝ ≤ ⊤
hz : 0 < z
⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr.coe.coe
z : ℝ
hz : z < 0 ∨ 0 < z
x✝¹ : ℝ≥0
hx0 : ↑x✝¹ ≠ 0
x✝ : ℝ≥0
hy0 : ↑x✝ ≠ 0
hxy : ↑x✝¹ ≤ ↑x✝
⊢ (↑x✝¹ * ↑x✝) ^ z = if (↑x✝¹ = 0 ∧ ↑x✝ = ⊤ ∨ ↑x✝¹ = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else ↑x✝¹ ^ z * ↑x✝ ^ z
[PROOFSTEP]
simp only [*, false_and_iff, and_false_iff, false_or_iff, if_false]
[GOAL]
case inr.inr.coe.coe
z : ℝ
hz : z < 0 ∨ 0 < z
x✝¹ : ℝ≥0
hx0 : ↑x✝¹ ≠ 0
x✝ : ℝ≥0
hy0 : ↑x✝ ≠ 0
hxy : ↑x✝¹ ≤ ↑x✝
⊢ (↑x✝¹ * ↑x✝) ^ z = ↑x✝¹ ^ z * ↑x✝ ^ z
[PROOFSTEP]
norm_cast at *
[GOAL]
case inr.inr.coe.coe
z : ℝ
x✝¹ x✝ : ℝ≥0
hz : z < 0 ∨ 0 < z
hx0 : ¬x✝¹ = 0
hy0 : ¬x✝ = 0
hxy : x✝¹ ≤ x✝
⊢ ↑(x✝¹ * x✝) ^ z = ↑x✝¹ ^ z * ↑x✝ ^ z
[PROOFSTEP]
rw [coe_rpow_of_ne_zero (mul_ne_zero hx0 hy0), NNReal.mul_rpow]
[GOAL]
case inr.inr.coe.coe
z : ℝ
x✝¹ x✝ : ℝ≥0
hz : z < 0 ∨ 0 < z
hx0 : ¬x✝¹ = 0
hy0 : ¬x✝ = 0
hxy : x✝¹ ≤ x✝
⊢ ↑(x✝¹ ^ z * x✝ ^ z) = ↑x✝¹ ^ z * ↑x✝ ^ z
[PROOFSTEP]
norm_cast
[GOAL]
x y : ℝ≥0∞
hx : x ≠ ⊤
hy : y ≠ ⊤
z : ℝ
⊢ (x * y) ^ z = x ^ z * y ^ z
[PROOFSTEP]
simp [*, mul_rpow_eq_ite]
[GOAL]
x y : ℝ≥0∞
hx : x ≠ 0
hy : y ≠ 0
z : ℝ
⊢ (x * y) ^ z = x ^ z * y ^ z
[PROOFSTEP]
simp [*, mul_rpow_eq_ite]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 ≤ z
⊢ (x * y) ^ z = x ^ z * y ^ z
[PROOFSTEP]
simp [hz.not_lt, mul_rpow_eq_ite]
[GOAL]
x : ℝ≥0∞
y : ℝ
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inl
x : ℝ≥0∞
⊢ x⁻¹ ^ 0 = (x ^ 0)⁻¹
[PROOFSTEP]
simp only [rpow_zero, inv_one]
[GOAL]
case inr
x : ℝ≥0∞
y : ℝ
hy : y ≠ 0
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
replace hy := hy.lt_or_lt
[GOAL]
case inr
x : ℝ≥0∞
y : ℝ
hy : y < 0 ∨ 0 < y
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | h0)
[GOAL]
case inr.inl
y : ℝ
hy : y < 0 ∨ 0 < y
⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹
[PROOFSTEP]
cases hy
[GOAL]
case inr.inl.inl
y : ℝ
h✝ : y < 0
⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inl.inr
y : ℝ
h✝ : 0 < y
⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr
x : ℝ≥0∞
y : ℝ
hy : y < 0 ∨ 0 < y
h0 : x ≠ 0
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
rcases eq_or_ne x ⊤ with (rfl | h_top)
[GOAL]
case inr.inr.inl
y : ℝ
hy : y < 0 ∨ 0 < y
h0 : ⊤ ≠ 0
⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹
[PROOFSTEP]
cases hy
[GOAL]
case inr.inr.inl.inl
y : ℝ
h0 : ⊤ ≠ 0
h✝ : y < 0
⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr.inl.inr
y : ℝ
h0 : ⊤ ≠ 0
h✝ : 0 < y
⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr.inr
x : ℝ≥0∞
y : ℝ
hy : y < 0 ∨ 0 < y
h0 : x ≠ 0
h_top : x ≠ ⊤
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
apply ENNReal.eq_inv_of_mul_eq_one_left
[GOAL]
case inr.inr.inr.h
x : ℝ≥0∞
y : ℝ
hy : y < 0 ∨ 0 < y
h0 : x ≠ 0
h_top : x ≠ ⊤
⊢ x⁻¹ ^ y * x ^ y = 1
[PROOFSTEP]
rw [← mul_rpow_of_ne_zero (ENNReal.inv_ne_zero.2 h_top) h0, ENNReal.inv_mul_cancel h0 h_top, one_rpow]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 ≤ z
⊢ (x / y) ^ z = x ^ z / y ^ z
[PROOFSTEP]
rw [div_eq_mul_inv, mul_rpow_of_nonneg _ _ hz, inv_rpow, div_eq_mul_inv]
[GOAL]
z : ℝ
h : 0 < z
⊢ StrictMono fun x => x ^ z
[PROOFSTEP]
intro x y hxy
[GOAL]
z : ℝ
h : 0 < z
x y : ℝ≥0∞
hxy : x < y
⊢ (fun x => x ^ z) x < (fun x => x ^ z) y
[PROOFSTEP]
lift x to ℝ≥0 using ne_top_of_lt hxy
[GOAL]
case intro
z : ℝ
h : 0 < z
y : ℝ≥0∞
x : ℝ≥0
hxy : ↑x < y
⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) y
[PROOFSTEP]
rcases eq_or_ne y ∞ with (rfl | hy)
[GOAL]
case intro.inl
z : ℝ
h : 0 < z
x : ℝ≥0
hxy : ↑x < ⊤
⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) ⊤
[PROOFSTEP]
simp only [top_rpow_of_pos h, coe_rpow_of_nonneg _ h.le, coe_lt_top]
[GOAL]
case intro.inr
z : ℝ
h : 0 < z
y : ℝ≥0∞
x : ℝ≥0
hxy : ↑x < y
hy : y ≠ ⊤
⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) y
[PROOFSTEP]
lift y to ℝ≥0 using hy
[GOAL]
case intro.inr.intro
z : ℝ
h : 0 < z
x y : ℝ≥0
hxy : ↑x < ↑y
⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) ↑y
[PROOFSTEP]
simp only [coe_rpow_of_nonneg _ h.le, NNReal.rpow_lt_rpow (coe_lt_coe.1 hxy) h, coe_lt_coe]
[GOAL]
z : ℝ
h : 0 ≤ z
h0 : 0 = z
⊢ Monotone fun x => x ^ 0
[PROOFSTEP]
simp only [rpow_zero, monotone_const]
[GOAL]
y : ℝ
hy : 0 < y
x : ℝ≥0∞
⊢ (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x
[PROOFSTEP]
dsimp
[GOAL]
y : ℝ
hy : 0 < y
x : ℝ≥0∞
⊢ (x ^ (1 / y)) ^ y = x
[PROOFSTEP]
rw [← rpow_mul, one_div_mul_cancel hy.ne.symm, rpow_one]
[GOAL]
y : ℝ
hy : 0 < y
⊢ OrderIso.symm (orderIsoRpow y hy) = orderIsoRpow (1 / y) (_ : 0 < 1 / y)
[PROOFSTEP]
simp only [orderIsoRpow, one_div_one_div]
[GOAL]
y : ℝ
hy : 0 < y
⊢ OrderIso.symm
(StrictMono.orderIsoOfRightInverse (fun x => x ^ y) (_ : StrictMono fun x => x ^ y) (fun x => x ^ (1 / y))
(_ : ∀ (x : ℝ≥0∞), (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x)) =
StrictMono.orderIsoOfRightInverse (fun x => x ^ (1 / y)) (_ : StrictMono fun x => x ^ (1 / y)) (fun x => x ^ y)
(_ : Function.RightInverse (fun x => x ^ y) fun x => x ^ (1 / y))
[PROOFSTEP]
rfl
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ≤ y ^ (1 / z) ↔ x ^ z ≤ y
[PROOFSTEP]
nth_rw 1 [← rpow_one x]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ 1 ≤ y ^ (1 / z) ↔ x ^ z ≤ y
[PROOFSTEP]
nth_rw 1 [← @_root_.mul_inv_cancel _ _ z hz.ne']
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ (z * z⁻¹) ≤ y ^ (1 / z) ↔ x ^ z ≤ y
[PROOFSTEP]
rw [rpow_mul, ← one_div, @rpow_le_rpow_iff _ _ (1 / z) (by simp [hz])]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ 0 < 1 / z
[PROOFSTEP]
simp [hz]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x < y ^ (1 / z) ↔ x ^ z < y
[PROOFSTEP]
nth_rw 1 [← rpow_one x]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ 1 < y ^ (1 / z) ↔ x ^ z < y
[PROOFSTEP]
nth_rw 1 [← @_root_.mul_inv_cancel _ _ z (ne_of_lt hz).symm]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ (z * z⁻¹) < y ^ (1 / z) ↔ x ^ z < y
[PROOFSTEP]
rw [rpow_mul, ← one_div, @rpow_lt_rpow_iff _ _ (1 / z) (by simp [hz])]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ 0 < 1 / z
[PROOFSTEP]
simp [hz]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ (1 / z) ≤ y ↔ x ≤ y ^ z
[PROOFSTEP]
nth_rw 1 [← ENNReal.rpow_one y]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ (1 / z) ≤ y ^ 1 ↔ x ≤ y ^ z
[PROOFSTEP]
nth_rw 2 [← @_root_.mul_inv_cancel _ _ z hz.ne.symm]
[GOAL]
x y : ℝ≥0∞
z : ℝ
hz : 0 < z
⊢ x ^ (1 / z) ≤ y ^ (z * z⁻¹) ↔ x ≤ y ^ z
[PROOFSTEP]
rw [ENNReal.rpow_mul, ← one_div, ENNReal.rpow_le_rpow_iff (one_div_pos.2 hz)]
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx : 1 < x
hx' : x ≠ ⊤
hyz : y < z
⊢ x ^ y < x ^ z
[PROOFSTEP]
lift x to ℝ≥0 using hx'
[GOAL]
case intro
y z : ℝ
hyz : y < z
x : ℝ≥0
hx : 1 < ↑x
⊢ ↑x ^ y < ↑x ^ z
[PROOFSTEP]
rw [one_lt_coe_iff] at hx
[GOAL]
case intro
y z : ℝ
hyz : y < z
x : ℝ≥0
hx : 1 < x
⊢ ↑x ^ y < ↑x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt (lt_trans zero_lt_one hx)), NNReal.rpow_lt_rpow_of_exponent_lt hx hyz]
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
cases x
[GOAL]
case none
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
rcases lt_trichotomy y 0 with (Hy | Hy | Hy)
[GOAL]
case none.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y < 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y = 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inr.inr
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case none.inl.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y < 0
Hz : z < 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inl.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y < 0
Hz : z = 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inl.inr.inr
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y < 0
Hz : 0 < z
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inl.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y = 0
Hz : z < 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inl.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y = 0
Hz : z = 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inl.inr.inr
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y = 0
Hz : 0 < z
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
Hz : z < 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inr.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
Hz : z = 0
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inr.inr.inr
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
Hz : 0 < z
⊢ none ^ y ≤ none ^ z
[PROOFSTEP]
simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl]
[GOAL]
case none.inr.inl.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : y = 0
Hz : z < 0
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case none.inr.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
Hz : z < 0
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case none.inr.inr.inr.inl
y z : ℝ
hyz : y ≤ z
hx : 1 ≤ none
Hy : 0 < y
Hz : z = 0
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case some
y z : ℝ
hyz : y ≤ z
val✝ : ℝ≥0
hx : 1 ≤ Option.some val✝
⊢ Option.some val✝ ^ y ≤ Option.some val✝ ^ z
[PROOFSTEP]
simp only [one_le_coe_iff, some_eq_coe] at hx
[GOAL]
case some
y z : ℝ
hyz : y ≤ z
val✝ : ℝ≥0
hx : 1 ≤ val✝
⊢ Option.some val✝ ^ y ≤ Option.some val✝ ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt (lt_of_lt_of_le zero_lt_one hx)), NNReal.rpow_le_rpow_of_exponent_le hx hyz]
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ x ^ y < x ^ z
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx1 le_top)
[GOAL]
case intro
y z : ℝ
hyz : z < y
x : ℝ≥0
hx0 : 0 < ↑x
hx1 : ↑x < 1
⊢ ↑x ^ y < ↑x ^ z
[PROOFSTEP]
simp only [coe_lt_one_iff, coe_pos] at hx0 hx1
[GOAL]
case intro
y z : ℝ
hyz : z < y
x : ℝ≥0
hx0 : 0 < x
hx1 : x < 1
⊢ ↑x ^ y < ↑x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt hx0), NNReal.rpow_lt_rpow_of_exponent_gt hx0 hx1 hyz]
[GOAL]
x : ℝ≥0∞
y z : ℝ
hx1 : x ≤ 1
hyz : z ≤ y
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx1 coe_lt_top)
[GOAL]
case intro
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
rcases lt_trichotomy y 0 with (Hy | Hy | Hy)
[GOAL]
case pos.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : 0 < y
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
rcases lt_trichotomy z 0 with (Hz | Hz | Hz)
[GOAL]
case pos.inl.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
Hz : z < 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inl.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
Hz : z = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inl.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
Hz : 0 < z
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inl.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y = 0
Hz : z < 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inl.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y = 0
Hz : z = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inl.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y = 0
Hz : 0 < z
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : 0 < y
Hz : z < 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inr.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : 0 < y
Hz : z = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inr.inr.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : 0 < y
Hz : 0 < z
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl]
[GOAL]
case pos.inl.inr.inl
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
Hz : z = 0
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos.inl.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y < 0
Hz : 0 < z
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos.inr.inl.inr.inr
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : x = 0
Hy : y = 0
Hz : 0 < z
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : ↑x ≤ 1
h : ¬x = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
rw [coe_le_one_iff] at hx1
[GOAL]
case neg
y z : ℝ
hyz : z ≤ y
x : ℝ≥0
hx1 : x ≤ 1
h : ¬x = 0
⊢ ↑x ^ y ≤ ↑x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero h, NNReal.rpow_le_rpow_of_exponent_ge (bot_lt_iff_ne_bot.mpr h) hx1 hyz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : x ≤ 1
h_one_le : 1 ≤ z
⊢ x ^ z ≤ x
[PROOFSTEP]
nth_rw 2 [← ENNReal.rpow_one x]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : x ≤ 1
h_one_le : 1 ≤ z
⊢ x ^ z ≤ x ^ 1
[PROOFSTEP]
exact ENNReal.rpow_le_rpow_of_exponent_ge hx h_one_le
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 ≤ x
h_one_le : 1 ≤ z
⊢ x ≤ x ^ z
[PROOFSTEP]
nth_rw 1 [← ENNReal.rpow_one x]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 ≤ x
h_one_le : 1 ≤ z
⊢ x ^ 1 ≤ x ^ z
[PROOFSTEP]
exact ENNReal.rpow_le_rpow_of_exponent_le hx h_one_le
[GOAL]
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
⊢ 0 < x ^ p
[PROOFSTEP]
by_cases hp_zero : p = 0
[GOAL]
case pos
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
hp_zero : p = 0
⊢ 0 < x ^ p
[PROOFSTEP]
simp [hp_zero, zero_lt_one]
[GOAL]
case neg
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
hp_zero : ¬p = 0
⊢ 0 < x ^ p
[PROOFSTEP]
rw [← Ne.def] at hp_zero
[GOAL]
case neg
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
hp_zero : p ≠ 0
⊢ 0 < x ^ p
[PROOFSTEP]
have hp_pos := lt_of_le_of_ne hp_nonneg hp_zero.symm
[GOAL]
case neg
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
hp_zero : p ≠ 0
hp_pos : 0 < p
⊢ 0 < x ^ p
[PROOFSTEP]
rw [← zero_rpow_of_pos hp_pos]
[GOAL]
case neg
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hp_nonneg : 0 ≤ p
hp_zero : p ≠ 0
hp_pos : 0 < p
⊢ 0 ^ p < x ^ p
[PROOFSTEP]
exact rpow_lt_rpow hx_pos hp_pos
[GOAL]
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hx_ne_top : x ≠ ⊤
⊢ 0 < x ^ p
[PROOFSTEP]
cases' lt_or_le 0 p with hp_pos hp_nonpos
[GOAL]
case inl
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hx_ne_top : x ≠ ⊤
hp_pos : 0 < p
⊢ 0 < x ^ p
[PROOFSTEP]
exact rpow_pos_of_nonneg hx_pos (le_of_lt hp_pos)
[GOAL]
case inr
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hx_ne_top : x ≠ ⊤
hp_nonpos : p ≤ 0
⊢ 0 < x ^ p
[PROOFSTEP]
rw [← neg_neg p, rpow_neg, ENNReal.inv_pos]
[GOAL]
case inr
p : ℝ
x : ℝ≥0∞
hx_pos : 0 < x
hx_ne_top : x ≠ ⊤
hp_nonpos : p ≤ 0
⊢ x ^ (-p) ≠ ⊤
[PROOFSTEP]
exact rpow_ne_top_of_nonneg (Right.nonneg_neg_iff.mpr hp_nonpos) hx_ne_top
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : x < 1
hz : 0 < z
⊢ x ^ z < 1
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx le_top)
[GOAL]
case intro
z : ℝ
hz : 0 < z
x : ℝ≥0
hx : ↑x < 1
⊢ ↑x ^ z < 1
[PROOFSTEP]
simp only [coe_lt_one_iff] at hx
[GOAL]
case intro
z : ℝ
hz : 0 < z
x : ℝ≥0
hx : x < 1
⊢ ↑x ^ z < 1
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.rpow_lt_one hx hz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : x ≤ 1
hz : 0 ≤ z
⊢ x ^ z ≤ 1
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx coe_lt_top)
[GOAL]
case intro
z : ℝ
hz : 0 ≤ z
x : ℝ≥0
hx : ↑x ≤ 1
⊢ ↑x ^ z ≤ 1
[PROOFSTEP]
simp only [coe_le_one_iff] at hx
[GOAL]
case intro
z : ℝ
hz : 0 ≤ z
x : ℝ≥0
hx : x ≤ 1
⊢ ↑x ^ z ≤ 1
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ hz, NNReal.rpow_le_one hx hz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 < x
hz : z < 0
⊢ x ^ z < 1
[PROOFSTEP]
cases x
[GOAL]
case none
z : ℝ
hz : z < 0
hx : 1 < none
⊢ none ^ z < 1
[PROOFSTEP]
simp [top_rpow_of_neg hz, zero_lt_one]
[GOAL]
case some
z : ℝ
hz : z < 0
val✝ : ℝ≥0
hx : 1 < Option.some val✝
⊢ Option.some val✝ ^ z < 1
[PROOFSTEP]
simp only [some_eq_coe, one_lt_coe_iff] at hx
[GOAL]
case some
z : ℝ
hz : z < 0
val✝ : ℝ≥0
hx : 1 < val✝
⊢ Option.some val✝ ^ z < 1
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt (lt_trans zero_lt_one hx)), NNReal.rpow_lt_one_of_one_lt_of_neg hx hz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 ≤ x
hz : z < 0
⊢ x ^ z ≤ 1
[PROOFSTEP]
cases x
[GOAL]
case none
z : ℝ
hz : z < 0
hx : 1 ≤ none
⊢ none ^ z ≤ 1
[PROOFSTEP]
simp [top_rpow_of_neg hz, zero_lt_one]
[GOAL]
case some
z : ℝ
hz : z < 0
val✝ : ℝ≥0
hx : 1 ≤ Option.some val✝
⊢ Option.some val✝ ^ z ≤ 1
[PROOFSTEP]
simp only [one_le_coe_iff, some_eq_coe] at hx
[GOAL]
case some
z : ℝ
hz : z < 0
val✝ : ℝ≥0
hx : 1 ≤ val✝
⊢ Option.some val✝ ^ z ≤ 1
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt (lt_of_lt_of_le zero_lt_one hx)),
NNReal.rpow_le_one_of_one_le_of_nonpos hx (le_of_lt hz)]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 < x
hz : 0 < z
⊢ 1 < x ^ z
[PROOFSTEP]
cases x
[GOAL]
case none
z : ℝ
hz : 0 < z
hx : 1 < none
⊢ 1 < none ^ z
[PROOFSTEP]
simp [top_rpow_of_pos hz]
[GOAL]
case some
z : ℝ
hz : 0 < z
val✝ : ℝ≥0
hx : 1 < Option.some val✝
⊢ 1 < Option.some val✝ ^ z
[PROOFSTEP]
simp only [some_eq_coe, one_lt_coe_iff] at hx
[GOAL]
case some
z : ℝ
hz : 0 < z
val✝ : ℝ≥0
hx : 1 < val✝
⊢ 1 < Option.some val✝ ^ z
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.one_lt_rpow hx hz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx : 1 ≤ x
hz : 0 < z
⊢ 1 ≤ x ^ z
[PROOFSTEP]
cases x
[GOAL]
case none
z : ℝ
hz : 0 < z
hx : 1 ≤ none
⊢ 1 ≤ none ^ z
[PROOFSTEP]
simp [top_rpow_of_pos hz]
[GOAL]
case some
z : ℝ
hz : 0 < z
val✝ : ℝ≥0
hx : 1 ≤ Option.some val✝
⊢ 1 ≤ Option.some val✝ ^ z
[PROOFSTEP]
simp only [one_le_coe_iff, some_eq_coe] at hx
[GOAL]
case some
z : ℝ
hz : 0 < z
val✝ : ℝ≥0
hx : 1 ≤ val✝
⊢ 1 ≤ Option.some val✝ ^ z
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.one_le_rpow hx (le_of_lt hz)]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx1 : 0 < x
hx2 : x < 1
hz : z < 0
⊢ 1 < x ^ z
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx2 le_top)
[GOAL]
case intro
z : ℝ
hz : z < 0
x : ℝ≥0
hx1 : 0 < ↑x
hx2 : ↑x < 1
⊢ 1 < ↑x ^ z
[PROOFSTEP]
simp only [coe_lt_one_iff, coe_pos] at hx1 hx2 ⊢
[GOAL]
case intro
z : ℝ
hz : z < 0
x : ℝ≥0
hx1 : 0 < x
hx2 : x < 1
⊢ 1 < ↑x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt hx1), NNReal.one_lt_rpow_of_pos_of_lt_one_of_neg hx1 hx2 hz]
[GOAL]
x : ℝ≥0∞
z : ℝ
hx1 : 0 < x
hx2 : x ≤ 1
hz : z < 0
⊢ 1 ≤ x ^ z
[PROOFSTEP]
lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx2 coe_lt_top)
[GOAL]
case intro
z : ℝ
hz : z < 0
x : ℝ≥0
hx1 : 0 < ↑x
hx2 : ↑x ≤ 1
⊢ 1 ≤ ↑x ^ z
[PROOFSTEP]
simp only [coe_le_one_iff, coe_pos] at hx1 hx2 ⊢
[GOAL]
case intro
z : ℝ
hz : z < 0
x : ℝ≥0
hx1 : 0 < x
hx2 : x ≤ 1
⊢ 1 ≤ ↑x ^ z
[PROOFSTEP]
simp [coe_rpow_of_ne_zero (ne_of_gt hx1), NNReal.one_le_rpow_of_pos_of_le_one_of_nonpos hx1 hx2 (le_of_lt hz)]
[GOAL]
x : ℝ≥0∞
z : ℝ
⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z)
[PROOFSTEP]
rcases lt_trichotomy z 0 with (H | H | H)
[GOAL]
case inl
x : ℝ≥0∞
z : ℝ
H : z < 0
⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z)
[PROOFSTEP]
cases' x with x
[GOAL]
case inl.none
z : ℝ
H : z < 0
⊢ ENNReal.toNNReal none ^ z = ENNReal.toNNReal (none ^ z)
[PROOFSTEP]
simp [H, ne_of_lt]
[GOAL]
case inl.some
z : ℝ
H : z < 0
x : ℝ≥0
⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
z : ℝ
H : z < 0
x : ℝ≥0
hx : x = 0
⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z)
[PROOFSTEP]
simp [hx, H, ne_of_lt]
[GOAL]
case neg
z : ℝ
H : z < 0
x : ℝ≥0
hx : ¬x = 0
⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z)
[PROOFSTEP]
simp [coe_rpow_of_ne_zero hx]
[GOAL]
case inr.inl
x : ℝ≥0∞
z : ℝ
H : z = 0
⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z)
[PROOFSTEP]
simp [H]
[GOAL]
case inr.inr
x : ℝ≥0∞
z : ℝ
H : 0 < z
⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z)
[PROOFSTEP]
cases x
[GOAL]
case inr.inr.none
z : ℝ
H : 0 < z
⊢ ENNReal.toNNReal none ^ z = ENNReal.toNNReal (none ^ z)
[PROOFSTEP]
simp [H, ne_of_gt]
[GOAL]
case inr.inr.some
z : ℝ
H : 0 < z
val✝ : ℝ≥0
⊢ ENNReal.toNNReal (Option.some val✝) ^ z = ENNReal.toNNReal (Option.some val✝ ^ z)
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ (le_of_lt H)]
[GOAL]
x : ℝ≥0∞
z : ℝ
⊢ ENNReal.toReal x ^ z = ENNReal.toReal (x ^ z)
[PROOFSTEP]
rw [ENNReal.toReal, ENNReal.toReal, ← NNReal.coe_rpow, ENNReal.toNNReal_rpow]
[GOAL]
x p : ℝ
hx_pos : 0 < x
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
simp_rw [ENNReal.ofReal]
[GOAL]
x p : ℝ
hx_pos : 0 < x
⊢ ↑(toNNReal x) ^ p = ↑(toNNReal (x ^ p))
[PROOFSTEP]
rw [coe_rpow_of_ne_zero, coe_eq_coe, Real.toNNReal_rpow_of_nonneg hx_pos.le]
[GOAL]
case h
x p : ℝ
hx_pos : 0 < x
⊢ toNNReal x ≠ 0
[PROOFSTEP]
simp [hx_pos]
[GOAL]
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
by_cases hp0 : p = 0
[GOAL]
case pos
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : p = 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
simp [hp0]
[GOAL]
case neg
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : ¬p = 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
by_cases hx0 : x = 0
[GOAL]
case pos
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : ¬p = 0
hx0 : x = 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
rw [← Ne.def] at hp0
[GOAL]
case pos
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : p ≠ 0
hx0 : x = 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
have hp_pos : 0 < p := lt_of_le_of_ne hp_nonneg hp0.symm
[GOAL]
case pos
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : p ≠ 0
hx0 : x = 0
hp_pos : 0 < p
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
simp [hx0, hp_pos, hp_pos.ne.symm]
[GOAL]
case neg
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : ¬p = 0
hx0 : ¬x = 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
rw [← Ne.def] at hx0
[GOAL]
case neg
x p : ℝ
hx_nonneg : 0 ≤ x
hp_nonneg : 0 ≤ p
hp0 : ¬p = 0
hx0 : x ≠ 0
⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p)
[PROOFSTEP]
exact ofReal_rpow_of_pos (hx_nonneg.lt_of_ne hx0.symm)
[GOAL]
x : ℝ
hx : x ≠ 0
⊢ Function.Injective fun y => y ^ x
[PROOFSTEP]
intro y z hyz
[GOAL]
x : ℝ
hx : x ≠ 0
y z : ℝ≥0∞
hyz : (fun y => y ^ x) y = (fun y => y ^ x) z
⊢ y = z
[PROOFSTEP]
dsimp only at hyz
[GOAL]
x : ℝ
hx : x ≠ 0
y z : ℝ≥0∞
hyz : y ^ x = z ^ x
⊢ y = z
[PROOFSTEP]
rw [← rpow_one y, ← rpow_one z, ← _root_.mul_inv_cancel hx, rpow_mul, rpow_mul, hyz]
[GOAL]
x : ℝ
hx : x ≠ 0
y : ℝ≥0∞
⊢ (fun y => y ^ x) (y ^ x⁻¹) = y
[PROOFSTEP]
simp_rw [← rpow_mul, _root_.inv_mul_cancel hx, rpow_one]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.NNReal", "llama_tokens": 33377} |
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ x ^ y = if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)
[PROOFSTEP]
simp only [rpow_def, Complex.cpow_def]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ (if ↑x = 0 then if ↑y = 0 then 1 else 0 else Complex.exp (Complex.log ↑x * ↑y)).re =
if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝³ : ↑x = 0
h✝² : ↑y = 0
h✝¹ : x = 0
h✝ : y = 0
⊢ 1.re = 1
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝³ : ↑x = 0
h✝² : ↑y = 0
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 1.re = 0
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : ↑x = 0
h✝¹ : ↑y = 0
h✝ : ¬x = 0
⊢ 1.re = exp (log x * y)
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case pos
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝³ : ↑x = 0
h✝² : ¬↑y = 0
h✝¹ : x = 0
h✝ : y = 0
⊢ 0.re = 1
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝³ : ↑x = 0
h✝² : ¬↑y = 0
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 0.re = 0
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : ↑x = 0
h✝¹ : ¬↑y = 0
h✝ : ¬x = 0
⊢ 0.re = exp (log x * y)
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case pos
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : ¬↑x = 0
h✝¹ : x = 0
h✝ : y = 0
⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = 1
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : ¬↑x = 0
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = 0
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝¹ : ¬↑x = 0
h✝ : ¬x = 0
⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y)
[PROOFSTEP]
simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm,
Complex.exp_ofReal_re, Complex.ofReal_eq_zero]
[GOAL]
x : ℝ
hx : 0 < x
y : ℝ
⊢ x ^ y = exp (log x * y)
[PROOFSTEP]
rw [rpow_def_of_nonneg (le_of_lt hx), if_neg (ne_of_gt hx)]
[GOAL]
x y : ℝ
⊢ exp (x * y) = exp x ^ y
[PROOFSTEP]
rw [rpow_def_of_pos (exp_pos _), log_exp]
[GOAL]
x : ℝ
⊢ exp 1 ^ x = exp x
[PROOFSTEP]
rw [← exp_mul, one_mul]
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp only [rpow_def_of_nonneg hx]
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x y : ℝ
hx : 0 ≤ x
h✝¹ : x = 0
h✝ : y = 0
⊢ 1 = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
case neg
x y : ℝ
hx : 0 ≤ x
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 0 = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
case neg
x y : ℝ
hx : 0 ≤ x
h✝ : ¬x = 0
⊢ exp (log x * y) = 0 ↔ x = 0 ∧ y ≠ 0
[PROOFSTEP]
simp [*, exp_ne_zero]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
⊢ x ^ y = exp (log x * y) * cos (y * π)
[PROOFSTEP]
rw [rpow_def, Complex.cpow_def, if_neg]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y) * cos (y * π)
case hnc x : ℝ hx : x < 0 y : ℝ ⊢ ¬↑x = 0
[PROOFSTEP]
have : Complex.log x * y = ↑(log (-x) * y) + ↑(y * π) * Complex.I :=
by
simp only [Complex.log, abs_of_neg hx, Complex.arg_ofReal_of_neg hx, Complex.abs_ofReal, Complex.ofReal_mul]
ring
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
⊢ Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I
[PROOFSTEP]
simp only [Complex.log, abs_of_neg hx, Complex.arg_ofReal_of_neg hx, Complex.abs_ofReal, Complex.ofReal_mul]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
⊢ (↑(log (-x)) + ↑π * Complex.I) * ↑y = ↑(log (-x)) * ↑y + ↑y * ↑π * Complex.I
[PROOFSTEP]
ring
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
this : Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I
⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y) * cos (y * π)
[PROOFSTEP]
rw [this, Complex.exp_add_mul_I, ← Complex.ofReal_exp, ← Complex.ofReal_cos, ← Complex.ofReal_sin, mul_add, ←
Complex.ofReal_mul, ← mul_assoc, ← Complex.ofReal_mul, Complex.add_re, Complex.ofReal_re, Complex.mul_re,
Complex.I_re, Complex.ofReal_im, Real.log_neg_eq_log]
[GOAL]
x : ℝ
hx : x < 0
y : ℝ
this : Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I
⊢ exp (log x * y) * cos (y * π) + ((↑(exp (log x * y) * sin (y * π))).re * 0 - 0 * Complex.I.im) =
exp (log x * y) * cos (y * π)
[PROOFSTEP]
ring
[GOAL]
case hnc
x : ℝ
hx : x < 0
y : ℝ
⊢ ¬↑x = 0
[PROOFSTEP]
rw [Complex.ofReal_eq_zero]
[GOAL]
case hnc
x : ℝ
hx : x < 0
y : ℝ
⊢ ¬x = 0
[PROOFSTEP]
exact ne_of_lt hx
[GOAL]
x : ℝ
hx : x ≤ 0
y : ℝ
⊢ x ^ y = if x = 0 then if y = 0 then 1 else 0 else exp (log x * y) * cos (y * π)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
x : ℝ
hx : x ≤ 0
y : ℝ
h : x = 0
h✝ : y = 0
⊢ x ^ y = 1
[PROOFSTEP]
simp [rpow_def, *]
[GOAL]
case neg
x : ℝ
hx : x ≤ 0
y : ℝ
h : x = 0
h✝ : ¬y = 0
⊢ x ^ y = 0
[PROOFSTEP]
simp [rpow_def, *]
[GOAL]
case neg
x : ℝ
hx : x ≤ 0
y : ℝ
h : ¬x = 0
⊢ x ^ y = exp (log x * y) * cos (y * π)
[PROOFSTEP]
simp [rpow_def, *]
[GOAL]
case neg
x : ℝ
hx : x ≤ 0
y : ℝ
h : ¬x = 0
⊢ (↑x ^ ↑y).re = exp (log x * y) * cos (y * π)
[PROOFSTEP]
exact rpow_def_of_neg (lt_of_le_of_ne hx h) _
[GOAL]
x : ℝ
hx : 0 < x
y : ℝ
⊢ 0 < x ^ y
[PROOFSTEP]
rw [rpow_def_of_pos hx]
[GOAL]
x : ℝ
hx : 0 < x
y : ℝ
⊢ 0 < exp (log x * y)
[PROOFSTEP]
apply exp_pos
[GOAL]
x : ℝ
⊢ x ^ 0 = 1
[PROOFSTEP]
simp [rpow_def]
[GOAL]
x : ℝ
⊢ 0 < x ^ 0
[PROOFSTEP]
simp
[GOAL]
x : ℝ
h : x ≠ 0
⊢ 0 ^ x = 0
[PROOFSTEP]
simp [rpow_def, *]
[GOAL]
x a : ℝ
⊢ 0 ^ x = a ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
x a : ℝ
⊢ 0 ^ x = a → x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
intro hyp
[GOAL]
case mp
x a : ℝ
hyp : 0 ^ x = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
simp only [rpow_def, Complex.ofReal_zero] at hyp
[GOAL]
case mp
x a : ℝ
hyp : (0 ^ ↑x).re = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
by_cases x = 0
[GOAL]
case mp
x a : ℝ
hyp : (0 ^ ↑x).re = a
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
by_cases x = 0
[GOAL]
case pos
x a : ℝ
hyp : (0 ^ ↑x).re = a
h : x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
subst h
[GOAL]
case pos
a : ℝ
hyp : (0 ^ ↑0).re = a
⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1
[PROOFSTEP]
simp only [Complex.one_re, Complex.ofReal_zero, Complex.cpow_zero] at hyp
[GOAL]
case pos
a : ℝ
hyp : 1 = a
⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1
[PROOFSTEP]
exact Or.inr ⟨rfl, hyp.symm⟩
[GOAL]
case neg
x a : ℝ
hyp : (0 ^ ↑x).re = a
h : ¬x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
rw [Complex.zero_cpow (Complex.ofReal_ne_zero.mpr h)] at hyp
[GOAL]
case neg
x a : ℝ
hyp : 0.re = a
h : ¬x = 0
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
exact Or.inl ⟨h, hyp.symm⟩
[GOAL]
case mpr
x a : ℝ
⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 → 0 ^ x = a
[PROOFSTEP]
rintro (⟨h, rfl⟩ | ⟨rfl, rfl⟩)
[GOAL]
case mpr.inl.intro
x : ℝ
h : x ≠ 0
⊢ 0 ^ x = 0
[PROOFSTEP]
exact zero_rpow h
[GOAL]
case mpr.inr.intro
⊢ 0 ^ 0 = 1
[PROOFSTEP]
exact rpow_zero _
[GOAL]
x a : ℝ
⊢ a = 0 ^ x ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1
[PROOFSTEP]
rw [← zero_rpow_eq_iff, eq_comm]
[GOAL]
x : ℝ
⊢ x ^ 1 = x
[PROOFSTEP]
simp [rpow_def]
[GOAL]
x : ℝ
⊢ 1 ^ x = 1
[PROOFSTEP]
simp [rpow_def]
[GOAL]
x : ℝ
⊢ 0 ^ x ≤ 1
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
x : ℝ
h : x = 0
⊢ 0 ^ x ≤ 1
[PROOFSTEP]
simp [h, zero_le_one]
[GOAL]
case neg
x : ℝ
h : ¬x = 0
⊢ 0 ^ x ≤ 1
[PROOFSTEP]
simp [h, zero_le_one]
[GOAL]
x : ℝ
⊢ 0 ≤ 0 ^ x
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
x : ℝ
h : x = 0
⊢ 0 ≤ 0 ^ x
[PROOFSTEP]
simp [h, zero_le_one]
[GOAL]
case neg
x : ℝ
h : ¬x = 0
⊢ 0 ≤ 0 ^ x
[PROOFSTEP]
simp [h, zero_le_one]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ 0 ≤ x ^ y
[PROOFSTEP]
rw [rpow_def_of_nonneg hx]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ 0 ≤ if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝¹ : x = 0
h✝ : y = 0
⊢ 0 ≤ 1
[PROOFSTEP]
simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ 0 ≤ 0
[PROOFSTEP]
simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝ : ¬x = 0
⊢ 0 ≤ exp (log x * y)
[PROOFSTEP]
simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)]
[GOAL]
x y : ℝ
hx_nonneg : 0 ≤ x
⊢ |x ^ y| = |x| ^ y
[PROOFSTEP]
have h_rpow_nonneg : 0 ≤ x ^ y := Real.rpow_nonneg_of_nonneg hx_nonneg _
[GOAL]
x y : ℝ
hx_nonneg : 0 ≤ x
h_rpow_nonneg : 0 ≤ x ^ y
⊢ |x ^ y| = |x| ^ y
[PROOFSTEP]
rw [abs_eq_self.mpr hx_nonneg, abs_eq_self.mpr h_rpow_nonneg]
[GOAL]
x y : ℝ
⊢ |x ^ y| ≤ |x| ^ y
[PROOFSTEP]
cases' le_or_lt 0 x with hx hx
[GOAL]
case inl
x y : ℝ
hx : 0 ≤ x
⊢ |x ^ y| ≤ |x| ^ y
[PROOFSTEP]
rw [abs_rpow_of_nonneg hx]
[GOAL]
case inr
x y : ℝ
hx : x < 0
⊢ |x ^ y| ≤ |x| ^ y
[PROOFSTEP]
rw [abs_of_neg hx, rpow_def_of_neg hx, rpow_def_of_pos (neg_pos.2 hx), log_neg_eq_log, abs_mul, abs_of_pos (exp_pos _)]
[GOAL]
case inr
x y : ℝ
hx : x < 0
⊢ exp (log x * y) * |cos (y * π)| ≤ exp (log x * y)
[PROOFSTEP]
exact mul_le_of_le_one_right (exp_pos _).le (abs_cos_le_one _)
[GOAL]
x y : ℝ
⊢ |x ^ y| ≤ exp (log x * y)
[PROOFSTEP]
refine' (abs_rpow_le_abs_rpow x y).trans _
[GOAL]
x y : ℝ
⊢ |x| ^ y ≤ exp (log x * y)
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
x y : ℝ
hx : x = 0
⊢ |x| ^ y ≤ exp (log x * y)
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
x y : ℝ
hx : x = 0
hy : y = 0
⊢ |x| ^ y ≤ exp (log x * y)
[PROOFSTEP]
simp [hx, hy, zero_le_one]
[GOAL]
case neg
x y : ℝ
hx : x = 0
hy : ¬y = 0
⊢ |x| ^ y ≤ exp (log x * y)
[PROOFSTEP]
simp [hx, hy, zero_le_one]
[GOAL]
case neg
x y : ℝ
hx : ¬x = 0
⊢ |x| ^ y ≤ exp (log x * y)
[PROOFSTEP]
rw [rpow_def_of_pos (abs_pos.2 hx), log_abs]
[GOAL]
x y : ℝ
hx_nonneg : 0 ≤ x
⊢ ‖x ^ y‖ = ‖x‖ ^ y
[PROOFSTEP]
simp_rw [Real.norm_eq_abs]
[GOAL]
x y : ℝ
hx_nonneg : 0 ≤ x
⊢ |x ^ y| = |x| ^ y
[PROOFSTEP]
exact abs_rpow_of_nonneg hx_nonneg
[GOAL]
x y✝ z✝ : ℝ
hx : 0 < x
y z : ℝ
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
simp only [rpow_def_of_pos hx, mul_add, exp_add]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
h : y + z ≠ 0
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | pos)
[GOAL]
case inl
y z : ℝ
h : y + z ≠ 0
hx : 0 ≤ 0
⊢ 0 ^ (y + z) = 0 ^ y * 0 ^ z
[PROOFSTEP]
rw [zero_rpow h, zero_eq_mul]
[GOAL]
case inl
y z : ℝ
h : y + z ≠ 0
hx : 0 ≤ 0
⊢ 0 ^ y = 0 ∨ 0 ^ z = 0
[PROOFSTEP]
have : y ≠ 0 ∨ z ≠ 0 := not_and_or.1 fun ⟨hy, hz⟩ => h <| hy.symm ▸ hz.symm ▸ zero_add 0
[GOAL]
case inl
y z : ℝ
h : y + z ≠ 0
hx : 0 ≤ 0
this : y ≠ 0 ∨ z ≠ 0
⊢ 0 ^ y = 0 ∨ 0 ^ z = 0
[PROOFSTEP]
exact this.imp zero_rpow zero_rpow
[GOAL]
case inr
x y z : ℝ
hx : 0 ≤ x
h : y + z ≠ 0
pos : 0 < x
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
exact rpow_add pos _ _
[GOAL]
x y z : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
hz : 0 ≤ z
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
rcases hy.eq_or_lt with (rfl | hy)
[GOAL]
case inl
x z : ℝ
hx : 0 ≤ x
hz : 0 ≤ z
hy : 0 ≤ 0
⊢ x ^ (0 + z) = x ^ 0 * x ^ z
[PROOFSTEP]
rw [zero_add, rpow_zero, one_mul]
[GOAL]
case inr
x y z : ℝ
hx : 0 ≤ x
hy✝ : 0 ≤ y
hz : 0 ≤ z
hy : 0 < y
⊢ x ^ (y + z) = x ^ y * x ^ z
[PROOFSTEP]
exact rpow_add' hx (ne_of_gt <| add_pos_of_pos_of_nonneg hy hz)
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
⊢ x ^ y * x ^ z ≤ x ^ (y + z)
[PROOFSTEP]
rcases le_iff_eq_or_lt.1 hx with (H | pos)
[GOAL]
case inl
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
H : 0 = x
⊢ x ^ y * x ^ z ≤ x ^ (y + z)
[PROOFSTEP]
by_cases h : y + z = 0
[GOAL]
case pos
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
H : 0 = x
h : y + z = 0
⊢ x ^ y * x ^ z ≤ x ^ (y + z)
[PROOFSTEP]
simp only [H.symm, h, rpow_zero]
[GOAL]
case pos
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
H : 0 = x
h : y + z = 0
⊢ 0 ^ y * 0 ^ z ≤ 1
[PROOFSTEP]
calc
(0 : ℝ) ^ y * 0 ^ z ≤ 1 * 1 := mul_le_mul (zero_rpow_le_one y) (zero_rpow_le_one z) (zero_rpow_nonneg z) zero_le_one
_ = 1 := by simp
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
H : 0 = x
h : y + z = 0
⊢ 1 * 1 = 1
[PROOFSTEP]
simp
[GOAL]
case neg
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
H : 0 = x
h : ¬y + z = 0
⊢ x ^ y * x ^ z ≤ x ^ (y + z)
[PROOFSTEP]
simp [rpow_add', ← H, h]
[GOAL]
case inr
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
pos : 0 < x
⊢ x ^ y * x ^ z ≤ x ^ (y + z)
[PROOFSTEP]
simp [rpow_add pos]
[GOAL]
x y z : ℝ
ι : Type u_1
a : ℝ
ha : 0 ≤ a
s : Finset ι
f : ι → ℝ
h : ∀ (x : ι), x ∈ s → 0 ≤ f x
⊢ a ^ ∑ x in s, f x = ∏ x in s, a ^ f x
[PROOFSTEP]
induction' s using Finset.cons_induction with i s hi ihs
[GOAL]
case empty
x y z : ℝ
ι : Type u_1
a : ℝ
ha : 0 ≤ a
s : Finset ι
f : ι → ℝ
h✝ : ∀ (x : ι), x ∈ s → 0 ≤ f x
h : ∀ (x : ι), x ∈ ∅ → 0 ≤ f x
⊢ a ^ ∑ x in ∅, f x = ∏ x in ∅, a ^ f x
[PROOFSTEP]
rw [sum_empty, Finset.prod_empty, rpow_zero]
[GOAL]
case cons
x y z : ℝ
ι : Type u_1
a : ℝ
ha : 0 ≤ a
s✝ : Finset ι
f : ι → ℝ
h✝ : ∀ (x : ι), x ∈ s✝ → 0 ≤ f x
i : ι
s : Finset ι
hi : ¬i ∈ s
ihs : (∀ (x : ι), x ∈ s → 0 ≤ f x) → a ^ ∑ x in s, f x = ∏ x in s, a ^ f x
h : ∀ (x : ι), x ∈ cons i s hi → 0 ≤ f x
⊢ a ^ ∑ x in cons i s hi, f x = ∏ x in cons i s hi, a ^ f x
[PROOFSTEP]
rw [forall_mem_cons] at h
[GOAL]
case cons
x y z : ℝ
ι : Type u_1
a : ℝ
ha : 0 ≤ a
s✝ : Finset ι
f : ι → ℝ
h✝ : ∀ (x : ι), x ∈ s✝ → 0 ≤ f x
i : ι
s : Finset ι
hi : ¬i ∈ s
ihs : (∀ (x : ι), x ∈ s → 0 ≤ f x) → a ^ ∑ x in s, f x = ∏ x in s, a ^ f x
h : 0 ≤ f i ∧ ∀ (x : ι), x ∈ s → 0 ≤ f x
⊢ a ^ ∑ x in cons i s hi, f x = ∏ x in cons i s hi, a ^ f x
[PROOFSTEP]
rw [sum_cons, prod_cons, ← ihs h.2, rpow_add_of_nonneg ha h.1 (sum_nonneg h.2)]
[GOAL]
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ x ^ (-y) = (x ^ y)⁻¹
[PROOFSTEP]
simp only [rpow_def_of_nonneg hx]
[GOAL]
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ (if x = 0 then if -y = 0 then 1 else 0 else exp (log x * -y)) =
(if x = 0 then if y = 0 then 1 else 0 else exp (log x * y))⁻¹
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : x = 0
h✝¹ : -y = 0
h✝ : y = 0
⊢ 1 = 1⁻¹
[PROOFSTEP]
simp_all [exp_neg]
[GOAL]
case neg
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : x = 0
h✝¹ : -y = 0
h✝ : ¬y = 0
⊢ 1 = 0⁻¹
[PROOFSTEP]
simp_all [exp_neg]
[GOAL]
case pos
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : x = 0
h✝¹ : ¬-y = 0
h✝ : y = 0
⊢ 0 = 1⁻¹
[PROOFSTEP]
simp_all [exp_neg]
[GOAL]
case neg
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
h✝² : x = 0
h✝¹ : ¬-y = 0
h✝ : ¬y = 0
⊢ 0 = 0⁻¹
[PROOFSTEP]
simp_all [exp_neg]
[GOAL]
case neg
x✝ y✝ z x : ℝ
hx : 0 ≤ x
y : ℝ
h✝ : ¬x = 0
⊢ exp (log x * -y) = (exp (log x * y))⁻¹
[PROOFSTEP]
simp_all [exp_neg]
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 < x
y z : ℝ
⊢ x ^ (y - z) = x ^ y / x ^ z
[PROOFSTEP]
simp only [sub_eq_add_neg, rpow_add hx, rpow_neg (le_of_lt hx), div_eq_mul_inv]
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
h : y - z ≠ 0
⊢ x ^ (y - z) = x ^ y / x ^ z
[PROOFSTEP]
simp only [sub_eq_add_neg] at h ⊢
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
h : y + -z ≠ 0
⊢ x ^ (y + -z) = x ^ y / x ^ z
[PROOFSTEP]
simp only [rpow_add' hx h, rpow_neg hx, div_eq_mul_inv]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ ↑(x ^ y) = ↑x ^ ↑y
[PROOFSTEP]
simp only [Real.rpow_def_of_nonneg hx, Complex.cpow_def, ofReal_eq_zero]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ ↑(if x = 0 then if y = 0 then 1 else 0 else Real.exp (Real.log x * y)) =
if x = 0 then if y = 0 then 1 else 0 else exp (log ↑x * ↑y)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝¹ : x = 0
h✝ : y = 0
⊢ ↑1 = 1
[PROOFSTEP]
simp [Complex.ofReal_log hx]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝¹ : x = 0
h✝ : ¬y = 0
⊢ ↑0 = 0
[PROOFSTEP]
simp [Complex.ofReal_log hx]
[GOAL]
case neg
x : ℝ
hx : 0 ≤ x
y : ℝ
h✝ : ¬x = 0
⊢ ↑(Real.exp (Real.log x * y)) = exp (log ↑x * ↑y)
[PROOFSTEP]
simp [Complex.ofReal_log hx]
[GOAL]
x : ℝ
hx : x ≤ 0
y : ℂ
⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y)
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hlt)
[GOAL]
case inl
y : ℂ
hx : 0 ≤ 0
⊢ ↑0 ^ y = (-↑0) ^ y * exp (↑π * I * y)
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inl.inl
hx : 0 ≤ 0
⊢ ↑0 ^ 0 = (-↑0) ^ 0 * exp (↑π * I * 0)
[PROOFSTEP]
simp [*]
[GOAL]
case inl.inr
y : ℂ
hx : 0 ≤ 0
hy : y ≠ 0
⊢ ↑0 ^ y = (-↑0) ^ y * exp (↑π * I * y)
[PROOFSTEP]
simp [*]
[GOAL]
case inr
x : ℝ
hx : x ≤ 0
y : ℂ
hlt : x < 0
⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y)
[PROOFSTEP]
have hne : (x : ℂ) ≠ 0 := ofReal_ne_zero.mpr hlt.ne
[GOAL]
case inr
x : ℝ
hx : x ≤ 0
y : ℂ
hlt : x < 0
hne : ↑x ≠ 0
⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y)
[PROOFSTEP]
rw [cpow_def_of_ne_zero hne, cpow_def_of_ne_zero (neg_ne_zero.2 hne), ← exp_add, ← add_mul, log, log, abs.map_neg,
arg_ofReal_of_neg hlt, ← ofReal_neg, arg_ofReal_of_nonneg (neg_nonneg.2 hx), ofReal_zero, zero_mul, add_zero]
[GOAL]
z : ℂ
hz : z ≠ 0
w : ℂ
⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
rw [cpow_def_of_ne_zero hz, abs_exp, mul_re, log_re, log_im, Real.exp_sub, Real.rpow_def_of_pos (abs.pos hz)]
[GOAL]
z w : ℂ
h : z = 0 → w.re = 0 → w = 0
⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
rcases ne_or_eq z 0 with (hz | rfl) <;> [exact abs_cpow_of_ne_zero hz w; rw [map_zero]]
[GOAL]
z w : ℂ
h : z = 0 → w.re = 0 → w = 0
⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
rcases ne_or_eq z 0 with (hz | rfl)
[GOAL]
case inl
z w : ℂ
h : z = 0 → w.re = 0 → w = 0
hz : z ≠ 0
⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
exact abs_cpow_of_ne_zero hz w
[GOAL]
case inr
w : ℂ
h : 0 = 0 → w.re = 0 → w = 0
⊢ ↑abs (0 ^ w) = ↑abs 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
rw [map_zero]
[GOAL]
case inr
w : ℂ
h : 0 = 0 → w.re = 0 → w = 0
⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
cases' eq_or_ne w.re 0 with hw hw
[GOAL]
case inr.inl
w : ℂ
h : 0 = 0 → w.re = 0 → w = 0
hw : w.re = 0
⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
simp [hw, h rfl hw]
[GOAL]
case inr.inr
w : ℂ
h : 0 = 0 → w.re = 0 → w = 0
hw : w.re ≠ 0
⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
rw [Real.zero_rpow hw, zero_div, zero_cpow, map_zero]
[GOAL]
case inr.inr
w : ℂ
h : 0 = 0 → w.re = 0 → w = 0
hw : w.re ≠ 0
⊢ w ≠ 0
[PROOFSTEP]
exact ne_of_apply_ne re hw
[GOAL]
z w : ℂ
⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
rcases ne_or_eq z 0 with (hz | rfl) <;> [exact (abs_cpow_of_ne_zero hz w).le; rw [map_zero]]
[GOAL]
z w : ℂ
⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
rcases ne_or_eq z 0 with (hz | rfl)
[GOAL]
case inl
z w : ℂ
hz : z ≠ 0
⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im)
[PROOFSTEP]
exact (abs_cpow_of_ne_zero hz w).le
[GOAL]
case inr
w : ℂ
⊢ ↑abs (0 ^ w) ≤ ↑abs 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
rw [map_zero]
[GOAL]
case inr
w : ℂ
⊢ ↑abs (0 ^ w) ≤ 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
rcases eq_or_ne w 0 with (rfl | hw)
[GOAL]
case inr.inl
⊢ ↑abs (0 ^ 0) ≤ 0 ^ 0.re / Real.exp (arg 0 * 0.im)
[PROOFSTEP]
simp
[GOAL]
case inr.inr
w : ℂ
hw : w ≠ 0
⊢ ↑abs (0 ^ w) ≤ 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
rw [zero_cpow hw, map_zero]
[GOAL]
case inr.inr
w : ℂ
hw : w ≠ 0
⊢ 0 ≤ 0 ^ w.re / Real.exp (arg 0 * w.im)
[PROOFSTEP]
exact div_nonneg (Real.rpow_nonneg_of_nonneg le_rfl _) (Real.exp_pos _).le
[GOAL]
x : ℂ
y : ℝ
⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx) <;> [rcases eq_or_ne y 0 with (rfl | hy); skip]
[GOAL]
x : ℂ
y : ℝ
⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
y : ℝ
⊢ ↑abs (0 ^ ↑y) = ↑abs 0 ^ y
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inr
x : ℂ
y : ℝ
hx : x ≠ 0
⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y
[PROOFSTEP]
skip
[GOAL]
case inl.inl
⊢ ↑abs (0 ^ ↑0) = ↑abs 0 ^ 0
[PROOFSTEP]
simp [*, abs_cpow_of_ne_zero]
[GOAL]
case inl.inr
y : ℝ
hy : y ≠ 0
⊢ ↑abs (0 ^ ↑y) = ↑abs 0 ^ y
[PROOFSTEP]
simp [*, abs_cpow_of_ne_zero]
[GOAL]
case inr
x : ℂ
y : ℝ
hx : x ≠ 0
⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y
[PROOFSTEP]
simp [*, abs_cpow_of_ne_zero]
[GOAL]
x : ℂ
n : ℕ
⊢ ↑abs (x ^ (↑n)⁻¹) = ↑abs x ^ (↑n)⁻¹
[PROOFSTEP]
rw [← abs_cpow_real]
[GOAL]
x : ℂ
n : ℕ
⊢ ↑abs (x ^ (↑n)⁻¹) = ↑abs (x ^ ↑(↑n)⁻¹)
[PROOFSTEP]
simp [-abs_cpow_real]
[GOAL]
x : ℝ
hx : 0 < x
y : ℂ
⊢ ↑abs (↑x ^ y) = x ^ y.re
[PROOFSTEP]
rw [abs_cpow_of_ne_zero (ofReal_ne_zero.mpr hx.ne'), arg_ofReal_of_nonneg hx.le, zero_mul, Real.exp_zero, div_one,
abs_of_nonneg hx.le]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℂ
hy : y.re ≠ 0
⊢ ↑abs (↑x ^ y) = x ^ y.re
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hlt)
[GOAL]
case inl
y : ℂ
hy : y.re ≠ 0
hx : 0 ≤ 0
⊢ ↑abs (↑0 ^ y) = 0 ^ y.re
[PROOFSTEP]
rw [ofReal_zero, zero_cpow, map_zero, Real.zero_rpow hy]
[GOAL]
case inl
y : ℂ
hy : y.re ≠ 0
hx : 0 ≤ 0
⊢ y ≠ 0
[PROOFSTEP]
exact ne_of_apply_ne re hy
[GOAL]
case inr
x : ℝ
hx : 0 ≤ x
y : ℂ
hy : y.re ≠ 0
hlt : 0 < x
⊢ ↑abs (↑x ^ y) = x ^ y.re
[PROOFSTEP]
exact abs_cpow_eq_rpow_re_of_pos hlt y
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
⊢ x ^ (y * z) = (x ^ y) ^ z
[PROOFSTEP]
rw [← Complex.ofReal_inj, Complex.ofReal_cpow (rpow_nonneg_of_nonneg hx _), Complex.ofReal_cpow hx, Complex.ofReal_mul,
Complex.cpow_mul, Complex.ofReal_cpow hx]
[GOAL]
case h₁
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
⊢ -π < (Complex.log ↑x * ↑y).im
[PROOFSTEP]
simp only [(Complex.ofReal_mul _ _).symm, (Complex.ofReal_log hx).symm, Complex.ofReal_im, neg_lt_zero, pi_pos,
le_of_lt pi_pos]
[GOAL]
case h₂
x✝ y✝ z✝ x : ℝ
hx : 0 ≤ x
y z : ℝ
⊢ (Complex.log ↑x * ↑y).im ≤ π
[PROOFSTEP]
simp only [(Complex.ofReal_mul _ _).symm, (Complex.ofReal_log hx).symm, Complex.ofReal_im, neg_lt_zero, pi_pos,
le_of_lt pi_pos]
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
n : ℤ
⊢ x ^ (y + ↑n) = x ^ y * x ^ n
[PROOFSTEP]
rw [rpow_def, rpow_def, Complex.ofReal_add, Complex.cpow_add _ _ (Complex.ofReal_ne_zero.mpr hx),
Complex.ofReal_int_cast, Complex.cpow_int_cast, ← Complex.ofReal_zpow, mul_comm, Complex.ofReal_mul_re, mul_comm]
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
n : ℕ
⊢ x ^ (y + ↑n) = x ^ y * x ^ n
[PROOFSTEP]
simpa using rpow_add_int hx y n
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
n : ℕ
⊢ x ^ (y - ↑n) = x ^ y / x ^ n
[PROOFSTEP]
simpa using rpow_add_int hx y (-n)
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
n : ℕ
⊢ x ^ (y - ↑n) = x ^ y / x ^ n
[PROOFSTEP]
simpa using rpow_sub_int hx y n
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
⊢ x ^ (y + 1) = x ^ y * x
[PROOFSTEP]
simpa using rpow_add_nat hx y 1
[GOAL]
x✝ y✝ z x : ℝ
hx : x ≠ 0
y : ℝ
⊢ x ^ (y - 1) = x ^ y / x
[PROOFSTEP]
simpa using rpow_sub_nat hx y 1
[GOAL]
x✝ y z x : ℝ
n : ℤ
⊢ x ^ ↑n = x ^ n
[PROOFSTEP]
simp only [rpow_def, ← Complex.ofReal_zpow, Complex.cpow_int_cast, Complex.ofReal_int_cast, Complex.ofReal_re]
[GOAL]
x✝ y z x : ℝ
n : ℕ
⊢ x ^ ↑n = x ^ n
[PROOFSTEP]
simpa using rpow_int_cast x n
[GOAL]
x✝ y z x : ℝ
⊢ x ^ 2 = x ^ 2
[PROOFSTEP]
rw [← rpow_nat_cast]
[GOAL]
x✝ y z x : ℝ
⊢ x ^ 2 = x ^ ↑2
[PROOFSTEP]
simp only [Nat.cast_ofNat]
[GOAL]
x✝ y z x : ℝ
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
suffices H : x ^ ((-1 : ℤ) : ℝ) = x⁻¹
[GOAL]
x✝ y z x : ℝ
H : x ^ ↑(-1) = x⁻¹
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
rwa [Int.cast_neg, Int.cast_one] at H
[GOAL]
case H
x✝ y z x : ℝ
⊢ x ^ ↑(-1) = x⁻¹
[PROOFSTEP]
simp only [rpow_int_cast, zpow_one, zpow_neg]
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
⊢ (x * y) ^ z = x ^ z * y ^ z
[PROOFSTEP]
iterate 2 rw [Real.rpow_def_of_nonneg]; split_ifs with h_ifs <;> simp_all
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
⊢ (x * y) ^ z = x ^ z * y ^ z
[PROOFSTEP]
rw [Real.rpow_def_of_nonneg]
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
⊢ (if x * y = 0 then if z = 0 then 1 else 0 else exp (log (x * y) * z)) = x ^ z * y ^ z
[PROOFSTEP]
split_ifs with h_ifs
[GOAL]
case pos
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : x * y = 0
h✝ : z = 0
⊢ 1 = x ^ z * y ^ z
[PROOFSTEP]
simp_all
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : x * y = 0
h✝ : ¬z = 0
⊢ 0 = x ^ z * y ^ z
[PROOFSTEP]
simp_all
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x * y = 0
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
[PROOFSTEP]
simp_all
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : x = 0 ∨ y = 0
h✝ : ¬z = 0
⊢ x ^ z = 0 ∨ y ^ z = 0
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬(x = 0 ∨ y = 0)
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
case hx x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ 0 ≤ x * y
[PROOFSTEP]
rw [Real.rpow_def_of_nonneg]
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : x = 0 ∨ y = 0
h✝ : ¬z = 0
⊢ (if x = 0 then if z = 0 then 1 else 0 else exp (log x * z)) = 0 ∨ y ^ z = 0
[PROOFSTEP]
split_ifs with h_ifs
[GOAL]
case pos
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs✝ : x = 0 ∨ y = 0
h✝ : ¬z = 0
h_ifs : x = 0
⊢ 0 = 0 ∨ y ^ z = 0
[PROOFSTEP]
simp_all
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs✝ : x = 0 ∨ y = 0
h✝ : ¬z = 0
h_ifs : ¬x = 0
⊢ exp (log x * z) = 0 ∨ y ^ z = 0
[PROOFSTEP]
simp_all
[GOAL]
case neg.hx
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : x = 0 ∨ y = 0
h✝ : ¬z = 0
⊢ 0 ≤ x
[PROOFSTEP]
exact h
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬(x = 0 ∨ y = 0)
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
[PROOFSTEP]
rw [not_or] at h_ifs
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
[PROOFSTEP]
have hx : 0 < x := by
cases' lt_or_eq_of_le h with h₂ h₂
· exact h₂
exfalso
apply h_ifs.1
exact Eq.symm h₂
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
⊢ 0 < x
[PROOFSTEP]
cases' lt_or_eq_of_le h with h₂ h₂
[GOAL]
case inl
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
h₂ : 0 < x
⊢ 0 < x
[PROOFSTEP]
exact h₂
[GOAL]
case inr
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
h₂ : 0 = x
⊢ 0 < x
[PROOFSTEP]
exfalso
[GOAL]
case inr.h
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
h₂ : 0 = x
⊢ False
[PROOFSTEP]
apply h_ifs.1
[GOAL]
case inr.h
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
h₂ : 0 = x
⊢ x = 0
[PROOFSTEP]
exact Eq.symm h₂
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
[PROOFSTEP]
have hy : 0 < y := by
cases' lt_or_eq_of_le h₁ with h₂ h₂
· exact h₂
exfalso
apply h_ifs.2
exact Eq.symm h₂
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
⊢ 0 < y
[PROOFSTEP]
cases' lt_or_eq_of_le h₁ with h₂ h₂
[GOAL]
case inl
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
h₂ : 0 < y
⊢ 0 < y
[PROOFSTEP]
exact h₂
[GOAL]
case inr
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
h₂ : 0 = y
⊢ 0 < y
[PROOFSTEP]
exfalso
[GOAL]
case inr.h
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
h₂ : 0 = y
⊢ False
[PROOFSTEP]
apply h_ifs.2
[GOAL]
case inr.h
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
h₂ : 0 = y
⊢ y = 0
[PROOFSTEP]
exact Eq.symm h₂
[GOAL]
case neg
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
h_ifs : ¬x = 0 ∧ ¬y = 0
hx : 0 < x
hy : 0 < y
⊢ exp (log (x * y) * z) = x ^ z * y ^ z
[PROOFSTEP]
rw [log_mul (ne_of_gt hx) (ne_of_gt hy), add_mul, exp_add, rpow_def_of_pos hx, rpow_def_of_pos hy]
[GOAL]
case hx
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : 0 ≤ y
⊢ 0 ≤ x * y
[PROOFSTEP]
exact mul_nonneg h h₁
[GOAL]
x y✝ z : ℝ
hx : 0 ≤ x
y : ℝ
⊢ x⁻¹ ^ y = (x ^ y)⁻¹
[PROOFSTEP]
simp only [← rpow_neg_one, ← rpow_mul hx, mul_comm]
[GOAL]
x y z✝ : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
z : ℝ
⊢ (x / y) ^ z = x ^ z / y ^ z
[PROOFSTEP]
simp only [div_eq_mul_inv, mul_rpow hx (inv_nonneg.2 hy), inv_rpow hy]
[GOAL]
x✝ y✝ z x : ℝ
hx : 0 < x
y : ℝ
⊢ log (x ^ y) = y * log x
[PROOFSTEP]
apply exp_injective
[GOAL]
case a
x✝ y✝ z x : ℝ
hx : 0 < x
y : ℝ
⊢ exp (log (x ^ y)) = exp (y * log x)
[PROOFSTEP]
rw [exp_log (rpow_pos_of_pos hx y), ← exp_log hx, mul_comm, rpow_def_of_pos (exp_pos (log x)) y]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
hxy : x < y
hz : 0 < z
⊢ x ^ z < y ^ z
[PROOFSTEP]
rw [le_iff_eq_or_lt] at hx
[GOAL]
x y z : ℝ
hx : 0 = x ∨ 0 < x
hxy : x < y
hz : 0 < z
⊢ x ^ z < y ^ z
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case inl
x y z : ℝ
hxy : x < y
hz : 0 < z
hx : 0 = x
⊢ x ^ z < y ^ z
[PROOFSTEP]
rw [← hx, zero_rpow (ne_of_gt hz)]
[GOAL]
case inl
x y z : ℝ
hxy : x < y
hz : 0 < z
hx : 0 = x
⊢ 0 < y ^ z
[PROOFSTEP]
exact rpow_pos_of_pos (by rwa [← hx] at hxy ) _
[GOAL]
x y z : ℝ
hxy : x < y
hz : 0 < z
hx : 0 = x
⊢ 0 < y
[PROOFSTEP]
rwa [← hx] at hxy
[GOAL]
case inr
x y z : ℝ
hxy : x < y
hz : 0 < z
hx : 0 < x
⊢ x ^ z < y ^ z
[PROOFSTEP]
rw [rpow_def_of_pos hx, rpow_def_of_pos (lt_trans hx hxy), exp_lt_exp]
[GOAL]
case inr
x y z : ℝ
hxy : x < y
hz : 0 < z
hx : 0 < x
⊢ log x * z < log y * z
[PROOFSTEP]
exact mul_lt_mul_of_pos_right (log_lt_log hx hxy) hz
[GOAL]
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : x ≤ y
h₂ : 0 ≤ z
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
rcases eq_or_lt_of_le h₁ with (rfl | h₁')
[GOAL]
case inl
x✝ y z✝ x z : ℝ
h : 0 ≤ x
h₂ : 0 ≤ z
h₁ : x ≤ x
⊢ x ^ z ≤ x ^ z
[PROOFSTEP]
rfl
[GOAL]
case inr
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : x ≤ y
h₂ : 0 ≤ z
h₁' : x < y
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
rcases eq_or_lt_of_le h₂ with (rfl | h₂')
[GOAL]
case inr.inl
x✝ y✝ z x y : ℝ
h : 0 ≤ x
h₁ : x ≤ y
h₁' : x < y
h₂ : 0 ≤ 0
⊢ x ^ 0 ≤ y ^ 0
[PROOFSTEP]
simp
[GOAL]
case inr.inr
x✝ y✝ z✝ x y z : ℝ
h : 0 ≤ x
h₁ : x ≤ y
h₂ : 0 ≤ z
h₁' : x < y
h₂' : 0 < z
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
exact le_of_lt (rpow_lt_rpow h h₁' h₂')
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z
[PROOFSTEP]
have hz' : 0 < -z := by rwa [lt_neg, neg_zero]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ 0 < -z
[PROOFSTEP]
rwa [lt_neg, neg_zero]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z
[PROOFSTEP]
have hxz : 0 < x ^ (-z) := Real.rpow_pos_of_pos hx _
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z
[PROOFSTEP]
have hyz : 0 < y ^ z⁻¹ := Real.rpow_pos_of_pos hy _
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z
[PROOFSTEP]
rw [← Real.rpow_le_rpow_iff hx.le hyz.le hz', ← Real.rpow_mul hy.le]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x ^ (-z) ≤ y ^ (z⁻¹ * -z) ↔ y ≤ x ^ z
[PROOFSTEP]
simp only [ne_of_lt hz, Real.rpow_neg_one, mul_neg, inv_mul_cancel, Ne.def, not_false_iff]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x ^ (-z) ≤ y⁻¹ ↔ y ≤ x ^ z
[PROOFSTEP]
rw [le_inv hxz hy, ← Real.rpow_neg_one, ← Real.rpow_mul hx.le]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ y ≤ x ^ (-z * -1) ↔ y ≤ x ^ z
[PROOFSTEP]
simp
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x < y ^ z⁻¹ ↔ y < x ^ z
[PROOFSTEP]
have hz' : 0 < -z := by rwa [lt_neg, neg_zero]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ 0 < -z
[PROOFSTEP]
rwa [lt_neg, neg_zero]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
⊢ x < y ^ z⁻¹ ↔ y < x ^ z
[PROOFSTEP]
have hxz : 0 < x ^ (-z) := Real.rpow_pos_of_pos hx _
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
⊢ x < y ^ z⁻¹ ↔ y < x ^ z
[PROOFSTEP]
have hyz : 0 < y ^ z⁻¹ := Real.rpow_pos_of_pos hy _
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x < y ^ z⁻¹ ↔ y < x ^ z
[PROOFSTEP]
rw [← Real.rpow_lt_rpow_iff hx.le hyz.le hz', ← Real.rpow_mul hy.le]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x ^ (-z) < y ^ (z⁻¹ * -z) ↔ y < x ^ z
[PROOFSTEP]
simp only [ne_of_lt hz, Real.rpow_neg_one, mul_neg, inv_mul_cancel, Ne.def, not_false_iff]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ x ^ (-z) < y⁻¹ ↔ y < x ^ z
[PROOFSTEP]
rw [lt_inv hxz hy, ← Real.rpow_neg_one, ← Real.rpow_mul hx.le]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
hz' : 0 < -z
hxz : 0 < x ^ (-z)
hyz : 0 < y ^ z⁻¹
⊢ y < x ^ (-z * -1) ↔ y < x ^ z
[PROOFSTEP]
simp
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x ^ z⁻¹ < y ↔ y ^ z < x
[PROOFSTEP]
convert lt_rpow_inv_iff_of_neg (Real.rpow_pos_of_pos hx z⁻¹) (Real.rpow_pos_of_pos hy z) hz
[GOAL]
case h.e'_1.h.e'_4
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ y = (y ^ z) ^ z⁻¹
[PROOFSTEP]
simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz]
[GOAL]
case h.e'_2.h.e'_4
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x = (x ^ z⁻¹) ^ z
[PROOFSTEP]
simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x ^ z⁻¹ ≤ y ↔ y ^ z ≤ x
[PROOFSTEP]
convert le_rpow_inv_iff_of_neg (Real.rpow_pos_of_pos hx z⁻¹) (Real.rpow_pos_of_pos hy z) hz
[GOAL]
case h.e'_1.h.e'_4
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ y = (y ^ z) ^ z⁻¹
[PROOFSTEP]
simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz]
[GOAL]
case h.e'_2.h.e'_4
x y z : ℝ
hx : 0 < x
hy : 0 < y
hz : z < 0
⊢ x = (x ^ z⁻¹) ^ z
[PROOFSTEP]
simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ x ^ y < x ^ z
[PROOFSTEP]
repeat' rw [rpow_def_of_pos (lt_trans zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ x ^ y < x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos (lt_trans zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ exp (log x * y) < x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos (lt_trans zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ exp (log x * y) < exp (log x * z)
[PROOFSTEP]
rw [rpow_def_of_pos (lt_trans zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ exp (log x * y) < exp (log x * z)
[PROOFSTEP]
rw [exp_lt_exp]
[GOAL]
x y z : ℝ
hx : 1 < x
hyz : y < z
⊢ log x * y < log x * z
[PROOFSTEP]
exact mul_lt_mul_of_pos_left hyz (log_pos hx)
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
repeat' rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ exp (log x * y) ≤ x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ exp (log x * y) ≤ exp (log x * z)
[PROOFSTEP]
rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)]
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ exp (log x * y) ≤ exp (log x * z)
[PROOFSTEP]
rw [exp_le_exp]
[GOAL]
x y z : ℝ
hx : 1 ≤ x
hyz : y ≤ z
⊢ log x * y ≤ log x * z
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left hyz (log_nonneg hx)
[GOAL]
x✝ y✝ z✝ x y z : ℝ
hy : 0 < y
hxy : y < x
hz : z < 0
⊢ x ^ z < y ^ z
[PROOFSTEP]
have hx : 0 < x := hy.trans hxy
[GOAL]
x✝ y✝ z✝ x y z : ℝ
hy : 0 < y
hxy : y < x
hz : z < 0
hx : 0 < x
⊢ x ^ z < y ^ z
[PROOFSTEP]
rw [← neg_neg z, Real.rpow_neg (le_of_lt hx) (-z), Real.rpow_neg (le_of_lt hy) (-z),
inv_lt_inv (rpow_pos_of_pos hx _) (rpow_pos_of_pos hy _)]
[GOAL]
x✝ y✝ z✝ x y z : ℝ
hy : 0 < y
hxy : y < x
hz : z < 0
hx : 0 < x
⊢ y ^ (-z) < x ^ (-z)
[PROOFSTEP]
exact Real.rpow_lt_rpow (by positivity) hxy <| neg_pos_of_neg hz
[GOAL]
x✝ y✝ z✝ x y z : ℝ
hy : 0 < y
hxy : y < x
hz : z < 0
hx : 0 < x
⊢ 0 ≤ y
[PROOFSTEP]
positivity
[GOAL]
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
rcases ne_or_eq z 0 with hz_zero | rfl
[GOAL]
case inl
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
⊢ x ^ z ≤ y ^ z
case inr x✝ y✝ x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0
[PROOFSTEP]
case inl =>
rcases ne_or_eq x y with hxy' | rfl
case inl =>
exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz)
case inr => simp
[GOAL]
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
case inl =>
rcases ne_or_eq x y with hxy' | rfl
case inl =>
exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz)
case inr => simp
[GOAL]
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
rcases ne_or_eq x y with hxy' | rfl
[GOAL]
case inl
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
hxy' : x ≠ y
⊢ x ^ z ≤ y ^ z
case inr x✝ y z x : ℝ hz : z ≤ 0 hz_zero : z ≠ 0 hy : 0 < x hxy : x ≤ x ⊢ x ^ z ≤ x ^ z
[PROOFSTEP]
case inl =>
exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz)
[GOAL]
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
hxy' : x ≠ y
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
case inl =>
exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz)
[GOAL]
x✝ y✝ z x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : z ≤ 0
hz_zero : z ≠ 0
hxy' : x ≠ y
⊢ x ^ z ≤ y ^ z
[PROOFSTEP]
exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz)
[GOAL]
case inr
x✝ y z x : ℝ
hz : z ≤ 0
hz_zero : z ≠ 0
hy : 0 < x
hxy : x ≤ x
⊢ x ^ z ≤ x ^ z
[PROOFSTEP]
case inr => simp
[GOAL]
x✝ y z x : ℝ
hz : z ≤ 0
hz_zero : z ≠ 0
hy : 0 < x
hxy : x ≤ x
⊢ x ^ z ≤ x ^ z
[PROOFSTEP]
case inr => simp
[GOAL]
x✝ y z x : ℝ
hz : z ≤ 0
hz_zero : z ≠ 0
hy : 0 < x
hxy : x ≤ x
⊢ x ^ z ≤ x ^ z
[PROOFSTEP]
simp
[GOAL]
case inr
x✝ y✝ x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : 0 ≤ 0
⊢ x ^ 0 ≤ y ^ 0
[PROOFSTEP]
case inr => simp
[GOAL]
x✝ y✝ x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : 0 ≤ 0
⊢ x ^ 0 ≤ y ^ 0
[PROOFSTEP]
case inr => simp
[GOAL]
x✝ y✝ x y : ℝ
hy : 0 < y
hxy : y ≤ x
hz : 0 ≤ 0
⊢ x ^ 0 ≤ y ^ 0
[PROOFSTEP]
simp
[GOAL]
x y z : ℝ
hx : 1 < x
⊢ x ^ y ≤ x ^ z ↔ y ≤ z
[PROOFSTEP]
have x_pos : 0 < x := lt_trans zero_lt_one hx
[GOAL]
x y z : ℝ
hx : 1 < x
x_pos : 0 < x
⊢ x ^ y ≤ x ^ z ↔ y ≤ z
[PROOFSTEP]
rw [← log_le_log (rpow_pos_of_pos x_pos y) (rpow_pos_of_pos x_pos z), log_rpow x_pos, log_rpow x_pos,
mul_le_mul_right (log_pos hx)]
[GOAL]
x y z : ℝ
hx : 1 < x
⊢ x ^ y < x ^ z ↔ y < z
[PROOFSTEP]
rw [lt_iff_not_le, rpow_le_rpow_left_iff hx, lt_iff_not_le]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ x ^ y < x ^ z
[PROOFSTEP]
repeat' rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ x ^ y < x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ exp (log x * y) < x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ exp (log x * y) < exp (log x * z)
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ exp (log x * y) < exp (log x * z)
[PROOFSTEP]
rw [exp_lt_exp]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
hyz : z < y
⊢ log x * y < log x * z
[PROOFSTEP]
exact mul_lt_mul_of_neg_left hyz (log_neg hx0 hx1)
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
repeat' rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ exp (log x * y) ≤ x ^ z
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ exp (log x * y) ≤ exp (log x * z)
[PROOFSTEP]
rw [rpow_def_of_pos hx0]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ exp (log x * y) ≤ exp (log x * z)
[PROOFSTEP]
rw [exp_le_exp]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x ≤ 1
hyz : z ≤ y
⊢ log x * y ≤ log x * z
[PROOFSTEP]
exact mul_le_mul_of_nonpos_left hyz (log_nonpos (le_of_lt hx0) hx1)
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
⊢ x ^ y ≤ x ^ z ↔ z ≤ y
[PROOFSTEP]
rw [← log_le_log (rpow_pos_of_pos hx0 y) (rpow_pos_of_pos hx0 z), log_rpow hx0, log_rpow hx0,
mul_le_mul_right_of_neg (log_neg hx0 hx1)]
[GOAL]
x y z : ℝ
hx0 : 0 < x
hx1 : x < 1
⊢ x ^ y < x ^ z ↔ z < y
[PROOFSTEP]
rw [lt_iff_not_le, rpow_le_rpow_left_iff_of_base_lt_one hx0 hx1, lt_iff_not_le]
[GOAL]
x✝ y z✝ x z : ℝ
hx1 : 0 ≤ x
hx2 : x < 1
hz : 0 < z
⊢ x ^ z < 1
[PROOFSTEP]
rw [← one_rpow z]
[GOAL]
x✝ y z✝ x z : ℝ
hx1 : 0 ≤ x
hx2 : x < 1
hz : 0 < z
⊢ x ^ z < 1 ^ z
[PROOFSTEP]
exact rpow_lt_rpow hx1 hx2 hz
[GOAL]
x✝ y z✝ x z : ℝ
hx1 : 0 ≤ x
hx2 : x ≤ 1
hz : 0 ≤ z
⊢ x ^ z ≤ 1
[PROOFSTEP]
rw [← one_rpow z]
[GOAL]
x✝ y z✝ x z : ℝ
hx1 : 0 ≤ x
hx2 : x ≤ 1
hz : 0 ≤ z
⊢ x ^ z ≤ 1 ^ z
[PROOFSTEP]
exact rpow_le_rpow hx1 hx2 hz
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 < x
hz : z < 0
⊢ x ^ z < 1
[PROOFSTEP]
convert rpow_lt_rpow_of_exponent_lt hx hz
[GOAL]
case h.e'_4
x✝ y z✝ x z : ℝ
hx : 1 < x
hz : z < 0
⊢ 1 = x ^ 0
[PROOFSTEP]
exact (rpow_zero x).symm
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 ≤ x
hz : z ≤ 0
⊢ x ^ z ≤ 1
[PROOFSTEP]
convert rpow_le_rpow_of_exponent_le hx hz
[GOAL]
case h.e'_4
x✝ y z✝ x z : ℝ
hx : 1 ≤ x
hz : z ≤ 0
⊢ 1 = x ^ 0
[PROOFSTEP]
exact (rpow_zero x).symm
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 < x
hz : 0 < z
⊢ 1 < x ^ z
[PROOFSTEP]
rw [← one_rpow z]
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 < x
hz : 0 < z
⊢ 1 ^ z < x ^ z
[PROOFSTEP]
exact rpow_lt_rpow zero_le_one hx hz
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 ≤ x
hz : 0 ≤ z
⊢ 1 ≤ x ^ z
[PROOFSTEP]
rw [← one_rpow z]
[GOAL]
x✝ y z✝ x z : ℝ
hx : 1 ≤ x
hz : 0 ≤ z
⊢ 1 ^ z ≤ x ^ z
[PROOFSTEP]
exact rpow_le_rpow zero_le_one hx hz
[GOAL]
x y z : ℝ
hx1 : 0 < x
hx2 : x < 1
hz : z < 0
⊢ 1 < x ^ z
[PROOFSTEP]
convert rpow_lt_rpow_of_exponent_gt hx1 hx2 hz
[GOAL]
case h.e'_3
x y z : ℝ
hx1 : 0 < x
hx2 : x < 1
hz : z < 0
⊢ 1 = x ^ 0
[PROOFSTEP]
exact (rpow_zero x).symm
[GOAL]
x y z : ℝ
hx1 : 0 < x
hx2 : x ≤ 1
hz : z ≤ 0
⊢ 1 ≤ x ^ z
[PROOFSTEP]
convert rpow_le_rpow_of_exponent_ge hx1 hx2 hz
[GOAL]
case h.e'_3
x y z : ℝ
hx1 : 0 < x
hx2 : x ≤ 1
hz : z ≤ 0
⊢ 1 = x ^ 0
[PROOFSTEP]
exact (rpow_zero x).symm
[GOAL]
x y z : ℝ
hx : 0 < x
⊢ x ^ y < 1 ↔ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y
[PROOFSTEP]
rw [rpow_def_of_pos hx, exp_lt_one_iff, mul_neg_iff, log_pos_iff hx, log_neg_iff hx]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
⊢ x ^ y < 1 ↔ x = 0 ∧ y ≠ 0 ∨ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hx)
[GOAL]
case inl
y z : ℝ
hx : 0 ≤ 0
⊢ 0 ^ y < 1 ↔ 0 = 0 ∧ y ≠ 0 ∨ 1 < 0 ∧ y < 0 ∨ 0 < 1 ∧ 0 < y
[PROOFSTEP]
rcases _root_.em (y = 0) with (rfl | hy)
[GOAL]
case inl.inl
z : ℝ
hx : 0 ≤ 0
⊢ 0 ^ 0 < 1 ↔ 0 = 0 ∧ 0 ≠ 0 ∨ 1 < 0 ∧ 0 < 0 ∨ 0 < 1 ∧ 0 < 0
[PROOFSTEP]
simp [*, lt_irrefl, zero_lt_one]
[GOAL]
case inl.inr
y z : ℝ
hx : 0 ≤ 0
hy : ¬y = 0
⊢ 0 ^ y < 1 ↔ 0 = 0 ∧ y ≠ 0 ∨ 1 < 0 ∧ y < 0 ∨ 0 < 1 ∧ 0 < y
[PROOFSTEP]
simp [*, lt_irrefl, zero_lt_one]
[GOAL]
case inr
x y z : ℝ
hx✝ : 0 ≤ x
hx : 0 < x
⊢ x ^ y < 1 ↔ x = 0 ∧ y ≠ 0 ∨ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y
[PROOFSTEP]
simp [rpow_lt_one_iff_of_pos hx, hx.ne.symm]
[GOAL]
x y z : ℝ
hx : 0 < x
⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ x < 1 ∧ y < 0
[PROOFSTEP]
rw [rpow_def_of_pos hx, one_lt_exp_iff, mul_pos_iff, log_pos_iff hx, log_neg_iff hx]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ 0 < x ∧ x < 1 ∧ y < 0
[PROOFSTEP]
rcases hx.eq_or_lt with (rfl | hx)
[GOAL]
case inl
y z : ℝ
hx : 0 ≤ 0
⊢ 1 < 0 ^ y ↔ 1 < 0 ∧ 0 < y ∨ 0 < 0 ∧ 0 < 1 ∧ y < 0
[PROOFSTEP]
rcases _root_.em (y = 0) with (rfl | hy)
[GOAL]
case inl.inl
z : ℝ
hx : 0 ≤ 0
⊢ 1 < 0 ^ 0 ↔ 1 < 0 ∧ 0 < 0 ∨ 0 < 0 ∧ 0 < 1 ∧ 0 < 0
[PROOFSTEP]
simp [*, lt_irrefl, (zero_lt_one' ℝ).not_lt]
[GOAL]
case inl.inr
y z : ℝ
hx : 0 ≤ 0
hy : ¬y = 0
⊢ 1 < 0 ^ y ↔ 1 < 0 ∧ 0 < y ∨ 0 < 0 ∧ 0 < 1 ∧ y < 0
[PROOFSTEP]
simp [*, lt_irrefl, (zero_lt_one' ℝ).not_lt]
[GOAL]
case inr
x y z : ℝ
hx✝ : 0 ≤ x
hx : 0 < x
⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ 0 < x ∧ x < 1 ∧ y < 0
[PROOFSTEP]
simp [one_lt_rpow_iff_of_pos hx, hx]
[GOAL]
x y z : ℝ
hx0 : 0 ≤ x
hx1 : x ≤ 1
hz : 0 ≤ z
hyz : z ≤ y
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
rcases eq_or_lt_of_le hx0 with (rfl | hx0')
[GOAL]
case inl
y z : ℝ
hz : 0 ≤ z
hyz : z ≤ y
hx0 : 0 ≤ 0
hx1 : 0 ≤ 1
⊢ 0 ^ y ≤ 0 ^ z
[PROOFSTEP]
rcases eq_or_lt_of_le hz with (rfl | hz')
[GOAL]
case inl.inl
y : ℝ
hx0 : 0 ≤ 0
hx1 : 0 ≤ 1
hz : 0 ≤ 0
hyz : 0 ≤ y
⊢ 0 ^ y ≤ 0 ^ 0
[PROOFSTEP]
exact (rpow_zero 0).symm ▸ rpow_le_one hx0 hx1 hyz
[GOAL]
case inl.inr
y z : ℝ
hz : 0 ≤ z
hyz : z ≤ y
hx0 : 0 ≤ 0
hx1 : 0 ≤ 1
hz' : 0 < z
⊢ 0 ^ y ≤ 0 ^ z
[PROOFSTEP]
rw [zero_rpow, zero_rpow]
[GOAL]
case inl.inr
y z : ℝ
hz : 0 ≤ z
hyz : z ≤ y
hx0 : 0 ≤ 0
hx1 : 0 ≤ 1
hz' : 0 < z
⊢ z ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case inl.inr
y z : ℝ
hz : 0 ≤ z
hyz : z ≤ y
hx0 : 0 ≤ 0
hx1 : 0 ≤ 1
hz' : 0 < z
⊢ y ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case inr
x y z : ℝ
hx0 : 0 ≤ x
hx1 : x ≤ 1
hz : 0 ≤ z
hyz : z ≤ y
hx0' : 0 < x
⊢ x ^ y ≤ x ^ z
[PROOFSTEP]
exact rpow_le_rpow_of_exponent_ge hx0' hx1 hyz
[GOAL]
x✝ y z x : ℝ
hx : x ≠ 0
⊢ InjOn (fun y => y ^ x) {y | 0 ≤ y}
[PROOFSTEP]
rintro y hy z hz (hyz : y ^ x = z ^ x)
[GOAL]
x✝ y✝ z✝ x : ℝ
hx : x ≠ 0
y : ℝ
hy : y ∈ {y | 0 ≤ y}
z : ℝ
hz : z ∈ {y | 0 ≤ y}
hyz : y ^ x = z ^ x
⊢ y = z
[PROOFSTEP]
rw [← rpow_one y, ← rpow_one z, ← _root_.mul_inv_cancel hx, rpow_mul hy, rpow_mul hz, hyz]
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
⊢ x ≤ y ^ z ↔ log x ≤ z * log y
[PROOFSTEP]
rw [← Real.log_le_log hx (Real.rpow_pos_of_pos hy z), Real.log_rpow hy]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
hy : 0 < y
h : log x ≤ z * log y
⊢ x ≤ y ^ z
[PROOFSTEP]
obtain hx | rfl := hx.lt_or_eq
[GOAL]
case inl
x y z : ℝ
hx✝ : 0 ≤ x
hy : 0 < y
h : log x ≤ z * log y
hx : 0 < x
⊢ x ≤ y ^ z
[PROOFSTEP]
exact (le_rpow_iff_log_le hx hy).2 h
[GOAL]
case inr
y z : ℝ
hy : 0 < y
hx : 0 ≤ 0
h : log 0 ≤ z * log y
⊢ 0 ≤ y ^ z
[PROOFSTEP]
exact (Real.rpow_pos_of_pos hy z).le
[GOAL]
x y z : ℝ
hx : 0 < x
hy : 0 < y
⊢ x < y ^ z ↔ log x < z * log y
[PROOFSTEP]
rw [← Real.log_lt_log_iff hx (Real.rpow_pos_of_pos hy z), Real.log_rpow hy]
[GOAL]
x y z : ℝ
hx : 0 ≤ x
hy : 0 < y
h : log x < z * log y
⊢ x < y ^ z
[PROOFSTEP]
obtain hx | rfl := hx.lt_or_eq
[GOAL]
case inl
x y z : ℝ
hx✝ : 0 ≤ x
hy : 0 < y
h : log x < z * log y
hx : 0 < x
⊢ x < y ^ z
[PROOFSTEP]
exact (lt_rpow_iff_log_lt hx hy).2 h
[GOAL]
case inr
y z : ℝ
hy : 0 < y
hx : 0 ≤ 0
h : log 0 < z * log y
⊢ 0 < y ^ z
[PROOFSTEP]
exact Real.rpow_pos_of_pos hy z
[GOAL]
x y z : ℝ
hx : 0 < x
⊢ x ^ y ≤ 1 ↔ 1 ≤ x ∧ y ≤ 0 ∨ x ≤ 1 ∧ 0 ≤ y
[PROOFSTEP]
rw [rpow_def_of_pos hx, exp_le_one_iff, mul_nonpos_iff, log_nonneg_iff hx, log_nonpos_iff hx]
[GOAL]
x✝ y z x t : ℝ
h1 : 0 < x
h2 : x ≤ 1
ht : 0 < t
⊢ |log x * x ^ t| < 1 / t
[PROOFSTEP]
rw [lt_div_iff ht]
[GOAL]
x✝ y z x t : ℝ
h1 : 0 < x
h2 : x ≤ 1
ht : 0 < t
⊢ |log x * x ^ t| * t < 1
[PROOFSTEP]
have := abs_log_mul_self_lt (x ^ t) (rpow_pos_of_pos h1 t) (rpow_le_one h1.le h2 ht.le)
[GOAL]
x✝ y z x t : ℝ
h1 : 0 < x
h2 : x ≤ 1
ht : 0 < t
this : |log (x ^ t) * x ^ t| < 1
⊢ |log x * x ^ t| * t < 1
[PROOFSTEP]
rwa [log_rpow h1, mul_assoc, abs_mul, abs_of_pos ht, mul_comm] at this
[GOAL]
x✝ y z x : ℝ
hx : 0 ≤ x
n : ℕ
hn : n ≠ 0
⊢ (x ^ n) ^ (↑n)⁻¹ = x
[PROOFSTEP]
have hn0 : (n : ℝ) ≠ 0 := Nat.cast_ne_zero.2 hn
[GOAL]
x✝ y z x : ℝ
hx : 0 ≤ x
n : ℕ
hn : n ≠ 0
hn0 : ↑n ≠ 0
⊢ (x ^ n) ^ (↑n)⁻¹ = x
[PROOFSTEP]
rw [← rpow_nat_cast, ← rpow_mul hx, mul_inv_cancel hn0, rpow_one]
[GOAL]
x✝ y z x : ℝ
hx : 0 ≤ x
n : ℕ
hn : n ≠ 0
⊢ (x ^ (↑n)⁻¹) ^ n = x
[PROOFSTEP]
have hn0 : (n : ℝ) ≠ 0 := Nat.cast_ne_zero.2 hn
[GOAL]
x✝ y z x : ℝ
hx : 0 ≤ x
n : ℕ
hn : n ≠ 0
hn0 : ↑n ≠ 0
⊢ (x ^ (↑n)⁻¹) ^ n = x
[PROOFSTEP]
rw [← rpow_nat_cast, ← rpow_mul hx, inv_mul_cancel hn0, rpow_one]
[GOAL]
x y z b : ℝ
hb : 1 < b
⊢ StrictMono (rpow b)
[PROOFSTEP]
show StrictMono (fun (x : ℝ) => b ^ x)
[GOAL]
x y z b : ℝ
hb : 1 < b
⊢ StrictMono fun x => b ^ x
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos (zero_lt_one.trans hb)]
[GOAL]
x y z b : ℝ
hb : 1 < b
⊢ StrictMono fun x => exp (log b * x)
[PROOFSTEP]
exact exp_strictMono.comp <| StrictMono.const_mul strictMono_id <| Real.log_pos hb
[GOAL]
x y z b : ℝ
hb : 1 ≤ b
⊢ Monotone (rpow b)
[PROOFSTEP]
rcases lt_or_eq_of_le hb with hb | rfl
[GOAL]
case inl
x y z b : ℝ
hb✝ : 1 ≤ b
hb : 1 < b
⊢ Monotone (rpow b)
case inr x y z : ℝ hb : 1 ≤ 1 ⊢ Monotone (rpow 1)
[PROOFSTEP]
case inl => exact (strictMono_rpow_of_base_gt_one hb).monotone
[GOAL]
x y z b : ℝ
hb✝ : 1 ≤ b
hb : 1 < b
⊢ Monotone (rpow b)
[PROOFSTEP]
case inl => exact (strictMono_rpow_of_base_gt_one hb).monotone
[GOAL]
x y z b : ℝ
hb✝ : 1 ≤ b
hb : 1 < b
⊢ Monotone (rpow b)
[PROOFSTEP]
exact (strictMono_rpow_of_base_gt_one hb).monotone
[GOAL]
case inr
x y z : ℝ
hb : 1 ≤ 1
⊢ Monotone (rpow 1)
[PROOFSTEP]
case inr => intro _ _ _; simp
[GOAL]
x y z : ℝ
hb : 1 ≤ 1
⊢ Monotone (rpow 1)
[PROOFSTEP]
case inr => intro _ _ _; simp
[GOAL]
x y z : ℝ
hb : 1 ≤ 1
⊢ Monotone (rpow 1)
[PROOFSTEP]
intro _ _ _
[GOAL]
x y z : ℝ
hb : 1 ≤ 1
a✝¹ b✝ : ℝ
a✝ : a✝¹ ≤ b✝
⊢ rpow 1 a✝¹ ≤ rpow 1 b✝
[PROOFSTEP]
simp
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ StrictAnti (rpow b)
[PROOFSTEP]
show StrictAnti (fun (x : ℝ) => b ^ x)
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ StrictAnti fun x => b ^ x
[PROOFSTEP]
simp_rw [Real.rpow_def_of_pos hb₀]
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁ : b < 1
⊢ StrictAnti fun x => exp (log b * x)
[PROOFSTEP]
exact exp_strictMono.comp_strictAnti <| StrictMono.const_mul_of_neg strictMono_id <| Real.log_neg hb₀ hb₁
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁ : b ≤ 1
⊢ Antitone (rpow b)
[PROOFSTEP]
rcases lt_or_eq_of_le hb₁ with hb₁ | rfl
[GOAL]
case inl
x y z b : ℝ
hb₀ : 0 < b
hb₁✝ : b ≤ 1
hb₁ : b < 1
⊢ Antitone (rpow b)
case inr x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone (rpow 1)
[PROOFSTEP]
case inl => exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁✝ : b ≤ 1
hb₁ : b < 1
⊢ Antitone (rpow b)
[PROOFSTEP]
case inl => exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone
[GOAL]
x y z b : ℝ
hb₀ : 0 < b
hb₁✝ : b ≤ 1
hb₁ : b < 1
⊢ Antitone (rpow b)
[PROOFSTEP]
exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone
[GOAL]
case inr
x y z : ℝ
hb₀ : 0 < 1
hb₁ : 1 ≤ 1
⊢ Antitone (rpow 1)
[PROOFSTEP]
case inr => intro _ _ _; simp
[GOAL]
x y z : ℝ
hb₀ : 0 < 1
hb₁ : 1 ≤ 1
⊢ Antitone (rpow 1)
[PROOFSTEP]
case inr => intro _ _ _; simp
[GOAL]
x y z : ℝ
hb₀ : 0 < 1
hb₁ : 1 ≤ 1
⊢ Antitone (rpow 1)
[PROOFSTEP]
intro _ _ _
[GOAL]
x y z : ℝ
hb₀ : 0 < 1
hb₁ : 1 ≤ 1
a✝¹ b✝ : ℝ
a✝ : a✝¹ ≤ b✝
⊢ rpow 1 b✝ ≤ rpow 1 a✝¹
[PROOFSTEP]
simp
[GOAL]
z x✝ y x : ℝ
⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
obtain h | h := le_or_lt 0 x
[GOAL]
case inl
z x✝ y x : ℝ
h : 0 ≤ x
⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (sqrt_nonneg _) (rpow_nonneg_of_nonneg h _), mul_self_sqrt h, ← sq, ← rpow_nat_cast, ←
rpow_mul h]
[GOAL]
case inl
z x✝ y x : ℝ
h : 0 ≤ x
⊢ x = x ^ (1 / 2 * ↑2)
[PROOFSTEP]
norm_num
[GOAL]
case inr
z x✝ y x : ℝ
h : x < 0
⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
have : 1 / (2 : ℝ) * π = π / (2 : ℝ)
[GOAL]
case this
z x✝ y x : ℝ
h : x < 0
⊢ 1 / 2 * π = π / 2
case inr z x✝ y x : ℝ h : x < 0 this : 1 / 2 * π = π / 2 ⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
ring
[GOAL]
case inr
z x✝ y x : ℝ
h : x < 0
this : 1 / 2 * π = π / 2
⊢ sqrt x = x ^ (1 / 2)
[PROOFSTEP]
rw [sqrt_eq_zero_of_nonpos h.le, rpow_def_of_neg h, this, cos_pi_div_two, mul_zero]
[GOAL]
z x✝ y x r : ℝ
hx : 0 ≤ x
⊢ x ^ (r / 2) = sqrt x ^ r
[PROOFSTEP]
rw [sqrt_eq_rpow, ← rpow_mul hx]
[GOAL]
z x✝ y x r : ℝ
hx : 0 ≤ x
⊢ x ^ (r / 2) = x ^ (1 / 2 * r)
[PROOFSTEP]
congr
[GOAL]
case e_a
z x✝ y x r : ℝ
hx : 0 ≤ x
⊢ r / 2 = 1 / 2 * r
[PROOFSTEP]
ring
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
have hn' : 0 < (n : ℝ) := by exact_mod_cast hn.bot_lt
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
⊢ 0 < ↑n
[PROOFSTEP]
exact_mod_cast hn.bot_lt
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
obtain ⟨q, hxq, hqy⟩ := exists_rat_btwn (rpow_lt_rpow (le_max_left 0 x) (max_lt hy h) <| inv_pos.mpr hn')
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
hxq : max 0 x ^ (↑n)⁻¹ < ↑q
hqy : ↑q < y ^ (↑n)⁻¹
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
have := rpow_nonneg_of_nonneg (le_max_left 0 x) n⁻¹
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
hxq : max 0 x ^ (↑n)⁻¹ < ↑q
hqy : ↑q < y ^ (↑n)⁻¹
this : 0 ≤ max 0 x ^ (↑n)⁻¹
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
have hq := this.trans_lt hxq
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
hxq : max 0 x ^ (↑n)⁻¹ < ↑q
hqy : ↑q < y ^ (↑n)⁻¹
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
replace hxq := rpow_lt_rpow this hxq hn'
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
hqy : ↑q < y ^ (↑n)⁻¹
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : (max 0 x ^ (↑n)⁻¹) ^ ↑n < ↑q ^ ↑n
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
replace hqy := rpow_lt_rpow hq.le hqy hn'
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : (max 0 x ^ (↑n)⁻¹) ^ ↑n < ↑q ^ ↑n
hqy : ↑q ^ ↑n < (y ^ (↑n)⁻¹) ^ ↑n
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
rw [rpow_nat_cast, rpow_nat_cast, rpow_nat_inv_pow_nat _ hn] at hxq hqy
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : max 0 x < ↑q ^ n
hqy : ↑q ^ n < y
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
exact ⟨q, by exact_mod_cast hq, (le_max_right _ _).trans_lt hxq, hqy⟩
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : max 0 x < ↑q ^ n
hqy : ↑q ^ n < y
⊢ 0 < q
[PROOFSTEP]
exact_mod_cast hq
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : max 0 x < ↑q ^ n
hqy : ↑q ^ n < (y ^ (↑n)⁻¹) ^ n
⊢ 0 ≤ y
[PROOFSTEP]
exact hy.le
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℝ
h : x < y
hy : 0 < y
hn' : 0 < ↑n
q : ℚ
this : 0 ≤ max 0 x ^ (↑n)⁻¹
hq : 0 < ↑q
hxq : (max 0 x ^ (↑n)⁻¹) ^ n < ↑q ^ n
hqy : ↑q ^ n < (y ^ (↑n)⁻¹) ^ n
⊢ 0 ≤ max 0 x
[PROOFSTEP]
exact le_max_left _ _
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℚ
h : x < y
hy : 0 < y
⊢ ∃ q, 0 < q ∧ x < q ^ n ∧ q ^ n < y
[PROOFSTEP]
apply_mod_cast exists_rat_pow_btwn_rat_aux hn x y
[GOAL]
case a
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℚ
h : x < y
hy : 0 < y
⊢ x < y
[PROOFSTEP]
assumption
[GOAL]
case a
z x✝ y✝ : ℝ
n : ℕ
hn : n ≠ 0
x y : ℚ
h : x < y
hy : 0 < y
⊢ 0 < y
[PROOFSTEP]
assumption
[GOAL]
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
obtain ⟨q₂, hx₂, hy₂⟩ := exists_rat_btwn (max_lt h hy)
[GOAL]
case intro.intro
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
obtain ⟨q₁, hx₁, hq₁₂⟩ := exists_rat_btwn hx₂
[GOAL]
case intro.intro.intro.intro
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : ↑q₁ < ↑q₂
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
have : (0 : α) < q₂ := (le_max_right _ _).trans_lt hx₂
[GOAL]
case intro.intro.intro.intro
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : ↑q₁ < ↑q₂
this : 0 < ↑q₂
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
norm_cast at hq₁₂ this
[GOAL]
case intro.intro.intro.intro
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : q₁ < q₂
this : 0 < q₂
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
obtain ⟨q, hq, hq₁, hq₂⟩ := exists_rat_pow_btwn_rat hn hq₁₂ this
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : q₁ < q₂
this : 0 < q₂
q : ℚ
hq : 0 < q
hq₁ : q₁ < q ^ n
hq₂ : q ^ n < q₂
⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y
[PROOFSTEP]
refine' ⟨q, hq, (le_max_left _ _).trans_lt <| hx₁.trans _, hy₂.trans' _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : q₁ < q₂
this : 0 < q₂
q : ℚ
hq : 0 < q
hq₁ : q₁ < q ^ n
hq₂ : q ^ n < q₂
⊢ ↑q₁ < ↑q ^ n
[PROOFSTEP]
assumption_mod_cast
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
z x✝ y✝ : ℝ
n : ℕ
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : Archimedean α
hn : n ≠ 0
x y : α
h : x < y
hy : 0 < y
q₂ : ℚ
hx₂ : max x 0 < ↑q₂
hy₂ : ↑q₂ < y
q₁ : ℚ
hx₁ : max x 0 < ↑q₁
hq₁₂ : q₁ < q₂
this : 0 < q₂
q : ℚ
hq : 0 < q
hq₁ : q₁ < q ^ n
hq₂ : q ^ n < q₂
⊢ ↑q ^ n < ↑q₂
[PROOFSTEP]
assumption_mod_cast
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Real", "llama_tokens": 35866} |
[GOAL]
u : ℂ
hu : 0 < u.re
v : ℂ
⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 (1 / 2)
[PROOFSTEP]
apply IntervalIntegrable.mul_continuousOn
[GOAL]
case hf
u : ℂ
hu : 0 < u.re
v : ℂ
⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1)) volume 0 (1 / 2)
[PROOFSTEP]
refine' intervalIntegral.intervalIntegrable_cpow' _
[GOAL]
case hf
u : ℂ
hu : 0 < u.re
v : ℂ
⊢ -1 < (u - 1).re
[PROOFSTEP]
rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right]
[GOAL]
case hg
u : ℂ
hu : 0 < u.re
v : ℂ
⊢ ContinuousOn (fun x => (1 - ↑x) ^ (v - 1)) (uIcc 0 (1 / 2))
[PROOFSTEP]
apply ContinuousAt.continuousOn
[GOAL]
case hg.hcont
u : ℂ
hu : 0 < u.re
v : ℂ
⊢ ∀ (x : ℝ), x ∈ uIcc 0 (1 / 2) → ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
[PROOFSTEP]
intro x hx
[GOAL]
case hg.hcont
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ uIcc 0 (1 / 2)
⊢ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
[PROOFSTEP]
rw [uIcc_of_le (by positivity : (0 : ℝ) ≤ 1 / 2)] at hx
[GOAL]
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ uIcc 0 (1 / 2)
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
positivity
[GOAL]
case hg.hcont
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
[PROOFSTEP]
apply ContinuousAt.cpow
[GOAL]
case hg.hcont.hf
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ ContinuousAt (fun x => 1 - ↑x) x
[PROOFSTEP]
exact (continuous_const.sub continuous_ofReal).continuousAt
[GOAL]
case hg.hcont.hg
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ ContinuousAt (fun x => v - 1) x
[PROOFSTEP]
exact continuousAt_const
[GOAL]
case hg.hcont.h0
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ 0 < (1 - ↑x).re ∨ (1 - ↑x).im ≠ 0
[PROOFSTEP]
rw [sub_re, one_re, ofReal_re, sub_pos]
[GOAL]
case hg.hcont.h0
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ x < 1 ∨ (1 - ↑x).im ≠ 0
[PROOFSTEP]
exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1))
[GOAL]
u : ℂ
hu : 0 < u.re
v : ℂ
x : ℝ
hx : x ∈ Icc 0 (1 / 2)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 1
[PROOFSTEP]
refine' (betaIntegral_convergent_left hu v).trans _
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume (1 / 2) 1
[PROOFSTEP]
rw [IntervalIntegrable.iff_comp_neg]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ IntervalIntegrable (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) volume (-(1 / 2)) (-1)
[PROOFSTEP]
convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1
[GOAL]
case h.e'_3
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) = fun x => ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_3.h
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
[PROOFSTEP]
conv_lhs => rw [mul_comm]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
| ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
| ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
| ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_3.h
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ (1 - ↑(-x)) ^ (v - 1) * ↑(-x) ^ (u - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_3.h.e_a.e_a
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ 1 - ↑(-x) = ↑(x + 1)
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3.h.e_a.e_a
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ 1 - -↑x = ↑x + 1
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.h.e_a.e_a
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ ↑(-x) = 1 - ↑(x + 1)
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3.h.e_a.e_a
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
x : ℝ
⊢ -↑x = 1 - (↑x + 1)
[PROOFSTEP]
ring
[GOAL]
case h.e'_5
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ -(1 / 2) = 1 / 2 - 1
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_6
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ -1 = 0 - 1
[PROOFSTEP]
norm_num
[GOAL]
u v : ℂ
⊢ betaIntegral v u = betaIntegral u v
[PROOFSTEP]
rw [betaIntegral, betaIntegral]
[GOAL]
u v : ℂ
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
[PROOFSTEP]
have :=
intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1)
(fun x : ℝ => (x : ℂ) ^ (u - 1) * (1 - (x : ℂ)) ^ (v - 1)) neg_one_lt_zero.ne 1
[GOAL]
u v : ℂ
this :
∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) =
(-1)⁻¹ • ∫ (x : ℝ) in -1 * 0 + 1 ..-1 * 1 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
[PROOFSTEP]
rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this
[GOAL]
u v : ℂ
this :
∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) =
∫ (x : ℝ) in -1 * 1 + 1 ..-1 * 0 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
[PROOFSTEP]
simp at this
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
[PROOFSTEP]
conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
| ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
[PROOFSTEP]
arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
| ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
[PROOFSTEP]
arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
| ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
[PROOFSTEP]
arg 1
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
| fun x => (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
[PROOFSTEP]
intro x
[GOAL]
case h
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
x : ℝ
| (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
[PROOFSTEP]
rw [add_comm, ← sub_eq_add_neg, mul_comm]
[GOAL]
u v : ℂ
this : ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
[PROOFSTEP]
exact this
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ betaIntegral u 1 = 1 / u
[PROOFSTEP]
simp_rw [betaIntegral, sub_self, cpow_zero, mul_one]
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) = 1 / u
[PROOFSTEP]
rw [integral_cpow (Or.inl _)]
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ (↑1 ^ (u - 1 + 1) - ↑0 ^ (u - 1 + 1)) / (u - 1 + 1) = 1 / u
[PROOFSTEP]
rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel]
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ u - 1 + 1 ≠ 0
[PROOFSTEP]
rw [sub_add_cancel]
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ u ≠ 0
[PROOFSTEP]
contrapose! hu
[GOAL]
u : ℂ
hu : u = 0
⊢ u.re ≤ 0
[PROOFSTEP]
rw [hu, zero_re]
[GOAL]
u : ℂ
hu : 0 < u.re
⊢ -1 < (u - 1).re
[PROOFSTEP]
rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t
[PROOFSTEP]
have ha' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha.ne'
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t
[PROOFSTEP]
rw [betaIntegral]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) =
↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1)
[PROOFSTEP]
have A : (a : ℂ) ^ (s + t - 1) = a * ((a : ℂ) ^ (s - 1) * (a : ℂ) ^ (t - 1)) := by
rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
⊢ ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
[PROOFSTEP]
rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
⊢ s + t - 1 = 1 + (s - 1) + (t - 1)
[PROOFSTEP]
abel
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
⊢ s + t - 1 = 1 + (s - 1) + (t - 1)
[PROOFSTEP]
abel
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) =
↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1)
[PROOFSTEP]
rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ←
intervalIntegral.integral_comp_div _ ha.ne', zero_div]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) =
∫ (x : ℝ) in 0 ..a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1))
[PROOFSTEP]
simp_rw [intervalIntegral.integral_of_le ha.le]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
⊢ ∫ (x : ℝ) in Ioc 0 a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) =
∫ (x : ℝ) in Ioc 0 a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1))
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioc fun x hx => _
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1))
[PROOFSTEP]
rw [mul_mul_mul_comm]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1) * (↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ ↑x ^ (s - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1)
[PROOFSTEP]
rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha']
[GOAL]
case e_a
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ (↑a - ↑x) ^ (t - 1) = ↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1)
[PROOFSTEP]
rw [(by norm_cast : (1 : ℂ) - ↑(x / a) = ↑(1 - x / a)), ←
mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)]
[GOAL]
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ 1 - ↑(x / a) = ↑(1 - x / a)
[PROOFSTEP]
norm_cast
[GOAL]
case e_a
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ (↑a - ↑x) ^ (t - 1) = (↑a * ↑(1 - x / a)) ^ (t - 1)
[PROOFSTEP]
push_cast
[GOAL]
case e_a
s t : ℂ
a : ℝ
ha : 0 < a
ha' : ↑a ≠ 0
A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
x : ℝ
hx : x ∈ Ioc 0 a
⊢ (↑a - ↑x) ^ (t - 1) = (↑a * (1 - ↑x / ↑a)) ^ (t - 1)
[PROOFSTEP]
rw [mul_sub, mul_one, mul_div_cancel' _ ha']
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
[PROOFSTEP]
have conv_int :=
integral_posConvolution (GammaIntegral_convergent hs) (GammaIntegral_convergent ht) (ContinuousLinearMap.mul ℝ ℂ)
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x,
↑(↑(ContinuousLinearMap.mul ℝ ℂ) (↑(rexp (-t_1)) * ↑t_1 ^ (s - 1)))
(↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
↑(↑(ContinuousLinearMap.mul ℝ ℂ) (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)))
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1))
⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
[PROOFSTEP]
simp_rw [ContinuousLinearMap.mul_apply'] at conv_int
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
[PROOFSTEP]
have hst : 0 < re (s + t) := by rw [add_re]; exact add_pos hs ht
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
⊢ 0 < (s + t).re
[PROOFSTEP]
rw [add_re]
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
⊢ 0 < s.re + t.re
[PROOFSTEP]
exact add_pos hs ht
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
[PROOFSTEP]
rw [Gamma_eq_integral hs, Gamma_eq_integral ht, Gamma_eq_integral hst, GammaIntegral, GammaIntegral, GammaIntegral, ←
conv_int, ← integral_mul_right (betaIntegral _ _)]
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
⊢ ∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
∫ (a : ℝ) in Ioi 0, ↑(rexp (-a)) * ↑a ^ (s + t - 1) * betaIntegral s t
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun x hx => _
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
⊢ ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
↑(rexp (-x)) * ↑x ^ (s + t - 1) * betaIntegral s t
[PROOFSTEP]
rw [mul_assoc, ← betaIntegral_scaled s t hx, ← intervalIntegral.integral_const_mul]
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
⊢ ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
∫ (x_1 : ℝ) in 0 ..x, ↑(rexp (-x)) * (↑x_1 ^ (s - 1) * (↑x - ↑x_1) ^ (t - 1))
[PROOFSTEP]
congr 1 with y : 1
[GOAL]
case e_f.h
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ ↑(rexp (-y)) * ↑y ^ (s - 1) * (↑(rexp (-(x - y))) * ↑(x - y) ^ (t - 1)) =
↑(rexp (-x)) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
[PROOFSTEP]
push_cast
[GOAL]
case e_f.h
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) =
cexp (-↑x) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
[PROOFSTEP]
suffices Complex.exp (-x) = Complex.exp (-y) * Complex.exp (-(x - y)) by rw [this]; ring
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
this : cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y))
⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) =
cexp (-↑x) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
[PROOFSTEP]
rw [this]
[GOAL]
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
this : cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y))
⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) =
cexp (-↑y) * cexp (-(↑x - ↑y)) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
[PROOFSTEP]
ring
[GOAL]
case e_f.h
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y))
[PROOFSTEP]
rw [← Complex.exp_add]
[GOAL]
case e_f.h
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ cexp (-↑x) = cexp (-↑y + -(↑x - ↑y))
[PROOFSTEP]
congr 1
[GOAL]
case e_f.h.e_z
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ -↑x = -↑y + -(↑x - ↑y)
[PROOFSTEP]
abel
[GOAL]
case e_f.h.e_z
s t : ℂ
hs : 0 < s.re
ht : 0 < t.re
conv_int :
∫ (x : ℝ) in Ioi 0,
∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) =
(∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)
hst : 0 < (s + t).re
x : ℝ
hx : x ∈ Ioi 0
y : ℝ
⊢ -↑x = -↑y + -(↑x - ↑y)
[PROOFSTEP]
abel
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
let F : ℝ → ℂ := fun x => (x : ℂ) ^ u * (1 - (x : ℂ)) ^ v
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hu' : 0 < re (u + 1) := by rw [add_re, one_re]; positivity
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
⊢ 0 < (u + 1).re
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
⊢ 0 < u.re + 1
[PROOFSTEP]
positivity
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hv' : 0 < re (v + 1) := by rw [add_re, one_re]; positivity
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
⊢ 0 < (v + 1).re
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
⊢ 0 < v.re + 1
[PROOFSTEP]
positivity
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hc : ContinuousOn F (Icc 0 1) :=
by
refine' (ContinuousAt.continuousOn fun x hx => _).mul (ContinuousAt.continuousOn fun x hx => _)
· refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hu).comp continuous_ofReal.continuousAt
rw [ofReal_re]; exact hx.1
· refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hv).comp (continuous_const.sub continuous_ofReal).continuousAt
rw [sub_re, one_re, ofReal_re, sub_nonneg]
exact hx.2
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
⊢ ContinuousOn F (Icc 0 1)
[PROOFSTEP]
refine' (ContinuousAt.continuousOn fun x hx => _).mul (ContinuousAt.continuousOn fun x hx => _)
[GOAL]
case refine'_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ ContinuousAt (fun x => ↑x ^ u) x
[PROOFSTEP]
refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hu).comp continuous_ofReal.continuousAt
[GOAL]
case refine'_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ 0 ≤ (↑x).re
[PROOFSTEP]
rw [ofReal_re]
[GOAL]
case refine'_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ 0 ≤ x
[PROOFSTEP]
exact hx.1
[GOAL]
case refine'_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ ContinuousAt (fun x => (1 - ↑x) ^ v) x
[PROOFSTEP]
refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hv).comp (continuous_const.sub continuous_ofReal).continuousAt
[GOAL]
case refine'_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ 0 ≤ (1 - ↑x).re
[PROOFSTEP]
rw [sub_re, one_re, ofReal_re, sub_nonneg]
[GOAL]
case refine'_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
x : ℝ
hx : x ∈ Icc 0 1
⊢ x ≤ 1
[PROOFSTEP]
exact hx.2
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hder :
∀ x : ℝ,
x ∈ Ioo (0 : ℝ) 1 →
HasDerivAt F (u * ((x : ℂ) ^ (u - 1) * (1 - (x : ℂ)) ^ v) - v * ((x : ℂ) ^ u * (1 - (x : ℂ)) ^ (v - 1))) x :=
by
intro x hx
have U : HasDerivAt (fun y : ℂ => y ^ u) (u * (x : ℂ) ^ (u - 1)) ↑x :=
by
have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_)
simp only [id_eq, mul_one] at this
· exact this
· rw [id_eq, ofReal_re]; exact hx.1
have V : HasDerivAt (fun y : ℂ => (1 - y) ^ v) (-v * (1 - (x : ℂ)) ^ (v - 1)) ↑x :=
by
have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_)
swap; · rw [id.def, sub_re, one_re, ofReal_re, sub_pos]; exact hx.2
simp_rw [id.def] at A
have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id
convert HasDerivAt.comp (↑x) A B using 1
ring
convert (U.mul V).comp_ofReal using 1
ring
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
⊢ ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
[PROOFSTEP]
intro x hx
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
[PROOFSTEP]
have U : HasDerivAt (fun y : ℂ => y ^ u) (u * (x : ℂ) ^ (u - 1)) ↑x :=
by
have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_)
simp only [id_eq, mul_one] at this
· exact this
· rw [id_eq, ofReal_re]; exact hx.1
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
[PROOFSTEP]
have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_)
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
this : HasDerivAt (fun x => id x ^ u) (u * id ↑x ^ (u - 1) * 1) ↑x
⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
⊢ 0 < (id ↑x).re
[PROOFSTEP]
simp only [id_eq, mul_one] at this
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
this : HasDerivAt (fun x => x ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
[PROOFSTEP]
exact this
[GOAL]
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
⊢ 0 < (id ↑x).re
[PROOFSTEP]
rw [id_eq, ofReal_re]
[GOAL]
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
⊢ 0 < x
[PROOFSTEP]
exact hx.1
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
[PROOFSTEP]
have V : HasDerivAt (fun y : ℂ => (1 - y) ^ v) (-v * (1 - (x : ℂ)) ^ (v - 1)) ↑x :=
by
have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_)
swap; · rw [id.def, sub_re, one_re, ofReal_re, sub_pos]; exact hx.2
simp_rw [id.def] at A
have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id
convert HasDerivAt.comp (↑x) A B using 1
ring
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
[PROOFSTEP]
have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_)
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => id x ^ v) (v * id (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ 0 < (id (1 - ↑x)).re
[PROOFSTEP]
swap
[GOAL]
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ 0 < (id (1 - ↑x)).re
[PROOFSTEP]
rw [id.def, sub_re, one_re, ofReal_re, sub_pos]
[GOAL]
case refine_1
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
⊢ x < 1
[PROOFSTEP]
exact hx.2
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => id x ^ v) (v * id (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
[PROOFSTEP]
simp_rw [id.def] at A
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
[PROOFSTEP]
have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
⊢ HasDerivAt (fun y => 1 - y) (-1) ↑x
[PROOFSTEP]
apply HasDerivAt.const_sub
[GOAL]
case hf
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
⊢ HasDerivAt (fun x => x) 1 ↑x
[PROOFSTEP]
apply hasDerivAt_id
[GOAL]
case refine_2
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
B : HasDerivAt (fun y => 1 - y) (-1) ↑x
⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
[PROOFSTEP]
convert HasDerivAt.comp (↑x) A B using 1
[GOAL]
case h.e'_7
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x)
B : HasDerivAt (fun y => 1 - y) (-1) ↑x
⊢ -v * (1 - ↑x) ^ (v - 1) = v * (1 - ↑x) ^ (v - 1) * 1 * -1
[PROOFSTEP]
ring
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
V : HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
[PROOFSTEP]
convert (U.mul V).comp_ofReal using 1
[GOAL]
case h.e'_7
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
x : ℝ
hx : x ∈ Ioo 0 1
U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x
V : HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x
⊢ u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1)) =
u * ↑x ^ (u - 1) * (1 - ↑x) ^ v + ↑x ^ u * (-v * (1 - ↑x) ^ (v - 1))
[PROOFSTEP]
ring
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have h_int := ((betaIntegral_convergent hu hv').const_mul u).sub ((betaIntegral_convergent hu' hv).const_mul v)
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int :
IntervalIntegrable
(fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ (v + 1 - 1)) - v * (↑x ^ (u + 1 - 1) * (1 - ↑x) ^ (v - 1))) volume 0 1
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
rw [add_sub_cancel, add_sub_cancel] at h_int
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have int_ev := intervalIntegral.integral_eq_sub_of_hasDerivAt_of_le zero_le_one hc hder h_int
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hF0 : F 0 = 0 :=
by
simp only [mul_eq_zero, ofReal_zero, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, sub_zero, one_cpow,
one_ne_zero, or_false_iff]
contrapose! hu; rw [hu, zero_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
⊢ F 0 = 0
[PROOFSTEP]
simp only [mul_eq_zero, ofReal_zero, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, sub_zero, one_cpow,
one_ne_zero, or_false_iff]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
⊢ ¬u = 0
[PROOFSTEP]
contrapose! hu
[GOAL]
u v : ℂ
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hu : u = 0
⊢ u.re ≤ 0
[PROOFSTEP]
rw [hu, zero_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hF0 : F 0 = 0
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
have hF1 : F 1 = 0 :=
by
simp only [mul_eq_zero, ofReal_one, one_cpow, one_ne_zero, sub_self, cpow_eq_zero_iff, eq_self_iff_true, Ne.def,
true_and_iff, false_or_iff]
contrapose! hv; rw [hv, zero_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hF0 : F 0 = 0
⊢ F 1 = 0
[PROOFSTEP]
simp only [mul_eq_zero, ofReal_one, one_cpow, one_ne_zero, sub_self, cpow_eq_zero_iff, eq_self_iff_true, Ne.def,
true_and_iff, false_or_iff]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hF0 : F 0 = 0
⊢ ¬v = 0
[PROOFSTEP]
contrapose! hv
[GOAL]
u v : ℂ
hu : 0 < u.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hF0 : F 0 = 0
hv : v = 0
⊢ v.re ≤ 0
[PROOFSTEP]
rw [hv, zero_re]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
rw [hF0, hF1, sub_zero, intervalIntegral.integral_sub, intervalIntegral.integral_const_mul,
intervalIntegral.integral_const_mul] at int_ev
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v
[PROOFSTEP]
rw [betaIntegral, betaIntegral, ← sub_eq_zero]
[GOAL]
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v + 1 - 1)) -
v * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u + 1 - 1) * (1 - ↑x) ^ (v - 1) =
0
[PROOFSTEP]
convert int_ev
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_4.h.h.e'_6.h.e'_6
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
x✝ : ℝ
⊢ v + 1 - 1 = v
[PROOFSTEP]
ring
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_4.h.h.e'_5.h.e'_6
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
x✝ : ℝ
⊢ u + 1 - 1 = u
[PROOFSTEP]
ring
[GOAL]
case hf
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ IntervalIntegrable (fun y => u * (↑y ^ (u - 1) * (1 - ↑y) ^ v)) volume 0 1
[PROOFSTEP]
apply IntervalIntegrable.const_mul
[GOAL]
case hf.hf
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ v) volume 0 1
[PROOFSTEP]
convert betaIntegral_convergent hu hv'
[GOAL]
case h.e'_3.h.h.e'_6.h.e'_6
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
x✝ : ℝ
⊢ v = v + 1 - 1
[PROOFSTEP]
ring
[GOAL]
case hg
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ IntervalIntegrable (fun y => v * (↑y ^ u * (1 - ↑y) ^ (v - 1))) volume 0 1
[PROOFSTEP]
apply IntervalIntegrable.const_mul
[GOAL]
case hg.hf
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
⊢ IntervalIntegrable (fun x => ↑x ^ u * (1 - ↑x) ^ (v - 1)) volume 0 1
[PROOFSTEP]
convert betaIntegral_convergent hu' hv
[GOAL]
case h.e'_3.h.h.e'_5.h.e'_6
u v : ℂ
hu : 0 < u.re
hv : 0 < v.re
F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v
hu' : 0 < (u + 1).re
hv' : 0 < (v + 1).re
hc : ContinuousOn F (Icc 0 1)
hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x
h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1
int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0
hF0 : F 0 = 0
hF1 : F 1 = 0
x✝ : ℝ
⊢ u = u + 1 - 1
[PROOFSTEP]
ring
[GOAL]
u : ℂ
hu : 0 < u.re
n : ℕ
⊢ betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
[PROOFSTEP]
induction' n with n IH generalizing u
[GOAL]
case zero
u✝ : ℂ
hu✝ : 0 < u✝.re
u : ℂ
hu : 0 < u.re
⊢ betaIntegral u (↑Nat.zero + 1) = ↑Nat.zero ! / ∏ j in Finset.range (Nat.zero + 1), (u + ↑j)
[PROOFSTEP]
rw [Nat.cast_zero, zero_add, betaIntegral_eval_one_right hu, Nat.factorial_zero, Nat.cast_one]
[GOAL]
case zero
u✝ : ℂ
hu✝ : 0 < u✝.re
u : ℂ
hu : 0 < u.re
⊢ 1 / u = 1 / ∏ j in Finset.range (Nat.zero + 1), (u + ↑j)
[PROOFSTEP]
simp
[GOAL]
case succ
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j)
[PROOFSTEP]
have := betaIntegral_recurrence hu (?_ : 0 < re n.succ)
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : u * betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n)
⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j)
case succ.refine_1
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
⊢ 0 < (↑(Nat.succ n)).re
[PROOFSTEP]
swap
[GOAL]
case succ.refine_1
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
⊢ 0 < (↑(Nat.succ n)).re
[PROOFSTEP]
rw [← ofReal_nat_cast, ofReal_re]
[GOAL]
case succ.refine_1
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
⊢ 0 < ↑(Nat.succ n)
[PROOFSTEP]
positivity
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : u * betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n)
⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j)
[PROOFSTEP]
rw [mul_comm u _, ← eq_div_iff] at this
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j)
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n)
⊢ u ≠ 0
[PROOFSTEP]
swap
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n)
⊢ u ≠ 0
[PROOFSTEP]
contrapose! hu
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n)
hu : u = 0
⊢ u.re ≤ 0
[PROOFSTEP]
rw [hu, zero_re]
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j)
[PROOFSTEP]
rw [this, Finset.prod_range_succ', Nat.cast_succ, IH]
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ (↑n + 1) * (↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u =
↑(Nat.succ n)! / ((∏ k in Finset.range (n + 1), (u + ↑(k + 1))) * (u + ↑0))
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ 0 < (u + 1).re
[PROOFSTEP]
swap
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ 0 < (u + 1).re
[PROOFSTEP]
rw [add_re, one_re]
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ 0 < u.re + 1
[PROOFSTEP]
positivity
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ (↑n + 1) * (↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u =
↑(Nat.succ n)! / ((∏ k in Finset.range (n + 1), (u + ↑(k + 1))) * (u + ↑0))
[PROOFSTEP]
rw [Nat.factorial_succ, Nat.cast_mul, Nat.cast_add, Nat.cast_one, Nat.cast_zero, add_zero, ← mul_div_assoc, ← div_div]
[GOAL]
case succ.refine_2
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
⊢ ((↑n + 1) * ↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u =
((↑n + 1) * ↑n ! / ∏ k in Finset.range (n + 1), (u + ↑(k + 1))) / u
[PROOFSTEP]
congr 3 with j : 1
[GOAL]
case succ.refine_2.e_a.e_a.e_f.h
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
j : ℕ
⊢ u + 1 + ↑j = u + ↑(j + 1)
[PROOFSTEP]
push_cast
[GOAL]
case succ.refine_2.e_a.e_a.e_f.h
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
j : ℕ
⊢ u + 1 + ↑j = u + (↑j + 1)
[PROOFSTEP]
abel
[GOAL]
case succ.refine_2.e_a.e_a.e_f.h
u✝ : ℂ
hu✝ : 0 < u✝.re
n : ℕ
IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j)
u : ℂ
hu : 0 < u.re
this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u
j : ℕ
⊢ u + 1 + ↑j = u + (↑j + 1)
[PROOFSTEP]
abel
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
⊢ GammaSeq s n = ↑n ^ s * betaIntegral s (↑n + 1)
[PROOFSTEP]
rw [GammaSeq, betaIntegral_eval_nat_add_one_right hs n, ← mul_div_assoc]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ GammaSeq (s + 1) n / s = ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
conv_lhs => rw [GammaSeq, Finset.prod_range_succ, div_div]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| GammaSeq (s + 1) n / s
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ, div_div]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| GammaSeq (s + 1) n / s
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ, div_div]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| GammaSeq (s + 1) n / s
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ, div_div]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ ↑n ^ (s + 1) * ↑n ! / ((∏ x in Finset.range n, (s + 1 + ↑x)) * (s + 1 + ↑n) * s) = ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
conv_rhs =>
rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc,
mul_comm _ (Finset.prod _ _)]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc,
mul_comm _ (Finset.prod _ _)]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc,
mul_comm _ (Finset.prod _ _)]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
| ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc,
mul_comm _ (Finset.prod _ _)]
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ ↑n ^ (s + 1) * ↑n ! / ((∏ x in Finset.range n, (s + 1 + ↑x)) * (s + 1 + ↑n) * s) =
↑n * ↑n ^ s * ↑n ! / ((∏ k in Finset.range n, (s + ↑(k + 1))) * (↑n + 1 + s) * s)
[PROOFSTEP]
congr 3
[GOAL]
case e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ ↑n ^ (s + 1) = ↑n * ↑n ^ s
[PROOFSTEP]
rw [cpow_add _ _ (Nat.cast_ne_zero.mpr hn), cpow_one, mul_comm]
[GOAL]
case e_a.e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ ∏ x in Finset.range n, (s + 1 + ↑x) = ∏ k in Finset.range n, (s + ↑(k + 1))
[PROOFSTEP]
refine' Finset.prod_congr (by rfl) fun x _ => _
[GOAL]
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ Finset.range n = Finset.range n
[PROOFSTEP]
rfl
[GOAL]
case e_a.e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
x : ℕ
x✝ : x ∈ Finset.range n
⊢ s + 1 + ↑x = s + ↑(x + 1)
[PROOFSTEP]
push_cast
[GOAL]
case e_a.e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
x : ℕ
x✝ : x ∈ Finset.range n
⊢ s + 1 + ↑x = s + (↑x + 1)
[PROOFSTEP]
ring
[GOAL]
case e_a.e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ s + 1 + ↑n = ↑n + 1 + s
[PROOFSTEP]
abel
[GOAL]
case e_a.e_a.e_a
s : ℂ
n : ℕ
hn : n ≠ 0
⊢ s + 1 + ↑n = ↑n + 1 + s
[PROOFSTEP]
abel
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
[PROOFSTEP]
have : ∀ x : ℝ, x = x / n * n := by intro x; rw [div_mul_cancel]; exact Nat.cast_ne_zero.mpr hn
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
⊢ ∀ (x : ℝ), x = x / ↑n * ↑n
[PROOFSTEP]
intro x
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
x : ℝ
⊢ x = x / ↑n * ↑n
[PROOFSTEP]
rw [div_mul_cancel]
[GOAL]
case h
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
x : ℝ
⊢ ↑n ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.mpr hn
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
[PROOFSTEP]
conv_rhs => enter [1, x, 2, 1]; rw [this x]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
| ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
[PROOFSTEP]
enter [1, x, 2, 1]; rw [this x]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
| ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
[PROOFSTEP]
enter [1, x, 2, 1]; rw [this x]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
| ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
[PROOFSTEP]
enter [1, x, 2, 1]
[GOAL]
case h
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
x : ℝ
| ↑x
[PROOFSTEP]
rw [this x]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1)
[PROOFSTEP]
rw [GammaSeq_eq_betaIntegral_of_re_pos hs]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this : ∀ (x : ℝ), x = x / ↑n * ↑n
⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1)
[PROOFSTEP]
have :=
intervalIntegral.integral_comp_div (a := 0) (b := n) (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) : ℝ → ℂ)
(Nat.cast_ne_zero.mpr hn)
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) (x / ↑n) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) x
⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1)
[PROOFSTEP]
dsimp only at this
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1)
[PROOFSTEP]
rw [betaIntegral, this, real_smul, zero_div, div_self, add_sub_cancel, ← intervalIntegral.integral_const_mul, ←
intervalIntegral.integral_const_mul]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) =
∫ (x : ℝ) in 0 ..1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1))
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ↑n ≠ 0
[PROOFSTEP]
swap
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ↑n ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.mpr hn
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ∫ (x : ℝ) in 0 ..1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) =
∫ (x : ℝ) in 0 ..1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1))
[PROOFSTEP]
simp_rw [intervalIntegral.integral_of_le zero_le_one]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
⊢ ∫ (x : ℝ) in Ioc 0 1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) =
∫ (x : ℝ) in Ioc 0 1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1))
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioc fun x hx => _
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1))
[PROOFSTEP]
push_cast
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1))
[PROOFSTEP]
have hn' : (n : ℂ) ≠ 0 := Nat.cast_ne_zero.mpr hn
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1))
[PROOFSTEP]
have A : (n : ℂ) ^ s = (n : ℂ) ^ (s - 1) * n :=
by
conv_lhs => rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn']
simp
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
⊢ ↑n ^ s = ↑n ^ (s - 1) * ↑n
[PROOFSTEP]
conv_lhs => rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn']
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
| ↑n ^ s
[PROOFSTEP]
rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn']
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
| ↑n ^ s
[PROOFSTEP]
rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn']
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
| ↑n ^ s
[PROOFSTEP]
rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn']
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
⊢ s = s - 1 + 1
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
⊢ ↑n ^ (s - 1) * ↑n ^ 1 = ↑n ^ (s - 1) * ↑n
[PROOFSTEP]
simp
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
A : ↑n ^ s = ↑n ^ (s - 1) * ↑n
⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1))
[PROOFSTEP]
have B : ((x : ℂ) * ↑n) ^ (s - 1) = (x : ℂ) ^ (s - 1) * (n : ℂ) ^ (s - 1) := by
rw [← ofReal_nat_cast, mul_cpow_ofReal_nonneg hx.1.le (Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn)).le]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
A : ↑n ^ s = ↑n ^ (s - 1) * ↑n
⊢ (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1)
[PROOFSTEP]
rw [← ofReal_nat_cast, mul_cpow_ofReal_nonneg hx.1.le (Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn)).le]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
A : ↑n ^ s = ↑n ^ (s - 1) * ↑n
B : (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1)
⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1))
[PROOFSTEP]
rw [A, B, cpow_nat_cast]
[GOAL]
s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n
this :
∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) =
↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)
x : ℝ
hx : x ∈ Ioc 0 1
hn' : ↑n ≠ 0
A : ↑n ^ s = ↑n ^ (s - 1) * ↑n
B : (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1)
⊢ ↑n ^ (s - 1) * ↑n * (↑x ^ (s - 1) * (1 - ↑x) ^ n) = ↑n * ((1 - ↑x) ^ n * (↑x ^ (s - 1) * ↑n ^ (s - 1)))
[PROOFSTEP]
ring
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (Gamma s))
[PROOFSTEP]
rw [Gamma_eq_integral hs]
-- We apply dominated convergence to the following function, which we will show is uniformly
-- bounded above by the Gamma integrand `exp (-x) * x ^ (re s - 1)`.
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s))
[PROOFSTEP]
let f : ℕ → ℝ → ℂ := fun n =>
indicator (Ioc 0 (n : ℝ)) fun x : ℝ =>
↑((1 - x / n) ^ n) *
(x : ℂ) ^
(s - 1)
-- integrability of f
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s))
[PROOFSTEP]
have f_ible : ∀ n : ℕ, Integrable (f n) (volume.restrict (Ioi 0)) :=
by
intro n
rw [integrable_indicator_iff (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)), IntegrableOn,
Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self, ← IntegrableOn, ←
intervalIntegrable_iff_integrable_Ioc_of_le (by positivity : (0 : ℝ) ≤ n)]
apply IntervalIntegrable.continuousOn_mul
· refine' intervalIntegral.intervalIntegrable_cpow' _
rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right]
· apply Continuous.continuousOn
exact
IsROrC.continuous_ofReal.comp
((continuous_const.sub (continuous_id'.div_const ↑n)).pow n)
-- pointwise limit of f
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
⊢ ∀ (n : ℕ), Integrable (f n)
[PROOFSTEP]
intro n
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ Integrable (f n)
[PROOFSTEP]
rw [integrable_indicator_iff (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)), IntegrableOn,
Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self, ← IntegrableOn, ←
intervalIntegrable_iff_integrable_Ioc_of_le (by positivity : (0 : ℝ) ≤ n)]
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ 0 ≤ ↑n
[PROOFSTEP]
positivity
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ IntervalIntegrable (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) volume 0 ↑n
[PROOFSTEP]
apply IntervalIntegrable.continuousOn_mul
[GOAL]
case hf
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ IntervalIntegrable (fun x => ↑x ^ (s - 1)) volume 0 ↑n
[PROOFSTEP]
refine' intervalIntegral.intervalIntegrable_cpow' _
[GOAL]
case hf
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ -1 < (s - 1).re
[PROOFSTEP]
rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right]
[GOAL]
case hg
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ ContinuousOn (fun x => ↑((1 - x / ↑n) ^ n)) (uIcc 0 ↑n)
[PROOFSTEP]
apply Continuous.continuousOn
[GOAL]
case hg.h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
n : ℕ
⊢ Continuous fun x => ↑((1 - x / ↑n) ^ n)
[PROOFSTEP]
exact
IsROrC.continuous_ofReal.comp
((continuous_const.sub (continuous_id'.div_const ↑n)).pow n)
-- pointwise limit of f
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s))
[PROOFSTEP]
have f_tends :
∀ x : ℝ, x ∈ Ioi (0 : ℝ) → Tendsto (fun n : ℕ => f n x) atTop (𝓝 <| ↑(Real.exp (-x)) * (x : ℂ) ^ (s - 1)) :=
by
intro x hx
apply Tendsto.congr'
show ∀ᶠ n : ℕ in atTop, ↑((1 - x / n) ^ n) * (x : ℂ) ^ (s - 1) = f n x
· refine' Eventually.mp (eventually_ge_atTop ⌈x⌉₊) (eventually_of_forall fun n hn => _)
rw [Nat.ceil_le] at hn
dsimp only
rw [indicator_of_mem]
exact ⟨hx, hn⟩
· simp_rw [mul_comm]
refine' (Tendsto.comp (continuous_ofReal.tendsto _) _).const_mul _
convert tendsto_one_plus_div_pow_exp (-x) using 1
ext1 n
rw [neg_div, ← sub_eq_add_neg];
norm_cast
-- let `convert` identify the remaining goals
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
⊢ ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
[PROOFSTEP]
intro x hx
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
[PROOFSTEP]
apply Tendsto.congr'
[GOAL]
case hl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ ?f₁ =ᶠ[atTop] fun n => f n x
case h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ Tendsto ?f₁ atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
case f₁
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ ℕ → ℂ
[PROOFSTEP]
show ∀ᶠ n : ℕ in atTop, ↑((1 - x / n) ^ n) * (x : ℂ) ^ (s - 1) = f n x
[GOAL]
case hl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ ∀ᶠ (n : ℕ) in atTop, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x
[PROOFSTEP]
refine' Eventually.mp (eventually_ge_atTop ⌈x⌉₊) (eventually_of_forall fun n hn => _)
[GOAL]
case hl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
hn : ⌈x⌉₊ ≤ n
⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x
[PROOFSTEP]
rw [Nat.ceil_le] at hn
[GOAL]
case hl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
hn : x ≤ ↑n
⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x
[PROOFSTEP]
dsimp only
[GOAL]
case hl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
hn : x ≤ ↑n
⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x
[PROOFSTEP]
rw [indicator_of_mem]
[GOAL]
case hl.h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
hn : x ≤ ↑n
⊢ x ∈ Ioc 0 ↑n
[PROOFSTEP]
exact ⟨hx, hn⟩
[GOAL]
case h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ Tendsto (fun x_1 => ↑((1 - x / ↑x_1) ^ x_1) * ↑x ^ (s - 1)) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
case h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ Tendsto (fun x_1 => ↑x ^ (s - 1) * ↑((1 - x / ↑x_1) ^ x_1)) atTop (𝓝 (↑x ^ (s - 1) * ↑(rexp (-x))))
[PROOFSTEP]
refine' (Tendsto.comp (continuous_ofReal.tendsto _) _).const_mul _
[GOAL]
case h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ Tendsto (fun x_1 => (1 - x / ↑x_1) ^ x_1) atTop (𝓝 (rexp (-x)))
[PROOFSTEP]
convert tendsto_one_plus_div_pow_exp (-x) using 1
[GOAL]
case h.e'_3
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
⊢ (fun x_1 => (1 - x / ↑x_1) ^ x_1) = fun x_1 => (1 + -x / ↑x_1) ^ ↑x_1
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
⊢ (1 - x / ↑n) ^ n = (1 + -x / ↑n) ^ ↑n
[PROOFSTEP]
rw [neg_div, ← sub_eq_add_neg]
[GOAL]
case h.e'_3.h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
x : ℝ
hx : x ∈ Ioi 0
n : ℕ
⊢ (1 - x / ↑n) ^ n = (1 - x / ↑n) ^ ↑n
[PROOFSTEP]
norm_cast
-- let `convert` identify the remaining goals
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s))
[PROOFSTEP]
convert
tendsto_integral_of_dominated_convergence _ (fun n => (f_ible n).1) (Real.GammaIntegral_convergent hs) _
((ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ f_tends)) using
1
-- limit of f is the integrand we want
[GOAL]
case h.e'_3
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) = fun n => ∫ (a : ℝ) in Ioi 0, f n a
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = ∫ (a : ℝ) in Ioi 0, f n a
[PROOFSTEP]
rw [integral_indicator (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)),
intervalIntegral.integral_of_le (by positivity : 0 ≤ (n : ℝ)),
Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self]
-- f is uniformly bounded by the Gamma integrand
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
⊢ 0 ≤ ↑n
[PROOFSTEP]
positivity
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
⊢ ∀ (n : ℕ), ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖f n a‖ ≤ rexp (-a) * a ^ (s.re - 1)
[PROOFSTEP]
intro n
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖f n a‖ ≤ rexp (-a) * a ^ (s.re - 1)
[PROOFSTEP]
refine' (ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ fun x hx => _)
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
⊢ ‖f n x‖ ≤ rexp (-x) * x ^ (s.re - 1)
[PROOFSTEP]
dsimp only
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1)
[PROOFSTEP]
rcases lt_or_le (n : ℝ) x with (hxn | hxn)
[GOAL]
case inl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
hxn : ↑n < x
⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1)
[PROOFSTEP]
rw [indicator_of_not_mem (not_mem_Ioc_of_gt hxn), norm_zero, mul_nonneg_iff_right_nonneg_of_pos (exp_pos _)]
[GOAL]
case inl
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
hxn : ↑n < x
⊢ 0 ≤ x ^ (s.re - 1)
[PROOFSTEP]
exact rpow_nonneg_of_nonneg (le_of_lt hx) _
[GOAL]
case inr
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
hxn : x ≤ ↑n
⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1)
[PROOFSTEP]
rw [indicator_of_mem (mem_Ioc.mpr ⟨mem_Ioi.mp hx, hxn⟩), norm_mul, Complex.norm_eq_abs,
Complex.abs_of_nonneg (pow_nonneg (sub_nonneg.mpr <| div_le_one_of_le hxn <| by positivity) _), Complex.norm_eq_abs,
abs_cpow_eq_rpow_re_of_pos hx, sub_re, one_re, mul_le_mul_right (rpow_pos_of_pos hx _)]
[GOAL]
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
hxn : x ≤ ↑n
⊢ 0 ≤ ↑n
[PROOFSTEP]
positivity
[GOAL]
case inr
s : ℂ
hs : 0 < s.re
f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)
f_ible : ∀ (n : ℕ), Integrable (f n)
f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1)))
n : ℕ
x : ℝ
hx : x ∈ Ioi 0
hxn : x ≤ ↑n
⊢ (1 - x / ↑n) ^ n ≤ rexp (-x)
[PROOFSTEP]
exact one_sub_div_pow_le_exp_neg hxn
[GOAL]
s : ℂ
⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s))
[PROOFSTEP]
suffices ∀ m : ℕ, -↑m < re s → Tendsto (GammaSeq s) atTop (𝓝 <| GammaAux m s)
by
rw [Gamma]
apply this
rw [neg_lt]
rcases lt_or_le 0 (re s) with (hs | hs)
· exact (neg_neg_of_pos hs).trans_le (Nat.cast_nonneg _)
· refine' (Nat.lt_floor_add_one _).trans_le _
rw [sub_eq_neg_add, Nat.floor_add_one (neg_nonneg.mpr hs), Nat.cast_add_one]
[GOAL]
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s))
[PROOFSTEP]
rw [Gamma]
[GOAL]
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux ⌊1 - s.re⌋₊ s))
[PROOFSTEP]
apply this
[GOAL]
case a
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
⊢ -↑⌊1 - s.re⌋₊ < s.re
[PROOFSTEP]
rw [neg_lt]
[GOAL]
case a
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
⊢ -s.re < ↑⌊1 - s.re⌋₊
[PROOFSTEP]
rcases lt_or_le 0 (re s) with (hs | hs)
[GOAL]
case a.inl
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
hs : 0 < s.re
⊢ -s.re < ↑⌊1 - s.re⌋₊
[PROOFSTEP]
exact (neg_neg_of_pos hs).trans_le (Nat.cast_nonneg _)
[GOAL]
case a.inr
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
hs : s.re ≤ 0
⊢ -s.re < ↑⌊1 - s.re⌋₊
[PROOFSTEP]
refine' (Nat.lt_floor_add_one _).trans_le _
[GOAL]
case a.inr
s : ℂ
this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
hs : s.re ≤ 0
⊢ ↑⌊-s.re⌋₊ + 1 ≤ ↑⌊1 - s.re⌋₊
[PROOFSTEP]
rw [sub_eq_neg_add, Nat.floor_add_one (neg_nonneg.mpr hs), Nat.cast_add_one]
[GOAL]
s : ℂ
⊢ ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
[PROOFSTEP]
intro m
[GOAL]
s : ℂ
m : ℕ
⊢ -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
[PROOFSTEP]
induction' m with m IH generalizing s
[GOAL]
case zero
s✝ s : ℂ
⊢ -↑Nat.zero < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s))
[PROOFSTEP]
intro hs
[GOAL]
case zero
s✝ s : ℂ
hs : -↑Nat.zero < s.re
⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s))
[PROOFSTEP]
rw [Nat.cast_zero, neg_zero] at hs
[GOAL]
case zero
s✝ s : ℂ
hs : 0 < s.re
⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s))
[PROOFSTEP]
rw [← Gamma_eq_GammaAux]
[GOAL]
case zero
s✝ s : ℂ
hs : 0 < s.re
⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s))
[PROOFSTEP]
refine' Tendsto.congr' _ (approx_Gamma_integral_tendsto_Gamma_integral hs)
[GOAL]
case zero
s✝ s : ℂ
hs : 0 < s.re
⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) =ᶠ[atTop] GammaSeq s
[PROOFSTEP]
refine' (eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => _)
[GOAL]
case zero
s✝ s : ℂ
hs : 0 < s.re
n : ℕ
hn : n ≠ 0
⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) n = GammaSeq s n
[PROOFSTEP]
exact (GammaSeq_eq_approx_Gamma_integral hs hn).symm
[GOAL]
case zero.h1
s✝ s : ℂ
hs : 0 < s.re
⊢ -s.re < ↑Nat.zero
[PROOFSTEP]
rwa [Nat.cast_zero, neg_lt_zero]
[GOAL]
case succ
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
⊢ -↑(Nat.succ m) < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s))
[PROOFSTEP]
intro hs
[GOAL]
case succ
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑(Nat.succ m) < s.re
⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s))
[PROOFSTEP]
rw [Nat.cast_succ, neg_add, ← sub_eq_add_neg, sub_lt_iff_lt_add, ← one_re, ← add_re] at hs
[GOAL]
case succ
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s))
[PROOFSTEP]
rw [GammaAux]
[GOAL]
case succ
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s))
[PROOFSTEP]
have :=
@Tendsto.congr' _ _ _ ?_ _ _ ((eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => ?_))
((IH _ hs).div_const s)
[GOAL]
case succ.refine_3
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto ?succ.refine_1 atTop (𝓝 (GammaAux m (s + 1) / s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s))
case succ.refine_1
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
⊢ ℕ → ℂ
case succ.refine_2
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
n : ℕ
hn : n ≠ 0
⊢ GammaSeq (s + 1) n / s = ?succ.refine_1 n
[PROOFSTEP]
pick_goal 3
[GOAL]
case succ.refine_2
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
n : ℕ
hn : n ≠ 0
⊢ GammaSeq (s + 1) n / s = ?succ.refine_1 n
[PROOFSTEP]
exact GammaSeq_add_one_left s hn
[GOAL]
case succ.refine_3
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s))
[PROOFSTEP]
conv at this => arg 1; intro n; rw [mul_comm]
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
| Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
[PROOFSTEP]
arg 1; intro n; rw [mul_comm]
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
| Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
[PROOFSTEP]
arg 1; intro n; rw [mul_comm]
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
| Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
[PROOFSTEP]
arg 1
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
| fun n => ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
intro n
[GOAL]
case h
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s))
n : ℕ
| ↑n / (↑n + 1 + s) * GammaSeq s n
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case succ.refine_3
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s))
[PROOFSTEP]
rwa [← mul_one (GammaAux m (s + 1) / s), tendsto_mul_iff_of_ne_zero _ (one_ne_zero' ℂ)] at this
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s * 1))
⊢ Tendsto (fun n => ↑n / (↑n + 1 + s)) atTop (𝓝 1)
[PROOFSTEP]
simp_rw [add_assoc]
[GOAL]
s✝ : ℂ
m : ℕ
IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s))
s : ℂ
hs : -↑m < (s + 1).re
this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s * 1))
⊢ Tendsto (fun n => ↑n / (↑n + (1 + s))) atTop (𝓝 1)
[PROOFSTEP]
exact tendsto_coe_nat_div_add_atTop (1 + s)
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
⊢ GammaSeq z n * GammaSeq (1 - z) n = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
have aux : ∀ a b c d : ℂ, a * b * (c * d) = a * c * (b * d) := by intros; ring
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
⊢ ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
[PROOFSTEP]
intros
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
a✝ b✝ c✝ d✝ : ℂ
⊢ a✝ * b✝ * (c✝ * d✝) = a✝ * c✝ * (b✝ * d✝)
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
⊢ GammaSeq z n * GammaSeq (1 - z) n = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
rw [GammaSeq, GammaSeq, div_mul_div_comm, aux, ← pow_two]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
⊢ ↑n ^ z * ↑n ^ (1 - z) * ↑n ! ^ 2 /
((∏ j in Finset.range (n + 1), (z + ↑j)) * ∏ j in Finset.range (n + 1), (1 - z + ↑j)) =
↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
have : (n : ℂ) ^ z * (n : ℂ) ^ (1 - z) = n := by
rw [← cpow_add _ _ (Nat.cast_ne_zero.mpr hn), add_sub_cancel'_right, cpow_one]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
⊢ ↑n ^ z * ↑n ^ (1 - z) = ↑n
[PROOFSTEP]
rw [← cpow_add _ _ (Nat.cast_ne_zero.mpr hn), add_sub_cancel'_right, cpow_one]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
⊢ ↑n ^ z * ↑n ^ (1 - z) * ↑n ! ^ 2 /
((∏ j in Finset.range (n + 1), (z + ↑j)) * ∏ j in Finset.range (n + 1), (1 - z + ↑j)) =
↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
rw [this, Finset.prod_range_succ', Finset.prod_range_succ, aux, ← Finset.prod_mul_distrib, Nat.cast_zero, add_zero,
add_comm (1 - z) n, ← add_sub_assoc]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, (z + ↑(x + 1)) * (1 - z + ↑x)) * (z * (↑n + 1 - z))) =
↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
have : ∀ j : ℕ, (z + ↑(j + 1)) * (↑1 - z + ↑j) = ↑((j + 1) ^ 2) * (↑1 - z ^ 2 / ((j : ℂ) + 1) ^ 2) :=
by
intro j
push_cast
have : (j : ℂ) + 1 ≠ 0 := by rw [← Nat.cast_succ, Nat.cast_ne_zero]; exact Nat.succ_ne_zero j
field_simp; ring
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
⊢ ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
intro j
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
⊢ (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
push_cast
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
⊢ (z + (↑j + 1)) * (1 - z + ↑j) = (↑j + 1) ^ 2 * (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
have : (j : ℂ) + 1 ≠ 0 := by rw [← Nat.cast_succ, Nat.cast_ne_zero]; exact Nat.succ_ne_zero j
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
⊢ ↑j + 1 ≠ 0
[PROOFSTEP]
rw [← Nat.cast_succ, Nat.cast_ne_zero]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
⊢ Nat.succ j ≠ 0
[PROOFSTEP]
exact Nat.succ_ne_zero j
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
this : ↑j + 1 ≠ 0
⊢ (z + (↑j + 1)) * (1 - z + ↑j) = (↑j + 1) ^ 2 * (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
field_simp
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
j : ℕ
this : ↑j + 1 ≠ 0
⊢ (z + (↑j + 1)) * (1 - z + ↑j) * (↑j + 1) ^ 2 = (↑j + 1) ^ 2 * ((↑j + 1) ^ 2 - z ^ 2)
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, (z + ↑(x + 1)) * (1 - z + ↑x)) * (z * (↑n + 1 - z))) =
↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
simp_rw [this]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, ↑((x + 1) ^ 2) * (1 - z ^ 2 / (↑x + 1) ^ 2)) * (z * (↑n + 1 - z))) =
↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)))
[PROOFSTEP]
rw [Finset.prod_mul_distrib, ← Nat.cast_prod, Finset.prod_pow, Finset.prod_range_add_one_eq_factorial, Nat.cast_pow,
(by intros; ring : ∀ a b c d : ℂ, a * b * (c * d) = a * (d * (b * c))), ← div_div, mul_div_cancel, ← div_div,
mul_comm z _, mul_one_div]
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
⊢ ∀ (a b c d : ℂ), a * b * (c * d) = a * (d * (b * c))
[PROOFSTEP]
intros
[GOAL]
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
a✝ b✝ c✝ d✝ : ℂ
⊢ a✝ * b✝ * (c✝ * d✝) = a✝ * (d✝ * (b✝ * c✝))
[PROOFSTEP]
ring
[GOAL]
case h
z : ℂ
n : ℕ
hn : n ≠ 0
aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d)
this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n
this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2)
⊢ ↑n ! ^ 2 ≠ 0
[PROOFSTEP]
exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr <| Nat.factorial_ne_zero n)
[GOAL]
z : ℂ
⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z)
[PROOFSTEP]
have pi_ne : (π : ℂ) ≠ 0 := Complex.ofReal_ne_zero.mpr pi_ne_zero
[GOAL]
z : ℂ
pi_ne : ↑π ≠ 0
⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z)
[PROOFSTEP]
by_cases hs : sin (↑π * z) = 0
[GOAL]
case pos
z : ℂ
pi_ne : ↑π ≠ 0
hs : sin (↑π * z) = 0
⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z)
[PROOFSTEP]
rw [hs, div_zero]
[GOAL]
case pos
z : ℂ
pi_ne : ↑π ≠ 0
hs : sin (↑π * z) = 0
⊢ Gamma z * Gamma (1 - z) = 0
[PROOFSTEP]
rw [← neg_eq_zero, ← Complex.sin_neg, ← mul_neg, Complex.sin_eq_zero_iff, mul_comm] at hs
[GOAL]
case pos
z : ℂ
pi_ne : ↑π ≠ 0
hs : ∃ k, -z * ↑π = ↑k * ↑π
⊢ Gamma z * Gamma (1 - z) = 0
[PROOFSTEP]
obtain ⟨k, hk⟩ := hs
[GOAL]
case pos.intro
z : ℂ
pi_ne : ↑π ≠ 0
k : ℤ
hk : -z * ↑π = ↑k * ↑π
⊢ Gamma z * Gamma (1 - z) = 0
[PROOFSTEP]
rw [mul_eq_mul_right_iff, eq_false (ofReal_ne_zero.mpr pi_pos.ne'), or_false_iff, neg_eq_iff_eq_neg] at hk
[GOAL]
case pos.intro
z : ℂ
pi_ne : ↑π ≠ 0
k : ℤ
hk : z = -↑k
⊢ Gamma z * Gamma (1 - z) = 0
[PROOFSTEP]
rw [hk]
[GOAL]
case pos.intro
z : ℂ
pi_ne : ↑π ≠ 0
k : ℤ
hk : z = -↑k
⊢ Gamma (-↑k) * Gamma (1 - -↑k) = 0
[PROOFSTEP]
cases k
[GOAL]
case pos.intro.ofNat
z : ℂ
pi_ne : ↑π ≠ 0
a✝ : ℕ
hk : z = -↑(Int.ofNat a✝)
⊢ Gamma (-↑(Int.ofNat a✝)) * Gamma (1 - -↑(Int.ofNat a✝)) = 0
[PROOFSTEP]
rw [Int.ofNat_eq_coe, Int.cast_ofNat, Complex.Gamma_neg_nat_eq_zero, zero_mul]
[GOAL]
case pos.intro.negSucc
z : ℂ
pi_ne : ↑π ≠ 0
a✝ : ℕ
hk : z = -↑(Int.negSucc a✝)
⊢ Gamma (-↑(Int.negSucc a✝)) * Gamma (1 - -↑(Int.negSucc a✝)) = 0
[PROOFSTEP]
rw [Int.cast_negSucc, neg_neg, Nat.cast_add, Nat.cast_one, add_comm, sub_add_cancel', Complex.Gamma_neg_nat_eq_zero,
mul_zero]
[GOAL]
case neg
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z)
[PROOFSTEP]
refine' tendsto_nhds_unique ((GammaSeq_tendsto_Gamma z).mul (GammaSeq_tendsto_Gamma <| 1 - z)) _
[GOAL]
case neg
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
⊢ Tendsto (fun x => GammaSeq z x * GammaSeq (1 - z) x) atTop (𝓝 (↑π / sin (↑π * z)))
[PROOFSTEP]
have : ↑π / sin (↑π * z) = 1 * (π / sin (π * z)) := by rw [one_mul]
[GOAL]
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
⊢ ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
[PROOFSTEP]
rw [one_mul]
[GOAL]
case neg
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
⊢ Tendsto (fun x => GammaSeq z x * GammaSeq (1 - z) x) atTop (𝓝 (↑π / sin (↑π * z)))
[PROOFSTEP]
convert
Tendsto.congr' ((eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => (GammaSeq_mul z hn).symm))
(Tendsto.mul _ _)
[GOAL]
case neg.convert_3
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
⊢ Tendsto (fun n => ↑n / (↑n + 1 - z)) atTop (𝓝 1)
[PROOFSTEP]
convert tendsto_coe_nat_div_add_atTop (1 - z) using 1
[GOAL]
case h.e'_3
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
⊢ (fun n => ↑n / (↑n + 1 - z)) = fun n => ↑n / (↑n + (1 - z))
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
n : ℕ
⊢ ↑n / (↑n + 1 - z) = ↑n / (↑n + (1 - z))
[PROOFSTEP]
rw [add_sub_assoc]
[GOAL]
case neg.convert_4
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
⊢ Tendsto (fun n => 1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) atTop (𝓝 (↑π / sin (↑π * z)))
[PROOFSTEP]
have : ↑π / sin (↑π * z) = 1 / (sin (π * z) / π) := by field_simp
[GOAL]
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
⊢ ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
[PROOFSTEP]
field_simp
[GOAL]
case neg.convert_4
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
⊢ Tendsto (fun n => 1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) atTop (𝓝 (↑π / sin (↑π * z)))
[PROOFSTEP]
convert tendsto_const_nhds.div _ (div_ne_zero hs pi_ne)
[GOAL]
case neg.convert_4.convert_5
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
⊢ Tendsto (fun x => z * ∏ j in Finset.range x, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (sin (↑π * z) / ↑π))
[PROOFSTEP]
rw [← tendsto_mul_iff_of_ne_zero tendsto_const_nhds pi_ne, div_mul_cancel _ pi_ne]
[GOAL]
case neg.convert_4.convert_5
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
⊢ Tendsto (fun n => (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π) atTop (𝓝 (sin (↑π * z)))
[PROOFSTEP]
convert tendsto_euler_sin_prod z using 1
[GOAL]
case h.e'_3
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
⊢ (fun n => (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π) = fun n =>
↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
z : ℂ
pi_ne : ↑π ≠ 0
hs : ¬sin (↑π * z) = 0
this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z))
this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π)
n : ℕ
⊢ (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π =
↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
rw [mul_comm, ← mul_assoc]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
⊢ Gamma s ≠ 0
[PROOFSTEP]
by_cases h_im : s.im = 0
[GOAL]
case pos
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
have : s = ↑s.re := by
conv_lhs => rw [← Complex.re_add_im s]
rw [h_im, ofReal_zero, zero_mul, add_zero]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
⊢ s = ↑s.re
[PROOFSTEP]
conv_lhs => rw [← Complex.re_add_im s]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
| s
[PROOFSTEP]
rw [← Complex.re_add_im s]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
| s
[PROOFSTEP]
rw [← Complex.re_add_im s]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
| s
[PROOFSTEP]
rw [← Complex.re_add_im s]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
⊢ ↑s.re + ↑s.im * I = ↑s.re
[PROOFSTEP]
rw [h_im, ofReal_zero, zero_mul, add_zero]
[GOAL]
case pos
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
this : s = ↑s.re
⊢ Gamma s ≠ 0
[PROOFSTEP]
rw [this, Gamma_ofReal, ofReal_ne_zero]
[GOAL]
case pos
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
this : s = ↑s.re
⊢ Real.Gamma s.re ≠ 0
[PROOFSTEP]
refine' Real.Gamma_ne_zero fun n => _
[GOAL]
case pos
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : s.im = 0
this : s = ↑s.re
n : ℕ
⊢ s.re ≠ -↑n
[PROOFSTEP]
specialize hs n
[GOAL]
case pos
s : ℂ
h_im : s.im = 0
this : s = ↑s.re
n : ℕ
hs : s ≠ -↑n
⊢ s.re ≠ -↑n
[PROOFSTEP]
contrapose! hs
[GOAL]
case pos
s : ℂ
h_im : s.im = 0
this : s = ↑s.re
n : ℕ
hs : s.re = -↑n
⊢ s = -↑n
[PROOFSTEP]
rwa [this, ← ofReal_nat_cast, ← ofReal_neg, ofReal_inj]
[GOAL]
case neg
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
have : sin (↑π * s) ≠ 0 := by
rw [Complex.sin_ne_zero_iff]
intro k
apply_fun im
rw [ofReal_mul_im, ← ofReal_int_cast, ← ofReal_mul, ofReal_im]
exact mul_ne_zero Real.pi_pos.ne' h_im
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
⊢ sin (↑π * s) ≠ 0
[PROOFSTEP]
rw [Complex.sin_ne_zero_iff]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
⊢ ∀ (k : ℤ), ↑π * s ≠ ↑k * ↑π
[PROOFSTEP]
intro k
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
k : ℤ
⊢ ↑π * s ≠ ↑k * ↑π
[PROOFSTEP]
apply_fun im
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
k : ℤ
⊢ (↑π * s).im ≠ (↑k * ↑π).im
[PROOFSTEP]
rw [ofReal_mul_im, ← ofReal_int_cast, ← ofReal_mul, ofReal_im]
[GOAL]
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
k : ℤ
⊢ π * s.im ≠ 0
[PROOFSTEP]
exact mul_ne_zero Real.pi_pos.ne' h_im
[GOAL]
case neg
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
this : sin (↑π * s) ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
have A := div_ne_zero (ofReal_ne_zero.mpr Real.pi_pos.ne') this
[GOAL]
case neg
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
this : sin (↑π * s) ≠ 0
A : ↑π / sin (↑π * s) ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
rw [← Complex.Gamma_mul_Gamma_one_sub s, mul_ne_zero_iff] at A
[GOAL]
case neg
s : ℂ
hs : ∀ (m : ℕ), s ≠ -↑m
h_im : ¬s.im = 0
this : sin (↑π * s) ≠ 0
A : Gamma s ≠ 0 ∧ Gamma (1 - s) ≠ 0
⊢ Gamma s ≠ 0
[PROOFSTEP]
exact A.1
[GOAL]
s : ℂ
⊢ Gamma s = 0 ↔ ∃ m, s = -↑m
[PROOFSTEP]
constructor
[GOAL]
case mp
s : ℂ
⊢ Gamma s = 0 → ∃ m, s = -↑m
[PROOFSTEP]
contrapose!
[GOAL]
case mp
s : ℂ
⊢ (∀ (m : ℕ), s ≠ -↑m) → Gamma s ≠ 0
[PROOFSTEP]
exact Gamma_ne_zero
[GOAL]
case mpr
s : ℂ
⊢ (∃ m, s = -↑m) → Gamma s = 0
[PROOFSTEP]
rintro ⟨m, rfl⟩
[GOAL]
case mpr.intro
m : ℕ
⊢ Gamma (-↑m) = 0
[PROOFSTEP]
exact Gamma_neg_nat_eq_zero m
[GOAL]
s : ℂ
hs : 0 < s.re
⊢ Gamma s ≠ 0
[PROOFSTEP]
refine' Gamma_ne_zero fun m => _
[GOAL]
s : ℂ
hs : 0 < s.re
m : ℕ
⊢ s ≠ -↑m
[PROOFSTEP]
contrapose! hs
[GOAL]
s : ℂ
m : ℕ
hs : s = -↑m
⊢ s.re ≤ 0
[PROOFSTEP]
simpa only [hs, neg_re, ← ofReal_nat_cast, ofReal_re, neg_nonpos] using Nat.cast_nonneg _
[GOAL]
s : ℝ
⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s))
[PROOFSTEP]
suffices : Tendsto ((↑) ∘ GammaSeq s : ℕ → ℂ) atTop (𝓝 <| Complex.Gamma s)
[GOAL]
s : ℝ
this : Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s))
⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s))
case this s : ℝ ⊢ Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s))
[PROOFSTEP]
exact (Complex.continuous_re.tendsto (Complex.Gamma ↑s)).comp this
[GOAL]
case this
s : ℝ
⊢ Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s))
[PROOFSTEP]
convert Complex.GammaSeq_tendsto_Gamma s
[GOAL]
case h.e'_3
s : ℝ
⊢ Complex.ofReal' ∘ GammaSeq s = Complex.GammaSeq ↑s
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
s : ℝ
n : ℕ
⊢ (Complex.ofReal' ∘ GammaSeq s) n = Complex.GammaSeq (↑s) n
[PROOFSTEP]
dsimp only [GammaSeq, Function.comp_apply, Complex.GammaSeq]
[GOAL]
case h.e'_3.h
s : ℝ
n : ℕ
⊢ ↑(↑n ^ s * ↑n ! / ∏ j in Finset.range (n + 1), (s + ↑j)) = ↑n ^ ↑s * ↑n ! / ∏ j in Finset.range (n + 1), (↑s + ↑j)
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3.h
s : ℝ
n : ℕ
⊢ ↑(↑n ^ s) * ↑n ! / ∏ x in Finset.range (n + 1), (↑s + ↑x) = ↑n ^ ↑s * ↑n ! / ∏ x in Finset.range (n + 1), (↑s + ↑x)
[PROOFSTEP]
rw [Complex.ofReal_cpow n.cast_nonneg, Complex.ofReal_nat_cast]
[GOAL]
s : ℝ
⊢ Gamma s * Gamma (1 - s) = π / sin (π * s)
[PROOFSTEP]
simp_rw [← Complex.ofReal_inj, Complex.ofReal_div, Complex.ofReal_sin, Complex.ofReal_mul, ← Complex.Gamma_ofReal,
Complex.ofReal_sub, Complex.ofReal_one]
[GOAL]
s : ℝ
⊢ Complex.Gamma ↑s * Complex.Gamma (1 - ↑s) = ↑π / Complex.sin (↑π * ↑s)
[PROOFSTEP]
exact Complex.Gamma_mul_Gamma_one_sub s
[GOAL]
s : ℂ
⊢ (Gamma s)⁻¹ = s * (Gamma (s + 1))⁻¹
[PROOFSTEP]
rcases ne_or_eq s 0 with (h | rfl)
[GOAL]
case inl
s : ℂ
h : s ≠ 0
⊢ (Gamma s)⁻¹ = s * (Gamma (s + 1))⁻¹
[PROOFSTEP]
rw [Gamma_add_one s h, mul_inv, mul_inv_cancel_left₀ h]
[GOAL]
case inr
⊢ (Gamma 0)⁻¹ = 0 * (Gamma (0 + 1))⁻¹
[PROOFSTEP]
rw [zero_add, Gamma_zero, inv_zero, zero_mul]
[GOAL]
⊢ Differentiable ℂ fun s => (Gamma s)⁻¹
[PROOFSTEP]
suffices : ∀ n : ℕ, ∀ (s : ℂ) (_ : -s.re < n), DifferentiableAt ℂ (fun u : ℂ => (Gamma u)⁻¹) s
[GOAL]
this : ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
⊢ Differentiable ℂ fun s => (Gamma s)⁻¹
case this ⊢ ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
exact fun s =>
let ⟨n, h⟩ := exists_nat_gt (-s.re)
this n s h
[GOAL]
case this
⊢ ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
intro n
[GOAL]
case this
n : ℕ
⊢ ∀ (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
induction' n with m hm
[GOAL]
case this.zero
⊢ ∀ (s : ℂ), -s.re < ↑Nat.zero → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
intro s hs
[GOAL]
case this.zero
s : ℂ
hs : -s.re < ↑Nat.zero
⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
rw [Nat.cast_zero, neg_lt_zero] at hs
[GOAL]
case this.zero
s : ℂ
hs : 0 < s.re
⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
suffices : ∀ m : ℕ, s ≠ -↑m
[GOAL]
case this.zero
s : ℂ
hs : 0 < s.re
this : ∀ (m : ℕ), s ≠ -↑m
⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
case this s : ℂ hs : 0 < s.re ⊢ ∀ (m : ℕ), s ≠ -↑m
[PROOFSTEP]
exact (differentiableAt_Gamma _ this).inv (Gamma_ne_zero this)
[GOAL]
case this
s : ℂ
hs : 0 < s.re
⊢ ∀ (m : ℕ), s ≠ -↑m
[PROOFSTEP]
contrapose! hs
[GOAL]
case this
s : ℂ
hs : ∃ m, s = -↑m
⊢ s.re ≤ 0
[PROOFSTEP]
rcases hs with ⟨m, rfl⟩
[GOAL]
case this.intro
m : ℕ
⊢ (-↑m).re ≤ 0
[PROOFSTEP]
simpa only [neg_re, ← ofReal_nat_cast, ofReal_re, neg_nonpos] using Nat.cast_nonneg m
[GOAL]
case this.succ
m : ℕ
hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
⊢ ∀ (s : ℂ), -s.re < ↑(Nat.succ m) → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
intro s hs
[GOAL]
case this.succ
m : ℕ
hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
s : ℂ
hs : -s.re < ↑(Nat.succ m)
⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
[PROOFSTEP]
rw [funext one_div_Gamma_eq_self_mul_one_div_Gamma_add_one]
[GOAL]
case this.succ
m : ℕ
hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
s : ℂ
hs : -s.re < ↑(Nat.succ m)
⊢ DifferentiableAt ℂ (fun x => x * (Gamma (x + 1))⁻¹) s
[PROOFSTEP]
specialize hm (s + 1) (by rwa [add_re, one_re, neg_add', sub_lt_iff_lt_add, ← Nat.cast_succ])
[GOAL]
m : ℕ
hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s
s : ℂ
hs : -s.re < ↑(Nat.succ m)
⊢ -(s + 1).re < ↑m
[PROOFSTEP]
rwa [add_re, one_re, neg_add', sub_lt_iff_lt_add, ← Nat.cast_succ]
[GOAL]
case this.succ
m : ℕ
s : ℂ
hs : -s.re < ↑(Nat.succ m)
hm : DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) (s + 1)
⊢ DifferentiableAt ℂ (fun x => x * (Gamma (x + 1))⁻¹) s
[PROOFSTEP]
refine' differentiableAt_id.mul (hm.comp s _)
[GOAL]
case this.succ
m : ℕ
s : ℂ
hs : -s.re < ↑(Nat.succ m)
hm : DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) (s + 1)
⊢ DifferentiableAt ℂ (fun x => x + 1) s
[PROOFSTEP]
exact differentiableAt_id.add (differentiableAt_const _)
[GOAL]
s : ℂ
⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π)
[PROOFSTEP]
suffices
(fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * (2 : ℂ) ^ (2 * z - 1) / ↑(Real.sqrt π)
by
convert congr_arg Inv.inv (congr_fun this s) using 1
· rw [mul_inv, inv_inv, inv_inv]
· rw [div_eq_mul_inv, mul_inv, mul_inv, inv_inv, inv_inv, ← cpow_neg, neg_sub]
[GOAL]
s : ℂ
this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π)
[PROOFSTEP]
convert congr_arg Inv.inv (congr_fun this s) using 1
[GOAL]
case h.e'_2
s : ℂ
this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
⊢ Gamma s * Gamma (s + 1 / 2) = ((Gamma s)⁻¹ * (Gamma (s + 1 / 2))⁻¹)⁻¹
[PROOFSTEP]
rw [mul_inv, inv_inv, inv_inv]
[GOAL]
case h.e'_3
s : ℂ
this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
⊢ Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π) = ((Gamma (2 * s))⁻¹ * 2 ^ (2 * s - 1) / ↑(sqrt π))⁻¹
[PROOFSTEP]
rw [div_eq_mul_inv, mul_inv, mul_inv, inv_inv, inv_inv, ← cpow_neg, neg_sub]
[GOAL]
s : ℂ
⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
[PROOFSTEP]
have h1 : AnalyticOn ℂ (fun z : ℂ => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ :=
by
refine' DifferentiableOn.analyticOn _ isOpen_univ
refine' (differentiable_one_div_Gamma.mul _).differentiableOn
exact differentiable_one_div_Gamma.comp (differentiable_id.add (differentiable_const _))
[GOAL]
s : ℂ
⊢ AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
[PROOFSTEP]
refine' DifferentiableOn.analyticOn _ isOpen_univ
[GOAL]
s : ℂ
⊢ DifferentiableOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
[PROOFSTEP]
refine' (differentiable_one_div_Gamma.mul _).differentiableOn
[GOAL]
s : ℂ
⊢ Differentiable ℂ fun z => (Gamma (z + 1 / 2))⁻¹
[PROOFSTEP]
exact differentiable_one_div_Gamma.comp (differentiable_id.add (differentiable_const _))
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
[PROOFSTEP]
have h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * (2 : ℂ) ^ (2 * z - 1) / ↑(Real.sqrt π)) univ :=
by
refine' DifferentiableOn.analyticOn _ isOpen_univ
refine' (Differentiable.mul _ (differentiable_const _)).differentiableOn
apply Differentiable.mul
· exact differentiable_one_div_Gamma.comp (differentiable_id'.const_mul _)
· refine' fun t => DifferentiableAt.const_cpow _ (Or.inl two_ne_zero)
refine' DifferentiableAt.sub_const (differentiableAt_id.const_mul _) _
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
[PROOFSTEP]
refine' DifferentiableOn.analyticOn _ isOpen_univ
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ DifferentiableOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
[PROOFSTEP]
refine' (Differentiable.mul _ (differentiable_const _)).differentiableOn
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ Differentiable ℂ fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1)
[PROOFSTEP]
apply Differentiable.mul
[GOAL]
case ha
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ Differentiable ℂ fun y => (Gamma (2 * y))⁻¹
[PROOFSTEP]
exact differentiable_one_div_Gamma.comp (differentiable_id'.const_mul _)
[GOAL]
case hb
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
⊢ Differentiable ℂ fun y => 2 ^ (2 * y - 1)
[PROOFSTEP]
refine' fun t => DifferentiableAt.const_cpow _ (Or.inl two_ne_zero)
[GOAL]
case hb
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
t : ℂ
⊢ DifferentiableAt ℂ (fun y => 2 * y - 1) t
[PROOFSTEP]
refine' DifferentiableAt.sub_const (differentiableAt_id.const_mul _) _
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
[PROOFSTEP]
have h3 : Tendsto ((↑) : ℝ → ℂ) (𝓝[≠] 1) (𝓝[≠] 1) :=
by
rw [tendsto_nhdsWithin_iff]; constructor
· exact tendsto_nhdsWithin_of_tendsto_nhds continuous_ofReal.continuousAt
· exact eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => ofReal_ne_one.mpr ht)
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
[PROOFSTEP]
rw [tendsto_nhdsWithin_iff]
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝 1) ∧ ∀ᶠ (n : ℝ) in 𝓝[{1}ᶜ] 1, ↑n ∈ {1}ᶜ
[PROOFSTEP]
constructor
[GOAL]
case left
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝 1)
[PROOFSTEP]
exact tendsto_nhdsWithin_of_tendsto_nhds continuous_ofReal.continuousAt
[GOAL]
case right
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
⊢ ∀ᶠ (n : ℝ) in 𝓝[{1}ᶜ] 1, ↑n ∈ {1}ᶜ
[PROOFSTEP]
exact eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => ofReal_ne_one.mpr ht)
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)
[PROOFSTEP]
refine' AnalyticOn.eq_of_frequently_eq h1 h2 (h3.frequently _)
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
⊢ ∃ᶠ (x : ℝ) in 𝓝[{1}ᶜ] 1, (Gamma ↑x)⁻¹ * (Gamma (↑x + 1 / 2))⁻¹ = (Gamma (2 * ↑x))⁻¹ * 2 ^ (2 * ↑x - 1) / ↑(sqrt π)
[PROOFSTEP]
refine' ((Eventually.filter_mono nhdsWithin_le_nhds) _).frequently
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
⊢ ∀ᶠ (x : ℝ) in 𝓝 1, (Gamma ↑x)⁻¹ * (Gamma (↑x + 1 / 2))⁻¹ = (Gamma (2 * ↑x))⁻¹ * 2 ^ (2 * ↑x - 1) / ↑(sqrt π)
[PROOFSTEP]
refine' (eventually_gt_nhds zero_lt_one).mp (eventually_of_forall fun t ht => _)
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
t : ℝ
ht : 0 < t
⊢ (Gamma ↑t)⁻¹ * (Gamma (↑t + 1 / 2))⁻¹ = (Gamma (2 * ↑t))⁻¹ * 2 ^ (2 * ↑t - 1) / ↑(sqrt π)
[PROOFSTEP]
rw [← mul_inv, Gamma_ofReal, (by norm_num : (t : ℂ) + 1 / 2 = ↑(t + 1 / 2)), Gamma_ofReal, ← ofReal_mul,
Gamma_mul_Gamma_add_half_of_pos ht, ofReal_mul, ofReal_mul, ← Gamma_ofReal, mul_inv, mul_inv,
(by norm_num : 2 * (t : ℂ) = ↑(2 * t)), Gamma_ofReal, ofReal_cpow zero_le_two, show (2 : ℝ) = (2 : ℂ) by norm_cast, ←
cpow_neg, ofReal_sub, ofReal_one, neg_sub, ← div_eq_mul_inv]
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
t : ℝ
ht : 0 < t
⊢ ↑t + 1 / 2 = ↑(t + 1 / 2)
[PROOFSTEP]
norm_num
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
t : ℝ
ht : 0 < t
⊢ 2 * ↑t = ↑(2 * t)
[PROOFSTEP]
norm_num
[GOAL]
s : ℂ
h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ
h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ
h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1)
t : ℝ
ht : 0 < t
⊢ ↑2 = 2
[PROOFSTEP]
norm_cast
[GOAL]
s : ℝ
⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π
[PROOFSTEP]
rw [← ofReal_inj]
[GOAL]
s : ℝ
⊢ ↑(Gamma s * Gamma (s + 1 / 2)) = ↑(Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π)
[PROOFSTEP]
simpa only [← Gamma_ofReal, ofReal_cpow zero_le_two, ofReal_mul, ofReal_add, ofReal_div, ofReal_sub] using
Complex.Gamma_mul_Gamma_add_half ↑s
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.Beta", "llama_tokens": 70948} |
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lip : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (↑Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε)
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasFDerivAt (fun x => F x t) (F' t) x₀
⊢ IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
rw [← ae_restrict_iff' measurableSet_uIoc] at h_lip h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀
⊢ IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn F' (Ι a b) ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegral_eq_integral_uIoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn F' (Ι a b) ∧
HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀
[PROOFSTEP]
have := hasFDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas h_lip bound_integrable h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
this : Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀
⊢ IntegrableOn F' (Ι a b) ∧
HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀
[PROOFSTEP]
exact ⟨this.1, this.2.const_smul _⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : H → ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : H), x ∈ ball x₀ ε → ‖F' x t‖ ≤ bound t
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x t) (F' x t) x
⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
rw [← ae_restrict_iff' measurableSet_uIoc] at h_bound h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : H → ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
bound_integrable : IntervalIntegrable bound μ a b
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegrable_iff] at hF_int bound_integrable
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : H → ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegral_eq_integral_uIoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : H → ℝ → E
F' : H → ℝ → H →L[𝕜] E
x₀ : H
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
exact
(hasFDerivAt_integral_of_dominated_of_fderiv_le ε_pos hF_meas hF_int hF'_meas h_bound bound_integrable
h_diff).const_smul
_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : 𝕜 → ℝ → E
F' : ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lipsch : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (↑Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε)
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasDerivAt (fun x => F x t) (F' t) x₀
⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
rw [← ae_restrict_iff' measurableSet_uIoc] at h_lipsch h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : 𝕜 → ℝ → E
F' : ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lipsch :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀
⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : 𝕜 → ℝ → E
F' : ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lipsch :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn F' (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegral_eq_integral_uIoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : 𝕜 → ℝ → E
F' : ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lipsch :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn F' (Ι a b) ∧
HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀
[PROOFSTEP]
have := hasDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas h_lipsch bound_integrable h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F : 𝕜 → ℝ → E
F' : ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b))
h_lipsch :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
this : Integrable F' ∧ HasDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀
⊢ IntegrableOn F' (Ι a b) ∧
HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀
[PROOFSTEP]
exact ⟨this.1, this.2.const_smul _⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F F' : 𝕜 → ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x t‖ ≤ bound t
bound_integrable : IntervalIntegrable bound μ a b
h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x t) (F' x t) x
⊢ IntervalIntegrable (F' x₀) μ a b ∧
HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
rw [← ae_restrict_iff' measurableSet_uIoc] at h_bound h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F F' : 𝕜 → ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF_int : IntervalIntegrable (F x₀) μ a b
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
bound_integrable : IntervalIntegrable bound μ a b
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
⊢ IntervalIntegrable (F' x₀) μ a b ∧
HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F F' : 𝕜 → ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
simp only [intervalIntegral_eq_integral_uIoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F F' : 𝕜 → ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
⊢ IntegrableOn (F' x₀) (Ι a b) ∧
HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
have := hasDerivAt_integral_of_dominated_loc_of_deriv_le ε_pos hF_meas hF_int hF'_meas h_bound bound_integrable h_diff
[GOAL]
𝕜 : Type u_1
inst✝⁶ : IsROrC 𝕜
μ : Measure ℝ
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_3
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
a b ε : ℝ
bound : ℝ → ℝ
F F' : 𝕜 → ℝ → E
x₀ : 𝕜
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))
hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))
h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x
h_diff :
∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1
hF_int : IntegrableOn (F x₀) (Ι a b)
bound_integrable : IntegrableOn bound (Ι a b)
this : Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ι a b, F n a ∂μ) (∫ (a : ℝ) in Ι a b, F' x₀ a ∂μ) x₀
⊢ IntegrableOn (F' x₀) (Ι a b) ∧
HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ)
((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀
[PROOFSTEP]
exact ⟨this.1, this.2.const_smul _⟩
| {"mathlib_filename": "Mathlib.Analysis.Calculus.ParametricIntervalIntegral", "llama_tokens": 10295} |
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have sub : ∀ x ∈ Ioo a b, Ioo a x ⊆ Ioo a b := fun x hx => Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hg : ∀ x ∈ Ioo a b, g x ≠ 0 := by
intro x hx h
have : Tendsto g (𝓝[<] x) (𝓝 0) :=
by
rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1]
exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto
obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0
exact exists_hasDerivAt_eq_zero' hx.1 hga this fun y hy => hgg' y <| sub x hx hy
exact hg' y (sub x hx hyx) hy
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
⊢ ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
[PROOFSTEP]
intro x hx h
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
⊢ False
[PROOFSTEP]
have : Tendsto g (𝓝[<] x) (𝓝 0) := by
rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1]
exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
⊢ Tendsto g (𝓝[Iio x] x) (𝓝 0)
[PROOFSTEP]
rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
⊢ Tendsto g (𝓝[Ioo a x] x) (𝓝 (g x))
[PROOFSTEP]
exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
this : Tendsto g (𝓝[Iio x] x) (𝓝 0)
⊢ False
[PROOFSTEP]
obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
this : Tendsto g (𝓝[Iio x] x) (𝓝 0)
⊢ ∃ c, c ∈ Ioo a x ∧ g' c = 0
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
this : Tendsto g (𝓝[Iio x] x) (𝓝 0)
y : ℝ
hyx : y ∈ Ioo a x
hy : g' y = 0
⊢ False
[PROOFSTEP]
exact exists_hasDerivAt_eq_zero' hx.1 hga this fun y hy => hgg' y <| sub x hx hy
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
x : ℝ
hx : x ∈ Ioo a b
h : g x = 0
this : Tendsto g (𝓝[Iio x] x) (𝓝 0)
y : ℝ
hyx : y ∈ Ioo a x
hy : g' y = 0
⊢ False
[PROOFSTEP]
exact hg' y (sub x hx hyx) hy
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have : ∀ x ∈ Ioo a b, ∃ c ∈ Ioo a x, f x * g' c = g x * f' c :=
by
intro x hx
rw [← sub_zero (f x), ← sub_zero (g x)]
exact
exists_ratio_hasDerivAt_eq_ratio_slope' g g' hx.1 f f' (fun y hy => hgg' y <| sub x hx hy)
(fun y hy => hff' y <| sub x hx hy) hga hfa (tendsto_nhdsWithin_of_tendsto_nhds (hgg' x hx).continuousAt.tendsto)
(tendsto_nhdsWithin_of_tendsto_nhds (hff' x hx).continuousAt.tendsto)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
⊢ ∀ (x : ℝ), x ∈ Ioo a b → ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
x : ℝ
hx : x ∈ Ioo a b
⊢ ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c
[PROOFSTEP]
rw [← sub_zero (f x), ← sub_zero (g x)]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
x : ℝ
hx : x ∈ Ioo a b
⊢ ∃ c, c ∈ Ioo a x ∧ (f x - 0) * g' c = (g x - 0) * f' c
[PROOFSTEP]
exact
exists_ratio_hasDerivAt_eq_ratio_slope' g g' hx.1 f f' (fun y hy => hgg' y <| sub x hx hy)
(fun y hy => hff' y <| sub x hx hy) hga hfa (tendsto_nhdsWithin_of_tendsto_nhds (hgg' x hx).continuousAt.tendsto)
(tendsto_nhdsWithin_of_tendsto_nhds (hff' x hx).continuousAt.tendsto)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
this : ∀ (x : ℝ), x ∈ Ioo a b → ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
choose! c hc using this
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have : ∀ x ∈ Ioo a b, ((fun x' => f' x' / g' x') ∘ c) x = f x / g x :=
by
intro x hx
rcases hc x hx with ⟨h₁, h₂⟩
field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)]
simp only [h₂]
rw [mul_comm]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
⊢ ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
x : ℝ
hx : x ∈ Ioo a b
⊢ ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
[PROOFSTEP]
rcases hc x hx with ⟨h₁, h₂⟩
[GOAL]
case intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
x : ℝ
hx : x ∈ Ioo a b
h₁ : c x ∈ Ioo a x
h₂ : f x * g' (c x) = g x * f' (c x)
⊢ ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
[PROOFSTEP]
field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)]
[GOAL]
case intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
x : ℝ
hx : x ∈ Ioo a b
h₁ : c x ∈ Ioo a x
h₂ : f x * g' (c x) = g x * f' (c x)
⊢ f' (c x) * g x = f x * g' (c x)
[PROOFSTEP]
simp only [h₂]
[GOAL]
case intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
x : ℝ
hx : x ∈ Ioo a b
h₁ : c x ∈ Ioo a x
h₂ : f x * g' (c x) = g x * f' (c x)
⊢ f' (c x) * g x = g x * f' (c x)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have cmp : ∀ x ∈ Ioo a b, a < c x ∧ c x < x := fun x hx => (hc x hx).1
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rw [← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioo a b] a) l
[PROOFSTEP]
apply tendsto_nhdsWithin_congr this
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ Tendsto (fun x => ((fun x' => f' x' / g' x') ∘ c) x) (𝓝[Ioo a b] a) l
[PROOFSTEP]
apply hdiv.comp
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ Tendsto c (𝓝[Ioo a b] a) (𝓝[Ioi a] a)
[PROOFSTEP]
refine'
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _
(tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id) _ _)
_
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, a ≤ c b
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, c b ≤ id b
case refine'_3
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioo a b] a, c x ∈ Ioi a
[PROOFSTEP]
all_goals
apply eventually_nhdsWithin_of_forall
intro x hx
have := cmp x hx
try simp
linarith [this]
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, a ≤ c b
[PROOFSTEP]
apply eventually_nhdsWithin_of_forall
[GOAL]
case refine'_1.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ (x : ℝ), x ∈ Ioo a b → a ≤ c x
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
⊢ a ≤ c x
[PROOFSTEP]
have := cmp x hx
[GOAL]
case refine'_1.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ a ≤ c x
[PROOFSTEP]
try simp
[GOAL]
case refine'_1.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ a ≤ c x
[PROOFSTEP]
simp
[GOAL]
case refine'_1.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ a ≤ c x
[PROOFSTEP]
linarith [this]
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, c b ≤ id b
[PROOFSTEP]
apply eventually_nhdsWithin_of_forall
[GOAL]
case refine'_2.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ (x : ℝ), x ∈ Ioo a b → c x ≤ id x
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_2.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
⊢ c x ≤ id x
[PROOFSTEP]
have := cmp x hx
[GOAL]
case refine'_2.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ c x ≤ id x
[PROOFSTEP]
try simp
[GOAL]
case refine'_2.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ c x ≤ id x
[PROOFSTEP]
simp
[GOAL]
case refine'_2.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ c x ≤ x
[PROOFSTEP]
linarith [this]
[GOAL]
case refine'_3
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioo a b] a, c x ∈ Ioi a
[PROOFSTEP]
apply eventually_nhdsWithin_of_forall
[GOAL]
case refine'_3.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
⊢ ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioi a
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_3.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
⊢ c x ∈ Ioi a
[PROOFSTEP]
have := cmp x hx
[GOAL]
case refine'_3.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ c x ∈ Ioi a
[PROOFSTEP]
try simp
[GOAL]
case refine'_3.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ c x ∈ Ioi a
[PROOFSTEP]
simp
[GOAL]
case refine'_3.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b
hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0
c : ℝ → ℝ
hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x)
this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x
cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x
x : ℝ
hx : x ∈ Ioo a b
this : a < c x ∧ c x < x
⊢ a < c x
[PROOFSTEP]
linarith [this]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
refine' lhopital_zero_right_on_Ioo hab hff' hgg' hg' _ _ hdiv
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x) (𝓝[Ioi a] a) (𝓝 0)
[PROOFSTEP]
rw [← hfa, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] a) (𝓝 (f a))
[PROOFSTEP]
exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => g x) (𝓝[Ioi a] a) (𝓝 0)
[PROOFSTEP]
rw [← hga, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] a) (𝓝 (g a))
[PROOFSTEP]
exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have hdnf : ∀ x ∈ -Ioo a b, HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x := fun x hx =>
comp x (hff' (-x) hx) (hasDerivAt_neg x)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have hdng : ∀ x ∈ -Ioo a b, HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x := fun x hx =>
comp x (hgg' (-x) hx) (hasDerivAt_neg x)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
rw [preimage_neg_Ioo] at hdnf
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
rw [preimage_neg_Ioo] at hdng
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have :=
lhopital_zero_right_on_Ioo (neg_lt_neg hab) hdnf hdng
(by
intro x hx h
apply hg' _ (by rw [← preimage_neg_Ioo] at hx ; exact hx)
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h )
(hfb.comp tendsto_neg_nhdsWithin_Ioi_neg) (hgb.comp tendsto_neg_nhdsWithin_Ioi_neg)
(by
simp only [neg_div_neg_eq, mul_one, mul_neg]
exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsWithin_Ioi_neg))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → g' (-x) * -1 ≠ 0
[PROOFSTEP]
intro x hx h
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioo (-b) (-a)
h : g' (-x) * -1 = 0
⊢ False
[PROOFSTEP]
apply hg' _ (by rw [← preimage_neg_Ioo] at hx ; exact hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioo (-b) (-a)
h : g' (-x) * -1 = 0
⊢ ?m.13460 ∈ Ioo a b
[PROOFSTEP]
rw [← preimage_neg_Ioo] at hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx✝ : x ∈ Ioo (-b) (-a)
hx : x ∈ -Ioo a b
h : g' (-x) * -1 = 0
⊢ ?m.13535 h ∈ Ioo a b
[PROOFSTEP]
exact hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioo (-b) (-a)
h : g' (-x) * -1 = 0
⊢ g' (-x) = 0
[PROOFSTEP]
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f' (-x) * -1 / (g' (-x) * -1)) (𝓝[Ioi (-b)] (-b)) ?m.13087
[PROOFSTEP]
simp only [neg_div_neg_eq, mul_one, mul_neg]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f' (-x) / g' (-x)) (𝓝[Ioi (-b)] (-b)) ?m.13087
[PROOFSTEP]
exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsWithin_Ioi_neg)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have := this.comp tendsto_neg_nhdsWithin_Iio
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l
this : Tendsto ((fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) ∘ Neg.neg) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
unfold Function.comp at this
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l
this : Tendsto (fun x => (fun x => f (-x) / g (-x)) (-x)) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
simpa only [neg_neg]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ioc a b)
hcg : ContinuousOn g (Ioc a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : f b = 0
hgb : g b = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
refine' lhopital_zero_left_on_Ioo hab hff' hgg' hg' _ _ hdiv
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ioc a b)
hcg : ContinuousOn g (Ioc a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : f b = 0
hgb : g b = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x) (𝓝[Iio b] b) (𝓝 0)
[PROOFSTEP]
rw [← hfb, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hab]
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ioc a b)
hcg : ContinuousOn g (Ioc a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : f b = 0
hgb : g b = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] b) (𝓝 (f b))
[PROOFSTEP]
exact ((hcf b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ioc a b)
hcg : ContinuousOn g (Ioc a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : f b = 0
hgb : g b = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => g x) (𝓝[Iio b] b) (𝓝 0)
[PROOFSTEP]
rw [← hgb, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hab]
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hcf : ContinuousOn f (Ioc a b)
hcg : ContinuousOn g (Ioc a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0
hfb : f b = 0
hgb : g b = 0
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] b) (𝓝 (g b))
[PROOFSTEP]
exact ((hcg b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
obtain ⟨a', haa', ha'⟩ : ∃ a', a < a' ∧ 0 < a' :=
⟨1 + max a 0, ⟨lt_of_le_of_lt (le_max_left a 0) (lt_one_add _), lt_of_le_of_lt (le_max_right a 0) (lt_one_add _)⟩⟩
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have fact1 : ∀ x : ℝ, x ∈ Ioo 0 a'⁻¹ → x ≠ 0 := fun _ hx => (ne_of_lt hx.1).symm
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have fact2 : ∀ x ∈ Ioo 0 a'⁻¹, a < x⁻¹ := fun _ hx => lt_trans haa' ((lt_inv ha' hx.1).mpr hx.2)
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdnf : ∀ x ∈ Ioo 0 a'⁻¹, HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x := fun x hx =>
comp x (hff' x⁻¹ <| fact2 x hx) (hasDerivAt_inv <| fact1 x hx)
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdng : ∀ x ∈ Ioo 0 a'⁻¹, HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x := fun x hx =>
comp x (hgg' x⁻¹ <| fact2 x hx) (hasDerivAt_inv <| fact1 x hx)
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have :=
lhopital_zero_right_on_Ioo (inv_pos.mpr ha') hdnf hdng
(by
intro x hx
refine' mul_ne_zero _ (neg_ne_zero.mpr <| inv_ne_zero <| pow_ne_zero _ <| fact1 x hx)
exact hg' _ (fact2 x hx))
(hftop.comp tendsto_inv_zero_atTop) (hgtop.comp tendsto_inv_zero_atTop)
(by
refine' (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_atTop)
rw [eventuallyEq_iff_exists_mem]
use Ioi 0, self_mem_nhdsWithin
intro x hx
unfold Function.comp
simp only
erw [mul_div_mul_right]
refine' neg_ne_zero.mpr (inv_ne_zero <| pow_ne_zero _ <| ne_of_gt hx))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → g' x⁻¹ * -(x ^ 2)⁻¹ ≠ 0
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioo 0 a'⁻¹
⊢ g' x⁻¹ * -(x ^ 2)⁻¹ ≠ 0
[PROOFSTEP]
refine' mul_ne_zero _ (neg_ne_zero.mpr <| inv_ne_zero <| pow_ne_zero _ <| fact1 x hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioo 0 a'⁻¹
⊢ g' x⁻¹ ≠ 0
[PROOFSTEP]
exact hg' _ (fact2 x hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ Tendsto (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) (𝓝[Ioi 0] 0) ?m.21930
[PROOFSTEP]
refine' (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_atTop)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ ((fun x => f' x / g' x) ∘ fun x => x⁻¹) =ᶠ[𝓝[Ioi 0] 0] fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)
[PROOFSTEP]
rw [eventuallyEq_iff_exists_mem]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ ∃ s,
s ∈ 𝓝[Ioi 0] 0 ∧
EqOn ((fun x => f' x / g' x) ∘ fun x => x⁻¹) (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) s
[PROOFSTEP]
use Ioi 0, self_mem_nhdsWithin
[GOAL]
case right
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
⊢ EqOn ((fun x => f' x / g' x) ∘ fun x => x⁻¹) (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) (Ioi 0)
[PROOFSTEP]
intro x hx
[GOAL]
case right
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioi 0
⊢ ((fun x => f' x / g' x) ∘ fun x => x⁻¹) x = (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) x
[PROOFSTEP]
unfold Function.comp
[GOAL]
case right
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioi 0
⊢ (fun x => f' x / g' x) ((fun x => x⁻¹) x) = (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) x
[PROOFSTEP]
simp only
[GOAL]
case right
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioi 0
⊢ f' x⁻¹ / g' x⁻¹ = f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)
[PROOFSTEP]
erw [mul_div_mul_right]
[GOAL]
case right.hc
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
x : ℝ
hx : x ∈ Ioi 0
⊢ -(x ^ 2)⁻¹ ≠ 0
[PROOFSTEP]
refine' neg_ne_zero.mpr (inv_ne_zero <| pow_ne_zero _ <| ne_of_gt hx)
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
this : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have := this.comp tendsto_inv_atTop_zero'
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
this✝ : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l
this : Tendsto ((fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) ∘ fun r => r⁻¹) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
unfold Function.comp at this
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
a' : ℝ
haa' : a < a'
ha' : 0 < a'
fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0
fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹
hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x
hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x
this✝ : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l
this : Tendsto (fun x => (fun x => f x⁻¹ / g x⁻¹) ((fun r => r⁻¹) x)) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
simpa only [inv_inv]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdnf : ∀ x ∈ -Iio a, HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x := fun x hx =>
comp x (hff' (-x) hx) (hasDerivAt_neg x)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdng : ∀ x ∈ -Iio a, HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x := fun x hx =>
comp x (hgg' (-x) hx) (hasDerivAt_neg x)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rw [preimage_neg_Iio] at hdnf
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rw [preimage_neg_Iio] at hdng
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have :=
lhopital_zero_atTop_on_Ioi hdnf hdng
(by
intro x hx h
apply hg' _ (by rw [← preimage_neg_Iio] at hx ; exact hx)
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h )
(hfbot.comp tendsto_neg_atTop_atBot) (hgbot.comp tendsto_neg_atTop_atBot)
(by
simp only [mul_one, mul_neg, neg_div_neg_eq]
exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_atTop_atBot))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ ∀ (x : ℝ), x ∈ Ioi (-a) → g' (-x) * -1 ≠ 0
[PROOFSTEP]
intro x hx h
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioi (-a)
h : g' (-x) * -1 = 0
⊢ False
[PROOFSTEP]
apply hg' _ (by rw [← preimage_neg_Iio] at hx ; exact hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioi (-a)
h : g' (-x) * -1 = 0
⊢ ?m.26788 ∈ Iio a
[PROOFSTEP]
rw [← preimage_neg_Iio] at hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx✝ : x ∈ Ioi (-a)
hx : x ∈ -Iio a
h : g' (-x) * -1 = 0
⊢ ?m.26876 h ∈ Iio a
[PROOFSTEP]
exact hx
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
x : ℝ
hx : x ∈ Ioi (-a)
h : g' (-x) * -1 = 0
⊢ g' (-x) = 0
[PROOFSTEP]
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f' (-x) * -1 / (g' (-x) * -1)) atTop ?m.26621
[PROOFSTEP]
simp only [mul_one, mul_neg, neg_div_neg_eq]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
⊢ Tendsto (fun x => f' (-x) / g' (-x)) atTop ?m.26621
[PROOFSTEP]
exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_atTop_atBot)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have := this.comp tendsto_neg_atBot_atTop
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l
this : Tendsto ((fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) ∘ Neg.neg) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
unfold Function.comp at this
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x
hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x
hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x
this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l
this : Tendsto (fun x => (fun x => f (-x) / g (-x)) (-x)) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
simpa only [neg_neg]
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hdf : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioo_mem_nhds hx.1 hx.2)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hdg : ∀ x ∈ Ioo a b, DifferentiableAt ℝ g x := fun x hx =>
by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
hdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
exact
HasDerivAt.lhopital_zero_right_on_Ioo hab (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg'
hfa hga hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
refine' lhopital_zero_right_on_Ioo hab hdf hg' _ _ hdiv
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x) (𝓝[Ioi a] a) (𝓝 0)
[PROOFSTEP]
rw [← hfa, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
[GOAL]
case refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] a) (𝓝 (f a))
[PROOFSTEP]
exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => g x) (𝓝[Ioi a] a) (𝓝 0)
[PROOFSTEP]
rw [← hga, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab]
[GOAL]
case refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hcf : ContinuousOn f (Ico a b)
hcg : ContinuousOn g (Ico a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfa : f a = 0
hga : g a = 0
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] a) (𝓝 (g a))
[PROOFSTEP]
exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have hdf : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioo_mem_nhds hx.1 hx.2)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l
hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
have hdg : ∀ x ∈ Ioo a b, DifferentiableAt ℝ g x := fun x hx =>
by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioo a b)
hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l
hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
hdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l
[PROOFSTEP]
exact
HasDerivAt.lhopital_zero_left_on_Ioo hab (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg'
hfb hgb hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Ioi a)
hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdf : ∀ x ∈ Ioi a, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioi_mem_nhds hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioi a)
hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
hdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdg : ∀ x ∈ Ioi a, DifferentiableAt ℝ g x := fun x hx =>
by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Ioi a)
hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
hdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x
hdg : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
exact
HasDerivAt.lhopital_zero_atTop_on_Ioi (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg'
hftop hgtop hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : DifferentiableOn ℝ f (Iio a)
hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdf : ∀ x ∈ Iio a, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Iio_mem_nhds hx)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Iio a)
hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
hdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdg : ∀ x ∈ Iio a, DifferentiableAt ℝ g x := fun x hx =>
by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf✝ : DifferentiableOn ℝ f (Iio a)
hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
hdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x
hdg : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
exact
HasDerivAt.lhopital_zero_atBot_on_Iio (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg'
hfbot hgbot hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rw [eventually_iff_exists_mem] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y
hgg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rcases hff' with ⟨s₁, hs₁, hff'⟩
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hgg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rcases hgg' with ⟨s₂, hs₂, hgg'⟩
[GOAL]
case intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rcases hg' with ⟨s₃, hs₃, hg'⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
let s := s₁ ∩ s₂ ∩ s₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hs : s ∈ 𝓝[>] a := inter_mem (inter_mem hs₁ hs₂) hs₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : s ∈ 𝓝[Ioi a] a
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rw [mem_nhdsWithin_Ioi_iff_exists_Ioo_subset] at hs
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
rcases hs with ⟨u, hau, hu⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
refine' lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo a u → HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo a u → HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo a u → g' x ≠ 0
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ g' x ≠ 0
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₁
[PROOFSTEP]
first
| exact (hu hx).1.1
| exact (hu hx).1.2
| exact (hu hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₁
[PROOFSTEP]
exact (hu hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₂
[PROOFSTEP]
first
| exact (hu hx).1.1
| exact (hu hx).1.2
| exact (hu hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₂
[PROOFSTEP]
exact (hu hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₂
[PROOFSTEP]
exact (hu hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₃
[PROOFSTEP]
first
| exact (hu hx).1.1
| exact (hu hx).1.2
| exact (hu hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₃
[PROOFSTEP]
exact (hu hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₃
[PROOFSTEP]
exact (hu hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Ioi a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Ioi a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Ioi a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
u : ℝ
hau : u ∈ Ioi a
hu : Ioo a u ⊆ s
x : ℝ
hx : x ∈ Ioo a u
⊢ x ∈ s₃
[PROOFSTEP]
exact (hu hx).2
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rw [eventually_iff_exists_mem] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y
hgg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rcases hff' with ⟨s₁, hs₁, hff'⟩
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hgg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rcases hgg' with ⟨s₂, hs₂, hgg'⟩
[GOAL]
case intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rcases hg' with ⟨s₃, hs₃, hg'⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
let s := s₁ ∩ s₂ ∩ s₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
have hs : s ∈ 𝓝[<] a := inter_mem (inter_mem hs₁ hs₂) hs₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : s ∈ 𝓝[Iio a] a
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rw [mem_nhdsWithin_Iio_iff_exists_Ioo_subset] at hs
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : ∃ l, l ∈ Iio a ∧ Ioo l a ⊆ s
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
rcases hs with ⟨l, hal, hl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l✝
[PROOFSTEP]
refine' lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo l a → HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo l a → HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioo l a → g' x ≠ 0
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ g' x ≠ 0
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₁
[PROOFSTEP]
first
| exact (hl hx).1.1
| exact (hl hx).1.2
| exact (hl hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₁
[PROOFSTEP]
exact (hl hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₂
[PROOFSTEP]
first
| exact (hl hx).1.1
| exact (hl hx).1.2
| exact (hl hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₃
[PROOFSTEP]
first
| exact (hl hx).1.1
| exact (hl hx).1.2
| exact (hl hx).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₃
[PROOFSTEP]
exact (hl hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₃
[PROOFSTEP]
exact (hl hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ 𝓝[Iio a] a
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ 𝓝[Iio a] a
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ 𝓝[Iio a] a
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hal : l ∈ Iio a
hl : Ioo l a ⊆ s
x : ℝ
hx : x ∈ Ioo l a
⊢ x ∈ s₃
[PROOFSTEP]
exact (hl hx).2
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0
hfa : Tendsto f (𝓝[{a}ᶜ] a) (𝓝 0)
hga : Tendsto g (𝓝[{a}ᶜ] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
simp only [← Iio_union_Ioi, nhdsWithin_union, tendsto_sup, eventually_sup] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x
hgg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x
hg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
exact
⟨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1,
lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2⟩
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply @lhopital_zero_nhds' _ _ _ f' _ g'
[GOAL]
case hff'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hff'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hgg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hgg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hff'.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
assumption
[GOAL]
case hgg'.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
assumption
[GOAL]
case hg'.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
[PROOFSTEP]
assumption
[GOAL]
case hfa.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝 a) (𝓝 0)
[PROOFSTEP]
assumption
[GOAL]
case hga.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝 a) (𝓝 0)
[PROOFSTEP]
assumption
[GOAL]
case hdiv.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l
⊢ Tendsto (fun x => f' x / g' x) (𝓝 a) l
[PROOFSTEP]
assumption
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in atTop, g' x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rw [eventually_iff_exists_mem] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y
hgg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rcases hff' with ⟨s₁, hs₁, hff'⟩
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hgg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rcases hgg' with ⟨s₂, hs₂, hgg'⟩
[GOAL]
case intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rcases hg' with ⟨s₃, hs₃, hg'⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
let s := s₁ ∩ s₂ ∩ s₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hs : s ∈ atTop := inter_mem (inter_mem hs₁ hs₂) hs₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : s ∈ atTop
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rw [mem_atTop_sets] at hs
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : ∃ a, ∀ (b : ℝ), b ≥ a → b ∈ s
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
rcases hs with ⟨l, hl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
⊢ Tendsto (fun x => f x / g x) atTop l✝
[PROOFSTEP]
have hl' : Ioi l ⊆ s := fun x hx => hl x (le_of_lt hx)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
⊢ Tendsto (fun x => f x / g x) atTop l✝
[PROOFSTEP]
refine' lhopital_zero_atTop_on_Ioi _ _ (fun x hx => hg' x <| (hl' hx).2) hftop hgtop hdiv
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioi l → HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
⊢ ∀ (x : ℝ), x ∈ Ioi l → HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ x ∈ s₁
[PROOFSTEP]
first
| exact (hl' hx).1.1
| exact (hl' hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ x ∈ s₁
[PROOFSTEP]
exact (hl' hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ x ∈ s₂
[PROOFSTEP]
first
| exact (hl' hx).1.1
| exact (hl' hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl' hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atTop l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atTop
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atTop
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atTop
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≥ l → b ∈ s
hl' : Ioi l ⊆ s
x : ℝ
hx : x ∈ Ioi l
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl' hx).1.2
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (f' x) x
hgg' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt g (g' x) x
hg' : ∀ᶠ (x : ℝ) in atBot, g' x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rw [eventually_iff_exists_mem] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hff' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y
hgg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rcases hff' with ⟨s₁, hs₁, hff'⟩
[GOAL]
case intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hgg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y
hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rcases hgg' with ⟨s₂, hs₂, hgg'⟩
[GOAL]
case intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rcases hg' with ⟨s₃, hs₃, hg'⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
let s := s₁ ∩ s₂ ∩ s₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hs : s ∈ atBot := inter_mem (inter_mem hs₁ hs₂) hs₃
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : s ∈ atBot
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rw [mem_atBot_sets] at hs
[GOAL]
case intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
hs : ∃ a, ∀ (b : ℝ), b ≤ a → b ∈ s
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
rcases hs with ⟨l, hl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
⊢ Tendsto (fun x => f x / g x) atBot l✝
[PROOFSTEP]
have hl' : Iio l ⊆ s := fun x hx => hl x (le_of_lt hx)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
⊢ Tendsto (fun x => f x / g x) atBot l✝
[PROOFSTEP]
refine' lhopital_zero_atBot_on_Iio _ _ (fun x hx => hg' x <| (hl' hx).2) hfbot hgbot hdiv
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
⊢ ∀ (x : ℝ), x ∈ Iio l → HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
⊢ ∀ (x : ℝ), x ∈ Iio l → HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ HasDerivAt (fun x => f x) (f' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ HasDerivAt (fun x => g x) (g' x) x
[PROOFSTEP]
apply_assumption
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ x ∈ s₁
[PROOFSTEP]
first
| exact (hl' hx).1.1
| exact (hl' hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ x ∈ s₁
[PROOFSTEP]
exact (hl' hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ x ∈ s₂
[PROOFSTEP]
first
| exact (hl' hx).1.1
| exact (hl' hx).1.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl' hx).1.1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2.a
a b : ℝ
hab : a < b
l✝ : Filter ℝ
f f' g g' : ℝ → ℝ
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => f' x / g' x) atBot l✝
s₁ : Set ℝ
hs₁ : s₁ ∈ atBot
hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y
s₂ : Set ℝ
hs₂ : s₂ ∈ atBot
hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y
s₃ : Set ℝ
hs₃ : s₃ ∈ atBot
hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0
s : Set ℝ := s₁ ∩ s₂ ∩ s₃
l : ℝ
hl : ∀ (b : ℝ), b ≤ l → b ∈ s
hl' : Iio l ⊆ s
x : ℝ
hx : x ∈ Iio l
⊢ x ∈ s₂
[PROOFSTEP]
exact (hl' hx).1.2
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hdg : ∀ᶠ x in 𝓝[>] a, DifferentiableAt ℝ g x :=
hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hdf' : ∀ᶠ x in 𝓝[>] a, HasDerivAt f (deriv f x) x :=
hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (deriv f x) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
have hdg' : ∀ᶠ x in 𝓝[>] a, HasDerivAt g (deriv g x) x :=
hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (deriv f x) x
hdg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (deriv g x) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
exact HasDerivAt.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
have hdg : ∀ᶠ x in 𝓝[<] a, DifferentiableAt ℝ g x :=
hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
have hdf' : ∀ᶠ x in 𝓝[<] a, HasDerivAt f (deriv f x) x :=
hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (deriv f x) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
have hdg' : ∀ᶠ x in 𝓝[<] a, HasDerivAt g (deriv g x) x :=
hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l
hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (deriv f x) x
hdg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (deriv g x) x
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l
[PROOFSTEP]
exact HasDerivAt.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[{a}ᶜ] a) (𝓝 0)
hga : Tendsto g (𝓝[{a}ᶜ] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[{a}ᶜ] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
simp only [← Iio_union_Ioi, nhdsWithin_union, tendsto_sup, eventually_sup] at *
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x
hg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0
hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0)
hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l
[PROOFSTEP]
exact ⟨lhopital_zero_nhds_left hdf.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhds_right hdf.2 hg'.2 hfa.2 hga.2 hdiv.2⟩
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply lhopital_zero_nhds'
[GOAL]
case hdf
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ (fun x => f x) x
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdf
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ (fun x => f x) x
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv (fun x => g x) x ≠ 0
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hg'
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv (fun x => g x) x ≠ 0
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hfa
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hga
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
first
| apply eventually_nhdsWithin_of_eventually_nhds
| apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply eventually_nhdsWithin_of_eventually_nhds
[GOAL]
case hdiv
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case hdf.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ (fun x => f x) x
[PROOFSTEP]
assumption
[GOAL]
case hg'.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ ∀ᶠ (x : ℝ) in 𝓝 a, deriv (fun x => g x) x ≠ 0
[PROOFSTEP]
assumption
[GOAL]
case hfa.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => f x) (𝓝 a) (𝓝 0)
[PROOFSTEP]
assumption
[GOAL]
case hga.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => g x) (𝓝 a) (𝓝 0)
[PROOFSTEP]
assumption
[GOAL]
case hdiv.h
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0
hfa : Tendsto f (𝓝 a) (𝓝 0)
hga : Tendsto g (𝓝 a) (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l
⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝 a) l
[PROOFSTEP]
assumption
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdg : ∀ᶠ x in atTop, DifferentiableAt ℝ g x :=
hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdf' : ∀ᶠ x in atTop, HasDerivAt f (deriv f x) x :=
hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (deriv f x) x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
have hdg' : ∀ᶠ x in atTop, HasDerivAt g (deriv g x) x :=
hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0
hftop : Tendsto f atTop (𝓝 0)
hgtop : Tendsto g atTop (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l
hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (deriv f x) x
hdg' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt g (deriv g x) x
⊢ Tendsto (fun x => f x / g x) atTop l
[PROOFSTEP]
exact HasDerivAt.lhopital_zero_atTop hdf' hdg' hg' hftop hgtop hdiv
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdg : ∀ᶠ x in atBot, DifferentiableAt ℝ g x :=
hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h))
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdf' : ∀ᶠ x in atBot, HasDerivAt f (deriv f x) x :=
hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (deriv f x) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
have hdg' : ∀ᶠ x in atBot, HasDerivAt g (deriv g x) x :=
hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt)
[GOAL]
a b : ℝ
hab : a < b
l : Filter ℝ
f f' g g' : ℝ → ℝ
hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x
hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0
hfbot : Tendsto f atBot (𝓝 0)
hgbot : Tendsto g atBot (𝓝 0)
hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l
hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x
hdf' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (deriv f x) x
hdg' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt g (deriv g x) x
⊢ Tendsto (fun x => f x / g x) atBot l
[PROOFSTEP]
exact HasDerivAt.lhopital_zero_atBot hdf' hdg' hg' hfbot hgbot hdiv
| {"mathlib_filename": "Mathlib.Analysis.Calculus.LHopital", "llama_tokens": 91399} |
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
⊢ LinearMap.range (ContinuousLinearMap.prod f' φ') ≠ ⊤
[PROOFSTEP]
intro htop
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
⊢ False
[PROOFSTEP]
set fφ := fun x => (f x, φ x)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
fφ : E → F × ℝ := fun x => (f x, φ x)
⊢ False
[PROOFSTEP]
have A : map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀) :=
by
change map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.1 = f x₀}] x₀) = 𝓝 (φ x₀)
rw [← map_map, nhdsWithin, map_inf_principal_preimage, (hf'.prod hφ').map_nhds_eq_of_surj htop]
exact map_snd_nhdsWithin _
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
fφ : E → F × ℝ := fun x => (f x, φ x)
⊢ map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀)
[PROOFSTEP]
change map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.1 = f x₀}] x₀) = 𝓝 (φ x₀)
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
fφ : E → F × ℝ := fun x => (f x, φ x)
⊢ map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.fst = f x₀}] x₀) = 𝓝 (φ x₀)
[PROOFSTEP]
rw [← map_map, nhdsWithin, map_inf_principal_preimage, (hf'.prod hφ').map_nhds_eq_of_surj htop]
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
fφ : E → F × ℝ := fun x => (f x, φ x)
⊢ map Prod.snd (𝓝 (f x₀, φ x₀) ⊓ 𝓟 {p | p.fst = f x₀}) = 𝓝 (φ x₀)
[PROOFSTEP]
exact map_snd_nhdsWithin _
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤
fφ : E → F × ℝ := fun x => (f x, φ x)
A : map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀)
⊢ False
[PROOFSTEP]
exact hextr.not_nhds_le_map A.ge
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
[PROOFSTEP]
rcases Submodule.exists_le_ker_of_lt_top _ (lt_top_iff_ne_top.2 <| hextr.range_ne_top_of_hasStrictFDerivAt hf' hφ') with
⟨Λ', h0, hΛ'⟩
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ' : F × ℝ →ₗ[ℝ] ℝ
h0 : Λ' ≠ 0
hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker Λ'
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
[PROOFSTEP]
set e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ :=
((LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)).prod (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ).symm).trans (LinearMap.coprodEquiv ℝ)
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ' : F × ℝ →ₗ[ℝ] ℝ
h0 : Λ' ≠ 0
hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker Λ'
e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ :=
LinearEquiv.trans
(LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ)))
(LinearMap.coprodEquiv ℝ)
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
[PROOFSTEP]
rcases e.surjective Λ' with ⟨⟨Λ, Λ₀⟩, rfl⟩
[GOAL]
case intro.intro.intro.mk
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ :=
LinearEquiv.trans
(LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ)))
(LinearMap.coprodEquiv ℝ)
Λ : F →ₗ[ℝ] ℝ
Λ₀ : ℝ
h0 : ↑e (Λ, Λ₀) ≠ 0
hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀))
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
[PROOFSTEP]
refine' ⟨Λ, Λ₀, e.map_ne_zero_iff.1 h0, fun x => _⟩
[GOAL]
case intro.intro.intro.mk
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ :=
LinearEquiv.trans
(LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ)))
(LinearMap.coprodEquiv ℝ)
Λ : F →ₗ[ℝ] ℝ
Λ₀ : ℝ
h0 : ↑e (Λ, Λ₀) ≠ 0
hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀))
x : E
⊢ ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
[PROOFSTEP]
convert LinearMap.congr_fun (LinearMap.range_le_ker_iff.1 hΛ') x using 1
-- squeezed `simp [mul_comm]` to speed up elaboration
[GOAL]
case h.e'_2
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f : E → F
φ : E → ℝ
x₀ : E
f' : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ :=
LinearEquiv.trans
(LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ)))
(LinearMap.coprodEquiv ℝ)
Λ : F →ₗ[ℝ] ℝ
Λ₀ : ℝ
h0 : ↑e (Λ, Λ₀) ≠ 0
hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀))
x : E
⊢ ↑Λ (↑f' x) + Λ₀ • ↑φ' x = ↑(LinearMap.comp (↑e (Λ, Λ₀)) ↑(ContinuousLinearMap.prod f' φ')) x
[PROOFSTEP]
simp only [smul_eq_mul, LinearEquiv.trans_apply, LinearEquiv.prod_apply, LinearEquiv.refl_apply,
LinearMap.ringLmapEquivSelf_symm_apply, LinearMap.coprodEquiv_apply, ContinuousLinearMap.coe_prod,
LinearMap.coprod_comp_prod, LinearMap.add_apply, LinearMap.coe_comp, ContinuousLinearMap.coe_coe, Function.comp_apply,
LinearMap.coe_smulRight, LinearMap.one_apply, mul_comm]
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
⊢ ∃ a b, (a, b) ≠ 0 ∧ a • f' + b • φ' = 0
[PROOFSTEP]
obtain ⟨Λ, Λ₀, hΛ, hfΛ⟩ := hextr.exists_linear_map_of_hasStrictFDerivAt hf' hφ'
[GOAL]
case intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
⊢ ∃ a b, (a, b) ≠ 0 ∧ a • f' + b • φ' = 0
[PROOFSTEP]
refine' ⟨Λ 1, Λ₀, _, _⟩
[GOAL]
case intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
⊢ (↑Λ 1, Λ₀) ≠ 0
[PROOFSTEP]
contrapose! hΛ
[GOAL]
case intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
hΛ : (↑Λ 1, Λ₀) = 0
⊢ (Λ, Λ₀) = 0
[PROOFSTEP]
simp only [Prod.mk_eq_zero] at hΛ ⊢
[GOAL]
case intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
hΛ : ↑Λ 1 = 0 ∧ Λ₀ = 0
⊢ Λ = 0 ∧ Λ₀ = 0
[PROOFSTEP]
refine' ⟨LinearMap.ext fun x => _, hΛ.2⟩
[GOAL]
case intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
hΛ : ↑Λ 1 = 0 ∧ Λ₀ = 0
x : ℝ
⊢ ↑Λ x = ↑0 x
[PROOFSTEP]
simpa [hΛ.1] using Λ.map_smul x 1
[GOAL]
case intro.intro.intro.refine'_2
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
⊢ ↑Λ 1 • f' + Λ₀ • φ' = 0
[PROOFSTEP]
ext x
[GOAL]
case intro.intro.intro.refine'_2.h
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
x : E
⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x
[PROOFSTEP]
have H₁ : Λ (f' x) = f' x * Λ 1 := by simpa only [mul_one, Algebra.id.smul_eq_mul] using Λ.map_smul (f' x) 1
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
x : E
⊢ ↑Λ (↑f' x) = ↑f' x * ↑Λ 1
[PROOFSTEP]
simpa only [mul_one, Algebra.id.smul_eq_mul] using Λ.map_smul (f' x) 1
[GOAL]
case intro.intro.intro.refine'_2.h
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
x : E
H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1
⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x
[PROOFSTEP]
have H₂ : f' x * Λ 1 + Λ₀ * φ' x = 0 := by simpa only [Algebra.id.smul_eq_mul, H₁] using hfΛ x
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
x : E
H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1
⊢ ↑f' x * ↑Λ 1 + Λ₀ * ↑φ' x = 0
[PROOFSTEP]
simpa only [Algebra.id.smul_eq_mul, H₁] using hfΛ x
[GOAL]
case intro.intro.intro.refine'_2.h
E : Type u_1
F : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
f : E → ℝ
f' : E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀
hf' : HasStrictFDerivAt f f' x₀
hφ' : HasStrictFDerivAt φ φ' x₀
Λ : Module.Dual ℝ ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0
x : E
H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1
H₂ : ↑f' x * ↑Λ 1 + Λ₀ * ↑φ' x = 0
⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x
[PROOFSTEP]
simpa [mul_comm] using H₂
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
letI := Classical.decEq ι
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
replace hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
[GOAL]
case hextr
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
⊢ IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
[PROOFSTEP]
simpa only [Function.funext_iff] using hextr
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
rcases hextr.exists_linear_map_of_hasStrictFDerivAt (hasStrictFDerivAt_pi.2 fun i => hf' i) hφ' with ⟨Λ, Λ₀, h0, hsum⟩
[GOAL]
case intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
Λ : Module.Dual ℝ (ι → ℝ)
Λ₀ : ℝ
h0 : (Λ, Λ₀) ≠ 0
hsum : ∀ (x : E), ↑Λ (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
rcases(LinearEquiv.piRing ℝ ℝ ι ℝ).symm.surjective Λ with ⟨Λ, rfl⟩
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
Λ₀ : ℝ
Λ : ι → ℝ
h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0
hsum :
∀ (x : E),
↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0
⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
refine' ⟨Λ, Λ₀, _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
Λ₀ : ℝ
Λ : ι → ℝ
h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0
hsum :
∀ (x : E),
↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0
⊢ (Λ, Λ₀) ≠ 0
[PROOFSTEP]
simpa only [Ne.def, Prod.ext_iff, LinearEquiv.map_eq_zero_iff, Prod.fst_zero] using h0
[GOAL]
case intro.intro.intro.intro.refine'_2
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
Λ₀ : ℝ
Λ : ι → ℝ
h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0
hsum :
∀ (x : E),
↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0
⊢ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
[PROOFSTEP]
ext x
[GOAL]
case intro.intro.intro.intro.refine'_2.h
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Fintype ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
this : DecidableEq ι := Classical.decEq ι
hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀
Λ₀ : ℝ
Λ : ι → ℝ
h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0
hsum :
∀ (x : E),
↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0
x : E
⊢ ↑(∑ i : ι, Λ i • f' i + Λ₀ • φ') x = ↑0 x
[PROOFSTEP]
simpa [mul_comm] using hsum x
[GOAL]
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
⊢ ¬LinearIndependent ℝ (Option.elim' φ' f')
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
⊢ ¬LinearIndependent ℝ (Option.elim' φ' f')
[PROOFSTEP]
rw [Fintype.linearIndependent_iff]
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
⊢ ¬∀ (g : Option ι → ℝ), ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 → ∀ (i : Option ι), g i = 0
[PROOFSTEP]
push_neg
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
⊢ ∃ g, ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
rcases hextr.exists_multipliers_of_hasStrictFDerivAt hf' hφ' with ⟨Λ, Λ₀, hΛ, hΛf⟩
[GOAL]
case intro.intro.intro.intro
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
Λ : ι → ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
⊢ ∃ g, ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 ∧ ∃ i, g i ≠ 0
[PROOFSTEP]
refine' ⟨Option.elim' Λ₀ Λ, _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
Λ : ι → ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
⊢ ∑ i : Option ι, Option.elim' Λ₀ Λ i • Option.elim' φ' f' i = 0
[PROOFSTEP]
simpa [add_comm] using hΛf
[GOAL]
case intro.intro.intro.intro.refine'_2
E : Type u_1
F : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
f✝ : E → F
φ : E → ℝ
x₀ : E
f'✝ : E →L[ℝ] F
φ' : E →L[ℝ] ℝ
ι : Type u_3
inst✝ : Finite ι
f : ι → E → ℝ
f' : ι → E →L[ℝ] ℝ
hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀
hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀
hφ' : HasStrictFDerivAt φ φ' x₀
val✝ : Fintype ι
Λ : ι → ℝ
Λ₀ : ℝ
hΛ : (Λ, Λ₀) ≠ 0
hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0
⊢ ∃ i, Option.elim' Λ₀ Λ i ≠ 0
[PROOFSTEP]
simpa only [Function.funext_iff, not_and_or, or_comm, Option.exists, Prod.mk_eq_zero, Ne.def, not_forall] using hΛ
| {"mathlib_filename": "Mathlib.Analysis.Calculus.LagrangeMultipliers", "llama_tokens": 15422} |
Subsets and Splits