text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] ι : Type u_1 X : Type u_2 E : Type u_3 inst✝⁷ : TopologicalSpace X inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : NormalSpace X inst✝³ : ParacompactSpace X inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E t : X → Set E ht : ∀ (x : X), Convex ℝ (t x) H : ∀ (x : X), ∃ U, U ∈ 𝓝 x ∧ ∃ g, ContinuousOn g U ∧ ∀ (y : X), y ∈ U → g y ∈ t y ⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x [PROOFSTEP] choose U hU g hgc hgt using H [GOAL] ι : Type u_1 X : Type u_2 E : Type u_3 inst✝⁷ : TopologicalSpace X inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : NormalSpace X inst✝³ : ParacompactSpace X inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E t : X → Set E ht : ∀ (x : X), Convex ℝ (t x) U : X → Set X hU : ∀ (x : X), U x ∈ 𝓝 x g : X → X → E hgc : ∀ (x : X), ContinuousOn (g x) (U x) hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y ⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x [PROOFSTEP] obtain ⟨f, hf⟩ := PartitionOfUnity.exists_isSubordinate isClosed_univ (fun x => interior (U x)) (fun x => isOpen_interior) fun x _ => mem_iUnion.2 ⟨x, mem_interior_iff_mem_nhds.2 (hU x)⟩ [GOAL] case intro ι : Type u_1 X : Type u_2 E : Type u_3 inst✝⁷ : TopologicalSpace X inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : NormalSpace X inst✝³ : ParacompactSpace X inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E t : X → Set E ht : ∀ (x : X), Convex ℝ (t x) U : X → Set X hU : ∀ (x : X), U x ∈ 𝓝 x g : X → X → E hgc : ∀ (x : X), ContinuousOn (g x) (U x) hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y f : PartitionOfUnity X X univ hf : PartitionOfUnity.IsSubordinate f fun x => interior (U x) ⊢ ∃ g, ∀ (x : X), ↑g x ∈ t x [PROOFSTEP] refine' ⟨⟨fun x => ∑ᶠ i, f i x • g i x, hf.continuous_finsum_smul (fun i => isOpen_interior) fun i => (hgc i).mono interior_subset⟩, fun x => f.finsum_smul_mem_convex (mem_univ x) (fun i hi => hgt _ _ _) (ht _)⟩ [GOAL] case intro ι : Type u_1 X : Type u_2 E : Type u_3 inst✝⁷ : TopologicalSpace X inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : NormalSpace X inst✝³ : ParacompactSpace X inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E t : X → Set E ht : ∀ (x : X), Convex ℝ (t x) U : X → Set X hU : ∀ (x : X), U x ∈ 𝓝 x g : X → X → E hgc : ∀ (x : X), ContinuousOn (g x) (U x) hgt : ∀ (x y : X), y ∈ U x → g x y ∈ t y f : PartitionOfUnity X X univ hf : PartitionOfUnity.IsSubordinate f fun x => interior (U x) x i : X hi : ↑(↑f i) x ≠ 0 ⊢ x ∈ U i [PROOFSTEP] exact interior_subset (hf _ <| subset_closure hi)
{"mathlib_filename": "Mathlib.Analysis.Convex.PartitionOfUnity", "llama_tokens": 1277}
[GOAL] A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K ⊢ ∀ (a₁ a₂ b₁ b₂ : K), Setoid.r a₁ b₁ → Setoid.r a₂ b₂ → (fun a b => ∃ c, c • b = a) a₁ a₂ = (fun a b => ∃ c, c • b = a) b₁ b₂ [PROOFSTEP] rintro _ _ a b ⟨c, rfl⟩ ⟨d, rfl⟩ [GOAL] case intro.intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) = (fun a b => ∃ c, c • b = a) a b [PROOFSTEP] ext [GOAL] case intro.intro.a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) ↔ (fun a b => ∃ c, c • b = a) a b [PROOFSTEP] constructor [GOAL] case intro.intro.a.mp A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) → (fun a b => ∃ c, c • b = a) a b [PROOFSTEP] rintro ⟨e, he⟩ [GOAL] case intro.intro.a.mp.intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • (fun m => m • b) d = (fun m => m • a) c ⊢ ∃ c, c • b = a [PROOFSTEP] use(c⁻¹ : Aˣ) * e * d [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • (fun m => m • b) d = (fun m => m • a) c ⊢ (↑c⁻¹ * e * ↑d) • b = a [PROOFSTEP] apply_fun fun t => c⁻¹ • t at he [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : c⁻¹ • e • (fun m => m • b) d = c⁻¹ • (fun m => m • a) c ⊢ (↑c⁻¹ * e * ↑d) • b = a [PROOFSTEP] simpa [mul_smul] using he [GOAL] case intro.intro.a.mpr A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun a b => ∃ c, c • b = a) a b → (fun a b => ∃ c, c • b = a) ((fun m => m • a) c) ((fun m => m • b) d) [PROOFSTEP] rintro ⟨e, he⟩ [GOAL] case intro.intro.a.mpr.intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ ∃ c_1, c_1 • (fun m => m • b) d = (fun m => m • a) c [PROOFSTEP] dsimp [GOAL] case intro.intro.a.mpr.intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ ∃ c_1, c_1 • d • b = c • a [PROOFSTEP] use(d⁻¹ : Aˣ) * c * e [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ (↑d⁻¹ * ↑c * e) • d • b = c • a [PROOFSTEP] erw [← he, ← mul_smul, ← mul_smul] [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ (↑d⁻¹ * ↑c * e * ↑d) • b = (↑c * e) • b [PROOFSTEP] congr 1 [GOAL] case h.e_a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ ↑d⁻¹ * ↑c * e * ↑d = ↑c * e [PROOFSTEP] rw [mul_comm] [GOAL] case h.e_a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ e : A he : e • b = a ⊢ ↑d * (↑d⁻¹ * ↑c * e) = ↑c * e [PROOFSTEP] simp only [← mul_assoc, ← Units.val_mul, mul_inv_self, one_mul] [GOAL] A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K ⊢ ∀ (a₁ a₂ b₁ b₂ : K), Setoid.r a₁ b₁ → Setoid.r a₂ b₂ → (fun a b => Quotient.mk'' (a * b)) a₁ a₂ = (fun a b => Quotient.mk'' (a * b)) b₁ b₂ [PROOFSTEP] rintro _ _ a b ⟨c, rfl⟩ ⟨d, rfl⟩ [GOAL] case intro.intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun a b => Quotient.mk'' (a * b)) ((fun m => m • a) c) ((fun m => m • b) d) = (fun a b => Quotient.mk'' (a * b)) a b [PROOFSTEP] apply Quotient.sound' [GOAL] case intro.intro.a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ Setoid.r ((fun m => m • a) c * (fun m => m • b) d) (a * b) [PROOFSTEP] dsimp [GOAL] case intro.intro.a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ Setoid.r (c • a * d • b) (a * b) [PROOFSTEP] use c * d [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ (fun m => m • (a * b)) (c * d) = c • a * d • b [PROOFSTEP] simp only [mul_smul, Algebra.smul_def, Units.smul_def, RingHom.map_mul, Units.val_mul] [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x y : ValueGroup A K a b : K c d : Aˣ ⊢ ↑(algebraMap A K) ↑c * (↑(algebraMap A K) ↑d * (a * b)) = ↑(algebraMap A K) ↑c * a * (↑(algebraMap A K) ↑d * b) [PROOFSTEP] ring [GOAL] A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x : ValueGroup A K ⊢ ∀ (a b : K), Setoid.r a b → (fun a => Quotient.mk'' a⁻¹) a = (fun a => Quotient.mk'' a⁻¹) b [PROOFSTEP] rintro _ a ⟨b, rfl⟩ [GOAL] case intro A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x : ValueGroup A K a : K b : Aˣ ⊢ (fun a => Quotient.mk'' a⁻¹) ((fun m => m • a) b) = (fun a => Quotient.mk'' a⁻¹) a [PROOFSTEP] apply Quotient.sound' [GOAL] case intro.a A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x : ValueGroup A K a : K b : Aˣ ⊢ Setoid.r ((fun m => m • a) b)⁻¹ a⁻¹ [PROOFSTEP] use b⁻¹ [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x : ValueGroup A K a : K b : Aˣ ⊢ (fun m => m • a⁻¹) b⁻¹ = ((fun m => m • a) b)⁻¹ [PROOFSTEP] dsimp [GOAL] case h A : Type u inst✝² : CommRing A K : Type v inst✝¹ : Field K inst✝ : Algebra A K x : ValueGroup A K a : K b : Aˣ ⊢ b⁻¹ • a⁻¹ = (b • a)⁻¹ [PROOFSTEP] rw [Units.smul_def, Units.smul_def, Algebra.smul_def, Algebra.smul_def, mul_inv, map_units_inv] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] rcases a with ⟨a⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b : ValueGroup A K a : K ⊢ Quot.mk Setoid.r a ≤ b ∨ b ≤ Quot.mk Setoid.r a [PROOFSTEP] rcases b with ⟨b⟩ [GOAL] case mk.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K a b : K ⊢ Quot.mk Setoid.r a ≤ Quot.mk Setoid.r b ∨ Quot.mk Setoid.r b ≤ Quot.mk Setoid.r a [PROOFSTEP] obtain ⟨xa, ya, hya, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective a [GOAL] case mk.mk.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b✝ : ValueGroup A K b : K xa ya : A hya : ya ∈ nonZeroDivisors A ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r b ∨ Quot.mk Setoid.r b ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] obtain ⟨xb, yb, hyb, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective b [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] have : (algebraMap A K) ya ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hya [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this : ↑(algebraMap A K) ya ≠ 0 ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] have : (algebraMap A K) yb ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hyb [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] obtain ⟨c, h | h⟩ := ValuationRing.cond (xa * yb) (xb * ya) [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.intro.inl A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] right [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.intro.inl.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] use c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ c • (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] rw [Algebra.smul_def] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ↑(algebraMap A K) c * (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] field_simp [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ↑(algebraMap A K) c * ↑(algebraMap A K) xa * ↑(algebraMap A K) yb = ↑(algebraMap A K) xb * ↑(algebraMap A K) ya [PROOFSTEP] simp only [← RingHom.map_mul, ← h] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ↑(algebraMap A K) (c * xa * yb) = ↑(algebraMap A K) (xa * yb * c) [PROOFSTEP] congr 1 [GOAL] case h.h.e_6.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ c * xa * yb = xa * yb * c [PROOFSTEP] ring [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.intro.inr A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ∨ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] left [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.intro.inr.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ Quot.mk Setoid.r (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) ≤ Quot.mk Setoid.r (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) [PROOFSTEP] use c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ c • (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya [PROOFSTEP] rw [Algebra.smul_def] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ↑(algebraMap A K) c * (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya [PROOFSTEP] field_simp [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ↑(algebraMap A K) c * ↑(algebraMap A K) xb * ↑(algebraMap A K) ya = ↑(algebraMap A K) xa * ↑(algebraMap A K) yb [PROOFSTEP] simp only [← RingHom.map_mul, ← h] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ↑(algebraMap A K) (c * xb * ya) = ↑(algebraMap A K) (xb * ya * c) [PROOFSTEP] congr 1 [GOAL] case h.h.e_6.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : ValueGroup A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ c * xb * ya = xb * ya * c [PROOFSTEP] ring [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), a ≤ a [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝¹ : ValueGroup A K a✝ : K ⊢ Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝ [PROOFSTEP] use 1 [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝¹ : ValueGroup A K a✝ : K ⊢ 1 • a✝ = a✝ [PROOFSTEP] rw [one_smul] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a b c : ValueGroup A K), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ⟨e, rfl⟩ ⟨f, rfl⟩ [GOAL] case mk.mk.mk.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ c✝ : ValueGroup A K c : K e f : A ⊢ Quot.mk Setoid.r (e • f • c) ≤ Quot.mk Setoid.r c [PROOFSTEP] use e * f [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ c✝ : ValueGroup A K c : K e f : A ⊢ (e * f) • c = e • f • c [PROOFSTEP] rw [mul_smul] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a b : ValueGroup A K), a ≤ b → b ≤ a → a = b [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨e, rfl⟩ ⟨f, hf⟩ [GOAL] case mk.mk.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b ⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : b = 0 ⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b [PROOFSTEP] simp [hb] [GOAL] case neg A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 ⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b [PROOFSTEP] have : IsUnit e := by apply isUnit_of_dvd_one use f rw [mul_comm] rw [← mul_smul, Algebra.smul_def] at hf nth_rw 2 [← one_mul b] at hf rw [← (algebraMap A K).map_one] at hf exact IsFractionRing.injective _ _ (mul_right_cancel₀ hb hf).symm [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 ⊢ IsUnit e [PROOFSTEP] apply isUnit_of_dvd_one [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 ⊢ e ∣ 1 [PROOFSTEP] use f [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 ⊢ 1 = e * f [PROOFSTEP] rw [mul_comm] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 ⊢ 1 = f * e [PROOFSTEP] rw [← mul_smul, Algebra.smul_def] at hf [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : ↑(algebraMap A K) (f * e) * b = b hb : ¬b = 0 ⊢ 1 = f * e [PROOFSTEP] nth_rw 2 [← one_mul b] at hf [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : ↑(algebraMap A K) (f * e) * b = 1 * b hb : ¬b = 0 ⊢ 1 = f * e [PROOFSTEP] rw [← (algebraMap A K).map_one] at hf [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : ↑(algebraMap A K) (f * e) * b = ↑(algebraMap A K) 1 * b hb : ¬b = 0 ⊢ 1 = f * e [PROOFSTEP] exact IsFractionRing.injective _ _ (mul_right_cancel₀ hb hf).symm [GOAL] case neg A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 this : IsUnit e ⊢ Quot.mk Setoid.r (e • b) = Quot.mk Setoid.r b [PROOFSTEP] apply Quotient.sound' [GOAL] case neg.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K e f : A hf : f • e • b = b hb : ¬b = 0 this : IsUnit e ⊢ Setoid.r (e • b) b [PROOFSTEP] exact ⟨this.unit, rfl⟩ [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ DecidableRel fun x x_1 => x ≤ x_1 [PROOFSTEP] classical infer_instance [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ DecidableRel fun x x_1 => x ≤ x_1 [PROOFSTEP] infer_instance [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a b c : ValueGroup A K), a * b * c = a * (b * c) [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ [GOAL] case mk.mk.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K c✝ : ValueGroup A K c : K ⊢ Quot.mk Setoid.r a * Quot.mk Setoid.r b * Quot.mk Setoid.r c = Quot.mk Setoid.r a * (Quot.mk Setoid.r b * Quot.mk Setoid.r c) [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.mk.mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K c✝ : ValueGroup A K c : K ⊢ Setoid.r (a * b * c) (a * (b * c)) [PROOFSTEP] rw [mul_assoc] [GOAL] case mk.mk.mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K c✝ : ValueGroup A K c : K ⊢ Setoid.r (a * (b * c)) (a * (b * c)) [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), 1 * a = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ 1 * Quot.mk Setoid.r a = Quot.mk Setoid.r a [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r (1 * a) a [PROOFSTEP] rw [one_mul] [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r a a [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), a * 1 = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Quot.mk Setoid.r a * 1 = Quot.mk Setoid.r a [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r (a * 1) a [PROOFSTEP] rw [mul_one] [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r a a [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a b : ValueGroup A K), a * b = b * a [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case mk.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K ⊢ Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r b * Quot.mk Setoid.r a [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K ⊢ Setoid.r (a * b) (b * a) [PROOFSTEP] rw [mul_comm] [GOAL] case mk.mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K b✝ : ValueGroup A K b : K ⊢ Setoid.r (b * a) (b * a) [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a b : ValueGroup A K), a ≤ b → ∀ (c : ValueGroup A K), c * a ≤ c * b [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c, rfl⟩ ⟨d⟩ [GOAL] case mk.mk.intro.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K c : A c✝ : ValueGroup A K d : K ⊢ Quot.mk Setoid.r d * Quot.mk Setoid.r (c • b) ≤ Quot.mk Setoid.r d * Quot.mk Setoid.r b [PROOFSTEP] use c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K c : A c✝ : ValueGroup A K d : K ⊢ c • (d * b) = d * c • b [PROOFSTEP] simp only [Algebra.smul_def] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ b✝ : ValueGroup A K b : K c : A c✝ : ValueGroup A K d : K ⊢ ↑(algebraMap A K) c * (d * b) = d * (↑(algebraMap A K) c * b) [PROOFSTEP] ring [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), 0 * a = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ 0 * Quot.mk Setoid.r a = 0 [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r (0 * a) 0 [PROOFSTEP] rw [zero_mul] [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r 0 0 [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), a * 0 = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Quot.mk Setoid.r a * 0 = 0 [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r (a * 0) 0 [PROOFSTEP] rw [mul_zero] [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ⊢ Setoid.r 0 0 [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ 0 • 1 = 0 [PROOFSTEP] rw [zero_smul] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∃ x y, x ≠ y [PROOFSTEP] use 0, 1 [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ 0 ≠ 1 [PROOFSTEP] intro c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : 0 = 1 ⊢ False [PROOFSTEP] obtain ⟨d, hd⟩ := Quotient.exact' c [GOAL] case h.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : 0 = 1 d : Aˣ hd : (fun m => m • 1) d = 0 ⊢ False [PROOFSTEP] apply_fun fun t => d⁻¹ • t at hd [GOAL] case h.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : 0 = 1 d : Aˣ hd : d⁻¹ • (fun m => m • 1) d = d⁻¹ • 0 ⊢ False [PROOFSTEP] simp only [inv_smul_smul, smul_zero, one_ne_zero] at hd [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ 0⁻¹ = 0 [PROOFSTEP] apply Quotient.sound' [GOAL] case a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Setoid.r 0⁻¹ 0 [PROOFSTEP] rw [inv_zero] [GOAL] case a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Setoid.r 0 0 [PROOFSTEP] apply Setoid.refl' [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (a : ValueGroup A K), a ≠ 0 → a * a⁻¹ = 1 [PROOFSTEP] rintro ⟨a⟩ ha [GOAL] case mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : Quot.mk Setoid.r a ≠ 0 ⊢ Quot.mk Setoid.r a * (Quot.mk Setoid.r a)⁻¹ = 1 [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : Quot.mk Setoid.r a ≠ 0 ⊢ Setoid.r (a * a⁻¹) 1 [PROOFSTEP] use 1 [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : Quot.mk Setoid.r a ≠ 0 ⊢ (fun m => m • 1) 1 = a * a⁻¹ [PROOFSTEP] simp only [one_smul, ne_eq] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : Quot.mk Setoid.r a ≠ 0 ⊢ 1 = a * a⁻¹ [PROOFSTEP] apply (mul_inv_cancel _).symm [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : Quot.mk Setoid.r a ≠ 0 ⊢ a ≠ 0 [PROOFSTEP] contrapose ha [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : ¬a ≠ 0 ⊢ ¬Quot.mk Setoid.r a ≠ 0 [PROOFSTEP] simp only [Classical.not_not] at ha ⊢ [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : a = 0 ⊢ Quot.mk Setoid.r a = 0 [PROOFSTEP] rw [ha] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a✝ : ValueGroup A K a : K ha : a = 0 ⊢ Quot.mk Setoid.r 0 = 0 [PROOFSTEP] rfl [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ∀ (x y : K), ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (x + y) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) x) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) y) [PROOFSTEP] intro a b [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a b : K ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (a + b) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) a) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) b) [PROOFSTEP] obtain ⟨xa, ya, hya, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective a [GOAL] case intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K b : K xa ya : A hya : ya ∈ nonZeroDivisors A ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + b) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) b) [PROOFSTEP] obtain ⟨xb, yb, hyb, rfl⟩ : ∃ a b : A, _ := IsFractionRing.div_surjective b [GOAL] case intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] have : (algebraMap A K) ya ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hya [GOAL] case intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this : ↑(algebraMap A K) ya ≠ 0 ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] have : (algebraMap A K) yb ≠ 0 := IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors hyb [GOAL] case intro.intro.intro.intro.intro.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] obtain ⟨c, h | h⟩ := ValuationRing.cond (xa * yb) (xb * ya) [GOAL] case intro.intro.intro.intro.intro.intro.intro.inl A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) case intro.intro.intro.intro.intro.intro.intro.inr A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.intro.intro.inl A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (Quotient.mk'' (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] apply le_trans _ (le_max_left _ _) [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ Quotient.mk'' (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) [PROOFSTEP] use c + 1 [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ (c + 1) • (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] rw [Algebra.smul_def] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ↑(algebraMap A K) (c + 1) * (↑(algebraMap A K) xa / ↑(algebraMap A K) ya) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] field_simp [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ (↑(algebraMap A K) c + 1) * ↑(algebraMap A K) xa * (↑(algebraMap A K) ya * ↑(algebraMap A K) yb) = (↑(algebraMap A K) xa * ↑(algebraMap A K) yb + ↑(algebraMap A K) xb * ↑(algebraMap A K) ya) * ↑(algebraMap A K) ya [PROOFSTEP] simp only [← RingHom.map_mul, ← RingHom.map_add, ← (algebraMap A K).map_one, ← h] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ ↑(algebraMap A K) ((c + 1) * xa * (ya * yb)) = ↑(algebraMap A K) ((xa * yb + xa * yb * c) * ya) [PROOFSTEP] congr 1 [GOAL] case h.h.e_6.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xa * yb * c = xb * ya ⊢ (c + 1) * xa * (ya * yb) = (xa * yb + xa * yb * c) * ya [PROOFSTEP] ring [GOAL] case intro.intro.intro.intro.intro.intro.intro.inr A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya)) (ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb)) [PROOFSTEP] apply le_trans _ (le_max_right _ _) [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb) ≤ ZeroHom.toFun (↑{ toZeroHom := { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) }, map_one' := (_ : ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1 = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } 1), map_mul' := (_ : ∀ (x x_1 : K), ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1) = ZeroHom.toFun { toFun := Quotient.mk'', map_zero' := (_ : Quotient.mk'' 0 = Quotient.mk'' 0) } (x * x_1)) }) (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) [PROOFSTEP] use c + 1 [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ (c + 1) • (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] rw [Algebra.smul_def] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ↑(algebraMap A K) (c + 1) * (↑(algebraMap A K) xb / ↑(algebraMap A K) yb) = ↑(algebraMap A K) xa / ↑(algebraMap A K) ya + ↑(algebraMap A K) xb / ↑(algebraMap A K) yb [PROOFSTEP] field_simp [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ (↑(algebraMap A K) c + 1) * ↑(algebraMap A K) xb * (↑(algebraMap A K) ya * ↑(algebraMap A K) yb) = (↑(algebraMap A K) xa * ↑(algebraMap A K) yb + ↑(algebraMap A K) xb * ↑(algebraMap A K) ya) * ↑(algebraMap A K) yb [PROOFSTEP] simp only [← RingHom.map_mul, ← RingHom.map_add, ← (algebraMap A K).map_one, ← h] [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ ↑(algebraMap A K) ((c + 1) * xb * (ya * yb)) = ↑(algebraMap A K) ((xb * ya * c + xb * ya) * yb) [PROOFSTEP] congr 1 [GOAL] case h.h.e_6.h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K xa ya : A hya : ya ∈ nonZeroDivisors A xb yb : A hyb : yb ∈ nonZeroDivisors A this✝ : ↑(algebraMap A K) ya ≠ 0 this : ↑(algebraMap A K) yb ≠ 0 c : A h : xb * ya * c = xa * yb ⊢ (c + 1) * xb * (ya * yb) = (xb * ya * c + xb * ya) * yb [PROOFSTEP] ring [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x : K ⊢ x ∈ Valuation.integer (valuation A K) ↔ ∃ a, ↑(algebraMap A K) a = x [PROOFSTEP] constructor [GOAL] case mp A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x : K ⊢ x ∈ Valuation.integer (valuation A K) → ∃ a, ↑(algebraMap A K) a = x [PROOFSTEP] rintro ⟨c, rfl⟩ [GOAL] case mp.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : A ⊢ ∃ a, ↑(algebraMap A K) a = c • 1 [PROOFSTEP] use c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : A ⊢ ↑(algebraMap A K) c = c • 1 [PROOFSTEP] rw [Algebra.smul_def, mul_one] [GOAL] case mpr A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x : K ⊢ (∃ a, ↑(algebraMap A K) a = x) → x ∈ Valuation.integer (valuation A K) [PROOFSTEP] rintro ⟨c, rfl⟩ [GOAL] case mpr.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : A ⊢ ↑(algebraMap A K) c ∈ Valuation.integer (valuation A K) [PROOFSTEP] use c [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K c : A ⊢ c • 1 = ↑(algebraMap A K) c [PROOFSTEP] rw [Algebra.smul_def, mul_one] [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x✝¹ x✝ : A ⊢ (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x✝¹ * x✝) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x✝¹ * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x✝ [PROOFSTEP] ext1 [GOAL] case a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x✝¹ x✝ : A ⊢ ↑((fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x✝¹ * x✝)) = ↑((fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x✝¹ * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x✝) [PROOFSTEP] exact (algebraMap A K).map_mul _ _ [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0 [PROOFSTEP] ext1 [GOAL] case a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ ↑(MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0) = ↑0 [PROOFSTEP] exact (algebraMap A K).map_zero [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x✝¹ x✝ : A ⊢ MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } (x✝¹ + x✝) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } x✝¹ + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } x✝ [PROOFSTEP] ext1 [GOAL] case a A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x✝¹ x✝ : A ⊢ ↑(MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } (x✝¹ + x✝)) = ↑(MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } x✝¹ + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } x✝) [PROOFSTEP] exact (algebraMap A K).map_add _ _ [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Function.Bijective ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) [PROOFSTEP] constructor [GOAL] case left A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Function.Injective ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) [PROOFSTEP] intro x y h [GOAL] case left A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x y : A h : ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) x = ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) y ⊢ x = y [PROOFSTEP] apply_fun (algebraMap (valuation A K).integer K) at h [GOAL] case left A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x y : A h : ↑(algebraMap { x // x ∈ Valuation.integer (valuation A K) } K) (↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) x) = ↑(algebraMap { x // x ∈ Valuation.integer (valuation A K) } K) (↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) y) ⊢ x = y [PROOFSTEP] exact IsFractionRing.injective _ _ h [GOAL] case right A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Function.Surjective ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) [PROOFSTEP] rintro ⟨-, ha⟩ [GOAL] case right.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K val✝ : K ha : val✝ ∈ Valuation.integer (valuation A K) ⊢ ∃ a, ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) a = { val := val✝, property := ha } [PROOFSTEP] rw [mem_integer_iff] at ha [GOAL] case right.mk A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K val✝ : K ha✝ : val✝ ∈ Valuation.integer (valuation A K) ha : ∃ a, ↑(algebraMap A K) a = val✝ ⊢ ∃ a, ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) a = { val := val✝, property := ha✝ } [PROOFSTEP] obtain ⟨a, rfl⟩ := ha [GOAL] case right.mk.intro A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K a : A ha : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K) ⊢ ∃ a_1, ↑(let_fun this := { toMulHom := { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) }, map_zero' := (_ : MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_1 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_1) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_1) } 0 = 0), map_add' := (_ : ∀ (x x_1 : A), MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } (x + x_1) = MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x + MulHom.toFun { toFun := fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }, map_mul' := (_ : ∀ (x x_2 : A), (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) (x * x_2) = (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x * (fun a => { val := ↑(algebraMap A K) a, property := (_ : ↑(algebraMap A K) a ∈ Valuation.integer (valuation A K)) }) x_2) } x_1) }; this) a_1 = { val := ↑(algebraMap A K) a, property := ha } [PROOFSTEP] exact ⟨a, rfl⟩ [GOAL] A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K ⊢ Valuation.integer (valuation A K) = RingHom.range (algebraMap A K) [PROOFSTEP] ext [GOAL] case h A : Type u inst✝⁵ : CommRing A K : Type v inst✝⁴ : Field K inst✝³ : Algebra A K inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : IsFractionRing A K x✝ : K ⊢ x✝ ∈ Valuation.integer (valuation A K) ↔ x✝ ∈ RingHom.range (algebraMap A K) [PROOFSTEP] exact mem_integer_iff _ _ _ [GOAL] A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A ⊢ ∀ (a : A), IsUnit a ∨ IsUnit (1 - a) [PROOFSTEP] intro a [GOAL] A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a : A ⊢ IsUnit a ∨ IsUnit (1 - a) [PROOFSTEP] obtain ⟨c, h | h⟩ := ValuationRing.cond a (1 - a) [GOAL] case intro.inl A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : a * c = 1 - a ⊢ IsUnit a ∨ IsUnit (1 - a) [PROOFSTEP] left [GOAL] case intro.inl.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : a * c = 1 - a ⊢ IsUnit a [PROOFSTEP] apply isUnit_of_mul_eq_one _ (c + 1) [GOAL] case intro.inl.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : a * c = 1 - a ⊢ a * (c + 1) = 1 [PROOFSTEP] simp [mul_add, h] [GOAL] case intro.inr A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : (1 - a) * c = a ⊢ IsUnit a ∨ IsUnit (1 - a) [PROOFSTEP] right [GOAL] case intro.inr.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : (1 - a) * c = a ⊢ IsUnit (1 - a) [PROOFSTEP] apply isUnit_of_mul_eq_one _ (c + 1) [GOAL] case intro.inr.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : ValuationRing A a c : A h : (1 - a) * c = a ⊢ (1 - a) * (c + 1) = 1 [PROOFSTEP] simp [mul_add, h] [GOAL] A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance ⊢ ∀ (a b : Ideal A), a ≤ b ∨ b ≤ a [PROOFSTEP] intro α β [GOAL] A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] by_cases h : α ≤ β [GOAL] case pos A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A h : α ≤ β ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] exact Or.inl h [GOAL] case neg A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A h : ¬α ≤ β ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] erw [not_forall] at h [GOAL] case neg A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A h : ∃ x, ¬(x ∈ α → x ∈ β) ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] push_neg at h [GOAL] case neg A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A h : ∃ x, x ∈ α ∧ ¬x ∈ β ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] obtain ⟨a, h₁, h₂⟩ := h [GOAL] case neg.intro.intro A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β ⊢ α ≤ β ∨ β ≤ α [PROOFSTEP] right [GOAL] case neg.intro.intro.h A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β ⊢ β ≤ α [PROOFSTEP] intro b hb [GOAL] case neg.intro.intro.h A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β ⊢ b ∈ α [PROOFSTEP] obtain ⟨c, h | h⟩ := ValuationRing.cond a b [GOAL] case neg.intro.intro.h.intro.inl A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : a * c = b ⊢ b ∈ α [PROOFSTEP] rw [← h] [GOAL] case neg.intro.intro.h.intro.inl A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : a * c = b ⊢ a * c ∈ α [PROOFSTEP] exact Ideal.mul_mem_right _ _ h₁ [GOAL] case neg.intro.intro.h.intro.inr A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : b * c = a ⊢ b ∈ α [PROOFSTEP] exfalso [GOAL] case neg.intro.intro.h.intro.inr.h A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : b * c = a ⊢ False [PROOFSTEP] apply h₂ [GOAL] case neg.intro.intro.h.intro.inr.h A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : b * c = a ⊢ a ∈ β [PROOFSTEP] rw [← h] [GOAL] case neg.intro.intro.h.intro.inr.h A : Type u inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : ValuationRing A inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : CompleteLattice (Ideal A) := inferInstance α β : Ideal A a : A h₁ : a ∈ α h₂ : ¬a ∈ β b : A hb : b ∈ β c : A h : b * c = a ⊢ b * c ∈ β [PROOFSTEP] apply Ideal.mul_mem_right _ _ hb [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 [PROOFSTEP] classical refine ⟨fun H => ⟨fun a b => ?_⟩, fun H => ⟨fun a b => ?_⟩⟩ · obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b <;> simp · obtain ⟨c, rfl⟩ | ⟨c, rfl⟩ := @IsTotal.total _ _ H a b <;> use c <;> simp [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 [PROOFSTEP] refine ⟨fun H => ⟨fun a b => ?_⟩, fun H => ⟨fun a b => ?_⟩⟩ [GOAL] case refine_1 R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R a b : R ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b [GOAL] case refine_1.intro.inl R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R a c : R ⊢ a ∣ a * c ∨ a * c ∣ a [PROOFSTEP] simp [GOAL] case refine_1.intro.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R b c : R ⊢ b * c ∣ b ∨ b ∣ b * c [PROOFSTEP] simp [GOAL] case refine_2 R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal R fun x x_1 => x ∣ x_1 a b : R ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨c, rfl⟩ | ⟨c, rfl⟩ := @IsTotal.total _ _ H a b [GOAL] case refine_2.inl.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal R fun x x_1 => x ∣ x_1 a c : R ⊢ ∃ c_1, a * c_1 = a * c ∨ a * c * c_1 = a [PROOFSTEP] use c [GOAL] case refine_2.inr.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal R fun x x_1 => x ∣ x_1 b c : R ⊢ ∃ c_1, b * c * c_1 = b ∨ b * c_1 = b * c [PROOFSTEP] use c [GOAL] case h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal R fun x x_1 => x ∣ x_1 a c : R ⊢ a * c = a * c ∨ a * c * c = a [PROOFSTEP] simp [GOAL] case h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal R fun x x_1 => x ∣ x_1 b c : R ⊢ b * c * c = b ∨ b * c = b * c [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 [PROOFSTEP] classical refine' ⟨fun _ => ⟨le_total⟩, fun H => iff_dvd_total.mpr ⟨fun a b => _⟩⟩ have := @IsTotal.total _ _ H (Ideal.span { a }) (Ideal.span { b }) simp_rw [Ideal.span_singleton_le_span_singleton] at this exact this.symm [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 [PROOFSTEP] refine' ⟨fun _ => ⟨le_total⟩, fun H => iff_dvd_total.mpr ⟨fun a b => _⟩⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1 a b : R ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] have := @IsTotal.total _ _ H (Ideal.span { a }) (Ideal.span { b }) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1 a b : R this : Ideal.span {a} ≤ Ideal.span {b} ∨ Ideal.span {b} ≤ Ideal.span {a} ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] simp_rw [Ideal.span_singleton_le_span_singleton] at this [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : IsTotal (Ideal R) fun x x_1 => x ≤ x_1 a b : R this : b ∣ a ∨ a ∣ b ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] exact this.symm [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R p q : R hp : Irreducible p hq : Irreducible q ⊢ Associated p q [PROOFSTEP] have := dvd_total p q [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R p q : R hp : Irreducible p hq : Irreducible q this : p ∣ q ∨ q ∣ p ⊢ Associated p q [PROOFSTEP] rw [Irreducible.dvd_comm hp hq, or_self_iff] at this [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R p q : R hp : Irreducible p hq : Irreducible q this : q ∣ p ⊢ Associated p q [PROOFSTEP] exact associated_of_dvd_dvd (Irreducible.dvd_symm hq hp this) this [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R → ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ [PROOFSTEP] intro H x [GOAL] case mp R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x : K ⊢ IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ [PROOFSTEP] obtain ⟨x : R, y, hy, rfl⟩ := IsFractionRing.div_surjective (A := R) x [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x y : R hy : y ∈ nonZeroDivisors R ⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y) ∨ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y)⁻¹ [PROOFSTEP] have := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr (nonZeroDivisors.ne_zero hy) [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x y : R hy : y ∈ nonZeroDivisors R this : ↑(algebraMap R K) y ≠ 0 ⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y) ∨ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) y)⁻¹ [PROOFSTEP] obtain ⟨s, rfl | rfl⟩ := ValuationRing.cond x y [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x s : R hy : x * s ∈ nonZeroDivisors R this : ↑(algebraMap R K) (x * s) ≠ 0 ⊢ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s)) ∨ IsLocalization.IsInteger R (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s))⁻¹ [PROOFSTEP] exact Or.inr ⟨s, eq_inv_of_mul_eq_one_left <| by rwa [mul_div, div_eq_one_iff_eq, map_mul, mul_comm]⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R x s : R hy : x * s ∈ nonZeroDivisors R this : ↑(algebraMap R K) (x * s) ≠ 0 ⊢ ↑(algebraMap R K) s * (↑(algebraMap R K) x / ↑(algebraMap R K) (x * s)) = 1 [PROOFSTEP] rwa [mul_div, div_eq_one_iff_eq, map_mul, mul_comm] [GOAL] case mp.intro.intro.intro.intro.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R y : R hy : y ∈ nonZeroDivisors R this : ↑(algebraMap R K) y ≠ 0 s : R ⊢ IsLocalization.IsInteger R (↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y) ∨ IsLocalization.IsInteger R (↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y)⁻¹ [PROOFSTEP] exact Or.inl ⟨s, by rwa [eq_div_iff, map_mul, mul_comm]⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ValuationRing R y : R hy : y ∈ nonZeroDivisors R this : ↑(algebraMap R K) y ≠ 0 s : R ⊢ ↑(algebraMap R K) s = ↑(algebraMap R K) (y * s) / ↑(algebraMap R K) y [PROOFSTEP] rwa [eq_div_iff, map_mul, mul_comm] [GOAL] case mpr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ (∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹) → ValuationRing R [PROOFSTEP] intro H [GOAL] case mpr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ ⊢ ValuationRing R [PROOFSTEP] constructor [GOAL] case mpr.cond' R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ ⊢ ∀ (a b : R), ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] intro a b [GOAL] case mpr.cond' R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] subst ha [GOAL] case pos R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ b : R ⊢ ∃ c, 0 * c = b ∨ b * c = 0 [PROOFSTEP] exact ⟨0, Or.inr <| mul_zero b⟩ [GOAL] case neg R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ¬a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ¬a = 0 hb : b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] subst hb [GOAL] case pos R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a : R ha : ¬a = 0 ⊢ ∃ c, a * c = 0 ∨ 0 * c = a [PROOFSTEP] exact ⟨0, Or.inl <| mul_zero a⟩ [GOAL] case neg R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ¬a = 0 hb : ¬b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] replace ha := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr ha [GOAL] case neg R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R hb : ¬b = 0 ha : ↑(algebraMap R K) a ≠ 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] replace hb := (map_ne_zero_iff _ (IsFractionRing.injective R K)).mpr hb [GOAL] case neg R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ↑(algebraMap R K) a ≠ 0 hb : ↑(algebraMap R K) b ≠ 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨c, e⟩ | ⟨c, e⟩ := H (algebraMap R K a / algebraMap R K b) [GOAL] case neg.inl.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ↑(algebraMap R K) a ≠ 0 hb : ↑(algebraMap R K) b ≠ 0 c : R e : ↑(algebraMap R K) c = ↑(algebraMap R K) a / ↑(algebraMap R K) b ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] rw [eq_div_iff hb, ← map_mul, (IsFractionRing.injective R K).eq_iff, mul_comm] at e [GOAL] case neg.inl.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ↑(algebraMap R K) a ≠ 0 hb : ↑(algebraMap R K) b ≠ 0 c : R e : b * c = a ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] exact ⟨c, Or.inr e⟩ [GOAL] case neg.inr.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ↑(algebraMap R K) a ≠ 0 hb : ↑(algebraMap R K) b ≠ 0 c : R e : ↑(algebraMap R K) c = (↑(algebraMap R K) a / ↑(algebraMap R K) b)⁻¹ ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] rw [inv_div, eq_div_iff ha, ← map_mul, (IsFractionRing.injective R K).eq_iff, mul_comm c] at e [GOAL] case neg.inr.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K H : ∀ (x : K), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ a b : R ha : ↑(algebraMap R K) a ≠ 0 hb : ↑(algebraMap R K) b ≠ 0 c : R e : a * c = b ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] exact ⟨c, Or.inl e⟩ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R ⊢ IsBezout R [PROOFSTEP] classical rw [IsBezout.iff_span_pair_isPrincipal] intro x y rw [Ideal.span_insert] cases' le_total (Ideal.span { x } : Ideal R) (Ideal.span { y }) with h h · erw [sup_eq_right.mpr h]; exact ⟨⟨_, rfl⟩⟩ · erw [sup_eq_left.mpr h]; exact ⟨⟨_, rfl⟩⟩ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R ⊢ IsBezout R [PROOFSTEP] rw [IsBezout.iff_span_pair_isPrincipal] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R ⊢ ∀ (x y : R), Submodule.IsPrincipal (Ideal.span {x, y}) [PROOFSTEP] intro x y [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R ⊢ Submodule.IsPrincipal (Ideal.span {x, y}) [PROOFSTEP] rw [Ideal.span_insert] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R ⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y}) [PROOFSTEP] cases' le_total (Ideal.span { x } : Ideal R) (Ideal.span { y }) with h h [GOAL] case inl R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R h : Ideal.span {x} ≤ Ideal.span {y} ⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y}) [PROOFSTEP] erw [sup_eq_right.mpr h] [GOAL] case inl R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R h : Ideal.span {x} ≤ Ideal.span {y} ⊢ Submodule.IsPrincipal (Ideal.span {y}) [PROOFSTEP] exact ⟨⟨_, rfl⟩⟩ [GOAL] case inr R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R h : Ideal.span {y} ≤ Ideal.span {x} ⊢ Submodule.IsPrincipal (Ideal.span {x} ⊔ Ideal.span {y}) [PROOFSTEP] erw [sup_eq_left.mpr h] [GOAL] case inr R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : ValuationRing R x y : R h : Ideal.span {y} ≤ Ideal.span {x} ⊢ Submodule.IsPrincipal (Ideal.span {x}) [PROOFSTEP] exact ⟨⟨_, rfl⟩⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R [PROOFSTEP] classical refine ⟨fun H => ⟨inferInstance, inferInstance⟩, ?_⟩ rintro ⟨h₁, h₂⟩ refine iff_dvd_total.mpr ⟨fun a b => ?_⟩ obtain ⟨g, e : _ = Ideal.span _⟩ := IsBezout.span_pair_isPrincipal a b obtain ⟨a, rfl⟩ := Ideal.mem_span_singleton'.mp (show a ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp)) obtain ⟨b, rfl⟩ := Ideal.mem_span_singleton'.mp (show b ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp)) obtain ⟨x, y, e'⟩ := Ideal.mem_span_pair.mp (show g ∈ Ideal.span {a * g, b * g} by rw [e]; exact Ideal.subset_span (by simp)) cases' eq_or_ne g 0 with h h · simp [h] have : x * a + y * b = 1 := by apply mul_left_injective₀ h; convert e' using 1 <;> ring cases' LocalRing.isUnit_or_isUnit_of_add_one this with h' h' left swap right all_goals exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R [PROOFSTEP] refine ⟨fun H => ⟨inferInstance, inferInstance⟩, ?_⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ LocalRing R ∧ IsBezout R → ValuationRing R [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R ⊢ ValuationRing R [PROOFSTEP] refine iff_dvd_total.mpr ⟨fun a b => ?_⟩ [GOAL] case intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R a b : R ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] obtain ⟨g, e : _ = Ideal.span _⟩ := IsBezout.span_pair_isPrincipal a b [GOAL] case intro.mk.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R a b g : R e : Ideal.span {a, b} = Ideal.span {g} ⊢ a ∣ b ∨ b ∣ a [PROOFSTEP] obtain ⟨a, rfl⟩ := Ideal.mem_span_singleton'.mp (show a ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp)) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R a b g : R e : Ideal.span {a, b} = Ideal.span {g} ⊢ a ∈ Ideal.span {g} [PROOFSTEP] rw [← e] [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R a b g : R e : Ideal.span {a, b} = Ideal.span {g} ⊢ a ∈ Ideal.span {a, b} [PROOFSTEP] exact Ideal.subset_span (by simp) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R a b g : R e : Ideal.span {a, b} = Ideal.span {g} ⊢ a ∈ {a, b} [PROOFSTEP] simp [GOAL] case intro.mk.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R b g a : R e : Ideal.span {a * g, b} = Ideal.span {g} ⊢ a * g ∣ b ∨ b ∣ a * g [PROOFSTEP] obtain ⟨b, rfl⟩ := Ideal.mem_span_singleton'.mp (show b ∈ Ideal.span { g } by rw [← e]; exact Ideal.subset_span (by simp)) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R b g a : R e : Ideal.span {a * g, b} = Ideal.span {g} ⊢ b ∈ Ideal.span {g} [PROOFSTEP] rw [← e] [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R b g a : R e : Ideal.span {a * g, b} = Ideal.span {g} ⊢ b ∈ Ideal.span {a * g, b} [PROOFSTEP] exact Ideal.subset_span (by simp) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R b g a : R e : Ideal.span {a * g, b} = Ideal.span {g} ⊢ b ∈ {a * g, b} [PROOFSTEP] simp [GOAL] case intro.mk.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] obtain ⟨x, y, e'⟩ := Ideal.mem_span_pair.mp (show g ∈ Ideal.span {a * g, b * g} by rw [e]; exact Ideal.subset_span (by simp)) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} ⊢ g ∈ Ideal.span {a * g, b * g} [PROOFSTEP] rw [e] [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} ⊢ g ∈ Ideal.span {g} [PROOFSTEP] exact Ideal.subset_span (by simp) [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} ⊢ g ∈ {g} [PROOFSTEP] simp [GOAL] case intro.mk.intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] cases' eq_or_ne g 0 with h h [GOAL] case intro.mk.intro.intro.intro.intro.intro.inl R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g = 0 ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] simp [h] [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] have : x * a + y * b = 1 := by apply mul_left_injective₀ h; convert e' using 1 <;> ring [GOAL] R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 ⊢ x * a + y * b = 1 [PROOFSTEP] apply mul_left_injective₀ h [GOAL] case a R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 ⊢ (fun a => a * g) (x * a + y * b) = (fun a => a * g) 1 [PROOFSTEP] convert e' using 1 [GOAL] case h.e'_2 R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 ⊢ (fun a => a * g) (x * a + y * b) = x * (a * g) + y * (b * g) [PROOFSTEP] ring [GOAL] case h.e'_3 R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 ⊢ (fun a => a * g) 1 = g [PROOFSTEP] ring [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] cases' LocalRing.isUnit_or_isUnit_of_add_one this with h' h' [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inl R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (x * a) ⊢ a * g ∣ b * g ∨ b * g ∣ a * g case intro.mk.intro.intro.intro.intro.intro.inr.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (y * b) ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] left [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inl.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (x * a) ⊢ a * g ∣ b * g case intro.mk.intro.intro.intro.intro.intro.inr.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (y * b) ⊢ a * g ∣ b * g ∨ b * g ∣ a * g [PROOFSTEP] swap [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inr R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (y * b) ⊢ a * g ∣ b * g ∨ b * g ∣ a * g case intro.mk.intro.intro.intro.intro.intro.inr.inl.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (x * a) ⊢ a * g ∣ b * g [PROOFSTEP] right [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inr.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (y * b) ⊢ b * g ∣ a * g case intro.mk.intro.intro.intro.intro.intro.inr.inl.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (x * a) ⊢ a * g ∣ b * g [PROOFSTEP] all_goals exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _ [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inr.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (y * b) ⊢ b * g ∣ a * g [PROOFSTEP] exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _ [GOAL] case intro.mk.intro.intro.intro.intro.intro.inr.inl.h R : Type u_1 inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K h₁ : LocalRing R h₂ : IsBezout R g a b : R e : Ideal.span {a * g, b * g} = Ideal.span {g} x y : R e' : x * (a * g) + y * (b * g) = g h : g ≠ 0 this : x * a + y * b = 1 h' : IsUnit (x * a) ⊢ a * g ∣ b * g [PROOFSTEP] exact mul_dvd_mul_right (isUnit_iff_forall_dvd.mp (isUnit_of_mul_isUnit_right h') _) _ [GOAL] R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ List.TFAE [ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹, IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R] [PROOFSTEP] tfae_have 1 ↔ 2 [GOAL] case tfae_1_iff_2 R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ [PROOFSTEP] exact iff_isInteger_or_isInteger R _ [GOAL] R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ ⊢ List.TFAE [ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹, IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R] [PROOFSTEP] tfae_have 1 ↔ 3 [GOAL] case tfae_1_iff_3 R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ ⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 [PROOFSTEP] exact iff_dvd_total [GOAL] R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 ⊢ List.TFAE [ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹, IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R] [PROOFSTEP] tfae_have 1 ↔ 4 [GOAL] case tfae_1_iff_4 R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 ⊢ ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 [PROOFSTEP] exact iff_ideal_total [GOAL] R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 ⊢ List.TFAE [ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹, IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R] [PROOFSTEP] tfae_have 1 ↔ 5 [GOAL] case tfae_1_iff_5 R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 ⊢ ValuationRing R ↔ LocalRing R ∧ IsBezout R [PROOFSTEP] exact iff_local_bezout_domain [GOAL] R✝ : Type u_1 inst✝⁶ : CommRing R✝ inst✝⁵ : IsDomain R✝ K : Type u_2 inst✝⁴ : Field K inst✝³ : Algebra R✝ K inst✝² : IsFractionRing R✝ K R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R tfae_1_iff_2 : ValuationRing R ↔ ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹ tfae_1_iff_3 : ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1 tfae_1_iff_4 : ValuationRing R ↔ IsTotal (Ideal R) fun x x_1 => x ≤ x_1 tfae_1_iff_5 : ValuationRing R ↔ LocalRing R ∧ IsBezout R ⊢ List.TFAE [ValuationRing R, ∀ (x : FractionRing R), IsLocalization.IsInteger R x ∨ IsLocalization.IsInteger R x⁻¹, IsTotal R fun x x_1 => x ∣ x_1, IsTotal (Ideal R) fun x x_1 => x ≤ x_1, LocalRing R ∧ IsBezout R] [PROOFSTEP] tfae_finish [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : ValuationRing R inst✝¹ : CommRing S inst✝ : IsDomain S f : R →+* S hf : Function.Surjective ↑f a b : S ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨⟨a, rfl⟩, ⟨b, rfl⟩⟩ := hf a, hf b [GOAL] case intro.intro R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : ValuationRing R inst✝¹ : CommRing S inst✝ : IsDomain S f : R →+* S hf : Function.Surjective ↑f a b : R ⊢ ∃ c, ↑f a * c = ↑f b ∨ ↑f b * c = ↑f a [PROOFSTEP] obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b [GOAL] case intro.intro.intro.inl R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : ValuationRing R inst✝¹ : CommRing S inst✝ : IsDomain S f : R →+* S hf : Function.Surjective ↑f a c : R ⊢ ∃ c_1, ↑f a * c_1 = ↑f (a * c) ∨ ↑f (a * c) * c_1 = ↑f a case intro.intro.intro.inr R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : ValuationRing R inst✝¹ : CommRing S inst✝ : IsDomain S f : R →+* S hf : Function.Surjective ↑f b c : R ⊢ ∃ c_1, ↑f (b * c) * c_1 = ↑f b ∨ ↑f b * c_1 = ↑f (b * c) [PROOFSTEP] exacts [⟨f c, Or.inl <| (map_mul _ _ _).symm⟩, ⟨f c, Or.inr <| (map_mul _ _ _).symm⟩] [GOAL] 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 ⊢ ValuationRing 𝒪 [PROOFSTEP] constructor [GOAL] case cond' 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 ⊢ ∀ (a b : 𝒪), ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] intro a b [GOAL] case cond' 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] cases' le_total (v (algebraMap 𝒪 K a)) (v (algebraMap 𝒪 K b)) with h h [GOAL] case cond'.inl 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b) ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨c, hc⟩ := Valuation.Integers.dvd_of_le hh h [GOAL] case cond'.inl.intro 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b) c : 𝒪 hc : a = b * c ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use c [GOAL] case h 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) a) ≤ ↑v (↑(algebraMap 𝒪 K) b) c : 𝒪 hc : a = b * c ⊢ a * c = b ∨ b * c = a [PROOFSTEP] exact Or.inr hc.symm [GOAL] case cond'.inr 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a) ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨c, hc⟩ := Valuation.Integers.dvd_of_le hh h [GOAL] case cond'.inr.intro 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a) c : 𝒪 hc : b = a * c ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use c [GOAL] case h 𝒪 : Type u K : Type v Γ : Type w inst✝⁴ : CommRing 𝒪 inst✝³ : IsDomain 𝒪 inst✝² : Field K inst✝¹ : Algebra 𝒪 K inst✝ : LinearOrderedCommGroupWithZero Γ v : Valuation K Γ hh : Valuation.Integers v 𝒪 a b : 𝒪 h : ↑v (↑(algebraMap 𝒪 K) b) ≤ ↑v (↑(algebraMap 𝒪 K) a) c : 𝒪 hc : b = a * c ⊢ a * c = b ∨ b * c = a [PROOFSTEP] exact Or.inl hc.symm [GOAL] K : Type u inst✝ : Field K ⊢ ValuationRing K [PROOFSTEP] constructor [GOAL] case cond' K : Type u inst✝ : Field K ⊢ ∀ (a b : K), ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] intro a b [GOAL] case cond' K : Type u inst✝ : Field K a b : K ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases b = 0 [GOAL] case cond' K : Type u inst✝ : Field K a b : K ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases b = 0 [GOAL] case pos K : Type u inst✝ : Field K a b : K h : b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use 0 [GOAL] case h K : Type u inst✝ : Field K a b : K h : b = 0 ⊢ a * 0 = b ∨ b * 0 = a [PROOFSTEP] left [GOAL] case h.h K : Type u inst✝ : Field K a b : K h : b = 0 ⊢ a * 0 = b [PROOFSTEP] simp [h] [GOAL] case neg K : Type u inst✝ : Field K a b : K h : ¬b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use a * b⁻¹ [GOAL] case h K : Type u inst✝ : Field K a b : K h : ¬b = 0 ⊢ a * (a * b⁻¹) = b ∨ b * (a * b⁻¹) = a [PROOFSTEP] right [GOAL] case h.h K : Type u inst✝ : Field K a b : K h : ¬b = 0 ⊢ b * (a * b⁻¹) = a [PROOFSTEP] field_simp [GOAL] case h.h K : Type u inst✝ : Field K a b : K h : ¬b = 0 ⊢ b * a = a * b [PROOFSTEP] rw [mul_comm] [GOAL] A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ⊢ ValuationRing A [PROOFSTEP] constructor [GOAL] case cond' A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ⊢ ∀ (a b : A), ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] intro a b [GOAL] case cond' A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use 0 [GOAL] case h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : a = 0 ⊢ a * 0 = b ∨ b * 0 = a [PROOFSTEP] right [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : a = 0 ⊢ b * 0 = a [PROOFSTEP] simp [ha] [GOAL] case neg A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 hb : b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use 0 [GOAL] case h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 hb : b = 0 ⊢ a * 0 = b ∨ b * 0 = a [PROOFSTEP] left [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 hb : b = 0 ⊢ a * 0 = b [PROOFSTEP] simp [hb] [GOAL] case neg A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 hb : ¬b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨ϖ, hϖ⟩ := DiscreteValuationRing.exists_irreducible A [GOAL] case neg.intro A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A a b : A ha : ¬a = 0 hb : ¬b = 0 ϖ : A hϖ : Irreducible ϖ ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] obtain ⟨m, u, rfl⟩ := DiscreteValuationRing.eq_unit_mul_pow_irreducible ha hϖ [GOAL] case neg.intro.intro.intro A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A b : A hb : ¬b = 0 ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 ⊢ ∃ c, ↑u * ϖ ^ m * c = b ∨ b * c = ↑u * ϖ ^ m [PROOFSTEP] obtain ⟨n, v, rfl⟩ := DiscreteValuationRing.eq_unit_mul_pow_irreducible hb hϖ [GOAL] case neg.intro.intro.intro.intro.intro A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 ⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m [PROOFSTEP] cases' le_total m n with h h [GOAL] case neg.intro.intro.intro.intro.intro.inl A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m [PROOFSTEP] use(u⁻¹ * v : Aˣ) * ϖ ^ (n - m) [GOAL] case h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ ↑u * ϖ ^ m * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑u * ϖ ^ m [PROOFSTEP] left [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ ↑u * ϖ ^ m * (↑(u⁻¹ * v) * ϖ ^ (n - m)) = ↑v * ϖ ^ n [PROOFSTEP] simp_rw [mul_comm (u : A), Units.val_mul, ← mul_assoc, mul_assoc _ (u : A)] [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ ϖ ^ m * (↑u * ↑u⁻¹) * ↑v * ϖ ^ (n - m) = ↑v * ϖ ^ n [PROOFSTEP] simp only [Units.mul_inv, mul_one, mul_comm _ (v : A), mul_assoc, ← pow_add] [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ ↑v * ϖ ^ (m + (n - m)) = ↑v * ϖ ^ n [PROOFSTEP] congr 2 [GOAL] case h.h.e_a.e_a A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : m ≤ n ⊢ m + (n - m) = n [PROOFSTEP] exact Nat.add_sub_of_le h [GOAL] case neg.intro.intro.intro.intro.intro.inr A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ ∃ c, ↑u * ϖ ^ m * c = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * c = ↑u * ϖ ^ m [PROOFSTEP] use(v⁻¹ * u : Aˣ) * ϖ ^ (m - n) [GOAL] case h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ ↑u * ϖ ^ m * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑v * ϖ ^ n ∨ ↑v * ϖ ^ n * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑u * ϖ ^ m [PROOFSTEP] right [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ ↑v * ϖ ^ n * (↑(v⁻¹ * u) * ϖ ^ (m - n)) = ↑u * ϖ ^ m [PROOFSTEP] simp_rw [mul_comm (v : A), Units.val_mul, ← mul_assoc, mul_assoc _ (v : A)] [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ ϖ ^ n * (↑v * ↑v⁻¹) * ↑u * ϖ ^ (m - n) = ↑u * ϖ ^ m [PROOFSTEP] simp only [Units.mul_inv, mul_one, mul_comm _ (u : A), mul_assoc, ← pow_add] [GOAL] case h.h A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ ↑u * ϖ ^ (n + (m - n)) = ↑u * ϖ ^ m [PROOFSTEP] congr 2 [GOAL] case h.h.e_a.e_a A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : DiscreteValuationRing A ϖ : A hϖ : Irreducible ϖ m : ℕ u : Aˣ ha : ¬↑u * ϖ ^ m = 0 n : ℕ v : Aˣ hb : ¬↑v * ϖ ^ n = 0 h : n ≤ m ⊢ n + (m - n) = m [PROOFSTEP] exact Nat.add_sub_of_le h
{"mathlib_filename": "Mathlib.RingTheory.Valuation.ValuationRing", "llama_tokens": 80998}
[GOAL] x : ℝ hx : 0 ≤ x y : ℝ z : ℂ ⊢ ↑x ^ (↑y * z) = ↑(x ^ y) ^ z [PROOFSTEP] rw [cpow_mul, ofReal_cpow hx] [GOAL] case h₁ x : ℝ hx : 0 ≤ x y : ℝ z : ℂ ⊢ -Real.pi < (log ↑x * ↑y).im [PROOFSTEP] rw [← ofReal_log hx, ← ofReal_mul, ofReal_im, neg_lt_zero] [GOAL] case h₁ x : ℝ hx : 0 ≤ x y : ℝ z : ℂ ⊢ 0 < Real.pi [PROOFSTEP] exact Real.pi_pos [GOAL] case h₂ x : ℝ hx : 0 ≤ x y : ℝ z : ℂ ⊢ (log ↑x * ↑y).im ≤ Real.pi [PROOFSTEP] rw [← ofReal_log hx, ← ofReal_mul, ofReal_im] [GOAL] case h₂ x : ℝ hx : 0 ≤ x y : ℝ z : ℂ ⊢ 0 ≤ Real.pi [PROOFSTEP] exact Real.pi_pos.le [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℂ E f : ℝ → E s : ℂ hf : MellinConvergent f s 𝕜 : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : SMulCommClass ℂ 𝕜 E c : 𝕜 ⊢ MellinConvergent (fun t => c • f t) s [PROOFSTEP] simpa only [MellinConvergent, smul_comm] using hf.smul c [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s a : ℂ ⊢ MellinConvergent (fun t => ↑t ^ a • f t) s ↔ MellinConvergent f (s + a) [PROOFSTEP] refine' integrableOn_congr_fun (fun t ht => _) measurableSet_Ioi [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s a : ℂ t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • (fun t => ↑t ^ a • f t) t = ↑t ^ (s + a - 1) • f t [PROOFSTEP] simp_rw [← sub_add_eq_add_sub, cpow_add _ _ (ofReal_ne_zero.2 <| ne_of_gt ht), mul_smul] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → ℂ s : ℂ hf : MellinConvergent f s a : ℂ ⊢ MellinConvergent (fun t => f t / a) s [PROOFSTEP] simpa only [MellinConvergent, smul_eq_mul, ← mul_div_assoc] using hf.div_const a [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a ⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s [PROOFSTEP] have := integrableOn_Ioi_comp_mul_left_iff (fun t : ℝ => (t : ℂ) ^ (s - 1) • f t) 0 ha [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi (a * 0)) ⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s [PROOFSTEP] rw [mul_zero] at this [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) ⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s [PROOFSTEP] have h1 : EqOn (fun t : ℝ => (↑(a * t) : ℂ) ^ (s - 1) • f (a * t)) ((a : ℂ) ^ (s - 1) • fun t : ℝ => (t : ℂ) ^ (s - 1) • f (a * t)) (Ioi 0) := fun t ht ↦ by simp only [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), mul_smul, Pi.smul_apply] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) t : ℝ ht : t ∈ Ioi 0 ⊢ (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) t = (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) t [PROOFSTEP] simp only [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), mul_smul, Pi.smul_apply] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0) ⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s [PROOFSTEP] have h2 : (a : ℂ) ^ (s - 1) ≠ 0 := by rw [Ne.def, cpow_eq_zero_iff, not_and_or, ofReal_eq_zero] exact Or.inl ha.ne' [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0) ⊢ ↑a ^ (s - 1) ≠ 0 [PROOFSTEP] rw [Ne.def, cpow_eq_zero_iff, not_and_or, ofReal_eq_zero] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0) ⊢ ¬a = 0 ∨ ¬s - 1 ≠ 0 [PROOFSTEP] exact Or.inl ha.ne' [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : IntegrableOn (fun x => (fun t => ↑t ^ (s - 1) • f t) (a * x)) (Ioi 0) ↔ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) (Ioi 0) h1 : EqOn (fun t => ↑(a * t) ^ (s - 1) • f (a * t)) (↑a ^ (s - 1) • fun t => ↑t ^ (s - 1) • f (a * t)) (Ioi 0) h2 : ↑a ^ (s - 1) ≠ 0 ⊢ MellinConvergent (fun t => f (a * t)) s ↔ MellinConvergent f s [PROOFSTEP] rw [MellinConvergent, MellinConvergent, ← this, integrableOn_congr_fun h1 measurableSet_Ioi, IntegrableOn, IntegrableOn, integrable_smul_iff h2] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ MellinConvergent (fun t => f (t ^ a)) s ↔ MellinConvergent f (s / ↑a) [PROOFSTEP] refine Iff.trans ?_ (integrableOn_Ioi_comp_rpow_iff' _ ha) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ MellinConvergent (fun t => f (t ^ a)) s ↔ IntegrableOn (fun x => x ^ (a - 1) • ↑(x ^ a) ^ (s / ↑a - 1) • f (x ^ a)) (Ioi 0) [PROOFSTEP] rw [MellinConvergent] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f (t ^ a)) (Ioi 0) ↔ IntegrableOn (fun x => x ^ (a - 1) • ↑(x ^ a) ^ (s / ↑a - 1) • f (x ^ a)) (Ioi 0) [PROOFSTEP] refine' integrableOn_congr_fun (fun t ht => _) measurableSet_Ioi [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (t ^ a) = t ^ (a - 1) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a) [PROOFSTEP] dsimp only [Pi.smul_apply] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (t ^ a) = t ^ (a - 1) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a) [PROOFSTEP] rw [← Complex.coe_smul (t ^ (a - 1)), ← mul_smul, ← cpow_mul_ofReal_nonneg (le_of_lt ht), ofReal_cpow (le_of_lt ht), ← cpow_add _ _ (ofReal_ne_zero.mpr (ne_of_gt ht)), ofReal_sub, ofReal_one, mul_sub, mul_div_cancel' _ (ofReal_ne_zero.mpr ha), mul_one, add_comm, ← add_sub_assoc, sub_add_cancel] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s a : ℂ ⊢ mellin (fun t => ↑t ^ a • f t) s = mellin f (s + a) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun t ht => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s a : ℂ t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • (fun t => ↑t ^ a • f t) t = ↑t ^ (s + a - 1) • f t [PROOFSTEP] simp_rw [← sub_add_eq_add_sub, cpow_add _ _ (ofReal_ne_zero.2 <| ne_of_gt ht), mul_smul] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E f : ℝ → E s : ℂ 𝕜 : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : SMulCommClass ℂ 𝕜 E c : 𝕜 ⊢ mellin (fun t => c • f t) s = c • mellin f s [PROOFSTEP] simp only [mellin, smul_comm, integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → ℂ s a : ℂ ⊢ mellin (fun t => f t / a) s = mellin f s / a [PROOFSTEP] simp_rw [mellin, smul_eq_mul, ← mul_div_assoc, integral_div] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ mellin (fun t => f (t ^ a)) s = |a|⁻¹ • mellin f (s / ↑a) [PROOFSTEP] simp_rw [mellin] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t [PROOFSTEP] conv_rhs => rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 | |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t [PROOFSTEP] rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 | |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t [PROOFSTEP] rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 | |a|⁻¹ • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s / ↑a - 1) • f t [PROOFSTEP] rw [← integral_comp_rpow_Ioi _ ha, ← integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 ⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (t ^ a) = ∫ (a_1 : ℝ) in Ioi 0, |a|⁻¹ • (|a| * a_1 ^ (a - 1)) • ↑(a_1 ^ a) ^ (s / ↑a - 1) • f (a_1 ^ a) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun t ht => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • (|a| * t ^ (a - 1)) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a) [PROOFSTEP] dsimp only [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (t ^ a) = |a|⁻¹ • (|a| * t ^ (a - 1)) • ↑(t ^ a) ^ (s / ↑a - 1) • f (t ^ a) [PROOFSTEP] rw [← mul_smul, ← mul_assoc, inv_mul_cancel (mt abs_eq_zero.1 ha), one_mul, ← smul_assoc, real_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : a ≠ 0 t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (t ^ a) = (↑(t ^ (a - 1)) * ↑(t ^ a) ^ (s / ↑a - 1)) • f (t ^ a) [PROOFSTEP] rw [ofReal_cpow (le_of_lt ht), ← cpow_mul_ofReal_nonneg (le_of_lt ht), ← cpow_add _ _ (ofReal_ne_zero.mpr <| ne_of_gt ht), ofReal_sub, ofReal_one, mul_sub, mul_div_cancel' _ (ofReal_ne_zero.mpr ha), add_comm, ← add_sub_assoc, mul_one, sub_add_cancel] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a ⊢ mellin (fun t => f (a * t)) s = ↑a ^ (-s) • mellin f s [PROOFSTEP] simp_rw [mellin] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a ⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (a * t) = ↑a ^ (-s) • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f t [PROOFSTEP] have : EqOn (fun t : ℝ => (t : ℂ) ^ (s - 1) • f (a * t)) (fun t : ℝ => (a : ℂ) ^ (1 - s) • (fun u : ℝ => (u : ℂ) ^ (s - 1) • f u) (a * t)) (Ioi 0) := fun t ht ↦ by dsimp only rw [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), ← mul_smul, (by ring : 1 - s = -(s - 1)), cpow_neg, inv_mul_cancel_left₀] rw [Ne.def, cpow_eq_zero_iff, ofReal_eq_zero, not_and_or] exact Or.inl ha.ne' [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ (fun t => ↑t ^ (s - 1) • f (a * t)) t = (fun t => ↑a ^ (1 - s) • (fun u => ↑u ^ (s - 1) • f u) (a * t)) t [PROOFSTEP] dsimp only [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • f (a * t) = ↑a ^ (1 - s) • ↑(a * t) ^ (s - 1) • f (a * t) [PROOFSTEP] rw [ofReal_mul, mul_cpow_ofReal_nonneg ha.le (le_of_lt ht), ← mul_smul, (by ring : 1 - s = -(s - 1)), cpow_neg, inv_mul_cancel_left₀] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ 1 - s = -(s - 1) [PROOFSTEP] ring [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ ↑a ^ (s - 1) ≠ 0 [PROOFSTEP] rw [Ne.def, cpow_eq_zero_iff, ofReal_eq_zero, not_and_or] [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ ¬a = 0 ∨ ¬s - 1 ≠ 0 [PROOFSTEP] exact Or.inl ha.ne' [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a this : EqOn (fun t => ↑t ^ (s - 1) • f (a * t)) (fun t => ↑a ^ (1 - s) • (fun u => ↑u ^ (s - 1) • f u) (a * t)) (Ioi 0) ⊢ ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f (a * t) = ↑a ^ (-s) • ∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) • f t [PROOFSTEP] rw [set_integral_congr measurableSet_Ioi this, integral_smul, integral_comp_mul_left_Ioi (fun u ↦ ↑u ^ (s - 1) • f u) _ ha, mul_zero, ← Complex.coe_smul, ← mul_smul, sub_eq_add_neg, cpow_add _ _ (ofReal_ne_zero.mpr ha.ne'), cpow_one, abs_of_pos (inv_pos.mpr ha), ofReal_inv, mul_assoc, mul_comm, inv_mul_cancel_right₀ (ofReal_ne_zero.mpr ha.ne')] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ a : ℝ ha : 0 < a ⊢ mellin (fun t => f (t * a)) s = ↑a ^ (-s) • mellin f s [PROOFSTEP] simpa only [mul_comm] using mellin_comp_mul_left f s ha [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℝ → E s : ℂ ⊢ mellin (fun t => f t⁻¹) s = mellin f (-s) [PROOFSTEP] simp_rw [← rpow_neg_one, mellin_comp_rpow _ _ (neg_ne_zero.mpr one_ne_zero), abs_neg, abs_one, inv_one, one_smul, ofReal_neg, ofReal_one, div_neg, div_one] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℝ → E s : ℂ hf : MellinConvergent f s hg : MellinConvergent g s ⊢ MellinConvergent (fun t => f t + g t) s [PROOFSTEP] simpa only [MellinConvergent, smul_add] using hf.add hg [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℝ → E s : ℂ hf : MellinConvergent f s hg : MellinConvergent g s ⊢ mellin (fun t => f t + g t) s = mellin f s + mellin g s [PROOFSTEP] simpa only [mellin, smul_add] using integral_add hf hg [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℝ → E s : ℂ hf : MellinConvergent f s hg : MellinConvergent g s ⊢ MellinConvergent (fun t => f t - g t) s [PROOFSTEP] simpa only [MellinConvergent, smul_sub] using hf.sub hg [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℝ → E s : ℂ hf : MellinConvergent f s hg : MellinConvergent g s ⊢ mellin (fun t => f t - g t) s = mellin f s - mellin g s [PROOFSTEP] simpa only [mellin, smul_sub] using integral_sub hf hg [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ ⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T [PROOFSTEP] have : AEStronglyMeasurable (fun t : ℝ => (t : ℂ) ^ (s - 1) • f t) (volume.restrict T) := by refine' ((ContinuousAt.continuousOn _).aestronglyMeasurable hT').smul (hfc.mono_set hT) exact fun t ht => continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt (hT ht)) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ ⊢ AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T) [PROOFSTEP] refine' ((ContinuousAt.continuousOn _).aestronglyMeasurable hT').smul (hfc.mono_set hT) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ ⊢ ∀ (x : ℝ), x ∈ T → ContinuousAt (fun t => ↑t ^ (s - 1)) x [PROOFSTEP] exact fun t ht => continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt (hT ht)) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T) ⊢ IntegrableOn (fun t => ↑t ^ (s - 1) • f t) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T [PROOFSTEP] rw [IntegrableOn, ← integrable_norm_iff this, ← IntegrableOn] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T) ⊢ IntegrableOn (fun a => ‖↑a ^ (s - 1) • f a‖) T ↔ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) T [PROOFSTEP] refine' integrableOn_congr_fun (fun t ht => _) hT' [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E T : Set ℝ hT : T ⊆ Ioi 0 hT' : MeasurableSet T hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) s : ℂ this : AEStronglyMeasurable (fun t => ↑t ^ (s - 1) • f t) (Measure.restrict volume T) t : ℝ ht : t ∈ T ⊢ ‖↑t ^ (s - 1) • f t‖ = t ^ (s.re - 1) * ‖f t‖ [PROOFSTEP] simp_rw [norm_smul, Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos (hT ht), sub_re, one_re] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c) [PROOFSTEP] obtain ⟨d, hd'⟩ := hf.isBigOWith [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d : ℝ hd' : IsBigOWith d atTop f fun x => x ^ (-a) ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c) [PROOFSTEP] simp_rw [IsBigOWith, eventually_atTop] at hd' [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d : ℝ hd' : ∃ a_1, ∀ (b : ℝ), b ≥ a_1 → ‖f b‖ ≤ d * ‖b ^ (-a)‖ ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c) [PROOFSTEP] obtain ⟨e, he⟩ := hd' [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c) [PROOFSTEP] have he' : 0 < max e 1 := zero_lt_one.trans_le (le_max_right _ _) [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c) [PROOFSTEP] refine' ⟨max e 1, he', _, _⟩ [GOAL] case intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 ⊢ AEStronglyMeasurable (fun t => t ^ (s - 1) * f t) (Measure.restrict volume (Ioi (max e 1))) [PROOFSTEP] refine' AEStronglyMeasurable.mul _ (hfc.mono_set (Ioi_subset_Ioi he'.le)) [GOAL] case intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 ⊢ AEStronglyMeasurable (fun t => t ^ (s - 1)) (Measure.restrict volume (Ioi (max e 1))) [PROOFSTEP] refine' (ContinuousAt.continuousOn fun t ht => _).aestronglyMeasurable measurableSet_Ioi [GOAL] case intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 t : ℝ ht : t ∈ Ioi (max e 1) ⊢ ContinuousAt (fun t => t ^ (s - 1)) t [PROOFSTEP] exact continuousAt_rpow_const _ _ (Or.inl <| (he'.trans ht).ne') [GOAL] case intro.intro.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 ⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t [PROOFSTEP] have : ∀ᵐ t : ℝ ∂volume.restrict (Ioi <| max e 1), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d := by refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht => _ have ht' : 0 < t := he'.trans ht rw [norm_mul, rpow_add ht', ← norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le (-a)), mul_assoc, mul_comm _ d, norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le _)] exact mul_le_mul_of_nonneg_left (he t ((le_max_left e 1).trans_lt ht).le) (rpow_pos_of_pos ht' _).le [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 ⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d [PROOFSTEP] refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht => _ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 t : ℝ ht : t ∈ Ioi (max e 1) ⊢ ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d [PROOFSTEP] have ht' : 0 < t := he'.trans ht [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 t : ℝ ht : t ∈ Ioi (max e 1) ht' : 0 < t ⊢ ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d [PROOFSTEP] rw [norm_mul, rpow_add ht', ← norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le (-a)), mul_assoc, mul_comm _ d, norm_of_nonneg (rpow_nonneg_of_nonneg ht'.le _)] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 t : ℝ ht : t ∈ Ioi (max e 1) ht' : 0 < t ⊢ t ^ (s - 1) * ‖f t‖ ≤ t ^ (s - 1) * (d * ‖t ^ (-a)‖) [PROOFSTEP] exact mul_le_mul_of_nonneg_left (he t ((le_max_left e 1).trans_lt ht).le) (rpow_pos_of_pos ht' _).le [GOAL] case intro.intro.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d ⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t [PROOFSTEP] refine' (HasFiniteIntegral.mul_const _ _).mono' this [GOAL] case intro.intro.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d ⊢ HasFiniteIntegral fun a_1 => a_1 ^ (s - 1 + -a) [PROOFSTEP] exact (integrableOn_Ioi_rpow_of_lt (by linarith) he').hasFiniteIntegral [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) a s : ℝ hf : f =O[atTop] fun x => x ^ (-a) hs : s < a d e : ℝ he : ∀ (b : ℝ), b ≥ e → ‖f b‖ ≤ d * ‖b ^ (-a)‖ he' : 0 < max e 1 this : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi (max e 1)), ‖t ^ (s - 1) * f t‖ ≤ t ^ (s - 1 + -a) * d ⊢ s - 1 + -a < -1 [PROOFSTEP] linarith [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c) [PROOFSTEP] obtain ⟨d, hd, hd'⟩ := hf.exists_pos [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d hd' : IsBigOWith d (𝓝[Ioi 0] 0) f fun x => x ^ (-b) ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c) [PROOFSTEP] simp_rw [IsBigOWith, eventually_nhdsWithin_iff, Metric.eventually_nhds_iff, gt_iff_lt] at hd' [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d hd' : ∃ ε, 0 < ε ∧ ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c) [PROOFSTEP] obtain ⟨ε, hε, hε'⟩ := hd' [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ ∃ c, 0 < c ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c) [PROOFSTEP] refine' ⟨ε, hε, integrableOn_Ioc_iff_integrableOn_Ioo.mpr ⟨_, _⟩⟩ [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ AEStronglyMeasurable (fun t => t ^ (s - 1) * f t) (Measure.restrict volume (Ioo 0 ε)) [PROOFSTEP] refine' AEStronglyMeasurable.mul _ (hfc.mono_set Ioo_subset_Ioi_self) [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ AEStronglyMeasurable (fun t => t ^ (s - 1)) (Measure.restrict volume (Ioo 0 ε)) [PROOFSTEP] refine' (ContinuousAt.continuousOn fun t ht => _).aestronglyMeasurable measurableSet_Ioo [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ ContinuousAt (fun t => t ^ (s - 1)) t [PROOFSTEP] exact continuousAt_rpow_const _ _ (Or.inl ht.1.ne') [GOAL] case intro.intro.intro.intro.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ HasFiniteIntegral fun t => t ^ (s - 1) * f t [PROOFSTEP] apply HasFiniteIntegral.mono' [GOAL] case intro.intro.intro.intro.refine'_2.hg E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ HasFiniteIntegral ?intro.intro.intro.intro.refine'_2.g [PROOFSTEP] show HasFiniteIntegral (fun t => d * t ^ (s - b - 1)) _ [GOAL] case intro.intro.intro.intro.refine'_2.hg E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ HasFiniteIntegral fun t => d * t ^ (s - b - 1) [PROOFSTEP] refine' (Integrable.hasFiniteIntegral _).const_mul _ [GOAL] case intro.intro.intro.intro.refine'_2.hg E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ Integrable fun t => t ^ (s - b - 1) [PROOFSTEP] rw [← IntegrableOn, ← integrableOn_Ioc_iff_integrableOn_Ioo, ← intervalIntegrable_iff_integrable_Ioc_of_le hε.le] [GOAL] case intro.intro.intro.intro.refine'_2.hg E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ IntervalIntegrable (fun t => t ^ (s - b - 1)) volume 0 ε [PROOFSTEP] exact intervalIntegral.intervalIntegrable_rpow' (by linarith) [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ -1 < s - b - 1 [PROOFSTEP] linarith [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioo 0 ε), ‖a ^ (s - 1) * f a‖ ≤ d * a ^ (s - b - 1) [PROOFSTEP] refine' (ae_restrict_iff' measurableSet_Ioo).mpr (eventually_of_forall fun t ht => _) [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ ‖t ^ (s - 1) * f t‖ ≤ d * t ^ (s - b - 1) [PROOFSTEP] rw [mul_comm, norm_mul] [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ ‖f t‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1) [PROOFSTEP] specialize hε' _ ht.1 [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ dist t 0 < ε [PROOFSTEP] rw [dist_eq_norm, sub_zero, norm_of_nonneg (le_of_lt ht.1)] [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ t < ε [PROOFSTEP] exact ht.2 [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ ‖f t‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1) [PROOFSTEP] refine' (mul_le_mul_of_nonneg_right hε' (norm_nonneg _)).trans _ [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ d * ‖t ^ (-b)‖ * ‖t ^ (s - 1)‖ ≤ d * t ^ (s - b - 1) [PROOFSTEP] simp_rw [norm_of_nonneg (rpow_nonneg_of_nonneg (le_of_lt ht.1) _), mul_assoc] [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ d * (t ^ (-b) * t ^ (s - 1)) ≤ d * t ^ (s - b - 1) [PROOFSTEP] refine' mul_le_mul_of_nonneg_left (le_of_eq _) hd.le [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ t ^ (-b) * t ^ (s - 1) = t ^ (s - b - 1) [PROOFSTEP] rw [← rpow_add ht.1] [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ t ^ (-b + (s - 1)) = t ^ (s - b - 1) [PROOFSTEP] congr 1 [GOAL] case intro.intro.intro.intro.refine'_2.h.e_a E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ -b + (s - 1) = s - b - 1 [PROOFSTEP] abel [GOAL] case intro.intro.intro.intro.refine'_2.h.e_a E : Type u_1 inst✝ : NormedAddCommGroup E b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (Measure.restrict volume (Ioi 0)) hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ hd : 0 < d ε : ℝ hε : 0 < ε t : ℝ ht : t ∈ Ioo 0 ε hε' : ‖f t‖ ≤ d * ‖t ^ (-b)‖ ⊢ -b + (s - 1) = s - b - 1 [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s ⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0) [PROOFSTEP] obtain ⟨c1, hc1, hc1'⟩ := mellin_convergent_top_of_isBigO hfc.aestronglyMeasurable hf_top hs_top [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) ⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0) [PROOFSTEP] obtain ⟨c2, hc2, hc2'⟩ := mellin_convergent_zero_of_isBigO hfc.aestronglyMeasurable hf_bot hs_bot [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) ⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0) [PROOFSTEP] have : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 := by rw [union_assoc, Ioc_union_Ioi (le_max_right _ _), Ioc_union_Ioi ((min_le_left _ _).trans (le_max_right _ _)), min_eq_left (lt_min hc2 hc1).le] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) ⊢ Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 [PROOFSTEP] rw [union_assoc, Ioc_union_Ioi (le_max_right _ _), Ioc_union_Ioi ((min_le_left _ _).trans (le_max_right _ _)), min_eq_left (lt_min hc2 hc1).le] [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 ⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi 0) [PROOFSTEP] rw [this, integrableOn_union, integrableOn_union] [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 ⊢ (IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc c2 c1)) ∧ IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) [PROOFSTEP] refine' ⟨⟨hc2', integrableOn_Icc_iff_integrableOn_Ioc.mp _⟩, hc1'⟩ [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 ⊢ IntegrableOn (fun t => t ^ (s - 1) * f t) (Icc c2 c1) [PROOFSTEP] refine' (hfc.continuousOn_mul _ isOpen_Ioi).integrableOn_compact_subset (fun t ht => (hc2.trans_le ht.1 : 0 < t)) isCompact_Icc [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E a b : ℝ f : ℝ → ℝ s : ℝ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s c1 : ℝ hc1 : 0 < c1 hc1' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioi c1) c2 : ℝ hc2 : 0 < c2 hc2' : IntegrableOn (fun t => t ^ (s - 1) * f t) (Ioc 0 c2) this : Ioi 0 = Ioc 0 c2 ∪ Ioc c2 c1 ∪ Ioi c1 ⊢ ContinuousOn (fun t => t ^ (s - 1)) (Ioi 0) [PROOFSTEP] exact ContinuousAt.continuousOn fun t ht => continuousAt_rpow_const _ _ <| Or.inl <| ne_of_gt ht [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re ⊢ MellinConvergent f s [PROOFSTEP] rw [MellinConvergent, mellin_convergent_iff_norm Subset.rfl measurableSet_Ioi hfc.aestronglyMeasurable] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re ⊢ IntegrableOn (fun t => t ^ (s.re - 1) * ‖f t‖) (Ioi 0) [PROOFSTEP] exact mellin_convergent_of_isBigO_scalar hfc.norm hf_top.norm_left hs_top hf_bot.norm_left hs_bot [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : b < a hf : f =O[atTop] fun x => x ^ (-a) ⊢ (fun t => log t • f t) =O[atTop] fun x => x ^ (-b) [PROOFSTEP] refine' ((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).isBigO.smul hf).congr' (eventually_of_forall fun t => by rfl) ((eventually_gt_atTop 0).mp (eventually_of_forall fun t ht => _)) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : b < a hf : f =O[atTop] fun x => x ^ (-a) t : ℝ ⊢ (fun x => log x • f x) t = (fun t => log t • f t) t [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : b < a hf : f =O[atTop] fun x => x ^ (-a) t : ℝ ht : 0 < t ⊢ (fun x => x ^ (a - b) • x ^ (-a)) t = (fun x => x ^ (-b)) t [PROOFSTEP] simp only [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : b < a hf : f =O[atTop] fun x => x ^ (-a) t : ℝ ht : 0 < t ⊢ t ^ (a - b) • t ^ (-a) = t ^ (-b) [PROOFSTEP] rw [smul_eq_mul, ← rpow_add ht, ← sub_eq_add_neg, sub_eq_add_neg a, add_sub_cancel'] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) ⊢ (fun t => log t • f t) =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) [PROOFSTEP] have : log =o[𝓝[>] 0] fun t : ℝ => t ^ (a - b) := by refine' ((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).neg_left.comp_tendsto tendsto_inv_zero_atTop).congr' (eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _) (eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _) · simp_rw [Function.comp_apply, ← one_div, log_div one_ne_zero (ne_of_gt ht), Real.log_one, zero_sub, neg_neg] · simp_rw [Function.comp_apply, inv_rpow (le_of_lt ht), ← rpow_neg (le_of_lt ht), neg_sub] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) ⊢ log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) [PROOFSTEP] refine' ((isLittleO_log_rpow_atTop (sub_pos.mpr hab)).neg_left.comp_tendsto tendsto_inv_zero_atTop).congr' (eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _) (eventually_nhdsWithin_iff.mpr <| eventually_of_forall fun t ht => _) [GOAL] case refine'_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) t : ℝ ht : t ∈ Ioi 0 ⊢ ((fun x => -log x) ∘ fun x => x⁻¹) t = log t [PROOFSTEP] simp_rw [Function.comp_apply, ← one_div, log_div one_ne_zero (ne_of_gt ht), Real.log_one, zero_sub, neg_neg] [GOAL] case refine'_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) t : ℝ ht : t ∈ Ioi 0 ⊢ ((fun x => x ^ (b - a)) ∘ fun x => x⁻¹) t = (fun t => t ^ (a - b)) t [PROOFSTEP] simp_rw [Function.comp_apply, inv_rpow (le_of_lt ht), ← rpow_neg (le_of_lt ht), neg_sub] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) ⊢ (fun t => log t • f t) =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) [PROOFSTEP] refine' (this.isBigO.smul hf).congr' (eventually_of_forall fun t => by rfl) (eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => _)) [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) t : ℝ ⊢ (fun x => log x • f x) t = (fun t => log t • f t) t [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) t : ℝ ht : t ∈ Ioi 0 ⊢ (fun x => x ^ (a - b) • x ^ (-a)) t = (fun x => x ^ (-b)) t [PROOFSTEP] simp_rw [smul_eq_mul, ← rpow_add ht] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) t : ℝ ht : t ∈ Ioi 0 ⊢ t ^ (a - b + -a) = t ^ (-b) [PROOFSTEP] congr 1 [GOAL] case e_a E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) t : ℝ ht : t ∈ Ioi 0 ⊢ a - b + -a = -b [PROOFSTEP] abel [GOAL] case e_a E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E hab : a < b hf : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-a) this : log =o[𝓝[Ioi 0] 0] fun t => t ^ (a - b) t : ℝ ht : t ∈ Ioi 0 ⊢ a - b + -a = -b [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] set F : ℂ → ℝ → E := fun (z : ℂ) (t : ℝ) => (t : ℂ) ^ (z - 1) • f t [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] set F' : ℂ → ℝ → E := fun (z : ℂ) (t : ℝ) => ((t : ℂ) ^ (z - 1) * log t) • f t [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] obtain ⟨v, hv0, hv1, hv2⟩ : ∃ v : ℝ, 0 < v ∧ v < s.re - b ∧ v < a - s.re := by obtain ⟨w, hw1, hw2⟩ := exists_between (sub_pos.mpr hs_top) obtain ⟨w', hw1', hw2'⟩ := exists_between (sub_pos.mpr hs_bot) exact ⟨min w w', lt_min hw1 hw1', (min_le_right _ _).trans_lt hw2', (min_le_left _ _).trans_lt hw2⟩ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t ⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re [PROOFSTEP] obtain ⟨w, hw1, hw2⟩ := exists_between (sub_pos.mpr hs_top) [GOAL] case intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t w : ℝ hw1 : 0 < w hw2 : w < a - s.re ⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re [PROOFSTEP] obtain ⟨w', hw1', hw2'⟩ := exists_between (sub_pos.mpr hs_bot) [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t w : ℝ hw1 : 0 < w hw2 : w < a - s.re w' : ℝ hw1' : 0 < w' hw2' : w' < s.re - b ⊢ ∃ v, 0 < v ∧ v < s.re - b ∧ v < a - s.re [PROOFSTEP] exact ⟨min w w', lt_min hw1 hw1', (min_le_right _ _).trans_lt hw2', (min_le_left _ _).trans_lt hw2⟩ [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] let bound : ℝ → ℝ := fun t : ℝ => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h1 : ∀ᶠ z : ℂ in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict <| Ioi 0) := by refine' eventually_of_forall fun z => AEStronglyMeasurable.smul _ hfc.aestronglyMeasurable refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi refine' ContinuousAt.continuousOn fun t ht => _ exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ ⊢ ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) [PROOFSTEP] refine' eventually_of_forall fun z => AEStronglyMeasurable.smul _ hfc.aestronglyMeasurable [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ z : ℂ ⊢ AEStronglyMeasurable (fun t => ↑t ^ (z - 1)) (Measure.restrict volume (Ioi 0)) [PROOFSTEP] refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ z : ℂ ⊢ ContinuousOn (fun t => ↑t ^ (z - 1)) (Ioi 0) [PROOFSTEP] refine' ContinuousAt.continuousOn fun t ht => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ z : ℂ t : ℝ ht : t ∈ Ioi 0 ⊢ ContinuousAt (fun t => ↑t ^ (z - 1)) t [PROOFSTEP] exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht) [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h2 : IntegrableOn (F s) (Ioi (0 : ℝ)) [GOAL] case h2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) ⊢ IntegrableOn (F s) (Ioi 0) [PROOFSTEP] exact mellinConvergent_of_isBigO_rpow hfc hf_top hs_top hf_bot hs_bot [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h3 : AEStronglyMeasurable (F' s) (volume.restrict <| Ioi 0) := by apply LocallyIntegrableOn.aestronglyMeasurable refine' hfc.continuousOn_smul isOpen_Ioi ((ContinuousAt.continuousOn fun t ht => _).mul _) · exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht) · refine' continuous_ofReal.comp_continuousOn _ exact continuousOn_log.mono (subset_compl_singleton_iff.mpr not_mem_Ioi_self) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) ⊢ AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) [PROOFSTEP] apply LocallyIntegrableOn.aestronglyMeasurable [GOAL] case hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) ⊢ LocallyIntegrableOn (F' s) (Ioi 0) [PROOFSTEP] refine' hfc.continuousOn_smul isOpen_Ioi ((ContinuousAt.continuousOn fun t ht => _).mul _) [GOAL] case hf.refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) t : ℝ ht : t ∈ Ioi 0 ⊢ ContinuousAt (fun t => ↑t ^ (s - 1)) t [PROOFSTEP] exact continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_gt ht) [GOAL] case hf.refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) ⊢ ContinuousOn (fun t => ↑(log t)) (Ioi 0) [PROOFSTEP] refine' continuous_ofReal.comp_continuousOn _ [GOAL] case hf.refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) ⊢ ContinuousOn (fun t => log t) (Ioi 0) [PROOFSTEP] exact continuousOn_log.mono (subset_compl_singleton_iff.mpr not_mem_Ioi_self) [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h4 : ∀ᵐ t : ℝ ∂volume.restrict (Ioi 0), ∀ z : ℂ, z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t := by refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht z hz => _ simp_rw [norm_smul, norm_mul, Complex.norm_eq_abs (log _), Complex.abs_ofReal, mul_assoc] refine' mul_le_mul_of_nonneg_right _ (mul_nonneg (abs_nonneg _) (norm_nonneg _)) rw [Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos ht] rcases le_or_lt 1 t with h | h · refine' le_add_of_le_of_nonneg (rpow_le_rpow_of_exponent_le h _) (rpow_nonneg_of_nonneg (zero_le_one.trans h) _) rw [sub_re, one_re, sub_le_sub_iff_right] rw [mem_ball_iff_norm, Complex.norm_eq_abs] at hz have hz' := (re_le_abs _).trans hz.le rwa [sub_re, sub_le_iff_le_add'] at hz' · refine' le_add_of_nonneg_of_le (rpow_pos_of_pos ht _).le (rpow_le_rpow_of_exponent_ge ht h.le _) rw [sub_re, one_re, sub_le_iff_le_add, sub_add_cancel] rw [mem_ball_iff_norm', Complex.norm_eq_abs] at hz have hz' := (re_le_abs _).trans hz.le rwa [sub_re, sub_le_iff_le_add, ← sub_le_iff_le_add'] at hz' [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) ⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t [PROOFSTEP] refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht z hz => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ ‖F' z t‖ ≤ bound t [PROOFSTEP] simp_rw [norm_smul, norm_mul, Complex.norm_eq_abs (log _), Complex.abs_ofReal, mul_assoc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ ‖↑t ^ (z - 1)‖ * (|log t| * ‖f t‖) ≤ (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * (|log t| * ‖f t‖) [PROOFSTEP] refine' mul_le_mul_of_nonneg_right _ (mul_nonneg (abs_nonneg _) (norm_nonneg _)) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ ‖↑t ^ (z - 1)‖ ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1) [PROOFSTEP] rw [Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos ht] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1) [PROOFSTEP] rcases le_or_lt 1 t with h | h [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : 1 ≤ t ⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1) [PROOFSTEP] refine' le_add_of_le_of_nonneg (rpow_le_rpow_of_exponent_le h _) (rpow_nonneg_of_nonneg (zero_le_one.trans h) _) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : 1 ≤ t ⊢ (z - 1).re ≤ s.re + v - 1 [PROOFSTEP] rw [sub_re, one_re, sub_le_sub_iff_right] [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : 1 ≤ t ⊢ z.re ≤ s.re + v [PROOFSTEP] rw [mem_ball_iff_norm, Complex.norm_eq_abs] at hz [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : ↑Complex.abs (z - s) < v h : 1 ≤ t ⊢ z.re ≤ s.re + v [PROOFSTEP] have hz' := (re_le_abs _).trans hz.le [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : ↑Complex.abs (z - s) < v h : 1 ≤ t hz' : (z - s).re ≤ v ⊢ z.re ≤ s.re + v [PROOFSTEP] rwa [sub_re, sub_le_iff_le_add'] at hz' [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : t < 1 ⊢ t ^ (z - 1).re ≤ t ^ (s.re + v - 1) + t ^ (s.re - v - 1) [PROOFSTEP] refine' le_add_of_nonneg_of_le (rpow_pos_of_pos ht _).le (rpow_le_rpow_of_exponent_ge ht h.le _) [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : t < 1 ⊢ s.re - v - 1 ≤ (z - 1).re [PROOFSTEP] rw [sub_re, one_re, sub_le_iff_le_add, sub_add_cancel] [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v h : t < 1 ⊢ s.re - v ≤ z.re [PROOFSTEP] rw [mem_ball_iff_norm', Complex.norm_eq_abs] at hz [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : ↑Complex.abs (s - z) < v h : t < 1 ⊢ s.re - v ≤ z.re [PROOFSTEP] have hz' := (re_le_abs _).trans hz.le [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : ↑Complex.abs (s - z) < v h : t < 1 hz' : (s - z).re ≤ v ⊢ s.re - v ≤ z.re [PROOFSTEP] rwa [sub_re, sub_le_iff_le_add, ← sub_le_iff_le_add'] at hz' [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h5 : IntegrableOn bound (Ioi 0) := by simp_rw [add_mul, mul_assoc] suffices ∀ {j : ℝ} (hj : b < j) (hj' : j < a), IntegrableOn (fun t : ℝ => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) volume by refine' Integrable.add (this _ _) (this _ _) all_goals linarith · intro j hj hj' obtain ⟨w, hw1, hw2⟩ := exists_between hj obtain ⟨w', hw1', hw2'⟩ := exists_between hj' refine' mellin_convergent_of_isBigO_scalar _ _ hw1' _ hw2 · simp_rw [mul_comm] refine' hfc.norm.mul_continuousOn _ isOpen_Ioi refine' Continuous.comp_continuousOn continuous_abs (continuousOn_log.mono _) exact subset_compl_singleton_iff.mpr not_mem_Ioi_self · refine (isBigO_rpow_top_log_smul hw2' hf_top).norm_left.congr_left fun t ↦ ?_ simp only [norm_smul, Real.norm_eq_abs] · refine (isBigO_rpow_zero_log_smul hw1 hf_bot).norm_left.congr_left fun t ↦ ?_ simp only [norm_smul, Real.norm_eq_abs] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t ⊢ IntegrableOn bound (Ioi 0) [PROOFSTEP] simp_rw [add_mul, mul_assoc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t ⊢ IntegrableOn (fun t => t ^ (s.re + v - 1) * (|log t| * ‖f t‖) + t ^ (s.re - v - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] suffices ∀ {j : ℝ} (hj : b < j) (hj' : j < a), IntegrableOn (fun t : ℝ => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) volume by refine' Integrable.add (this _ _) (this _ _) all_goals linarith [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ IntegrableOn (fun t => t ^ (s.re + v - 1) * (|log t| * ‖f t‖) + t ^ (s.re - v - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] refine' Integrable.add (this _ _) (this _ _) [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ b < s.re + v case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ s.re + v < a case refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ b < s.re - v case refine'_4 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ s.re - v < a [PROOFSTEP] all_goals linarith [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ b < s.re + v [PROOFSTEP] linarith [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ s.re + v < a [PROOFSTEP] linarith [GOAL] case refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ b < s.re - v [PROOFSTEP] linarith [GOAL] case refine'_4 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t this : ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) ⊢ s.re - v < a [PROOFSTEP] linarith [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t ⊢ ∀ {j : ℝ}, b < j → j < a → IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] intro j hj hj' [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a ⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] obtain ⟨w, hw1, hw2⟩ := exists_between hj [GOAL] case intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j ⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] obtain ⟨w', hw1', hw2'⟩ := exists_between hj' [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ IntegrableOn (fun t => t ^ (j - 1) * (|log t| * ‖f t‖)) (Ioi 0) [PROOFSTEP] refine' mellin_convergent_of_isBigO_scalar _ _ hw1' _ hw2 [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ LocallyIntegrableOn (fun t => |log t| * ‖f t‖) (Ioi 0) [PROOFSTEP] simp_rw [mul_comm] [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ LocallyIntegrableOn (fun t => ‖f t‖ * |log t|) (Ioi 0) [PROOFSTEP] refine' hfc.norm.mul_continuousOn _ isOpen_Ioi [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ ContinuousOn (fun t => |log t|) (Ioi 0) [PROOFSTEP] refine' Continuous.comp_continuousOn continuous_abs (continuousOn_log.mono _) [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ Ioi 0 ⊆ {0}ᶜ [PROOFSTEP] exact subset_compl_singleton_iff.mpr not_mem_Ioi_self [GOAL] case intro.intro.intro.intro.refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ (fun t => |log t| * ‖f t‖) =O[atTop] fun x => x ^ (-w') [PROOFSTEP] refine (isBigO_rpow_top_log_smul hw2' hf_top).norm_left.congr_left fun t ↦ ?_ [GOAL] case intro.intro.intro.intro.refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a t : ℝ ⊢ ‖log t • f t‖ = |log t| * ‖f t‖ [PROOFSTEP] simp only [norm_smul, Real.norm_eq_abs] [GOAL] case intro.intro.intro.intro.refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a ⊢ (fun t => |log t| * ‖f t‖) =O[𝓝[Ioi 0] 0] fun x => x ^ (-w) [PROOFSTEP] refine (isBigO_rpow_zero_log_smul hw1 hf_bot).norm_left.congr_left fun t ↦ ?_ [GOAL] case intro.intro.intro.intro.refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t j : ℝ hj : b < j hj' : j < a w : ℝ hw1 : b < w hw2 : w < j w' : ℝ hw1' : j < w' hw2' : w' < a t : ℝ ⊢ ‖log t • f t‖ = |log t| * ‖f t‖ [PROOFSTEP] simp only [norm_smul, Real.norm_eq_abs] [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have h6 : ∀ᵐ t : ℝ ∂volume.restrict (Ioi 0), ∀ y : ℂ, y ∈ Metric.ball s v → HasDerivAt (fun z : ℂ => F z t) (F' y t) y := by refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht y _ => _ have ht' : (t : ℂ) ≠ 0 := ofReal_ne_zero.mpr (ne_of_gt ht) have u1 : HasDerivAt (fun z : ℂ => (t : ℂ) ^ (z - 1)) (t ^ (y - 1) * log t) y := by convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1 rw [ofReal_log (le_of_lt ht)] ring exact u1.smul_const (f t) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) ⊢ ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y [PROOFSTEP] refine' (ae_restrict_mem measurableSet_Ioi).mono fun t ht y _ => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ⊢ HasDerivAt (fun z => F z t) (F' y t) y [PROOFSTEP] have ht' : (t : ℂ) ≠ 0 := ofReal_ne_zero.mpr (ne_of_gt ht) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ht' : ↑t ≠ 0 ⊢ HasDerivAt (fun z => F z t) (F' y t) y [PROOFSTEP] have u1 : HasDerivAt (fun z : ℂ => (t : ℂ) ^ (z - 1)) (t ^ (y - 1) * log t) y := by convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1 rw [ofReal_log (le_of_lt ht)] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ht' : ↑t ≠ 0 ⊢ HasDerivAt (fun z => ↑t ^ (z - 1)) (↑t ^ (y - 1) * ↑(log t)) y [PROOFSTEP] convert ((hasDerivAt_id' y).sub_const 1).const_cpow (Or.inl ht') using 1 [GOAL] case h.e'_7 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ht' : ↑t ≠ 0 ⊢ ↑t ^ (y - 1) * ↑(log t) = ↑t ^ (y - 1) * Complex.log ↑t * 1 [PROOFSTEP] rw [ofReal_log (le_of_lt ht)] [GOAL] case h.e'_7 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ht' : ↑t ≠ 0 ⊢ ↑t ^ (y - 1) * Complex.log ↑t = ↑t ^ (y - 1) * Complex.log ↑t * 1 [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) t : ℝ ht : t ∈ Ioi 0 y : ℂ x✝ : y ∈ Metric.ball s v ht' : ↑t ≠ 0 u1 : HasDerivAt (fun z => ↑t ^ (z - 1)) (↑t ^ (y - 1) * ↑(log t)) y ⊢ HasDerivAt (fun z => F z t) (F' y t) y [PROOFSTEP] exact u1.smul_const (f t) [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) h6 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] have main := hasDerivAt_integral_of_dominated_loc_of_deriv_le hv0 h1 h2 h3 h4 h5 h6 [GOAL] case intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[Ioi 0] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (Measure.restrict volume (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) h3 : AEStronglyMeasurable (F' s) (Measure.restrict volume (Ioi 0)) h4 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (z : ℂ), z ∈ Metric.ball s v → ‖F' z t‖ ≤ bound t h5 : IntegrableOn bound (Ioi 0) h6 : ∀ᵐ (t : ℝ) ∂Measure.restrict volume (Ioi 0), ∀ (y : ℂ), y ∈ Metric.ball s v → HasDerivAt (fun z => F z t) (F' y t) y main : Integrable (F' s) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ioi 0, F n a) (∫ (a : ℝ) in Ioi 0, F' s a) s ⊢ MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s [PROOFSTEP] simpa only [mul_smul] using main [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re ⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s) [PROOFSTEP] have aux1 : -1 < (s - 1).re := by simpa only [sub_re, one_re, sub_eq_add_neg] using lt_add_of_pos_left _ hs [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re ⊢ -1 < (s - 1).re [PROOFSTEP] simpa only [sub_re, one_re, sub_eq_add_neg] using lt_add_of_pos_left _ hs [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re ⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s) [PROOFSTEP] have aux2 : s ≠ 0 := by contrapose! hs; rw [hs, zero_re] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re ⊢ s ≠ 0 [PROOFSTEP] contrapose! hs [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ aux1 : -1 < (s - 1).re hs : s = 0 ⊢ s.re ≤ 0 [PROOFSTEP] rw [hs, zero_re] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re aux2 : s ≠ 0 ⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s) [PROOFSTEP] have aux3 : MeasurableSet (Ioc (0 : ℝ) 1) := measurableSet_Ioc [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re aux2 : s ≠ 0 aux3 : MeasurableSet (Ioc 0 1) ⊢ HasMellin (indicator (Ioc 0 1) fun x => 1) s (1 / s) [PROOFSTEP] simp_rw [HasMellin, mellin, MellinConvergent, ← indicator_smul, IntegrableOn, integrable_indicator_iff aux3, smul_eq_mul, integral_indicator aux3, mul_one, IntegrableOn, Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re aux2 : s ≠ 0 aux3 : MeasurableSet (Ioc 0 1) ⊢ (Integrable fun x => ↑x ^ (s - 1)) ∧ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s [PROOFSTEP] rw [← IntegrableOn, ← intervalIntegrable_iff_integrable_Ioc_of_le zero_le_one] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re aux2 : s ≠ 0 aux3 : MeasurableSet (Ioc 0 1) ⊢ IntervalIntegrable (fun x => ↑x ^ (s - 1)) volume 0 1 ∧ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s [PROOFSTEP] refine' ⟨intervalIntegral.intervalIntegrable_cpow' aux1, _⟩ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E s : ℂ hs : 0 < s.re aux1 : -1 < (s - 1).re aux2 : s ≠ 0 aux3 : MeasurableSet (Ioc 0 1) ⊢ ∫ (x : ℝ) in Ioc 0 1, ↑x ^ (s - 1) = 1 / s [PROOFSTEP] rw [← intervalIntegral.integral_of_le zero_le_one, integral_cpow (Or.inl aux1), sub_add_cancel, ofReal_zero, ofReal_one, one_cpow, zero_cpow aux2, sub_zero] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a s : ℂ hs : 0 < s.re + a.re ⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a)) [PROOFSTEP] have := hasMellin_one_Ioc (by rwa [add_re] : 0 < (s + a).re) [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a s : ℂ hs : 0 < s.re + a.re ⊢ 0 < (s + a).re [PROOFSTEP] rwa [add_re] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a s : ℂ hs : 0 < s.re + a.re this : HasMellin (indicator (Ioc 0 1) fun x => 1) (s + a) (1 / (s + a)) ⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a)) [PROOFSTEP] simp_rw [HasMellin, ← MellinConvergent.cpow_smul, ← mellin_cpow_smul, ← indicator_smul, smul_eq_mul, mul_one] at this [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E a s : ℂ hs : 0 < s.re + a.re this : MellinConvergent (indicator (Ioc 0 1) fun x => ↑x ^ a) s ∧ mellin (indicator (Ioc 0 1) fun x => ↑x ^ a) s = 1 / (s + a) ⊢ HasMellin (indicator (Ioc 0 1) fun t => ↑t ^ a) s (1 / (s + a)) [PROOFSTEP] exact this
{"mathlib_filename": "Mathlib.Analysis.MellinTransform", "llama_tokens": 63682}
[GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsLocalMinOn f (Icc a b) a h_conv : ConvexOn ℝ (Icc a b) f ⊢ IsMinOn f (Icc a b) a [PROOFSTEP] rintro c hc [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsLocalMinOn f (Icc a b) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b ⊢ c ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] dsimp only [mem_setOf_eq] [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsLocalMinOn f (Icc a b) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b ⊢ f a ≤ f c [PROOFSTEP] rw [IsLocalMinOn, nhdsWithin_Icc_eq_nhdsWithin_Ici a_lt_b] at h_local_min [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b ⊢ f a ≤ f c [PROOFSTEP] rcases hc.1.eq_or_lt with (rfl | a_lt_c) [GOAL] case inl E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f hc : a ∈ Icc a b ⊢ f a ≤ f a [PROOFSTEP] exact le_rfl [GOAL] case inr E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c ⊢ f a ≤ f c [PROOFSTEP] have H₁ : ∀ᶠ y in 𝓝[>] a, f a ≤ f y := h_local_min.filter_mono (nhdsWithin_mono _ Ioi_subset_Ici_self) [GOAL] case inr E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y ⊢ f a ≤ f c [PROOFSTEP] have H₂ : ∀ᶠ y in 𝓝[>] a, y ∈ Ioc a c := Ioc_mem_nhdsWithin_Ioi (left_mem_Ico.2 a_lt_c) [GOAL] case inr E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ⊢ f a ≤ f c [PROOFSTEP] rcases(H₁.and H₂).exists with ⟨y, hfy, hy_ac⟩ [GOAL] case inr.intro.intro E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c y : ℝ hfy : f a ≤ f y hy_ac : y ∈ Ioc a c ⊢ f a ≤ f c [PROOFSTEP] rcases(Convex.mem_Ioc a_lt_c).mp hy_ac with ⟨ya, yc, ya₀, yc₀, yac, rfl⟩ [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ya yc : ℝ ya₀ : 0 ≤ ya yc₀ : 0 < yc yac : ya + yc = 1 hfy : f a ≤ f (ya * a + yc * c) hy_ac : ya * a + yc * c ∈ Ioc a c ⊢ f a ≤ f c [PROOFSTEP] suffices : ya • f a + yc • f a ≤ ya • f a + yc • f c [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ya yc : ℝ ya₀ : 0 ≤ ya yc₀ : 0 < yc yac : ya + yc = 1 hfy : f a ≤ f (ya * a + yc * c) hy_ac : ya * a + yc * c ∈ Ioc a c this : ya • f a + yc • f a ≤ ya • f a + yc • f c ⊢ f a ≤ f c case this E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ya yc : ℝ ya₀ : 0 ≤ ya yc₀ : 0 < yc yac : ya + yc = 1 hfy : f a ≤ f (ya * a + yc * c) hy_ac : ya * a + yc * c ∈ Ioc a c ⊢ ya • f a + yc • f a ≤ ya • f a + yc • f c [PROOFSTEP] exact (smul_le_smul_iff_of_pos yc₀).1 (le_of_add_le_add_left this) [GOAL] case this E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ya yc : ℝ ya₀ : 0 ≤ ya yc₀ : 0 < yc yac : ya + yc = 1 hfy : f a ≤ f (ya * a + yc * c) hy_ac : ya * a + yc * c ∈ Ioc a c ⊢ ya • f a + yc • f a ≤ ya • f a + yc • f c [PROOFSTEP] calc ya • f a + yc • f a = f a := by rw [← add_smul, yac, one_smul] _ ≤ f (ya * a + yc * c) := hfy _ ≤ ya • f a + yc • f c := h_conv.2 (left_mem_Icc.2 a_lt_b.le) hc ya₀ yc₀.le yac [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : ℝ → β a b : ℝ a_lt_b : a < b h_local_min : IsMinFilter f (𝓝[Ici a] a) a h_conv : ConvexOn ℝ (Icc a b) f c : ℝ hc : c ∈ Icc a b a_lt_c : a < c H₁ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, f a ≤ f y H₂ : ∀ᶠ (y : ℝ) in 𝓝[Ioi a] a, y ∈ Ioc a c ya yc : ℝ ya₀ : 0 ≤ ya yc₀ : 0 < yc yac : ya + yc = 1 hfy : f a ≤ f (ya * a + yc * c) hy_ac : ya * a + yc * c ∈ Ioc a c ⊢ ya • f a + yc • f a = f a [PROOFSTEP] rw [← add_smul, yac, one_smul] [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f ⊢ IsMinOn f s a [PROOFSTEP] intro x x_in_s [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] let g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have hg0 : g 0 = a := AffineMap.lineMap_apply_zero a x [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have hg1 : g 1 = x := AffineMap.lineMap_apply_one a x [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have hgc : Continuous g := AffineMap.lineMap_continuous [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have h_maps : MapsTo g (Icc 0 1) s := by simpa only [mapsTo', ← segment_eq_image_lineMap] using h_conv.1.segment_subset a_in_s x_in_s [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g ⊢ MapsTo (↑g) (Icc 0 1) s [PROOFSTEP] simpa only [mapsTo', ← segment_eq_image_lineMap] using h_conv.1.segment_subset a_in_s x_in_s [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have fg_local_min_on : IsLocalMinOn (f ∘ g) (Icc 0 1) 0 := by rw [← hg0] at h_localmin exact h_localmin.comp_continuousOn h_maps hgc.continuousOn (left_mem_Icc.2 zero_le_one) [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s ⊢ IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 [PROOFSTEP] rw [← hg0] at h_localmin [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x h_localmin : IsLocalMinOn f s (↑g 0) hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s ⊢ IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 [PROOFSTEP] exact h_localmin.comp_continuousOn h_maps hgc.continuousOn (left_mem_Icc.2 zero_le_one) [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] have fg_min_on : IsMinOn (f ∘ g) (Icc 0 1 : Set ℝ) 0 := by refine' IsMinOn.of_isLocalMinOn_of_convexOn_Icc one_pos fg_local_min_on _ exact (h_conv.comp_affineMap g).subset h_maps (convex_Icc 0 1) [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 ⊢ IsMinOn (f ∘ ↑g) (Icc 0 1) 0 [PROOFSTEP] refine' IsMinOn.of_isLocalMinOn_of_convexOn_Icc one_pos fg_local_min_on _ [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 ⊢ ConvexOn ℝ (Icc 0 1) (f ∘ ↑g) [PROOFSTEP] exact (h_conv.comp_affineMap g).subset h_maps (convex_Icc 0 1) [GOAL] E : Type u_1 β : Type u_2 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalAddGroup E inst✝³ : ContinuousSMul ℝ E inst✝² : OrderedAddCommGroup β inst✝¹ : Module ℝ β inst✝ : OrderedSMul ℝ β s : Set E f : E → β a : E a_in_s : a ∈ s h_localmin : IsLocalMinOn f s a h_conv : ConvexOn ℝ s f x : E x_in_s : x ∈ s g : ℝ →ᵃ[ℝ] E := AffineMap.lineMap a x hg0 : ↑g 0 = a hg1 : ↑g 1 = x hgc : Continuous ↑g h_maps : MapsTo (↑g) (Icc 0 1) s fg_local_min_on : IsLocalMinOn (f ∘ ↑g) (Icc 0 1) 0 fg_min_on : IsMinOn (f ∘ ↑g) (Icc 0 1) 0 ⊢ x ∈ {x | (fun x => f a ≤ f x) x} [PROOFSTEP] simpa only [hg0, hg1, comp_apply, mem_setOf_eq] using fg_min_on (right_mem_Icc.2 zero_le_one)
{"mathlib_filename": "Mathlib.Analysis.Convex.Extrema", "llama_tokens": 8990}
[GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ [PROOFSTEP] have hε' : 0 < ε / 3 := div_pos hε zero_lt_three [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ [PROOFSTEP] obtain ⟨δ, hδ, h⟩ := exists_forall_sphere_dist_add_le_two_sub E hε' [GOAL] case intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ [PROOFSTEP] set δ' := min (1 / 2) (min (ε / 3) <| δ / 3) [GOAL] case intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ [PROOFSTEP] refine' ⟨δ', lt_min one_half_pos <| lt_min hε' (div_pos hδ zero_lt_three), fun x hx y hy hxy => _⟩ [GOAL] case intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] obtain hx' | hx' := le_or_lt ‖x‖ (1 - δ') [GOAL] case intro.intro.inl E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : ‖x‖ ≤ 1 - δ' ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] case intro.intro.inl E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : ‖x‖ ≤ 1 - δ' ⊢ ‖x + y‖ ≤ 1 + 1 - δ' [PROOFSTEP] exact (norm_add_le_of_le hx' hy).trans (sub_add_eq_add_sub _ _ _).le [GOAL] case intro.intro.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] obtain hy' | hy' := le_or_lt ‖y‖ (1 - δ') [GOAL] case intro.intro.inr.inl E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : ‖y‖ ≤ 1 - δ' ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] case intro.intro.inr.inl E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : ‖y‖ ≤ 1 - δ' ⊢ ‖x + y‖ ≤ 1 + 1 - δ' [PROOFSTEP] exact (norm_add_le_of_le hx hy').trans (add_sub_assoc _ _ _).ge [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] have hδ' : 0 < 1 - δ' := sub_pos_of_lt (min_lt_of_left_lt one_half_lt_one) [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] have h₁ : ∀ z : E, 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 := by rintro z hz rw [norm_smul_of_nonneg (inv_nonneg.2 <| norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne'] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' ⊢ ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 [PROOFSTEP] rintro z hz [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' z : E hz : 1 - δ' < ‖z‖ ⊢ ‖‖z‖⁻¹ • z‖ = 1 [PROOFSTEP] rw [norm_smul_of_nonneg (inv_nonneg.2 <| norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne'] [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] have h₂ : ∀ z : E, ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' := by rintro z hz hδz nth_rw 3 [← one_smul ℝ z] rwa [← sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le <| one_le_inv (hδ'.trans_le hδz) hz), sub_mul, inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le_comm] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 ⊢ ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' [PROOFSTEP] rintro z hz hδz [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 z : E hz : ‖z‖ ≤ 1 hδz : 1 - δ' ≤ ‖z‖ ⊢ ‖‖z‖⁻¹ • z - z‖ ≤ δ' [PROOFSTEP] nth_rw 3 [← one_smul ℝ z] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 z : E hz : ‖z‖ ≤ 1 hδz : 1 - δ' ≤ ‖z‖ ⊢ ‖‖z‖⁻¹ • z - 1 • z‖ ≤ δ' [PROOFSTEP] rwa [← sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le <| one_le_inv (hδ'.trans_le hδz) hz), sub_mul, inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le_comm] [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] set x' := ‖x‖⁻¹ • x [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] set y' := ‖y‖⁻¹ • y [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] have hxy' : ε / 3 ≤ ‖x' - y'‖ := calc ε / 3 = ε - (ε / 3 + ε / 3) := by ring _ ≤ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) := by gcongr · exact (h₂ _ hx hx'.le).trans <| min_le_of_right_le <| min_le_left _ _ · exact (h₂ _ hy hy'.le).trans <| min_le_of_right_le <| min_le_left _ _ _ ≤ _ := by have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := fun _ _ => by abel rw [sub_le_iff_le_add, norm_sub_rev _ x, ← add_assoc, this] exact norm_add₃_le _ _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ε / 3 = ε - (ε / 3 + ε / 3) [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ε - (ε / 3 + ε / 3) ≤ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) [PROOFSTEP] gcongr [GOAL] case hcd.h₁ E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ‖x' - x‖ ≤ ε / 3 [PROOFSTEP] exact (h₂ _ hx hx'.le).trans <| min_le_of_right_le <| min_le_left _ _ [GOAL] case hcd.h₂ E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ‖y' - y‖ ≤ ε / 3 [PROOFSTEP] exact (h₂ _ hy hy'.le).trans <| min_le_of_right_le <| min_le_left _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y ⊢ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) ≤ ‖x' - y'‖ [PROOFSTEP] have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := fun _ _ => by abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y x✝¹ x✝ : E ⊢ x - y = x✝¹ - x✝ + (x - x✝¹) + (x✝ - y) [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y x✝¹ x✝ : E ⊢ x - y = x✝¹ - x✝ + (x - x✝¹) + (x✝ - y) [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y) ⊢ ‖x - y‖ - (‖x' - x‖ + ‖y' - y‖) ≤ ‖x' - y'‖ [PROOFSTEP] rw [sub_le_iff_le_add, norm_sub_rev _ x, ← add_assoc, this] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y) ⊢ ‖?x' - ?y' + (x - ?x') + (?y' - y)‖ ≤ ‖x' - y'‖ + ‖x - x'‖ + ‖y' - y‖ case x' E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y) ⊢ E case y' E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y this : ∀ (x' y' : E), x - y = x' - y' + (x - x') + (y' - y) ⊢ E [PROOFSTEP] exact norm_add₃_le _ _ _ [GOAL] case intro.intro.inr.inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ ‖x + y‖ ≤ 2 - δ' [PROOFSTEP] calc ‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖ := by have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := fun _ _ => by abel rw [norm_sub_rev, norm_sub_rev y', this] exact norm_add₃_le _ _ _ _ ≤ 2 - δ + δ' + δ' := (add_le_add_three (h (h₁ _ hx') (h₁ _ hy') hxy') (h₂ _ hx hx'.le) (h₂ _ hy hy'.le)) _ ≤ 2 - δ' := by rw [← le_sub_iff_add_le, ← le_sub_iff_add_le, sub_sub, sub_sub] refine' sub_le_sub_left _ _ ring_nf rw [← mul_div_cancel' δ three_ne_zero] norm_num -- Porting note: these three extra lines needed to make `exact` work have : 3 * (δ / 3) * (1 / 3) = δ / 3 := by linarith rw [this, mul_comm] gcongr exact min_le_of_right_le <| min_le_right _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ ‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖ [PROOFSTEP] have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := fun _ _ => by abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ x✝¹ x✝ : E ⊢ x + y = x✝¹ + x✝ + (x - x✝¹) + (y - x✝) [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ x✝¹ x✝ : E ⊢ x + y = x✝¹ + x✝ + (x - x✝¹) + (y - x✝) [PROOFSTEP] abel [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y') ⊢ ‖x + y‖ ≤ ‖x' + y'‖ + ‖x' - x‖ + ‖y' - y‖ [PROOFSTEP] rw [norm_sub_rev, norm_sub_rev y', this] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y') ⊢ ‖?x' + ?y' + (x - ?x') + (y - ?y')‖ ≤ ‖x' + y'‖ + ‖x - x'‖ + ‖y - y'‖ case x' E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y') ⊢ E case y' E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : ∀ (x' y' : E), x + y = x' + y' + (x - x') + (y - y') ⊢ E [PROOFSTEP] exact norm_add₃_le _ _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ 2 - δ + δ' + δ' ≤ 2 - δ' [PROOFSTEP] rw [← le_sub_iff_add_le, ← le_sub_iff_add_le, sub_sub, sub_sub] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ 2 - δ ≤ 2 - (δ' + (δ' + δ')) [PROOFSTEP] refine' sub_le_sub_left _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ δ' + (δ' + δ') ≤ δ [PROOFSTEP] ring_nf [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ min (↑(Int.ofNat 1) / ↑2) (min (ε * (↑(Int.ofNat 1) / ↑3)) (δ * (↑(Int.ofNat 1) / ↑3))) * 3 ≤ δ [PROOFSTEP] rw [← mul_div_cancel' δ three_ne_zero] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ min (↑(Int.ofNat 1) / ↑2) (min (ε * (↑(Int.ofNat 1) / ↑3)) (3 * (δ / 3) * (↑(Int.ofNat 1) / ↑3))) * 3 ≤ 3 * (δ / 3) [PROOFSTEP] norm_num -- Porting note: these three extra lines needed to make `exact` work [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ min (1 / 2) (min (ε * (1 / 3)) (3 * (δ / 3) * (1 / 3))) * 3 ≤ 3 * (δ / 3) [PROOFSTEP] have : 3 * (δ / 3) * (1 / 3) = δ / 3 := by linarith [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ ⊢ 3 * (δ / 3) * (1 / 3) = δ / 3 [PROOFSTEP] linarith [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : 3 * (δ / 3) * (1 / 3) = δ / 3 ⊢ min (1 / 2) (min (ε * (1 / 3)) (3 * (δ / 3) * (1 / 3))) * 3 ≤ 3 * (δ / 3) [PROOFSTEP] rw [this, mul_comm] [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : 3 * (δ / 3) * (1 / 3) = δ / 3 ⊢ 3 * min (1 / 2) (min (ε * (1 / 3)) (δ / 3)) ≤ 3 * (δ / 3) [PROOFSTEP] gcongr [GOAL] case h E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε hε' : 0 < ε / 3 δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → ε / 3 ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ δ' : ℝ := min (1 / 2) (min (ε / 3) (δ / 3)) x : E hx : ‖x‖ ≤ 1 y : E hy : ‖y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ hx' : 1 - δ' < ‖x‖ hy' : 1 - δ' < ‖y‖ hδ' : 0 < 1 - δ' h₁ : ∀ (z : E), 1 - δ' < ‖z‖ → ‖‖z‖⁻¹ • z‖ = 1 h₂ : ∀ (z : E), ‖z‖ ≤ 1 → 1 - δ' ≤ ‖z‖ → ‖‖z‖⁻¹ • z - z‖ ≤ δ' x' : E := ‖x‖⁻¹ • x y' : E := ‖y‖⁻¹ • y hxy' : ε / 3 ≤ ‖x' - y'‖ this : 3 * (δ / 3) * (1 / 3) = δ / 3 ⊢ min (1 / 2) (min (ε * (1 / 3)) (δ / 3)) ≤ δ / 3 [PROOFSTEP] exact min_le_of_right_le <| min_le_right _ _ [GOAL] E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ [PROOFSTEP] obtain hr | hr := le_or_lt r 0 [GOAL] case inl E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : r ≤ 0 ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ [PROOFSTEP] exact ⟨1, one_pos, fun x hx y hy h => (hε.not_le <| h.trans <| (norm_sub_le _ _).trans <| add_nonpos (hx.trans hr) (hy.trans hr)).elim⟩ [GOAL] case inr E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ [PROOFSTEP] obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (div_pos hε hr) [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ‖x‖ ≤ r → ∀ ⦃y : E⦄, ‖y‖ ≤ r → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ [PROOFSTEP] refine' ⟨δ * r, mul_pos hδ hr, fun x hx y hy hxy => _⟩ [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx : ‖x‖ ≤ r y : E hy : ‖y‖ ≤ r hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] rw [← div_le_one hr, div_eq_inv_mul, ← norm_smul_of_nonneg (inv_nonneg.2 hr.le)] at hx hy [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx✝ : r⁻¹ * ‖x‖ ≤ 1 hx : ‖r⁻¹ • x‖ ≤ 1 y : E hy✝ : r⁻¹ * ‖y‖ ≤ 1 hy : ‖r⁻¹ • y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] try infer_instance [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx✝ : r⁻¹ * ‖x‖ ≤ 1 hx : ‖r⁻¹ • x‖ ≤ 1 y : E hy✝ : r⁻¹ * ‖y‖ ≤ 1 hy : ‖r⁻¹ • y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] infer_instance [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx✝ : r⁻¹ * ‖x‖ ≤ 1 hx : ‖r⁻¹ • x‖ ≤ 1 y : E hy✝ : r⁻¹ * ‖y‖ ≤ 1 hy : ‖r⁻¹ • y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] have := h hx hy [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx✝ : r⁻¹ * ‖x‖ ≤ 1 hx : ‖r⁻¹ • x‖ ≤ 1 y : E hy✝ : r⁻¹ * ‖y‖ ≤ 1 hy : ‖r⁻¹ • y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ this : ε / r ≤ ‖r⁻¹ • x - r⁻¹ • y‖ → ‖r⁻¹ • x + r⁻¹ • y‖ ≤ 2 - δ ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] simp_rw [← smul_add, ← smul_sub, norm_smul_of_nonneg (inv_nonneg.2 hr.le), ← div_eq_inv_mul, div_le_div_right hr, div_le_iff hr, sub_mul] at this [GOAL] case inr.intro.intro E : Type u_1 inst✝² : SeminormedAddCommGroup E inst✝¹ : UniformConvexSpace E ε : ℝ inst✝ : NormedSpace ℝ E hε : 0 < ε r : ℝ hr : 0 < r δ : ℝ hδ : 0 < δ h : ∀ ⦃x : E⦄, ‖x‖ ≤ 1 → ∀ ⦃y : E⦄, ‖y‖ ≤ 1 → ε / r ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ x : E hx✝ : r⁻¹ * ‖x‖ ≤ 1 hx : ‖r⁻¹ • x‖ ≤ 1 y : E hy✝ : r⁻¹ * ‖y‖ ≤ 1 hy : ‖r⁻¹ • y‖ ≤ 1 hxy : ε ≤ ‖x - y‖ this : ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 * r - δ * r ⊢ ‖x + y‖ ≤ 2 * r - δ * r [PROOFSTEP] exact this hxy
{"mathlib_filename": "Mathlib.Analysis.Convex.Uniform", "llama_tokens": 24574}
[GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Sbtw ℝ p₁ p₂ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] have hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p := by simpa using h.left_ne_right [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Sbtw ℝ p₁ p₂ p₃ ⊢ p₁ -ᵥ p ≠ p₃ -ᵥ p [PROOFSTEP] simpa using h.left_ne_right [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Sbtw ℝ p₁ p₂ p₃ hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rw [Sbtw, ← wbtw_vsub_const_iff p, Wbtw, affineSegment_eq_segment, ← insert_endpoints_openSegment, Set.mem_insert_iff, Set.mem_insert_iff] at h [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : (p₂ -ᵥ p = p₁ -ᵥ p ∨ p₂ -ᵥ p = p₃ -ᵥ p ∨ p₂ -ᵥ p ∈ openSegment ℝ (p₁ -ᵥ p) (p₃ -ᵥ p)) ∧ p₂ ≠ p₁ ∧ p₂ ≠ p₃ hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rcases h with ⟨h | h | h, hp₂p₁, hp₂p₃⟩ [GOAL] case intro.inl.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ -ᵥ p = p₁ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rw [vsub_left_cancel_iff] at h [GOAL] case intro.inl.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ = p₁ hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] exact False.elim (hp₂p₁ h) [GOAL] case intro.inr.inl.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ -ᵥ p = p₃ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rw [vsub_left_cancel_iff] at h [GOAL] case intro.inr.inl.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ = p₃ hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] exact False.elim (hp₂p₃ h) [GOAL] case intro.inr.inr.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : p₂ -ᵥ p ∈ openSegment ℝ (p₁ -ᵥ p) (p₃ -ᵥ p) hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rw [openSegment_eq_image, Set.mem_image] at h [GOAL] case intro.inr.inr.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p h : ∃ x, x ∈ Set.Ioo 0 1 ∧ (1 - x) • (p₁ -ᵥ p) + x • (p₃ -ᵥ p) = p₂ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] rcases h with ⟨r, ⟨hr0, hr1⟩, hr⟩ [GOAL] case intro.inr.inr.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ r : ℝ hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p hr0 : 0 < r hr1 : r < 1 ⊢ dist p₂ p < max (dist p₁ p) (dist p₃ p) [PROOFSTEP] simp_rw [@dist_eq_norm_vsub V, ← hr] [GOAL] case intro.inr.inr.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ r : ℝ hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p hr0 : 0 < r hr1 : r < 1 ⊢ ‖(1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p)‖ < max ‖p₁ -ᵥ p‖ ‖p₃ -ᵥ p‖ [PROOFSTEP] exact norm_combo_lt_of_ne (le_max_left _ _) (le_max_right _ _) hp₁p₃ (sub_pos.2 hr1) hr0 (by abel) [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ r : ℝ hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p hr0 : 0 < r hr1 : r < 1 ⊢ 1 - r + r = 1 [PROOFSTEP] abel [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P hp₁p₃ : p₁ -ᵥ p ≠ p₃ -ᵥ p hp₂p₁ : p₂ ≠ p₁ hp₂p₃ : p₂ ≠ p₃ r : ℝ hr : (1 - r) • (p₁ -ᵥ p) + r • (p₃ -ᵥ p) = p₂ -ᵥ p hr0 : 0 < r hr1 : r < 1 ⊢ 1 - r + r = 1 [PROOFSTEP] abel [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] by_cases hp₁ : p₂ = p₁ [GOAL] case pos V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ hp₁ : p₂ = p₁ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] simp [hp₁] [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ hp₁ : ¬p₂ = p₁ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] by_cases hp₃ : p₂ = p₃ [GOAL] case pos V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ hp₁ : ¬p₂ = p₁ hp₃ : p₂ = p₃ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] simp [hp₃] [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ hp₁ : ¬p₂ = p₁ hp₃ : ¬p₂ = p₃ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] have hs : Sbtw ℝ p₁ p₂ p₃ := ⟨h, hp₁, hp₃⟩ [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P h : Wbtw ℝ p₁ p₂ p₃ hp₁ : ¬p₂ = p₁ hp₃ : ¬p₂ = p₃ hs : Sbtw ℝ p₁ p₂ p₃ ⊢ dist p₂ p ≤ max (dist p₁ p) (dist p₃ p) [PROOFSTEP] exact (hs.dist_lt_max_dist _).le [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] rcases h.wbtw_or_wbtw_or_wbtw with (hw | hw | hw) [GOAL] case inl V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₁ p₂ p₃ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] exact hw [GOAL] case inr.inl V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] by_cases hp₃p₂ : p₃ = p₂ [GOAL] case pos V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : p₃ = p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] simp [hp₃p₂] [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : ¬p₃ = p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] have hs : Sbtw ℝ p₂ p₃ p₁ := ⟨hw, hp₃p₂, hp₁p₃.symm⟩ [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : ¬p₃ = p₂ hs : Sbtw ℝ p₂ p₃ p₁ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] have hs' := hs.dist_lt_max_dist p [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : ¬p₃ = p₂ hs : Sbtw ℝ p₂ p₃ p₁ hs' : dist p₃ p < max (dist p₂ p) (dist p₁ p) ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] rw [hp₁, hp₃, lt_max_iff, lt_self_iff_false, or_false_iff] at hs' [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : ¬p₃ = p₂ hs : Sbtw ℝ p₂ p₃ p₁ hs' : r < dist p₂ p ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] exact False.elim (hp₂.not_lt hs') [GOAL] case inr.inr V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] by_cases hp₁p₂ : p₁ = p₂ [GOAL] case pos V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ hp₁p₂ : p₁ = p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] simp [hp₁p₂] [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ hp₁p₂ : ¬p₁ = p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] have hs : Sbtw ℝ p₃ p₁ p₂ := ⟨hw, hp₁p₃, hp₁p₂⟩ [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ hp₁p₂ : ¬p₁ = p₂ hs : Sbtw ℝ p₃ p₁ p₂ ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] have hs' := hs.dist_lt_max_dist p [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ hp₁p₂ : ¬p₁ = p₂ hs : Sbtw ℝ p₃ p₁ p₂ hs' : dist p₁ p < max (dist p₃ p) (dist p₂ p) ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] rw [hp₁, hp₃, lt_max_iff, lt_self_iff_false, false_or_iff] at hs' [GOAL] case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₃ p₁ p₂ hp₁p₂ : ¬p₁ = p₂ hs : Sbtw ℝ p₃ p₁ p₂ hs' : r < dist p₂ p ⊢ Wbtw ℝ p₁ p₂ p₃ [PROOFSTEP] exact False.elim (hp₂.not_lt hs') [GOAL] V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p < r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ ⊢ Sbtw ℝ p₁ p₂ p₃ [PROOFSTEP] refine' ⟨h.wbtw_of_dist_eq_of_dist_le hp₁ hp₂.le hp₃ hp₁p₃, _, _⟩ [GOAL] case refine'_1 V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p < r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ ⊢ p₂ ≠ p₁ [PROOFSTEP] rintro rfl [GOAL] case refine'_1 V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₂ p₃ : P r : ℝ hp₂ : dist p₂ p < r hp₃ : dist p₃ p = r h : Collinear ℝ {p₂, p₂, p₃} hp₁ : dist p₂ p = r hp₁p₃ : p₂ ≠ p₃ ⊢ False [PROOFSTEP] exact hp₂.ne hp₁ [GOAL] case refine'_2 V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p < r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ ⊢ p₂ ≠ p₃ [PROOFSTEP] rintro rfl [GOAL] case refine'_2 V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor V P inst✝ : StrictConvexSpace ℝ V p p₁ p₂ : P r : ℝ hp₁ : dist p₁ p = r hp₂ : dist p₂ p < r h : Collinear ℝ {p₁, p₂, p₂} hp₃ : dist p₂ p = r hp₁p₃ : p₁ ≠ p₂ ⊢ False [PROOFSTEP] exact hp₂.ne hp₃
{"mathlib_filename": "Mathlib.Analysis.Convex.StrictConvexBetween", "llama_tokens": 8508}
[GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝ : Fintype ι ⊢ stdSimplex ℝ ι ⊆ closedBall 0 1 [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝ : Fintype ι f : ι → ℝ hf : f ∈ stdSimplex ℝ ι ⊢ f ∈ closedBall 0 1 [PROOFSTEP] rw [Metric.mem_closedBall, dist_pi_le_iff zero_le_one] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝ : Fintype ι f : ι → ℝ hf : f ∈ stdSimplex ℝ ι ⊢ ∀ (b : ι), dist (f b) (OfNat.ofNat 0 b) ≤ 1 [PROOFSTEP] intro x [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝ : Fintype ι f : ι → ℝ hf : f ∈ stdSimplex ℝ ι x : ι ⊢ dist (f x) (OfNat.ofNat 0 x) ≤ 1 [PROOFSTEP] rw [Pi.zero_apply, Real.dist_0_eq_abs, abs_of_nonneg <| hf.1 x] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝ : Fintype ι f : ι → ℝ hf : f ∈ stdSimplex ℝ ι x : ι ⊢ f x ≤ 1 [PROOFSTEP] exact (mem_Icc_of_mem_stdSimplex hf x).2 [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁸ : LinearOrderedRing 𝕜 inst✝⁷ : DenselyOrdered 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : OrderTopology 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : TopologicalSpace E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ [x-[𝕜]y] ⊆ closure (openSegment 𝕜 x y) [PROOFSTEP] rw [segment_eq_image, openSegment_eq_image, ← closure_Ioo (zero_ne_one' 𝕜)] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁸ : LinearOrderedRing 𝕜 inst✝⁷ : DenselyOrdered 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : OrderTopology 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : TopologicalSpace E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ (fun θ => (1 - θ) • x + θ • y) '' closure (Ioo 0 1) ⊆ closure ((fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1) [PROOFSTEP] exact image_closure_subset_closure_image (by continuity) [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁸ : LinearOrderedRing 𝕜 inst✝⁷ : DenselyOrdered 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : OrderTopology 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : TopologicalSpace E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ Continuous fun θ => (1 - θ) • x + θ • y [PROOFSTEP] continuity [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝¹¹ : LinearOrderedRing 𝕜 inst✝¹⁰ : DenselyOrdered 𝕜 inst✝⁹ : PseudoMetricSpace 𝕜 inst✝⁸ : OrderTopology 𝕜 inst✝⁷ : ProperSpace 𝕜 inst✝⁶ : CompactIccSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ closure (openSegment 𝕜 x y) = [x-[𝕜]y] [PROOFSTEP] rw [segment_eq_image, openSegment_eq_image, ← closure_Ioo (zero_ne_one' 𝕜)] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝¹¹ : LinearOrderedRing 𝕜 inst✝¹⁰ : DenselyOrdered 𝕜 inst✝⁹ : PseudoMetricSpace 𝕜 inst✝⁸ : OrderTopology 𝕜 inst✝⁷ : ProperSpace 𝕜 inst✝⁶ : CompactIccSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ closure ((fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1) = (fun θ => (1 - θ) • x + θ • y) '' closure (Ioo 0 1) [PROOFSTEP] exact (image_closure_of_isCompact (bounded_Ioo _ _).isCompact_closure <| Continuous.continuousOn <| by continuity).symm [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝¹¹ : LinearOrderedRing 𝕜 inst✝¹⁰ : DenselyOrdered 𝕜 inst✝⁹ : PseudoMetricSpace 𝕜 inst✝⁸ : OrderTopology 𝕜 inst✝⁷ : ProperSpace 𝕜 inst✝⁶ : CompactIccSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : ContinuousAdd E inst✝¹ : Module 𝕜 E inst✝ : ContinuousSMul 𝕜 E x y : E ⊢ Continuous fun θ => (1 - θ) • x + θ • y [PROOFSTEP] continuity [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s a b : 𝕜 ha : 0 < a hb : 0 ≤ b hab : a + b = 1 ⊢ interior (a • s) + closure (b • s) = interior (a • s) + b • s [PROOFSTEP] rw [isOpen_interior.add_closure (b • s)] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ⊢ a • closure s + b • interior s ⊆ interior s [PROOFSTEP] rw [add_comm] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ⊢ b • interior s + a • closure s ⊆ interior s [PROOFSTEP] exact hs.combo_interior_closure_subset_interior hb ha (add_comm a b ▸ hab) [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ⊢ a • s + b • interior s ⊆ interior s [PROOFSTEP] rw [add_comm] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ⊢ b • interior s + a • s ⊆ interior s [PROOFSTEP] exact hs.combo_interior_self_subset_interior hb ha (add_comm a b ▸ hab) [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ interior s hy : y ∈ closure s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] rintro _ ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ interior s hy : y ∈ closure s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s [PROOFSTEP] exact hs.combo_interior_closure_mem_interior hx hy ha hb.le hab [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ closure s hy : y ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] rintro _ ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ closure s hy : y ∈ interior s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s [PROOFSTEP] exact hs.combo_closure_interior_mem_interior hx hy ha.le hb hab [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ closure s hy : y ∈ interior s t : 𝕜 ht : t ∈ Ioc 0 1 ⊢ x + t • (y - x) ∈ interior s [PROOFSTEP] simpa only [sub_smul, smul_sub, one_smul, add_sub, add_comm] using hs.combo_interior_closure_mem_interior hy hx ht.1 (sub_nonneg.mpr ht.2) (add_sub_cancel'_right _ _) [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s x y : E hx : x ∈ closure s hy : x + y ∈ interior s t : 𝕜 ht : t ∈ Ioc 0 1 ⊢ x + t • y ∈ interior s [PROOFSTEP] simpa only [add_sub_cancel'] using hs.add_smul_sub_mem_interior' hx hy ht [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s ⊢ StrictConvex 𝕜 s [PROOFSTEP] refine' strictConvex_iff_openSegment_subset.2 _ [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s ⊢ Set.Pairwise s fun x y => openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] intro x hx y hy hne [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] by_cases hx' : x ∈ interior s [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : x ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] exact hs.openSegment_interior_self_subset_interior hx' hy [GOAL] case neg ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] by_cases hy' : y ∈ interior s [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s hy' : y ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] exact hs.openSegment_self_interior_subset_interior hx hy' [GOAL] case neg ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s hy' : ¬y ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] rcases h ⟨hx, hx'⟩ ⟨hy, hy'⟩ hne with ⟨c, hc⟩ [GOAL] case neg.intro ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s hy' : ¬y ∈ interior s c : 𝕜 hc : ↑(lineMap x y) c ∈ interior s ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] refine' (openSegment_subset_union x y ⟨c, rfl⟩).trans (insert_subset_iff.2 ⟨hc, union_subset _ _⟩) [GOAL] case neg.intro.refine'_1 ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s hy' : ¬y ∈ interior s c : 𝕜 hc : ↑(lineMap x y) c ∈ interior s ⊢ openSegment 𝕜 x (↑(lineMap x y) c) ⊆ interior s case neg.intro.refine'_2 ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => ∃ c, ↑(lineMap x y) c ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hne : x ≠ y hx' : ¬x ∈ interior s hy' : ¬y ∈ interior s c : 𝕜 hc : ↑(lineMap x y) c ∈ interior s ⊢ openSegment 𝕜 (↑(lineMap x y) c) y ⊆ interior s [PROOFSTEP] exacts [hs.openSegment_self_interior_subset_interior hx hc, hs.openSegment_interior_self_subset_interior hc hy] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s) ⊢ StrictConvex 𝕜 s [PROOFSTEP] refine' hs.strictConvex' <| h.imp_on fun x hx y hy _ => _ [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s) x : E hx : x ∈ s \ interior s y : E hy : y ∈ s \ interior s x✝ : x ≠ y ⊢ fun ⦃a b⦄ => Set.Nonempty ([a-[𝕜]b] \ frontier s) → ∃ c, ↑(lineMap a b) c ∈ interior s [PROOFSTEP] simp only [segment_eq_image_lineMap, ← self_diff_frontier] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s) x : E hx : x ∈ s \ interior s y : E hy : y ∈ s \ interior s x✝ : x ≠ y ⊢ Set.Nonempty ((fun a => ↑(lineMap x y) a) '' Icc 0 1 \ frontier s) → ∃ c, ↑(lineMap x y) c ∈ s \ frontier s [PROOFSTEP] rintro ⟨_, ⟨⟨c, hc, rfl⟩, hcs⟩⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s) x : E hx : x ∈ s \ interior s y : E hy : y ∈ s \ interior s x✝ : x ≠ y c : 𝕜 hc : c ∈ Icc 0 1 hcs : ¬(fun a => ↑(lineMap x y) a) c ∈ frontier s ⊢ ∃ c, ↑(lineMap x y) c ∈ s \ frontier s [PROOFSTEP] refine' ⟨c, hs.segment_subset hx.1 hy.1 _, hcs⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : Convex 𝕜 s h : Set.Pairwise (s \ interior s) fun x y => Set.Nonempty ([x-[𝕜]y] \ frontier s) x : E hx : x ∈ s \ interior s y : E hy : y ∈ s \ interior s x✝ : x ≠ y c : 𝕜 hc : c ∈ Icc 0 1 hcs : ¬(fun a => ↑(lineMap x y) a) c ∈ frontier s ⊢ ↑(lineMap x y) c ∈ [x-[𝕜]y] [PROOFSTEP] exact (segment_eq_image_lineMap 𝕜 x y).symm ▸ mem_image_of_mem _ hc [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Set.Finite s ⊢ IsCompact (↑(convexHull ℝ) s) [PROOFSTEP] rw [hs.convexHull_eq_image] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Set.Finite s ⊢ IsCompact (↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x) '' stdSimplex ℝ ↑s) [PROOFSTEP] apply (@isCompact_stdSimplex _ hs.fintype).image [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Set.Finite s ⊢ Continuous ↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x) [PROOFSTEP] haveI := hs.fintype [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Set.Finite s this : Fintype ↑s ⊢ Continuous ↑(Finset.sum Finset.univ fun x => LinearMap.smulRight (LinearMap.proj x) ↑x) [PROOFSTEP] apply LinearMap.continuous_on_pi [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s t : ℝ ht : 1 < t ⊢ closure s ⊆ ↑(homothety x t) '' interior s [PROOFSTEP] intro y hy [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s t : ℝ ht : 1 < t y : E hy : y ∈ closure s ⊢ y ∈ ↑(homothety x t) '' interior s [PROOFSTEP] have hne : t ≠ 0 := (one_pos.trans ht).ne' [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s t : ℝ ht : 1 < t y : E hy : y ∈ closure s hne : t ≠ 0 ⊢ y ∈ ↑(homothety x t) '' interior s [PROOFSTEP] refine' ⟨homothety x t⁻¹ y, hs.openSegment_interior_closure_subset_interior hx hy _, (AffineEquiv.homothetyUnitsMulHom x (Units.mk0 t hne)).apply_symm_apply y⟩ [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s t : ℝ ht : 1 < t y : E hy : y ∈ closure s hne : t ≠ 0 ⊢ ↑(homothety x t⁻¹) y ∈ openSegment ℝ x y [PROOFSTEP] rw [openSegment_eq_image_lineMap, ← inv_one, ← inv_Ioi (zero_lt_one' ℝ), ← image_inv, image_image, homothety_eq_lineMap] [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s t : ℝ ht : 1 < t y : E hy : y ∈ closure s hne : t ≠ 0 ⊢ ↑(lineMap x y) t⁻¹ ∈ (fun x_1 => ↑(lineMap x y) x_1⁻¹) '' Ioi 1 [PROOFSTEP] exact mem_image_of_mem _ ht [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hconv : Convex ℝ s hne : Set.Nonempty s ⊢ IsPathConnected s [PROOFSTEP] refine' isPathConnected_iff.mpr ⟨hne, _⟩ [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hconv : Convex ℝ s hne : Set.Nonempty s ⊢ ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → JoinedIn s x y [PROOFSTEP] intro x x_in y y_in [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hconv : Convex ℝ s hne : Set.Nonempty s x : E x_in : x ∈ s y : E y_in : y ∈ s ⊢ JoinedIn s x y [PROOFSTEP] have H := hconv.segment_subset x_in y_in [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hconv : Convex ℝ s hne : Set.Nonempty s x : E x_in : x ∈ s y : E y_in : y ∈ s H : [x-[ℝ]y] ⊆ s ⊢ JoinedIn s x y [PROOFSTEP] rw [segment_eq_image_lineMap] at H [GOAL] ι : Type u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E s : Set E hconv : Convex ℝ s hne : Set.Nonempty s x : E x_in : x ∈ s y : E y_in : y ∈ s H : ↑(lineMap x y) '' Icc 0 1 ⊆ s ⊢ JoinedIn s x y [PROOFSTEP] exact JoinedIn.ofLine AffineMap.lineMap_continuous.continuousOn (lineMap_apply_zero _ _) (lineMap_apply_one _ _) H
{"mathlib_filename": "Mathlib.Analysis.Convex.Topology", "llama_tokens": 10187}
[GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] cases' ne_or_eq (affineSpan ℝ s) ⊤ with hspan hspan [GOAL] case inl E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s hspan : affineSpan ℝ s ≠ ⊤ ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] refine' measure_mono_null _ (addHaar_affineSubspace _ _ hspan) [GOAL] case inl E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s hspan : affineSpan ℝ s ≠ ⊤ ⊢ frontier s ⊆ ↑(affineSpan ℝ s) [PROOFSTEP] exact frontier_subset_closure.trans (closure_minimal (subset_affineSpan _ _) (affineSpan ℝ s).closed_of_finiteDimensional) [GOAL] case inr E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s hspan : affineSpan ℝ s = ⊤ ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] rw [← hs.interior_nonempty_iff_affineSpan_eq_top] at hspan [GOAL] case inr E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s hspan : Set.Nonempty (interior s) ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] rcases hspan with ⟨x, hx⟩ /- Without loss of generality, `s` is bounded. Indeed, `∂s ⊆ ⋃ n, ∂(s ∩ ball x (n + 1))`, hence it suffices to prove that `∀ n, μ (s ∩ ball x (n + 1)) = 0`; the latter set is bounded. -/ [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] suffices H : ∀ t : Set E, Convex ℝ t → x ∈ interior t → Bounded t → μ (frontier t) = 0 [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] let B : ℕ → Set E := fun n => ball x (n + 1) [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] have : μ (⋃ n : ℕ, frontier (s ∩ B n)) = 0 := by refine' measure_iUnion_null fun n => H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _)) rw [interior_inter, isOpen_ball.interior_eq] exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) ⊢ ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0 [PROOFSTEP] refine' measure_iUnion_null fun n => H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _)) [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) n : ℕ ⊢ x ∈ interior (s ∩ B n) [PROOFSTEP] rw [interior_inter, isOpen_ball.interior_eq] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) n : ℕ ⊢ x ∈ interior s ∩ ball x (↑n + 1) [PROOFSTEP] exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩ [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) this : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0 ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] refine' measure_mono_null (fun y hy => _) this [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) this : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0 y : E hy : y ∈ frontier s ⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n) [PROOFSTEP] clear this [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s ⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n) [PROOFSTEP] set N : ℕ := ⌊dist y x⌋₊ [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ ⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n) [PROOFSTEP] refine' mem_iUnion.2 ⟨N, _⟩ [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ ⊢ y ∈ frontier (s ∩ B N) [PROOFSTEP] have hN : y ∈ B N := by simp [Nat.lt_floor_add_one] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ ⊢ y ∈ B N [PROOFSTEP] simp [Nat.lt_floor_add_one] [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ hN : y ∈ B N ⊢ y ∈ frontier (s ∩ B N) [PROOFSTEP] suffices : y ∈ frontier (s ∩ B N) ∩ B N [GOAL] case inr.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ hN : y ∈ B N this : y ∈ frontier (s ∩ B N) ∩ B N ⊢ y ∈ frontier (s ∩ B N) case this E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ hN : y ∈ B N ⊢ y ∈ frontier (s ∩ B N) ∩ B N [PROOFSTEP] exact this.1 [GOAL] case this E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ hN : y ∈ B N ⊢ y ∈ frontier (s ∩ B N) ∩ B N [PROOFSTEP] rw [frontier_inter_open_inter isOpen_ball] [GOAL] case this E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s H : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 B : ℕ → Set E := fun n => ball x (↑n + 1) y : E hy : y ∈ frontier s N : ℕ := ⌊dist y x⌋₊ hN : y ∈ B N ⊢ y ∈ frontier s ∩ ball x (↑N + 1) [PROOFSTEP] exact ⟨hy, hN⟩ [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s : Set E hs : Convex ℝ s x : E hx : x ∈ interior s ⊢ ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0 [PROOFSTEP] intro s hs hx hb [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : Metric.Bounded s ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] replace hb : μ (interior s) ≠ ∞ [GOAL] case hb E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : Metric.Bounded s ⊢ ↑↑μ (interior s) ≠ ⊤ case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] exact (hb.mono interior_subset).measure_lt_top.ne [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] suffices μ (closure s) ≤ μ (interior s) by rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb, tsub_eq_zero_iff_le] /- Due to `Convex.closure_subset_image_homothety_interior_of_one_lt`, for any `r > 1` we have `closure s ⊆ homothety x r '' interior s`, hence `μ (closure s) ≤ r ^ d * μ (interior s)`, where `d = finrank ℝ E`. -/ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ this : ↑↑μ (closure s) ≤ ↑↑μ (interior s) ⊢ ↑↑μ (frontier s) = 0 [PROOFSTEP] rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb, tsub_eq_zero_iff_le] /- Due to `Convex.closure_subset_image_homothety_interior_of_one_lt`, for any `r > 1` we have `closure s ⊆ homothety x r '' interior s`, hence `μ (closure s) ≤ r ^ d * μ (interior s)`, where `d = finrank ℝ E`. -/ [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ ⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s) [PROOFSTEP] set d : ℕ := FiniteDimensional.finrank ℝ E [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E ⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s) [PROOFSTEP] have : ∀ r : ℝ≥0, 1 < r → μ (closure s) ≤ ↑(r ^ d) * μ (interior s) := by intro r hr refine' (measure_mono <| hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _ rw [addHaar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E ⊢ ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) [PROOFSTEP] intro r hr [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E r : ℝ≥0 hr : 1 < r ⊢ ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) [PROOFSTEP] refine' (measure_mono <| hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E r : ℝ≥0 hr : 1 < r ⊢ ↑↑μ (↑(AffineMap.homothety x ↑r) '' interior s) = ↑(r ^ d) * ↑↑μ (interior s) [PROOFSTEP] rw [addHaar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal] [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E this : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) ⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s) [PROOFSTEP] have : ∀ᶠ (r : ℝ≥0) in 𝓝[>] 1, μ (closure s) ≤ ↑(r ^ d) * μ (interior s) := mem_of_superset self_mem_nhdsWithin this [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) ⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s) [PROOFSTEP] refine' ge_of_tendsto _ this [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) ⊢ Tendsto (fun c => ↑(c ^ d) * ↑↑μ (interior s)) (𝓝[Ioi 1] 1) (𝓝 (↑↑μ (interior s))) [PROOFSTEP] refine' (((ENNReal.continuous_mul_const hb).comp (ENNReal.continuous_coe.comp (continuous_pow d))).tendsto' _ _ _).mono_left nhdsWithin_le_nhds [GOAL] case H E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : IsAddHaarMeasure μ s✝ : Set E hs✝ : Convex ℝ s✝ x : E hx✝ : x ∈ interior s✝ s : Set E hs : Convex ℝ s hx : x ∈ interior s hb : ↑↑μ (interior s) ≠ ⊤ d : ℕ := finrank ℝ E this✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) this : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s) ⊢ ((fun x => x * ↑↑μ (interior s)) ∘ ENNReal.some ∘ fun a => a ^ d) 1 = ↑↑μ (interior s) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Analysis.Convex.Measure", "llama_tokens": 9601}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ x ∈ ↑(convexHull 𝕜) s ↔ ∀ (t : Set E), s ⊆ t → Convex 𝕜 t → x ∈ t [PROOFSTEP] simp_rw [convexHull_eq_iInter, mem_iInter] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ ↑(convexHull 𝕜) s = ∅ ↔ s = ∅ [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ ↑(convexHull 𝕜) s = ∅ → s = ∅ [PROOFSTEP] intro h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E h : ↑(convexHull 𝕜) s = ∅ ⊢ s = ∅ [PROOFSTEP] rw [← Set.subset_empty_iff, ← h] [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E h : ↑(convexHull 𝕜) s = ∅ ⊢ s ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] exact subset_convexHull 𝕜 _ [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ s = ∅ → ↑(convexHull 𝕜) s = ∅ [PROOFSTEP] rintro rfl [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F t : Set E x y : E ⊢ ↑(convexHull 𝕜) ∅ = ∅ [PROOFSTEP] exact convexHull_empty [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ Set.Nonempty (↑(convexHull 𝕜) s) ↔ Set.Nonempty s [PROOFSTEP] rw [nonempty_iff_ne_empty, nonempty_iff_ne_empty, Ne.def, Ne.def] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E ⊢ ¬↑(convexHull 𝕜) s = ∅ ↔ ¬s = ∅ [PROOFSTEP] exact not_congr convexHull_empty_iff [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x✝ y✝ x y : E ⊢ ↑(convexHull 𝕜) {x, y} = segment 𝕜 x y [PROOFSTEP] refine (convexHull_min ?_ <| convex_segment _ _).antisymm (segment_subset_convexHull (mem_insert _ _) <| subset_insert _ _ <| mem_singleton _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x✝ y✝ x y : E ⊢ {x, y} ⊆ segment 𝕜 x y [PROOFSTEP] rw [insert_subset_iff, singleton_subset_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x✝ y✝ x y : E ⊢ x ∈ segment 𝕜 x y ∧ y ∈ segment 𝕜 x y [PROOFSTEP] exact ⟨left_mem_segment _ _ _, right_mem_segment _ _ _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E ⊢ Convex 𝕜 (s \ {x}) ↔ ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E ⊢ Convex 𝕜 (s \ {x}) → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] rintro hsx hx [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hsx : Convex 𝕜 (s \ {x}) hx : x ∈ ↑(convexHull 𝕜) (s \ {x}) ⊢ False [PROOFSTEP] rw [hsx.convexHull_eq] at hx [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hsx : Convex 𝕜 (s \ {x}) hx : x ∈ s \ {x} ⊢ False [PROOFSTEP] exact hx.2 (mem_singleton _) [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E ⊢ ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) → Convex 𝕜 (s \ {x}) [PROOFSTEP] rintro hx [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) ⊢ Convex 𝕜 (s \ {x}) [PROOFSTEP] suffices h : s \ { x } = convexHull 𝕜 (s \ { x }) [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) h : s \ {x} = ↑(convexHull 𝕜) (s \ {x}) ⊢ Convex 𝕜 (s \ {x}) [PROOFSTEP] rw [h] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) h : s \ {x} = ↑(convexHull 𝕜) (s \ {x}) ⊢ Convex 𝕜 (↑(convexHull 𝕜) (s \ {x})) [PROOFSTEP] exact convex_convexHull 𝕜 _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y : E s : Set E hs : Convex 𝕜 s x : E hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) ⊢ s \ {x} = ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] exact Subset.antisymm (subset_convexHull 𝕜 _) fun y hy => ⟨convexHull_min (diff_subset _ _) hs hy, by rintro (rfl : y = x) exact hx hy⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set E hs : Convex 𝕜 s x : E hx : ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) y : E hy : y ∈ ↑(convexHull 𝕜) (s \ {x}) ⊢ ¬y ∈ {x} [PROOFSTEP] rintro (rfl : y = x) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x y✝ : E s : Set E hs : Convex 𝕜 s y : E hx : ¬y ∈ ↑(convexHull 𝕜) (s \ {y}) hy : y ∈ ↑(convexHull 𝕜) (s \ {y}) ⊢ False [PROOFSTEP] exact hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ ↑f '' ↑(convexHull 𝕜) s = ↑(convexHull 𝕜) (↑f '' s) [PROOFSTEP] apply Set.Subset.antisymm [GOAL] case h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ ↑f '' ↑(convexHull 𝕜) s ⊆ ↑(convexHull 𝕜) (↑f '' s) [PROOFSTEP] rw [Set.image_subset_iff] [GOAL] case h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ ↑(convexHull 𝕜) s ⊆ ↑f ⁻¹' ↑(convexHull 𝕜) (↑f '' s) [PROOFSTEP] refine' convexHull_min _ ((convex_convexHull 𝕜 (f '' s)).affine_preimage f) [GOAL] case h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ s ⊆ ↑f ⁻¹' ↑(convexHull 𝕜) (↑f '' s) [PROOFSTEP] rw [← Set.image_subset_iff] [GOAL] case h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ ↑f '' s ⊆ ↑(convexHull 𝕜) (↑f '' s) [PROOFSTEP] exact subset_convexHull 𝕜 (f '' s) [GOAL] case h₂ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E f : E →ᵃ[𝕜] F ⊢ ↑(convexHull 𝕜) (↑f '' s) ⊆ ↑f '' ↑(convexHull 𝕜) s [PROOFSTEP] exact convexHull_min (Set.image_subset _ (subset_convexHull 𝕜 s)) ((convex_convexHull 𝕜 s).affine_image f) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E ⊢ affineSpan 𝕜 (↑(convexHull 𝕜) s) = affineSpan 𝕜 s [PROOFSTEP] refine' le_antisymm _ (affineSpan_mono 𝕜 (subset_convexHull 𝕜 s)) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E ⊢ affineSpan 𝕜 (↑(convexHull 𝕜) s) ≤ affineSpan 𝕜 s [PROOFSTEP] rw [affineSpan_le] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E ⊢ ↑(convexHull 𝕜) s ⊆ ↑(affineSpan 𝕜 s) [PROOFSTEP] exact convexHull_subset_affineSpan s [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ s : Set E ⊢ ↑(convexHull 𝕜) (-s) = -↑(convexHull 𝕜) s [PROOFSTEP] simp_rw [← image_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ s : Set E ⊢ ↑(convexHull 𝕜) (Neg.neg '' s) = Neg.neg '' ↑(convexHull 𝕜) s [PROOFSTEP] exact (AffineMap.image_convexHull _ <| -1).symm
{"mathlib_filename": "Mathlib.Analysis.Convex.Hull", "llama_tokens": 5555}
[GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.962 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : ConvexOn 𝕜 s f h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : 0 < ∑ i in t, w i hmem : ∀ (i : ι), i ∈ t → p i ∈ s ⊢ f (centerMass t w p) ≤ centerMass t w (f ∘ p) [PROOFSTEP] have hmem' : ∀ i ∈ t, (p i, (f ∘ p) i) ∈ {p : E × β | p.1 ∈ s ∧ f p.1 ≤ p.2} := fun i hi => ⟨hmem i hi, le_rfl⟩ [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.962 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : ConvexOn 𝕜 s f h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : 0 < ∑ i in t, w i hmem : ∀ (i : ι), i ∈ t → p i ∈ s hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd} ⊢ f (centerMass t w p) ≤ centerMass t w (f ∘ p) [PROOFSTEP] convert (hf.convex_epigraph.centerMass_mem h₀ h₁ hmem').2 [GOAL] case h.e'_3.h.e'_1 𝕜 : Type u_3 E : Type u_2 F : Type ?u.962 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : ConvexOn 𝕜 s f h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : 0 < ∑ i in t, w i hmem : ∀ (i : ι), i ∈ t → p i ∈ s hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd} ⊢ centerMass t w p = (centerMass t (fun i => w i) fun i => (p i, (f ∘ p) i)).fst [PROOFSTEP] simp only [centerMass, Function.comp, Prod.smul_fst, Prod.fst_sum, Prod.smul_snd, Prod.snd_sum] [GOAL] case h.e'_4 𝕜 : Type u_3 E : Type u_2 F : Type ?u.962 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : ConvexOn 𝕜 s f h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : 0 < ∑ i in t, w i hmem : ∀ (i : ι), i ∈ t → p i ∈ s hmem' : ∀ (i : ι), i ∈ t → (p i, (f ∘ p) i) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd} ⊢ centerMass t w (f ∘ p) = (centerMass t (fun i => w i) fun i => (p i, (f ∘ p) i)).snd [PROOFSTEP] simp only [centerMass, Function.comp, Prod.smul_fst, Prod.fst_sum, Prod.smul_snd, Prod.snd_sum] [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.21511 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : OrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E hf : ConvexOn 𝕜 s f h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : ∑ i in t, w i = 1 hmem : ∀ (i : ι), i ∈ t → p i ∈ s ⊢ f (∑ i in t, w i • p i) ≤ ∑ i in t, w i • f (p i) [PROOFSTEP] simpa only [centerMass, h₁, inv_one, one_smul] using hf.map_centerMass_le h₀ (h₁.symm ▸ zero_lt_one) hmem [GOAL] 𝕜 : Type u_3 E : Type u_1 F : Type ?u.35782 β : Type u_2 ι : Type ?u.35788 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s✝ : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E s : Finset E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f hx : x ∈ ↑(convexHull 𝕜) ↑s ⊢ f x ≤ sup' s (_ : Finset.Nonempty s) f [PROOFSTEP] obtain ⟨w, hw₀, hw₁, rfl⟩ := mem_convexHull.1 hx [GOAL] case intro.intro.intro 𝕜 : Type u_3 E : Type u_1 F : Type ?u.35782 β : Type u_2 ι : Type ?u.35788 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s✝ : Set E f : E → β t : Finset ι w✝ : ι → 𝕜 p : ι → E s : Finset E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f w : E → 𝕜 hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y hw₁ : ∑ y in s, w y = 1 hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s ⊢ f (centerMass s w _root_.id) ≤ sup' s (_ : Finset.Nonempty s) f [PROOFSTEP] exact (hf.map_centerMass_le hw₀ (by positivity) <| subset_convexHull _ _).trans (centerMass_le_sup hw₀ <| by positivity) [GOAL] 𝕜 : Type u_3 E : Type u_1 F : Type ?u.35782 β : Type u_2 ι : Type ?u.35788 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s✝ : Set E f : E → β t : Finset ι w✝ : ι → 𝕜 p : ι → E s : Finset E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f w : E → 𝕜 hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y hw₁ : ∑ y in s, w y = 1 hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s ⊢ 0 < ∑ i in s, w i [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_3 E : Type u_1 F : Type ?u.35782 β : Type u_2 ι : Type ?u.35788 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s✝ : Set E f : E → β t : Finset ι w✝ : ι → 𝕜 p : ι → E s : Finset E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) ↑s) f w : E → 𝕜 hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y hw₁ : ∑ y in s, w y = 1 hx : centerMass s w _root_.id ∈ ↑(convexHull 𝕜) ↑s ⊢ 0 < ∑ i in s, w i [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s ⊢ ∃ i, i ∈ t ∧ f (centerMass t w p) ≤ f (p i) [PROOFSTEP] set y := t.centerMass w p [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p ⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i) [PROOFSTEP] obtain ⟨i, hi, hfi⟩ : ∃ i ∈ t.filter fun i => w i ≠ 0, w i • f y ≤ w i • (f ∘ p) i [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p ⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i case intro.intro 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p i : ι hi : i ∈ filter (fun i => w i ≠ 0) t hfi : w i • f y ≤ w i • (f ∘ p) i ⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i) [PROOFSTEP] rotate_left [GOAL] case intro.intro 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p i : ι hi : i ∈ filter (fun i => w i ≠ 0) t hfi : w i • f y ≤ w i • (f ∘ p) i ⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i) [PROOFSTEP] rw [mem_filter] at hi [GOAL] case intro.intro 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p i : ι hi : i ∈ t ∧ w i ≠ 0 hfi : w i • f y ≤ w i • (f ∘ p) i ⊢ ∃ i, i ∈ t ∧ f y ≤ f (p i) [PROOFSTEP] exact ⟨i, hi.1, (smul_le_smul_iff_of_pos <| (hw₀ i hi.1).lt_of_ne hi.2.symm).1 hfi⟩ [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p ⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i [PROOFSTEP] have hw' : (0 : 𝕜) < ∑ i in filter (fun i => w i ≠ 0) t, w i := by rwa [sum_filter_ne_zero] [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p ⊢ 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i [PROOFSTEP] rwa [sum_filter_ne_zero] [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i ⊢ ∃ i, i ∈ filter (fun i => w i ≠ 0) t ∧ w i • f y ≤ w i • (f ∘ p) i [PROOFSTEP] refine' exists_le_of_sum_le (nonempty_of_sum_ne_zero hw'.ne') _ [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i ⊢ ∑ i in filter (fun i => w i ≠ 0) t, w i • f y ≤ ∑ i in filter (fun i => w i ≠ 0) t, w i • (f ∘ p) i [PROOFSTEP] rw [← sum_smul, ← smul_le_smul_iff_of_pos (inv_pos.2 hw'), inv_smul_smul₀ hw'.ne', ← Finset.centerMass, Finset.centerMass_filter_ne_zero] [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.90866 β : Type u_1 ι : Type u_4 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x : E h : ConvexOn 𝕜 s f hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : 0 < ∑ i in t, w i hp : ∀ (i : ι), i ∈ t → p i ∈ s y : E := centerMass t w p hw' : 0 < ∑ i in filter (fun i => w i ≠ 0) t, w i ⊢ f y ≤ centerMass t (fun i => w i) fun i => (f ∘ p) i [PROOFSTEP] exact h.map_centerMass_le hw₀ hw₁ hp [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.105120 β : Type u_1 ι : Type ?u.105126 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x✝ : E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ ∃ y, y ∈ s ∧ f x ≤ f y [PROOFSTEP] rw [_root_.convexHull_eq] at hx [GOAL] 𝕜 : Type u_3 E : Type u_2 F : Type ?u.105120 β : Type u_1 ι : Type ?u.105126 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t : Finset ι w : ι → 𝕜 p : ι → E x✝ : E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f x : E hx : x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} ⊢ ∃ y, y ∈ s ∧ f x ≤ f y [PROOFSTEP] obtain ⟨α, t, w, p, hw₀, hw₁, hp, rfl⟩ := hx [GOAL] case intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_3 E : Type u_2 F : Type ?u.105120 β : Type u_1 ι : Type ?u.105126 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t✝ : Finset ι w✝ : ι → 𝕜 p✝ : ι → E x : E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f α : Type t : Finset α w : α → 𝕜 p : α → E hw₀ : ∀ (i : α), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hp : ∀ (i : α), i ∈ t → p i ∈ s ⊢ ∃ y, y ∈ s ∧ f (centerMass t w p) ≤ f y [PROOFSTEP] rcases hf.exists_ge_of_centerMass hw₀ (hw₁.symm ▸ zero_lt_one) fun i hi => subset_convexHull 𝕜 s (hp i hi) with ⟨i, hit, Hi⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_3 E : Type u_2 F : Type ?u.105120 β : Type u_1 ι : Type ?u.105126 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β t✝ : Finset ι w✝ : ι → 𝕜 p✝ : ι → E x : E hf : ConvexOn 𝕜 (↑(convexHull 𝕜) s) f α : Type t : Finset α w : α → 𝕜 p : α → E hw₀ : ∀ (i : α), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hp : ∀ (i : α), i ∈ t → p i ∈ s i : α hit : i ∈ t Hi : f (centerMass t (fun i => w i) fun i => p i) ≤ f (p i) ⊢ ∃ y, y ∈ s ∧ f (centerMass t w p) ≤ f y [PROOFSTEP] exact ⟨p i, hp i hit, Hi⟩
{"mathlib_filename": "Mathlib.Analysis.Convex.Jensen", "llama_tokens": 7815}
[GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P ⊢ intrinsicInterior 𝕜 ∅ = ∅ [PROOFSTEP] simp [intrinsicInterior] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P ⊢ intrinsicFrontier 𝕜 ∅ = ∅ [PROOFSTEP] simp [intrinsicFrontier] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P ⊢ intrinsicClosure 𝕜 ∅ = ∅ [PROOFSTEP] simp [intrinsicClosure] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P ⊢ Set.Nonempty (intrinsicClosure 𝕜 s) → Set.Nonempty s [PROOFSTEP] simp_rw [nonempty_iff_ne_empty] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P ⊢ intrinsicClosure 𝕜 s ≠ ∅ → s ≠ ∅ [PROOFSTEP] rintro h rfl [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P t : Set P x : P h : intrinsicClosure 𝕜 ∅ ≠ ∅ ⊢ False [PROOFSTEP] exact h intrinsicClosure_empty [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ x : P ⊢ intrinsicInterior 𝕜 {x} = {x} [PROOFSTEP] simpa only [intrinsicInterior, preimage_coe_affineSpan_singleton, interior_univ, image_univ, Subtype.range_coe] using coe_affineSpan_singleton _ _ _ [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ x : P ⊢ intrinsicFrontier 𝕜 {x} = ∅ [PROOFSTEP] rw [intrinsicFrontier, preimage_coe_affineSpan_singleton, frontier_univ, image_empty] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ x : P ⊢ intrinsicClosure 𝕜 {x} = {x} [PROOFSTEP] simpa only [intrinsicClosure, preimage_coe_affineSpan_singleton, closure_univ, image_univ, Subtype.range_coe] using coe_affineSpan_singleton _ _ _ [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P h : s ⊆ t ⊢ intrinsicClosure 𝕜 s ⊆ intrinsicClosure 𝕜 t [PROOFSTEP] refine' image_subset_iff.2 fun x hx => _ [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ : P h : s ⊆ t x : { x // x ∈ affineSpan 𝕜 s } hx : x ∈ closure (Subtype.val ⁻¹' s) ⊢ x ∈ Subtype.val ⁻¹' intrinsicClosure 𝕜 t [PROOFSTEP] refine' ⟨Set.inclusion (affineSpan_mono _ h) x, _, rfl⟩ [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ : P h : s ⊆ t x : { x // x ∈ affineSpan 𝕜 s } hx : x ∈ closure (Subtype.val ⁻¹' s) ⊢ inclusion (_ : affineSpan 𝕜 s ≤ affineSpan 𝕜 t) x ∈ closure (Subtype.val ⁻¹' t) [PROOFSTEP] refine' (continuous_inclusion (affineSpan_mono _ h)).closure_preimage_subset _ (closure_mono _ hx) [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x✝ : P h : s ⊆ t x : { x // x ∈ affineSpan 𝕜 s } hx : x ∈ closure (Subtype.val ⁻¹' s) ⊢ Subtype.val ⁻¹' s ⊆ inclusion (_ : affineSpan 𝕜 s ≤ affineSpan 𝕜 t) ⁻¹' (Subtype.val ⁻¹' t) [PROOFSTEP] exact fun y hy => h hy [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ⊢ (fun a => ↑a) '' (closure (Subtype.val ⁻¹' s) \ frontier (Subtype.val ⁻¹' s)) = intrinsicInterior 𝕜 s [PROOFSTEP] rw [closure_diff_frontier, intrinsicInterior] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ⊢ intrinsicInterior 𝕜 s ∪ intrinsicFrontier 𝕜 s = intrinsicClosure 𝕜 s [PROOFSTEP] simp [intrinsicClosure, intrinsicInterior, intrinsicFrontier, closure_eq_interior_union_frontier, image_union] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ⊢ intrinsicFrontier 𝕜 s ∪ intrinsicInterior 𝕜 s = intrinsicClosure 𝕜 s [PROOFSTEP] rw [union_comm, intrinsicInterior_union_intrinsicFrontier] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P hs : IsClosed (Subtype.val ⁻¹' s) ⊢ intrinsicClosure 𝕜 s = s [PROOFSTEP] rw [intrinsicClosure, hs.closure_eq, image_preimage_eq_of_subset] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s t : Set P x : P hs : IsClosed (Subtype.val ⁻¹' s) ⊢ s ⊆ range Subtype.val [PROOFSTEP] exact (subset_affineSpan _ _).trans Subtype.range_coe.superset [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ⊢ intrinsicClosure 𝕜 (intrinsicClosure 𝕜 s) = intrinsicClosure 𝕜 s [PROOFSTEP] refine' IsClosed.intrinsicClosure _ [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s) [PROOFSTEP] set t := affineSpan 𝕜 (intrinsicClosure 𝕜 s) with ht [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t✝ : Set P x : P s : Set P t : AffineSubspace 𝕜 P := affineSpan 𝕜 (intrinsicClosure 𝕜 s) ht : t = affineSpan 𝕜 (intrinsicClosure 𝕜 s) ⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s) [PROOFSTEP] clear_value t [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t✝ : Set P x : P s : Set P t : AffineSubspace 𝕜 P ht : t = affineSpan 𝕜 (intrinsicClosure 𝕜 s) ⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s) [PROOFSTEP] obtain rfl := ht.trans (affineSpan_intrinsicClosure _) [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ht : affineSpan 𝕜 s = affineSpan 𝕜 (intrinsicClosure 𝕜 s) ⊢ IsClosed (Subtype.val ⁻¹' intrinsicClosure 𝕜 s) [PROOFSTEP] rw [intrinsicClosure, preimage_image_eq _ Subtype.coe_injective] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁴ : Ring 𝕜 inst✝³ : AddCommGroup V inst✝² : Module 𝕜 V inst✝¹ : TopologicalSpace P inst✝ : AddTorsor V P s✝ t : Set P x : P s : Set P ht : affineSpan 𝕜 s = affineSpan 𝕜 (intrinsicClosure 𝕜 s) ⊢ IsClosed (closure (Subtype.val ⁻¹' s)) [PROOFSTEP] exact isClosed_closure [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P ⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q ⊢ intrinsicInterior 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicInterior 𝕜 ∅ [PROOFSTEP] simp only [intrinsicInterior_empty, image_empty] [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s ⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s [PROOFSTEP] haveI : Nonempty s := hs.to_subtype [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s ⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s [PROOFSTEP] let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) ⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s [PROOFSTEP] have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this✝ : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val ⊢ intrinsicInterior 𝕜 (↑φ '' s) = ↑φ '' intrinsicInterior 𝕜 s [PROOFSTEP] rw [intrinsicInterior, intrinsicInterior, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ← Function.comp.assoc, image_comp, image_comp, f.symm.image_interior, f.image_symm, ← preimage_comp, Function.comp.assoc, f.symm_comp_self, AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp, φ.injective.preimage_image] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P ⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q ⊢ intrinsicFrontier 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicFrontier 𝕜 ∅ [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s ⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s [PROOFSTEP] haveI : Nonempty s := hs.to_subtype [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s ⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s [PROOFSTEP] let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) ⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s [PROOFSTEP] have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this✝ : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val ⊢ intrinsicFrontier 𝕜 (↑φ '' s) = ↑φ '' intrinsicFrontier 𝕜 s [PROOFSTEP] rw [intrinsicFrontier, intrinsicFrontier, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ← Function.comp.assoc, image_comp, image_comp, f.symm.image_frontier, f.image_symm, ← preimage_comp, Function.comp.assoc, f.symm_comp_self, AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp, φ.injective.preimage_image] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P ⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q ⊢ intrinsicClosure 𝕜 (↑φ '' ∅) = ↑φ '' intrinsicClosure 𝕜 ∅ [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s ⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s [PROOFSTEP] haveI : Nonempty s := hs.to_subtype [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s ⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s [PROOFSTEP] let f := ((affineSpan 𝕜 s).isometryEquivMap φ).toHomeomorph [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) ⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s [PROOFSTEP] have : φ.toAffineMap ∘ (↑) ∘ f.symm = (↑) := funext isometryEquivMap.apply_symm_apply [GOAL] case inr 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁸ : NormedField 𝕜 inst✝⁷ : SeminormedAddCommGroup V inst✝⁶ : SeminormedAddCommGroup W inst✝⁵ : NormedSpace 𝕜 V inst✝⁴ : NormedSpace 𝕜 W inst✝³ : MetricSpace P inst✝² : PseudoMetricSpace Q inst✝¹ : NormedAddTorsor V P inst✝ : NormedAddTorsor W Q φ : P →ᵃⁱ[𝕜] Q s : Set P hs : Set.Nonempty s this✝ : Nonempty ↑s f : { x // x ∈ affineSpan 𝕜 s } ≃ₜ { x // x ∈ map φ.toAffineMap (affineSpan 𝕜 s) } := AffineIsometryEquiv.toHomeomorph (isometryEquivMap φ (affineSpan 𝕜 s)) this : ↑φ.toAffineMap ∘ Subtype.val ∘ ↑(Homeomorph.symm f) = Subtype.val ⊢ intrinsicClosure 𝕜 (↑φ '' s) = ↑φ '' intrinsicClosure 𝕜 s [PROOFSTEP] rw [intrinsicClosure, intrinsicClosure, ← φ.coe_toAffineMap, ← map_span φ.toAffineMap s, ← this, ← Function.comp.assoc, image_comp, image_comp, f.symm.image_closure, f.image_symm, ← preimage_comp, Function.comp.assoc, f.symm_comp_self, AffineIsometry.coe_toAffineMap, Function.comp.right_id, preimage_comp, φ.injective.preimage_image] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P ⊢ intrinsicClosure 𝕜 s = closure s [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P ⊢ x ∈ intrinsicClosure 𝕜 s ↔ x ∈ closure s [PROOFSTEP] simp only [mem_closure_iff, mem_intrinsicClosure] [GOAL] case h 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P ⊢ (∃ y, (∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → y ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)) ∧ ↑y = x) ↔ ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) [PROOFSTEP] refine' ⟨_, fun h => ⟨⟨x, _⟩, _, Subtype.coe_mk _ _⟩⟩ [GOAL] case h.refine'_1 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P ⊢ (∃ y, (∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → y ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s)) ∧ ↑y = x) → ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) [PROOFSTEP] rintro ⟨x, h, rfl⟩ t ht hx [GOAL] case h.refine'_1.intro.intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : { x // x ∈ affineSpan 𝕜 s } h : ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → x ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s) t : Set P ht : IsOpen t hx : ↑x ∈ t ⊢ Set.Nonempty (t ∩ s) [PROOFSTEP] obtain ⟨z, hz₁, hz₂⟩ := h _ (continuous_induced_dom.isOpen_preimage t ht) hx [GOAL] case h.refine'_1.intro.intro.intro.intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : { x // x ∈ affineSpan 𝕜 s } h : ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → x ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s) t : Set P ht : IsOpen t hx : ↑x ∈ t z : { x // x ∈ affineSpan 𝕜 s } hz₁ : z ∈ Subtype.val ⁻¹' t hz₂ : z ∈ Subtype.val ⁻¹' s ⊢ Set.Nonempty (t ∩ s) [PROOFSTEP] exact ⟨z, hz₁, hz₂⟩ [GOAL] case h.refine'_2 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) ⊢ ∀ (o : Set { x // x ∈ affineSpan 𝕜 s }), IsOpen o → { val := x, property := ?h.refine'_3 } ∈ o → Set.Nonempty (o ∩ Subtype.val ⁻¹' s) [PROOFSTEP] rintro _ ⟨t, ht, rfl⟩ hx [GOAL] case h.refine'_2.intro.intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) t : Set P ht : IsOpen t hx : { val := x, property := ?h.refine'_3 } ∈ Subtype.val ⁻¹' t ⊢ Set.Nonempty (Subtype.val ⁻¹' t ∩ Subtype.val ⁻¹' s) [PROOFSTEP] obtain ⟨y, hyt, hys⟩ := h _ ht hx [GOAL] case h.refine'_2.intro.intro.intro.intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) t : Set P ht : IsOpen t hx : { val := x, property := ?h.refine'_3 } ∈ Subtype.val ⁻¹' t y : P hyt : y ∈ t hys : y ∈ s ⊢ Set.Nonempty (Subtype.val ⁻¹' t ∩ Subtype.val ⁻¹' s) [PROOFSTEP] exact ⟨⟨_, subset_affineSpan 𝕜 s hys⟩, hyt, hys⟩ [GOAL] case h.refine'_3 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) ⊢ x ∈ ↑(affineSpan 𝕜 s) [PROOFSTEP] by_contra hc [GOAL] case h.refine'_3 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) hc : ¬x ∈ ↑(affineSpan 𝕜 s) ⊢ False [PROOFSTEP] obtain ⟨z, hz₁, hz₂⟩ := h _ (affineSpan 𝕜 s).closed_of_finiteDimensional.isOpen_compl hc [GOAL] case h.refine'_3.intro.intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : CompleteSpace 𝕜 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace 𝕜 V inst✝² : FiniteDimensional 𝕜 V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Set P x : P h : ∀ (o : Set P), IsOpen o → x ∈ o → Set.Nonempty (o ∩ s) hc : ¬x ∈ ↑(affineSpan 𝕜 s) z : P hz₁ : z ∈ (↑(affineSpan 𝕜 s))ᶜ hz₂ : z ∈ s ⊢ False [PROOFSTEP] exact hz₁ (subset_affineSpan 𝕜 s hz₂) [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β φ : α ≃ₜ β s : Set β ⊢ Set.Nonempty (interior s) ↔ Set.Nonempty (interior (↑φ ⁻¹' s)) [PROOFSTEP] rw [← φ.image_symm, ← φ.symm.image_interior, nonempty_image_iff] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hscv : Convex ℝ s hsne : Set.Nonempty s ⊢ Set.Nonempty (intrinsicInterior ℝ s) [PROOFSTEP] haveI := hsne.coe_sort [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hscv : Convex ℝ s hsne : Set.Nonempty s this : Nonempty ↑s ⊢ Set.Nonempty (intrinsicInterior ℝ s) [PROOFSTEP] obtain ⟨p, hp⟩ := hsne [GOAL] case intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hscv : Convex ℝ s this : Nonempty ↑s p : V hp : p ∈ s ⊢ Set.Nonempty (intrinsicInterior ℝ s) [PROOFSTEP] let p' : _root_.affineSpan ℝ s := ⟨p, subset_affineSpan _ _ hp⟩ [GOAL] case intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hscv : Convex ℝ s this : Nonempty ↑s p : V hp : p ∈ s p' : { x // x ∈ _root_.affineSpan ℝ s } := { val := p, property := (_ : p ∈ ↑(_root_.affineSpan ℝ s)) } ⊢ Set.Nonempty (intrinsicInterior ℝ s) [PROOFSTEP] rw [intrinsicInterior, nonempty_image_iff, aux (AffineIsometryEquiv.constVSub ℝ p').symm.toHomeomorph, Convex.interior_nonempty_iff_affineSpan_eq_top, AffineIsometryEquiv.coe_toHomeomorph, ← AffineIsometryEquiv.coe_toAffineEquiv, ← comap_span, affineSpan_coe_preimage_eq_top, comap_top] [GOAL] case intro 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hscv : Convex ℝ s this : Nonempty ↑s p : V hp : p ∈ s p' : { x // x ∈ _root_.affineSpan ℝ s } := { val := p, property := (_ : p ∈ ↑(_root_.affineSpan ℝ s)) } ⊢ Convex ℝ (↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.symm (AffineIsometryEquiv.constVSub ℝ p'))) ⁻¹' (Subtype.val ⁻¹' s)) [PROOFSTEP] exact hscv.affine_preimage ((_root_.affineSpan ℝ s).subtype.comp (AffineIsometryEquiv.constVSub ℝ p').symm.toAffineEquiv.toAffineMap) [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hs : Convex ℝ s ⊢ Set.Nonempty (intrinsicInterior ℝ s) → Set.Nonempty s [PROOFSTEP] simp_rw [nonempty_iff_ne_empty] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set V hs : Convex ℝ s ⊢ intrinsicInterior ℝ s ≠ ∅ → s ≠ ∅ [PROOFSTEP] rintro h rfl [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 Q : Type u_4 P : Type u_5 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V hs : Convex ℝ ∅ h : intrinsicInterior ℝ ∅ ≠ ∅ ⊢ False [PROOFSTEP] exact h intrinsicInterior_empty
{"mathlib_filename": "Mathlib.Analysis.Convex.Intrinsic", "llama_tokens": 14182}
[GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ n : σ →₀ ℕ ⊢ monomial R n = LinearMap.stdBasis R (fun x => R) n [PROOFSTEP] rw [monomial] -- unify the `Decidable` arguments [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ n : σ →₀ ℕ ⊢ LinearMap.stdBasis R (fun x => R) n = LinearMap.stdBasis R (fun x => R) n [PROOFSTEP] convert rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ m n : σ →₀ ℕ a : R ⊢ ↑(coeff R m) (↑(monomial R n) a) = if m = n then a else 0 [PROOFSTEP] rw [coeff, monomial_def, LinearMap.proj_apply] [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ m n : σ →₀ ℕ a : R ⊢ ↑(LinearMap.stdBasis R (fun x => R) n) a m = if m = n then a else 0 [PROOFSTEP] dsimp only [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ m n : σ →₀ ℕ a : R ⊢ ↑(LinearMap.stdBasis R (fun x => R) n) a m = if m = n then a else 0 [PROOFSTEP] rw [LinearMap.stdBasis_apply, Function.update_apply, Pi.zero_apply] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R n : σ →₀ ℕ a : R ⊢ ↑(coeff R n) (↑(monomial R n) a) = a [PROOFSTEP] rw [monomial_def] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R n : σ →₀ ℕ a : R ⊢ ↑(coeff R n) (↑(LinearMap.stdBasis R (fun x => R) n) a) = a [PROOFSTEP] exact LinearMap.stdBasis_same R (fun _ ↦ R) n a [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ h : m ≠ n a : R ⊢ ↑(coeff R m) (↑(monomial R n) a) = 0 [PROOFSTEP] rw [monomial_def] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ h : m ≠ n a : R ⊢ ↑(coeff R m) (↑(LinearMap.stdBasis R (fun x => R) n) a) = 0 [PROOFSTEP] exact LinearMap.stdBasis_ne R (fun _ ↦ R) _ _ h a [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R ⊢ AddMonoid (MvPowerSeries σ R) [PROOFSTEP] infer_instance [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R src✝ : AddMonoid (MvPowerSeries σ R) := let_fun this := inferInstance; this ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [Nat.cast] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R src✝ : AddMonoid (MvPowerSeries σ R) := let_fun this := inferInstance; this ⊢ ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp [Nat.cast, monomial_zero_one] [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R inst✝ : DecidableEq σ ⊢ ↑(coeff R n) (φ * ψ) = ∑ p in antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ [PROOFSTEP] refine Finset.sum_congr ?_ fun _ _ => rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R inst✝ : DecidableEq σ ⊢ antidiagonal n = antidiagonal n [PROOFSTEP] rw [Subsingleton.elim (fun a b => propDecidable (a = b)) ‹DecidableEq σ›] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (0 * φ) = ↑(coeff R n) 0 [PROOFSTEP] simp [coeff_mul] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (φ * 0) = ↑(coeff R n) 0 [PROOFSTEP] simp [coeff_mul] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ ↑(coeff R m) (↑(monomial R n) a * φ) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0 [PROOFSTEP] have : ∀ p ∈ antidiagonal m, coeff R (p : (σ →₀ ℕ) × (σ →₀ ℕ)).1 (monomial R n a) * coeff R p.2 φ ≠ 0 → p.1 = n := fun p _ hp => eq_of_coeff_monomial_ne_zero (left_ne_zero_of_mul hp) [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R this : ∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)), p ∈ antidiagonal m → ↑(coeff R p.fst) (↑(monomial R n) a) * ↑(coeff R p.snd) φ ≠ 0 → p.fst = n ⊢ ↑(coeff R m) (↑(monomial R n) a * φ) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0 [PROOFSTEP] rw [coeff_mul, ← Finset.sum_filter_of_ne this, antidiagonal_filter_fst_eq, Finset.sum_ite_index] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R this : ∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)), p ∈ antidiagonal m → ↑(coeff R p.fst) (↑(monomial R n) a) * ↑(coeff R p.snd) φ ≠ 0 → p.fst = n ⊢ (if n ≤ m then ∑ x in {(n, m - n)}, ↑(coeff R x.fst) (↑(monomial R n) a) * ↑(coeff R x.snd) φ else ∑ x in ∅, ↑(coeff R x.fst) (↑(monomial R n) a) * ↑(coeff R x.snd) φ) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0 [PROOFSTEP] simp only [Finset.sum_singleton, coeff_monomial_same, Finset.sum_empty] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = if n ≤ m then ↑(coeff R (m - n)) φ * a else 0 [PROOFSTEP] have : ∀ p ∈ antidiagonal m, coeff R (p : (σ →₀ ℕ) × (σ →₀ ℕ)).1 φ * coeff R p.2 (monomial R n a) ≠ 0 → p.2 = n := fun p _ hp => eq_of_coeff_monomial_ne_zero (right_ne_zero_of_mul hp) [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R this : ∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)), p ∈ antidiagonal m → ↑(coeff R p.fst) φ * ↑(coeff R p.snd) (↑(monomial R n) a) ≠ 0 → p.snd = n ⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = if n ≤ m then ↑(coeff R (m - n)) φ * a else 0 [PROOFSTEP] rw [coeff_mul, ← Finset.sum_filter_of_ne this, antidiagonal_filter_snd_eq, Finset.sum_ite_index] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R this : ∀ (p : (σ →₀ ℕ) × (σ →₀ ℕ)), p ∈ antidiagonal m → ↑(coeff R p.fst) φ * ↑(coeff R p.snd) (↑(monomial R n) a) ≠ 0 → p.snd = n ⊢ (if n ≤ m then ∑ x in {(m - n, n)}, ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (↑(monomial R n) a) else ∑ x in ∅, ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (↑(monomial R n) a)) = if n ≤ m then ↑(coeff R (m - n)) φ * a else 0 [PROOFSTEP] simp only [Finset.sum_singleton, coeff_monomial_same, Finset.sum_empty] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ ↑(coeff R (m + n)) (↑(monomial R m) a * φ) = a * ↑(coeff R n) φ [PROOFSTEP] rw [coeff_monomial_mul, if_pos, add_tsub_cancel_left] [GOAL] case hc σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ m ≤ m + n [PROOFSTEP] exact le_add_right le_rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ ↑(coeff R (m + n)) (φ * ↑(monomial R n) a) = ↑(coeff R m) φ * a [PROOFSTEP] rw [coeff_mul_monomial, if_pos, add_tsub_cancel_right] [GOAL] case hc σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R ⊢ n ≤ m + n [PROOFSTEP] exact le_add_left le_rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ ⊢ Commute φ (↑(monomial R n) a) ↔ ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a [PROOFSTEP] refine' ext_iff.trans ⟨fun h m => _, fun h m => _⟩ [GOAL] case refine'_1 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (n_1 : σ →₀ ℕ), ↑(coeff R n_1) (φ * ↑(monomial R n) a) = ↑(coeff R n_1) (↑(monomial R n) a * φ) m : σ →₀ ℕ ⊢ Commute (↑(coeff R m) φ) a [PROOFSTEP] have := h (m + n) [GOAL] case refine'_1 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (n_1 : σ →₀ ℕ), ↑(coeff R n_1) (φ * ↑(monomial R n) a) = ↑(coeff R n_1) (↑(monomial R n) a * φ) m : σ →₀ ℕ this : ↑(coeff R (m + n)) (φ * ↑(monomial R n) a) = ↑(coeff R (m + n)) (↑(monomial R n) a * φ) ⊢ Commute (↑(coeff R m) φ) a [PROOFSTEP] rwa [coeff_add_mul_monomial, add_comm, coeff_add_monomial_mul] at this [GOAL] case refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a m : σ →₀ ℕ ⊢ ↑(coeff R m) (φ * ↑(monomial R n) a) = ↑(coeff R m) (↑(monomial R n) a * φ) [PROOFSTEP] rw [coeff_mul_monomial, coeff_monomial_mul] [GOAL] case refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a m : σ →₀ ℕ ⊢ (if n ≤ m then ↑(coeff R (m - n)) φ * a else 0) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0 [PROOFSTEP] split_ifs <;> [apply h; rfl] [GOAL] case refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a m : σ →₀ ℕ ⊢ (if n ≤ m then ↑(coeff R (m - n)) φ * a else 0) = if n ≤ m then a * ↑(coeff R (m - n)) φ else 0 [PROOFSTEP] split_ifs [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a m : σ →₀ ℕ h✝ : n ≤ m ⊢ ↑(coeff R (m - n)) φ * a = a * ↑(coeff R (m - n)) φ [PROOFSTEP] apply h [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m✝ n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R a : R n : σ →₀ ℕ h : ∀ (m : σ →₀ ℕ), Commute (↑(coeff R m) φ) a m : σ →₀ ℕ h✝ : ¬n ≤ m ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (1 * φ) = ↑(coeff R n) φ [PROOFSTEP] simpa using coeff_add_monomial_mul 0 n φ 1 [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (φ * 1) = ↑(coeff R n) φ [PROOFSTEP] simpa using coeff_add_mul_monomial n 0 φ 1 [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (φ₁ * (φ₂ + φ₃)) = ↑(coeff R n) (φ₁ * φ₂ + φ₁ * φ₃) [PROOFSTEP] simp only [coeff_mul, mul_add, Finset.sum_add_distrib, LinearMap.map_add] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) ((φ₁ + φ₂) * φ₃) = ↑(coeff R n) (φ₁ * φ₃ + φ₂ * φ₃) [PROOFSTEP] simp only [coeff_mul, add_mul, Finset.sum_add_distrib, LinearMap.map_add] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R ⊢ φ₁ * φ₂ * φ₃ = φ₁ * (φ₂ * φ₃) [PROOFSTEP] ext1 n [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (φ₁ * φ₂ * φ₃) = ↑(coeff R n) (φ₁ * (φ₂ * φ₃)) [PROOFSTEP] simp only [coeff_mul, Finset.sum_mul, Finset.mul_sum, Finset.sum_sigma'] [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∑ x in Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst, ↑(coeff R x.snd.fst) φ₁ * ↑(coeff R x.snd.snd) φ₂ * ↑(coeff R x.fst.snd) φ₃ = ∑ x in Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd, ↑(coeff R x.fst.fst) φ₁ * (↑(coeff R x.snd.fst) φ₂ * ↑(coeff R x.snd.snd) φ₃) [PROOFSTEP] refine' Finset.sum_bij (fun p _ => ⟨(p.2.1, p.2.2 + p.1.2), (p.2.2, p.1.2)⟩) _ _ _ _ [GOAL] case h.refine'_1 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)) (ha : a ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst), (fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd [PROOFSTEP] simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop] [GOAL] case h.refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)) (ha : a ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst), ↑(coeff R a.snd.fst) φ₁ * ↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃ = ↑(coeff R ((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha).fst.fst) φ₁ * (↑(coeff R ((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha).snd.fst) φ₂ * ↑(coeff R ((fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha).snd.snd) φ₃) [PROOFSTEP] simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop] [GOAL] case h.refine'_3 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a₁ a₂ : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)) (ha₁ : a₁ ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst) (ha₂ : a₂ ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.fst), (fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a₁ ha₁ = (fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop] [GOAL] case h.refine'_4 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (b : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)), (b ∈ Finset.sigma (antidiagonal n) fun a => antidiagonal a.snd) → ∃ a ha, b = (fun p x => { fst := (p.snd.fst, p.snd.snd + p.fst.snd), snd := (p.snd.snd, p.fst.snd) }) a ha [PROOFSTEP] simp only [mem_antidiagonal, Finset.mem_sigma, heq_iff_eq, Prod.mk.inj_iff, and_imp, exists_prop] [GOAL] case h.refine'_1 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)), a.fst.fst + a.fst.snd = n → a.snd.fst + a.snd.snd = a.fst.fst → a.snd.fst + (a.snd.snd + a.fst.snd) = n ∧ True [PROOFSTEP] rintro ⟨⟨i, j⟩, ⟨k, l⟩⟩ [GOAL] case h.refine'_1.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n i j k l : σ →₀ ℕ ⊢ { fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n → { fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd = { fst := (i, j), snd := (k, l) }.fst.fst → { fst := (i, j), snd := (k, l) }.snd.fst + ({ fst := (i, j), snd := (k, l) }.snd.snd + { fst := (i, j), snd := (k, l) }.fst.snd) = n ∧ True [PROOFSTEP] dsimp only [GOAL] case h.refine'_1.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n i j k l : σ →₀ ℕ ⊢ i + j = n → k + l = i → k + (l + j) = n ∧ True [PROOFSTEP] rintro rfl rfl [GOAL] case h.refine'_1.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R j k l : σ →₀ ℕ ⊢ k + (l + j) = k + l + j ∧ True [PROOFSTEP] simp [add_assoc] [GOAL] case h.refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)), a.fst.fst + a.fst.snd = n → a.snd.fst + a.snd.snd = a.fst.fst → ↑(coeff R a.snd.fst) φ₁ * ↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃ = ↑(coeff R a.snd.fst) φ₁ * (↑(coeff R a.snd.snd) φ₂ * ↑(coeff R a.fst.snd) φ₃) [PROOFSTEP] rintro ⟨⟨a, b⟩, ⟨c, d⟩⟩ [GOAL] case h.refine'_2.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n a b c d : σ →₀ ℕ ⊢ { fst := (a, b), snd := (c, d) }.fst.fst + { fst := (a, b), snd := (c, d) }.fst.snd = n → { fst := (a, b), snd := (c, d) }.snd.fst + { fst := (a, b), snd := (c, d) }.snd.snd = { fst := (a, b), snd := (c, d) }.fst.fst → ↑(coeff R { fst := (a, b), snd := (c, d) }.snd.fst) φ₁ * ↑(coeff R { fst := (a, b), snd := (c, d) }.snd.snd) φ₂ * ↑(coeff R { fst := (a, b), snd := (c, d) }.fst.snd) φ₃ = ↑(coeff R { fst := (a, b), snd := (c, d) }.snd.fst) φ₁ * (↑(coeff R { fst := (a, b), snd := (c, d) }.snd.snd) φ₂ * ↑(coeff R { fst := (a, b), snd := (c, d) }.fst.snd) φ₃) [PROOFSTEP] dsimp only [GOAL] case h.refine'_2.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n a b c d : σ →₀ ℕ ⊢ a + b = n → c + d = a → ↑(coeff R c) φ₁ * ↑(coeff R d) φ₂ * ↑(coeff R b) φ₃ = ↑(coeff R c) φ₁ * (↑(coeff R d) φ₂ * ↑(coeff R b) φ₃) [PROOFSTEP] rintro rfl rfl [GOAL] case h.refine'_2.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R b c d : σ →₀ ℕ ⊢ ↑(coeff R c) φ₁ * ↑(coeff R d) φ₂ * ↑(coeff R b) φ₃ = ↑(coeff R c) φ₁ * (↑(coeff R d) φ₂ * ↑(coeff R b) φ₃) [PROOFSTEP] apply mul_assoc [GOAL] case h.refine'_3 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (a₁ a₂ : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)), a₁.fst.fst + a₁.fst.snd = n → a₁.snd.fst + a₁.snd.snd = a₁.fst.fst → a₂.fst.fst + a₂.fst.snd = n → a₂.snd.fst + a₂.snd.snd = a₂.fst.fst → { fst := (a₁.snd.fst, a₁.snd.snd + a₁.fst.snd), snd := (a₁.snd.snd, a₁.fst.snd) } = { fst := (a₂.snd.fst, a₂.snd.snd + a₂.fst.snd), snd := (a₂.snd.snd, a₂.fst.snd) } → a₁ = a₂ [PROOFSTEP] rintro ⟨⟨a, b⟩, ⟨c, d⟩⟩ ⟨⟨i, j⟩, ⟨k, l⟩⟩ [GOAL] case h.refine'_3.mk.mk.mk.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n a b c d i j k l : σ →₀ ℕ ⊢ { fst := (a, b), snd := (c, d) }.fst.fst + { fst := (a, b), snd := (c, d) }.fst.snd = n → { fst := (a, b), snd := (c, d) }.snd.fst + { fst := (a, b), snd := (c, d) }.snd.snd = { fst := (a, b), snd := (c, d) }.fst.fst → { fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n → { fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd = { fst := (i, j), snd := (k, l) }.fst.fst → { fst := ({ fst := (a, b), snd := (c, d) }.snd.fst, { fst := (a, b), snd := (c, d) }.snd.snd + { fst := (a, b), snd := (c, d) }.fst.snd), snd := ({ fst := (a, b), snd := (c, d) }.snd.snd, { fst := (a, b), snd := (c, d) }.fst.snd) } = { fst := ({ fst := (i, j), snd := (k, l) }.snd.fst, { fst := (i, j), snd := (k, l) }.snd.snd + { fst := (i, j), snd := (k, l) }.fst.snd), snd := ({ fst := (i, j), snd := (k, l) }.snd.snd, { fst := (i, j), snd := (k, l) }.fst.snd) } → { fst := (a, b), snd := (c, d) } = { fst := (i, j), snd := (k, l) } [PROOFSTEP] dsimp only [GOAL] case h.refine'_3.mk.mk.mk.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n a b c d i j k l : σ →₀ ℕ ⊢ a + b = n → c + d = a → i + j = n → k + l = i → { fst := (c, d + b), snd := (d, b) } = { fst := (k, l + j), snd := (l, j) } → { fst := (a, b), snd := (c, d) } = { fst := (i, j), snd := (k, l) } [PROOFSTEP] rintro rfl rfl - rfl [GOAL] case h.refine'_3.mk.mk.mk.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R b c d j k l : σ →₀ ℕ ⊢ { fst := (c, d + b), snd := (d, b) } = { fst := (k, l + j), snd := (l, j) } → { fst := (c + d, b), snd := (c, d) } = { fst := (k + l, j), snd := (k, l) } [PROOFSTEP] simp only [Sigma.mk.inj_iff, Prod.mk.injEq, heq_iff_eq, and_imp] [GOAL] case h.refine'_3.mk.mk.mk.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R b c d j k l : σ →₀ ℕ ⊢ c = k → d + b = l + j → d = l → b = j → (c + d = k + l ∧ b = j) ∧ c = k ∧ d = l [PROOFSTEP] rintro rfl - rfl rfl [GOAL] case h.refine'_3.mk.mk.mk.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R b c d : σ →₀ ℕ ⊢ (c + d = c + d ∧ b = b) ∧ c = c ∧ d = d [PROOFSTEP] simp only [and_self] [GOAL] case h.refine'_4 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (b : (_ : (σ →₀ ℕ) × (σ →₀ ℕ)) × (σ →₀ ℕ) × (σ →₀ ℕ)), b.fst.fst + b.fst.snd = n → b.snd.fst + b.snd.snd = b.fst.snd → ∃ a, (a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧ b = { fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) } [PROOFSTEP] rintro ⟨⟨i, j⟩, ⟨k, l⟩⟩ [GOAL] case h.refine'_4.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n i j k l : σ →₀ ℕ ⊢ { fst := (i, j), snd := (k, l) }.fst.fst + { fst := (i, j), snd := (k, l) }.fst.snd = n → { fst := (i, j), snd := (k, l) }.snd.fst + { fst := (i, j), snd := (k, l) }.snd.snd = { fst := (i, j), snd := (k, l) }.fst.snd → ∃ a, (a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧ { fst := (i, j), snd := (k, l) } = { fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) } [PROOFSTEP] dsimp only [GOAL] case h.refine'_4.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n✝ : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R n i j k l : σ →₀ ℕ ⊢ i + j = n → k + l = j → ∃ a, (a.fst.fst + a.fst.snd = n ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧ { fst := (i, j), snd := (k, l) } = { fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) } [PROOFSTEP] rintro rfl rfl [GOAL] case h.refine'_4.mk.mk.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R i k l : σ →₀ ℕ ⊢ ∃ a, (a.fst.fst + a.fst.snd = i + (k + l) ∧ a.snd.fst + a.snd.snd = a.fst.fst) ∧ { fst := (i, k + l), snd := (k, l) } = { fst := (a.snd.fst, a.snd.snd + a.fst.snd), snd := (a.snd.snd, a.fst.snd) } [PROOFSTEP] refine' ⟨⟨(i + k, l), (i, k)⟩, _, _⟩ [GOAL] case h.refine'_4.mk.mk.mk.refine'_1 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R i k l : σ →₀ ℕ ⊢ { fst := (i + k, l), snd := (i, k) }.fst.fst + { fst := (i + k, l), snd := (i, k) }.fst.snd = i + (k + l) ∧ { fst := (i + k, l), snd := (i, k) }.snd.fst + { fst := (i + k, l), snd := (i, k) }.snd.snd = { fst := (i + k, l), snd := (i, k) }.fst.fst [PROOFSTEP] simp [add_assoc] [GOAL] case h.refine'_4.mk.mk.mk.refine'_2 σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ φ ψ φ₁ φ₂ φ₃ : MvPowerSeries σ R i k l : σ →₀ ℕ ⊢ { fst := (i, k + l), snd := (k, l) } = { fst := ({ fst := (i + k, l), snd := (i, k) }.snd.fst, { fst := (i + k, l), snd := (i, k) }.snd.snd + { fst := (i + k, l), snd := (i, k) }.fst.snd), snd := ({ fst := (i + k, l), snd := (i, k) }.snd.snd, { fst := (i + k, l), snd := (i, k) }.fst.snd) } [PROOFSTEP] simp [add_assoc] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R ⊢ Semiring (MvPowerSeries σ R) [PROOFSTEP] infer_instance [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R src✝ : Semiring (MvPowerSeries σ R) := let_fun this := inferInstance; this φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑(coeff R n) (φ * ψ) = ↑(coeff R n) (ψ * φ) [PROOFSTEP] simpa only [coeff_mul, mul_comm] using sum_antidiagonal_swap n fun a b => coeff R a φ * coeff R b ψ [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R ⊢ ↑(monomial R m) a * ↑(monomial R n) b = ↑(monomial R (m + n)) (a * b) [PROOFSTEP] ext k [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ ⊢ ↑(coeff R k) (↑(monomial R m) a * ↑(monomial R n) b) = ↑(coeff R k) (↑(monomial R (m + n)) (a * b)) [PROOFSTEP] simp only [coeff_mul_monomial, coeff_monomial] [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ ⊢ (if n ≤ k then (if k - n = m then a else 0) * b else 0) = if k = m + n then a * b else 0 [PROOFSTEP] split_ifs with h₁ h₂ h₃ h₃ h₂ [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : k = m + n ⊢ a * b = a * b [PROOFSTEP] try rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : k = m + n ⊢ a * b = a * b [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : ¬k = m + n ⊢ a * b = 0 [PROOFSTEP] try rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : ¬k = m + n ⊢ a * b = 0 [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : k = m + n ⊢ 0 * b = a * b [PROOFSTEP] try rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : k = m + n ⊢ 0 * b = a * b [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : ¬k = m + n ⊢ 0 * b = 0 [PROOFSTEP] try rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : ¬k = m + n ⊢ 0 * b = 0 [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ k h₂ : k = m + n ⊢ 0 = a * b [PROOFSTEP] try rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ k h₂ : k = m + n ⊢ 0 = a * b [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ k h₂ : ¬k = m + n ⊢ 0 = 0 [PROOFSTEP] try rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ k h₂ : ¬k = m + n ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : ¬k = m + n ⊢ a * b = 0 [PROOFSTEP] rw [← h₂, tsub_add_cancel_of_le h₁] at h₃ [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : k - n = m h₃ : ¬k = k ⊢ a * b = 0 [PROOFSTEP] exact (h₃ rfl).elim [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : k = m + n ⊢ 0 * b = a * b [PROOFSTEP] rw [h₃, add_tsub_cancel_right] at h₂ [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬m = m h₃ : k = m + n ⊢ 0 * b = a * b [PROOFSTEP] exact (h₂ rfl).elim [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : n ≤ k h₂ : ¬k - n = m h₃ : ¬k = m + n ⊢ 0 * b = 0 [PROOFSTEP] exact zero_mul b [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ k h₂ : k = m + n ⊢ 0 = a * b [PROOFSTEP] rw [h₂] at h₁ [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R m n : σ →₀ ℕ a b : R k : σ →₀ ℕ h₁ : ¬n ≤ m + n h₂ : k = m + n ⊢ 0 = a * b [PROOFSTEP] exact (h₁ <| le_add_left le_rfl).elim [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ s t : σ ⊢ ↑(coeff R (single t 1)) (X s) = if t = s then 1 else 0 [PROOFSTEP] simp only [coeff_X, single_left_inj (one_ne_zero : (1 : ℕ) ≠ 0)] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ ⊢ ↑(coeff R 0) (X s) = 0 [PROOFSTEP] rw [coeff_X, if_neg] [GOAL] case hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ ⊢ ¬0 = single s 1 [PROOFSTEP] intro h [GOAL] case hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ h : 0 = single s 1 ⊢ False [PROOFSTEP] exact one_ne_zero (single_eq_zero.mp h.symm) [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ ⊢ X s ^ n = ↑(monomial R (single s n)) 1 [PROOFSTEP] induction' n with n ih [GOAL] case zero σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ ⊢ X s ^ Nat.zero = ↑(monomial R (single s Nat.zero)) 1 [PROOFSTEP] simp [GOAL] case succ σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ ih : X s ^ n = ↑(monomial R (single s n)) 1 ⊢ X s ^ Nat.succ n = ↑(monomial R (single s (Nat.succ n))) 1 [PROOFSTEP] rw [pow_succ', ih, Nat.succ_eq_add_one, Finsupp.single_add, X, monomial_mul_monomial, one_mul] [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : DecidableEq σ m : σ →₀ ℕ s : σ n : ℕ ⊢ ↑(coeff R m) (X s ^ n) = if m = single s n then 1 else 0 [PROOFSTEP] rw [X_pow_eq s n, coeff_monomial] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R n : σ →₀ ℕ φ : MvPowerSeries σ R a : R ⊢ ↑(coeff R n) (φ * ↑(C σ R) a) = ↑(coeff R n) φ * a [PROOFSTEP] simpa using coeff_add_mul_monomial n 0 φ a [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R n : σ →₀ ℕ φ : MvPowerSeries σ R a : R ⊢ ↑(coeff R n) (↑(C σ R) a * φ) = a * ↑(coeff R n) φ [PROOFSTEP] simpa using coeff_add_monomial_mul 0 n φ a [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R φ : MvPowerSeries σ R s : σ ⊢ ↑(coeff R 0) (φ * X s) = 0 [PROOFSTEP] have : ¬single s 1 ≤ 0 := fun h => by simpa using h s [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R φ : MvPowerSeries σ R s : σ h : single s 1 ≤ 0 ⊢ False [PROOFSTEP] simpa using h s [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R φ : MvPowerSeries σ R s : σ this : ¬single s 1 ≤ 0 ⊢ ↑(coeff R 0) (φ * X s) = 0 [PROOFSTEP] simp only [X, coeff_mul_monomial, if_neg this] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R φ : MvPowerSeries σ R s : σ ⊢ ↑(coeff R 0) (X s * φ) = 0 [PROOFSTEP] rw [← (φ.commute_X s).eq, coeff_zero_mul_X] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R src✝ : MvPowerSeries σ R →ₗ[R] R := coeff R 0 φ ψ : MvPowerSeries σ R ⊢ OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } (φ * ψ) = OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } φ * OneHom.toFun { toFun := ↑(coeff R 0), map_one' := (_ : ↑(coeff R 0) 1 = 1) } ψ [PROOFSTEP] simp [coeff_mul, support_single_ne_zero] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R f : MvPowerSeries σ R a : R ⊢ a • f = ↑(C σ R) a * f [PROOFSTEP] ext [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : Semiring R f : MvPowerSeries σ R a : R n✝ : σ →₀ ℕ ⊢ ↑(coeff R n✝) (a • f) = ↑(coeff R n✝) (↑(C σ R) a * f) [PROOFSTEP] simp [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ ⊢ X s = X t → s = t [PROOFSTEP] intro h [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h : X s = X t ⊢ s = t [PROOFSTEP] replace h := congr_arg (coeff R (single s 1)) h [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) ⊢ s = t [PROOFSTEP] rw [coeff_X, if_pos rfl, coeff_X] at h [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) h : 1 = if single s 1 = single t 1 then 1 else 0 ⊢ s = t [PROOFSTEP] split_ifs at h with H [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) H : single s 1 = single t 1 h : 1 = 1 ⊢ s = t [PROOFSTEP] rw [Finsupp.single_eq_single_iff] at H [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) H : s = t ∧ 1 = 1 ∨ 1 = 0 ∧ 1 = 0 h : 1 = 1 ⊢ s = t [PROOFSTEP] cases' H with H H [GOAL] case pos.inl σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) h : 1 = 1 H : s = t ∧ 1 = 1 ⊢ s = t [PROOFSTEP] exact H.1 [GOAL] case pos.inr σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) h : 1 = 1 H : 1 = 0 ∧ 1 = 0 ⊢ s = t [PROOFSTEP] exfalso [GOAL] case pos.inr.h σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) h : 1 = 1 H : 1 = 0 ∧ 1 = 0 ⊢ False [PROOFSTEP] exact one_ne_zero H.1 [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) H : ¬single s 1 = single t 1 h : 1 = 0 ⊢ s = t [PROOFSTEP] exfalso [GOAL] case neg.h σ : Type u_1 R : Type u_2 inst✝¹ : Semiring R inst✝ : Nontrivial R s t : σ h✝¹ : ↑(coeff R (single s 1)) (X s) = ↑(coeff R (single s 1)) (X t) h✝ : 1 = ↑(coeff R (single s 1)) (X t) H : ¬single s 1 = single t 1 h : 1 = 0 ⊢ False [PROOFSTEP] exact one_ne_zero h [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ ⊢ ↑f (↑(coeff R n) 1) = ↑(coeff S n) 1 [PROOFSTEP] rw [coeff_one, coeff_one] [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ ⊢ ↑f (if n = 0 then 1 else 0) = if n = 0 then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ h : n = 0 ⊢ ↑f (if n = 0 then 1 else 0) = 1 [PROOFSTEP] simp only [RingHom.map_ite_one_zero, ite_true, map_one, h] [GOAL] case neg σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ h : ¬n = 0 ⊢ ↑f (if n = 0 then 1 else 0) = 0 [PROOFSTEP] simp only [RingHom.map_ite_one_zero, ite_false, map_zero, h] [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑f (↑(coeff R n) (φ * ψ)) = ↑(coeff S n) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ * OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ) [PROOFSTEP] rw [coeff_mul, map_sum, coeff_mul] [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∑ x in antidiagonal n, ↑f (↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ) = ∑ p in antidiagonal n, ↑(coeff S p.fst) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) * ↑(coeff S p.snd) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ) [PROOFSTEP] apply Finset.sum_congr rfl [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)), x ∈ antidiagonal n → ↑f (↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ) = ↑(coeff S x.fst) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) * ↑(coeff S x.snd) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ) [PROOFSTEP] rintro ⟨i, j⟩ _ [GOAL] case mk σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n i j : σ →₀ ℕ a✝ : (i, j) ∈ antidiagonal n ⊢ ↑f (↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ) = ↑(coeff S (i, j).fst) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) * ↑(coeff S (i, j).snd) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ) [PROOFSTEP] rw [f.map_mul] [GOAL] case mk σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n i j : σ →₀ ℕ a✝ : (i, j) ∈ antidiagonal n ⊢ ↑f (↑(coeff R (i, j).fst) φ) * ↑f (↑(coeff R (i, j).snd) ψ) = ↑(coeff S (i, j).fst) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } φ) * ↑(coeff S (i, j).snd) (OneHom.toFun { toFun := fun φ n => ↑f (↑(coeff R n) φ), map_one' := (_ : (fun φ n => ↑f (↑(coeff R n) φ)) 1 = 1) } ψ) [PROOFSTEP] rfl [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T φ ψ : MvPowerSeries σ R n : σ →₀ ℕ ⊢ ↑f (↑(coeff R n) (φ + ψ)) = ↑f (↑(coeff R n) φ) + ↑f (↑(coeff R n) ψ) [PROOFSTEP] simp [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ a : R ⊢ ↑(map σ f) (↑(monomial R n) a) = ↑(monomial S n) (↑f a) [PROOFSTEP] ext m [GOAL] case h σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n : σ →₀ ℕ a : R m : σ →₀ ℕ ⊢ ↑(coeff S m) (↑(map σ f) (↑(monomial R n) a)) = ↑(coeff S m) (↑(monomial S n) (↑f a)) [PROOFSTEP] simp [coeff_monomial, apply_ite f] [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 T : Type u_4 inst✝² : Semiring R inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T s : σ ⊢ ↑(map σ f) (X s) = X s [PROOFSTEP] simp [MvPowerSeries.X] [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ Module R (MvPowerSeries σ A) [PROOFSTEP] infer_instance [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : Module R (MvPowerSeries σ A) := let_fun this := inferInstance; this a : R φ : (fun x => MvPowerSeries σ A) a ⊢ ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a * φ = φ * ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a [PROOFSTEP] ext n [GOAL] case h σ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : Module R (MvPowerSeries σ A) := let_fun this := inferInstance; this a : R φ : (fun x => MvPowerSeries σ A) a n : σ →₀ ℕ ⊢ ↑(coeff A n) (↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a * φ) = ↑(coeff A n) (φ * ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) a) [PROOFSTEP] simp [Algebra.commutes] [GOAL] σ✝ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : Module R (MvPowerSeries σ✝ A) := let_fun this := inferInstance; this a : R σ : (fun x => MvPowerSeries σ✝ A) a ⊢ a • σ = ↑(RingHom.comp (map σ✝ (algebraMap R A)) (C σ✝ R)) a * σ [PROOFSTEP] ext n [GOAL] case h σ✝ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : Module R (MvPowerSeries σ✝ A) := let_fun this := inferInstance; this a : R σ : (fun x => MvPowerSeries σ✝ A) a n : σ✝ →₀ ℕ ⊢ ↑(coeff A n) (a • σ) = ↑(coeff A n) (↑(RingHom.comp (map σ✝ (algebraMap R A)) (C σ✝ R)) a * σ) [PROOFSTEP] simp [(coeff A n).map_smul_of_tower a, Algebra.smul_def] [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A r : R ⊢ ↑(algebraMap R (MvPowerSeries σ A)) r = ↑(C σ A) (↑(algebraMap R A) r) [PROOFSTEP] change (MvPowerSeries.map σ (algebraMap R A)).comp (C σ R) r = _ [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A r : R ⊢ ↑(RingHom.comp (map σ (algebraMap R A)) (C σ R)) r = ↑(C σ A) (↑(algebraMap R A) r) [PROOFSTEP] simp [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R ⊢ ⊥ ≠ ⊤ [PROOFSTEP] rw [Ne.def, SetLike.ext_iff, not_forall] [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R ⊢ ∃ x, ¬(x ∈ ⊥ ↔ x ∈ ⊤) [PROOFSTEP] inhabit σ [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ ⊢ ∃ x, ¬(x ∈ ⊥ ↔ x ∈ ⊤) [PROOFSTEP] refine' ⟨X default, _⟩ [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ ⊢ ¬(X default ∈ ⊥ ↔ X default ∈ ⊤) [PROOFSTEP] simp only [Algebra.mem_bot, not_exists, Set.mem_range, iff_true_iff, Algebra.mem_top] [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ ⊢ ∀ (x : R), ¬↑(algebraMap R (MvPowerSeries σ R)) x = X default [PROOFSTEP] intro x [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ x : R ⊢ ¬↑(algebraMap R (MvPowerSeries σ R)) x = X default [PROOFSTEP] rw [ext_iff, not_forall] [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ x : R ⊢ ∃ x_1, ¬↑(coeff R x_1) (↑(algebraMap R (MvPowerSeries σ R)) x) = ↑(coeff R x_1) (X default) [PROOFSTEP] refine' ⟨Finsupp.single default 1, _⟩ [GOAL] σ : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : Nonempty σ inst✝ : Nontrivial R inhabited_h : Inhabited σ x : R ⊢ ¬↑(coeff R (single default 1)) (↑(algebraMap R (MvPowerSeries σ R)) x) = ↑(coeff R (single default 1)) (X default) [PROOFSTEP] simp [algebraMap_apply, coeff_C] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n m : σ →₀ ℕ φ : MvPowerSeries σ R ⊢ MvPolynomial.coeff m (truncFun n φ) = if m < n then ↑(coeff R m) φ else 0 [PROOFSTEP] simp [truncFun, MvPolynomial.coeff_sum] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ ⊢ truncFun n 0 = 0 [PROOFSTEP] ext [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n m✝ : σ →₀ ℕ ⊢ MvPolynomial.coeff m✝ (truncFun n 0) = MvPolynomial.coeff m✝ 0 [PROOFSTEP] simp [coeff_truncFun] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ ⊢ ∀ (x y : MvPowerSeries σ R), ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y) = ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x + ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y [PROOFSTEP] intros x y [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ x y : MvPowerSeries σ R ⊢ ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y) = ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x + ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y [PROOFSTEP] ext m [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ x y : MvPowerSeries σ R m : σ →₀ ℕ ⊢ MvPolynomial.coeff m (ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } (x + y)) = MvPolynomial.coeff m (ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } x + ZeroHom.toFun { toFun := truncFun n, map_zero' := (_ : truncFun n 0 = 0) } y) [PROOFSTEP] simp only [coeff_truncFun, MvPolynomial.coeff_add] [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ x y : MvPowerSeries σ R m : σ →₀ ℕ ⊢ (if m < n then ↑(coeff R m) (x + y) else 0) = (if m < n then ↑(coeff R m) x else 0) + if m < n then ↑(coeff R m) y else 0 [PROOFSTEP] split_ifs [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ x y : MvPowerSeries σ R m : σ →₀ ℕ h✝ : m < n ⊢ ↑(coeff R m) (x + y) = ↑(coeff R m) x + ↑(coeff R m) y [PROOFSTEP] rw [map_add] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n : σ →₀ ℕ x y : MvPowerSeries σ R m : σ →₀ ℕ h✝ : ¬m < n ⊢ 0 = 0 + 0 [PROOFSTEP] rw [zero_add] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n m : σ →₀ ℕ φ : MvPowerSeries σ R ⊢ MvPolynomial.coeff m (↑(trunc R n) φ) = if m < n then ↑(coeff R m) φ else 0 [PROOFSTEP] simp [trunc, coeff_truncFun] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ ⊢ MvPolynomial.coeff m (↑(trunc R n) 1) = MvPolynomial.coeff m 1 [PROOFSTEP] rw [coeff_trunc, coeff_one] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ ⊢ (if m < n then if m = 0 then 1 else 0 else 0) = MvPolynomial.coeff m 1 [PROOFSTEP] split_ifs with H H' [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : m < n H' : m = 0 ⊢ 1 = MvPolynomial.coeff m 1 [PROOFSTEP] subst m [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 H : 0 < n ⊢ 1 = MvPolynomial.coeff 0 1 [PROOFSTEP] simp [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : m < n H' : ¬m = 0 ⊢ 0 = MvPolynomial.coeff m 1 [PROOFSTEP] symm [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : m < n H' : ¬m = 0 ⊢ MvPolynomial.coeff m 1 = 0 [PROOFSTEP] rw [MvPolynomial.coeff_one] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : m < n H' : ¬m = 0 ⊢ (if 0 = m then 1 else 0) = 0 [PROOFSTEP] exact if_neg (Ne.symm H') [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : ¬m < n ⊢ 0 = MvPolynomial.coeff m 1 [PROOFSTEP] symm [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : ¬m < n ⊢ MvPolynomial.coeff m 1 = 0 [PROOFSTEP] rw [MvPolynomial.coeff_one] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : ¬m < n ⊢ (if 0 = m then 1 else 0) = 0 [PROOFSTEP] refine' if_neg _ [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 m : σ →₀ ℕ H : ¬m < n ⊢ ¬0 = m [PROOFSTEP] rintro rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 H : ¬0 < n ⊢ False [PROOFSTEP] apply H [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 H : ¬0 < n ⊢ 0 < n [PROOFSTEP] exact Ne.bot_lt hnn [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ ⊢ MvPolynomial.coeff m (↑(trunc R n) (↑(C σ R) a)) = MvPolynomial.coeff m (↑MvPolynomial.C a) [PROOFSTEP] rw [coeff_trunc, coeff_C, MvPolynomial.coeff_C] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ ⊢ (if m < n then if m = 0 then a else 0 else 0) = if 0 = m then a else 0 [PROOFSTEP] split_ifs with H [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : 0 = m ⊢ a = a [PROOFSTEP] first | rfl | try simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : 0 = m ⊢ a = a [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : ¬0 = m ⊢ a = 0 [PROOFSTEP] first | rfl | try simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : ¬0 = m ⊢ a = 0 [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : ¬0 = m ⊢ a = 0 [PROOFSTEP] try simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : m = 0 h✝ : ¬0 = m ⊢ a = 0 [PROOFSTEP] simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] first | rfl | try simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] try simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : ¬0 = m ⊢ 0 = 0 [PROOFSTEP] first | rfl | try simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : m < n h✝¹ : ¬m = 0 h✝ : ¬0 = m ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] first | rfl | try simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] try simp_all [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : ¬0 = m ⊢ 0 = 0 [PROOFSTEP] first | rfl | try simp_all [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ hnn : n ≠ 0 a : R m : σ →₀ ℕ H : ¬m < n h✝ : ¬0 = m ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ a : R m : σ →₀ ℕ hnn : ¬n = m H : ¬m < n h✝ : 0 = m ⊢ 0 = a [PROOFSTEP] exfalso [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ a : R m : σ →₀ ℕ hnn : ¬n = m H : ¬m < n h✝ : 0 = m ⊢ False [PROOFSTEP] apply H [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ a : R m : σ →₀ ℕ hnn : ¬n = m H : ¬m < n h✝ : 0 = m ⊢ m < n [PROOFSTEP] subst m [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R n✝ n : σ →₀ ℕ a : R hnn : ¬n = 0 H : ¬0 < n ⊢ 0 < n [PROOFSTEP] exact Ne.bot_lt hnn [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R ⊢ X s ^ n ∣ φ ↔ ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 [PROOFSTEP] constructor [GOAL] case mp σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R ⊢ X s ^ n ∣ φ → ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 [PROOFSTEP] rintro ⟨φ, rfl⟩ m h [GOAL] case mp.intro σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m : σ →₀ ℕ h : ↑m s < n ⊢ ↑(coeff R m) (X s ^ n * φ) = 0 [PROOFSTEP] rw [coeff_mul, Finset.sum_eq_zero] [GOAL] case mp.intro σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m : σ →₀ ℕ h : ↑m s < n ⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)), x ∈ antidiagonal m → ↑(coeff R x.fst) (X s ^ n) * ↑(coeff R x.snd) φ = 0 [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case mp.intro.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m : σ →₀ ℕ h : ↑m s < n i j : σ →₀ ℕ hij : (i, j) ∈ antidiagonal m ⊢ ↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) φ = 0 [PROOFSTEP] rw [coeff_X_pow, if_neg, zero_mul] [GOAL] case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m : σ →₀ ℕ h : ↑m s < n i j : σ →₀ ℕ hij : (i, j) ∈ antidiagonal m ⊢ ¬(i, j).fst = single s n [PROOFSTEP] contrapose! h [GOAL] case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m i j : σ →₀ ℕ hij : (i, j) ∈ antidiagonal m h : i = single s n ⊢ n ≤ ↑m s [PROOFSTEP] subst i [GOAL] case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m j : σ →₀ ℕ hij : (single s n, j) ∈ antidiagonal m ⊢ n ≤ ↑m s [PROOFSTEP] rw [Finsupp.mem_antidiagonal] at hij [GOAL] case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m j : σ →₀ ℕ hij : (single s n, j).fst + (single s n, j).snd = m ⊢ n ≤ ↑m s [PROOFSTEP] rw [← hij, Finsupp.add_apply, Finsupp.single_eq_same] [GOAL] case mp.intro.mk.hnc σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R m j : σ →₀ ℕ hij : (single s n, j).fst + (single s n, j).snd = m ⊢ n ≤ n + ↑(single s n, j).snd s [PROOFSTEP] exact Nat.le_add_right n _ [GOAL] case mpr σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R ⊢ (∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0) → X s ^ n ∣ φ [PROOFSTEP] intro h [GOAL] case mpr σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 ⊢ X s ^ n ∣ φ [PROOFSTEP] refine' ⟨fun m => coeff R (m + single s n) φ, _⟩ [GOAL] case mpr σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 ⊢ φ = X s ^ n * fun m => ↑(coeff R (m + single s n)) φ [PROOFSTEP] ext m [GOAL] case mpr.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ ⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ) [PROOFSTEP] by_cases H : m - single s n + single s n = m [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m ⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ) [PROOFSTEP] rw [coeff_mul, Finset.sum_eq_single (single s n, m - single s n)] [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m ⊢ ↑(coeff R m) φ = ↑(coeff R (single s n, m - single s n).fst) (X s ^ n) * ↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ [PROOFSTEP] rw [coeff_X_pow, if_pos rfl, one_mul] [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m ⊢ ↑(coeff R m) φ = ↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ [PROOFSTEP] simpa using congr_arg (fun m : σ →₀ ℕ => coeff R m φ) H.symm [GOAL] case pos.h₀ σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m ⊢ ∀ (b : (σ →₀ ℕ) × (σ →₀ ℕ)), b ∈ antidiagonal m → b ≠ (single s n, m - single s n) → (↑(coeff R b.fst) (X s ^ n) * ↑(coeff R b.snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rintro ⟨i, j⟩ hij hne [GOAL] case pos.h₀.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j) ∈ antidiagonal m hne : (i, j) ≠ (single s n, m - single s n) ⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rw [Finsupp.mem_antidiagonal] at hij [GOAL] case pos.h₀.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) ⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rw [coeff_X_pow] [GOAL] case pos.h₀.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) ⊢ ((if (i, j).fst = single s n then 1 else 0) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] split_ifs with hi [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n ⊢ (1 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] exfalso [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n ⊢ False [PROOFSTEP] apply hne [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n ⊢ (i, j) = (single s n, m - single s n) [PROOFSTEP] rw [← hij, ← hi, Prod.mk.inj_iff] [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n ⊢ i = (i, j).fst ∧ j = (i, j).fst + (i, j).snd - (i, j).fst [PROOFSTEP] refine' ⟨rfl, _⟩ [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n ⊢ j = (i, j).fst + (i, j).snd - (i, j).fst [PROOFSTEP] ext t [GOAL] case pos.h.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : (i, j).fst = single s n t : σ ⊢ ↑j t = ↑((i, j).fst + (i, j).snd - (i, j).fst) t [PROOFSTEP] simp only [add_tsub_cancel_left, Finsupp.add_apply, Finsupp.tsub_apply] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hne : (i, j) ≠ (single s n, m - single s n) hi : ¬(i, j).fst = single s n ⊢ (0 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] exact zero_mul _ [GOAL] case pos.h₁ σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m ⊢ ¬(single s n, m - single s n) ∈ antidiagonal m → (↑(coeff R (single s n, m - single s n).fst) (X s ^ n) * ↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] intro hni [GOAL] case pos.h₁ σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m hni : ¬(single s n, m - single s n) ∈ antidiagonal m ⊢ (↑(coeff R (single s n, m - single s n).fst) (X s ^ n) * ↑(coeff R (single s n, m - single s n).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] exfalso [GOAL] case pos.h₁.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m hni : ¬(single s n, m - single s n) ∈ antidiagonal m ⊢ False [PROOFSTEP] apply hni [GOAL] case pos.h₁.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : m - single s n + single s n = m hni : ¬(single s n, m - single s n) ∈ antidiagonal m ⊢ (single s n, m - single s n) ∈ antidiagonal m [PROOFSTEP] rwa [Finsupp.mem_antidiagonal, add_comm] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m ⊢ ↑(coeff R m) φ = ↑(coeff R m) (X s ^ n * fun m => ↑(coeff R (m + single s n)) φ) [PROOFSTEP] rw [h, coeff_mul, Finset.sum_eq_zero] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m ⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)), x ∈ antidiagonal m → (↑(coeff R x.fst) (X s ^ n) * ↑(coeff R x.snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case neg.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j) ∈ antidiagonal m ⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rw [Finsupp.mem_antidiagonal] at hij [GOAL] case neg.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m ⊢ (↑(coeff R (i, j).fst) (X s ^ n) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] rw [coeff_X_pow] [GOAL] case neg.mk σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m ⊢ ((if (i, j).fst = single s n then 1 else 0) * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] split_ifs with hi [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : (i, j).fst = single s n ⊢ (1 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] exfalso [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : (i, j).fst = single s n ⊢ False [PROOFSTEP] apply H [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : (i, j).fst = single s n ⊢ m - single s n + single s n = m [PROOFSTEP] rw [← hij, hi] [GOAL] case pos.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : (i, j).fst = single s n ⊢ single s n + (i, j).snd - single s n + single s n = single s n + (i, j).snd [PROOFSTEP] ext [GOAL] case pos.h.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : (i, j).fst = single s n a✝ : σ ⊢ ↑(single s n + (i, j).snd - single s n + single s n) a✝ = ↑(single s n + (i, j).snd) a✝ [PROOFSTEP] rw [coe_add, coe_add, Pi.add_apply, Pi.add_apply, add_tsub_cancel_left, add_comm] [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m i j : σ →₀ ℕ hij : (i, j).fst + (i, j).snd = m hi : ¬(i, j).fst = single s n ⊢ (0 * ↑(coeff R (i, j).snd) fun m => ↑(coeff R (m + single s n)) φ) = 0 [PROOFSTEP] exact zero_mul _ [GOAL] case neg.a σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : ¬m - single s n + single s n = m ⊢ ↑m s < n [PROOFSTEP] contrapose! H [GOAL] case neg.a σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : n ≤ ↑m s ⊢ m - single s n + single s n = m [PROOFSTEP] ext t [GOAL] case neg.a.h σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : n ≤ ↑m s t : σ ⊢ ↑(m - single s n + single s n) t = ↑m t [PROOFSTEP] by_cases hst : s = t [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : n ≤ ↑m s t : σ hst : s = t ⊢ ↑(m - single s n + single s n) t = ↑m t [PROOFSTEP] subst t [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : n ≤ ↑m s ⊢ ↑(m - single s n + single s n) s = ↑m s [PROOFSTEP] simpa using tsub_add_cancel_of_le H [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ n : ℕ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < n → ↑(coeff R m) φ = 0 m : σ →₀ ℕ H : n ≤ ↑m s t : σ hst : ¬s = t ⊢ ↑(m - single s n + single s n) t = ↑m t [PROOFSTEP] simp [Finsupp.single_apply, hst] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R ⊢ X s ∣ φ ↔ ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0 [PROOFSTEP] rw [← pow_one (X s : MvPowerSeries σ R), X_pow_dvd_iff] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R ⊢ (∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0) ↔ ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0 [PROOFSTEP] constructor [GOAL] case mp σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R ⊢ (∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0) → ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0 [PROOFSTEP] intro h m hm [GOAL] case mpr σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R ⊢ (∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0) → ∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0 [PROOFSTEP] intro h m hm [GOAL] case mp σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s < 1 → ↑(coeff R m) φ = 0 m : σ →₀ ℕ hm : ↑m s = 0 ⊢ ↑(coeff R m) φ = 0 [PROOFSTEP] exact h m (hm.symm ▸ zero_lt_one) [GOAL] case mpr σ : Type u_1 R : Type u_2 inst✝ : Semiring R s : σ φ : MvPowerSeries σ R h : ∀ (m : σ →₀ ℕ), ↑m s = 0 → ↑(coeff R m) φ = 0 m : σ →₀ ℕ hm : ↑m s < 1 ⊢ ↑(coeff R m) φ = 0 [PROOFSTEP] exact h m (Nat.eq_zero_of_le_zero <| Nat.le_of_succ_le_succ hm) [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Ring R inst✝ : DecidableEq σ n : σ →₀ ℕ a : R φ : MvPowerSeries σ R ⊢ inv.aux a φ n = if n = 0 then a else -a * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0 [PROOFSTEP] rw [inv.aux] -- unify `Decidable` instances [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Ring R inst✝ : DecidableEq σ n : σ →₀ ℕ a : R φ : MvPowerSeries σ R ⊢ (if n = 0 then a else -a * ∑ x in antidiagonal n, if x_1 : x.snd < n then ↑(coeff R x.fst) φ * inv.aux a φ x.snd else 0) = if n = 0 then a else -a * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0 [PROOFSTEP] convert rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : Ring R inst✝ : DecidableEq σ n : σ →₀ ℕ φ : MvPowerSeries σ R u : Rˣ ⊢ ↑(coeff R n) (invOfUnit φ u) = if n = 0 then ↑u⁻¹ else -↑u⁻¹ * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) else 0 [PROOFSTEP] convert coeff_inv_aux n (↑u⁻¹) φ [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ ⊢ ↑(constantCoeff σ R) (invOfUnit φ u) = ↑u⁻¹ [PROOFSTEP] rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : n = 0 ⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1 [PROOFSTEP] rw [H] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : n = 0 ⊢ ↑(coeff R 0) (φ * invOfUnit φ u) = ↑(coeff R 0) 1 [PROOFSTEP] simp [coeff_mul, support_single_ne_zero, h] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 ⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1 [PROOFSTEP] have : ((0 : σ →₀ ℕ), n) ∈ n.antidiagonal := by rw [Finsupp.mem_antidiagonal, zero_add] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 ⊢ (0, n) ∈ antidiagonal n [PROOFSTEP] rw [Finsupp.mem_antidiagonal, zero_add] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 this : (0, n) ∈ antidiagonal n ⊢ ↑(coeff R n) (φ * invOfUnit φ u) = ↑(coeff R n) 1 [PROOFSTEP] rw [coeff_one, if_neg H, coeff_mul, ← Finset.insert_erase this, Finset.sum_insert (Finset.not_mem_erase _ _), coeff_zero_eq_constantCoeff_apply, h, coeff_invOfUnit, if_neg H, neg_mul, mul_neg, Units.mul_inv_cancel_left, ← Finset.insert_erase this, Finset.sum_insert (Finset.not_mem_erase _ _), Finset.insert_erase this, if_neg (not_lt_of_ge <| le_rfl), zero_add, add_comm, ← sub_eq_add_neg, sub_eq_zero, Finset.sum_congr rfl] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 this : (0, n) ∈ antidiagonal n ⊢ ∀ (x : (σ →₀ ℕ) × (σ →₀ ℕ)), x ∈ Finset.erase (antidiagonal n) (0, n) → ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) = if x.snd < (0, n).snd then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (invOfUnit φ u) else 0 [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case mk σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 this : (0, n) ∈ antidiagonal n i j : σ →₀ ℕ hij : (i, j) ∈ Finset.erase (antidiagonal n) (0, n) ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) = if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0 [PROOFSTEP] rw [Finset.mem_erase, Finsupp.mem_antidiagonal] at hij [GOAL] case mk σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 this : (0, n) ∈ antidiagonal n i j : σ →₀ ℕ hij : (i, j) ≠ (0, n) ∧ (i, j).fst + (i, j).snd = n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) = if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0 [PROOFSTEP] cases' hij with h₁ h₂ [GOAL] case mk.intro σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u n : σ →₀ ℕ H : ¬n = 0 this : (0, n) ∈ antidiagonal n i j : σ →₀ ℕ h₁ : (i, j) ≠ (0, n) h₂ : (i, j).fst + (i, j).snd = n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) = if (i, j).snd < (0, n).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0 [PROOFSTEP] subst n [GOAL] case mk.intro σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) = if (i, j).snd < (0, (i, j).fst + (i, j).snd).snd then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (invOfUnit φ u) else 0 [PROOFSTEP] rw [if_pos] [GOAL] case mk.intro.hc σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ (i, j).snd < (0, (i, j).fst + (i, j).snd).snd [PROOFSTEP] suffices (0 : _) + j < i + j by simpa [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this✝ : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) this : 0 + j < i + j ⊢ (i, j).snd < (0, (i, j).fst + (i, j).snd).snd [PROOFSTEP] simpa [GOAL] case mk.intro.hc σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ 0 + j < i + j [PROOFSTEP] apply add_lt_add_right [GOAL] case mk.intro.hc.bc σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ 0 < i [PROOFSTEP] constructor [GOAL] case mk.intro.hc.bc.left σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑0 i_1) (↑i i_1) [PROOFSTEP] intro s [GOAL] case mk.intro.hc.bc.left σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) s : σ ⊢ PartialOrder.toPreorder.1.1 (↑0 s) (↑i s) [PROOFSTEP] exact Nat.zero_le _ [GOAL] case mk.intro.hc.bc.right σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) ⊢ ¬∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) [PROOFSTEP] intro H [GOAL] case mk.intro.hc.bc.right σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H✝ : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) ⊢ False [PROOFSTEP] apply h₁ [GOAL] case mk.intro.hc.bc.right σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H✝ : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) ⊢ (i, j) = (0, (i, j).fst + (i, j).snd) [PROOFSTEP] suffices i = 0 by simp [this] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H✝ : ¬(i, j).fst + (i, j).snd = 0 this✝ : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) this : i = 0 ⊢ (i, j) = (0, (i, j).fst + (i, j).snd) [PROOFSTEP] simp [this] [GOAL] case mk.intro.hc.bc.right σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H✝ : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) ⊢ i = 0 [PROOFSTEP] ext1 s [GOAL] case mk.intro.hc.bc.right.h σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ h : ↑(constantCoeff σ R) φ = ↑u i j : σ →₀ ℕ H✝ : ¬(i, j).fst + (i, j).snd = 0 this : (0, (i, j).fst + (i, j).snd) ∈ antidiagonal ((i, j).fst + (i, j).snd) h₁ : (i, j) ≠ (0, (i, j).fst + (i, j).snd) H : ∀ (i_1 : σ), PartialOrder.toPreorder.1.1 (↑i i_1) (↑0 i_1) s : σ ⊢ ↑i s = ↑0 s [PROOFSTEP] exact Nat.eq_zero_of_le_zero (H s) [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R ⊢ ∀ (a : MvPowerSeries σ R), IsUnit a ∨ IsUnit (1 - a) [PROOFSTEP] intro φ [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R ⊢ IsUnit φ ∨ IsUnit (1 - φ) [PROOFSTEP] rcases LocalRing.isUnit_or_isUnit_one_sub_self (constantCoeff σ R φ) with (⟨u, h⟩ | ⟨u, h⟩) <;> [left; right] [GOAL] σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R ⊢ IsUnit φ ∨ IsUnit (1 - φ) [PROOFSTEP] rcases LocalRing.isUnit_or_isUnit_one_sub_self (constantCoeff σ R φ) with (⟨u, h⟩ | ⟨u, h⟩) [GOAL] case inl.intro σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = ↑(constantCoeff σ R) φ ⊢ IsUnit φ ∨ IsUnit (1 - φ) [PROOFSTEP] left [GOAL] case inr.intro σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = 1 - ↑(constantCoeff σ R) φ ⊢ IsUnit φ ∨ IsUnit (1 - φ) [PROOFSTEP] right [GOAL] case inl.intro.h σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = ↑(constantCoeff σ R) φ ⊢ IsUnit φ [PROOFSTEP] refine' isUnit_of_mul_eq_one _ _ (mul_invOfUnit _ u _) [GOAL] case inl.intro.h σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = ↑(constantCoeff σ R) φ ⊢ ↑(constantCoeff σ ((fun x => R) φ)) φ = ↑u [PROOFSTEP] simpa using h.symm [GOAL] case inr.intro.h σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = 1 - ↑(constantCoeff σ R) φ ⊢ IsUnit (1 - φ) [PROOFSTEP] refine' isUnit_of_mul_eq_one _ _ (mul_invOfUnit _ u _) [GOAL] case inr.intro.h σ : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LocalRing R φ : MvPowerSeries σ R u : ((fun x => R) φ)ˣ h : ↑u = 1 - ↑(constantCoeff σ R) φ ⊢ ↑(constantCoeff σ ((fun x => R) φ)) (1 - φ) = ↑u [PROOFSTEP] simpa using h.symm [GOAL] σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f ⊢ ∀ (a : MvPowerSeries σ R), IsUnit (↑(map σ f) a) → IsUnit a [PROOFSTEP] rintro φ ⟨ψ, h⟩ [GOAL] case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑ψ = ↑(map σ f) φ ⊢ IsUnit φ [PROOFSTEP] replace h := congr_arg (constantCoeff σ S) h [GOAL] case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑(constantCoeff σ S) ↑ψ = ↑(constantCoeff σ S) (↑(map σ f) φ) ⊢ IsUnit φ [PROOFSTEP] rw [constantCoeff_map] at h [GOAL] case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ) ⊢ IsUnit φ [PROOFSTEP] have : IsUnit (constantCoeff σ S ↑ψ) := isUnit_constantCoeff (↑ψ) ψ.isUnit [GOAL] case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ) this : IsUnit (↑(constantCoeff σ S) ↑ψ) ⊢ IsUnit φ [PROOFSTEP] rw [h] at this [GOAL] case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ) this : IsUnit (↑f (↑(constantCoeff σ R) φ)) ⊢ IsUnit φ [PROOFSTEP] rcases isUnit_of_map_unit f _ this with ⟨c, hc⟩ [GOAL] case intro.intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalRingHom f φ : MvPowerSeries σ R ψ : ((fun x => MvPowerSeries σ S) φ)ˣ h : ↑(constantCoeff σ S) ↑ψ = ↑f (↑(constantCoeff σ R) φ) this : IsUnit (↑f (↑(constantCoeff σ R) φ)) c : Rˣ hc : ↑c = ↑(constantCoeff σ R) φ ⊢ IsUnit φ [PROOFSTEP] exact isUnit_of_mul_eq_one φ (invOfUnit φ c) (mul_invOfUnit φ c hc.symm) [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k ⊢ ↑(constantCoeff σ k) φ⁻¹ = (↑(constantCoeff σ k) φ)⁻¹ [PROOFSTEP] rw [← coeff_zero_eq_constantCoeff_apply, coeff_inv, if_pos rfl] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : φ⁻¹ = 0 ⊢ ↑(constantCoeff σ k) φ = 0 [PROOFSTEP] simpa using congr_arg (constantCoeff σ k) h [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 n : σ →₀ ℕ ⊢ ↑(coeff k n) φ⁻¹ = ↑(coeff k n) 0 [PROOFSTEP] rw [coeff_inv] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 n : σ →₀ ℕ ⊢ (if n = 0 then (↑(constantCoeff σ k) φ)⁻¹ else -(↑(constantCoeff σ k) φ)⁻¹ * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0) = ↑(coeff k n) 0 [PROOFSTEP] split_ifs [GOAL] case pos σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 n : σ →₀ ℕ h✝ : n = 0 ⊢ (↑(constantCoeff σ k) φ)⁻¹ = ↑(coeff k n) 0 [PROOFSTEP] simp only [h, map_zero, zero_mul, inv_zero, neg_zero] [GOAL] case neg σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 n : σ →₀ ℕ h✝ : ¬n = 0 ⊢ (-(↑(constantCoeff σ k) φ)⁻¹ * ∑ x in antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0) = ↑(coeff k n) 0 [PROOFSTEP] simp only [h, map_zero, zero_mul, inv_zero, neg_zero] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k ⊢ 0⁻¹ = 0 [PROOFSTEP] rw [inv_eq_zero, constantCoeff_zero] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k u : kˣ h : ↑(constantCoeff σ k) φ = ↑u ⊢ invOfUnit φ u = φ⁻¹ [PROOFSTEP] rw [← invOfUnit_eq φ (h.symm ▸ u.ne_zero)] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k u : kˣ h : ↑(constantCoeff σ k) φ = ↑u ⊢ invOfUnit φ u = invOfUnit φ (Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0)) [PROOFSTEP] apply congrArg (invOfUnit φ) [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k u : kˣ h : ↑(constantCoeff σ k) φ = ↑u ⊢ u = Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0) [PROOFSTEP] rw [Units.ext_iff] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k u : kˣ h : ↑(constantCoeff σ k) φ = ↑u ⊢ ↑u = ↑(Units.mk0 (↑(constantCoeff σ k) φ) (_ : ↑(constantCoeff σ k) φ ≠ 0)) [PROOFSTEP] exact h.symm [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ ≠ 0 ⊢ φ * φ⁻¹ = 1 [PROOFSTEP] rw [← invOfUnit_eq φ h, mul_invOfUnit φ (Units.mk0 _ h) rfl] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ ≠ 0 ⊢ φ⁻¹ * φ = 1 [PROOFSTEP] rw [mul_comm, φ.mul_inv_cancel h] [GOAL] σ : Type u_1 R : Type u_2 k✝ : Type u_3 inst✝ : Field k✝ φ₁ φ₂ φ₃ : MvPowerSeries σ k✝ h : ↑(constantCoeff σ k✝) φ₃ ≠ 0 k : φ₁ = φ₂ * φ₃⁻¹ ⊢ φ₁ * φ₃ = φ₂ [PROOFSTEP] simp [k, mul_assoc, MvPowerSeries.inv_mul_cancel _ h] [GOAL] σ : Type u_1 R : Type u_2 k✝ : Type u_3 inst✝ : Field k✝ φ₁ φ₂ φ₃ : MvPowerSeries σ k✝ h : ↑(constantCoeff σ k✝) φ₃ ≠ 0 k : φ₁ * φ₃ = φ₂ ⊢ φ₁ = φ₂ * φ₃⁻¹ [PROOFSTEP] simp [← k, mul_assoc, MvPowerSeries.mul_inv_cancel _ h] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) ψ ≠ 0 ⊢ φ = ψ⁻¹ ↔ φ * ψ = 1 [PROOFSTEP] rw [← MvPowerSeries.eq_mul_inv_iff_mul_eq h, one_mul] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) ψ ≠ 0 ⊢ ψ⁻¹ = φ ↔ φ * ψ = 1 [PROOFSTEP] rw [eq_comm, MvPowerSeries.eq_inv_iff_mul_eq_one h] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k ⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹ [PROOFSTEP] by_cases h : constantCoeff σ k (φ * ψ) = 0 [GOAL] case pos σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) (φ * ψ) = 0 ⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹ [PROOFSTEP] rw [inv_eq_zero.mpr h] [GOAL] case pos σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) (φ * ψ) = 0 ⊢ 0 = ψ⁻¹ * φ⁻¹ [PROOFSTEP] simp only [map_mul, mul_eq_zero] at h [GOAL] case pos σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 ∨ ↑(constantCoeff σ k) ψ = 0 ⊢ 0 = ψ⁻¹ * φ⁻¹ [PROOFSTEP] cases' h with h h [GOAL] case pos.inl σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) φ = 0 ⊢ 0 = ψ⁻¹ * φ⁻¹ [PROOFSTEP] simp [inv_eq_zero.mpr h] [GOAL] case pos.inr σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ↑(constantCoeff σ k) ψ = 0 ⊢ 0 = ψ⁻¹ * φ⁻¹ [PROOFSTEP] simp [inv_eq_zero.mpr h] [GOAL] case neg σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ¬↑(constantCoeff σ k) (φ * ψ) = 0 ⊢ (φ * ψ)⁻¹ = ψ⁻¹ * φ⁻¹ [PROOFSTEP] rw [MvPowerSeries.inv_eq_iff_mul_eq_one h] [GOAL] case neg σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ¬↑(constantCoeff σ k) (φ * ψ) = 0 ⊢ ψ⁻¹ * φ⁻¹ * (φ * ψ) = 1 [PROOFSTEP] simp only [not_or, map_mul, mul_eq_zero] at h [GOAL] case neg σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k φ ψ : MvPowerSeries σ k h : ¬↑(constantCoeff σ k) φ = 0 ∧ ¬↑(constantCoeff σ k) ψ = 0 ⊢ ψ⁻¹ * φ⁻¹ * (φ * ψ) = 1 [PROOFSTEP] rw [← mul_assoc, mul_assoc _⁻¹, MvPowerSeries.inv_mul_cancel _ h.left, mul_one, MvPowerSeries.inv_mul_cancel _ h.right] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k src✝¹ : One (MvPowerSeries σ k) := inferInstanceAs (One (MvPowerSeries σ k)) src✝ : Inv (MvPowerSeries σ k) := inferInstanceAs (Inv (MvPowerSeries σ k)) ⊢ 1⁻¹ = 1 [PROOFSTEP] rw [MvPowerSeries.inv_eq_iff_mul_eq_one, mul_one] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k src✝¹ : One (MvPowerSeries σ k) := inferInstanceAs (One (MvPowerSeries σ k)) src✝ : Inv (MvPowerSeries σ k) := inferInstanceAs (Inv (MvPowerSeries σ k)) ⊢ ↑(constantCoeff σ k) 1 ≠ 0 [PROOFSTEP] simp [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k r : k ⊢ (↑(C σ k) r)⁻¹ = ↑(C σ k) r⁻¹ [PROOFSTEP] rcases eq_or_ne r 0 with (rfl | hr) [GOAL] case inl σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k ⊢ (↑(C σ k) 0)⁻¹ = ↑(C σ k) 0⁻¹ [PROOFSTEP] simp [GOAL] case inr σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k r : k hr : r ≠ 0 ⊢ (↑(C σ k) r)⁻¹ = ↑(C σ k) r⁻¹ [PROOFSTEP] rw [MvPowerSeries.inv_eq_iff_mul_eq_one, ← map_mul, inv_mul_cancel hr, map_one] [GOAL] case inr σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k r : k hr : r ≠ 0 ⊢ ↑(constantCoeff σ k) (↑(C σ k) r) ≠ 0 [PROOFSTEP] simpa using hr [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k s : σ ⊢ (X s)⁻¹ = 0 [PROOFSTEP] rw [inv_eq_zero, constantCoeff_X] [GOAL] σ : Type u_1 R : Type u_2 k : Type u_3 inst✝ : Field k r : k φ : MvPowerSeries σ k ⊢ (r • φ)⁻¹ = r⁻¹ • φ⁻¹ [PROOFSTEP] simp [smul_eq_C_mul, mul_comm] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ ⊢ ↑(MvPowerSeries.coeff R m) ↑(↑(monomial n) a) = ↑(MvPowerSeries.coeff R m) (↑(MvPowerSeries.monomial R n) a) [PROOFSTEP] rw [coeff_coe, coeff_monomial, MvPowerSeries.coeff_monomial] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ ⊢ (if n = m then a else 0) = if m = n then a else 0 [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : n = m h₂ : m = n ⊢ a = a [PROOFSTEP] first | rfl | subst m; contradiction [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : n = m h₂ : m = n ⊢ a = a [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : n = m h₂ : ¬m = n ⊢ a = 0 [PROOFSTEP] first | rfl | subst m; contradiction [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : n = m h₂ : ¬m = n ⊢ a = 0 [PROOFSTEP] rfl [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : n = m h₂ : ¬m = n ⊢ a = 0 [PROOFSTEP] subst m [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R h₂ : ¬n = n ⊢ a = 0 [PROOFSTEP] contradiction [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : ¬n = m h✝ : m = n ⊢ 0 = a [PROOFSTEP] first | rfl | subst m; contradiction [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : ¬n = m h✝ : m = n ⊢ 0 = a [PROOFSTEP] rfl [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : ¬n = m h✝ : m = n ⊢ 0 = a [PROOFSTEP] subst m [GOAL] case pos σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R h₁ : ¬n = n ⊢ 0 = a [PROOFSTEP] contradiction [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : ¬n = m h✝ : ¬m = n ⊢ 0 = 0 [PROOFSTEP] first | rfl | subst m; contradiction [GOAL] case neg σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ a : R m : σ →₀ ℕ h₁ : ¬n = m h✝ : ¬m = n ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R n : σ →₀ ℕ ⊢ ↑(MvPowerSeries.coeff R n) ↑(φ * ψ) = ↑(MvPowerSeries.coeff R n) (↑φ * ↑ψ) [PROOFSTEP] simp only [coeff_coe, MvPowerSeries.coeff_mul, coeff_mul] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R ⊢ ↑(bit1 φ) = bit1 ↑φ [PROOFSTEP] rw [bit1, bit1, coe_add, coe_one, coe_bit0] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : MvPolynomial σ R h : Coe.coe x = Coe.coe y ⊢ x = y [PROOFSTEP] ext [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : MvPolynomial σ R h : Coe.coe x = Coe.coe y m✝ : σ →₀ ℕ ⊢ coeff m✝ x = coeff m✝ y [PROOFSTEP] simp_rw [← coeff_coe] [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : MvPolynomial σ R h : Coe.coe x = Coe.coe y m✝ : σ →₀ ℕ ⊢ ↑(MvPowerSeries.coeff R m✝) ↑x = ↑(MvPowerSeries.coeff R m✝) ↑y [PROOFSTEP] congr [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R ⊢ ↑φ = 0 ↔ φ = 0 [PROOFSTEP] rw [← coe_zero, coe_inj] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : MvPolynomial σ R ⊢ ↑φ = 1 ↔ φ = 1 [PROOFSTEP] rw [← coe_one, coe_inj] [GOAL] σ : Type u_1 R : Type u_2 inst✝² : CommSemiring R φ ψ : MvPolynomial σ R A : Type u_3 inst✝¹ : CommSemiring A inst✝ : Algebra R A src✝ : MvPolynomial σ R →+* MvPowerSeries σ A := RingHom.comp (MvPowerSeries.map σ (algebraMap R A)) ringHom r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : MvPolynomial σ R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R (MvPolynomial σ R)) r) = ↑(algebraMap R (MvPowerSeries σ A)) r [PROOFSTEP] simp [algebraMap_apply, MvPowerSeries.algebraMap_apply] [GOAL] R : Type u_1 inst✝ : Inhabited R ⊢ Inhabited (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : Inhabited R ⊢ Inhabited (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : Zero R ⊢ Zero (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : Zero R ⊢ Zero (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : AddMonoid R ⊢ AddMonoid (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : AddMonoid R ⊢ AddMonoid (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : AddGroup R ⊢ AddGroup (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : AddGroup R ⊢ AddGroup (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : AddCommMonoid R ⊢ AddCommMonoid (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : AddCommMonoid R ⊢ AddCommMonoid (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : AddCommGroup R ⊢ AddCommGroup (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : AddCommGroup R ⊢ AddCommGroup (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ Semiring (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ Semiring (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ CommSemiring (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ CommSemiring (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : Ring R ⊢ Ring (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : Ring R ⊢ Ring (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ CommRing (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ CommRing (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : Nontrivial R ⊢ Nontrivial (PowerSeries R) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 inst✝ : Nontrivial R ⊢ Nontrivial (MvPowerSeries Unit R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 A : Type ?u.2330286 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A ⊢ Module R (PowerSeries A) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 A : Type ?u.2330286 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A ⊢ Module R (MvPowerSeries Unit A) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 A : Type ?u.2336032 inst✝² : Semiring A inst✝¹ : CommSemiring R inst✝ : Algebra R A ⊢ Algebra R (PowerSeries A) [PROOFSTEP] dsimp only [PowerSeries] [GOAL] R : Type u_1 A : Type ?u.2336032 inst✝² : Semiring A inst✝¹ : CommSemiring R inst✝ : Algebra R A ⊢ Algebra R (MvPowerSeries Unit A) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : Semiring R s : Unit →₀ ℕ n : ℕ h : ↑s () = n ⊢ coeff R n = MvPowerSeries.coeff R s [PROOFSTEP] erw [coeff, ← h, ← Finsupp.unique_single s] [GOAL] R : Type u_1 inst✝ : Semiring R φ ψ : PowerSeries R h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ n : Unit →₀ ℕ ⊢ ↑(MvPowerSeries.coeff R n) φ = ↑(MvPowerSeries.coeff R n) ψ [PROOFSTEP] rw [← coeff_def] [GOAL] R : Type u_1 inst✝ : Semiring R φ ψ : PowerSeries R h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ n : Unit →₀ ℕ ⊢ ↑(coeff R ?m.2338627) φ = ↑(coeff R ?m.2338627) ψ [PROOFSTEP] apply h [GOAL] R : Type u_1 inst✝ : Semiring R φ ψ : PowerSeries R h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ n : Unit →₀ ℕ ⊢ ↑n () = ?m.2338627 R : Type u_1 inst✝ : Semiring R φ ψ : PowerSeries R h : ∀ (n : ℕ), ↑(coeff R n) φ = ↑(coeff R n) ψ n : Unit →₀ ℕ ⊢ ℕ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : Semiring R m n : ℕ a : R ⊢ (if single () m = single () n then a else 0) = if m = n then a else 0 [PROOFSTEP] simp only [Finsupp.unique_single_eq_iff] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ a : R m : ℕ ⊢ ↑(coeff R m) (↑(monomial R n) a) = ↑(coeff R m) (mk fun m => if m = n then a else 0) [PROOFSTEP] rw [coeff_monomial, coeff_mk] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ ↑(coeff R 0) = ↑(constantCoeff R) [PROOFSTEP] rw [coeff, Finsupp.single_zero] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ ↑(MvPowerSeries.coeff R 0) = ↑(constantCoeff R) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R 0) φ = ↑(constantCoeff R) φ [PROOFSTEP] rw [coeff_zero_eq_constantCoeff] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ ↑(monomial R 0) = ↑(C R) [PROOFSTEP] rw [monomial, Finsupp.single_zero, MvPowerSeries.monomial_zero_eq_C, C] [GOAL] R : Type u_1 inst✝ : Semiring R a : R ⊢ ↑(monomial R 0) a = ↑(C R) a [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ a : R ⊢ ↑(coeff R n) (↑(C R) a) = if n = 0 then a else 0 [PROOFSTEP] rw [← monomial_zero_eq_C_apply, coeff_monomial] [GOAL] R : Type u_1 inst✝ : Semiring R a : R ⊢ ↑(coeff R 0) (↑(C R) a) = a [PROOFSTEP] rw [← monomial_zero_eq_C_apply, coeff_monomial_same 0 a] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ ⊢ ↑(coeff R n) X = if n = 1 then 1 else 0 [PROOFSTEP] rw [X_eq, coeff_monomial] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ ↑(coeff R 0) X = 0 [PROOFSTEP] rw [coeff, Finsupp.single_zero, X, MvPowerSeries.coeff_zero_X] [GOAL] R : Type u_1 inst✝ : Semiring R ⊢ ↑(coeff R 1) X = 1 [PROOFSTEP] rw [coeff_X, if_pos rfl] [GOAL] R : Type u_1 inst✝¹ : Semiring R inst✝ : Nontrivial R H : X = 0 ⊢ False [PROOFSTEP] simpa only [coeff_one_X, one_ne_zero, map_zero] using congr_arg (coeff R 1) H [GOAL] R : Type u_1 inst✝ : Semiring R m n : ℕ ⊢ ↑(coeff R m) (X ^ n) = if m = n then 1 else 0 [PROOFSTEP] rw [X_pow_eq, coeff_monomial] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ ⊢ ↑(coeff R n) (X ^ n) = 1 [PROOFSTEP] rw [coeff_X_pow, if_pos rfl] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ ψ : PowerSeries R ⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ [PROOFSTEP] refine (MvPowerSeries.coeff_mul _ φ ψ).trans ?_ [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ ψ : PowerSeries R ⊢ ∑ p in Finsupp.antidiagonal (single () n), ↑(MvPowerSeries.coeff R p.fst) φ * ↑(MvPowerSeries.coeff R p.snd) ψ = ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ [PROOFSTEP] rw [Finsupp.antidiagonal_single, Finset.sum_map] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ ψ : PowerSeries R ⊢ ∑ x in Finset.Nat.antidiagonal n, ↑(MvPowerSeries.coeff R (↑(Function.Embedding.prodMap { toFun := single (), inj' := (_ : Function.Injective (single ())) } { toFun := single (), inj' := (_ : Function.Injective (single ())) }) x).fst) φ * ↑(MvPowerSeries.coeff R (↑(Function.Embedding.prodMap { toFun := single (), inj' := (_ : Function.Injective (single ())) } { toFun := single (), inj' := (_ : Function.Injective (single ())) }) x).snd) ψ = ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : Semiring R f : PowerSeries R a : R ⊢ a • f = ↑(C R) a * f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝ : Semiring R f : PowerSeries R a : R n✝ : ℕ ⊢ ↑(coeff R n✝) (a • f) = ↑(coeff R n✝) (↑(C R) a * f) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(coeff R (n + 1)) (φ * X) = ↑(coeff R n) φ [PROOFSTEP] simp only [coeff, Finsupp.single_add] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(MvPowerSeries.coeff R (single () n + single () 1)) (φ * X) = ↑(MvPowerSeries.coeff R (single () n)) φ [PROOFSTEP] convert φ.coeff_add_mul_monomial (single () n) (single () 1) _ [GOAL] case h.e'_3 R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(MvPowerSeries.coeff R (single () n)) φ = ↑(MvPowerSeries.coeff R (single () n)) φ * 1 [PROOFSTEP] rw [mul_one] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(coeff R (n + 1)) (X * φ) = ↑(coeff R n) φ [PROOFSTEP] simp only [coeff, Finsupp.single_add, add_comm n 1] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(MvPowerSeries.coeff R (single () 1 + single () n)) (X * φ) = ↑(MvPowerSeries.coeff R (single () n)) φ [PROOFSTEP] convert φ.coeff_add_monomial_mul (single () 1) (single () n) _ [GOAL] case h.e'_3 R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ ↑(MvPowerSeries.coeff R (single () n)) φ = 1 * ↑(MvPowerSeries.coeff R (single () n)) φ [PROOFSTEP] rw [one_mul] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R 0) (φ * X) = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R 0) (X * φ) = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Semiring R x : R k n : ℕ ⊢ ↑(coeff R n) (↑(C R) x * X ^ k) = if n = k then x else 0 [PROOFSTEP] simp [X_pow_eq, coeff_monomial] [GOAL] R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ↑(coeff R (d + n)) (p * X ^ n) = ↑(coeff R d) p [PROOFSTEP] rw [coeff_mul, Finset.sum_eq_single (d, n), coeff_X_pow, if_pos rfl, mul_one] [GOAL] case h₀ R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (d + n) → b ≠ (d, n) → ↑(coeff R b.fst) p * ↑(coeff R b.snd) (X ^ n) = 0 [PROOFSTEP] rintro ⟨i, j⟩ h1 h2 [GOAL] case h₀.mk R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n) h2 : (i, j) ≠ (d, n) ⊢ ↑(coeff R (i, j).fst) p * ↑(coeff R (i, j).snd) (X ^ n) = 0 [PROOFSTEP] rw [coeff_X_pow, if_neg, mul_zero] [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n) h2 : (i, j) ≠ (d, n) ⊢ ¬(i, j).snd = n [PROOFSTEP] rintro rfl [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).snd) h2 : (i, j) ≠ (d, (i, j).snd) ⊢ False [PROOFSTEP] apply h2 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).snd) h2 : (i, j) ≠ (d, (i, j).snd) ⊢ (i, j) = (d, (i, j).snd) [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal, add_right_cancel_iff] at h1 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j).fst = d h2 : (i, j) ≠ (d, (i, j).snd) ⊢ (i, j) = (d, (i, j).snd) [PROOFSTEP] subst h1 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R i j : ℕ h2 : (i, j) ≠ ((i, j).fst, (i, j).snd) ⊢ (i, j) = ((i, j).fst, (i, j).snd) [PROOFSTEP] rfl [GOAL] case h₁ R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ¬(d, n) ∈ Finset.Nat.antidiagonal (d + n) → ↑(coeff R (d, n).fst) p * ↑(coeff R (d, n).snd) (X ^ n) = 0 [PROOFSTEP] exact fun h1 => (h1 (Finset.Nat.mem_antidiagonal.2 rfl)).elim [GOAL] R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ↑(coeff R (d + n)) (X ^ n * p) = ↑(coeff R d) p [PROOFSTEP] rw [coeff_mul, Finset.sum_eq_single (n, d), coeff_X_pow, if_pos rfl, one_mul] [GOAL] case h₀ R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (d + n) → b ≠ (n, d) → ↑(coeff R b.fst) (X ^ n) * ↑(coeff R b.snd) p = 0 [PROOFSTEP] rintro ⟨i, j⟩ h1 h2 [GOAL] case h₀.mk R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n) h2 : (i, j) ≠ (n, d) ⊢ ↑(coeff R (i, j).fst) (X ^ n) * ↑(coeff R (i, j).snd) p = 0 [PROOFSTEP] rw [coeff_X_pow, if_neg, zero_mul] [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + n) h2 : (i, j) ≠ (n, d) ⊢ ¬(i, j).fst = n [PROOFSTEP] rintro rfl [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).fst) h2 : (i, j) ≠ ((i, j).fst, d) ⊢ False [PROOFSTEP] apply h2 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j) ∈ Finset.Nat.antidiagonal (d + (i, j).fst) h2 : (i, j) ≠ ((i, j).fst, d) ⊢ (i, j) = ((i, j).fst, d) [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal, add_comm, add_right_cancel_iff] at h1 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R d i j : ℕ h1 : (i, j).snd = d h2 : (i, j) ≠ ((i, j).fst, d) ⊢ (i, j) = ((i, j).fst, d) [PROOFSTEP] subst h1 [GOAL] case h₀.mk.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R i j : ℕ h2 : (i, j) ≠ ((i, j).fst, (i, j).snd) ⊢ (i, j) = ((i, j).fst, (i, j).snd) [PROOFSTEP] rfl [GOAL] case h₁ R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ¬(n, d) ∈ Finset.Nat.antidiagonal (d + n) → ↑(coeff R (n, d).fst) (X ^ n) * ↑(coeff R (n, d).snd) p = 0 [PROOFSTEP] rw [add_comm] [GOAL] case h₁ R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ¬(n, d) ∈ Finset.Nat.antidiagonal (n + d) → ↑(coeff R (n, d).fst) (X ^ n) * ↑(coeff R (n, d).snd) p = 0 [PROOFSTEP] exact fun h1 => (h1 (Finset.Nat.mem_antidiagonal.2 rfl)).elim [GOAL] R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ↑(coeff R d) (p * X ^ n) = if n ≤ d then ↑(coeff R (d - n)) p else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : n ≤ d ⊢ ↑(coeff R d) (p * X ^ n) = ↑(coeff R (d - n)) p [PROOFSTEP] rw [← tsub_add_cancel_of_le h, coeff_mul_X_pow, add_tsub_cancel_right] [GOAL] case neg R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d ⊢ ↑(coeff R d) (p * X ^ n) = 0 [PROOFSTEP] refine' (coeff_mul _ _ _).trans (Finset.sum_eq_zero fun x hx => _) [GOAL] case neg R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d ⊢ ↑(coeff R x.fst) p * ↑(coeff R x.snd) (X ^ n) = 0 [PROOFSTEP] rw [coeff_X_pow, if_neg, mul_zero] [GOAL] case neg.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d ⊢ ¬x.snd = n [PROOFSTEP] exact ((le_of_add_le_right (Finset.Nat.mem_antidiagonal.mp hx).le).trans_lt <| not_le.mp h).ne [GOAL] R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ ⊢ ↑(coeff R d) (X ^ n * p) = if n ≤ d then ↑(coeff R (d - n)) p else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : n ≤ d ⊢ ↑(coeff R d) (X ^ n * p) = ↑(coeff R (d - n)) p [PROOFSTEP] rw [← tsub_add_cancel_of_le h, coeff_X_pow_mul] [GOAL] case pos R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : n ≤ d ⊢ ↑(coeff R (d - n)) p = ↑(coeff R (d - n + n - n)) p [PROOFSTEP] simp [GOAL] case neg R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d ⊢ ↑(coeff R d) (X ^ n * p) = 0 [PROOFSTEP] refine' (coeff_mul _ _ _).trans (Finset.sum_eq_zero fun x hx => _) [GOAL] case neg R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d ⊢ ↑(coeff R x.fst) (X ^ n) * ↑(coeff R x.snd) p = 0 [PROOFSTEP] rw [coeff_X_pow, if_neg, zero_mul] [GOAL] case neg.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d ⊢ ¬x.fst = n [PROOFSTEP] have := Finset.Nat.mem_antidiagonal.mp hx [GOAL] case neg.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d this : x.fst + x.snd = d ⊢ ¬x.fst = n [PROOFSTEP] rw [add_comm] at this [GOAL] case neg.hnc R : Type u_1 inst✝ : Semiring R p : PowerSeries R n d : ℕ h : ¬n ≤ d x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal d this : x.snd + x.fst = d ⊢ ¬x.fst = n [PROOFSTEP] exact ((le_of_add_le_right this.le).trans_lt <| not_le.mp h).ne [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ φ = (mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ) [PROOFSTEP] ext (_ | n) [GOAL] case h.zero R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R Nat.zero) φ = ↑(coeff R Nat.zero) ((mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ)) [PROOFSTEP] simp only [Nat.zero_eq, coeff_zero_eq_constantCoeff, map_add, map_mul, constantCoeff_X, mul_zero, coeff_zero_C, zero_add] [GOAL] case h.succ R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ ⊢ ↑(coeff R (Nat.succ n)) φ = ↑(coeff R (Nat.succ n)) ((mk fun p => ↑(coeff R (p + 1)) φ) * X + ↑(C R) (↑(constantCoeff R) φ)) [PROOFSTEP] simp only [coeff_succ_mul_X, coeff_mk, LinearMap.map_add, coeff_C, n.succ_ne_zero, sub_zero, if_false, add_zero] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ φ = (X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ) [PROOFSTEP] ext (_ | n) [GOAL] case h.zero R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R Nat.zero) φ = ↑(coeff R Nat.zero) ((X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ)) [PROOFSTEP] simp only [Nat.zero_eq, coeff_zero_eq_constantCoeff, map_add, map_mul, constantCoeff_X, zero_mul, coeff_zero_C, zero_add] [GOAL] case h.succ R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ ⊢ ↑(coeff R (Nat.succ n)) φ = ↑(coeff R (Nat.succ n)) ((X * mk fun p => ↑(coeff R (p + 1)) φ) + ↑(C R) (↑(constantCoeff R) φ)) [PROOFSTEP] simp only [coeff_succ_X_mul, coeff_mk, LinearMap.map_add, coeff_C, n.succ_ne_zero, sub_zero, if_false, add_zero] [GOAL] R : Type u_1 inst✝² : Semiring R S : Type u_2 T : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T r : R ⊢ ↑(map f) (↑(C R) r) = ↑(C ((fun x => S) r)) (↑f r) [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : Semiring R S : Type u_2 T : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T r : R n✝ : ℕ ⊢ ↑(coeff S n✝) (↑(map f) (↑(C R) r)) = ↑(coeff S n✝) (↑(C ((fun x => S) r)) (↑f r)) [PROOFSTEP] simp [coeff_C, apply_ite f] [GOAL] R : Type u_1 inst✝² : Semiring R S : Type u_2 T : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T ⊢ ↑(map f) X = X [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : Semiring R S : Type u_2 T : Type u_3 inst✝¹ : Semiring S inst✝ : Semiring T f : R →+* S g : S →+* T n✝ : ℕ ⊢ ↑(coeff S n✝) (↑(map f) X) = ↑(coeff S n✝) X [PROOFSTEP] simp [coeff_X, apply_ite f] [GOAL] R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ X ^ n ∣ φ ↔ ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0 [PROOFSTEP] convert @MvPowerSeries.X_pow_dvd_iff Unit R _ () n φ [GOAL] case h.e'_2.a R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ (∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0) ↔ ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0 [PROOFSTEP] constructor [GOAL] case h.e'_2.a.mp R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ (∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0) → ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0 [PROOFSTEP] intro h m hm [GOAL] case h.e'_2.a.mpr R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R ⊢ (∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0) → ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0 [PROOFSTEP] intro h m hm [GOAL] case h.e'_2.a.mp R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R h : ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0 m : Unit →₀ ℕ hm : ↑m () < n ⊢ ↑(MvPowerSeries.coeff R m) φ = 0 [PROOFSTEP] rw [Finsupp.unique_single m] [GOAL] case h.e'_2.a.mp R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R h : ∀ (m : ℕ), m < n → ↑(coeff R m) φ = 0 m : Unit →₀ ℕ hm : ↑m () < n ⊢ ↑(MvPowerSeries.coeff R (single default (↑m default))) φ = 0 [PROOFSTEP] convert h _ hm [GOAL] case h.e'_2.a.mpr R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R h : ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0 m : ℕ hm : m < n ⊢ ↑(coeff R m) φ = 0 [PROOFSTEP] apply h [GOAL] case h.e'_2.a.mpr.a R : Type u_1 inst✝ : Semiring R n : ℕ φ : PowerSeries R h : ∀ (m : Unit →₀ ℕ), ↑m () < n → ↑(MvPowerSeries.coeff R m) φ = 0 m : ℕ hm : m < n ⊢ ↑(single () m) () < n [PROOFSTEP] simpa only [Finsupp.single_eq_same] using hm [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ X ∣ φ ↔ ↑(constantCoeff R) φ = 0 [PROOFSTEP] rw [← pow_one (X : PowerSeries R), X_pow_dvd_iff, ← coeff_zero_eq_constantCoeff_apply] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0) ↔ ↑(coeff R 0) φ = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0) → ↑(coeff R 0) φ = 0 [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ↑(coeff R 0) φ = 0 → ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0 ⊢ ↑(coeff R 0) φ = 0 [PROOFSTEP] exact h 0 zero_lt_one [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : ↑(coeff R 0) φ = 0 ⊢ ∀ (m : ℕ), m < 1 → ↑(coeff R m) φ = 0 [PROOFSTEP] intro m hm [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : ↑(coeff R 0) φ = 0 m : ℕ hm : m < 1 ⊢ ↑(coeff R m) φ = 0 [PROOFSTEP] rwa [Nat.eq_zero_of_le_zero (Nat.le_of_succ_le_succ hm)] [GOAL] R : Type u_1 inst✝ : CommSemiring R a : R ⊢ (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1 [PROOFSTEP] ext1 [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R n✝ : ℕ ⊢ ↑(coeff R n✝) ((fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1) = ↑(coeff R n✝) 1 [PROOFSTEP] simp only [mul_boole, PowerSeries.coeff_mk, PowerSeries.coeff_one] [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R n✝ : ℕ ⊢ (if n✝ = 0 then a ^ n✝ else 0) = if n✝ = 0 then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R a : R n✝ : ℕ h : n✝ = 0 ⊢ a ^ n✝ = 1 [PROOFSTEP] rw [h, pow_zero a] [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R a : R n✝ : ℕ h : ¬n✝ = 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R ⊢ OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R n✝ : ℕ ⊢ ↑(coeff R n✝) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g)) = ↑(coeff R n✝) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) [PROOFSTEP] rw [PowerSeries.coeff_mul, PowerSeries.coeff_mk, PowerSeries.coeff_mul, Finset.mul_sum] [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R n✝ : ℕ ⊢ ∑ x in antidiagonal n✝, a ^ n✝ * (↑(coeff R x.fst) f * ↑(coeff R x.snd) g) = ∑ p in antidiagonal n✝, ↑(coeff R p.fst) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f) * ↑(coeff R p.snd) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) [PROOFSTEP] apply sum_congr rfl [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R n✝ : ℕ ⊢ ∀ (x : ℕ × ℕ), x ∈ antidiagonal n✝ → a ^ n✝ * (↑(coeff R x.fst) f * ↑(coeff R x.snd) g) = ↑(coeff R x.fst) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f) * ↑(coeff R x.snd) (OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) [PROOFSTEP] simp only [coeff_mk, Prod.forall, Nat.mem_antidiagonal] [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R n✝ : ℕ ⊢ ∀ (a_1 b : ℕ), a_1 + b = n✝ → a ^ n✝ * (↑(coeff R a_1) f * ↑(coeff R b) g) = a ^ a_1 * ↑(coeff R a_1) f * (a ^ b * ↑(coeff R b) g) [PROOFSTEP] intro b c H [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R f g : PowerSeries R n✝ b c : ℕ H : b + c = n✝ ⊢ a ^ n✝ * (↑(coeff R b) f * ↑(coeff R c) g) = a ^ b * ↑(coeff R b) f * (a ^ c * ↑(coeff R c) g) [PROOFSTEP] rw [← H, pow_add, mul_mul_mul_comm] [GOAL] R : Type u_1 inst✝ : CommSemiring R a : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R n✝ : ℕ ⊢ ↑(coeff R n✝) (OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) 0) = ↑(coeff R n✝) 0 [PROOFSTEP] simp only [LinearMap.map_zero, PowerSeries.coeff_mk, mul_zero] [GOAL] R : Type u_1 inst✝ : CommSemiring R a : R ⊢ ∀ (x y : PowerSeries R), OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) y [PROOFSTEP] intros [GOAL] R : Type u_1 inst✝ : CommSemiring R a : R x✝ y✝ : PowerSeries R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) (x✝ + y✝) = OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) x✝ + OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) y✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R x✝ y✝ : PowerSeries R n✝ : ℕ ⊢ ↑(coeff R n✝) (OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) (x✝ + y✝)) = ↑(coeff R n✝) (OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) x✝ + OneHom.toFun (↑{ toOneHom := { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => a ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => a ^ n * ↑(coeff R n) f) 1 = 1) } g) }) y✝) [PROOFSTEP] dsimp only [GOAL] case h R : Type u_1 inst✝ : CommSemiring R a : R x✝ y✝ : PowerSeries R n✝ : ℕ ⊢ ↑(coeff R n✝) (mk fun n => a ^ n * ↑(coeff R n) (x✝ + y✝)) = ↑(coeff R n✝) ((mk fun n => a ^ n * ↑(coeff R n) x✝) + mk fun n => a ^ n * ↑(coeff R n) y✝) [PROOFSTEP] exact mul_add _ _ _ [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ rescale 0 = RingHom.comp (C R) (constantCoeff R) [PROOFSTEP] ext x n [GOAL] case a.h R : Type u_1 inst✝ : CommSemiring R x : PowerSeries R n : ℕ ⊢ ↑(coeff R n) (↑(rescale 0) x) = ↑(coeff R n) (↑(RingHom.comp (C R) (constantCoeff R)) x) [PROOFSTEP] simp only [Function.comp_apply, RingHom.coe_comp, rescale, RingHom.coe_mk, PowerSeries.coeff_mk _ _, coeff_C] [GOAL] case a.h R : Type u_1 inst✝ : CommSemiring R x : PowerSeries R n : ℕ ⊢ ↑(coeff R n) (↑{ toOneHom := { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } g) } x) = if n = 0 then ↑(constantCoeff R) x else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R x : PowerSeries R n : ℕ h : n = 0 ⊢ ↑(coeff R n) (↑{ toOneHom := { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } g) } x) = ↑(constantCoeff R) x [PROOFSTEP] simp [h] [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R x : PowerSeries R n : ℕ h : ¬n = 0 ⊢ ↑(coeff R n) (↑{ toOneHom := { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) }, map_mul' := (_ : ∀ (f g : PowerSeries R), OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } (f * g) = OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } f * OneHom.toFun { toFun := fun f => mk fun n => 0 ^ n * ↑(coeff R n) f, map_one' := (_ : (fun f => mk fun n => 0 ^ n * ↑(coeff R n) f) 1 = 1) } g) } x) = 0 [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ ↑(rescale 0) X = ↑(C R) (↑(constantCoeff R) X) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ rescale 1 = RingHom.id (PowerSeries R) [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝ : CommSemiring R x✝ : PowerSeries R n✝ : ℕ ⊢ ↑(coeff R n✝) (↑(rescale 1) x✝) = ↑(coeff R n✝) (↑(RingHom.id (PowerSeries R)) x✝) [PROOFSTEP] simp only [coeff_rescale, one_pow, one_mul, RingHom.id_apply] [GOAL] R : Type u_1 inst✝ : CommSemiring R f : ℕ → R a : R ⊢ ↑(rescale a) (mk f) = mk fun n => a ^ n * f n [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝ : CommSemiring R f : ℕ → R a : R n✝ : ℕ ⊢ ↑(coeff R n✝) (↑(rescale a) (mk f)) = ↑(coeff R n✝) (mk fun n => a ^ n * f n) [PROOFSTEP] rw [coeff_rescale, coeff_mk, coeff_mk] [GOAL] R : Type u_1 inst✝ : CommSemiring R f : PowerSeries R a b : R ⊢ ↑(rescale b) (↑(rescale a) f) = ↑(rescale (a * b)) f [PROOFSTEP] ext n [GOAL] case h R : Type u_1 inst✝ : CommSemiring R f : PowerSeries R a b : R n : ℕ ⊢ ↑(coeff R n) (↑(rescale b) (↑(rescale a) f)) = ↑(coeff R n) (↑(rescale (a * b)) f) [PROOFSTEP] simp_rw [coeff_rescale] [GOAL] case h R : Type u_1 inst✝ : CommSemiring R f : PowerSeries R a b : R n : ℕ ⊢ b ^ n * (a ^ n * ↑(coeff R n) f) = (a * b) ^ n * ↑(coeff R n) f [PROOFSTEP] rw [mul_pow, mul_comm _ (b ^ n), mul_assoc] [GOAL] R : Type u_1 inst✝ : CommSemiring R a b : R ⊢ rescale (a * b) = RingHom.comp (rescale b) (rescale a) [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝ : CommSemiring R a b : R x✝ : PowerSeries R n✝ : ℕ ⊢ ↑(coeff R n✝) (↑(rescale (a * b)) x✝) = ↑(coeff R n✝) (↑(RingHom.comp (rescale b) (rescale a)) x✝) [PROOFSTEP] simp [← rescale_rescale] [GOAL] R : Type u_1 inst✝ : CommSemiring R m n : ℕ φ : PowerSeries R ⊢ Polynomial.coeff (trunc n φ) m = if m < n then ↑(coeff R m) φ else 0 [PROOFSTEP] simp [trunc, Polynomial.coeff_sum, Polynomial.coeff_monomial, Nat.lt_succ_iff] [GOAL] R : Type u_1 inst✝ : CommSemiring R n m : ℕ ⊢ Polynomial.coeff (trunc n 0) m = Polynomial.coeff 0 m [PROOFSTEP] rw [coeff_trunc, LinearMap.map_zero, Polynomial.coeff_zero] [GOAL] R : Type u_1 inst✝ : CommSemiring R n m : ℕ ⊢ (if m < n then 0 else 0) = 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n m : ℕ h✝ : m < n ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ h✝ : ¬m < n ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : CommSemiring R n m : ℕ ⊢ Polynomial.coeff (trunc (n + 1) 1) m = Polynomial.coeff 1 m [PROOFSTEP] rw [coeff_trunc, coeff_one] [GOAL] R : Type u_1 inst✝ : CommSemiring R n m : ℕ ⊢ (if m < n + 1 then if m = 0 then 1 else 0 else 0) = Polynomial.coeff 1 m [PROOFSTEP] split_ifs with H H' [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : m < n + 1 H' : m = 0 ⊢ 1 = Polynomial.coeff 1 m [PROOFSTEP] rw [Polynomial.coeff_one] [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : m < n + 1 H' : ¬m = 0 ⊢ 0 = Polynomial.coeff 1 m [PROOFSTEP] rw [Polynomial.coeff_one] [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : ¬m < n + 1 ⊢ 0 = Polynomial.coeff 1 m [PROOFSTEP] rw [Polynomial.coeff_one] [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : m < n + 1 H' : m = 0 ⊢ 1 = if 0 = m then 1 else 0 [PROOFSTEP] subst m [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ H : 0 < n + 1 ⊢ 1 = if 0 = 0 then 1 else 0 [PROOFSTEP] rw [if_pos rfl] [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : m < n + 1 H' : ¬m = 0 ⊢ 0 = if 0 = m then 1 else 0 [PROOFSTEP] symm [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : m < n + 1 H' : ¬m = 0 ⊢ (if 0 = m then 1 else 0) = 0 [PROOFSTEP] exact if_neg (Ne.elim (Ne.symm H')) [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : ¬m < n + 1 ⊢ 0 = if 0 = m then 1 else 0 [PROOFSTEP] symm [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : ¬m < n + 1 ⊢ (if 0 = m then 1 else 0) = 0 [PROOFSTEP] refine' if_neg _ [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n m : ℕ H : ¬m < n + 1 ⊢ ¬0 = m [PROOFSTEP] rintro rfl [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ H : ¬0 < n + 1 ⊢ False [PROOFSTEP] apply H [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ H : ¬0 < n + 1 ⊢ 0 < n + 1 [PROOFSTEP] exact Nat.zero_lt_succ _ [GOAL] R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ ⊢ Polynomial.coeff (trunc (n + 1) (↑(C R) a)) m = Polynomial.coeff (↑Polynomial.C a) m [PROOFSTEP] rw [coeff_trunc, coeff_C, Polynomial.coeff_C] [GOAL] R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ ⊢ (if m < n + 1 then if m = 0 then a else 0 else 0) = if m = 0 then a else 0 [PROOFSTEP] split_ifs with H [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : m < n + 1 h✝ : m = 0 ⊢ a = a [PROOFSTEP] first | rfl | try simp_all [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : m < n + 1 h✝ : m = 0 ⊢ a = a [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : m < n + 1 h✝ : ¬m = 0 ⊢ 0 = 0 [PROOFSTEP] first | rfl | try simp_all [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : m < n + 1 h✝ : ¬m = 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : m = 0 ⊢ 0 = a [PROOFSTEP] first | rfl | try simp_all [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : m = 0 ⊢ 0 = a [PROOFSTEP] rfl [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : m = 0 ⊢ 0 = a [PROOFSTEP] try simp_all [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : m = 0 ⊢ 0 = a [PROOFSTEP] simp_all [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : ¬m = 0 ⊢ 0 = 0 [PROOFSTEP] first | rfl | try simp_all [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ a : R m : ℕ H : ¬m < n + 1 h✝ : ¬m = 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : CommSemiring R n : ℕ φ ψ : PowerSeries R m : ℕ ⊢ Polynomial.coeff (trunc n (φ + ψ)) m = Polynomial.coeff (trunc n φ + trunc n ψ) m [PROOFSTEP] simp only [coeff_trunc, AddMonoidHom.map_add, Polynomial.coeff_add] [GOAL] R : Type u_1 inst✝ : CommSemiring R n : ℕ φ ψ : PowerSeries R m : ℕ ⊢ (if m < n then ↑(coeff R m) (φ + ψ) else 0) = (if m < n then ↑(coeff R m) φ else 0) + if m < n then ↑(coeff R m) ψ else 0 [PROOFSTEP] split_ifs with H [GOAL] case pos R : Type u_1 inst✝ : CommSemiring R n : ℕ φ ψ : PowerSeries R m : ℕ H : m < n ⊢ ↑(coeff R m) (φ + ψ) = ↑(coeff R m) φ + ↑(coeff R m) ψ [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝ : CommSemiring R n : ℕ φ ψ : PowerSeries R m : ℕ H : ¬m < n ⊢ 0 = 0 + 0 [PROOFSTEP] rw [zero_add] [GOAL] R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R ⊢ ↑(coeff R n) (inv.aux a φ) = if n = 0 then a else -a * ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (inv.aux a φ) else 0 [PROOFSTEP] rw [coeff, inv.aux, MvPowerSeries.coeff_inv_aux] [GOAL] R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R ⊢ (if single () n = 0 then a else -a * ∑ x in Finsupp.antidiagonal (single () n), if x.snd < single () n then ↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) = if n = 0 then a else -a * ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] simp only [Finsupp.single_eq_zero] [GOAL] R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R ⊢ (if n = 0 then a else -a * ∑ x in Finsupp.antidiagonal (single () n), if x.snd < single () n then ↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) = if n = 0 then a else -a * ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : n = 0 ⊢ a = a [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ (-a * ∑ x in Finsupp.antidiagonal (single () n), if x.snd < single () n then ↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) = -a * ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] congr 1 [GOAL] case neg.e_a R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ (∑ x in Finsupp.antidiagonal (single () n), if x.snd < single () n then ↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) = ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] symm [GOAL] case neg.e_a R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ (∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff R x.fst) φ * ↑(coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0) = ∑ x in Finsupp.antidiagonal (single () n), if x.snd < single () n then ↑(MvPowerSeries.coeff R x.fst) φ * ↑(MvPowerSeries.coeff R x.snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] apply Finset.sum_bij fun (p : ℕ × ℕ) _h => (single () p.1, single () p.2) [GOAL] case neg.e_a.hi R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ ∀ (a : ℕ × ℕ), a ∈ Finset.Nat.antidiagonal n → (single () a.fst, single () a.snd) ∈ Finsupp.antidiagonal (single () n) [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case neg.e_a.hi.mk R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n ⊢ (single () (i, j).fst, single () (i, j).snd) ∈ Finsupp.antidiagonal (single () n) [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal] at hij [GOAL] case neg.e_a.hi.mk R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = n ⊢ (single () (i, j).fst, single () (i, j).snd) ∈ Finsupp.antidiagonal (single () n) [PROOFSTEP] rw [Finsupp.mem_antidiagonal, ← Finsupp.single_add, hij] [GOAL] case neg.e_a.h R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ ∀ (a_1 : ℕ × ℕ), a_1 ∈ Finset.Nat.antidiagonal n → (if a_1.snd < n then ↑(coeff R a_1.fst) φ * ↑(coeff R a_1.snd) (MvPowerSeries.inv.aux a φ) else 0) = if (single () a_1.fst, single () a_1.snd).snd < single () n then ↑(MvPowerSeries.coeff R (single () a_1.fst, single () a_1.snd).fst) φ * ↑(MvPowerSeries.coeff R (single () a_1.fst, single () a_1.snd).snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] rintro ⟨i, j⟩ _hij [GOAL] case neg.e_a.h.mk R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n ⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) = if (single () (i, j).fst, single () (i, j).snd).snd < single () n then ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ * ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] by_cases H : j < n [GOAL] case pos R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) = if (single () (i, j).fst, single () (i, j).snd).snd < single () n then ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ * ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] rw [if_pos H, if_pos] [GOAL] case pos R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) = ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ * ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ) [PROOFSTEP] rfl [GOAL] case pos.hc R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ (single () (i, j).fst, single () (i, j).snd).snd < single () n [PROOFSTEP] constructor [GOAL] case pos.hc.left R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1) [PROOFSTEP] rintro ⟨⟩ [GOAL] case pos.hc.left.unit R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd PUnit.unit) (↑(single () n) PUnit.unit) [PROOFSTEP] simpa [Finsupp.single_eq_same] using le_of_lt H [GOAL] case pos.hc.right R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n ⊢ ¬∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) [PROOFSTEP] intro hh [GOAL] case pos.hc.right R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : j < n hh : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ False [PROOFSTEP] rw [lt_iff_not_ge] at H [GOAL] case pos.hc.right R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j ≥ n hh : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ False [PROOFSTEP] apply H [GOAL] case pos.hc.right R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j ≥ n hh : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ j ≥ n [PROOFSTEP] simpa [Finsupp.single_eq_same] using hh () [GOAL] case neg R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j < n ⊢ (if (i, j).snd < n then ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) (MvPowerSeries.inv.aux a φ) else 0) = if (single () (i, j).fst, single () (i, j).snd).snd < single () n then ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).fst) φ * ↑(MvPowerSeries.coeff R (single () (i, j).fst, single () (i, j).snd).snd) (MvPowerSeries.inv.aux a φ) else 0 [PROOFSTEP] rw [if_neg H, if_neg] [GOAL] case neg.hnc R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j < n ⊢ ¬(single () (i, j).fst, single () (i, j).snd).snd < single () n [PROOFSTEP] rintro ⟨_h₁, h₂⟩ [GOAL] case neg.hnc.intro R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j < n _h₁ : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1) h₂ : ¬∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ False [PROOFSTEP] apply h₂ [GOAL] case neg.hnc.intro R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j < n _h₁ : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1) h₂ : ¬∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) [PROOFSTEP] rintro ⟨⟩ [GOAL] case neg.hnc.intro.unit R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n H : ¬j < n _h₁ : ∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) (↑(single () n) i_1) h₂ : ¬∀ (i_1 : Unit), PartialOrder.toPreorder.1.1 (↑(single () n) i_1) (↑(single () (i, j).fst, single () (i, j).snd).snd i_1) ⊢ PartialOrder.toPreorder.1.1 (↑(single () n) PUnit.unit) (↑(single () (i, j).fst, single () (i, j).snd).snd PUnit.unit) [PROOFSTEP] simpa [Finsupp.single_eq_same] using not_lt.1 H [GOAL] case neg.e_a.i_inj R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ ∀ (a₁ a₂ : ℕ × ℕ), a₁ ∈ Finset.Nat.antidiagonal n → a₂ ∈ Finset.Nat.antidiagonal n → (single () a₁.fst, single () a₁.snd) = (single () a₂.fst, single () a₂.snd) → a₁ = a₂ [PROOFSTEP] rintro ⟨i, j⟩ ⟨k, l⟩ _hij _hkl [GOAL] case neg.e_a.i_inj.mk.mk R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 i j k l : ℕ _hij : (i, j) ∈ Finset.Nat.antidiagonal n _hkl : (k, l) ∈ Finset.Nat.antidiagonal n ⊢ (single () (i, j).fst, single () (i, j).snd) = (single () (k, l).fst, single () (k, l).snd) → (i, j) = (k, l) [PROOFSTEP] simpa only [Prod.mk.inj_iff, Finsupp.unique_single_eq_iff] using id [GOAL] case neg.e_a.i_surj R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 ⊢ ∀ (b : (Unit →₀ ℕ) × (Unit →₀ ℕ)), b ∈ Finsupp.antidiagonal (single () n) → ∃ a ha, b = (single () a.fst, single () a.snd) [PROOFSTEP] rintro ⟨f, g⟩ hfg [GOAL] case neg.e_a.i_surj.mk R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g) ∈ Finsupp.antidiagonal (single () n) ⊢ ∃ a ha, (f, g) = (single () a.fst, single () a.snd) [PROOFSTEP] refine' ⟨(f (), g ()), _, _⟩ [GOAL] case neg.e_a.i_surj.mk.refine'_1 R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g) ∈ Finsupp.antidiagonal (single () n) ⊢ (↑f (), ↑g ()) ∈ Finset.Nat.antidiagonal n [PROOFSTEP] rw [Finsupp.mem_antidiagonal] at hfg [GOAL] case neg.e_a.i_surj.mk.refine'_1 R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g).fst + (f, g).snd = single () n ⊢ (↑f (), ↑g ()) ∈ Finset.Nat.antidiagonal n [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal, ← Finsupp.add_apply, hfg, Finsupp.single_eq_same] [GOAL] case neg.e_a.i_surj.mk.refine'_2 R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g) ∈ Finsupp.antidiagonal (single () n) ⊢ (f, g) = (single () (↑f (), ↑g ()).fst, single () (↑f (), ↑g ()).snd) [PROOFSTEP] rw [Prod.mk.inj_iff] [GOAL] case neg.e_a.i_surj.mk.refine'_2 R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g) ∈ Finsupp.antidiagonal (single () n) ⊢ f = single () (↑f (), ↑g ()).fst ∧ g = single () (↑f (), ↑g ()).snd [PROOFSTEP] dsimp [GOAL] case neg.e_a.i_surj.mk.refine'_2 R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : PowerSeries R h✝ : ¬n = 0 f g : Unit →₀ ℕ hfg : (f, g) ∈ Finsupp.antidiagonal (single () n) ⊢ f = single () (↑f ()) ∧ g = single () (↑g ()) [PROOFSTEP] exact ⟨Finsupp.unique_single f, Finsupp.unique_single g⟩ [GOAL] R : Type u_1 inst✝ : Ring R φ : PowerSeries R u : Rˣ ⊢ ↑(constantCoeff R) (invOfUnit φ u) = ↑u⁻¹ [PROOFSTEP] rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl] [GOAL] R : Type u_1 A : Type u_2 inst✝ : CommRing A a : A ⊢ ↑(rescale a) X = ↑(C A) a * X [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 inst✝ : CommRing A a : A n✝ : ℕ ⊢ ↑(coeff A n✝) (↑(rescale a) X) = ↑(coeff A n✝) (↑(C A) a * X) [PROOFSTEP] simp only [coeff_rescale, coeff_C_mul, coeff_X] [GOAL] case h R : Type u_1 A : Type u_2 inst✝ : CommRing A a : A n✝ : ℕ ⊢ (a ^ n✝ * if n✝ = 1 then 1 else 0) = a * if n✝ = 1 then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 A : Type u_2 inst✝ : CommRing A a : A n✝ : ℕ h : n✝ = 1 ⊢ a ^ n✝ * 1 = a * 1 [PROOFSTEP] simp [h] [GOAL] case neg R : Type u_1 A : Type u_2 inst✝ : CommRing A a : A n✝ : ℕ h : ¬n✝ = 1 ⊢ a ^ n✝ * 0 = a * 0 [PROOFSTEP] simp [h] [GOAL] R : Type u_1 A : Type u_2 inst✝ : CommRing A ⊢ ↑(rescale (-1)) X = -X [PROOFSTEP] rw [rescale_X, map_neg, map_one, neg_one_mul] [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 ⊢ φ = 0 ∨ ψ = 0 [PROOFSTEP] rw [or_iff_not_imp_left] [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 ⊢ ¬φ = 0 → ψ = 0 [PROOFSTEP] intro H [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ⊢ ψ = 0 [PROOFSTEP] have ex : ∃ m, coeff R m φ ≠ 0 := by contrapose! H exact ext H [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ⊢ ∃ m, ↑(coeff R m) φ ≠ 0 [PROOFSTEP] contrapose! H [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ∀ (m : ℕ), ↑(coeff R m) φ = 0 ⊢ φ = 0 [PROOFSTEP] exact ext H [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 ⊢ ψ = 0 [PROOFSTEP] let m := Nat.find ex [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex ⊢ ψ = 0 [PROOFSTEP] have hm₁ : coeff R m φ ≠ 0 := Nat.find_spec ex [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 ⊢ ψ = 0 [PROOFSTEP] have hm₂ : ∀ k < m, ¬coeff R k φ ≠ 0 := fun k => Nat.find_min ex [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 ⊢ ψ = 0 [PROOFSTEP] ext n [GOAL] case h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ⊢ ↑(coeff R n) ψ = ↑(coeff R n) 0 [PROOFSTEP] rw [(coeff R n).map_zero] [GOAL] case h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] induction' n using Nat.strong_induction_on with n ih [GOAL] case h.h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] replace h := congr_arg (coeff R (m + n)) h [GOAL] case h.h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ↑(coeff R (m + n)) (φ * ψ) = ↑(coeff R (m + n)) 0 ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] rw [LinearMap.map_zero, coeff_mul, Finset.sum_eq_single (m, n)] at h [GOAL] case h.h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ↑(coeff R (m, n).fst) φ * ↑(coeff R (m, n).snd) ψ = 0 ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] replace h := NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero h [GOAL] case h.h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ↑(coeff R (m, n).fst) φ = 0 ∨ ↑(coeff R (m, n).snd) ψ = 0 ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] rw [or_iff_not_imp_left] at h [GOAL] case h.h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ¬↑(coeff R (m, n).fst) φ = 0 → ↑(coeff R (m, n).snd) ψ = 0 ⊢ ↑(coeff R n) ψ = 0 [PROOFSTEP] exact h hm₁ [GOAL] case h.h.h₀ R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 ⊢ ∀ (b : ℕ × ℕ), b ∈ Finset.Nat.antidiagonal (m + n) → b ≠ (m, n) → ↑(coeff R b.fst) φ * ↑(coeff R b.snd) ψ = 0 [PROOFSTEP] rintro ⟨i, j⟩ hij hne [GOAL] case h.h.h₀.mk R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] by_cases hj : j < n [GOAL] case pos R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : j < n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [ih j hj, mul_zero] [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : ¬j < n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] by_cases hi : i < m [GOAL] case pos R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : ¬j < n hi : i < m ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] specialize hm₂ _ hi [GOAL] case pos R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : ¬j < n hi : i < m hm₂ : ¬↑(coeff R i) φ ≠ 0 ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] push_neg at hm₂ [GOAL] case pos R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : ¬j < n hi : i < m hm₂ : ↑(coeff R i) φ = 0 ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [hm₂, zero_mul] [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal (m + n) hne : (i, j) ≠ (m, n) hj : ¬j < n hi : ¬i < m ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal] at hij [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hj : ¬j < n hi : ¬i < m ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] push_neg at hi hj [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hi : Nat.find ex ≤ i hj : n ≤ j ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] suffices m < i by have : m + n < i + j := add_lt_add_of_lt_of_le this hj exfalso exact ne_of_lt this hij.symm [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hi : Nat.find ex ≤ i hj : n ≤ j this : m < i ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] have : m + n < i + j := add_lt_add_of_lt_of_le this hj [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hi : Nat.find ex ≤ i hj : n ≤ j this✝ : m < i this : m + n < i + j ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] exfalso [GOAL] case h R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hi : Nat.find ex ≤ i hj : n ≤ j this✝ : m < i this : m + n < i + j ⊢ False [PROOFSTEP] exact ne_of_lt this hij.symm [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hne : (i, j) ≠ (m, n) hi : Nat.find ex ≤ i hj : n ≤ j ⊢ m < i [PROOFSTEP] contrapose! hne [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 i j : ℕ hij : (i, j).fst + (i, j).snd = m + n hi : Nat.find ex ≤ i hj : n ≤ j hne : i ≤ Nat.find ex ⊢ (i, j) = (Nat.find ex, n) [PROOFSTEP] obtain rfl := le_antisymm hi hne [GOAL] case neg R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 j : ℕ hj : n ≤ j hij : (Nat.find ex, j).fst + (Nat.find ex, j).snd = m + n hi hne : Nat.find ex ≤ Nat.find ex ⊢ (Nat.find ex, j) = (Nat.find ex, n) [PROOFSTEP] simpa [Ne.def, Prod.mk.inj_iff] using (add_right_inj m).mp hij [GOAL] case h.h.h₁ R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 ⊢ ¬(m, n) ∈ Finset.Nat.antidiagonal (m + n) → ↑(coeff R (m, n).fst) φ * ↑(coeff R (m, n).snd) ψ = 0 [PROOFSTEP] contrapose! [GOAL] case h.h.h₁ R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 ⊢ ↑(coeff R (Nat.find ex)) φ * ↑(coeff R n) ψ ≠ 0 → (Nat.find ex, n) ∈ Finset.Nat.antidiagonal (Nat.find ex + n) [PROOFSTEP] intro [GOAL] case h.h.h₁ R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : PowerSeries R H : ¬φ = 0 ex : ∃ m, ↑(coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : ↑(coeff R m) φ ≠ 0 hm₂ : ∀ (k : ℕ), k < m → ¬↑(coeff R k) φ ≠ 0 n : ℕ ih : ∀ (m : ℕ), m < n → ↑(coeff R m) ψ = 0 h : ∑ p in Finset.Nat.antidiagonal (m + n), ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = 0 a✝ : ↑(coeff R (Nat.find ex)) φ * ↑(coeff R n) ψ ≠ 0 ⊢ (Nat.find ex, n) ∈ Finset.Nat.antidiagonal (Nat.find ex + n) [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Ideal.IsPrime (Ideal.span {X}) [PROOFSTEP] suffices Ideal.span ({ X } : Set (PowerSeries R)) = RingHom.ker (constantCoeff R) by rw [this] exact RingHom.ker_isPrime _ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R this : Ideal.span {X} = RingHom.ker (constantCoeff R) ⊢ Ideal.IsPrime (Ideal.span {X}) [PROOFSTEP] rw [this] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R this : Ideal.span {X} = RingHom.ker (constantCoeff R) ⊢ Ideal.IsPrime (RingHom.ker (constantCoeff R)) [PROOFSTEP] exact RingHom.ker_isPrime _ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Ideal.span {X} = RingHom.ker (constantCoeff R) [PROOFSTEP] apply Ideal.ext [GOAL] case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ ∀ (x : PowerSeries R), x ∈ Ideal.span {X} ↔ x ∈ RingHom.ker (constantCoeff R) [PROOFSTEP] intro φ [GOAL] case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R φ : PowerSeries R ⊢ φ ∈ Ideal.span {X} ↔ φ ∈ RingHom.ker (constantCoeff R) [PROOFSTEP] rw [RingHom.mem_ker, Ideal.mem_span_singleton, X_dvd_iff] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Prime X [PROOFSTEP] rw [← Ideal.span_singleton_prime] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Ideal.IsPrime (Ideal.span {X}) [PROOFSTEP] exact span_X_isPrime [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ X ≠ 0 [PROOFSTEP] intro h [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R h : X = 0 ⊢ False [PROOFSTEP] simpa [map_zero (coeff R 1)] using congr_arg (coeff R 1) h [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 ⊢ Function.Injective ↑(rescale a) [PROOFSTEP] intro p q h [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h : ↑(rescale a) p = ↑(rescale a) q ⊢ p = q [PROOFSTEP] rw [PowerSeries.ext_iff] at * [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q h : ∀ (n : ℕ), ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q) ⊢ ∀ (n : ℕ), ↑(coeff R n) p = ↑(coeff R n) q [PROOFSTEP] intro n [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q h : ∀ (n : ℕ), ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q) n : ℕ ⊢ ↑(coeff R n) p = ↑(coeff R n) q [PROOFSTEP] specialize h n [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q n : ℕ h : ↑(coeff R n) (↑(rescale a) p) = ↑(coeff R n) (↑(rescale a) q) ⊢ ↑(coeff R n) p = ↑(coeff R n) q [PROOFSTEP] rw [coeff_rescale, coeff_rescale, mul_eq_mul_left_iff] at h [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q n : ℕ h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0 ⊢ ↑(coeff R n) p = ↑(coeff R n) q [PROOFSTEP] apply h.resolve_right [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q n : ℕ h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0 ⊢ ¬a ^ n = 0 [PROOFSTEP] intro h' [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a : R ha : a ≠ 0 p q : PowerSeries R h✝ : ↑(rescale a) p = ↑(rescale a) q n : ℕ h : ↑(coeff R n) p = ↑(coeff R n) q ∨ a ^ n = 0 h' : a ^ n = 0 ⊢ False [PROOFSTEP] exact ha (pow_eq_zero h') [GOAL] R : Type u_1 k : Type u_2 inst✝ : Field k n : ℕ φ : PowerSeries k ⊢ ↑(coeff k n) φ⁻¹ = if n = 0 then (↑(constantCoeff k) φ)⁻¹ else -(↑(constantCoeff k) φ)⁻¹ * ∑ x in Finset.Nat.antidiagonal n, if x.snd < n then ↑(coeff k x.fst) φ * ↑(coeff k x.snd) φ⁻¹ else 0 [PROOFSTEP] rw [inv_eq_inv_aux, coeff_inv_aux n (constantCoeff k φ)⁻¹ φ] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (∃ n, ↑(coeff R n) φ ≠ 0) ↔ φ ≠ 0 [PROOFSTEP] refine' not_iff_not.mp _ [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (¬∃ n, ↑(coeff R n) φ ≠ 0) ↔ ¬φ ≠ 0 [PROOFSTEP] push_neg [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (∀ (n : ℕ), ↑(coeff R n) φ = 0) ↔ φ = 0 [PROOFSTEP] simp [PowerSeries.ext_iff] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (order φ).Dom ↔ φ ≠ 0 [PROOFSTEP] simp only [order] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom ↔ φ ≠ 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom → φ ≠ 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : φ = 0 ⊢ ⊤.Dom → φ ≠ 0 [PROOFSTEP] intro H [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : ¬φ = 0 ⊢ (↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom → φ ≠ 0 [PROOFSTEP] intro H [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : φ = 0 H : ⊤.Dom ⊢ φ ≠ 0 [PROOFSTEP] contrapose! H [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h H : φ = 0 ⊢ ¬⊤.Dom [PROOFSTEP] simp only [← Part.eq_none_iff'] [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h H : φ = 0 ⊢ ⊤ = Part.none [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : ¬φ = 0 H : (↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom ⊢ φ ≠ 0 [PROOFSTEP] exact h [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ φ ≠ 0 → (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : φ ≠ 0 ⊢ (if h : φ = 0 then ⊤ else ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))).Dom [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom ⊢ ↑(coeff R (Part.get (order φ) h)) φ ≠ 0 [PROOFSTEP] simp only [order, order_finite_iff_ne_zero.mp h, not_false_iff, dif_neg, PartENat.get_natCast'] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom ⊢ ↑(coeff R (Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0))) φ ≠ 0 [PROOFSTEP] generalize_proofs h [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h✝ : (order φ).Dom h : ∃ n, ↑(coeff R n) φ ≠ 0 ⊢ ↑(coeff R (Nat.find h)) φ ≠ 0 [PROOFSTEP] exact Nat.find_spec h [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 ⊢ order φ ≤ ↑n [PROOFSTEP] have _ : ∃ n, coeff R n φ ≠ 0 := Exists.intro n h [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 x✝ : ∃ n, ↑(coeff R n) φ ≠ 0 ⊢ order φ ≤ ↑n [PROOFSTEP] rw [order, dif_neg] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 x✝ : ∃ n, ↑(coeff R n) φ ≠ 0 ⊢ ↑(Nat.find (_ : ∃ n, ↑(coeff R n) φ ≠ 0)) ≤ ↑n [PROOFSTEP] simp only [PartENat.coe_le_coe, Nat.find_le_iff] [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 x✝ : ∃ n, ↑(coeff R n) φ ≠ 0 ⊢ ∃ m, m ≤ n ∧ ↑(coeff R m) φ ≠ 0 [PROOFSTEP] exact ⟨n, le_rfl, h⟩ [GOAL] case hnc R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 x✝ : ∃ n, ↑(coeff R n) φ ≠ 0 ⊢ ¬φ = 0 [PROOFSTEP] exact exists_coeff_ne_zero_iff_ne_zero.mp ⟨n, h⟩ [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑n < order φ ⊢ ↑(coeff R n) φ = 0 [PROOFSTEP] contrapose! h [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ h : ↑(coeff R n) φ ≠ 0 ⊢ order φ ≤ ↑n [PROOFSTEP] exact order_le _ h [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ order φ = ⊤ ↔ φ = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ order φ = ⊤ → φ = 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : order φ = ⊤ ⊢ φ = 0 [PROOFSTEP] ext n [GOAL] case mp.h R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : order φ = ⊤ n : ℕ ⊢ ↑(coeff R n) φ = ↑(coeff R n) 0 [PROOFSTEP] rw [(coeff R n).map_zero, coeff_of_lt_order] [GOAL] case mp.h.h R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : order φ = ⊤ n : ℕ ⊢ ↑n < order φ [PROOFSTEP] simp [h] [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ φ = 0 → order φ = ⊤ [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ order 0 = ⊤ [PROOFSTEP] exact order_zero [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 ⊢ ↑n ≤ order φ [PROOFSTEP] by_contra H [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 H : ¬↑n ≤ order φ ⊢ False [PROOFSTEP] rw [not_le] at H [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 H : order φ < ↑n ⊢ False [PROOFSTEP] have : (order φ).Dom := PartENat.dom_of_le_natCast H.le [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 H : order φ < ↑n this : (order φ).Dom ⊢ False [PROOFSTEP] rw [← PartENat.natCast_get this, PartENat.coe_lt_coe] at H [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ h : ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 this : (order φ).Dom H : Part.get (order φ) this < n ⊢ False [PROOFSTEP] exact coeff_order this (h _ H) [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : PartENat h : ∀ (i : ℕ), ↑i < n → ↑(coeff R i) φ = 0 ⊢ n ≤ order φ [PROOFSTEP] induction n using PartENat.casesOn [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 ⊢ ⊤ ≤ order φ [PROOFSTEP] show _ ≤ _ [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 ⊢ ⊤ ≤ order φ [PROOFSTEP] rw [top_le_iff, order_eq_top] [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 ⊢ φ = 0 [PROOFSTEP] ext i [GOAL] case a.h R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R h : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 i : ℕ ⊢ ↑(coeff R i) φ = ↑(coeff R i) 0 [PROOFSTEP] exact h _ (PartENat.natCast_lt_top i) [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n✝ : ℕ h : ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0 ⊢ ↑n✝ ≤ order φ [PROOFSTEP] apply nat_le_order [GOAL] case a.h R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n✝ : ℕ h : ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0 ⊢ ∀ (i : ℕ), i < n✝ → ↑(coeff R i) φ = 0 [PROOFSTEP] simpa only [PartENat.coe_lt_coe] using h [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ ⊢ order φ = ↑n ↔ ↑(coeff R n) φ ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 [PROOFSTEP] rcases eq_or_ne φ 0 with (rfl | hφ) [GOAL] case inl R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ ⊢ order 0 = ↑n ↔ ↑(coeff R n) 0 ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) 0 = 0 [PROOFSTEP] simpa using (PartENat.natCast_ne_top _).symm [GOAL] case inr R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : ℕ hφ : φ ≠ 0 ⊢ order φ = ↑n ↔ ↑(coeff R n) φ ≠ 0 ∧ ∀ (i : ℕ), i < n → ↑(coeff R i) φ = 0 [PROOFSTEP] simp [order, dif_neg hφ, Nat.find_eq_iff] [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n : PartENat ⊢ order φ = n ↔ (∀ (i : ℕ), ↑i = n → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < n → ↑(coeff R i) φ = 0 [PROOFSTEP] induction n using PartENat.casesOn [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ order φ = ⊤ ↔ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 [PROOFSTEP] rw [order_eq_top] [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ φ = 0 ↔ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 [PROOFSTEP] constructor [GOAL] case a.mp R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ φ = 0 → (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 [PROOFSTEP] rintro rfl [GOAL] case a.mp R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ (∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) 0 ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) 0 = 0 [PROOFSTEP] constructor [GOAL] case a.mp.left R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) 0 ≠ 0 [PROOFSTEP] intros [GOAL] case a.mp.right R : Type u_1 inst✝ : Semiring R φ : PowerSeries R ⊢ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) 0 = 0 [PROOFSTEP] intros [GOAL] case a.mp.left R : Type u_1 inst✝ : Semiring R φ : PowerSeries R i✝ : ℕ a✝ : ↑i✝ = ⊤ ⊢ ↑(coeff R i✝) 0 ≠ 0 [PROOFSTEP] exfalso [GOAL] case a.mp.left.h R : Type u_1 inst✝ : Semiring R φ : PowerSeries R i✝ : ℕ a✝ : ↑i✝ = ⊤ ⊢ False [PROOFSTEP] exact PartENat.natCast_ne_top ‹_› ‹_› [GOAL] case a.mp.right R : Type u_1 inst✝ : Semiring R φ : PowerSeries R i✝ : ℕ a✝ : ↑i✝ < ⊤ ⊢ ↑(coeff R i✝) 0 = 0 [PROOFSTEP] exact (coeff _ _).map_zero [GOAL] case a.mpr R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R ⊢ ((∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0) → φ = 0 [PROOFSTEP] rintro ⟨_h₁, h₂⟩ [GOAL] case a.mpr.intro R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R _h₁ : ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0 h₂ : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 ⊢ φ = 0 [PROOFSTEP] ext i [GOAL] case a.mpr.intro.h R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R _h₁ : ∀ (i : ℕ), ↑i = ⊤ → ↑(coeff R i) φ ≠ 0 h₂ : ∀ (i : ℕ), ↑i < ⊤ → ↑(coeff R i) φ = 0 i : ℕ ⊢ ↑(coeff R i) φ = ↑(coeff R i) 0 [PROOFSTEP] exact h₂ i (PartENat.natCast_lt_top i) [GOAL] case a R : Type u_1 inst✝ : Semiring R φ✝ φ : PowerSeries R n✝ : ℕ ⊢ order φ = ↑n✝ ↔ (∀ (i : ℕ), ↑i = ↑n✝ → ↑(coeff R i) φ ≠ 0) ∧ ∀ (i : ℕ), ↑i < ↑n✝ → ↑(coeff R i) φ = 0 [PROOFSTEP] simpa [PartENat.natCast_inj] using order_eq_nat [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R ⊢ min (order φ) (order ψ) ≤ order (φ + ψ) [PROOFSTEP] refine' le_order _ _ _ [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R ⊢ ∀ (i : ℕ), ↑i < min (order φ) (order ψ) → ↑(coeff R i) (φ + ψ) = 0 [PROOFSTEP] simp (config := { contextual := true }) [coeff_of_lt_order] [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] suffices order (φ + ψ) = order φ by rw [le_inf_iff, this] exact ⟨le_rfl, le_of_lt H⟩ [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ this : order (φ + ψ) = order φ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] rw [le_inf_iff, this] [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ this : order (φ + ψ) = order φ ⊢ order φ ≤ order φ ∧ order φ ≤ order ψ [PROOFSTEP] exact ⟨le_rfl, le_of_lt H⟩ [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ ⊢ order (φ + ψ) = order φ [PROOFSTEP] rw [order_eq] [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ ⊢ (∀ (i : ℕ), ↑i = order φ → ↑(coeff R i) (φ + ψ) ≠ 0) ∧ ∀ (i : ℕ), ↑i < order φ → ↑(coeff R i) (φ + ψ) = 0 [PROOFSTEP] constructor [GOAL] case left R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ ⊢ ∀ (i : ℕ), ↑i = order φ → ↑(coeff R i) (φ + ψ) ≠ 0 [PROOFSTEP] intro i hi [GOAL] case left R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ i : ℕ hi : ↑i = order φ ⊢ ↑(coeff R i) (φ + ψ) ≠ 0 [PROOFSTEP] rw [← hi] at H [GOAL] case left R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ i : ℕ H : ↑i < order ψ hi : ↑i = order φ ⊢ ↑(coeff R i) (φ + ψ) ≠ 0 [PROOFSTEP] rw [(coeff _ _).map_add, coeff_of_lt_order i H, add_zero] [GOAL] case left R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ i : ℕ H : ↑i < order ψ hi : ↑i = order φ ⊢ ↑(coeff R i) φ ≠ 0 [PROOFSTEP] exact (order_eq_nat.1 hi.symm).1 [GOAL] case right R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ ⊢ ∀ (i : ℕ), ↑i < order φ → ↑(coeff R i) (φ + ψ) = 0 [PROOFSTEP] intro i hi [GOAL] case right R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R _h : order φ ≠ order ψ H : order φ < order ψ i : ℕ hi : ↑i < order φ ⊢ ↑(coeff R i) (φ + ψ) = 0 [PROOFSTEP] rw [(coeff _ _).map_add, coeff_of_lt_order i hi, coeff_of_lt_order i (lt_trans hi H), zero_add] -- #align power_series.order_add_of_order_eq.aux power_series.order_add_of_order_eq.aux [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ ⊢ order (φ + ψ) = order φ ⊓ order ψ [PROOFSTEP] refine' le_antisymm _ (le_order_add _ _) [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] by_cases H₁ : order φ < order ψ [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ H₁ : order φ < order ψ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] apply order_add_of_order_eq.aux _ _ h H₁ [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ H₁ : ¬order φ < order ψ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] by_cases H₂ : order ψ < order φ [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ H₁ : ¬order φ < order ψ H₂ : order ψ < order φ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] simpa only [add_comm, inf_comm] using order_add_of_order_eq.aux _ _ h.symm H₂ [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ H₁ : ¬order φ < order ψ H₂ : ¬order ψ < order φ ⊢ order (φ + ψ) ≤ order φ ⊓ order ψ [PROOFSTEP] exfalso [GOAL] case neg.h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R h : order φ ≠ order ψ H₁ : ¬order φ < order ψ H₂ : ¬order ψ < order φ ⊢ False [PROOFSTEP] exact h (le_antisymm (not_lt.1 H₂) (not_lt.1 H₁)) [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R ⊢ order φ + order ψ ≤ order (φ * ψ) [PROOFSTEP] apply le_order [GOAL] case h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R ⊢ ∀ (i : ℕ), ↑i < order φ + order ψ → ↑(coeff R i) (φ * ψ) = 0 [PROOFSTEP] intro n hn [GOAL] case h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ ⊢ ↑(coeff R n) (φ * ψ) = 0 [PROOFSTEP] rw [coeff_mul, Finset.sum_eq_zero] [GOAL] case h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ ⊢ ∀ (x : ℕ × ℕ), x ∈ Finset.Nat.antidiagonal n → ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0 [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case h.mk R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] by_cases hi : ↑i < order φ [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n hi : ↑i < order φ ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [coeff_of_lt_order i hi, zero_mul] [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n hi : ¬↑i < order φ ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] by_cases hj : ↑j < order ψ [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n hi : ¬↑i < order φ hj : ↑j < order ψ ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [coeff_of_lt_order j hj, mul_zero] [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n hi : ¬↑i < order φ hj : ¬↑j < order ψ ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [not_lt] at hi hj [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j) ∈ Finset.Nat.antidiagonal n hi : order φ ≤ ↑i hj : order ψ ≤ ↑j ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal] at hij [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j).fst + (i, j).snd = n hi : order φ ≤ ↑i hj : order ψ ≤ ↑j ⊢ ↑(coeff R (i, j).fst) φ * ↑(coeff R (i, j).snd) ψ = 0 [PROOFSTEP] exfalso [GOAL] case neg.h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j).fst + (i, j).snd = n hi : order φ ≤ ↑i hj : order ψ ≤ ↑j ⊢ False [PROOFSTEP] apply ne_of_lt (lt_of_lt_of_le hn <| add_le_add hi hj) [GOAL] case neg.h R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ hn : ↑n < order φ + order ψ i j : ℕ hij : (i, j).fst + (i, j).snd = n hi : order φ ≤ ↑i hj : order ψ ≤ ↑j ⊢ ↑n = ↑i + ↑j [PROOFSTEP] rw [← Nat.cast_add, hij] [GOAL] R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) ⊢ order (↑(monomial R n) a) = if a = 0 then ⊤ else ↑n [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : a = 0 ⊢ order (↑(monomial R n) a) = ⊤ [PROOFSTEP] rw [h, order_eq_top, LinearMap.map_zero] [GOAL] case neg R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 ⊢ order (↑(monomial R n) a) = ↑n [PROOFSTEP] rw [order_eq] [GOAL] case neg R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 ⊢ (∀ (i : ℕ), ↑i = ↑n → ↑(coeff R i) (↑(monomial R n) a) ≠ 0) ∧ ∀ (i : ℕ), ↑i < ↑n → ↑(coeff R i) (↑(monomial R n) a) = 0 [PROOFSTEP] constructor [GOAL] case neg.left R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 ⊢ ∀ (i : ℕ), ↑i = ↑n → ↑(coeff R i) (↑(monomial R n) a) ≠ 0 [PROOFSTEP] intro i hi [GOAL] case neg.right R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 ⊢ ∀ (i : ℕ), ↑i < ↑n → ↑(coeff R i) (↑(monomial R n) a) = 0 [PROOFSTEP] intro i hi [GOAL] case neg.left R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 i : ℕ hi : ↑i = ↑n ⊢ ↑(coeff R i) (↑(monomial R n) a) ≠ 0 [PROOFSTEP] rw [PartENat.natCast_inj] at hi [GOAL] case neg.left R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 i : ℕ hi : i = n ⊢ ↑(coeff R i) (↑(monomial R n) a) ≠ 0 [PROOFSTEP] rwa [hi, coeff_monomial_same] [GOAL] case neg.right R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 i : ℕ hi : ↑i < ↑n ⊢ ↑(coeff R i) (↑(monomial R n) a) = 0 [PROOFSTEP] rw [PartENat.coe_lt_coe] at hi [GOAL] case neg.right R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 i : ℕ hi : i < n ⊢ ↑(coeff R i) (↑(monomial R n) a) = 0 [PROOFSTEP] rw [coeff_monomial, if_neg] [GOAL] case neg.right.hnc R : Type u_1 inst✝¹ : Semiring R φ : PowerSeries R n : ℕ a : R inst✝ : Decidable (a = 0) h : ¬a = 0 i : ℕ hi : i < n ⊢ ¬i = n [PROOFSTEP] exact ne_of_lt hi [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R n : ℕ a : R h : a ≠ 0 ⊢ order (↑(monomial R n) a) = ↑n [PROOFSTEP] rw [order_monomial, if_neg h] [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ↑(coeff R n) (φ * ψ) = 0 [PROOFSTEP] suffices : coeff R n (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0 [GOAL] R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ this : ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0 ⊢ ↑(coeff R n) (φ * ψ) = 0 case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0 [PROOFSTEP] rw [this, Finset.sum_const_zero] [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ↑(coeff R n) (φ * ψ) = ∑ p in Finset.Nat.antidiagonal n, 0 [PROOFSTEP] rw [coeff_mul] [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ∑ p in Finset.Nat.antidiagonal n, ↑(coeff R p.fst) φ * ↑(coeff R p.snd) ψ = ∑ p in Finset.Nat.antidiagonal n, 0 [PROOFSTEP] apply Finset.sum_congr rfl [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ∀ (x : ℕ × ℕ), x ∈ Finset.Nat.antidiagonal n → ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0 [PROOFSTEP] intro x hx [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal n ⊢ ↑(coeff R x.fst) φ * ↑(coeff R x.snd) ψ = 0 [PROOFSTEP] refine' mul_eq_zero_of_right (coeff R x.fst φ) (coeff_of_lt_order x.snd (lt_of_le_of_lt _ h)) [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ x : ℕ × ℕ hx : x ∈ Finset.Nat.antidiagonal n ⊢ ↑x.snd ≤ ↑n [PROOFSTEP] rw [Finset.Nat.mem_antidiagonal] at hx [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ x : ℕ × ℕ hx : x.fst + x.snd = n ⊢ ↑x.snd ≤ ↑n [PROOFSTEP] norm_cast [GOAL] case this R : Type u_1 inst✝ : Semiring R φ✝ φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ x : ℕ × ℕ hx : x.fst + x.snd = n ⊢ x.snd ≤ n [PROOFSTEP] linarith [GOAL] R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : CommRing R φ ψ : PowerSeries R n : ℕ h : ↑n < order ψ ⊢ ↑(coeff R n) (φ * (1 - ψ)) = ↑(coeff R n) φ [PROOFSTEP] simp [coeff_mul_of_lt_order h, mul_sub] [GOAL] R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ s : Finset ι φ : PowerSeries R f : ι → PowerSeries R ⊢ (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ [PROOFSTEP] induction' s using Finset.induction_on with a s ha ih t [GOAL] case empty R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ φ : PowerSeries R f : ι → PowerSeries R ⊢ (∀ (i : ι), i ∈ ∅ → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in ∅, (1 - f i)) = ↑(coeff R k) φ [PROOFSTEP] simp [GOAL] case insert R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ φ : PowerSeries R f : ι → PowerSeries R a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ ⊢ (∀ (i : ι), i ∈ insert a s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ [PROOFSTEP] intro t [GOAL] case insert R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ φ : PowerSeries R f : ι → PowerSeries R a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ t : ∀ (i : ι), i ∈ insert a s → ↑k < order (f i) ⊢ ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ [PROOFSTEP] simp only [Finset.mem_insert, forall_eq_or_imp] at t [GOAL] case insert R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ φ : PowerSeries R f : ι → PowerSeries R a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ t : ↑k < order (f a) ∧ ∀ (a : ι), a ∈ s → ↑k < order (f a) ⊢ ↑(coeff R k) (φ * ∏ i in insert a s, (1 - f i)) = ↑(coeff R k) φ [PROOFSTEP] rw [Finset.prod_insert ha, ← mul_assoc, mul_right_comm, coeff_mul_one_sub_of_lt_order _ t.1] [GOAL] case insert R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 ι : Type u_3 inst✝ : CommRing R k : ℕ φ : PowerSeries R f : ι → PowerSeries R a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑k < order (f i)) → ↑(coeff R k) (φ * ∏ i in s, (1 - f i)) = ↑(coeff R k) φ t : ↑k < order (f a) ∧ ∀ (a : ι), a ∈ s → ↑k < order (f a) ⊢ ↑(coeff R k) (φ * ∏ x in s, (1 - f x)) = ↑(coeff R k) φ [PROOFSTEP] exact ih t.2 [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom ⊢ X ^ Part.get (order φ) h ∣ φ [PROOFSTEP] refine' ⟨PowerSeries.mk fun n => coeff R (n + (order φ).get h) φ, _⟩ [GOAL] R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom ⊢ φ = X ^ Part.get (order φ) h * mk fun n => ↑(coeff R (n + Part.get (order φ) h)) φ [PROOFSTEP] ext n [GOAL] case h R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ ⊢ ↑(coeff R n) φ = ↑(coeff R n) (X ^ Part.get (order φ) h * mk fun n => ↑(coeff R (n + Part.get (order φ) h)) φ) [PROOFSTEP] simp only [coeff_mul, coeff_X_pow, coeff_mk, boole_mul, Finset.sum_ite, Finset.Nat.filter_fst_eq_antidiagonal, Finset.sum_const_zero, add_zero] [GOAL] case h R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ ⊢ ↑(coeff R n) φ = ∑ x in if Part.get (order φ) h ≤ n then {(Part.get (order φ) h, n - Part.get (order φ) h)} else ∅, ↑(coeff R (x.snd + Part.get (order φ) h)) φ [PROOFSTEP] split_ifs with hn [GOAL] case pos R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ hn : Part.get (order φ) h ≤ n ⊢ ↑(coeff R n) φ = ∑ x in {(Part.get (order φ) h, n - Part.get (order φ) h)}, ↑(coeff R (x.snd + Part.get (order φ) h)) φ [PROOFSTEP] simp [tsub_add_cancel_of_le hn] [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ hn : ¬Part.get (order φ) h ≤ n ⊢ ↑(coeff R n) φ = ∑ x in ∅, ↑(coeff R (x.snd + Part.get (order φ) h)) φ [PROOFSTEP] simp only [Finset.sum_empty] [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ hn : ¬Part.get (order φ) h ≤ n ⊢ ↑(coeff R n) φ = 0 [PROOFSTEP] refine' coeff_of_lt_order _ _ [GOAL] case neg R : Type u_1 inst✝ : Semiring R φ : PowerSeries R h : (order φ).Dom n : ℕ hn : ¬Part.get (order φ) h ≤ n ⊢ ↑n < order φ [PROOFSTEP] simpa [PartENat.coe_lt_iff] using fun _ => hn [GOAL] R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R ⊢ order φ = multiplicity X φ [PROOFSTEP] rcases eq_or_ne φ 0 with (rfl | hφ) [GOAL] case inl R✝ : Type u_1 inst✝¹ : Semiring R✝ φ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R ⊢ order 0 = multiplicity X 0 [PROOFSTEP] simp [GOAL] case inr R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 ⊢ order φ = multiplicity X φ [PROOFSTEP] induction' ho : order φ using PartENat.casesOn with n [GOAL] case inr.a R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ ho : order φ = ⊤ ⊢ ⊤ = multiplicity X φ [PROOFSTEP] simp [hφ] at ho [GOAL] case inr.a R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n ⊢ ↑n = multiplicity X φ [PROOFSTEP] have hn : φ.order.get (order_finite_iff_ne_zero.mpr hφ) = n := by simp [ho] [GOAL] R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n ⊢ Part.get (order φ) (_ : (order φ).Dom) = n [PROOFSTEP] simp [ho] [GOAL] case inr.a R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ⊢ ↑n = multiplicity X φ [PROOFSTEP] rw [← hn] [GOAL] case inr.a R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ⊢ ↑(Part.get (order φ) (_ : (order φ).Dom)) = multiplicity X φ [PROOFSTEP] refine' le_antisymm (le_multiplicity_of_pow_dvd <| X_pow_order_dvd (order_finite_iff_ne_zero.mpr hφ)) (PartENat.find_le _ _ _) [GOAL] case inr.a R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ⊢ ¬X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) ∣ φ [PROOFSTEP] rintro ⟨ψ, H⟩ [GOAL] case inr.a.intro R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ ⊢ False [PROOFSTEP] have := congr_arg (coeff R n) H [GOAL] case inr.a.intro R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ) ⊢ False [PROOFSTEP] rw [← (ψ.commute_X.pow_right _).eq, coeff_mul_of_lt_order, ← hn] at this [GOAL] case inr.a.intro R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R (Part.get (order φ) (_ : (order φ).Dom))) φ = 0 ⊢ False [PROOFSTEP] exact coeff_order _ this [GOAL] case inr.a.intro R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) ⊢ ↑n < order (X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) [PROOFSTEP] rw [X_pow_eq, order_monomial] [GOAL] case inr.a.intro R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) ⊢ ↑n < if 1 = 0 then ⊤ else ↑(Part.get (order φ) (_ : (order φ).Dom) + 1) [PROOFSTEP] split_ifs [GOAL] case pos R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) h✝ : 1 = 0 ⊢ ↑n < ⊤ [PROOFSTEP] exact PartENat.natCast_lt_top _ [GOAL] case neg R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) h✝ : ¬1 = 0 ⊢ ↑n < ↑(Part.get (order φ) (_ : (order φ).Dom) + 1) [PROOFSTEP] rw [← hn, PartENat.coe_lt_coe] [GOAL] case neg R✝ : Type u_1 inst✝¹ : Semiring R✝ φ✝ : PowerSeries R✝ R : Type u_2 inst✝ : Semiring R φ : PowerSeries R hφ : φ ≠ 0 x✝ : PartENat ho✝ : order φ = x✝ n : ℕ ho : order φ = ↑n hn : Part.get (order φ) (_ : (order φ).Dom) = n ψ : PowerSeries R H : φ = X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1) * ψ this : ↑(coeff R n) φ = ↑(coeff R n) (ψ * X ^ (Part.get (order φ) (_ : (order φ).Dom) + 1)) h✝ : ¬1 = 0 ⊢ Part.get (order φ) (_ : (order φ).Dom) < Part.get (order φ) (_ : (order φ).Dom) + 1 [PROOFSTEP] exact Nat.lt_succ_self _ [GOAL] R : Type u_1 inst✝¹ : Semiring R inst✝ : Nontrivial R ⊢ order 1 = 0 [PROOFSTEP] simpa using order_monomial_of_ne_zero 0 (1 : R) one_ne_zero [GOAL] R : Type u_1 inst✝¹ : Semiring R inst✝ : Nontrivial R ⊢ order X = 1 [PROOFSTEP] simpa only [Nat.cast_one] using order_monomial_of_ne_zero 1 (1 : R) one_ne_zero [GOAL] R : Type u_1 inst✝¹ : Semiring R inst✝ : Nontrivial R n : ℕ ⊢ order (X ^ n) = ↑n [PROOFSTEP] rw [X_pow_eq, order_monomial_of_ne_zero] [GOAL] case h R : Type u_1 inst✝¹ : Semiring R inst✝ : Nontrivial R n : ℕ ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R φ ψ : PowerSeries R ⊢ order (φ * ψ) = order φ + order ψ [PROOFSTEP] simp_rw [order_eq_multiplicity_X] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R φ ψ : PowerSeries R ⊢ multiplicity X (φ * ψ) = multiplicity X φ + multiplicity X ψ [PROOFSTEP] exact multiplicity.mul X_prime [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] n : ℕ a : R ⊢ ↑(↑(monomial n) a) = ↑(PowerSeries.monomial R n) a [PROOFSTEP] ext [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] n : ℕ a : R n✝ : ℕ ⊢ ↑(PowerSeries.coeff R n✝) ↑(↑(monomial n) a) = ↑(PowerSeries.coeff R n✝) (↑(PowerSeries.monomial R n) a) [PROOFSTEP] simp [coeff_coe, PowerSeries.coeff_monomial, Polynomial.coeff_monomial, eq_comm] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] ⊢ ↑1 = 1 [PROOFSTEP] have := coe_monomial 0 (1 : R) [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] this : ↑(↑(monomial 0) 1) = ↑(PowerSeries.monomial R 0) 1 ⊢ ↑1 = 1 [PROOFSTEP] rwa [PowerSeries.monomial_zero_eq_C_apply] at this [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] ⊢ ↑(φ + ψ) = ↑φ + ↑ψ [PROOFSTEP] ext [GOAL] case h σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] n✝ : ℕ ⊢ ↑(PowerSeries.coeff R n✝) ↑(φ + ψ) = ↑(PowerSeries.coeff R n✝) (↑φ + ↑ψ) [PROOFSTEP] simp [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] n : ℕ ⊢ ↑(PowerSeries.coeff R n) ↑(φ * ψ) = ↑(PowerSeries.coeff R n) (↑φ * ↑ψ) [PROOFSTEP] simp only [coeff_coe, PowerSeries.coeff_mul, coeff_mul] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] a : R ⊢ ↑(↑C a) = ↑(PowerSeries.C R) a [PROOFSTEP] have := coe_monomial 0 a [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] a : R this : ↑(↑(monomial 0) a) = ↑(PowerSeries.monomial R 0) a ⊢ ↑(↑C a) = ↑(PowerSeries.C R) a [PROOFSTEP] rwa [PowerSeries.monomial_zero_eq_C_apply] at this [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] ⊢ ↑(bit1 φ) = bit1 ↑φ [PROOFSTEP] rw [bit1, bit1, coe_add, coe_one, coe_bit0] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : R[X] h : Coe.coe x = Coe.coe y ⊢ x = y [PROOFSTEP] ext [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : R[X] h : Coe.coe x = Coe.coe y n✝ : ℕ ⊢ coeff x n✝ = coeff y n✝ [PROOFSTEP] simp_rw [← coeff_coe] [GOAL] case a σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ x y : R[X] h : Coe.coe x = Coe.coe y n✝ : ℕ ⊢ ↑(PowerSeries.coeff R n✝) ↑x = ↑(PowerSeries.coeff R n✝) ↑y [PROOFSTEP] congr [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] ⊢ ↑φ = 0 ↔ φ = 0 [PROOFSTEP] rw [← coe_zero, coe_inj] [GOAL] σ : Type u_1 R : Type u_2 inst✝ : CommSemiring R φ ψ : R[X] ⊢ ↑φ = 1 ↔ φ = 1 [PROOFSTEP] rw [← coe_one, coe_inj] [GOAL] σ : Type u_1 R : Type u_2 inst✝² : CommSemiring R φ ψ : R[X] A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : R[X] →+* PowerSeries A := RingHom.comp (PowerSeries.map (algebraMap R A)) ringHom r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R[X]), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R R[X]) r) = ↑(algebraMap R (PowerSeries A)) r [PROOFSTEP] simp [algebraMap_apply, PowerSeries.algebraMap_apply]
{"mathlib_filename": "Mathlib.RingTheory.PowerSeries.Basic", "llama_tokens": 114521}
[GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E x✝ : Set.Nonempty ∅ w✝ : E hx : w✝ ∈ ∅ ⊢ ∃ l, ∅ = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] exfalso [GOAL] case h 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E x✝ : Set.Nonempty ∅ w✝ : E hx : w✝ ∈ ∅ ⊢ False [PROOFSTEP] exact hx [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hAB : IsExposed 𝕜 A B ⊢ B ⊆ A [PROOFSTEP] rintro x hx [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x✝ : E hAB : IsExposed 𝕜 A B x : E hx : x ∈ B ⊢ x ∈ A [PROOFSTEP] obtain ⟨_, rfl⟩ := hAB ⟨x, hx⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A C : Set E X : Finset E x✝ x : E w✝ : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑w✝ y ≤ ↑w✝ x} hx : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑w✝ y ≤ ↑w✝ x} ⊢ x ∈ A [PROOFSTEP] exact hx.1 [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 A C hBA : B ⊆ A hCB : C ⊆ B ⊢ IsExposed 𝕜 B C [PROOFSTEP] rintro ⟨w, hw⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 A C hBA : B ⊆ A hCB : C ⊆ B w : E hw : w ∈ C ⊢ ∃ l, C = {x | x ∈ B ∧ ∀ (y : E), y ∈ B → ↑l y ≤ ↑l x} [PROOFSTEP] obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A B : Set E X : Finset E x : E hBA : B ⊆ A w : E l : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hCB : {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊆ B hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ ∃ l_1, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ B ∧ ∀ (y : E), y ∈ B → ↑l_1 y ≤ ↑l_1 x} [PROOFSTEP] exact ⟨l, Subset.antisymm (fun x hx => ⟨hCB hx, fun y hy => hx.2 y (hBA hy)⟩) fun x hx => ⟨hBA hx.1, fun y hy => (hw.2 y hy).trans (hx.2 w (hCB hw))⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C : Set E X : Finset E x : E A B : Set E hAB : IsExposed 𝕜 A B hB : Set.Nonempty B ⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x} [PROOFSTEP] obtain ⟨l, rfl⟩ := hAB hB [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E A : Set E l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hB : Set.Nonempty {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ ∃ l_1 a, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∧ a ≤ ↑l_1 x} [PROOFSTEP] obtain ⟨w, hw⟩ := hB [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E A : Set E l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} w : E hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ ∃ l_1 a, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∧ a ≤ ↑l_1 x} [PROOFSTEP] exact ⟨l, l w, Subset.antisymm (fun x hx => ⟨hx.1, hx.2 w hw.1⟩) fun x hx => ⟨hx.1, fun y hy => (hw.2 y hy).trans hx.2⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C : Set E X : Finset E x : E inst✝ : Nontrivial 𝕜 A B : Set E hAB : IsExposed 𝕜 A B ⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x} [PROOFSTEP] obtain rfl | hB := B.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ ⊢ ∃ l a, ∅ = {x | x ∈ A ∧ a ≤ ↑l x} [PROOFSTEP] refine' ⟨0, 1, _⟩ [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ ⊢ ∅ = {x | x ∈ A ∧ 1 ≤ ↑0 x} [PROOFSTEP] rw [eq_comm, eq_empty_iff_forall_not_mem] [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ ⊢ ∀ (x : E), ¬x ∈ {x | x ∈ A ∧ 1 ≤ ↑0 x} [PROOFSTEP] rintro x ⟨-, h⟩ [GOAL] case inl.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ x : E h : 1 ≤ ↑0 x ⊢ False [PROOFSTEP] rw [ContinuousLinearMap.zero_apply] at h [GOAL] case inl.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ x : E h : 1 ≤ 0 ⊢ False [PROOFSTEP] have : ¬(1 : 𝕜) ≤ 0 := not_le_of_lt zero_lt_one [GOAL] case inl.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ x : E h : 1 ≤ 0 this : ¬1 ≤ 0 ⊢ False [PROOFSTEP] contradiction [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C : Set E X : Finset E x : E inst✝ : Nontrivial 𝕜 A B : Set E hAB : IsExposed 𝕜 A B hB : Set.Nonempty B ⊢ ∃ l a, B = {x | x ∈ A ∧ a ≤ ↑l x} [PROOFSTEP] exact hAB.eq_inter_halfspace' hB [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A B C : Set E hB : IsExposed 𝕜 A B hC : IsExposed 𝕜 A C ⊢ IsExposed 𝕜 A (B ∩ C) [PROOFSTEP] rintro ⟨w, hwB, hwC⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A B C : Set E hB : IsExposed 𝕜 A B hC : IsExposed 𝕜 A C w : E hwB : w ∈ B hwC : w ∈ C ⊢ ∃ l, B ∩ C = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] obtain ⟨l₁, rfl⟩ := hB ⟨w, hwB⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A C : Set E hC : IsExposed 𝕜 A C w : E hwC : w ∈ C l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ⊢ ∃ l, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ C = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] obtain ⟨l₂, rfl⟩ := hC ⟨w, hwC⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} ⊢ ∃ l, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] refine' ⟨l₁ + l₂, Subset.antisymm _ _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} ⊢ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} ⊆ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x} [PROOFSTEP] rintro x ⟨⟨hxA, hxB⟩, ⟨-, hxC⟩⟩ [GOAL] case intro.intro.intro.intro.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} x : E hxA : x ∈ A hxB : ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x hxC : ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x ⊢ x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x} [PROOFSTEP] exact ⟨hxA, fun z hz => add_le_add (hxB z hz) (hxC z hz)⟩ [GOAL] case intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} ⊢ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x} ⊆ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} [PROOFSTEP] rintro x ⟨hxA, hx⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} x : E hxA : x ∈ A hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x ⊢ x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} ∩ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} [PROOFSTEP] refine' ⟨⟨hxA, fun y hy => _⟩, hxA, fun y hy => _⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} x : E hxA : x ∈ A hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x y : E hy : y ∈ A ⊢ ↑l₁ y ≤ ↑l₁ x [PROOFSTEP] exact (add_le_add_iff_right (l₂ x)).1 ((add_le_add (hwB.2 y hy) (hwC.2 x hxA)).trans (hx w hwB.1)) [GOAL] case intro.intro.intro.intro.refine'_2.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x✝ : E inst✝ : ContinuousAdd 𝕜 A : Set E w : E l₁ : E →L[𝕜] 𝕜 hB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} hwB : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₁ y ≤ ↑l₁ x} l₂ : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} hwC : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l₂ y ≤ ↑l₂ x} x : E hxA : x ∈ A hx : ∀ (y : E), y ∈ A → ↑(l₁ + l₂) y ≤ ↑(l₁ + l₂) x y : E hy : y ∈ A ⊢ ↑l₂ y ≤ ↑l₂ x [PROOFSTEP] exact (add_le_add_iff_left (l₁ x)).1 (le_trans (add_le_add (hwB.2 x hxA) (hwC.2 y hy)) (hx w hwB.1)) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 F : Finset (Set E) hF : Finset.Nonempty F hAF : ∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑F) [PROOFSTEP] induction F using Finset.induction with | empty => exfalso; exact Finset.not_nonempty_empty hF | @insert C F _ hF' => rw [Finset.coe_insert, sInter_insert] obtain rfl | hFnemp := F.eq_empty_or_nonempty · rw [Finset.coe_empty, sInter_empty, inter_univ] exact hAF C (Finset.mem_singleton_self C) · exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB)) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 F : Finset (Set E) hF : Finset.Nonempty F hAF : ∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑F) [PROOFSTEP] induction F using Finset.induction with | empty => exfalso; exact Finset.not_nonempty_empty hF | @insert C F _ hF' => rw [Finset.coe_insert, sInter_insert] obtain rfl | hFnemp := F.eq_empty_or_nonempty · rw [Finset.coe_empty, sInter_empty, inter_univ] exact hAF C (Finset.mem_singleton_self C) · exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB)) [GOAL] case empty 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 hF : Finset.Nonempty ∅ hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑∅) [PROOFSTEP] | empty => exfalso; exact Finset.not_nonempty_empty hF [GOAL] case empty 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 hF : Finset.Nonempty ∅ hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑∅) [PROOFSTEP] exfalso [GOAL] case empty.h 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 hF : Finset.Nonempty ∅ hAF : ∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B ⊢ False [PROOFSTEP] exact Finset.not_nonempty_empty hF [GOAL] case insert 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E F : Finset (Set E) a✝ : ¬C ∈ F hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F) hF : Finset.Nonempty (insert C F) hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑(insert C F)) [PROOFSTEP] | @insert C F _ hF' => rw [Finset.coe_insert, sInter_insert] obtain rfl | hFnemp := F.eq_empty_or_nonempty · rw [Finset.coe_empty, sInter_empty, inter_univ] exact hAF C (Finset.mem_singleton_self C) · exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB)) [GOAL] case insert 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E F : Finset (Set E) a✝ : ¬C ∈ F hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F) hF : Finset.Nonempty (insert C F) hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (⋂₀ ↑(insert C F)) [PROOFSTEP] rw [Finset.coe_insert, sInter_insert] [GOAL] case insert 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E F : Finset (Set E) a✝ : ¬C ∈ F hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F) hF : Finset.Nonempty (insert C F) hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑F) [PROOFSTEP] obtain rfl | hFnemp := F.eq_empty_or_nonempty [GOAL] case insert.inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E a✝ : ¬C ∈ ∅ hF' : Finset.Nonempty ∅ → (∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑∅) hF : Finset.Nonempty (insert C ∅) hAF : ∀ (B : Set E), B ∈ insert C ∅ → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑∅) [PROOFSTEP] rw [Finset.coe_empty, sInter_empty, inter_univ] [GOAL] case insert.inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E a✝ : ¬C ∈ ∅ hF' : Finset.Nonempty ∅ → (∀ (B : Set E), B ∈ ∅ → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑∅) hF : Finset.Nonempty (insert C ∅) hAF : ∀ (B : Set E), B ∈ insert C ∅ → IsExposed 𝕜 A B ⊢ IsExposed 𝕜 A C [PROOFSTEP] exact hAF C (Finset.mem_singleton_self C) [GOAL] case insert.inr 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C✝ : Set E X : Finset E x : E inst✝ : ContinuousAdd 𝕜 C : Set E F : Finset (Set E) a✝ : ¬C ∈ F hF' : Finset.Nonempty F → (∀ (B : Set E), B ∈ F → IsExposed 𝕜 A B) → IsExposed 𝕜 A (⋂₀ ↑F) hF : Finset.Nonempty (insert C F) hAF : ∀ (B : Set E), B ∈ insert C F → IsExposed 𝕜 A B hFnemp : Finset.Nonempty F ⊢ IsExposed 𝕜 A (C ∩ ⋂₀ ↑F) [PROOFSTEP] exact (hAF C (Finset.mem_insert_self C F)).inter (hF' hFnemp fun B hB => hAF B (Finset.mem_insert_of_mem hB)) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 A C hCB : C ⊆ B ⊢ IsExposed 𝕜 (A ∩ B) C [PROOFSTEP] rintro ⟨w, hw⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 A C hCB : C ⊆ B w : E hw : w ∈ C ⊢ ∃ l, C = {x | x ∈ A ∩ B ∧ ∀ (y : E), y ∈ A ∩ B → ↑l y ≤ ↑l x} [PROOFSTEP] obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A B : Set E X : Finset E x w : E l : E →L[𝕜] 𝕜 hC : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hCB : {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊆ B hw : w ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ ∃ l_1, {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} = {x | x ∈ A ∩ B ∧ ∀ (y : E), y ∈ A ∩ B → ↑l_1 y ≤ ↑l_1 x} [PROOFSTEP] exact ⟨l, Subset.antisymm (fun x hx => ⟨⟨hx.1, hCB hx⟩, fun y hy => hx.2 y hy.1⟩) fun x ⟨⟨hxC, _⟩, hx⟩ => ⟨hxC, fun y hy => (hw.2 y hy).trans (hx w ⟨hC.subset hw, hCB hw⟩)⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 B C hCA : C ⊆ A ⊢ IsExposed 𝕜 (A ∩ B) C [PROOFSTEP] rw [inter_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E hC : IsExposed 𝕜 B C hCA : C ⊆ A ⊢ IsExposed 𝕜 (B ∩ A) C [PROOFSTEP] exact hC.inter_left hCA [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C : Set E X : Finset E x : E inst✝ : OrderClosedTopology 𝕜 A B : Set E hAB : IsExposed 𝕜 A B hA : IsClosed A ⊢ IsClosed B [PROOFSTEP] obtain rfl | hB := B.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : OrderClosedTopology 𝕜 A : Set E hA : IsClosed A hAB : IsExposed 𝕜 A ∅ ⊢ IsClosed ∅ [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l : E →L[𝕜] 𝕜 A✝ B✝ C : Set E X : Finset E x : E inst✝ : OrderClosedTopology 𝕜 A B : Set E hAB : IsExposed 𝕜 A B hA : IsClosed A hB : Set.Nonempty B ⊢ IsClosed B [PROOFSTEP] obtain ⟨l, a, rfl⟩ := hAB.eq_inter_halfspace' hB [GOAL] case inr.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A✝ B C : Set E X : Finset E x : E inst✝ : OrderClosedTopology 𝕜 A : Set E hA : IsClosed A l : E →L[𝕜] 𝕜 a : 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ a ≤ ↑l x} hB : Set.Nonempty {x | x ∈ A ∧ a ≤ ↑l x} ⊢ IsClosed {x | x ∈ A ∧ a ≤ ↑l x} [PROOFSTEP] exact hA.isClosed_le continuousOn_const l.continuous.continuousOn [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E ⊢ x ∈ exposedPoints 𝕜 A ↔ IsExposed 𝕜 A {x} [PROOFSTEP] use fun ⟨hxA, l, hl⟩ _ => ⟨l, Eq.symm <| eq_singleton_iff_unique_mem.2 ⟨⟨hxA, fun y hy => (hl y hy).1⟩, fun z hz => (hl z hz.1).2 (hz.2 x hxA)⟩⟩ [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E ⊢ IsExposed 𝕜 A {x} → x ∈ exposedPoints 𝕜 A [PROOFSTEP] rintro h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E h : IsExposed 𝕜 A {x} ⊢ x ∈ exposedPoints 𝕜 A [PROOFSTEP] obtain ⟨l, hl⟩ := h ⟨x, mem_singleton _⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E h : IsExposed 𝕜 A {x} l : E →L[𝕜] 𝕜 hl : {x} = {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ x ∈ exposedPoints 𝕜 A [PROOFSTEP] rw [eq_comm, eq_singleton_iff_unique_mem] at hl [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : OrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E l✝ : E →L[𝕜] 𝕜 A B C : Set E X : Finset E x : E h : IsExposed 𝕜 A {x} l : E →L[𝕜] 𝕜 hl : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ ∀ (x_1 : E), x_1 ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} → x_1 = x ⊢ x ∈ exposedPoints 𝕜 A [PROOFSTEP] exact ⟨hl.1.1, l, fun y hy => ⟨hl.1.2 y hy, fun hxy => hl.2 y ⟨hy, fun z hz => (hl.1.2 z hz).trans hxy⟩⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A B C : Set E hAB : IsExposed 𝕜 A B hA : Convex 𝕜 A ⊢ Convex 𝕜 B [PROOFSTEP] obtain rfl | hB := B.eq_empty_or_nonempty [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E hA : Convex 𝕜 A hAB : IsExposed 𝕜 A ∅ ⊢ Convex 𝕜 ∅ [PROOFSTEP] exact convex_empty [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A B C : Set E hAB : IsExposed 𝕜 A B hA : Convex 𝕜 A hB : Set.Nonempty B ⊢ Convex 𝕜 B [PROOFSTEP] obtain ⟨l, rfl⟩ := hAB hB [GOAL] case inr.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E hA : Convex 𝕜 A l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hB : Set.Nonempty {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ Convex 𝕜 {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] exact fun x₁ hx₁ x₂ hx₂ a b ha hb hab => ⟨hA hx₁.1 hx₂.1 ha hb hab, fun y hy => ((l.toLinearMap.concaveOn convex_univ).convex_ge _ ⟨mem_univ _, hx₁.2 y hy⟩ ⟨mem_univ _, hx₂.2 y hy⟩ ha hb hab).2⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A B C : Set E hAB : IsExposed 𝕜 A B ⊢ IsExtreme 𝕜 A B [PROOFSTEP] refine' ⟨hAB.subset, fun x₁ hx₁A x₂ hx₂A x hxB hx => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A B C : Set E hAB : IsExposed 𝕜 A B x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ B ∧ x₂ ∈ B [PROOFSTEP] obtain ⟨l, rfl⟩ := hAB ⟨x, hxB⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] have hl : ConvexOn 𝕜 univ l := l.toLinearMap.convexOn convex_univ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l ⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] have hlx₁ := hxB.2 x₁ hx₁A [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x ⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] have hlx₂ := hxB.2 x₂ hx₂A [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x hlx₂ : ↑l x₂ ≤ ↑l x ⊢ x₁ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} ∧ x₂ ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} [PROOFSTEP] refine' ⟨⟨hx₁A, fun y hy => _⟩, ⟨hx₂A, fun y hy => _⟩⟩ [GOAL] case intro.refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x hlx₂ : ↑l x₂ ≤ ↑l x y : E hy : y ∈ A ⊢ ↑l y ≤ ↑l x₁ [PROOFSTEP] rw [hlx₁.antisymm (hl.le_left_of_right_le (mem_univ _) (mem_univ _) hx hlx₂)] [GOAL] case intro.refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x hlx₂ : ↑l x₂ ≤ ↑l x y : E hy : y ∈ A ⊢ ↑l y ≤ ↑l x [PROOFSTEP] exact hxB.2 y hy [GOAL] case intro.refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x hlx₂ : ↑l x₂ ≤ ↑l x y : E hy : y ∈ A ⊢ ↑l y ≤ ↑l x₂ [PROOFSTEP] rw [hlx₂.antisymm (hl.le_right_of_left_le (mem_univ _) (mem_univ _) hx hlx₁)] [GOAL] case intro.refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : Module 𝕜 E A C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ l : E →L[𝕜] 𝕜 hAB : IsExposed 𝕜 A {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hxB : x ∈ {x | x ∈ A ∧ ∀ (y : E), y ∈ A → ↑l y ≤ ↑l x} hl : ConvexOn 𝕜 univ ↑l hlx₁ : ↑l x₁ ≤ ↑l x hlx₂ : ↑l x₂ ≤ ↑l x y : E hy : y ∈ A ⊢ ↑l y ≤ ↑l x [PROOFSTEP] exact hxB.2 y hy
{"mathlib_filename": "Mathlib.Analysis.Convex.Exposed", "llama_tokens": 18358}
[GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : x ≠ 0 ⊢ intValuationDef v x ≠ 0 [PROOFSTEP] rw [intValuationDef, if_neg hx] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : x ≠ 0 ⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))))) ≠ 0 [PROOFSTEP] exact WithZero.coe_ne_zero [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : { x // x ∈ nonZeroDivisors R } ⊢ 0 < intValuationDef v ↑x [PROOFSTEP] rw [v.intValuationDef_if_neg (nonZeroDivisors.coe_ne_zero x)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : { x // x ∈ nonZeroDivisors R } ⊢ 0 < ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {↑x})))))) [PROOFSTEP] exact WithZero.zero_lt_coe _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R ⊢ intValuationDef v x ≤ 1 [PROOFSTEP] rw [intValuationDef] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R ⊢ (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤ 1 [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : x = 0 ⊢ (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤ 1 [PROOFSTEP] rw [if_pos hx] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : x = 0 ⊢ 0 ≤ 1 [PROOFSTEP] exact WithZero.zero_le 1 [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : ¬x = 0 ⊢ (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) ≤ 1 [PROOFSTEP] rw [if_neg hx, ← WithZero.coe_one, ← ofAdd_zero, WithZero.coe_le_coe, ofAdd_le, Right.neg_nonpos_iff] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R hx : ¬x = 0 ⊢ 0 ≤ ↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) [PROOFSTEP] exact Int.coe_nat_nonneg _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ intValuationDef v r < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] rw [intValuationDef] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ (if r = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))))))) < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] split_ifs with hr [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : r = 0 ⊢ 0 < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] simp [hr] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 ⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r})))))) < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] rw [← WithZero.coe_one, ← ofAdd_zero, WithZero.coe_lt_coe, ofAdd_lt, neg_lt_zero, ← Int.ofNat_zero, Int.ofNat_lt, zero_lt_iff] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))) ≠ 0 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] have h : (Ideal.span { r } : Ideal R) ≠ 0 := by rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot] exact hr [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 ⊢ Ideal.span {r} ≠ 0 [PROOFSTEP] rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 ⊢ ¬r = 0 [PROOFSTEP] exact hr [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 h : Ideal.span {r} ≠ 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))) ≠ 0 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] apply Associates.count_ne_zero_iff_dvd h (by apply v.irreducible) [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : ¬r = 0 h : Ideal.span {r} ≠ 0 ⊢ Irreducible v.asIdeal [PROOFSTEP] apply v.irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R n : ℕ ⊢ intValuationDef v r ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r} [PROOFSTEP] rw [intValuationDef] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R n : ℕ ⊢ (if r = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r}))))))) ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r} [PROOFSTEP] split_ifs with hr [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R n : ℕ hr : r = 0 ⊢ 0 ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r} [PROOFSTEP] simp_rw [hr, Ideal.dvd_span_singleton, zero_le', Submodule.zero_mem] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R n : ℕ hr : ¬r = 0 ⊢ ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {r})))))) ≤ ↑(↑ofAdd (-↑n)) ↔ v.asIdeal ^ n ∣ Ideal.span {r} [PROOFSTEP] rw [WithZero.coe_le_coe, ofAdd_le, neg_le_neg_iff, Int.ofNat_le, Ideal.dvd_span_singleton, ← Associates.le_singleton_iff, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hr) (by apply v.associates_irreducible)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R n : ℕ hr : ¬r = 0 ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ intValuationDef v 1 = 1 [PROOFSTEP] rw [v.intValuationDef_if_neg (zero_ne_one.symm : (1 : R) ≠ 0), Ideal.span_singleton_one, ← Ideal.one_eq_top, Associates.mk_one, Associates.factors_one, Associates.count_zero (by apply v.associates_irreducible), Int.ofNat_zero, neg_zero, ofAdd_zero, WithZero.coe_one] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ intValuationDef v (x * y) = intValuationDef v x * intValuationDef v y [PROOFSTEP] simp only [intValuationDef] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ (if x * y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) = (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) * if y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 ⊢ (if x * y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) = (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) * if y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] rw [hx, zero_mul, if_pos (Eq.refl _), zero_mul] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 ⊢ (if x * y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) = (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) * if y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 ⊢ (if x * y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) = (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) * if y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] rw [hy, mul_zero, if_pos (Eq.refl _), mul_zero] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ (if x * y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x * y}))))))) = (if x = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))))))) * if y = 0 then 0 else ↑(↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy), ← WithZero.coe_mul, WithZero.coe_inj, ← ofAdd_add, ← Ideal.span_singleton_mul_span_singleton, ← Associates.mk_mul_mk, ← neg_add, Associates.count_mul (by apply Associates.mk_ne_zero'.mpr hx) (by apply Associates.mk_ne_zero'.mpr hy) (by apply v.associates_irreducible)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ Associates.mk (Ideal.span {x}) ≠ 0 [PROOFSTEP] apply Associates.mk_ne_zero'.mpr hx [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ Associates.mk (Ideal.span {y}) ≠ 0 [PROOFSTEP] apply Associates.mk_ne_zero'.mpr hy [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ ↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))) + Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))))) = ↑ofAdd (-(↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) + ↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))))) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R a b c : ℕ ⊢ ↑ofAdd (-↑c) ≤ max (↑ofAdd (-↑a)) (↑ofAdd (-↑b)) ↔ min a b ≤ c [PROOFSTEP] rw [le_max_iff, ofAdd_le, ofAdd_le, neg_le_neg_iff, neg_le_neg_iff, Int.ofNat_le, Int.ofNat_le, ← min_le_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] rw [hx, zero_add] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 ⊢ intValuationDef v y ≤ max (intValuationDef v 0) (intValuationDef v y) [PROOFSTEP] conv_rhs => rw [intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 | max (intValuationDef v 0) (intValuationDef v y) [PROOFSTEP] rw [intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 | max (intValuationDef v 0) (intValuationDef v y) [PROOFSTEP] rw [intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 | max (intValuationDef v 0) (intValuationDef v y) [PROOFSTEP] rw [intValuationDef, if_pos (Eq.refl _)] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : x = 0 ⊢ intValuationDef v y ≤ max 0 (intValuationDef v y) [PROOFSTEP] rw [max_eq_right (WithZero.zero_le (v.intValuationDef y))] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] rw [hy, add_zero] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 ⊢ intValuationDef v x ≤ max (intValuationDef v x) (intValuationDef v 0) [PROOFSTEP] conv_rhs => rw [max_comm, intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 | max (intValuationDef v x) (intValuationDef v 0) [PROOFSTEP] rw [max_comm, intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 | max (intValuationDef v x) (intValuationDef v 0) [PROOFSTEP] rw [max_comm, intValuationDef, if_pos (Eq.refl _)] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 | max (intValuationDef v x) (intValuationDef v 0) [PROOFSTEP] rw [max_comm, intValuationDef, if_pos (Eq.refl _)] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : y = 0 ⊢ intValuationDef v x ≤ max 0 (intValuationDef v x) [PROOFSTEP] rw [max_eq_right (WithZero.zero_le (v.intValuationDef x))] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] by_cases hxy : x + y = 0 [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : x + y = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] rw [intValuationDef, if_pos hxy] [GOAL] case pos R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : x + y = 0 ⊢ 0 ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] exact zero_le' [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 ⊢ intValuationDef v (x + y) ≤ max (intValuationDef v x) (intValuationDef v y) [PROOFSTEP] rw [v.intValuationDef_if_neg hxy, v.intValuationDef_if_neg hx, v.intValuationDef_if_neg hy, WithZero.le_max_iff, IntValuation.le_max_iff_min_le] [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 ⊢ min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) [PROOFSTEP] set nmin := min ((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span { x })).factors) ((Associates.mk v.asIdeal).count (Associates.mk (Ideal.span { y })).factors) [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) [PROOFSTEP] have h_dvd_x : x ∈ v.asIdeal ^ nmin := by rw [← Associates.le_singleton_iff x nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hx) _] exact min_le_left _ _ apply v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ⊢ x ∈ v.asIdeal ^ nmin [PROOFSTEP] rw [← Associates.le_singleton_iff x nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hx) _] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x}))) R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] exact min_le_left _ _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) [PROOFSTEP] have h_dvd_y : y ∈ v.asIdeal ^ nmin := by rw [← Associates.le_singleton_iff y nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hy) _] exact min_le_right _ _ apply v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin ⊢ y ∈ v.asIdeal ^ nmin [PROOFSTEP] rw [← Associates.le_singleton_iff y nmin _, Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hy) _] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y}))) R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] exact min_le_right _ _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) [PROOFSTEP] have h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) := by rw [Associates.le_singleton_iff] exact Ideal.add_mem (v.asIdeal ^ nmin) h_dvd_x h_dvd_y [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin ⊢ Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) [PROOFSTEP] rw [Associates.le_singleton_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin ⊢ x + y ∈ v.asIdeal ^ nmin [PROOFSTEP] exact Ideal.add_mem (v.asIdeal ^ nmin) h_dvd_x h_dvd_y [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) [PROOFSTEP] rw [Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero'.mpr hxy) _] at h_dvd_xy [GOAL] case neg R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin h_dvd_xy : nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) ⊢ nmin ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x + y}))) R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] exact h_dvd_xy [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := min (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {x})))) (Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {y})))) h_dvd_x : x ∈ v.asIdeal ^ nmin h_dvd_y : y ∈ v.asIdeal ^ nmin h_dvd_xy : Associates.mk v.asIdeal ^ nmin ≤ Associates.mk (Ideal.span {x + y}) ⊢ Irreducible (Associates.mk v.asIdeal) [PROOFSTEP] apply v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] have hv : _root_.Irreducible (Associates.mk v.asIdeal) := v.associates_irreducible [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) ⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] have hlt : v.asIdeal ^ 2 < v.asIdeal := by rw [← Ideal.dvdNotUnit_iff_lt] exact ⟨v.ne_bot, v.asIdeal, (not_congr Ideal.isUnit_iff).mpr (Ideal.IsPrime.ne_top v.isPrime), sq v.asIdeal⟩ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) ⊢ v.asIdeal ^ 2 < v.asIdeal [PROOFSTEP] rw [← Ideal.dvdNotUnit_iff_lt] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) ⊢ DvdNotUnit v.asIdeal (v.asIdeal ^ 2) [PROOFSTEP] exact ⟨v.ne_bot, v.asIdeal, (not_congr Ideal.isUnit_iff).mpr (Ideal.IsPrime.ne_top v.isPrime), sq v.asIdeal⟩ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal ⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] obtain ⟨π, mem, nmem⟩ := SetLike.exists_of_lt hlt [GOAL] case intro.intro R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 ⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] have hπ : Associates.mk (Ideal.span { π }) ≠ 0 := by rw [Associates.mk_ne_zero'] intro h rw [h] at nmem exact nmem (Submodule.zero_mem (v.asIdeal ^ 2)) [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 ⊢ Associates.mk (Ideal.span {π}) ≠ 0 [PROOFSTEP] rw [Associates.mk_ne_zero'] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 ⊢ π ≠ 0 [PROOFSTEP] intro h [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 h : π = 0 ⊢ False [PROOFSTEP] rw [h] at nmem [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬0 ∈ v.asIdeal ^ 2 h : π = 0 ⊢ False [PROOFSTEP] exact nmem (Submodule.zero_mem (v.asIdeal ^ 2)) [GOAL] case intro.intro R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ ∃ π, intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] use π [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ intValuationDef v π = ↑(↑ofAdd (-1)) [PROOFSTEP] rw [intValuationDef, if_neg (Associates.mk_ne_zero'.mp hπ), WithZero.coe_inj] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ ↑ofAdd (-↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))))) = ↑ofAdd (-1) [PROOFSTEP] apply congr_arg [GOAL] case h.h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ -↑(Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π})))) = -1 [PROOFSTEP] rw [neg_inj, ← Int.ofNat_one, Int.coe_nat_inj'] [GOAL] case h.h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : π ∈ v.asIdeal nmem : ¬π ∈ v.asIdeal ^ 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1 [PROOFSTEP] rw [← Ideal.dvd_span_singleton, ← Associates.mk_le_mk_iff_dvd_iff] at mem nmem [GOAL] case h.h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : Associates.mk v.asIdeal ≤ Associates.mk (Ideal.span {π}) nmem : ¬Associates.mk (v.asIdeal ^ 2) ≤ Associates.mk (Ideal.span {π}) hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1 [PROOFSTEP] rw [← pow_one (Associates.mk v.asIdeal), Associates.prime_pow_dvd_iff_le hπ hv] at mem [GOAL] case h.h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : 1 ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) nmem : ¬Associates.mk (v.asIdeal ^ 2) ≤ Associates.mk (Ideal.span {π}) hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1 [PROOFSTEP] rw [Associates.mk_pow, Associates.prime_pow_dvd_iff_le hπ hv, not_le] at nmem [GOAL] case h.h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R hv : Irreducible (Associates.mk v.asIdeal) hlt : v.asIdeal ^ 2 < v.asIdeal π : R mem : 1 ≤ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) nmem : Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) < 2 hπ : Associates.mk (Ideal.span {π}) ≠ 0 ⊢ Associates.count (Associates.mk v.asIdeal) (Associates.factors (Associates.mk (Ideal.span {π}))) = 1 [PROOFSTEP] exact Nat.eq_of_le_of_lt_succ mem nmem [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R s : { x // x ∈ nonZeroDivisors R } ⊢ ↑(valuation v) (IsLocalization.mk' K r s) = ↑(intValuation v) r / ↑(intValuation v) ↑s [PROOFSTEP] erw [valuation_def, (IsLocalization.toLocalizationMap (nonZeroDivisors R) K).lift_mk', div_eq_mul_inv, mul_eq_mul_left_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R s : { x // x ∈ nonZeroDivisors R } ⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R)) (_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s))) s)⁻¹ = (↑(intValuation v) ↑s)⁻¹ ∨ ↑↑(intValuation v).toMonoidWithZeroHom r = 0 [PROOFSTEP] left [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R s : { x // x ∈ nonZeroDivisors R } ⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R)) (_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s))) s)⁻¹ = (↑(intValuation v) ↑s)⁻¹ [PROOFSTEP] rw [Units.val_inv_eq_inv_val, inv_inj] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R s : { x // x ∈ nonZeroDivisors R } ⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑(intValuation v).toMonoidWithZeroHom) (nonZeroDivisors R)) (_ : ∀ (s : { x // x ∈ nonZeroDivisors R }), IsUnit (↑↑(intValuation v).toMonoidWithZeroHom ↑s))) s) = ↑(intValuation v) ↑s [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑(valuation v) (↑(algebraMap R K) r) = ↑(intValuation v) r [PROOFSTEP] rw [valuation_def, Valuation.extendToLocalization_apply_map_apply] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑(valuation v) (↑(algebraMap R K) r) ≤ 1 [PROOFSTEP] rw [valuation_of_algebraMap] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑(intValuation v) r ≤ 1 [PROOFSTEP] exact v.int_valuation_le_one r [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑(valuation v) (↑(algebraMap R K) r) < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] rw [valuation_of_algebraMap] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑(intValuation v) r < 1 ↔ v.asIdeal ∣ Ideal.span {r} [PROOFSTEP] exact v.int_valuation_lt_one_iff_dvd r [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ ∃ π, ↑(valuation v) π = ↑(↑ofAdd (-1)) [PROOFSTEP] obtain ⟨r, hr⟩ := v.int_valuation_exists_uniformizer [GOAL] case intro R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : intValuationDef v r = ↑(↑ofAdd (-1)) ⊢ ∃ π, ↑(valuation v) π = ↑(↑ofAdd (-1)) [PROOFSTEP] use algebraMap R K r [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : intValuationDef v r = ↑(↑ofAdd (-1)) ⊢ ↑(valuation v) (↑(algebraMap R K) r) = ↑(↑ofAdd (-1)) [PROOFSTEP] rw [valuation_def, Valuation.extendToLocalization_apply_map_apply] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R hr : intValuationDef v r = ↑(↑ofAdd (-1)) ⊢ ↑(intValuation v) r = ↑(↑ofAdd (-1)) [PROOFSTEP] exact hr [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } ⊢ r • ↑x ∈ adicCompletionIntegers K v [PROOFSTEP] have h : (algebraMap R (adicCompletion K v)) r = (algebraMap R K r : adicCompletion K v) := rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r) ⊢ r • ↑x ∈ adicCompletionIntegers K v [PROOFSTEP] rw [Algebra.smul_def] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r) ⊢ ↑(algebraMap R (adicCompletion K v)) r * ↑x ∈ adicCompletionIntegers K v [PROOFSTEP] refine' ValuationSubring.mul_mem _ _ _ _ x.2 --Porting note: added instance [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r) ⊢ ↑(algebraMap R (adicCompletion K v)) r ∈ adicCompletionIntegers K v [PROOFSTEP] letI : Valued K ℤₘ₀ := adicValued v [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r) this : Valued K ℤₘ₀ := adicValued v ⊢ ↑(algebraMap R (adicCompletion K v)) r ∈ adicCompletionIntegers K v [PROOFSTEP] rw [mem_adicCompletionIntegers, h, Valued.valuedCompletion_apply] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : { x // x ∈ adicCompletionIntegers K v } h : ↑(algebraMap R (adicCompletion K v)) r = ↑((fun x => K) r) (↑(algebraMap R K) r) this : Valued K ℤₘ₀ := adicValued v ⊢ ↑Valued.v (↑(algebraMap R K) r) ≤ 1 [PROOFSTEP] exact v.valuation_le_one _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R ⊢ ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v [PROOFSTEP] letI : Valued K ℤₘ₀ := adicValued v [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R this : Valued K ℤₘ₀ := adicValued v ⊢ ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v [PROOFSTEP] rw [mem_adicCompletionIntegers, Valued.valuedCompletion_apply] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R this : Valued K ℤₘ₀ := adicValued v ⊢ ↑Valued.v (↑(algebraMap R K) r) ≤ 1 [PROOFSTEP] exact v.valuation_le_one _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1 [PROOFSTEP] simp only [map_one] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ { val := ↑K 1, property := (_ : (fun x => x ∈ adicCompletionIntegers K v) (↑K 1)) } = 1 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y [PROOFSTEP] ext --Porting note: added instance [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ ↑(OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y)) = ↑(OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) [PROOFSTEP] letI : Valued K ℤₘ₀ := adicValued v [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R this : Valued K ℤₘ₀ := adicValued v ⊢ ↑(OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y)) = ↑(OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) [PROOFSTEP] simp_rw [RingHom.map_mul, Subring.coe_mul, UniformSpace.Completion.coe_mul] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) 0 = 0 [PROOFSTEP] simp only [map_zero] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ { val := ↑K 0, property := (_ : (fun x => x ∈ adicCompletionIntegers K v) (↑K 0)) } = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y [PROOFSTEP] ext --Porting note: added instance [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y)) = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) [PROOFSTEP] letI : Valued K ℤₘ₀ := adicValued v [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x y : R this : Valued K ℤₘ₀ := adicValued v ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y)) = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) [PROOFSTEP] simp_rw [RingHom.map_add, Subring.coe_add, UniformSpace.Completion.coe_add] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) } r * x = x * ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) } r [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r ⊢ { val := ↑K (↑(algebraMap R K) r), property := (_ : ↑Valued.v (↑K (↑(algebraMap R K) r)) ≤ 1) } * x = x * { val := ↑K (↑(algebraMap R K) r), property := (_ : ↑Valued.v (↑K (↑(algebraMap R K) r)) ≤ 1) } [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r ⊢ r • x = ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) } r * x [PROOFSTEP] ext --Porting note: added `dsimp` [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r ⊢ ↑(r • x) = ↑(↑{ toMonoidHom := { toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } x * OneHom.toFun { toFun := fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }, map_one' := (_ : (fun r => { val := ↑((fun x => K) r) (↑(algebraMap R K) r), property := (_ : ↑((fun x => K) r) (↑(algebraMap R K) r) ∈ adicCompletionIntegers K v) }) 1 = 1) } y) }) y) } r * x) [PROOFSTEP] dsimp --Porting note: added instance [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r ⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x [PROOFSTEP] letI : Valued K ℤₘ₀ := adicValued v [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r this : Valued K ℤₘ₀ := adicValued v ⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x [PROOFSTEP] simp only [Subring.coe_mul, Algebra.smul_def] [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R r : R x : (fun x => { x // x ∈ adicCompletionIntegers K v }) r this : Valued K ℤₘ₀ := adicValued v ⊢ ↑(r • x) = ↑K (↑(algebraMap R K) r) * ↑x [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R c : R x : { x // x ∈ adicCompletionIntegers K v } hcx : c • x = 0 ⊢ c = 0 ∨ x = 0 [PROOFSTEP] rw [Algebra.smul_def, mul_eq_zero] at hcx [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R c : R x : { x // x ∈ adicCompletionIntegers K v } hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0 ⊢ c = 0 ∨ x = 0 [PROOFSTEP] refine' hcx.imp_left fun hc => _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R c : R x : { x // x ∈ adicCompletionIntegers K v } hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0 hc : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ⊢ c = 0 [PROOFSTEP] letI : UniformSpace K := v.adicValued.toUniformSpace [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R c : R x : { x // x ∈ adicCompletionIntegers K v } hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0 hc : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 this : UniformSpace K := Valued.toUniformSpace ⊢ c = 0 [PROOFSTEP] rw [← map_zero (algebraMap R (v.adicCompletionIntegers K))] at hc [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R c : R x : { x // x ∈ adicCompletionIntegers K v } hcx : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = 0 ∨ x = 0 hc : ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) c = ↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) 0 this : UniformSpace K := Valued.toUniformSpace ⊢ c = 0 [PROOFSTEP] exact IsFractionRing.injective R K (UniformSpace.Completion.coe_injective K (Subtype.ext_iff.mp hc)) [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R y : { x // x ∈ adicCompletionIntegers K v } z : adicCompletion K v ⊢ (x • y) • z = x • y • z [PROOFSTEP] simp only [Algebra.smul_def] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsDedekindDomain R K : Type u_2 inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R x : R y : { x // x ∈ adicCompletionIntegers K v } z : adicCompletion K v ⊢ ↑(algebraMap { x // x ∈ adicCompletionIntegers K v } (adicCompletion K v)) (↑(algebraMap R { x // x ∈ adicCompletionIntegers K v }) x * y) * z = ↑(algebraMap R (adicCompletion K v)) x * (↑(algebraMap { x // x ∈ adicCompletionIntegers K v } (adicCompletion K v)) y * z) [PROOFSTEP] apply mul_assoc
{"mathlib_filename": "Mathlib.RingTheory.DedekindDomain.AdicValuation", "llama_tokens": 57049}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E hAB : IsExtreme 𝕜 A B hBC : IsExtreme 𝕜 B C ⊢ IsExtreme 𝕜 A C [PROOFSTEP] refine' ⟨Subset.trans hBC.1 hAB.1, fun x₁ hx₁A x₂ hx₂A x hxC hx ↦ _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x✝ : E hAB : IsExtreme 𝕜 A B hBC : IsExtreme 𝕜 B C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ C ∧ x₂ ∈ C [PROOFSTEP] obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A (hBC.1 hxC) hx [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x✝ : E hAB : IsExtreme 𝕜 A B hBC : IsExtreme 𝕜 B C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ hx₁B : x₁ ∈ B hx₂B : x₂ ∈ B ⊢ x₁ ∈ C ∧ x₂ ∈ C [PROOFSTEP] exact hBC.2 hx₁B hx₂B hxC hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C ⊢ IsExtreme 𝕜 A (B ∩ C) [PROOFSTEP] use Subset.trans (inter_subset_left _ _) hAB.1 [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C ⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x : E⦄, x ∈ B ∩ C → x ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C [PROOFSTEP] rintro x₁ hx₁A x₂ hx₂A x ⟨hxB, hxC⟩ hx [GOAL] case right.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x✝ : E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C [PROOFSTEP] obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A hxB hx [GOAL] case right.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x✝ : E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ hx₁B : x₁ ∈ B hx₂B : x₂ ∈ B ⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C [PROOFSTEP] obtain ⟨hx₁C, hx₂C⟩ := hAC.2 hx₁A hx₂A hxC hx [GOAL] case right.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x✝ : E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ hx₁B : x₁ ∈ B hx₂B : x₂ ∈ B hx₁C : x₁ ∈ C hx₂C : x₂ ∈ C ⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C [PROOFSTEP] exact ⟨⟨hx₁B, hx₁C⟩, hx₂B, hx₂C⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι✝ : Type u_4 π : ι✝ → Type u_5 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A B C : Set E x : E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) ⊢ IsExtreme 𝕜 A (⋂ (i : ι), F i) [PROOFSTEP] obtain i := Classical.arbitrary ι [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι✝ : Type u_4 π : ι✝ → Type u_5 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A B C : Set E x : E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι ⊢ IsExtreme 𝕜 A (⋂ (i : ι), F i) [PROOFSTEP] refine' ⟨iInter_subset_of_subset i (hAF i).1, fun x₁ hx₁A x₂ hx₂A x hxF hx ↦ _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι✝ : Type u_4 π : ι✝ → Type u_5 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A B C : Set E x✝ : E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxF : x ∈ ⋂ (i : ι), F i hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ ⋂ (i : ι), F i ∧ x₂ ∈ ⋂ (i : ι), F i [PROOFSTEP] simp_rw [mem_iInter] at hxF ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι✝ : Type u_4 π : ι✝ → Type u_5 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A B C : Set E x✝ : E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ hxF : ∀ (i : ι), x ∈ F i ⊢ (∀ (i : ι), x₁ ∈ F i) ∧ ∀ (i : ι), x₂ ∈ F i [PROOFSTEP] have h := fun i ↦ (hAF i).2 hx₁A hx₂A (hxF i) hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι✝ : Type u_4 π : ι✝ → Type u_5 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E A B C : Set E x✝ : E ι : Sort u_6 inst✝ : Nonempty ι F : ι → Set E hAF : ∀ (i : ι), IsExtreme 𝕜 A (F i) i : ι x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ hxF : ∀ (i : ι), x ∈ F i h : ∀ (i : ι), x₁ ∈ F i ∧ x₂ ∈ F i ⊢ (∀ (i : ι), x₁ ∈ F i) ∧ ∀ (i : ι), x₂ ∈ F i [PROOFSTEP] exact ⟨fun i ↦ (h i).1, fun i ↦ (h i).2⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E F : Set (Set E) hF : Set.Nonempty F hA : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B ⊢ IsExtreme 𝕜 A (⋂ (B : Set E) (_ : B ∈ F), B) [PROOFSTEP] haveI := hF.to_subtype [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E F : Set (Set E) hF : Set.Nonempty F hA : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B this : Nonempty ↑F ⊢ IsExtreme 𝕜 A (⋂ (B : Set E) (_ : B ∈ F), B) [PROOFSTEP] simpa only [iInter_subtype] using isExtreme_iInter fun i : F ↦ hA _ i.2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E F : Set (Set E) hF : Set.Nonempty F hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B ⊢ IsExtreme 𝕜 A (⋂₀ F) [PROOFSTEP] obtain ⟨B, hB⟩ := hF [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B✝ C : Set E x : E F : Set (Set E) hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B B : Set E hB : B ∈ F ⊢ IsExtreme 𝕜 A (⋂₀ F) [PROOFSTEP] refine' ⟨(sInter_subset_of_mem hB).trans (hAF B hB).1, fun x₁ hx₁A x₂ hx₂A x hxF hx ↦ _⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B✝ C : Set E x✝ : E F : Set (Set E) hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B B : Set E hB : B ∈ F x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxF : x ∈ ⋂₀ F hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ ∈ ⋂₀ F ∧ x₂ ∈ ⋂₀ F [PROOFSTEP] simp_rw [mem_sInter] at hxF ⊢ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B✝ C : Set E x✝ : E F : Set (Set E) hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B B : Set E hB : B ∈ F x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ hxF : ∀ (t : Set E), t ∈ F → x ∈ t ⊢ (∀ (t : Set E), t ∈ F → x₁ ∈ t) ∧ ∀ (t : Set E), t ∈ F → x₂ ∈ t [PROOFSTEP] have h := fun B hB ↦ (hAF B hB).2 hx₁A hx₂A (hxF B hB) hx [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B✝ C : Set E x✝ : E F : Set (Set E) hAF : ∀ (B : Set E), B ∈ F → IsExtreme 𝕜 A B B : Set E hB : B ∈ F x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hx : x ∈ openSegment 𝕜 x₁ x₂ hxF : ∀ (t : Set E), t ∈ F → x ∈ t h : ∀ (B : Set E), B ∈ F → x₁ ∈ B ∧ x₂ ∈ B ⊢ (∀ (t : Set E), t ∈ F → x₁ ∈ t) ∧ ∀ (t : Set E), t ∈ F → x₂ ∈ t [PROOFSTEP] exact ⟨fun B hB ↦ (h B hB).1, fun B hB ↦ (h B hB).2⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E ⊢ x ∈ extremePoints 𝕜 A ↔ IsExtreme 𝕜 A {x} [PROOFSTEP] refine' ⟨_, fun hx ↦ ⟨singleton_subset_iff.1 hx.1, fun x₁ hx₁ x₂ hx₂ ↦ hx.2 hx₁ hx₂ rfl⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E ⊢ x ∈ extremePoints 𝕜 A → IsExtreme 𝕜 A {x} [PROOFSTEP] rintro ⟨hxA, hAx⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E hxA : x ∈ A hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x ⊢ IsExtreme 𝕜 A {x} [PROOFSTEP] use singleton_subset_iff.2 hxA [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x : E hxA : x ∈ A hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x ⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x_1 : E⦄, x_1 ∈ {x} → x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {x} ∧ x₂ ∈ {x} [PROOFSTEP] rintro x₁ hx₁A x₂ hx₂A y (rfl : y = x) [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A y : E hxA : y ∈ A hAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → y ∈ openSegment 𝕜 x₁ x₂ → x₁ = y ∧ x₂ = y ⊢ y ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {y} ∧ x₂ ∈ {y} [PROOFSTEP] exact hAx hx₁A hx₂A [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F ⊢ extremePoints 𝕜 (s ×ˢ t) = extremePoints 𝕜 s ×ˢ extremePoints 𝕜 t [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F ⊢ x✝ ∈ extremePoints 𝕜 (s ×ˢ t) ↔ x✝ ∈ extremePoints 𝕜 s ×ˢ extremePoints 𝕜 t [PROOFSTEP] refine' (and_congr_right fun hx ↦ ⟨fun h ↦ _, fun h ↦ _⟩).trans and_and_and_comm [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ ⊢ (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd case h.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd ⊢ ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ [PROOFSTEP] constructor [GOAL] case h.refine'_1.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ ⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst [PROOFSTEP] rintro x₁ hx₁ x₂ hx₂ hx_fst [GOAL] case h.refine'_1.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : E hx₁ : x₁ ∈ s x₂ : E hx₂ : x₂ ∈ s hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x✝.fst ∧ x₂ = x✝.fst [PROOFSTEP] refine' (h (mk_mem_prod hx₁ hx.2) (mk_mem_prod hx₂ hx.2) _).imp (congr_arg Prod.fst) (congr_arg Prod.fst) [GOAL] case h.refine'_1.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : E hx₁ : x₁ ∈ s x₂ : E hx₂ : x₂ ∈ s hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂ ⊢ x✝ ∈ openSegment 𝕜 (x₁, x✝.snd) (x₂, x✝.snd) [PROOFSTEP] rw [← Prod.image_mk_openSegment_left] [GOAL] case h.refine'_1.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : E hx₁ : x₁ ∈ s x₂ : E hx₂ : x₂ ∈ s hx_fst : x✝.fst ∈ openSegment 𝕜 x₁ x₂ ⊢ x✝ ∈ (fun x => (x, x✝.snd)) '' openSegment 𝕜 x₁ x₂ [PROOFSTEP] exact ⟨_, hx_fst, Prod.mk.eta⟩ [GOAL] case h.refine'_1.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ ⊢ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd [PROOFSTEP] rintro x₁ hx₁ x₂ hx₂ hx_snd [GOAL] case h.refine'_1.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : F hx₁ : x₁ ∈ t x₂ : F hx₂ : x₂ ∈ t hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x✝.snd ∧ x₂ = x✝.snd [PROOFSTEP] refine' (h (mk_mem_prod hx.1 hx₁) (mk_mem_prod hx.1 hx₂) _).imp (congr_arg Prod.snd) (congr_arg Prod.snd) [GOAL] case h.refine'_1.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : F hx₁ : x₁ ∈ t x₂ : F hx₂ : x₂ ∈ t hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂ ⊢ x✝ ∈ openSegment 𝕜 (x✝.fst, x₁) (x✝.fst, x₂) [PROOFSTEP] rw [← Prod.image_mk_openSegment_right] [GOAL] case h.refine'_1.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ x₁ : F hx₁ : x₁ ∈ t x₂ : F hx₂ : x₂ ∈ t hx_snd : x✝.snd ∈ openSegment 𝕜 x₁ x₂ ⊢ x✝ ∈ (fun y => (x✝.fst, y)) '' openSegment 𝕜 x₁ x₂ [PROOFSTEP] exact ⟨_, hx_snd, Prod.mk.eta⟩ [GOAL] case h.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd ⊢ ∀ ⦃x₁ : E × F⦄, x₁ ∈ s ×ˢ t → ∀ ⦃x₂ : E × F⦄, x₂ ∈ s ×ˢ t → x✝ ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝ ∧ x₂ = x✝ [PROOFSTEP] rintro x₁ hx₁ x₂ hx₂ ⟨a, b, ha, hb, hab, hx'⟩ [GOAL] case h.refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd x₁ : E × F hx₁ : x₁ ∈ s ×ˢ t x₂ : E × F hx₂ : x₂ ∈ s ×ˢ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : a • x₁ + b • x₂ = x✝ ⊢ x₁ = x✝ ∧ x₂ = x✝ [PROOFSTEP] simp_rw [Prod.ext_iff] [GOAL] case h.refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : Set E t : Set F x✝ : E × F hx : x✝ ∈ s ×ˢ t h : (∀ ⦃x₁ : E⦄, x₁ ∈ s → ∀ ⦃x₂ : E⦄, x₂ ∈ s → x✝.fst ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.fst ∧ x₂ = x✝.fst) ∧ ∀ ⦃x₁ : F⦄, x₁ ∈ t → ∀ ⦃x₂ : F⦄, x₂ ∈ t → x✝.snd ∈ openSegment 𝕜 x₁ x₂ → x₁ = x✝.snd ∧ x₂ = x✝.snd x₁ : E × F hx₁ : x₁ ∈ s ×ˢ t x₂ : E × F hx₂ : x₂ ∈ s ×ˢ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : a • x₁ + b • x₂ = x✝ ⊢ (x₁.fst = x✝.fst ∧ x₁.snd = x✝.snd) ∧ x₂.fst = x✝.fst ∧ x₂.snd = x✝.snd [PROOFSTEP] exact and_and_and_comm.1 ⟨h.1 hx₁.1 hx₂.1 ⟨a, b, ha, hb, hab, congr_arg Prod.fst hx'⟩, h.2 hx₁.2 hx₂.2 ⟨a, b, ha, hb, hab, congr_arg Prod.snd hx'⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x : E s : (i : ι) → Set (π i) ⊢ extremePoints 𝕜 (pi univ s) = pi univ fun i => extremePoints 𝕜 (s i) [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i ⊢ x ∈ extremePoints 𝕜 (pi univ s) ↔ x ∈ pi univ fun i => extremePoints 𝕜 (s i) [PROOFSTEP] simp only [mem_extremePoints, mem_pi, mem_univ, true_imp_iff, @forall_and ι] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i ⊢ ((∀ (i : ι), x i ∈ s i) ∧ ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) ↔ (∀ (i : ι), x i ∈ s i) ∧ ∀ (x_1 : ι) (x₁ : π x_1), x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1 [PROOFSTEP] refine' and_congr_right fun hx ↦ ⟨fun h i ↦ _, fun h ↦ _⟩ [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι ⊢ ∀ (x₁ : π i), x₁ ∈ s i → ∀ (x₂ : π i), x₂ ∈ s i → x i ∈ openSegment 𝕜 x₁ x₂ → x₁ = x i ∧ x₂ = x i [PROOFSTEP] rintro x₁ hx₁ x₂ hx₂ hi [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x i ∧ x₂ = x i [PROOFSTEP] refine' (h (update x i x₁) _ (update x i x₂) _ _).imp (fun h₁ ↦ by rw [← h₁, update_same]) fun h₂ ↦ by rw [← h₂, update_same] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ h₁ : update x i x₁ = x ⊢ x₁ = x i [PROOFSTEP] rw [← h₁, update_same] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ h₂ : update x i x₂ = x ⊢ x₂ = x i [PROOFSTEP] rw [← h₂, update_same] [GOAL] case h.refine'_1.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₁ i_1 ∈ s i_1 case h.refine'_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1 case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] iterate 2 rintro j obtain rfl | hji := eq_or_ne j i · rwa [update_same] · rw [update_noteq hji] exact hx _ [GOAL] case h.refine'_1.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₁ i_1 ∈ s i_1 case h.refine'_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1 case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] rintro j [GOAL] case h.refine'_1.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι ⊢ update x i x₁ j ∈ s j case h.refine'_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1 case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] obtain rfl | hji := eq_or_ne j i [GOAL] case h.refine'_1.refine'_1.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x j : ι x₁ : π j hx₁ : x₁ ∈ s j x₂ : π j hx₂ : x₂ ∈ s j hi : x j ∈ openSegment 𝕜 x₁ x₂ ⊢ update x j x₁ j ∈ s j [PROOFSTEP] rwa [update_same] [GOAL] case h.refine'_1.refine'_1.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι hji : j ≠ i ⊢ update x i x₁ j ∈ s j [PROOFSTEP] rw [update_noteq hji] [GOAL] case h.refine'_1.refine'_1.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι hji : j ≠ i ⊢ x j ∈ s j [PROOFSTEP] exact hx _ [GOAL] case h.refine'_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ ∀ (i_1 : ι), update x i x₂ i_1 ∈ s i_1 case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] rintro j [GOAL] case h.refine'_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι ⊢ update x i x₂ j ∈ s j case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] obtain rfl | hji := eq_or_ne j i [GOAL] case h.refine'_1.refine'_2.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x j : ι x₁ : π j hx₁ : x₁ ∈ s j x₂ : π j hx₂ : x₂ ∈ s j hi : x j ∈ openSegment 𝕜 x₁ x₂ ⊢ update x j x₂ j ∈ s j [PROOFSTEP] rwa [update_same] [GOAL] case h.refine'_1.refine'_2.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι hji : j ≠ i ⊢ update x i x₂ j ∈ s j [PROOFSTEP] rw [update_noteq hji] [GOAL] case h.refine'_1.refine'_2.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ j : ι hji : j ≠ i ⊢ x j ∈ s j [PROOFSTEP] exact hx _ [GOAL] case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ openSegment 𝕜 (update x i x₁) (update x i x₂) [PROOFSTEP] rw [← Pi.image_update_openSegment] [GOAL] case h.refine'_1.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x i : ι x₁ : π i hx₁ : x₁ ∈ s i x₂ : π i hx₂ : x₂ ∈ s i hi : x i ∈ openSegment 𝕜 x₁ x₂ ⊢ x ∈ update x i '' openSegment 𝕜 x₁ x₂ [PROOFSTEP] exact ⟨_, hi, update_eq_self _ _⟩ [GOAL] case h.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x_1 : ι) (x₁ : π x_1), x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1 ⊢ ∀ (x₁ : (i : ι) → π i), (∀ (i : ι), x₁ i ∈ s i) → ∀ (x₂ : (i : ι) → π i), (∀ (i : ι), x₂ i ∈ s i) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x [PROOFSTEP] rintro x₁ hx₁ x₂ hx₂ ⟨a, b, ha, hb, hab, hx'⟩ [GOAL] case h.refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x_1 : ι) (x₁ : π x_1), x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1 x₁ : (i : ι) → π i hx₁ : ∀ (i : ι), x₁ i ∈ s i x₂ : (i : ι) → π i hx₂ : ∀ (i : ι), x₂ i ∈ s i a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : a • x₁ + b • x₂ = x ⊢ x₁ = x ∧ x₂ = x [PROOFSTEP] simp_rw [funext_iff, ← forall_and] [GOAL] case h.refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : (i : ι) → AddCommGroup (π i) inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : (i : ι) → Module 𝕜 (π i) A B : Set E x✝ : E s : (i : ι) → Set (π i) x : (i : ι) → π i hx : ∀ (i : ι), x i ∈ s i h : ∀ (x_1 : ι) (x₁ : π x_1), x₁ ∈ s x_1 → ∀ (x₂ : π x_1), x₂ ∈ s x_1 → x x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ = x x_1 ∧ x₂ = x x_1 x₁ : (i : ι) → π i hx₁ : ∀ (i : ι), x₁ i ∈ s i x₂ : (i : ι) → π i hx₂ : ∀ (i : ι), x₂ i ∈ s i a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : a • x₁ + b • x₂ = x ⊢ ∀ (x_1 : ι), x₁ x_1 = x x_1 ∧ x₂ x_1 = x x_1 [PROOFSTEP] exact fun i ↦ h _ _ (hx₁ _) _ (hx₂ _) ⟨a, b, ha, hb, hab, congr_fun hx' _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E ⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A ∧ ∀ (x₁ : E), x₁ ∈ A → ∀ (x₂ : E), x₂ ∈ A → x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x [PROOFSTEP] refine' and_congr_right fun hxA ↦ forall₄_congr fun x₁ h₁ x₂ h₂ ↦ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A ⊢ x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x ↔ x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A ⊢ (x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) → x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x [PROOFSTEP] rw [← insert_endpoints_openSegment] [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A ⊢ (x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x) → x ∈ insert x₁ (insert x₂ (openSegment 𝕜 x₁ x₂)) → x₁ = x ∨ x₂ = x [PROOFSTEP] rintro H (rfl | rfl | hx) [GOAL] case mp.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₂ : E h₂ : x₂ ∈ A h₁ : x ∈ A H : x ∈ openSegment 𝕜 x x₂ → x = x ∧ x₂ = x ⊢ x = x ∨ x₂ = x case mp.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A h₂ : x ∈ A H : x ∈ openSegment 𝕜 x₁ x → x₁ = x ∧ x = x ⊢ x₁ = x ∨ x = x case mp.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A H : x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x ∨ x₂ = x [PROOFSTEP] exacts [Or.inl rfl, Or.inr rfl, Or.inl <| (H hx).1] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A ⊢ (x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x) → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x [PROOFSTEP] intro H hx [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hxA : x ∈ A x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A H : x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x hx : x ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x ∧ x₂ = x [PROOFSTEP] rcases H (openSegment_subset_segment _ _ _ hx) with (rfl | rfl) [GOAL] case mpr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ : x₂ ∈ A hxA : x₁ ∈ A H : x₁ ∈ segment 𝕜 x₁ x₂ → x₁ = x₁ ∨ x₂ = x₁ hx : x₁ ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x₁ ∧ x₂ = x₁ case mpr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x₁ : E h₁ : x₁ ∈ A x₂ : E h₂ hxA : x₂ ∈ A H : x₂ ∈ segment 𝕜 x₁ x₂ → x₁ = x₂ ∨ x₂ = x₂ hx : x₂ ∈ openSegment 𝕜 x₁ x₂ ⊢ x₁ = x₂ ∧ x₂ = x₂ [PROOFSTEP] exacts [⟨rfl, (left_mem_openSegment_iff.1 hx).symm⟩, ⟨right_mem_openSegment_iff.1 hx, rfl⟩] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A ⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A ∧ Convex 𝕜 (A \ {x}) [PROOFSTEP] use fun hx ↦ ⟨hx.1, (mem_extremePoints_iff_extreme_singleton.1 hx).convex_diff hA⟩ [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A ⊢ x ∈ A ∧ Convex 𝕜 (A \ {x}) → x ∈ extremePoints 𝕜 A [PROOFSTEP] rintro ⟨hxA, hAx⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A hxA : x ∈ A hAx : Convex 𝕜 (A \ {x}) ⊢ x ∈ extremePoints 𝕜 A [PROOFSTEP] refine' mem_extremePoints_iff_forall_segment.2 ⟨hxA, fun x₁ hx₁ x₂ hx₂ hx ↦ _⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A hxA : x ∈ A hAx : Convex 𝕜 (A \ {x}) x₁ : E hx₁ : x₁ ∈ A x₂ : E hx₂ : x₂ ∈ A hx : x ∈ [x₁-[𝕜]x₂] ⊢ x₁ = x ∨ x₂ = x [PROOFSTEP] rw [convex_iff_segment_subset] at hAx [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A hxA : x ∈ A hAx : ∀ ⦃x_1 : E⦄, x_1 ∈ A \ {x} → ∀ ⦃y : E⦄, y ∈ A \ {x} → [x_1-[𝕜]y] ⊆ A \ {x} x₁ : E hx₁ : x₁ ∈ A x₂ : E hx₂ : x₂ ∈ A hx : x ∈ [x₁-[𝕜]x₂] ⊢ x₁ = x ∨ x₂ = x [PROOFSTEP] by_contra' h [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A hxA : x ∈ A hAx : ∀ ⦃x_1 : E⦄, x_1 ∈ A \ {x} → ∀ ⦃y : E⦄, y ∈ A \ {x} → [x_1-[𝕜]y] ⊆ A \ {x} x₁ : E hx₁ : x₁ ∈ A x₂ : E hx₂ : x₂ ∈ A hx : x ∈ [x₁-[𝕜]x₂] h : x₁ ≠ x ∧ x₂ ≠ x ⊢ False [PROOFSTEP] exact (hAx ⟨hx₁, fun hx₁ ↦ h.1 (mem_singleton_iff.2 hx₁)⟩ ⟨hx₂, fun hx₂ ↦ h.2 (mem_singleton_iff.2 hx₂)⟩ hx).2 rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E hA : Convex 𝕜 A ⊢ x ∈ extremePoints 𝕜 A ↔ x ∈ A \ ↑(convexHull 𝕜) (A \ {x}) [PROOFSTEP] rw [hA.mem_extremePoints_iff_convex_diff, hA.convex_remove_iff_not_mem_convexHull_remove, mem_diff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x : E ⊢ extremePoints 𝕜 (↑(convexHull 𝕜) A) ⊆ A [PROOFSTEP] rintro x hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x✝ x : E hx : x ∈ extremePoints 𝕜 (↑(convexHull 𝕜) A) ⊢ x ∈ A [PROOFSTEP] rw [(convex_convexHull 𝕜 _).mem_extremePoints_iff_convex_diff] at hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x✝ x : E hx : x ∈ ↑(convexHull 𝕜) A ∧ Convex 𝕜 (↑(convexHull 𝕜) A \ {x}) ⊢ x ∈ A [PROOFSTEP] by_contra h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 π : ι → Type u_5 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E A B : Set E x✝ x : E hx : x ∈ ↑(convexHull 𝕜) A ∧ Convex 𝕜 (↑(convexHull 𝕜) A \ {x}) h : ¬x ∈ A ⊢ False [PROOFSTEP] exact (convexHull_min (subset_diff.2 ⟨subset_convexHull 𝕜 _, disjoint_singleton_right.2 h⟩) hx.2 hx.1).2 rfl
{"mathlib_filename": "Mathlib.Analysis.Convex.Extreme", "llama_tokens": 29451}
[GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R h : degree f ≠ 0 ⊢ span {f} ≠ ⊤ [PROOFSTEP] simp_rw [Ne.def, span_singleton_eq_top, Polynomial.isUnit_iff, not_exists, not_and] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R h : degree f ≠ 0 ⊢ ∀ (x : R), IsUnit x → ¬↑C x = f [PROOFSTEP] rintro x hx rfl [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : IsUnit x h : degree (↑C x) ≠ 0 ⊢ False [PROOFSTEP] exact h (degree_C hx.ne_zero) [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : DistribSMul S R inst✝ : IsScalarTower S R R a : S x : R ⊢ a • ↑(of f) x = ↑(of f) (a • x) [PROOFSTEP] rw [of, RingHom.comp_apply, RingHom.comp_apply, smul_mk, smul_C] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f g : R[X] ⊢ f ∣ g - 0 ↔ f ∣ g [PROOFSTEP] rw [sub_zero] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f : R[X] ⊢ f ∣ -f + 0 [PROOFSTEP] simp [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] x : R ⊢ ↑(aeval (root f)) (↑C x) = ↑(mk f) (↑C x) [PROOFSTEP] rw [aeval_C] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] x : R ⊢ ↑(algebraMap R (AdjoinRoot f)) x = ↑(mk f) (↑C x) [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f p✝ p q : R[X] ihp : ↑(aeval (root f)) p = ↑(mk f) p ihq : ↑(aeval (root f)) q = ↑(mk f) q ⊢ ↑(aeval (root f)) (p + q) = ↑(mk f) (p + q) [PROOFSTEP] rw [AlgHom.map_add, RingHom.map_add, ihp, ihq] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] n : ℕ x : R x✝ : ↑(aeval (root f)) (↑C x * X ^ n) = ↑(mk f) (↑C x * X ^ n) ⊢ ↑(aeval (root f)) (↑C x * X ^ (n + 1)) = ↑(mk f) (↑C x * X ^ (n + 1)) [PROOFSTEP] rw [AlgHom.map_mul, aeval_C, AlgHom.map_pow, aeval_X, RingHom.map_mul, mk_C, RingHom.map_pow, mk_X] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] n : ℕ x : R x✝ : ↑(aeval (root f)) (↑C x * X ^ n) = ↑(mk f) (↑C x * X ^ n) ⊢ ↑(algebraMap R (AdjoinRoot f)) x * root f ^ (n + 1) = ↑(of f) x * root f ^ (n + 1) [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f : R[X] ⊢ Algebra.adjoin R {root f} = ⊤ [PROOFSTEP] refine Algebra.eq_top_iff.2 fun x => ?_ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f : R[X] x : AdjoinRoot f ⊢ x ∈ Algebra.adjoin R {root f} [PROOFSTEP] induction x using AdjoinRoot.induction_on with | ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f : R[X] x : AdjoinRoot f ⊢ x ∈ Algebra.adjoin R {root f} [PROOFSTEP] induction x using AdjoinRoot.induction_on with | ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩ [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] ⊢ ↑(mk f) p ∈ Algebra.adjoin R {root f} [PROOFSTEP] | ih p => exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩ [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R f p : R[X] ⊢ ↑(mk f) p ∈ Algebra.adjoin R {root f} [PROOFSTEP] exact (Algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f✝ f : R[X] ⊢ eval₂ (of f) (root f) f = 0 [PROOFSTEP] rw [← algebraMap_eq, ← aeval_def, aeval_eq, mk_self] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R f✝ f : R[X] ⊢ IsRoot (Polynomial.map (of f) f) (root f) [PROOFSTEP] rw [IsRoot, eval_map, eval₂_root] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 ⊢ Function.Injective ↑(of f) [PROOFSTEP] rw [injective_iff_map_eq_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 ⊢ ∀ (a : R), ↑(of f) a = 0 → a = 0 [PROOFSTEP] intro p hp [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 p : R hp : ↑(of f) p = 0 ⊢ p = 0 [PROOFSTEP] rw [AdjoinRoot.of, RingHom.comp_apply, AdjoinRoot.mk_eq_zero] at hp [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 p : R hp : f ∣ ↑C p ⊢ p = 0 [PROOFSTEP] by_cases h : f = 0 [GOAL] case pos R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 p : R hp : f ∣ ↑C p h : f = 0 ⊢ p = 0 [PROOFSTEP] exact C_eq_zero.mp (eq_zero_of_zero_dvd (by rwa [h] at hp )) [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 p : R hp : f ∣ ↑C p h : f = 0 ⊢ 0 ∣ ↑C p [PROOFSTEP] rwa [h] at hp [GOAL] case neg R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R hf : degree f ≠ 0 p : R hp : f ∣ ↑C p h : ¬f = 0 ⊢ p = 0 [PROOFSTEP] contrapose! hf with h_contra [GOAL] case neg R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R p : R hp : f ∣ ↑C p h : ¬f = 0 h_contra : p ≠ 0 ⊢ degree f = 0 [PROOFSTEP] rw [← degree_C h_contra] [GOAL] case neg R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R p : R hp : f ∣ ↑C p h : ¬f = 0 h_contra : p ≠ 0 ⊢ degree f = degree (↑C p) [PROOFSTEP] apply le_antisymm (degree_le_of_dvd hp (by rwa [Ne.def, C_eq_zero])) _ [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R p : R hp : f ∣ ↑C p h : ¬f = 0 h_contra : p ≠ 0 ⊢ ↑C p ≠ 0 [PROOFSTEP] rwa [Ne.def, C_eq_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R p : R hp : f ∣ ↑C p h : ¬f = 0 h_contra : p ≠ 0 ⊢ degree (↑C p) ≤ degree f [PROOFSTEP] rwa [degree_C h_contra, zero_le_degree_iff] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S x : S h : eval₂ i x f = 0 ⊢ AdjoinRoot f →+* S [PROOFSTEP] apply Ideal.Quotient.lift _ (eval₂RingHom i x) [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S x : S h : eval₂ i x f = 0 ⊢ ∀ (a : R[X]), a ∈ span {f} → ↑(eval₂RingHom i x) a = 0 [PROOFSTEP] intro g H [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S x : S h : eval₂ i x f = 0 g : R[X] H : g ∈ span {f} ⊢ ↑(eval₂RingHom i x) g = 0 [PROOFSTEP] rcases mem_span_singleton.1 H with ⟨y, hy⟩ [GOAL] case intro R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S x : S h : eval₂ i x f = 0 g : R[X] H : g ∈ span {f} y : R[X] hy : g = f * y ⊢ ↑(eval₂RingHom i x) g = 0 [PROOFSTEP] rw [hy, RingHom.map_mul, coe_eval₂RingHom, h, zero_mul] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 ⊢ ↑(lift i a h) (root f) = a [PROOFSTEP] rw [root, lift_mk, eval₂_X] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R f : R[X] inst✝ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 x : R ⊢ ↑(lift i a h) (↑(of f) x) = ↑i x [PROOFSTEP] rw [← mk_C x, lift_mk, eval₂_C] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 inst✝ : Algebra R S ϕ : AdjoinRoot f →ₐ[R] S ⊢ ↑(aeval (↑ϕ (root f))) f = 0 [PROOFSTEP] have h : ϕ.toRingHom.comp (of f) = algebraMap R S := RingHom.ext_iff.mpr ϕ.commutes [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h✝ : eval₂ i a f = 0 inst✝ : Algebra R S ϕ : AdjoinRoot f →ₐ[R] S h : RingHom.comp (↑ϕ) (of f) = algebraMap R S ⊢ ↑(aeval (↑ϕ (root f))) f = 0 [PROOFSTEP] rw [aeval_def, ← h, ← RingHom.map_zero ϕ.toRingHom, ← eval₂_root f, hom_eval₂] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h✝ : eval₂ i a f = 0 inst✝ : Algebra R S ϕ : AdjoinRoot f →ₐ[R] S h : RingHom.comp (↑ϕ) (of f) = algebraMap R S ⊢ eval₂ (RingHom.comp (↑ϕ) (of f)) (↑ϕ (root f)) f = eval₂ (RingHom.comp (↑ϕ) (of f)) (↑↑ϕ (root f)) f [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f✝ : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f✝ = 0 inst✝ : Algebra R S f : R[X] ϕ : AdjoinRoot f →ₐ[R] S ⊢ liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0) = ϕ [PROOFSTEP] suffices ϕ.equalizer (liftHom f (ϕ (root f)) (aeval_algHom_eq_zero f ϕ)) = ⊤ by exact (AlgHom.ext fun x => (SetLike.ext_iff.mp this x).mpr Algebra.mem_top).symm [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f✝ : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f✝ = 0 inst✝ : Algebra R S f : R[X] ϕ : AdjoinRoot f →ₐ[R] S this : AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0)) = ⊤ ⊢ liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0) = ϕ [PROOFSTEP] exact (AlgHom.ext fun x => (SetLike.ext_iff.mp this x).mpr Algebra.mem_top).symm [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f✝ : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f✝ = 0 inst✝ : Algebra R S f : R[X] ϕ : AdjoinRoot f →ₐ[R] S ⊢ AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0)) = ⊤ [PROOFSTEP] rw [eq_top_iff, ← adjoinRoot_eq_top, Algebra.adjoin_le_iff, Set.singleton_subset_iff] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f✝ : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f✝ = 0 inst✝ : Algebra R S f : R[X] ϕ : AdjoinRoot f →ₐ[R] S ⊢ root f ∈ ↑(AlgHom.equalizer ϕ (liftHom f (↑ϕ (root f)) (_ : ↑(aeval (↑ϕ (root f))) f = 0))) [PROOFSTEP] exact (@lift_root _ _ _ _ _ _ _ (aeval_algHom_eq_zero f ϕ)).symm [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 inst✝ : Algebra R S hfx : ↑(aeval a) f = 0 r : R ⊢ ↑(of (↑C r * X - 1)) r * root (↑C r * X - 1) = 1 [PROOFSTEP] convert sub_eq_zero.1 ((eval₂_sub _).symm.trans <| eval₂_root <| C r * X - 1) [GOAL] case h.e'_2 R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 inst✝ : Algebra R S hfx : ↑(aeval a) f = 0 r : R ⊢ ↑(of (↑C r * X - 1)) r * root (↑C r * X - 1) = eval₂ (of (↑C r * X - 1)) (root (↑C r * X - 1)) (↑C r * X) [PROOFSTEP] simp only [eval₂_mul, eval₂_C, eval₂_X, eval₂_one] [GOAL] case h.e'_3 R : Type u S : Type v K : Type w inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S i : R →+* S a : S h : eval₂ i a f = 0 inst✝ : Algebra R S hfx : ↑(aeval a) f = 0 r : R ⊢ 1 = eval₂ (of (↑C r * X - 1)) (root (↑C r * X - 1)) 1 [PROOFSTEP] simp only [eval₂_mul, eval₂_C, eval₂_X, eval₂_one] [GOAL] R : Type u S✝ : Type v K : Type w inst✝⁴ : CommRing R f✝ : R[X] inst✝³ : CommRing S✝ i : R →+* S✝ a : S✝ h : eval₂ i a f✝ = 0 inst✝² : Algebra R S✝ hfx : ↑(aeval a) f✝ = 0 S : Type u_1 inst✝¹ : CommRing S inst✝ : Algebra R S r : R f g : AdjoinRoot (↑C r * X - 1) →ₐ[R] S ⊢ ↑(algebraMap R S) r * ↑f (root (↑C r * X - 1)) = 1 [PROOFSTEP] rw [← f.commutes, ← f.map_mul, algebraMap_eq, root_isInv, map_one] [GOAL] R : Type u S✝ : Type v K : Type w inst✝⁴ : CommRing R f✝ : R[X] inst✝³ : CommRing S✝ i : R →+* S✝ a : S✝ h : eval₂ i a f✝ = 0 inst✝² : Algebra R S✝ hfx : ↑(aeval a) f✝ = 0 S : Type u_1 inst✝¹ : CommRing S inst✝ : Algebra R S r : R f g : AdjoinRoot (↑C r * X - 1) →ₐ[R] S ⊢ ↑(algebraMap R S) r * ↑g (root (↑C r * X - 1)) = 1 [PROOFSTEP] rw [← g.commutes, ← g.map_mul, algebraMap_eq, root_isInv, map_one] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : Field K f : K[X] inst✝ : Fact (Irreducible f) src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f}) a : ℤ b : ℕ h1 : b ≠ 0 h2 : Nat.coprime (Int.natAbs a) b ⊢ ↑(Rat.mk' a b) = ↑a * (↑b)⁻¹ [PROOFSTEP] letI : GroupWithZero (AdjoinRoot f) := Ideal.Quotient.groupWithZero _ -- porting note: was -- `rw [Rat.cast_mk' (K := ℚ), _root_.map_mul, _root_.map_intCast, map_inv₀, map_natCast]` [GOAL] R : Type u S : Type v K : Type w inst✝¹ : Field K f : K[X] inst✝ : Fact (Irreducible f) src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f}) a : ℤ b : ℕ h1 : b ≠ 0 h2 : Nat.coprime (Int.natAbs a) b this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f}) ⊢ ↑(Rat.mk' a b) = ↑a * (↑b)⁻¹ [PROOFSTEP] convert_to ((Rat.mk' a b h1 h2 : K) : AdjoinRoot f) = ((↑a * (↑b)⁻¹ : K) : AdjoinRoot f) [GOAL] case h.e'_3 R : Type u S : Type v K : Type w inst✝¹ : Field K f : K[X] inst✝ : Fact (Irreducible f) src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f}) a : ℤ b : ℕ h1 : b ≠ 0 h2 : Nat.coprime (Int.natAbs a) b this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f}) ⊢ ↑a * (↑b)⁻¹ = ↑(of f) (↑a * (↑b)⁻¹) [PROOFSTEP] simp only [_root_.map_mul, map_intCast, map_inv₀, map_natCast] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : Field K f : K[X] inst✝ : Fact (Irreducible f) src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f}) a : ℤ b : ℕ h1 : b ≠ 0 h2 : Nat.coprime (Int.natAbs a) b this : GroupWithZero (AdjoinRoot f) := Quotient.groupWithZero (span {f}) ⊢ ↑(of f) ↑(Rat.mk' a b) = ↑(of f) (↑a * (↑b)⁻¹) [PROOFSTEP] simp only [Rat.cast_mk', _root_.map_mul, map_intCast, map_inv₀, map_natCast] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : Field K f : K[X] inst✝ : Fact (Irreducible f) src✝ : GroupWithZero (K[X] ⧸ span {f}) := Quotient.groupWithZero (span {f}) a : ℚ x : AdjoinRoot f p : K[X] ⊢ (fun y => a • y = ↑(of f) ↑a * y) (↑(mk f) p) [PROOFSTEP] simp only [smul_mk, of, RingHom.comp_apply, ← (mk f).map_mul, Polynomial.rat_smul_eq_C_mul] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g ⊢ Function.LeftInverse ↑(mk g) ↑(modByMonicHom hg) [PROOFSTEP] intro f [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g f : AdjoinRoot g ⊢ ↑(mk g) (↑(modByMonicHom hg) f) = f [PROOFSTEP] induction f using AdjoinRoot.induction_on [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ ↑(mk g) (↑(modByMonicHom hg) (↑(mk g) p✝)) = ↑(mk g) p✝ [PROOFSTEP] rw [modByMonicHom_mk hg, mk_eq_mk, modByMonic_eq_sub_mul_div _ hg, sub_sub_cancel_left, dvd_neg] [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ g ∣ g * (p✝ /ₘ g) [PROOFSTEP] apply dvd_mul_right [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g f₁ f₂ : AdjoinRoot g i : Fin (natDegree g) ⊢ (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) i = ((fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) i [PROOFSTEP] simp only [(modByMonicHom hg).map_add, coeff_add, Pi.add_apply] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g f₁ : R f₂ : AdjoinRoot g i : Fin (natDegree g) ⊢ AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) i = (↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) i [PROOFSTEP] simp only [(modByMonicHom hg).map_smul, coeff_smul, Pi.smul_apply, RingHom.id_apply] -- porting note: another proof that I converted to tactic mode [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g ⊢ Function.LeftInverse (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) { toAddHom := { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }, map_smul' := (_ : ∀ (f₁ : R) (f₂ : AdjoinRoot g), AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) = ↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g f : AdjoinRoot g ⊢ (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) (AddHom.toFun { toAddHom := { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }, map_smul' := (_ : ∀ (f₁ : R) (f₂ : AdjoinRoot g), AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) = ↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) }.toAddHom f) = f [PROOFSTEP] induction f using AdjoinRoot.induction_on [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ (fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) (AddHom.toFun { toAddHom := { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }, map_smul' := (_ : ∀ (f₁ : R) (f₂ : AdjoinRoot g), AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) = ↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) }.toAddHom (↑(mk g) p✝)) = ↑(mk g) p✝ [PROOFSTEP] simp only [modByMonicHom_mk, sum_modByMonic_coeff hg degree_le_natDegree] [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ ↑(mk g) (p✝ %ₘ g) = ↑(mk g) p✝ [PROOFSTEP] refine (mk_eq_mk.mpr ?_).symm [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ g ∣ p✝ - p✝ %ₘ g [PROOFSTEP] rw [modByMonic_eq_sub_mul_div _ hg, sub_sub_cancel] [GOAL] case ih R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g p✝ : R[X] ⊢ g ∣ g * (p✝ /ₘ g) [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }, map_smul' := (_ : ∀ (f₁ : R) (f₂ : AdjoinRoot g), AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) = ↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) }.toAddHom ((fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) x) i = x i [PROOFSTEP] nontriviality R [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ✝ : Nontrivial R ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) }, map_smul' := (_ : ∀ (f₁ : R) (f₂ : AdjoinRoot g), AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } (f₁ • f₂) = ↑(RingHom.id R) f₁ • AddHom.toFun { toFun := fun f i => coeff (↑(modByMonicHom hg) f) ↑i, map_add' := (_ : ∀ (f₁ f₂ : AdjoinRoot g), (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) (f₁ + f₂) = (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₁ + (fun f i => coeff (↑(modByMonicHom hg) f) ↑i) f₂) } f₂) }.toAddHom ((fun c => ↑(mk g) (∑ i : Fin (natDegree g), ↑(monomial ↑i) (c i))) x) i = x i [PROOFSTEP] simp only [modByMonicHom_mk] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ✝ : Nontrivial R ⊢ coeff ((∑ x_1 : Fin (natDegree g), ↑(monomial ↑x_1) (x x_1)) %ₘ g) ↑i = x i [PROOFSTEP] rw [(modByMonic_eq_self_iff hg).mpr, finset_sum_coeff] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ✝ : Nontrivial R ⊢ ∑ b : Fin (natDegree g), coeff (↑(monomial ↑b) (x b)) ↑i = x i [PROOFSTEP] simp_rw [coeff_monomial, Fin.val_eq_val, Finset.sum_ite_eq', if_pos (Finset.mem_univ _)] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ✝ : Nontrivial R ⊢ degree (∑ x_1 : Fin (natDegree g), ↑(monomial ↑x_1) (x x_1)) < degree g [PROOFSTEP] simp_rw [← C_mul_X_pow_eq_monomial] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g x : Fin (natDegree g) → R i : Fin (natDegree g) ✝ : Nontrivial R ⊢ degree (∑ x_1 : Fin (natDegree g), ↑C (x x_1) * X ^ ↑x_1) < degree g [PROOFSTEP] exact (degree_eq_natDegree <| hg.ne_zero).symm ▸ degree_sum_fin_lt _ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) ⊢ ↑(powerBasisAux' hg) i = root g ^ ↑i [PROOFSTEP] simp only [powerBasisAux', Basis.coe_ofEquivFun, LinearEquiv.coe_symm_mk] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) ⊢ ↑(mk g) (∑ x : Fin (natDegree g), ↑(monomial ↑x) (Function.update 0 i 1 x)) = root g ^ ↑i [PROOFSTEP] rw [Finset.sum_eq_single i] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) ⊢ ↑(mk g) (↑(monomial ↑i) (Function.update 0 i 1 i)) = root g ^ ↑i [PROOFSTEP] rw [Function.update_same, monomial_one_right_eq_X_pow, (mk g).map_pow, mk_X] [GOAL] case h₀ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) ⊢ ∀ (b : Fin (natDegree g)), b ∈ Finset.univ → b ≠ i → ↑(monomial ↑b) (Function.update 0 i 1 b) = 0 [PROOFSTEP] intro j _ hj [GOAL] case h₀ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i j : Fin (natDegree g) a✝ : j ∈ Finset.univ hj : j ≠ i ⊢ ↑(monomial ↑j) (Function.update 0 i 1 j) = 0 [PROOFSTEP] rw [← monomial_zero_right _] [GOAL] case h₀ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i j : Fin (natDegree g) a✝ : j ∈ Finset.univ hj : j ≠ i ⊢ ↑(monomial ↑j) (Function.update 0 i 1 j) = ↑(monomial ?m.1619036) 0 R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i j : Fin (natDegree g) a✝ : j ∈ Finset.univ hj : j ≠ i ⊢ ℕ [PROOFSTEP] convert congr_arg _ (Function.update_noteq hj _ _) -- Fix `DecidableEq` mismatch [GOAL] case h₁ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) ⊢ ¬i ∈ Finset.univ → ↑(monomial ↑i) (Function.update 0 i 1 i) = 0 [PROOFSTEP] intros [GOAL] case h₁ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) a✝ : ¬i ∈ Finset.univ ⊢ ↑(monomial ↑i) (Function.update 0 i 1 i) = 0 [PROOFSTEP] have := Finset.mem_univ i [GOAL] case h₁ R : Type u S : Type v K : Type w inst✝ : CommRing R g : R[X] hg : Monic g i : Fin (natDegree g) a✝ : ¬i ∈ Finset.univ this : i ∈ Finset.univ ⊢ ↑(monomial ↑i) (Function.update 0 i 1 i) = 0 [PROOFSTEP] contradiction [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 ⊢ minpoly K (root f) = f * ↑C (Polynomial.leadingCoeff f)⁻¹ [PROOFSTEP] have f'_monic : Monic _ := monic_mul_leadingCoeff_inv hf [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ⊢ minpoly K (root f) = f * ↑C (Polynomial.leadingCoeff f)⁻¹ [PROOFSTEP] refine' (minpoly.unique K _ f'_monic _ _).symm [GOAL] case refine'_1 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ⊢ ↑(aeval (root f)) (f * ↑C (Polynomial.leadingCoeff f)⁻¹) = 0 [PROOFSTEP] rw [AlgHom.map_mul, aeval_eq, mk_self, zero_mul] [GOAL] case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ⊢ ∀ (q : K[X]), Monic q → ↑(aeval (root f)) q = 0 → degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q [PROOFSTEP] intro q q_monic q_aeval [GOAL] case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 ⊢ degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q [PROOFSTEP] have commutes : (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval).comp (mk q) = mk f := by ext · simp only [RingHom.comp_apply, mk_C, lift_of] rfl · simp only [RingHom.comp_apply, mk_X, lift_root] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 ⊢ RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f [PROOFSTEP] ext [GOAL] case h₁.a R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 x✝ : K ⊢ ↑(RingHom.comp (RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q)) C) x✝ = ↑(RingHom.comp (mk f) C) x✝ [PROOFSTEP] simp only [RingHom.comp_apply, mk_C, lift_of] [GOAL] case h₁.a R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 x✝ : K ⊢ ↑(algebraMap K (AdjoinRoot f)) x✝ = ↑(of f) x✝ [PROOFSTEP] rfl [GOAL] case h₂ R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 ⊢ ↑(RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q)) X = ↑(mk f) X [PROOFSTEP] simp only [RingHom.comp_apply, mk_X, lift_root] [GOAL] case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ degree (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≤ degree q [PROOFSTEP] rw [degree_eq_natDegree f'_monic.ne_zero, degree_eq_natDegree q_monic.ne_zero, Nat.cast_withBot, Nat.cast_withBot, -- porting note: addedWithBot.coe_le_coe, natDegree_mul hf, natDegree_C, add_zero] [GOAL] case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ natDegree f ≤ natDegree q case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0 [PROOFSTEP] apply natDegree_le_of_dvd [GOAL] case refine'_2.h1 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ f ∣ q [PROOFSTEP] have : mk f q = 0 := by rw [← commutes, RingHom.comp_apply, mk_self, RingHom.map_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ ↑(mk f) q = 0 [PROOFSTEP] rw [← commutes, RingHom.comp_apply, mk_self, RingHom.map_zero] [GOAL] case refine'_2.h1 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f this : ↑(mk f) q = 0 ⊢ f ∣ q [PROOFSTEP] exact mk_eq_zero.1 this [GOAL] case refine'_2.h2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ q ≠ 0 [PROOFSTEP] exact q_monic.ne_zero [GOAL] case refine'_2 R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f'_monic : Monic (f * ↑C (Polynomial.leadingCoeff f)⁻¹) q : K[X] q_monic : Monic q q_aeval : ↑(aeval (root f)) q = 0 commutes : RingHom.comp (lift (algebraMap K (AdjoinRoot f)) (root f) q_aeval) (mk q) = mk f ⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0 [PROOFSTEP] rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 ⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f) [PROOFSTEP] let f' := f * C f.leadingCoeff⁻¹ [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ ⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f) [PROOFSTEP] have deg_f' : f'.natDegree = f.natDegree := by rw [natDegree_mul hf, natDegree_C, add_zero] · rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ ⊢ natDegree f' = natDegree f [PROOFSTEP] rw [natDegree_mul hf, natDegree_C, add_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ ⊢ ↑C (Polynomial.leadingCoeff f)⁻¹ ≠ 0 [PROOFSTEP] rwa [Ne.def, C_eq_zero, inv_eq_zero, leadingCoeff_eq_zero] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f ⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f) [PROOFSTEP] have minpoly_eq : minpoly K (root f) = f' := minpoly_root hf [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' ⊢ Basis (Fin (natDegree f)) K (AdjoinRoot f) [PROOFSTEP] apply @Basis.mk _ _ _ fun i : Fin f.natDegree => root f ^ i.val [GOAL] case hli R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' ⊢ LinearIndependent K fun i => root f ^ ↑i [PROOFSTEP] rw [← deg_f', ← minpoly_eq] [GOAL] case hli R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' ⊢ LinearIndependent K fun i => root f ^ ↑i [PROOFSTEP] exact linearIndependent_pow (root f) [GOAL] case hsp R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' ⊢ ⊤ ≤ Submodule.span K (Set.range fun i => root f ^ ↑i) [PROOFSTEP] rintro y - [GOAL] case hsp R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f ⊢ y ∈ Submodule.span K (Set.range fun i => root f ^ ↑i) [PROOFSTEP] rw [← deg_f', ← minpoly_eq] [GOAL] case hsp R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f ⊢ y ∈ Submodule.span K (Set.range fun i => root f ^ ↑i) [PROOFSTEP] apply (isIntegral_root hf).mem_span_pow [GOAL] case hsp R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f ⊢ ∃ f_1, y = ↑(aeval (root f)) f_1 [PROOFSTEP] obtain ⟨g⟩ := y [GOAL] case hsp.mk R : Type u S : Type v K : Type w inst✝¹ : CommRing R g✝ : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f g : K[X] ⊢ ∃ f_1, Quot.mk Setoid.r g = ↑(aeval (root f)) f_1 [PROOFSTEP] use g [GOAL] case h R : Type u S : Type v K : Type w inst✝¹ : CommRing R g✝ : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f g : K[X] ⊢ Quot.mk Setoid.r g = ↑(aeval (root f)) g [PROOFSTEP] rw [aeval_eq] [GOAL] case h R : Type u S : Type v K : Type w inst✝¹ : CommRing R g✝ : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 f' : K[X] := f * ↑C (Polynomial.leadingCoeff f)⁻¹ deg_f' : natDegree f' = natDegree f minpoly_eq : minpoly K (root f) = f' y : AdjoinRoot f g : K[X] ⊢ Quot.mk Setoid.r g = ↑(mk f) g [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 ⊢ ∀ (i : Fin (natDegree f)), ↑(powerBasisAux hf) i = root f ^ ↑i [PROOFSTEP] simp [powerBasisAux] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : f ≠ 0 ⊢ minpoly K (powerBasis hf).gen = f * ↑C (Polynomial.leadingCoeff f)⁻¹ [PROOFSTEP] rw [powerBasis_gen, minpoly_root hf] [GOAL] R : Type u S : Type v K : Type w inst✝¹ : CommRing R g : R[X] inst✝ : Field K f : K[X] hf : Monic f hf' : optParam (f ≠ 0) (_ : f ≠ 0) ⊢ minpoly K (powerBasis hf').gen = f [PROOFSTEP] rw [minpoly_powerBasis_gen hf', hf.leadingCoeff, inv_one, C.map_one, mul_one] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ ↑(aeval { val := x, property := (_ : x ∈ adjoin R {x}) }) (minpoly R x) = 0 [PROOFSTEP] simp [← Subalgebra.coe_eq_zero, aeval_subalgebra_coe] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S a : AdjoinRoot (minpoly R x) ⊢ ↑(aeval { val := x, property := (_ : x ∈ adjoin R {x}) }) (minpoly R x) = 0 [PROOFSTEP] simp [← Subalgebra.coe_eq_zero, aeval_subalgebra_coe] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ ↑(toAdjoin R x) (↑(mk (minpoly R x)) X) = { val := x, property := (_ : x ∈ adjoin R {x}) } [PROOFSTEP] simp [toAdjoin] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ Function.Surjective ↑(toAdjoin R x) [PROOFSTEP] rw [← range_top_iff_surjective, _root_.eq_top_iff, ← adjoin_adjoin_coe_preimage] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ adjoin R (Subtype.val ⁻¹' {x}) ≤ AlgHom.range (toAdjoin R x) [PROOFSTEP] refine' adjoin_le _ [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ Subtype.val ⁻¹' {x} ⊆ ↑(AlgHom.range (toAdjoin R x)) [PROOFSTEP] simp only [AlgHom.coe_range, Set.mem_range] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ Subtype.val ⁻¹' {x} ⊆ Set.range ↑(toAdjoin R x) [PROOFSTEP] rintro ⟨y₁, y₂⟩ h [GOAL] case mk R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x y₁ : S y₂ : y₁ ∈ ↑(adjoin R {x}) h : { val := y₁, property := y₂ } ∈ Subtype.val ⁻¹' {x} ⊢ { val := y₁, property := y₂ } ∈ Set.range ↑(toAdjoin R x) [PROOFSTEP] refine' ⟨mk (minpoly R x) X, by simpa [toAdjoin] using h.symm⟩ [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x y₁ : S y₂ : y₁ ∈ ↑(adjoin R {x}) h : { val := y₁, property := y₂ } ∈ Subtype.val ⁻¹' {x} ⊢ ↑(toAdjoin R x) (↑(mk (minpoly R x)) X) = { val := y₁, property := y₂ } [PROOFSTEP] simpa [toAdjoin] using h.symm [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S g : R[X] pb : PowerBasis R S h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0 h₂ : ↑(aeval pb.gen) g = 0 src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂ x : AdjoinRoot g ⊢ ↑(PowerBasis.lift pb (root g) h₁) (↑(liftHom g pb.gen h₂) x) = x [PROOFSTEP] induction x using AdjoinRoot.induction_on [GOAL] case ih R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S g : R[X] pb : PowerBasis R S h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0 h₂ : ↑(aeval pb.gen) g = 0 src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂ p✝ : R[X] ⊢ ↑(PowerBasis.lift pb (root g) h₁) (↑(liftHom g pb.gen h₂) (↑(mk g) p✝)) = ↑(mk g) p✝ [PROOFSTEP] rw [liftHom_mk, pb.lift_aeval, aeval_eq] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S g : R[X] pb : PowerBasis R S h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0 h₂ : ↑(aeval pb.gen) g = 0 src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂ x : S ⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) x) = x [PROOFSTEP] nontriviality S [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S g : R[X] pb : PowerBasis R S h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0 h₂ : ↑(aeval pb.gen) g = 0 src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂ x : S ✝ : Nontrivial S ⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) x) = x [PROOFSTEP] obtain ⟨f, _hf, rfl⟩ := pb.exists_eq_aeval x [GOAL] case intro.intro R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S g : R[X] pb : PowerBasis R S h₁ : ↑(aeval (root g)) (minpoly R pb.gen) = 0 h₂ : ↑(aeval pb.gen) g = 0 src✝ : AdjoinRoot g →ₐ[R] S := liftHom g pb.gen h₂ ✝ : Nontrivial S f : R[X] _hf : natDegree f < pb.dim ⊢ ↑(liftHom g pb.gen h₂) (↑(PowerBasis.lift pb (root g) h₁) (↑(aeval pb.gen) f)) = ↑(aeval pb.gen) f [PROOFSTEP] rw [pb.lift_aeval, aeval_eq, liftHom_mk] [GOAL] R : Type u S : Type v K : Type w L : Type u_1 F : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra F K inst✝ : Algebra F L pb : PowerBasis F K f : F[X] hf : f ≠ 0 x : L ⊢ x ∈ roots (Polynomial.map (algebraMap F L) (minpoly F (powerBasis hf).gen)) ↔ ↑(Equiv.refl L) x ∈ roots (Polynomial.map (algebraMap F L) f) [PROOFSTEP] rw [powerBasis_gen, minpoly_root hf, Polynomial.map_mul, roots_mul, Polynomial.map_C, roots_C, add_zero, Equiv.refl_apply] [GOAL] R : Type u S : Type v K : Type w L : Type u_1 F : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra F K inst✝ : Algebra F L pb : PowerBasis F K f : F[X] hf : f ≠ 0 x : L ⊢ Polynomial.map (algebraMap F L) f * Polynomial.map (algebraMap F L) (↑C (Polynomial.leadingCoeff f)⁻¹) ≠ 0 [PROOFSTEP] rw [← Polynomial.map_mul] [GOAL] R : Type u S : Type v K : Type w L : Type u_1 F : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra F K inst✝ : Algebra F L pb : PowerBasis F K f : F[X] hf : f ≠ 0 x : L ⊢ Polynomial.map (algebraMap F L) (f * ↑C (Polynomial.leadingCoeff f)⁻¹) ≠ 0 [PROOFSTEP] exact map_monic_ne_zero (monic_mul_leadingCoeff_inv hf) [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f : R[X] ⊢ Ideal.map (of f) I = Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I) [PROOFSTEP] rw [of, AdjoinRoot.mk, Ideal.map_map] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f : R[X] x : AdjoinRoot f ⊢ ↑(RingEquiv.symm (quotMapOfEquivQuotMapCMapSpanMk I f)) (↑(Ideal.Quotient.mk (Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I))) x) = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) x [PROOFSTEP] rw [quotMapOfEquivQuotMapCMapSpanMk, Ideal.quotEquivOfEq_symm] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f : R[X] x : AdjoinRoot f ⊢ ↑(quotEquivOfEq (_ : Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I) = Ideal.map (of f) I)) (↑(Ideal.Quotient.mk (Ideal.map (Ideal.Quotient.mk (span {f})) (Ideal.map C I))) x) = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) x [PROOFSTEP] exact Ideal.quotEquivOfEq_mk _ _ [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f : R[X] ⊢ span {↑(Ideal.Quotient.mk (Ideal.map C I)) f} = Ideal.map (↑(polynomialQuotientEquivQuotientPolynomial I)) (span {Polynomial.map (Ideal.Quotient.mk I) f}) [PROOFSTEP] rw [map_span, Set.image_singleton, RingEquiv.coe_toRingHom, polynomialQuotientEquivQuotientPolynomial_map_mk I f] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f p : R[X] ⊢ ↑(quotQuotEquivComm I f) (↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p)) = ↑(Ideal.Quotient.mk (span {↑(Ideal.Quotient.mk (Ideal.map C I)) f})) (↑(Ideal.Quotient.mk (Ideal.map C I)) p) [PROOFSTEP] simp only [Polynomial.quotQuotEquivComm, quotientEquiv_mk, polynomialQuotientEquivQuotientPolynomial_map_mk] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f p : R[X] ⊢ ↑(RingEquiv.symm (quotQuotEquivComm I f)) (↑(Ideal.Quotient.mk (span {↑(Ideal.Quotient.mk (Ideal.map C I)) f})) (↑(Ideal.Quotient.mk (Ideal.map C I)) p)) = ↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p) [PROOFSTEP] simp only [Polynomial.quotQuotEquivComm, quotientEquiv_symm_mk, polynomialQuotientEquivQuotientPolynomial_symm_mk] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f : R[X] ⊢ Ideal.map (Ideal.Quotient.mk (Ideal.map C I)) (span {f}) = span {↑(Ideal.Quotient.mk (Ideal.map C I)) f} [PROOFSTEP] rw [map_span, Set.image_singleton] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I : Ideal R f p : R[X] ⊢ ↑(RingEquiv.symm (quotAdjoinRootEquivQuotPolynomialQuot I f)) (↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) p)) = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) p) [PROOFSTEP] rw [quotAdjoinRootEquivQuotPolynomialQuot, RingEquiv.symm_trans_apply, RingEquiv.symm_trans_apply, RingEquiv.symm_trans_apply, RingEquiv.symm_symm, Polynomial.quotQuotEquivComm_mk, Ideal.quotEquivOfEq_symm, Ideal.quotEquivOfEq_mk, ← RingHom.comp_apply, ← DoubleQuot.quotQuotMk, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, quotMapOfEquivQuotMapCMapSpanMk_symm_mk] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I✝ : Ideal R f✝ f : R[X] I : Ideal R x : R ⊢ ↑(quotAdjoinRootEquivQuotPolynomialQuot I f) (↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x) = ↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x [PROOFSTEP] have : algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I) x = Ideal.Quotient.mk (Ideal.map (AdjoinRoot.of f) I) ((mk f) (C x)) := rfl [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I✝ : Ideal R f✝ f : R[X] I : Ideal R x : R this : ↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) (↑C x)) ⊢ ↑(quotAdjoinRootEquivQuotPolynomialQuot I f) (↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x) = ↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x [PROOFSTEP] rw [this, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, map_C] -- Porting note: the following `rfl` was not needed [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I✝ : Ideal R f✝ f : R[X] I : Ideal R x : R this : ↑(algebraMap R (AdjoinRoot f ⧸ Ideal.map (of f) I)) x = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) (↑C x)) ⊢ ↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (↑C (↑(Ideal.Quotient.mk I) x)) = ↑(algebraMap R ((R ⧸ I)[X] ⧸ span {Polynomial.map (Ideal.Quotient.mk I) f})) x [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I✝ : Ideal R f✝ f g : R[X] I : Ideal R ⊢ ↑(quotEquivQuotMap f I) (↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) g)) = ↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) g) [PROOFSTEP] rw [AdjoinRoot.quotEquivQuotMap_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of] [GOAL] R : Type u S : Type v K : Type w inst✝ : CommRing R I✝ : Ideal R f✝ f g : R[X] I : Ideal R ⊢ ↑(AlgEquiv.symm (quotEquivQuotMap f I)) (↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) f})) (Polynomial.map (Ideal.Quotient.mk I) g)) = ↑(Ideal.Quotient.mk (Ideal.map (of f) I)) (↑(mk f) g) [PROOFSTEP] rw [AdjoinRoot.quotEquivQuotMap_symm_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R x : R ⊢ ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0 [PROOFSTEP] rw [AdjoinRoot.aeval_eq, AdjoinRoot.mk_self] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R x : R ⊢ Ideal.map (of (minpoly R pb.gen)) I = Ideal.map (↑(toRingEquiv (AlgEquiv.symm (equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0) (_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0))))) (Ideal.map (algebraMap R S) I) [PROOFSTEP] rw [Ideal.map_map, AlgEquiv.toRingEquiv_eq_coe, ← AlgEquiv.coe_ringHom_commutes, ← AdjoinRoot.algebraMap_eq, AlgHom.comp_algebraMap] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R x : R ⊢ ↑(quotientEquiv (Ideal.map (algebraMap R S) I) (Ideal.map (of (minpoly R pb.gen)) I) (toRingEquiv (AlgEquiv.symm (equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0) (_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0)))) (_ : Ideal.map (of (minpoly R pb.gen)) I = Ideal.map (↑(toRingEquiv (AlgEquiv.symm (equiv' (minpoly R pb.gen) pb (_ : ↑(aeval (root (minpoly R pb.gen))) (minpoly R pb.gen) = 0) (_ : ↑(aeval pb.gen) (minpoly R pb.gen) = 0))))) (Ideal.map (algebraMap R S) I))) (↑(algebraMap R (S ⧸ Ideal.map (algebraMap R S) I)) x) = ↑(algebraMap R (AdjoinRoot (minpoly R pb.gen) ⧸ Ideal.map (of (minpoly R pb.gen)) I)) x [PROOFSTEP] rw [← Ideal.Quotient.mk_algebraMap, Ideal.quotientEquiv_apply, RingHom.toFun_eq_coe, Ideal.quotientMap_mk, AlgEquiv.toRingEquiv_eq_coe, RingEquiv.coe_toRingHom, AlgEquiv.coe_ringEquiv, AlgEquiv.commutes, Quotient.mk_algebraMap] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R x : R ⊢ ↑(Ideal.Quotient.mk (Ideal.map (of (minpoly R pb.gen)) I)) (↑(algebraMap R (AdjoinRoot (minpoly R pb.gen))) x) = ↑(algebraMap R (AdjoinRoot (minpoly R pb.gen) ⧸ Ideal.map (of (minpoly R pb.gen)) I)) x [PROOFSTEP] rfl [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R g : R[X] ⊢ ↑(quotientEquivQuotientMinpolyMap pb I) (↑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) I)) (↑(aeval pb.gen) g)) = ↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) (minpoly R pb.gen)})) (Polynomial.map (Ideal.Quotient.mk I) g) [PROOFSTEP] rw [PowerBasis.quotientEquivQuotientMinpolyMap, AlgEquiv.trans_apply, AlgEquiv.ofRingEquiv_apply, quotientEquiv_mk, AlgEquiv.coe_ringEquiv', AdjoinRoot.equiv'_symm_apply, PowerBasis.lift_aeval, AdjoinRoot.aeval_eq, AdjoinRoot.quotEquivQuotMap_apply_mk] [GOAL] R : Type u S : Type v K : Type w inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S pb : PowerBasis R S I : Ideal R g : R[X] ⊢ ↑(AlgEquiv.symm (quotientEquivQuotientMinpolyMap pb I)) (↑(Ideal.Quotient.mk (span {Polynomial.map (Ideal.Quotient.mk I) (minpoly R pb.gen)})) (Polynomial.map (Ideal.Quotient.mk I) g)) = ↑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) I)) (↑(aeval pb.gen) g) [PROOFSTEP] simp only [quotientEquivQuotientMinpolyMap, toRingEquiv_eq_coe, symm_trans_apply, quotEquivQuotMap_symm_apply_mk, ofRingEquiv_symm_apply, quotientEquiv_symm_mk, toRingEquiv_symm, RingEquiv.symm_symm, AdjoinRoot.equiv'_apply, coe_ringEquiv, liftHom_mk, symm_toRingEquiv]
{"mathlib_filename": "Mathlib.RingTheory.AdjoinRoot", "llama_tokens": 27404}
[GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C X Y : C f : X ⟶ Y ⊢ d f ≫ f = 0 [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C X Y : C f : X ⟶ Y ⊢ π (kernel f) ≫ kernel.ι f ≫ cokernel.π (d f) = 0 [PROOFSTEP] rw [← Category.assoc, cokernel.condition] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : Projective P ⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) [PROOFSTEP] haveI := (projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj' P).mp hP [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : Projective P this : Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P)) ⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) [PROOFSTEP] haveI := @Functor.preservesEpimorphisms_of_preserves_of_reflects _ _ _ _ _ _ _ _ this _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : Projective P this✝ : Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P)) this : Functor.PreservesEpimorphisms (preadditiveCoyonedaObj (op P)) ⊢ PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) [PROOFSTEP] apply Functor.preservesFiniteColimitsOfPreservesEpisAndKernels [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) ⊢ Projective P [PROOFSTEP] rw [projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj'] -- porting note: this next line wasn't necessary in Lean 3 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) ⊢ Functor.PreservesEpimorphisms (preadditiveCoyoneda.obj (op P)) [PROOFSTEP] dsimp only [preadditiveCoyoneda] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C P : C hP : PreservesFiniteColimits (preadditiveCoyonedaObj (op P)) ⊢ Functor.PreservesEpimorphisms (preadditiveCoyonedaObj (op P) ⋙ forget₂ (ModuleCat (End (op P))) AddCommGroupCat) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) 1 0 = HomologicalComplex.d (ofComplex Z) 1 0 ≫ Projective.π Z [PROOFSTEP] simp only [ofComplex_X, ChainComplex.single₀_obj_X_0, ChainComplex.single₀_obj_X_succ, ComplexShape.down_Rel, not_true, ChainComplex.single₀_obj_X_d, comp_zero, ofComplex_d, eqToHom_refl, Category.id_comp, dite_eq_ite, ite_true] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ 0 = (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) 0).d₀ ≫ Projective.π Z [PROOFSTEP] exact (exact_d_f (Projective.π Z)).w.symm [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n : ℕ ⊢ Exact (HomologicalComplex.d (ofComplex Z) (0 + 2) (0 + 1)) (HomologicalComplex.d (ofComplex Z) (0 + 1) 0) [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n : ℕ ⊢ Exact (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) (0 + 1)).d₀ (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) 0).d₀ [PROOFSTEP] apply exact_d_f [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n m : ℕ ⊢ Exact (HomologicalComplex.d (ofComplex Z) (m + 1 + 2) (m + 1 + 1)) (HomologicalComplex.d (ofComplex Z) (m + 1 + 1) (m + 1)) [PROOFSTEP] simp only [ofComplex_X, ComplexShape.down_Rel, ofComplex_d, eqToHom_refl, Category.id_comp, dite_eq_ite, not_true, ite_true] -- Porting note: this is probably required now due to -- https://github.com/leanprover/lean4/pull/2146 [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n m : ℕ ⊢ Exact (if m + 1 + 2 = m + 1 + 1 + 1 then (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) (m + 1 + 1)).d₀ else 0) (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) (m + 1)).d₀ [PROOFSTEP] erw [if_pos (c := m + 1 + 1 + 1 = m + 2 + 1) rfl] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n m : ℕ ⊢ Exact (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) (m + 1 + 1)).d₀ (ChainComplex.mkAux (over Z) (syzygies (Projective.π Z)) (syzygies (d (Projective.π Z))) (d (Projective.π Z)) (d (d (Projective.π Z))) (_ : { fst := syzygies { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := { fst := d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd, snd := (_ : d { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.2.snd = 0) } }.snd.fst ≫ { fst := over Z, snd := { fst := syzygies (Projective.π Z), snd := d (Projective.π Z) } }.snd.snd = 0) (fun t => { fst := syzygies t.snd.snd.snd.snd.fst, snd := { fst := d t.snd.snd.snd.snd.fst, snd := (_ : d t.snd.snd.snd.snd.fst ≫ t.snd.snd.snd.snd.fst = 0) } }) (m + 1)).d₀ [PROOFSTEP] apply exact_d_f [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n : ℕ x✝ : (f : HomologicalComplex.X (ofComplex Z) n ⟶ HomologicalComplex.X ((ChainComplex.single₀ C).obj Z) n) ×' (f' : HomologicalComplex.X (ofComplex Z) (n + 1) ⟶ HomologicalComplex.X ((ChainComplex.single₀ C).obj Z) (n + 1)) ×' f' ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 1) n = HomologicalComplex.d (ofComplex Z) (n + 1) n ≫ f ⊢ 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 2) (n + 1) = HomologicalComplex.d (ofComplex Z) (n + 2) (n + 1) ≫ x✝.snd.fst [PROOFSTEP] apply HasZeroObject.to_zero_ext [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ ∀ (n : ℕ), Projective (HomologicalComplex.X (ofComplex Z) n) [PROOFSTEP] rintro (_ | _ | _ | n) [GOAL] case zero C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ Projective (HomologicalComplex.X (ofComplex Z) Nat.zero) [PROOFSTEP] apply Projective.projective_over [GOAL] case succ.zero C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ Nat.zero)) [PROOFSTEP] apply Projective.projective_over [GOAL] case succ.succ.zero C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ (Nat.succ Nat.zero))) [PROOFSTEP] apply Projective.projective_over [GOAL] case succ.succ.succ C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C n : ℕ ⊢ Projective (HomologicalComplex.X (ofComplex Z) (Nat.succ (Nat.succ (Nat.succ n)))) [PROOFSTEP] apply Projective.projective_over [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ Exact (HomologicalComplex.d (ofComplex Z) 1 0) (HomologicalComplex.Hom.f (ChainComplex.mkHom (ofComplex Z) ((ChainComplex.single₀ C).obj Z) (Projective.π Z) 0 (_ : 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) 1 0 = HomologicalComplex.d (ofComplex Z) 1 0 ≫ Projective.π Z) fun n x => { fst := 0, snd := (_ : 0 ≫ HomologicalComplex.d ((ChainComplex.single₀ C).obj Z) (n + 2) (n + 1) = HomologicalComplex.d (ofComplex Z) (n + 2) (n + 1) ≫ x.snd.fst) }) 0) [PROOFSTEP] simpa using exact_d_f (Projective.π Z) [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : EnoughProjectives C Z : C ⊢ HasProjectiveResolution Z [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.CategoryTheory.Abelian.Projective", "llama_tokens": 6581}
[GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y z : E hz : z ∈ segment 𝕜 x y hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q ⊢ ¬Disjoint (segment 𝕜 u v) (↑(convexHull 𝕜) {p, q, z}) [PROOFSTEP] rw [not_disjoint_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y z : E hz : z ∈ segment 𝕜 x y hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q ⊢ ∃ x, x ∈ segment 𝕜 u v ∧ x ∈ ↑(convexHull 𝕜) {p, q, z} [PROOFSTEP] obtain ⟨az, bz, haz, hbz, habz, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] obtain rfl | haz' := haz.eq_or_lt [GOAL] case intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : 0 + bz = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, 0 • x + bz • y} [PROOFSTEP] rw [zero_add] at habz [GOAL] case intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : bz = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, 0 • x + bz • y} [PROOFSTEP] rw [zero_smul, zero_add, habz, one_smul] [GOAL] case intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : bz = 1 ⊢ ∃ x, x ∈ segment 𝕜 u v ∧ x ∈ ↑(convexHull 𝕜) {p, q, y} [PROOFSTEP] refine' ⟨v, by apply right_mem_segment, segment_subset_convexHull _ _ hv⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : bz = 1 ⊢ v ∈ segment 𝕜 u v [PROOFSTEP] apply right_mem_segment [GOAL] case intro.intro.intro.intro.intro.inl.refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : bz = 1 ⊢ y ∈ {p, q, y} [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.inl.refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q bz : 𝕜 hbz : 0 ≤ bz haz : 0 ≤ 0 habz : bz = 1 ⊢ q ∈ {p, q, y} [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u v x y : E hu : u ∈ segment 𝕜 x p hv : v ∈ segment 𝕜 y q az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u v ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] obtain ⟨av, bv, hav, hbv, habv, rfl⟩ := hv [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] obtain rfl | hav' := hav.eq_or_lt [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az bv : 𝕜 hbv : 0 ≤ bv hav : 0 ≤ 0 habv : 0 + bv = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (0 • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] rw [zero_add] at habv [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az bv : 𝕜 hbv : 0 ≤ bv hav : 0 ≤ 0 habv : bv = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (0 • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] rw [zero_smul, zero_add, habv, one_smul] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az bv : 𝕜 hbv : 0 ≤ bv hav : 0 ≤ 0 habv : bv = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u q ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] exact ⟨q, right_mem_segment _ _ _, subset_convexHull _ _ <| by simp⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az bv : 𝕜 hbv : 0 ≤ bv hav : 0 ≤ 0 habv : bv = 1 ⊢ q ∈ {p, q, az • x + bz • y} [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q u x y : E hu : u ∈ segment 𝕜 x p az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av ⊢ ∃ x_1, x_1 ∈ segment 𝕜 u (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] obtain ⟨au, bu, hau, hbu, habu, rfl⟩ := hu [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 ⊢ ∃ x_1, x_1 ∈ segment 𝕜 (au • x + bu • p) (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] have hab : 0 < az * av + bz * au := add_pos_of_pos_of_nonneg (mul_pos haz' hav') (mul_nonneg hbz hau) [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ ∃ x_1, x_1 ∈ segment 𝕜 (au • x + bu • p) (av • y + bv • q) ∧ x_1 ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] refine' ⟨(az * av / (az * av + bz * au)) • (au • x + bu • p) + (bz * au / (az * av + bz * au)) • (av • y + bv • q), ⟨_, _, _, _, _, rfl⟩, _⟩ [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ 0 ≤ az * av / (az * av + bz * au) [PROOFSTEP] exact div_nonneg (mul_nonneg haz hav) hab.le [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ 0 ≤ bz * au / (az * av + bz * au) [PROOFSTEP] exact div_nonneg (mul_nonneg hbz hau) hab.le [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ az * av / (az * av + bz * au) + bz * au / (az * av + bz * au) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ (az * av / (az * av + bz * au)) • (au • x + bu • p) + (bz * au / (az * av + bz * au)) • (av • y + bv • q) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm, add_comm, ← mul_smul, ← mul_smul] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] classical let w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] let z : Fin 3 → E := ![p, q, az • x + bz • y] have hw₀ : ∀ i, 0 ≤ w i := by rintro i fin_cases i · exact mul_nonneg (mul_nonneg haz hav) hbu · exact mul_nonneg (mul_nonneg hbz hau) hbv · exact mul_nonneg hau hav have hw : ∑ i, w i = az * av + bz * au := by trans az * av * bu + (bz * au * bv + au * av) · simp [Fin.sum_univ_succ, Fin.sum_univ_zero] rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add, mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one] have hz : ∀ i, z i ∈ ({p, q, az • x + bz • y} : Set E) := fun i => by fin_cases i <;> simp convert Finset.centerMass_mem_convexHull (Finset.univ : Finset (Fin 3)) (fun i _ => hw₀ i) (by rwa [hw]) fun i _ => hz i rw [Finset.centerMass] simp_rw [div_eq_inv_mul, hw, mul_assoc, mul_smul (az * av + bz * au)⁻¹, ← smul_add, add_assoc, ← mul_assoc] congr 3 rw [← mul_smul, ← mul_rotate, mul_right_comm, mul_smul, ← mul_smul _ av, mul_rotate, mul_smul _ bz, ← smul_add] simp only [smul_add, List.foldr, Matrix.cons_val_succ', Fin.mk_one, Matrix.cons_val_one, Matrix.head_cons, add_zero] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] let w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] let z : Fin 3 → E := ![p, q, az • x + bz • y] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] have hw₀ : ∀ i, 0 ≤ w i := by rintro i fin_cases i · exact mul_nonneg (mul_nonneg haz hav) hbu · exact mul_nonneg (mul_nonneg hbz hau) hbv · exact mul_nonneg hau hav [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] ⊢ ∀ (i : Fin 3), 0 ≤ w i [PROOFSTEP] rintro i [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] i : Fin 3 ⊢ 0 ≤ w i [PROOFSTEP] fin_cases i [GOAL] case head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] ⊢ 0 ≤ w { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] exact mul_nonneg (mul_nonneg haz hav) hbu [GOAL] case tail.head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] ⊢ 0 ≤ w { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] exact mul_nonneg (mul_nonneg hbz hau) hbv [GOAL] case tail.tail.head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] ⊢ 0 ≤ w { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] exact mul_nonneg hau hav [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] have hw : ∑ i, w i = az * av + bz * au := by trans az * av * bu + (bz * au * bv + au * av) · simp [Fin.sum_univ_succ, Fin.sum_univ_zero] rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add, mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i ⊢ ∑ i : Fin 3, w i = az * av + bz * au [PROOFSTEP] trans az * av * bu + (bz * au * bv + au * av) [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i ⊢ ∑ i : Fin 3, w i = az * av * bu + (bz * au * bv + au * av) [PROOFSTEP] simp [Fin.sum_univ_succ, Fin.sum_univ_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i ⊢ az * av * bu + (bz * au * bv + au * av) = az * av + bz * au [PROOFSTEP] rw [← one_mul (au * av), ← habz, add_mul, ← add_assoc, add_add_add_comm, mul_assoc, ← mul_add, mul_assoc, ← mul_add, mul_comm av, ← add_mul, ← mul_add, add_comm bu, add_comm bv, habu, habv, one_mul, mul_one] [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] have hz : ∀ i, z i ∈ ({p, q, az • x + bz • y} : Set E) := fun i => by fin_cases i <;> simp [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au i : Fin 3 ⊢ z i ∈ {p, q, az • x + bz • y} [PROOFSTEP] fin_cases i [GOAL] case head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au ⊢ z { val := 0, isLt := (_ : 0 < 3) } ∈ {p, q, az • x + bz • y} [PROOFSTEP] simp [GOAL] case tail.head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au ⊢ z { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∈ {p, q, az • x + bz • y} [PROOFSTEP] simp [GOAL] case tail.tail.head 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au ⊢ z { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∈ {p, q, az • x + bz • y} [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.inr.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) ∈ ↑(convexHull 𝕜) {p, q, az • x + bz • y} [PROOFSTEP] convert Finset.centerMass_mem_convexHull (Finset.univ : Finset (Fin 3)) (fun i _ => hw₀ i) (by rwa [hw]) fun i _ => hz i [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ 0 < ∑ i : Fin 3, w i [PROOFSTEP] rwa [hw] [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) = Finset.centerMass Finset.univ (fun i => w i) fun i => z i [PROOFSTEP] rw [Finset.centerMass] [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (az * av / (az * av + bz * au) * bu) • p + (bz * au / (az * av + bz * au) * bv) • q + ((az * av / (az * av + bz * au)) • au • x + (bz * au / (az * av + bz * au)) • av • y) = (∑ i : Fin 3, w i)⁻¹ • ∑ i : Fin 3, w i • z i [PROOFSTEP] simp_rw [div_eq_inv_mul, hw, mul_assoc, mul_smul (az * av + bz * au)⁻¹, ← smul_add, add_assoc, ← mul_assoc] [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (az * av + bz * au)⁻¹ • ((az * av * bu) • p + ((bz * au * bv) • q + ((az * av) • au • x + (bz * au) • av • y))) = (az * av + bz * au)⁻¹ • ∑ x_1 : Fin 3, Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1 [PROOFSTEP] congr 3 [GOAL] case h.e'_4.e_a.e_a.e_a 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (az * av) • au • x + (bz * au) • av • y = List.foldr (fun x x_1 => x + x_1) 0 (List.map (fun x_1 => Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1) (List.pmap Fin.mk [2] (_ : ∀ (x : ℕ), x ∈ [2] → (fun a => a < 3) x))) [PROOFSTEP] rw [← mul_smul, ← mul_rotate, mul_right_comm, mul_smul, ← mul_smul _ av, mul_rotate, mul_smul _ bz, ← smul_add] [GOAL] case h.e'_4.e_a.e_a.e_a 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i hw : ∑ i : Fin 3, w i = az * av + bz * au hz : ∀ (i : Fin 3), z i ∈ {p, q, az • x + bz • y} ⊢ (au * av) • (az • x + bz • y) = List.foldr (fun x x_1 => x + x_1) 0 (List.map (fun x_1 => Matrix.vecCons (az * av * bu) ![bz * au * bv, au * av] x_1 • Matrix.vecCons p ![q, az • x + bz • y] x_1) (List.pmap Fin.mk [2] (_ : ∀ (x : ℕ), x ∈ [2] → (fun a => a < 3) x))) [PROOFSTEP] simp only [smul_add, List.foldr, Matrix.cons_val_succ', Fin.mk_one, Matrix.cons_val_one, Matrix.head_cons, add_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t ⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ [PROOFSTEP] let S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} ⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ [PROOFSTEP] obtain ⟨C, hC, hsC, hCmax⟩ := zorn_subset_nonempty S (fun c hcS hc ⟨_, _⟩ => ⟨⋃₀ c, ⟨hc.directedOn.convex_sUnion fun s hs => (hcS hs).1, disjoint_sUnion_left.2 fun c hc => (hcS hc).2⟩, fun s => subset_sUnion_of_mem⟩) s ⟨hs, hst⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C ⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ [PROOFSTEP] refine' ⟨C, hC.1, convex_iff_segment_subset.2 fun x hx y hy z hz hzC => _, hsC, hC.2.subset_compl_left⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C ⊢ False [PROOFSTEP] suffices h : ∀ c ∈ Cᶜ, ∃ a ∈ C, (segment 𝕜 c a ∩ t).Nonempty [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) ⊢ False [PROOFSTEP] obtain ⟨p, hp, u, hu, hut⟩ := h x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) p : E hp : p ∈ C u : E hu : u ∈ segment 𝕜 x p hut : u ∈ t ⊢ False [PROOFSTEP] obtain ⟨q, hq, v, hv, hvt⟩ := h y hy [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) p : E hp : p ∈ C u : E hu : u ∈ segment 𝕜 x p hut : u ∈ t q : E hq : q ∈ C v : E hv : v ∈ segment 𝕜 y q hvt : v ∈ t ⊢ False [PROOFSTEP] refine' not_disjoint_segment_convexHull_triple hz hu hv (hC.2.symm.mono (ht.segment_subset hut hvt) <| convexHull_min _ hC.1) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C h : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) p : E hp : p ∈ C u : E hu : u ∈ segment 𝕜 x p hut : u ∈ t q : E hq : q ∈ C v : E hv : v ∈ segment 𝕜 y q hvt : v ∈ t ⊢ {p, q, z} ⊆ C [PROOFSTEP] simpa [insert_subset_iff, hp, hq, singleton_subset_iff.2 hzC] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C ⊢ ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) [PROOFSTEP] rintro c hc [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ ⊢ ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t) [PROOFSTEP] by_contra' h [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) ⊢ False [PROOFSTEP] suffices h : Disjoint (convexHull 𝕜 (insert c C)) t [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ h✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) h : Disjoint (↑(convexHull 𝕜) (insert c C)) t ⊢ False [PROOFSTEP] rw [← hCmax _ ⟨convex_convexHull _ _, h⟩ ((subset_insert _ _).trans <| subset_convexHull _ _)] at hc [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ (↑(convexHull 𝕜) (insert c C))ᶜ h✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) h : Disjoint (↑(convexHull 𝕜) (insert c C)) t ⊢ False [PROOFSTEP] exact hc (subset_convexHull _ _ <| mem_insert _ _) [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) ⊢ Disjoint (↑(convexHull 𝕜) (insert c C)) t [PROOFSTEP] rw [convexHull_insert ⟨z, hzC⟩, convexJoin_singleton_left] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) ⊢ Disjoint (⋃ (y : E) (_ : y ∈ ↑(convexHull 𝕜) C), segment 𝕜 c y) t [PROOFSTEP] refine' disjoint_iUnion₂_left.2 fun a ha => disjoint_iff_inf_le.mpr fun b hb => h a _ ⟨b, hb⟩ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t hst : Disjoint s t S : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t} C : Set E hC : C ∈ S hsC : s ⊆ C hCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C x : E hx : x ∈ Cᶜ y : E hy : y ∈ Cᶜ z : E hz : z ∈ segment 𝕜 x y hzC : z ∈ C c : E hc : c ∈ Cᶜ h : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t) a : E ha : a ∈ ↑(convexHull 𝕜) C b : E hb : b ∈ segment 𝕜 c a ⊓ t ⊢ a ∈ C [PROOFSTEP] rwa [← hC.1.convexHull_eq]
{"mathlib_filename": "Mathlib.Analysis.Convex.StoneSeparation", "llama_tokens": 21702}
[GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α hs : Set.Nonempty s ⊢ Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } [PROOFSTEP] obtain ⟨x, hx⟩ := hs [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α x : α hx : x ∈ s ⊢ Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } [PROOFSTEP] exact ⟨⟨fun _ => x, fun i j _ => le_rfl, fun _ => hx⟩⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f f' : α → E s : Set α h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0 ⊢ eVariationOn f s = eVariationOn f' s [PROOFSTEP] dsimp only [eVariationOn] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f f' : α → E s : Set α h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0 ⊢ ⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }), ∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) = ⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }), ∑ i in Finset.range p.fst, edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i)) [PROOFSTEP] congr 1 with p : 1 [GOAL] case e_s.h α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f f' : α → E s : Set α h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0 p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ⊢ ∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) = ∑ i in Finset.range p.fst, edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i)) [PROOFSTEP] congr 1 with i : 1 [GOAL] case e_s.h.e_f.h α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f f' : α → E s : Set α h : ∀ ⦃x : α⦄, x ∈ s → edist (f x) (f' x) = 0 p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } i : ℕ ⊢ edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) = edist (f' (↑p.snd (i + 1))) (f' (↑p.snd i)) [PROOFSTEP] rw [edist_congr_right (h <| p.snd.prop.2 (i + 1)), edist_congr_left (h <| p.snd.prop.2 i)] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f f' : α → E s : Set α h : EqOn f f' s x : α xs : x ∈ s ⊢ edist (f x) (f' x) = 0 [PROOFSTEP] rw [h xs, edist_self] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s ⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] cases' le_total n m with hnm hmn [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hnm : n ≤ m ⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] simp [Finset.Ico_eq_empty_of_le hnm] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hmn : m ≤ n ⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] let π := projIcc m n hmn [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hmn : m ≤ n π : ℕ → ↑(Icc m n) := projIcc m n hmn ⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] let v i := u (π i) [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hmn : m ≤ n π : ℕ → ↑(Icc m n) := projIcc m n hmn v : ℕ → α := fun i => u ↑(π i) ⊢ ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] calc ∑ i in Finset.Ico m n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico m n, edist (f (v (i + 1))) (f (v i)) := Finset.sum_congr rfl fun i hi ↦ by rw [Finset.mem_Ico] at hi simp only [projIcc_of_mem hmn ⟨hi.1, hi.2.le⟩, projIcc_of_mem hmn ⟨hi.1.trans i.le_succ, hi.2⟩] _ ≤ ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i)) := (Finset.sum_mono_set _ (Nat.Iio_eq_range ▸ Finset.Ico_subset_Iio_self)) _ ≤ eVariationOn f s := sum_le _ _ (fun i j h ↦ hu (π i).2 (π j).2 (monotone_projIcc hmn h)) fun i ↦ us _ (π i).2 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hmn : m ≤ n π : ℕ → ↑(Icc m n) := projIcc m n hmn v : ℕ → α := fun i => u ↑(π i) i : ℕ hi : i ∈ Finset.Ico m n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] rw [Finset.mem_Ico] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α m n : ℕ u : ℕ → α hu : MonotoneOn u (Icc m n) us : ∀ (i : ℕ), i ∈ Icc m n → u i ∈ s hmn : m ≤ n π : ℕ → ↑(Icc m n) := projIcc m n hmn v : ℕ → α := fun i => u ↑(π i) i : ℕ hi : m ≤ i ∧ i < n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] simp only [projIcc_of_mem hmn ⟨hi.1, hi.2.le⟩, projIcc_of_mem hmn ⟨hi.1.trans i.le_succ, hi.2⟩] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α n : ℕ u : ℕ → α hu : MonotoneOn u (Iic n) us : ∀ (i : ℕ), i ≤ n → u i ∈ s ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ eVariationOn f s [PROOFSTEP] simpa using sum_le_of_monotoneOn_Icc f (m := 0) (hu.mono Icc_subset_Iic_self) fun i hi ↦ us i hi.2 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α hst : t ⊆ s ⊢ eVariationOn f t ≤ eVariationOn f s [PROOFSTEP] apply iSup_le _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α hst : t ⊆ s ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }), ∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ eVariationOn f s [PROOFSTEP] rintro ⟨n, ⟨u, hu, ut⟩⟩ [GOAL] case mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α hst : t ⊆ s n : ℕ u : ℕ → α hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd i)) ≤ eVariationOn f s [PROOFSTEP] exact sum_le f n hu fun i => hst (ut i) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] wlog hxy : y ≤ x generalizing x y [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s this : ∀ {x y : α}, x ∈ s → y ∈ s → y ≤ x → edist (f x) (f y) ≤ eVariationOn f s hxy : ¬y ≤ x ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] rw [edist_comm] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s this : ∀ {x y : α}, x ∈ s → y ∈ s → y ≤ x → edist (f x) (f y) ≤ eVariationOn f s hxy : ¬y ≤ x ⊢ edist (f y) (f x) ≤ eVariationOn f s [PROOFSTEP] exact this hy hx (le_of_not_le hxy) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s hxy : y ≤ x ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] let u : ℕ → α := fun n => if n = 0 then y else x [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s hxy : y ≤ x u : ℕ → α := fun n => if n = 0 then y else x ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] have hu : Monotone u := monotone_nat_of_le_succ fun | 0 => hxy | (_ + 1) => le_rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s hxy : y ≤ x u : ℕ → α := fun n => if n = 0 then y else x hu : Monotone u ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] have us : ∀ i, u i ∈ s := fun | 0 => hy | (_ + 1) => hx [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x y : α hx : x ∈ s hy : y ∈ s hxy : y ≤ x u : ℕ → α := fun n => if n = 0 then y else x hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] simpa only [Finset.sum_range_one] using sum_le f 1 hu us [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α ⊢ eVariationOn f s = 0 ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α ⊢ eVariationOn f s = 0 → ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 [PROOFSTEP] rintro h x xs y ys [GOAL] case mp α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : eVariationOn f s = 0 x : α xs : x ∈ s y : α ys : y ∈ s ⊢ edist (f x) (f y) = 0 [PROOFSTEP] rw [← le_zero_iff, ← h] [GOAL] case mp α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : eVariationOn f s = 0 x : α xs : x ∈ s y : α ys : y ∈ s ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] exact edist_le f xs ys [GOAL] case mpr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α ⊢ (∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0) → eVariationOn f s = 0 [PROOFSTEP] rintro h [GOAL] case mpr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 ⊢ eVariationOn f s = 0 [PROOFSTEP] dsimp only [eVariationOn] [GOAL] case mpr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 ⊢ ⨆ (p : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }), ∑ i in Finset.range p.fst, edist (f (↑p.snd (i + 1))) (f (↑p.snd i)) = 0 [PROOFSTEP] rw [ENNReal.iSup_eq_zero] [GOAL] case mpr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }), ∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) = 0 [PROOFSTEP] rintro ⟨n, u, um, us⟩ [GOAL] case mpr.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 n : ℕ u : ℕ → α um : Monotone u us : ∀ (i : ℕ), u i ∈ s ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) = 0 [PROOFSTEP] exact Finset.sum_eq_zero fun i _ => h _ (us i.succ) _ (us i) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : Set.Subsingleton (f '' s) ⊢ eVariationOn f s = 0 [PROOFSTEP] rw [eq_zero_iff] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : Set.Subsingleton (f '' s) ⊢ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist (f x) (f y) = 0 [PROOFSTEP] rintro x xs y ys [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : Set.Subsingleton (f '' s) x : α xs : x ∈ s y : α ys : y ∈ s ⊢ edist (f x) (f y) = 0 [PROOFSTEP] rw [hf ⟨x, xs, rfl⟩ ⟨y, ys, rfl⟩, edist_self] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E ι : Type u_3 F : ι → α → E p : Filter ι f : α → E s : Set α Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x)) v : ℝ≥0∞ hv : v < eVariationOn f s ⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s [PROOFSTEP] obtain ⟨⟨n, ⟨u, um, us⟩⟩, hlt⟩ : ∃ p : ℕ × { u : ℕ → α // Monotone u ∧ ∀ i, u i ∈ s }, v < ∑ i in Finset.range p.1, edist (f ((p.2 : ℕ → α) (i + 1))) (f ((p.2 : ℕ → α) i)) := lt_iSup_iff.mp hv [GOAL] case intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E ι : Type u_3 F : ι → α → E p : Filter ι f : α → E s : Set α Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x)) v : ℝ≥0∞ hv : v < eVariationOn f s n : ℕ u : ℕ → α um : Monotone u us : ∀ (i : ℕ), u i ∈ s hlt : v < ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) ⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s [PROOFSTEP] have : Tendsto (fun j => ∑ i : ℕ in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p (𝓝 (∑ i : ℕ in Finset.range n, edist (f (u (i + 1))) (f (u i)))) := by apply tendsto_finset_sum exact fun i _ => Tendsto.edist (Ffs (u i.succ) (us i.succ)) (Ffs (u i) (us i)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E ι : Type u_3 F : ι → α → E p : Filter ι f : α → E s : Set α Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x)) v : ℝ≥0∞ hv : v < eVariationOn f s n : ℕ u : ℕ → α um : Monotone u us : ∀ (i : ℕ), u i ∈ s hlt : v < ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) ⊢ Tendsto (fun j => ∑ i in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p (𝓝 (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)))) [PROOFSTEP] apply tendsto_finset_sum [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E ι : Type u_3 F : ι → α → E p : Filter ι f : α → E s : Set α Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x)) v : ℝ≥0∞ hv : v < eVariationOn f s n : ℕ u : ℕ → α um : Monotone u us : ∀ (i : ℕ), u i ∈ s hlt : v < ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) ⊢ ∀ (i : ℕ), i ∈ Finset.range n → Tendsto (fun b => edist (F b (u (i + 1))) (F b (u i))) p (𝓝 (edist (f (u (i + 1))) (f (u i)))) [PROOFSTEP] exact fun i _ => Tendsto.edist (Ffs (u i.succ) (us i.succ)) (Ffs (u i) (us i)) [GOAL] case intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E ι : Type u_3 F : ι → α → E p : Filter ι f : α → E s : Set α Ffs : ∀ (x : α), x ∈ s → Tendsto (fun i => F i x) p (𝓝 (f x)) v : ℝ≥0∞ hv : v < eVariationOn f s n : ℕ u : ℕ → α um : Monotone u us : ∀ (i : ℕ), u i ∈ s hlt : v < ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) this : Tendsto (fun j => ∑ i in Finset.range n, edist (F j (u (i + 1))) (F j (u i))) p (𝓝 (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)))) ⊢ ∀ᶠ (n : ι) in p, v < eVariationOn (F n) s [PROOFSTEP] exact (eventually_gt_of_tendsto_gt hlt this).mono fun i h => h.trans_le (sum_le (F i) n um us) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[singleton '' s] E ⊢ LowerSemicontinuousAt (fun f => eVariationOn f s) f [PROOFSTEP] apply @lowerSemicontinuous_aux _ _ _ _ (UniformOnFun α E (s.image singleton)) id (𝓝 f) f s _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[singleton '' s] E ⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x)) [PROOFSTEP] simpa only [UniformOnFun.tendsto_iff_tendstoUniformlyOn, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂, tendstoUniformlyOn_singleton_iff_tendsto] using @tendsto_id _ (𝓝 f) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[{s}] E ⊢ LowerSemicontinuousAt (fun f => eVariationOn f s) f [PROOFSTEP] apply @lowerSemicontinuous_aux _ _ _ _ (UniformOnFun α E { s }) id (𝓝 f) f s _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[{s}] E ⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x)) [PROOFSTEP] have := @tendsto_id _ (𝓝 f) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[{s}] E this : Tendsto id (𝓝 f) (𝓝 f) ⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x)) [PROOFSTEP] rw [UniformOnFun.tendsto_iff_tendstoUniformlyOn] at this [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[{s}] E this : ∀ (s_1 : Set α), s_1 ∈ {s} → TendstoUniformlyOn id f (𝓝 f) s_1 ⊢ ∀ (x : α), x ∈ s → Tendsto (fun i => id i x) (𝓝 f) (𝓝 (f x)) [PROOFSTEP] simp_rw [← tendstoUniformlyOn_singleton_iff_tendsto] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E s : Set α f : α →ᵤ[{s}] E this : ∀ (s_1 : Set α), s_1 ∈ {s} → TendstoUniformlyOn id f (𝓝 f) s_1 ⊢ ∀ (x : α), x ∈ s → TendstoUniformlyOn (fun n => id n) f (𝓝 f) {x} [PROOFSTEP] exact fun x xs => (this s rfl).mono (singleton_subset_iff.mpr xs) [GOAL] α : Type u_1 inst✝² : LinearOrder α E✝ : Type u_2 inst✝¹ : PseudoEMetricSpace E✝ E : Type u_3 inst✝ : PseudoMetricSpace E f : α → E s : Set α h : BoundedVariationOn f s x y : α hx : x ∈ s hy : y ∈ s ⊢ dist (f x) (f y) ≤ ENNReal.toReal (eVariationOn f s) [PROOFSTEP] rw [← ENNReal.ofReal_le_ofReal_iff ENNReal.toReal_nonneg, ENNReal.ofReal_toReal h, ← edist_dist] [GOAL] α : Type u_1 inst✝² : LinearOrder α E✝ : Type u_2 inst✝¹ : PseudoEMetricSpace E✝ E : Type u_3 inst✝ : PseudoMetricSpace E f : α → E s : Set α h : BoundedVariationOn f s x y : α hx : x ∈ s hy : y ∈ s ⊢ edist (f x) (f y) ≤ eVariationOn f s [PROOFSTEP] exact edist_le f hx hy [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α h : BoundedVariationOn f s x y : α hx : x ∈ s hy : y ∈ s ⊢ f x - f y ≤ ENNReal.toReal (eVariationOn f s) [PROOFSTEP] apply (le_abs_self _).trans [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α h : BoundedVariationOn f s x y : α hx : x ∈ s hy : y ∈ s ⊢ |f x - f y| ≤ ENNReal.toReal (eVariationOn f s) [PROOFSTEP] rw [← Real.dist_eq] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α h : BoundedVariationOn f s x y : α hx : x ∈ s hy : y ∈ s ⊢ dist (f x) (f y) ≤ ENNReal.toReal (eVariationOn f s) [PROOFSTEP] exact h.dist_le hx hy [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] rcases le_or_lt (u n) x with (h | h) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] let v i := if i ≤ n then u i else x [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have vs : ∀ i, v i ∈ s := fun i ↦ by simp only split_ifs · exact us i · exact hx [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x i : ℕ ⊢ v i ∈ s [PROOFSTEP] simp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x i : ℕ ⊢ (if i ≤ n then u i else x) ∈ s [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x i : ℕ h✝ : i ≤ n ⊢ u i ∈ s [PROOFSTEP] exact us i [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x i : ℕ h✝ : ¬i ≤ n ⊢ x ∈ s [PROOFSTEP] exact hx [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have hv : Monotone v := by refine monotone_nat_of_le_succ fun i => ?_ simp only rcases lt_trichotomy i n with (hi | rfl | hi) · have : i + 1 ≤ n := Nat.succ_le_of_lt hi simp only [hi.le, this, if_true] exact hu (Nat.le_succ i) · simp only [le_refl, if_true, add_le_iff_nonpos_right, le_zero_iff, Nat.one_ne_zero, if_false, h] · have A : ¬i ≤ n := hi.not_le have B : ¬i + 1 ≤ n := fun h => A (i.le_succ.trans h) simp only [A, B, if_false, le_rfl] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s ⊢ Monotone v [PROOFSTEP] refine monotone_nat_of_le_succ fun i => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ ⊢ v i ≤ v (i + 1) [PROOFSTEP] simp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] rcases lt_trichotomy i n with (hi | rfl | hi) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : i < n ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] have : i + 1 ≤ n := Nat.succ_le_of_lt hi [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : i < n this : i + 1 ≤ n ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] simp only [hi.le, this, if_true] [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : i < n this : i + 1 ≤ n ⊢ u i ≤ u (i + 1) [PROOFSTEP] exact hu (Nat.le_succ i) [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s i : ℕ h : u i ≤ x v : ℕ → α := fun i_1 => if i_1 ≤ i then u i_1 else x vs : ∀ (i : ℕ), v i ∈ s ⊢ (if i ≤ i then u i else x) ≤ if i + 1 ≤ i then u (i + 1) else x [PROOFSTEP] simp only [le_refl, if_true, add_le_iff_nonpos_right, le_zero_iff, Nat.one_ne_zero, if_false, h] [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : n < i ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] have A : ¬i ≤ n := hi.not_le [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : n < i A : ¬i ≤ n ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] have B : ¬i + 1 ≤ n := fun h => A (i.le_succ.trans h) [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s i : ℕ hi : n < i A : ¬i ≤ n B : ¬i + 1 ≤ n ⊢ (if i ≤ n then u i else x) ≤ if i + 1 ≤ n then u (i + 1) else x [PROOFSTEP] simp only [A, B, if_false, le_rfl] [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] refine' ⟨v, n + 2, hv, vs, (mem_image _ _ _).2 ⟨n + 1, _, _⟩, _⟩ [GOAL] case inl.refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ n + 1 ∈ Iio (n + 2) [PROOFSTEP] rw [mem_Iio] [GOAL] case inl.refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ n + 1 < n + 2 [PROOFSTEP] exact Nat.lt_succ_self (n + 1) [GOAL] case inl.refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ v (n + 1) = x [PROOFSTEP] have : ¬n + 1 ≤ n := Nat.not_succ_le_self n [GOAL] case inl.refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v this : ¬n + 1 ≤ n ⊢ v (n + 1) = x [PROOFSTEP] simp only [this, ite_eq_right_iff, IsEmpty.forall_iff] [GOAL] case inl.refine'_3 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 2), edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] calc (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) = ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i)) := by apply Finset.sum_congr rfl fun i hi => ?_ simp only [Finset.mem_range] at hi have : i + 1 ≤ n := Nat.succ_le_of_lt hi simp only [hi.le, this, if_true] _ ≤ ∑ j in Finset.range (n + 2), edist (f (v (j + 1))) (f (v j)) := Finset.sum_le_sum_of_subset (Finset.range_mono (Nat.le_add_right n 2)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.range n, edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] apply Finset.sum_congr rfl fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v i : ℕ hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] simp only [Finset.mem_range] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v i : ℕ hi : i < n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] have : i + 1 ≤ n := Nat.succ_le_of_lt hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : u n ≤ x v : ℕ → α := fun i => if i ≤ n then u i else x vs : ∀ (i : ℕ), v i ∈ s hv : Monotone v i : ℕ hi : i < n this : i + 1 ≤ n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (v (i + 1))) (f (v i)) [PROOFSTEP] simp only [hi.le, this, if_true] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have exists_N : ∃ N, N ≤ n ∧ x < u N := ⟨n, le_rfl, h⟩ [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] let N := Nat.find exists_N [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have hN : N ≤ n ∧ x < u N := Nat.find_spec exists_N [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] let w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have ws : ∀ i, w i ∈ s := by dsimp only intro i split_ifs exacts [us _, hx, us _] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ⊢ ∀ (i : ℕ), w i ∈ s [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ⊢ ∀ (i : ℕ), (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ∈ s [PROOFSTEP] intro i [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) i : ℕ ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ∈ s [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) i : ℕ h✝ : i < Nat.find exists_N ⊢ u i ∈ s case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) i : ℕ h✝¹ : ¬i < Nat.find exists_N h✝ : i = Nat.find exists_N ⊢ x ∈ s case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) i : ℕ h✝¹ : ¬i < Nat.find exists_N h✝ : ¬i = Nat.find exists_N ⊢ u (i - 1) ∈ s [PROOFSTEP] exacts [us _, hx, us _] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] have hw : Monotone w := by apply monotone_nat_of_le_succ fun i => ?_ dsimp only rcases lt_trichotomy (i + 1) N with (hi | hi | hi) · have : i < N := Nat.lt_of_le_of_lt (Nat.le_succ i) hi simp only [hi, this, if_true] exact hu (Nat.le_succ _) · have A : i < N := hi ▸ i.lt_succ_self have B : ¬i + 1 < N := by rw [← hi]; exact fun h => h.ne rfl rw [if_pos A, if_neg B, if_pos hi] have T := Nat.find_min exists_N A push_neg at T exact T (A.le.trans hN.1) · have A : ¬i < N := (Nat.lt_succ_iff.mp hi).not_lt have B : ¬i + 1 < N := hi.not_lt have C : ¬i + 1 = N := hi.ne.symm have D : i + 1 - 1 = i := Nat.pred_succ i rw [if_neg A, if_neg B, if_neg C, D] split_ifs · exact hN.2.le.trans (hu (le_of_not_lt A)) · exact hu (Nat.pred_le _) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s ⊢ Monotone w [PROOFSTEP] apply monotone_nat_of_le_succ fun i => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ ⊢ w i ≤ w (i + 1) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] rcases lt_trichotomy (i + 1) N with (hi | hi | hi) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have : i < N := Nat.lt_of_le_of_lt (Nat.le_succ i) hi [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 < N this : i < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] simp only [hi, this, if_true] [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 < N this : i < N ⊢ u i ≤ u (i + 1) [PROOFSTEP] exact hu (Nat.le_succ _) [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have A : i < N := hi ▸ i.lt_succ_self [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have B : ¬i + 1 < N := by rw [← hi]; exact fun h => h.ne rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N ⊢ ¬i + 1 < N [PROOFSTEP] rw [← hi] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N ⊢ ¬i + 1 < i + 1 [PROOFSTEP] exact fun h => h.ne rfl [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N B : ¬i + 1 < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] rw [if_pos A, if_neg B, if_pos hi] [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N B : ¬i + 1 < N ⊢ u i ≤ x [PROOFSTEP] have T := Nat.find_min exists_N A [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N B : ¬i + 1 < N T : ¬(i ≤ n ∧ x < u i) ⊢ u i ≤ x [PROOFSTEP] push_neg at T [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : i + 1 = N A : i < N B : ¬i + 1 < N T : i ≤ n → u i ≤ x ⊢ u i ≤ x [PROOFSTEP] exact T (A.le.trans hN.1) [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have A : ¬i < N := (Nat.lt_succ_iff.mp hi).not_lt [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have B : ¬i + 1 < N := hi.not_lt [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have C : ¬i + 1 = N := hi.ne.symm [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N C : ¬i + 1 = N ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] have D : i + 1 - 1 = i := Nat.pred_succ i [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N C : ¬i + 1 = N D : i + 1 - 1 = i ⊢ (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1)) ≤ if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1) [PROOFSTEP] rw [if_neg A, if_neg B, if_neg C, D] [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N C : ¬i + 1 = N D : i + 1 - 1 = i ⊢ (if i = Nat.find exists_N then x else u (i - 1)) ≤ u i [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N C : ¬i + 1 = N D : i + 1 - 1 = i h✝ : i = Nat.find exists_N ⊢ x ≤ u i [PROOFSTEP] exact hN.2.le.trans (hu (le_of_not_lt A)) [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s i : ℕ hi : N < i + 1 A : ¬i < N B : ¬i + 1 < N C : ¬i + 1 = N D : i + 1 - 1 = i h✝ : ¬i = Nat.find exists_N ⊢ u (i - 1) ≤ u i [PROOFSTEP] exact hu (Nat.pred_le _) [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] refine' ⟨w, n + 1, hw, ws, (mem_image _ _ _).2 ⟨N, hN.1.trans_lt (Nat.lt_succ_self n), _⟩, _⟩ [GOAL] case inr.refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ w N = x [PROOFSTEP] dsimp only [GOAL] case inr.refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ (if Nat.find exists_N < Nat.find exists_N then u (Nat.find exists_N) else if Nat.find exists_N = Nat.find exists_N then x else u (Nat.find exists_N - 1)) = x [PROOFSTEP] rw [if_neg (lt_irrefl N), if_pos rfl] [GOAL] case inr.refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) [PROOFSTEP] rcases eq_or_lt_of_le (zero_le N) with (Npos | Npos) [GOAL] case inr.refine'_2.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) [PROOFSTEP] calc (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) = ∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i))) := by apply Finset.sum_congr rfl fun i _hi => ?_ dsimp only simp only [← Npos, Nat.not_lt_zero, Nat.add_succ_sub_one, add_zero, if_false, add_eq_zero_iff, Nat.one_ne_zero, false_and_iff, Nat.succ_add_sub_one, zero_add] rw [add_comm 1 i] _ = ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) := by rw [Finset.range_eq_Ico] exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) 0 n 1 _ ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) := by apply Finset.sum_le_sum_of_subset _ rw [Finset.range_eq_Ico] exact Finset.Ico_subset_Ico zero_le_one le_rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] apply Finset.sum_congr rfl fun i _hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N i : ℕ _hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N i : ℕ _hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] simp only [← Npos, Nat.not_lt_zero, Nat.add_succ_sub_one, add_zero, if_false, add_eq_zero_iff, Nat.one_ne_zero, false_and_iff, Nat.succ_add_sub_one, zero_add] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N i : ℕ _hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (u (1 + i))) (f (u i)) [PROOFSTEP] rw [add_comm 1 i] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i in Finset.range n, edist (f (w (1 + i + 1))) (f (w (1 + i))) = ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] rw [Finset.range_eq_Ico] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i in Finset.Ico 0 n, edist (f (w (1 + i + 1))) (f (w (1 + i))) = ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) 0 n 1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i in Finset.Ico 1 (n + 1), edist (f (w (i + 1))) (f (w i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) [PROOFSTEP] apply Finset.sum_le_sum_of_subset _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ Finset.Ico 1 (n + 1) ⊆ Finset.range (n + 1) [PROOFSTEP] rw [Finset.range_eq_Ico] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ Finset.Ico 1 (n + 1) ⊆ Finset.Ico 0 (n + 1) [PROOFSTEP] exact Finset.Ico_subset_Ico zero_le_one le_rfl [GOAL] case inr.refine'_2.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) [PROOFSTEP] calc (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) = ((∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i))) + ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i))) + ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) := by rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico] · exact zero_le _ · exact hN.1 · exact zero_le _ · exact Nat.pred_le _ _ = (∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) + edist (f (u N)) (f (u (N - 1))) + ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) := by congr 1; congr 1 · apply Finset.sum_congr rfl fun i hi => ?_ simp only [Finset.mem_Ico, zero_le', true_and_iff] at hi dsimp only have A : i + 1 < N := Nat.lt_pred_iff.1 hi have B : i < N := Nat.lt_of_succ_lt A rw [if_pos A, if_pos B] · have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos have : Finset.Ico (N - 1) N = {N - 1} := by rw [← Nat.Ico_succ_singleton, A] simp only [this, A, Finset.sum_singleton] · apply Finset.sum_congr rfl fun i hi => ?_ rw [Finset.mem_Ico] at hi dsimp only have A : ¬1 + i + 1 < N := fun h => by rw [add_assoc, add_comm] at h exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h)) have B : ¬1 + i + 1 = N := fun h => by rw [← h, add_assoc, add_comm] at hi exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left) have C : ¬1 + i < N := fun h => by rw [add_comm] at h exact hi.left.not_lt (i.lt_succ_self.trans h) have D : ¬1 + i = N := fun h => by rw [← h, add_comm, Nat.succ_le_iff] at hi exact hi.left.ne rfl rw [if_neg A, if_neg B, if_neg C, if_neg D] congr 3 <;> · rw [add_comm, Nat.sub_one]; apply Nat.pred_succ _ = (∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) + edist (f (w (N + 1))) (f (w (N - 1))) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) := by congr 1; congr 1 · dsimp only have A : ¬N + 1 < N := Nat.not_succ_lt_self have B : N - 1 < N := Nat.pred_lt Npos.ne' simp only [A, not_and, not_lt, Nat.succ_ne_self, Nat.add_succ_sub_one, add_zero, if_false, B, if_true] · exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) N n 1 _ ≤ ((∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i))) + ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i))) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) := by refine' add_le_add (add_le_add le_rfl _) le_rfl have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos have B : N - 1 + 1 < N + 1 := A.symm ▸ N.lt_succ_self have C : N - 1 < N + 1 := lt_of_le_of_lt N.pred_le N.lt_succ_self rw [Finset.sum_eq_sum_Ico_succ_bot C, Finset.sum_eq_sum_Ico_succ_bot B, A, Finset.Ico_self, Finset.sum_empty, add_zero, add_comm (edist _ _)] exact edist_triangle _ _ _ _ = ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) := by rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico] · exact zero_le _ · exact Nat.succ_le_succ hN.left · exact zero_le _ · exact N.pred_le.trans N.le_succ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) [PROOFSTEP] rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico] [GOAL] case hmn α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ 0 ≤ N [PROOFSTEP] exact zero_le _ [GOAL] case hnk α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ N ≤ n [PROOFSTEP] exact hN.1 [GOAL] case hmn α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ 0 ≤ N - 1 [PROOFSTEP] exact zero_le _ [GOAL] case hnk α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ N - 1 ≤ N [PROOFSTEP] exact Nat.pred_le _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) + ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] congr 1 [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] apply Finset.sum_congr rfl fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i ∈ Finset.Ico 0 (N - 1) ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] simp only [Finset.mem_Ico, zero_le', true_and_iff] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i < Nat.find exists_N - 1 ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i < Nat.find exists_N - 1 ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1))) (f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1))) [PROOFSTEP] have A : i + 1 < N := Nat.lt_pred_iff.1 hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i < Nat.find exists_N - 1 A : i + 1 < N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1))) (f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1))) [PROOFSTEP] have B : i < N := Nat.lt_of_succ_lt A [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i < Nat.find exists_N - 1 A : i + 1 < N B : i < N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 < Nat.find exists_N then u (i + 1) else if i + 1 = Nat.find exists_N then x else u (i + 1 - 1))) (f (if i < Nat.find exists_N then u i else if i = Nat.find exists_N then x else u (i - 1))) [PROOFSTEP] rw [if_pos A, if_pos B] [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1))) [PROOFSTEP] have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N ⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1))) [PROOFSTEP] have : Finset.Ico (N - 1) N = {N - 1} := by rw [← Nat.Ico_succ_singleton, A] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N ⊢ Finset.Ico (N - 1) N = {N - 1} [PROOFSTEP] rw [← Nat.Ico_succ_singleton, A] [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N this : Finset.Ico (N - 1) N = {N - 1} ⊢ ∑ i in Finset.Ico (N - 1) N, edist (f (u (i + 1))) (f (u i)) = edist (f (u N)) (f (u (N - 1))) [PROOFSTEP] simp only [this, A, Finset.sum_singleton] [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico N n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] apply Finset.sum_congr rfl fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i ∈ Finset.Ico N n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] rw [Finset.mem_Ico] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (w (1 + i + 1))) (f (w (1 + i))) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] have A : ¬1 + i + 1 < N := fun h => by rw [add_assoc, add_comm] at h exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n h : 1 + i + 1 < N ⊢ False [PROOFSTEP] rw [add_assoc, add_comm] at h [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n h : i + 1 + 1 < N ⊢ False [PROOFSTEP] exact hi.left.not_lt (i.lt_succ_self.trans (i.succ.lt_succ_self.trans h)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] have B : ¬1 + i + 1 = N := fun h => by rw [← h, add_assoc, add_comm] at hi exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N h : 1 + i + 1 = N ⊢ False [PROOFSTEP] rw [← h, add_assoc, add_comm] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i + 1 + 1 ≤ i ∧ i < n A : ¬1 + i + 1 < N h : 1 + i + 1 = N ⊢ False [PROOFSTEP] exact Nat.not_succ_le_self i (i.succ.le_succ.trans hi.left) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] have C : ¬1 + i < N := fun h => by rw [add_comm] at h exact hi.left.not_lt (i.lt_succ_self.trans h) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N h : 1 + i < N ⊢ False [PROOFSTEP] rw [add_comm] at h [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N h : i + 1 < N ⊢ False [PROOFSTEP] exact hi.left.not_lt (i.lt_succ_self.trans h) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] have D : ¬1 + i = N := fun h => by rw [← h, add_comm, Nat.succ_le_iff] at hi exact hi.left.ne rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N h : 1 + i = N ⊢ False [PROOFSTEP] rw [← h, add_comm, Nat.succ_le_iff] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h✝ : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : i < i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N h : 1 + i = N ⊢ False [PROOFSTEP] exact hi.left.ne rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if 1 + i + 1 < Nat.find exists_N then u (1 + i + 1) else if 1 + i + 1 = Nat.find exists_N then x else u (1 + i + 1 - 1))) (f (if 1 + i < Nat.find exists_N then u (1 + i) else if 1 + i = Nat.find exists_N then x else u (1 + i - 1))) [PROOFSTEP] rw [if_neg A, if_neg B, if_neg C, if_neg D] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (u (1 + i + 1 - 1))) (f (u (1 + i - 1))) [PROOFSTEP] congr 3 [GOAL] case e_a.e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ i + 1 = 1 + i + 1 - 1 [PROOFSTEP] rw [add_comm, Nat.sub_one] [GOAL] case e_a.e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ 1 + i = Nat.pred (1 + i + 1) [PROOFSTEP] apply Nat.pred_succ [GOAL] case e_a.e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ i = 1 + i - 1 [PROOFSTEP] rw [add_comm, Nat.sub_one] [GOAL] case e_a.e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N i : ℕ hi : N ≤ i ∧ i < n A : ¬1 + i + 1 < N B : ¬1 + i + 1 = N C : ¬1 + i < N D : ¬1 + i = N ⊢ i = Nat.pred (i + 1) [PROOFSTEP] apply Nat.pred_succ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) + ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) = ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1))) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (u N)) (f (u (N - 1))) = ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1))) case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) = ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] congr 1 [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ edist (f (u N)) (f (u (N - 1))) = edist (f (w (N + 1))) (f (w (N - 1))) [PROOFSTEP] dsimp only [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) = edist (f (if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1) else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1))) (f (if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1) else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1))) [PROOFSTEP] have A : ¬N + 1 < N := Nat.not_succ_lt_self [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : ¬N + 1 < N ⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) = edist (f (if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1) else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1))) (f (if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1) else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1))) [PROOFSTEP] have B : N - 1 < N := Nat.pred_lt Npos.ne' [GOAL] case e_a.e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : ¬N + 1 < N B : N - 1 < N ⊢ edist (f (u (Nat.find exists_N))) (f (u (Nat.find exists_N - 1))) = edist (f (if Nat.find exists_N + 1 < Nat.find exists_N then u (Nat.find exists_N + 1) else if Nat.find exists_N + 1 = Nat.find exists_N then x else u (Nat.find exists_N + 1 - 1))) (f (if Nat.find exists_N - 1 < Nat.find exists_N then u (Nat.find exists_N - 1) else if Nat.find exists_N - 1 = Nat.find exists_N then x else u (Nat.find exists_N - 1 - 1))) [PROOFSTEP] simp only [A, not_and, not_lt, Nat.succ_ne_self, Nat.add_succ_sub_one, add_zero, if_false, B, if_true] [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico N n, edist (f (w (1 + i + 1))) (f (w (1 + i))) = ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] exact Finset.sum_Ico_add (fun i => edist (f (w (i + 1))) (f (w i))) N n 1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + edist (f (w (N + 1))) (f (w (N - 1))) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) ≤ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] refine' add_le_add (add_le_add le_rfl _) le_rfl [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] have A : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N ⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] have B : N - 1 + 1 < N + 1 := A.symm ▸ N.lt_succ_self [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N B : N - 1 + 1 < N + 1 ⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] have C : N - 1 < N + 1 := lt_of_le_of_lt N.pred_le N.lt_succ_self [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N B : N - 1 + 1 < N + 1 C : N - 1 < N + 1 ⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] rw [Finset.sum_eq_sum_Ico_succ_bot C, Finset.sum_eq_sum_Ico_succ_bot B, A, Finset.Ico_self, Finset.sum_empty, add_zero, add_comm (edist _ _)] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N A : N - 1 + 1 = N B : N - 1 + 1 < N + 1 C : N - 1 < N + 1 ⊢ edist (f (w (N + 1))) (f (w (N - 1))) ≤ edist (f (w (N + 1))) (f (w N)) + edist (f (w N)) (f (w (N - 1))) [PROOFSTEP] exact edist_triangle _ _ _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i in Finset.Ico 0 (N - 1), edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (N - 1) (N + 1), edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (N + 1) (n + 1), edist (f (w (i + 1))) (f (w i)) = ∑ j in Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) [PROOFSTEP] rw [Finset.sum_Ico_consecutive, Finset.sum_Ico_consecutive, Finset.range_eq_Ico] [GOAL] case hmn α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ 0 ≤ N + 1 [PROOFSTEP] exact zero_le _ [GOAL] case hnk α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ N + 1 ≤ n + 1 [PROOFSTEP] exact Nat.succ_le_succ hN.left [GOAL] case hmn α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ 0 ≤ N - 1 [PROOFSTEP] exact zero_le _ [GOAL] case hnk α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N, N ≤ n ∧ x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ N - 1 ≤ N + 1 [PROOFSTEP] exact N.pred_le.trans N.le_succ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] by_cases hs : s = ∅ [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : s = ∅ ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] simp [hs] [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] have : Nonempty { u // Monotone u ∧ ∀ i : ℕ, u i ∈ s } := nonempty_monotone_mem (nonempty_iff_ne_empty.2 hs) [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] by_cases ht : t = ∅ [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : t = ∅ ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] simp [ht] [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] have : Nonempty { u // Monotone u ∧ ∀ i : ℕ, u i ∈ t } := nonempty_monotone_mem (nonempty_iff_ne_empty.2 ht) [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } ⊢ eVariationOn f s + eVariationOn f t ≤ eVariationOn f (s ∪ t) [PROOFSTEP] refine' ENNReal.iSup_add_iSup_le _ /- We start from two sequences `u` and `v` along `s` and `t` respectively, and we build a new sequence `w` along `s ∪ t` by juxtaposing them. Its variation is larger than the sum of the variations. -/ [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }) (j : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }), ∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) + ∑ i in Finset.range j.fst, edist (f (↑j.snd (i + 1))) (f (↑j.snd i)) ≤ eVariationOn f (s ∪ t) [PROOFSTEP] rintro ⟨n, ⟨u, hu, us⟩⟩ ⟨m, ⟨v, hv, vt⟩⟩ [GOAL] case neg.mk.mk.intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) + ∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst, edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1))) (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤ eVariationOn f (s ∪ t) [PROOFSTEP] let w i := if i ≤ n then u i else v (i - (n + 1)) [GOAL] case neg.mk.mk.intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) + ∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst, edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1))) (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤ eVariationOn f (s ∪ t) [PROOFSTEP] have wst : ∀ i, w i ∈ s ∪ t := by intro i by_cases hi : i ≤ n · simp [hi, us] · simp [hi, vt] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) ⊢ ∀ (i : ℕ), w i ∈ s ∪ t [PROOFSTEP] intro i [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) i : ℕ ⊢ w i ∈ s ∪ t [PROOFSTEP] by_cases hi : i ≤ n [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) i : ℕ hi : i ≤ n ⊢ w i ∈ s ∪ t [PROOFSTEP] simp [hi, us] [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) i : ℕ hi : ¬i ≤ n ⊢ w i ∈ s ∪ t [PROOFSTEP] simp [hi, vt] [GOAL] case neg.mk.mk.intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) + ∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst, edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1))) (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤ eVariationOn f (s ∪ t) [PROOFSTEP] have hw : Monotone w := by intro i j hij dsimp only split_ifs with h_1 h_2 h_2 · exact hu hij · apply h _ (us _) _ (vt _) · exfalso; exact h_1 (hij.trans h_2) · apply hv (tsub_le_tsub hij le_rfl) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t ⊢ Monotone w [PROOFSTEP] intro i j hij [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j ⊢ w i ≤ w j [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j ⊢ (if i ≤ n then u i else v (i - (n + 1))) ≤ if j ≤ n then u j else v (j - (n + 1)) [PROOFSTEP] split_ifs with h_1 h_2 h_2 [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j h_1 : i ≤ n h_2 : j ≤ n ⊢ u i ≤ u j [PROOFSTEP] exact hu hij [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j h_1 : i ≤ n h_2 : ¬j ≤ n ⊢ u i ≤ v (j - (n + 1)) [PROOFSTEP] apply h _ (us _) _ (vt _) [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j h_1 : ¬i ≤ n h_2 : j ≤ n ⊢ v (i - (n + 1)) ≤ u j [PROOFSTEP] exfalso [GOAL] case pos.h α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j h_1 : ¬i ≤ n h_2 : j ≤ n ⊢ False [PROOFSTEP] exact h_1 (hij.trans h_2) [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t i j : ℕ hij : i ≤ j h_1 : ¬i ≤ n h_2 : ¬j ≤ n ⊢ v (i - (n + 1)) ≤ v (j - (n + 1)) [PROOFSTEP] apply hv (tsub_le_tsub hij le_rfl) [GOAL] case neg.mk.mk.intro.mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) + ∑ i in Finset.range (m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).fst, edist (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd (i + 1))) (f (↑(m, { val := v, property := (_ : Monotone v ∧ ∀ (i : ℕ), v i ∈ t) }).snd i)) ≤ eVariationOn f (s ∪ t) [PROOFSTEP] calc ((∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) + ∑ i : ℕ in Finset.range m, edist (f (v (i + 1))) (f (v i))) = (∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i))) + ∑ i : ℕ in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) := by dsimp only congr 1 · refine Finset.sum_congr rfl fun i hi => ?_ simp only [Finset.mem_range] at hi have : i + 1 ≤ n := Nat.succ_le_of_lt hi simp [hi.le, this] · refine Finset.sum_congr rfl fun i hi => ?_ simp only [Finset.mem_range] at hi have B : ¬n + 1 + i ≤ n := by linarith have A : ¬n + 1 + i + 1 ≤ n := fun h => B ((n + 1 + i).le_succ.trans h) have C : n + 1 + i - n = i + 1 := by rw [tsub_eq_iff_eq_add_of_le] · abel · exact n.le_succ.trans (n.succ.le_add_right i) simp only [A, B, C, Nat.succ_sub_succ_eq_sub, if_false, add_tsub_cancel_left] _ = (∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i))) + ∑ i : ℕ in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) := by congr 1 rw [Finset.range_eq_Ico] convert Finset.sum_Ico_add (fun i : ℕ => edist (f (w (i + 1))) (f (w i))) 0 m (n + 1) using 3 <;> abel _ ≤ ∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i)) := by rw [← Finset.sum_union] · apply Finset.sum_le_sum_of_subset _ rintro i hi simp only [Finset.mem_union, Finset.mem_range, Finset.mem_Ico] at hi ⊢ cases' hi with hi hi · exact lt_of_lt_of_le hi (n.le_succ.trans (n.succ.le_add_right m)) · exact hi.2 · refine Finset.disjoint_left.2 fun i hi h'i => ?_ simp only [Finset.mem_Ico, Finset.mem_range] at hi h'i exact hi.not_lt (Nat.lt_of_succ_le h'i.left) _ ≤ eVariationOn f (s ∪ t) := sum_le f _ hw wst [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) = ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) + ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) = ∑ i in Finset.range n, edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) + ∑ i in Finset.range m, edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.range n, edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) [PROOFSTEP] simp only [Finset.mem_range] at hi [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) [PROOFSTEP] have : i + 1 ≤ n := Nat.succ_le_of_lt hi [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝¹ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < n this : i + 1 ≤ n ⊢ edist (f (u (i + 1))) (f (u i)) = edist (f (if i + 1 ≤ n then u (i + 1) else v (i + 1 - (n + 1)))) (f (if i ≤ n then u i else v (i - (n + 1)))) [PROOFSTEP] simp [hi.le, this] [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range m, edist (f (v (i + 1))) (f (v i)) = ∑ i in Finset.range m, edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i ∈ Finset.range m ⊢ edist (f (v (i + 1))) (f (v i)) = edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] simp only [Finset.mem_range] at hi [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m ⊢ edist (f (v (i + 1))) (f (v i)) = edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] have B : ¬n + 1 + i ≤ n := by linarith [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m ⊢ ¬n + 1 + i ≤ n [PROOFSTEP] linarith [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n ⊢ edist (f (v (i + 1))) (f (v i)) = edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] have A : ¬n + 1 + i + 1 ≤ n := fun h => B ((n + 1 + i).le_succ.trans h) [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n ⊢ edist (f (v (i + 1))) (f (v i)) = edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] have C : n + 1 + i - n = i + 1 := by rw [tsub_eq_iff_eq_add_of_le] · abel · exact n.le_succ.trans (n.succ.le_add_right i) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n ⊢ n + 1 + i - n = i + 1 [PROOFSTEP] rw [tsub_eq_iff_eq_add_of_le] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n ⊢ n + 1 + i = i + 1 + n [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n ⊢ n + 1 + i = i + 1 + n [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n ⊢ n ≤ n + 1 + i [PROOFSTEP] exact n.le_succ.trans (n.succ.le_add_right i) [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < m B : ¬n + 1 + i ≤ n A : ¬n + 1 + i + 1 ≤ n C : n + 1 + i - n = i + 1 ⊢ edist (f (v (i + 1))) (f (v i)) = edist (f (if n + 1 + i + 1 ≤ n then u (n + 1 + i + 1) else v (n + 1 + i + 1 - (n + 1)))) (f (if n + 1 + i ≤ n then u (n + 1 + i) else v (n + 1 + i - (n + 1)))) [PROOFSTEP] simp only [A, B, C, Nat.succ_sub_succ_eq_sub, if_false, add_tsub_cancel_left] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) = ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) = ∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] rw [Finset.range_eq_Ico] [GOAL] case e_a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.Ico 0 m, edist (f (w (n + 1 + i + 1))) (f (w (n + 1 + i))) = ∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] convert Finset.sum_Ico_add (fun i : ℕ => edist (f (w (i + 1))) (f (w i))) 0 m (n + 1) using 3 [GOAL] case h.e'_3.h.h.e'_4 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ n + 1 = 0 + (n + 1) [PROOFSTEP] abel [GOAL] case h.e'_3.h.h.e'_4 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ n + 1 = 0 + (n + 1) [PROOFSTEP] abel [GOAL] case h.e'_3.h.h.e'_5 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ n + 1 + m = m + (n + 1) [PROOFSTEP] abel [GOAL] case h.e'_3.h.h.e'_5 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ n + 1 + m = m + (n + 1) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ i in Finset.range n, edist (f (w (i + 1))) (f (w i)) + ∑ i in Finset.Ico (n + 1) (n + 1 + m), edist (f (w (i + 1))) (f (w i)) ≤ ∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] rw [← Finset.sum_union] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ ∑ x in Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m), edist (f (w (x + 1))) (f (w x)) ≤ ∑ i in Finset.range (n + 1 + m), edist (f (w (i + 1))) (f (w i)) [PROOFSTEP] apply Finset.sum_le_sum_of_subset _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m) ⊆ Finset.range (n + 1 + m) [PROOFSTEP] rintro i hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i ∈ Finset.range n ∪ Finset.Ico (n + 1) (n + 1 + m) ⊢ i ∈ Finset.range (n + 1 + m) [PROOFSTEP] simp only [Finset.mem_union, Finset.mem_range, Finset.mem_Ico] at hi ⊢ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < n ∨ n + 1 ≤ i ∧ i < n + 1 + m ⊢ i < n + 1 + m [PROOFSTEP] cases' hi with hi hi [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < n ⊢ i < n + 1 + m [PROOFSTEP] exact lt_of_lt_of_le hi (n.le_succ.trans (n.succ.le_add_right m)) [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : n + 1 ≤ i ∧ i < n + 1 + m ⊢ i < n + 1 + m [PROOFSTEP] exact hi.2 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w ⊢ Disjoint (Finset.range n) (Finset.Ico (n + 1) (n + 1 + m)) [PROOFSTEP] refine Finset.disjoint_left.2 fun i hi h'i => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i ∈ Finset.range n h'i : i ∈ Finset.Ico (n + 1) (n + 1 + m) ⊢ False [PROOFSTEP] simp only [Finset.mem_Ico, Finset.mem_range] at hi h'i [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → x ≤ y hs : ¬s = ∅ this✝ : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s } ht : ¬t = ∅ this : Nonempty { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t } n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s m : ℕ v : ℕ → α hv : Monotone v vt : ∀ (i : ℕ), v i ∈ t w : ℕ → α := fun i => if i ≤ n then u i else v (i - (n + 1)) wst : ∀ (i : ℕ), w i ∈ s ∪ t hw : Monotone w i : ℕ hi : i < n h'i : n + 1 ≤ i ∧ i < n + 1 + m ⊢ False [PROOFSTEP] exact hi.not_lt (Nat.lt_of_succ_le h'i.left) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x ⊢ eVariationOn f (s ∪ t) = eVariationOn f s + eVariationOn f t [PROOFSTEP] classical apply le_antisymm _ (eVariationOn.add_le_union f fun a ha b hb => le_trans (hs.2 ha) (ht.2 hb)) apply iSup_le _ rintro ⟨n, ⟨u, hu, ust⟩⟩ obtain ⟨v, m, hv, vst, xv, huv⟩ : ∃ (v : ℕ → α) (m : ℕ), Monotone v ∧ (∀ i, v i ∈ s ∪ t) ∧ x ∈ v '' Iio m ∧ (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) exact eVariationOn.add_point f (mem_union_left t hs.1) u hu ust n obtain ⟨N, hN, Nx⟩ : ∃ N, N < m ∧ v N = x exact xv calc (∑ j in Finset.range n, edist (f (u (j + 1))) (f (u j))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) := huv _ = (∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j))) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) := by rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le] _ ≤ eVariationOn f s + eVariationOn f t := by refine' add_le_add _ _ · apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ rcases vst i with (h | h); · exact h have : v i = x := by apply le_antisymm · rw [← Nx]; exact hv hi.2 · exact ht.2 h rw [this] exact hs.1 · apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ rcases vst i with (h | h); swap; · exact h have : v i = x := by apply le_antisymm · exact hs.2 h · rw [← Nx]; exact hv hi.1 rw [this] exact ht.1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x ⊢ eVariationOn f (s ∪ t) = eVariationOn f s + eVariationOn f t [PROOFSTEP] apply le_antisymm _ (eVariationOn.add_le_union f fun a ha b hb => le_trans (hs.2 ha) (ht.2 hb)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x ⊢ eVariationOn f (s ∪ t) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] apply iSup_le _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t }), ∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] rintro ⟨n, ⟨u, hu, ust⟩⟩ [GOAL] case mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] obtain ⟨v, m, hv, vst, xv, huv⟩ : ∃ (v : ℕ → α) (m : ℕ), Monotone v ∧ (∀ i, v i ∈ s ∪ t) ∧ x ∈ v '' Iio m ∧ (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t ⊢ ∃ v m, Monotone v ∧ (∀ (i : ℕ), v i ∈ s ∪ t) ∧ x ∈ v '' Iio m ∧ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) case mk.mk.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] exact eVariationOn.add_point f (mem_union_left t hs.1) u hu ust n [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] obtain ⟨N, hN, Nx⟩ : ∃ N, N < m ∧ v N = x [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) ⊢ ∃ N, N < m ∧ v N = x case mk.mk.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] exact xv [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∪ t) }).snd i)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] calc (∑ j in Finset.range n, edist (f (u (j + 1))) (f (u j))) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) := huv _ = (∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j))) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) := by rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le] _ ≤ eVariationOn f s + eVariationOn f t := by refine' add_le_add _ _ · apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ rcases vst i with (h | h); · exact h have : v i = x := by apply le_antisymm · rw [← Nx]; exact hv hi.2 · exact ht.2 h rw [this] exact hs.1 · apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ rcases vst i with (h | h); swap; · exact h have : v i = x := by apply le_antisymm · exact hs.2 h · rw [← Nx]; exact hv hi.1 rw [this] exact ht.1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) = ∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) [PROOFSTEP] rw [Finset.range_eq_Ico, Finset.sum_Ico_consecutive _ (zero_le _) hN.le] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) + ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) ≤ eVariationOn f s + eVariationOn f t [PROOFSTEP] refine' add_le_add _ _ [GOAL] case refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ j in Finset.Ico 0 N, edist (f (v (j + 1))) (f (v j)) ≤ eVariationOn f s [PROOFSTEP] apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N ⊢ v i ∈ s [PROOFSTEP] rcases vst i with (h | h) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ s ⊢ v i ∈ s [PROOFSTEP] exact h [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t ⊢ v i ∈ s [PROOFSTEP] have : v i = x := by apply le_antisymm · rw [← Nx]; exact hv hi.2 · exact ht.2 h [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t ⊢ v i = x [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t ⊢ v i ≤ x [PROOFSTEP] rw [← Nx] [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t ⊢ v i ≤ v N [PROOFSTEP] exact hv hi.2 [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t ⊢ x ≤ v i [PROOFSTEP] exact ht.2 h [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t this : v i = x ⊢ v i ∈ s [PROOFSTEP] rw [this] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc 0 N h : v i ∈ t this : v i = x ⊢ x ∈ s [PROOFSTEP] exact hs.1 [GOAL] case refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x ⊢ ∑ j in Finset.Ico N m, edist (f (v (j + 1))) (f (v j)) ≤ eVariationOn f t [PROOFSTEP] apply sum_le_of_monotoneOn_Icc _ (hv.monotoneOn _) fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m ⊢ v i ∈ t [PROOFSTEP] rcases vst i with (h | h) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ v i ∈ t case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ t ⊢ v i ∈ t [PROOFSTEP] swap [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ t ⊢ v i ∈ t [PROOFSTEP] exact h [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ v i ∈ t [PROOFSTEP] have : v i = x := by apply le_antisymm · exact hs.2 h · rw [← Nx]; exact hv hi.1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ v i = x [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ v i ≤ x [PROOFSTEP] exact hs.2 h [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ x ≤ v i [PROOFSTEP] rw [← Nx] [GOAL] case a α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s ⊢ v N ≤ v i [PROOFSTEP] exact hv hi.1 [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s this : v i = x ⊢ v i ∈ t [PROOFSTEP] rw [this] [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s t : Set α x : α hs : IsGreatest s x ht : IsLeast t x n : ℕ u : ℕ → α hu : Monotone u ust : ∀ (i : ℕ), u i ∈ s ∪ t v : ℕ → α m : ℕ hv : Monotone v vst : ∀ (i : ℕ), v i ∈ s ∪ t xv : x ∈ v '' Iio m huv : ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j in Finset.range m, edist (f (v (j + 1))) (f (v j)) N : ℕ hN : N < m Nx : v N = x i : ℕ hi : i ∈ Icc N m h : v i ∈ s this : v i = x ⊢ x ∈ t [PROOFSTEP] exact ht.1 [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b c : α hab : a ≤ b hbc : b ≤ c hb : b ∈ s ⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c) [PROOFSTEP] have A : IsGreatest (s ∩ Icc a b) b := ⟨⟨hb, hab, le_rfl⟩, (inter_subset_right _ _).trans Icc_subset_Iic_self⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b c : α hab : a ≤ b hbc : b ≤ c hb : b ∈ s A : IsGreatest (s ∩ Icc a b) b ⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c) [PROOFSTEP] have B : IsLeast (s ∩ Icc b c) b := ⟨⟨hb, le_rfl, hbc⟩, (inter_subset_right _ _).trans Icc_subset_Ici_self⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b c : α hab : a ≤ b hbc : b ≤ c hb : b ∈ s A : IsGreatest (s ∩ Icc a b) b B : IsLeast (s ∩ Icc b c) b ⊢ eVariationOn f (s ∩ Icc a b) + eVariationOn f (s ∩ Icc b c) = eVariationOn f (s ∩ Icc a c) [PROOFSTEP] rw [← eVariationOn.union f A B, ← inter_union_distrib_left, Icc_union_Icc_eq_Icc hab hbc] [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s ⊢ eVariationOn (f ∘ φ) t ≤ eVariationOn f s [PROOFSTEP] refine' iSup_le _ [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ t }), ∑ i_1 in Finset.range i.fst, edist ((f ∘ φ) (↑i.snd (i_1 + 1))) ((f ∘ φ) (↑i.snd i_1)) ≤ eVariationOn f s [PROOFSTEP] rintro ⟨n, u, hu, ut⟩ [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst, edist ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd (i + 1))) ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd i)) ≤ eVariationOn f s [PROOFSTEP] rw [← Finset.sum_range_reflect] [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t ⊢ ∑ j in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst, edist ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd ((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - j + 1))) ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd ((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - j))) ≤ eVariationOn f s [PROOFSTEP] refine' (Finset.sum_congr rfl fun x hx => _).trans_le <| le_iSup_of_le ⟨n, fun i => φ (u <| n - i), fun x y xy => hφ (ut _) (ut _) (hu <| Nat.sub_le_sub_left n xy), fun i => φst (ut _)⟩ le_rfl [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t x : ℕ hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst ⊢ edist ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd ((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - x + 1))) ((f ∘ φ) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).snd ((n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst - 1 - x))) = edist (f (↑(n, { val := fun i => φ (u (n - i)), property := (_ : (Monotone fun i => φ (u (n - i))) ∧ ∀ (i : ℕ), (fun i => φ (u (n - i))) i ∈ s) }).snd (x + 1))) (f (↑(n, { val := fun i => φ (u (n - i)), property := (_ : (Monotone fun i => φ (u (n - i))) ∧ ∀ (i : ℕ), (fun i => φ (u (n - i))) i ∈ s) }).snd x)) [PROOFSTEP] dsimp only [Subtype.coe_mk] [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t x : ℕ hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst ⊢ edist ((f ∘ φ) (u (n - 1 - x + 1))) ((f ∘ φ) (u (n - 1 - x))) = edist (f (φ (u (n - (x + 1))))) (f (φ (u (n - x)))) [PROOFSTEP] rw [edist_comm, Nat.sub_sub, add_comm, Nat.sub_succ, Nat.add_one, Nat.succ_pred_eq_of_pos] [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t x : ℕ hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst ⊢ edist ((f ∘ φ) (u (Nat.pred (n - x)))) ((f ∘ φ) (u (n - x))) = edist (f (φ (u (Nat.pred (n - x))))) (f (φ (u (n - x)))) case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t x : ℕ hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst ⊢ 0 < n - x [PROOFSTEP] simp only [Function.comp_apply] [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α t : Set β φ : β → α hφ : AntitoneOn φ t φst : MapsTo φ t s n : ℕ u : ℕ → β hu : Monotone u ut : ∀ (i : ℕ), u i ∈ t x : ℕ hx : x ∈ Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ t) }).fst ⊢ 0 < n - x [PROOFSTEP] simpa only [tsub_pos_iff_lt, Finset.mem_range] using hx [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t ⊢ eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t) [PROOFSTEP] apply le_antisymm (comp_le_of_monotoneOn f φ hφ (mapsTo_image φ t)) [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] cases isEmpty_or_nonempty β [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : IsEmpty β ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] convert zero_le (_ : ℝ≥0∞) [GOAL] case h.e'_3 α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : IsEmpty β ⊢ eVariationOn f (φ '' t) = 0 [PROOFSTEP] exact eVariationOn.subsingleton f <| (subsingleton_of_subsingleton.image _).anti (surjOn_image φ t) [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] let ψ := φ.invFunOn t [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have ψφs : EqOn (φ ∘ ψ) id (φ '' t) := (surjOn_image φ t).rightInvOn_invFunOn [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have ψts : MapsTo ψ (φ '' t) t := (surjOn_image φ t).mapsTo_invFunOn [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo ψ (φ '' t) t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have hψ : MonotoneOn ψ (φ '' t) := Function.monotoneOn_of_rightInvOn_of_mapsTo hφ ψφs ψts [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo ψ (φ '' t) t hψ : MonotoneOn ψ (φ '' t) ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] change eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo ψ (φ '' t) t hψ : MonotoneOn ψ (φ '' t) ⊢ eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] rw [← eq_of_eqOn (ψφs.comp_left : EqOn (f ∘ φ ∘ ψ) (f ∘ id) (φ '' t))] [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo ψ (φ '' t) t hψ : MonotoneOn ψ (φ '' t) ⊢ eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] exact comp_le_of_monotoneOn _ ψ hψ ψts [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t ⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y)) [PROOFSTEP] rcases le_total x y with (h | h) [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y ⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y)) [PROOFSTEP] convert comp_eq_of_monotoneOn f φ (hφ.mono (Set.inter_subset_left t (Icc x y))) [GOAL] case h.e'_3.h.e'_6 α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y ⊢ φ '' t ∩ Icc (φ x) (φ y) = φ '' (t ∩ Icc x y) [PROOFSTEP] apply le_antisymm [GOAL] case h.e'_3.h.e'_6.a α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y ⊢ φ '' t ∩ Icc (φ x) (φ y) ≤ φ '' (t ∩ Icc x y) [PROOFSTEP] rintro _ ⟨⟨u, us, rfl⟩, vφx, vφy⟩ [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y ⊢ φ u ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] rcases le_total x u with (xu | ux) [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y xu : x ≤ u ⊢ φ u ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] rcases le_total u y with (uy | yu) [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y xu : x ≤ u uy : u ≤ y ⊢ φ u ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] exact ⟨u, ⟨us, ⟨xu, uy⟩⟩, rfl⟩ [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y xu : x ≤ u yu : y ≤ u ⊢ φ u ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] rw [le_antisymm vφy (hφ hy us yu)] [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inl.inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y xu : x ≤ u yu : y ≤ u ⊢ φ y ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] exact ⟨y, ⟨hy, ⟨h, le_rfl⟩⟩, rfl⟩ [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y ux : u ≤ x ⊢ φ u ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] rw [← le_antisymm vφx (hφ us hx ux)] [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro.inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β us : u ∈ t vφx : φ x ≤ φ u vφy : φ u ≤ φ y ux : u ≤ x ⊢ φ x ∈ φ '' (t ∩ Icc x y) [PROOFSTEP] exact ⟨x, ⟨hx, ⟨le_rfl, h⟩⟩, rfl⟩ [GOAL] case h.e'_3.h.e'_6.a α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y ⊢ φ '' (t ∩ Icc x y) ≤ φ '' t ∩ Icc (φ x) (φ y) [PROOFSTEP] rintro _ ⟨u, ⟨⟨hu, xu, uy⟩, rfl⟩⟩ [GOAL] case h.e'_3.h.e'_6.a.intro.intro.intro.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y u : β hu : u ∈ t xu : x ≤ u uy : u ≤ y ⊢ φ u ∈ φ '' t ∩ Icc (φ x) (φ y) [PROOFSTEP] refine' ⟨⟨u, hu, rfl⟩, ⟨hφ hx hu xu, hφ hu hy uy⟩⟩ [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : y ≤ x ⊢ eVariationOn (f ∘ φ) (t ∩ Icc x y) = eVariationOn f (φ '' t ∩ Icc (φ x) (φ y)) [PROOFSTEP] rw [eVariationOn.subsingleton, eVariationOn.subsingleton] [GOAL] case inr.hs α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : y ≤ x ⊢ Set.Subsingleton (φ '' t ∩ Icc (φ x) (φ y)) case inr.hs α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : y ≤ x ⊢ Set.Subsingleton (t ∩ Icc x y) [PROOFSTEP] exacts [(Set.subsingleton_Icc_of_ge (hφ hy hx h)).anti (Set.inter_subset_right _ _), (Set.subsingleton_Icc_of_ge h).anti (Set.inter_subset_right _ _)] [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t ⊢ eVariationOn (f ∘ φ) t = eVariationOn f (φ '' t) [PROOFSTEP] apply le_antisymm (comp_le_of_antitoneOn f φ hφ (mapsTo_image φ t)) [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] cases isEmpty_or_nonempty β [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : IsEmpty β ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] convert zero_le (_ : ℝ≥0∞) [GOAL] case h.e'_3 α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : IsEmpty β ⊢ eVariationOn f (φ '' t) = 0 [PROOFSTEP] exact eVariationOn.subsingleton f <| (subsingleton_of_subsingleton.image _).anti (surjOn_image φ t) [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] let ψ := φ.invFunOn t [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have ψφs : EqOn (φ ∘ ψ) id (φ '' t) := (surjOn_image φ t).rightInvOn_invFunOn [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have ψts := (surjOn_image φ t).mapsTo_invFunOn [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] have hψ : AntitoneOn ψ (φ '' t) := Function.antitoneOn_of_rightInvOn_of_mapsTo hφ ψφs ψts [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t hψ : AntitoneOn ψ (φ '' t) ⊢ eVariationOn f (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] change eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t hψ : AntitoneOn ψ (φ '' t) ⊢ eVariationOn (f ∘ id) (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] rw [← eq_of_eqOn (ψφs.comp_left : EqOn (f ∘ φ ∘ ψ) (f ∘ id) (φ '' t))] [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : AntitoneOn φ t h✝ : Nonempty β ψ : α → β := Function.invFunOn φ t ψφs : EqOn (φ ∘ ψ) id (φ '' t) ψts : MapsTo (Function.invFunOn φ t) (φ '' t) t hψ : AntitoneOn ψ (φ '' t) ⊢ eVariationOn (f ∘ φ ∘ ψ) (φ '' t) ≤ eVariationOn (f ∘ φ) t [PROOFSTEP] exact comp_le_of_antitoneOn _ ψ hψ ψts [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α ⊢ eVariationOn (f ∘ ↑ofDual) (↑ofDual ⁻¹' s) = eVariationOn f s [PROOFSTEP] convert comp_eq_of_antitoneOn f ofDual fun _ _ _ _ => id [GOAL] case h.e'_3.h.e'_6 α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E β : Type u_3 inst✝ : LinearOrder β f : α → E s : Set α ⊢ s = ↑ofDual '' (↑ofDual ⁻¹' s) [PROOFSTEP] simp only [Equiv.image_preimage] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s ⊢ eVariationOn f (s ∩ Icc a b) ≤ ENNReal.ofReal (f b - f a) [PROOFSTEP] apply iSup_le _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b }), ∑ i_1 in Finset.range i.fst, edist (f (↑i.snd (i_1 + 1))) (f (↑i.snd i_1)) ≤ ENNReal.ofReal (f b - f a) [PROOFSTEP] rintro ⟨n, ⟨u, hu, us⟩⟩ [GOAL] case mk.mk.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).fst, edist (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).snd (i + 1))) (f (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s ∩ Icc a b) }).snd i)) ≤ ENNReal.ofReal (f b - f a) [PROOFSTEP] calc (∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i))) = ∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i)) := by refine Finset.sum_congr rfl fun i hi => ?_ simp only [Finset.mem_range] at hi rw [edist_dist, Real.dist_eq, abs_of_nonneg] exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _))) _ = ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i))) := by rw [ENNReal.ofReal_sum_of_nonneg] intro i _ exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _))) _ = ENNReal.ofReal (f (u n) - f (u 0)) := by rw [Finset.sum_range_sub fun i => f (u i)] _ ≤ ENNReal.ofReal (f b - f a) := by apply ENNReal.ofReal_le_ofReal exact sub_le_sub (hf (us n).1 bs (us n).2.2) (hf as (us 0).1 (us 0).2.1) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ∑ i in Finset.range n, edist (f (u (i + 1))) (f (u i)) = ∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i)) [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b i : ℕ hi : i ∈ Finset.range n ⊢ edist (f (u (i + 1))) (f (u i)) = ENNReal.ofReal (f (u (i + 1)) - f (u i)) [PROOFSTEP] simp only [Finset.mem_range] at hi [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b i : ℕ hi : i < n ⊢ edist (f (u (i + 1))) (f (u i)) = ENNReal.ofReal (f (u (i + 1)) - f (u i)) [PROOFSTEP] rw [edist_dist, Real.dist_eq, abs_of_nonneg] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b i : ℕ hi : i < n ⊢ 0 ≤ f (u (i + 1)) - f (u i) [PROOFSTEP] exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _))) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ∑ i in Finset.range n, ENNReal.ofReal (f (u (i + 1)) - f (u i)) = ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i))) [PROOFSTEP] rw [ENNReal.ofReal_sum_of_nonneg] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ∀ (i : ℕ), i ∈ Finset.range n → 0 ≤ f (u (i + 1)) - f (u i) [PROOFSTEP] intro i _ [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b i : ℕ a✝ : i ∈ Finset.range n ⊢ 0 ≤ f (u (i + 1)) - f (u i) [PROOFSTEP] exact sub_nonneg_of_le (hf (us i).1 (us (i + 1)).1 (hu (Nat.le_succ _))) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ENNReal.ofReal (∑ i in Finset.range n, (f (u (i + 1)) - f (u i))) = ENNReal.ofReal (f (u n) - f (u 0)) [PROOFSTEP] rw [Finset.sum_range_sub fun i => f (u i)] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ ENNReal.ofReal (f (u n) - f (u 0)) ≤ ENNReal.ofReal (f b - f a) [PROOFSTEP] apply ENNReal.ofReal_le_ofReal [GOAL] case h α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α hf : MonotoneOn f s a b : α as : a ∈ s bs : b ∈ s n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ∩ Icc a b ⊢ f (u n) - f (u 0) ≤ f b - f a [PROOFSTEP] exact sub_le_sub (hf (us n).1 bs (us n).2.2) (hf as (us 0).1 (us 0).2.1) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a : α ⊢ variationOnFromTo f s a a = 0 [PROOFSTEP] dsimp only [variationOnFromTo] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a : α ⊢ (if a ≤ a then ENNReal.toReal (eVariationOn f (s ∩ Icc a a)) else -ENNReal.toReal (eVariationOn f (s ∩ Icc a a))) = 0 [PROOFSTEP] rw [if_pos le_rfl, Icc_self, eVariationOn.subsingleton, ENNReal.zero_toReal] [GOAL] case hs α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a : α ⊢ Set.Subsingleton (s ∩ {a}) [PROOFSTEP] exact fun x hx y hy => hx.2.trans hy.2.symm [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α h : a ≤ b ⊢ 0 ≤ variationOnFromTo f s a b [PROOFSTEP] simp only [variationOnFromTo, if_pos h, ENNReal.toReal_nonneg] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α ⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a [PROOFSTEP] rcases lt_trichotomy a b with (ab | rfl | ba) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α ab : a < b ⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a [PROOFSTEP] simp only [variationOnFromTo, if_pos ab.le, if_neg ab.not_le, neg_neg] [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a : α ⊢ variationOnFromTo f s a a = -variationOnFromTo f s a a [PROOFSTEP] simp only [variationOnFromTo.self, neg_zero] [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α ba : b < a ⊢ variationOnFromTo f s a b = -variationOnFromTo f s b a [PROOFSTEP] simp only [variationOnFromTo, if_pos ba.le, if_neg ba.not_le, neg_neg] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α h : b ≤ a ⊢ variationOnFromTo f s a b ≤ 0 [PROOFSTEP] rw [variationOnFromTo.eq_neg_swap] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α h : b ≤ a ⊢ -variationOnFromTo f s b a ≤ 0 [PROOFSTEP] exact neg_nonpos_of_nonneg (variationOnFromTo.nonneg_of_le f s h) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α a b : α h : b ≤ a ⊢ variationOnFromTo f s a b = -ENNReal.toReal (eVariationOn f (s ∩ Icc b a)) [PROOFSTEP] rw [variationOnFromTo.eq_neg_swap, neg_inj, variationOnFromTo.eq_of_le f s h] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s ⊢ variationOnFromTo f s a b + variationOnFromTo f s b c = variationOnFromTo f s a c [PROOFSTEP] symm [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s ⊢ variationOnFromTo f s a c = variationOnFromTo f s a b + variationOnFromTo f s b c [PROOFSTEP] refine' additive_of_isTotal ((· : α) ≤ ·) (variationOnFromTo f s) (· ∈ s) _ _ ha hb hc [GOAL] case refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s ⊢ ∀ {a b : α}, (fun x => x ∈ s) a → (fun x => x ∈ s) b → variationOnFromTo f s a b + variationOnFromTo f s b a = 0 [PROOFSTEP] rintro x y _xs _ys [GOAL] case refine'_1 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s x y : α _xs : x ∈ s _ys : y ∈ s ⊢ variationOnFromTo f s x y + variationOnFromTo f s y x = 0 [PROOFSTEP] simp only [variationOnFromTo.eq_neg_swap f s y x, Subtype.coe_mk, add_right_neg, forall_true_left] [GOAL] case refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s ⊢ ∀ {a b c : α}, (fun x x_1 => x ≤ x_1) a b → (fun x x_1 => x ≤ x_1) b c → (fun x => x ∈ s) a → (fun x => x ∈ s) b → (fun x => x ∈ s) c → variationOnFromTo f s a c = variationOnFromTo f s a b + variationOnFromTo f s b c [PROOFSTEP] rintro x y z xy yz xs ys zs [GOAL] case refine'_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s x y z : α xy : x ≤ y yz : y ≤ z xs : x ∈ s ys : y ∈ s zs : z ∈ s ⊢ variationOnFromTo f s x z = variationOnFromTo f s x y + variationOnFromTo f s y z [PROOFSTEP] rw [variationOnFromTo.eq_of_le f s xy, variationOnFromTo.eq_of_le f s yz, variationOnFromTo.eq_of_le f s (xy.trans yz), ← ENNReal.toReal_add (hf x y xs ys) (hf y z ys zs), eVariationOn.Icc_add_Icc f xy yz ys] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 ⊢ edist (f a) (f b) = 0 [PROOFSTEP] wlog h' : a ≤ b [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 this : ∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E], (α → E) → Set α → ∀ {f : α → E} {s : Set α}, LocallyBoundedVariationOn f s → ∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0 h' : ¬a ≤ b ⊢ edist (f a) (f b) = 0 [PROOFSTEP] rw [edist_comm] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 this : ∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E], (α → E) → Set α → ∀ {f : α → E} {s : Set α}, LocallyBoundedVariationOn f s → ∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0 h' : ¬a ≤ b ⊢ edist (f b) (f a) = 0 [PROOFSTEP] apply this f s hf hb ha _ (le_of_not_le h') [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 this : ∀ {α : Type u_1} [inst : LinearOrder α] {E : Type u_2} [inst_1 : PseudoEMetricSpace E], (α → E) → Set α → ∀ {f : α → E} {s : Set α}, LocallyBoundedVariationOn f s → ∀ {a b : α}, a ∈ s → b ∈ s → variationOnFromTo f s a b = 0 → a ≤ b → edist (f a) (f b) = 0 h' : ¬a ≤ b ⊢ variationOnFromTo f s b a = 0 [PROOFSTEP] rw [variationOnFromTo.eq_neg_swap, h, neg_zero] [GOAL] α✝ : Type u_1 inst✝³ : LinearOrder α✝ E✝ : Type u_2 inst✝² : PseudoEMetricSpace E✝ α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 h' : a ≤ b ⊢ edist (f a) (f b) = 0 [PROOFSTEP] apply le_antisymm _ (zero_le _) [GOAL] α✝ : Type u_1 inst✝³ : LinearOrder α✝ E✝ : Type u_2 inst✝² : PseudoEMetricSpace E✝ α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 h' : a ≤ b ⊢ edist (f a) (f b) ≤ 0 [PROOFSTEP] rw [← ENNReal.ofReal_zero, ← h, variationOnFromTo.eq_of_le f s h', ENNReal.ofReal_toReal (hf a b ha hb)] [GOAL] α✝ : Type u_1 inst✝³ : LinearOrder α✝ E✝ : Type u_2 inst✝² : PseudoEMetricSpace E✝ α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 h' : a ≤ b ⊢ edist (f a) (f b) ≤ eVariationOn f (s ∩ Icc a b) [PROOFSTEP] apply eVariationOn.edist_le [GOAL] case hx α✝ : Type u_1 inst✝³ : LinearOrder α✝ E✝ : Type u_2 inst✝² : PseudoEMetricSpace E✝ α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 h' : a ≤ b ⊢ a ∈ s ∩ Icc a b case hy α✝ : Type u_1 inst✝³ : LinearOrder α✝ E✝ : Type u_2 inst✝² : PseudoEMetricSpace E✝ α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s h : variationOnFromTo f s a b = 0 h' : a ≤ b ⊢ b ∈ s ∩ Icc a b [PROOFSTEP] exacts [⟨ha, ⟨le_rfl, h'⟩⟩, ⟨hb, ⟨h', le_rfl⟩⟩] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b c : α ha : a ∈ s hb : b ∈ s hc : c ∈ s ⊢ variationOnFromTo f s a b = variationOnFromTo f s a c ↔ variationOnFromTo f s b c = 0 [PROOFSTEP] simp only [← variationOnFromTo.add hf ha hb hc, self_eq_add_right] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ab : a ≤ b ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc a b → ∀ ⦃y : α⦄, y ∈ s ∩ Icc a b → edist (f x) (f y) = 0 [PROOFSTEP] rw [variationOnFromTo.eq_of_le _ _ ab, ENNReal.toReal_eq_zero_iff, or_iff_left (hf a b ha hb), eVariationOn.eq_zero_iff] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ba : b ≤ a ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc b a → ∀ ⦃y : α⦄, y ∈ s ∩ Icc b a → edist (f x) (f y) = 0 [PROOFSTEP] rw [variationOnFromTo.eq_of_ge _ _ ba, neg_eq_zero, ENNReal.toReal_eq_zero_iff, or_iff_left (hf b a hb ha), eVariationOn.eq_zero_iff] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0 [PROOFSTEP] rcases le_total a b with (ab | ba) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ab : a ≤ b ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0 [PROOFSTEP] rw [uIcc_of_le ab] [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ab : a ≤ b ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc a b → ∀ ⦃y : α⦄, y ∈ s ∩ Icc a b → edist (f x) (f y) = 0 [PROOFSTEP] exact variationOnFromTo.eq_zero_iff_of_le hf ha hb ab [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ba : b ≤ a ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ uIcc a b → ∀ ⦃y : α⦄, y ∈ s ∩ uIcc a b → edist (f x) (f y) = 0 [PROOFSTEP] rw [uIcc_of_ge ba] [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → E s : Set α hf : LocallyBoundedVariationOn f s a b : α ha : a ∈ s hb : b ∈ s ba : b ≤ a ⊢ variationOnFromTo f s a b = 0 ↔ ∀ ⦃x : α⦄, x ∈ s ∩ Icc b a → ∀ ⦃y : α⦄, y ∈ s ∩ Icc b a → edist (f x) (f y) = 0 [PROOFSTEP] exact variationOnFromTo.eq_zero_iff_of_ge hf ha hb ba [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s ⊢ MonotoneOn (variationOnFromTo f s a) s [PROOFSTEP] rintro b bs c cs bc [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ variationOnFromTo f s a b ≤ variationOnFromTo f s a c [PROOFSTEP] rw [← variationOnFromTo.add hf as bs cs] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ variationOnFromTo f s a b ≤ variationOnFromTo f s a b + variationOnFromTo f s b c [PROOFSTEP] exact le_add_of_nonneg_right (variationOnFromTo.nonneg_of_le f s bc) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s b : α bs : b ∈ s ⊢ AntitoneOn (fun a => variationOnFromTo f s a b) s [PROOFSTEP] rintro a as c cs ac [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s b : α bs : b ∈ s a : α as : a ∈ s c : α cs : c ∈ s ac : a ≤ c ⊢ (fun a => variationOnFromTo f s a b) c ≤ (fun a => variationOnFromTo f s a b) a [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s b : α bs : b ∈ s a : α as : a ∈ s c : α cs : c ∈ s ac : a ≤ c ⊢ variationOnFromTo f s c b ≤ variationOnFromTo f s a b [PROOFSTEP] rw [← variationOnFromTo.add hf as cs bs] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α hf : LocallyBoundedVariationOn f s b : α bs : b ∈ s a : α as : a ∈ s c : α cs : c ∈ s ac : a ≤ c ⊢ variationOnFromTo f s c b ≤ variationOnFromTo f s a c + variationOnFromTo f s c b [PROOFSTEP] exact le_add_of_nonneg_left (variationOnFromTo.nonneg_of_le f s ac) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s ⊢ MonotoneOn (variationOnFromTo f s a - f) s [PROOFSTEP] rintro b bs c cs bc [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ (variationOnFromTo f s a - f) b ≤ (variationOnFromTo f s a - f) c [PROOFSTEP] rw [Pi.sub_apply, Pi.sub_apply, le_sub_iff_add_le, add_comm_sub, ← le_sub_iff_add_le'] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ f c - f b ≤ variationOnFromTo f s a c - variationOnFromTo f s a b [PROOFSTEP] calc f c - f b ≤ |f c - f b| := le_abs_self _ _ = dist (f b) (f c) := by rw [dist_comm, Real.dist_eq] _ ≤ variationOnFromTo f s b c := by rw [variationOnFromTo.eq_of_le f s bc, dist_edist] apply ENNReal.toReal_mono (hf b c bs cs) apply eVariationOn.edist_le f exacts [⟨bs, le_rfl, bc⟩, ⟨cs, bc, le_rfl⟩] _ = variationOnFromTo f s a c - variationOnFromTo f s a b := by rw [← variationOnFromTo.add hf as bs cs, add_sub_cancel'] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ |f c - f b| = dist (f b) (f c) [PROOFSTEP] rw [dist_comm, Real.dist_eq] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ dist (f b) (f c) ≤ variationOnFromTo f s b c [PROOFSTEP] rw [variationOnFromTo.eq_of_le f s bc, dist_edist] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ ENNReal.toReal (edist (f b) (f c)) ≤ ENNReal.toReal (eVariationOn f (s ∩ Icc b c)) [PROOFSTEP] apply ENNReal.toReal_mono (hf b c bs cs) [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ edist (f b) (f c) ≤ eVariationOn f (s ∩ Icc b c) [PROOFSTEP] apply eVariationOn.edist_le f [GOAL] case hx α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ b ∈ s ∩ Icc b c case hy α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ c ∈ s ∩ Icc b c [PROOFSTEP] exacts [⟨bs, le_rfl, bc⟩, ⟨cs, bc, le_rfl⟩] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f✝ : α → E s✝ : Set α f : α → ℝ s : Set α hf : LocallyBoundedVariationOn f s a : α as : a ∈ s b : α bs : b ∈ s c : α cs : c ∈ s bc : b ≤ c ⊢ variationOnFromTo f s b c = variationOnFromTo f s a c - variationOnFromTo f s a b [PROOFSTEP] rw [← variationOnFromTo.add hf as bs cs, add_sub_cancel'] [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E f✝ : α → E s : Set α β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t ⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y) [PROOFSTEP] rcases le_total x y with (h | h) [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E f✝ : α → E s : Set α β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : x ≤ y ⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y) [PROOFSTEP] rw [variationOnFromTo.eq_of_le _ _ h, variationOnFromTo.eq_of_le _ _ (hφ hx hy h), eVariationOn.comp_inter_Icc_eq_of_monotoneOn f φ hφ hx hy] [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E f✝ : α → E s : Set α β : Type u_3 inst✝ : LinearOrder β f : α → E t : Set β φ : β → α hφ : MonotoneOn φ t x y : β hx : x ∈ t hy : y ∈ t h : y ≤ x ⊢ variationOnFromTo (f ∘ φ) t x y = variationOnFromTo f (φ '' t) (φ x) (φ y) [PROOFSTEP] rw [variationOnFromTo.eq_of_ge _ _ h, variationOnFromTo.eq_of_ge _ _ (hφ hy hx h), eVariationOn.comp_inter_Icc_eq_of_monotoneOn f φ hφ hy hx] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α h : LocallyBoundedVariationOn f s ⊢ ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | ⟨c, cs⟩) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ h : LocallyBoundedVariationOn f ∅ ⊢ ∃ p q, MonotoneOn p ∅ ∧ MonotoneOn q ∅ ∧ f = p - q [PROOFSTEP] exact ⟨f, 0, subsingleton_empty.monotoneOn _, subsingleton_empty.monotoneOn _, (sub_zero f).symm⟩ [GOAL] case inr.intro α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → ℝ s : Set α h : LocallyBoundedVariationOn f s c : α cs : c ∈ s ⊢ ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q [PROOFSTEP] exact ⟨_, _, variationOnFromTo.monotoneOn h cs, variationOnFromTo.sub_self_monotoneOn h cs, (sub_sub_cancel _ _).symm⟩ [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E F : Type u_3 inst✝ : PseudoEMetricSpace F f : E → F C : ℝ≥0 t : Set E h : LipschitzOnWith C f t g : α → E s : Set α hg : MapsTo g s t ⊢ eVariationOn (f ∘ g) s ≤ ↑C * eVariationOn g s [PROOFSTEP] apply iSup_le _ [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E F : Type u_3 inst✝ : PseudoEMetricSpace F f : E → F C : ℝ≥0 t : Set E h : LipschitzOnWith C f t g : α → E s : Set α hg : MapsTo g s t ⊢ ∀ (i : ℕ × { u // Monotone u ∧ ∀ (i : ℕ), u i ∈ s }), ∑ i_1 in Finset.range i.fst, edist ((f ∘ g) (↑i.snd (i_1 + 1))) ((f ∘ g) (↑i.snd i_1)) ≤ ↑C * eVariationOn g s [PROOFSTEP] rintro ⟨n, ⟨u, hu, us⟩⟩ [GOAL] case mk.mk.intro α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E F : Type u_3 inst✝ : PseudoEMetricSpace F f : E → F C : ℝ≥0 t : Set E h : LipschitzOnWith C f t g : α → E s : Set α hg : MapsTo g s t n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ⊢ ∑ i in Finset.range (n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).fst, edist ((f ∘ g) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd (i + 1))) ((f ∘ g) (↑(n, { val := u, property := (_ : Monotone u ∧ ∀ (i : ℕ), u i ∈ s) }).snd i)) ≤ ↑C * eVariationOn g s [PROOFSTEP] calc (∑ i in Finset.range n, edist (f (g (u (i + 1)))) (f (g (u i)))) ≤ ∑ i in Finset.range n, C * edist (g (u (i + 1))) (g (u i)) := Finset.sum_le_sum fun i _ => h (hg (us _)) (hg (us _)) _ = C * ∑ i in Finset.range n, edist (g (u (i + 1))) (g (u i)) := by rw [Finset.mul_sum] _ ≤ C * eVariationOn g s := mul_le_mul_left' (eVariationOn.sum_le _ _ hu us) _ [GOAL] α : Type u_1 inst✝² : LinearOrder α E : Type u_2 inst✝¹ : PseudoEMetricSpace E F : Type u_3 inst✝ : PseudoEMetricSpace F f : E → F C : ℝ≥0 t : Set E h : LipschitzOnWith C f t g : α → E s : Set α hg : MapsTo g s t n : ℕ u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s ⊢ ∑ i in Finset.range n, ↑C * edist (g (u (i + 1))) (g (u i)) = ↑C * ∑ i in Finset.range n, edist (g (u (i + 1))) (g (u i)) [PROOFSTEP] rw [Finset.mul_sum] [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] obtain ⟨p, q, hp, hq, fpq⟩ : ∃ p q, MonotoneOn p s ∧ MonotoneOn q s ∧ f = p - q := h.exists_monotoneOn_sub_monotoneOn [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s p q : ℝ → ℝ hp : MonotoneOn p s hq : MonotoneOn q s fpq : f = p - q ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] subst f [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set ℝ p q : ℝ → ℝ hp : MonotoneOn p s hq : MonotoneOn q s h : LocallyBoundedVariationOn (p - q) s ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (p - q) s x [PROOFSTEP] filter_upwards [hp.ae_differentiableWithinAt_of_mem, hq.ae_differentiableWithinAt_of_mem] with x hxp hxq xs [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V s : Set ℝ p q : ℝ → ℝ hp : MonotoneOn p s hq : MonotoneOn q s h : LocallyBoundedVariationOn (p - q) s x : ℝ hxp : x ∈ s → DifferentiableWithinAt ℝ p s x hxq : x ∈ s → DifferentiableWithinAt ℝ q s x xs : x ∈ s ⊢ DifferentiableWithinAt ℝ (p - q) s x [PROOFSTEP] exact (hxp xs).sub (hxq xs) [GOAL] α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] have A : ∀ i : ι, LipschitzWith 1 fun x : ι → ℝ => x i := fun i => LipschitzWith.eval i [GOAL] α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s A : ∀ (i : ι), LipschitzWith 1 fun x => x i ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] have : ∀ i : ι, ∀ᵐ x, x ∈ s → DifferentiableWithinAt ℝ (fun x : ℝ => f x i) s x := fun i ↦ by apply ae_differentiableWithinAt_of_mem_real exact LipschitzWith.comp_locallyBoundedVariationOn (A i) h [GOAL] α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s A : ∀ (i : ι), LipschitzWith 1 fun x => x i i : ι ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x [PROOFSTEP] apply ae_differentiableWithinAt_of_mem_real [GOAL] case h α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s A : ∀ (i : ι), LipschitzWith 1 fun x => x i i : ι ⊢ LocallyBoundedVariationOn (fun x => f x i) s [PROOFSTEP] exact LipschitzWith.comp_locallyBoundedVariationOn (A i) h [GOAL] α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s A : ∀ (i : ι), LipschitzWith 1 fun x => x i this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] filter_upwards [ae_all_iff.2 this] with x hx xs [GOAL] case h α : Type u_1 inst✝⁵ : LinearOrder α E : Type u_2 inst✝⁴ : PseudoEMetricSpace E V : Type u_3 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : FiniteDimensional ℝ V ι : Type u_4 inst✝ : Fintype ι f : ℝ → ι → ℝ s : Set ℝ h : LocallyBoundedVariationOn f s A : ∀ (i : ι), LipschitzWith 1 fun x => x i this : ∀ (i : ι), ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x x : ℝ hx : ∀ (i : ι), x ∈ s → DifferentiableWithinAt ℝ (fun x => f x i) s x xs : x ∈ s ⊢ DifferentiableWithinAt ℝ f s x [PROOFSTEP] exact differentiableWithinAt_pi.2 fun i => hx i xs [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] let A := (Basis.ofVectorSpace ℝ V).equivFun.toContinuousLinearEquiv [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] suffices H : ∀ᵐ x, x ∈ s → DifferentiableWithinAt ℝ (A ∘ f) s x [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] filter_upwards [H] with x hx xs [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x x : ℝ hx : x ∈ s → DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x xs : x ∈ s ⊢ DifferentiableWithinAt ℝ f s x [PROOFSTEP] have : f = (A.symm ∘ A) ∘ f := by simp only [ContinuousLinearEquiv.symm_comp_self, Function.comp.left_id] [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x x : ℝ hx : x ∈ s → DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x xs : x ∈ s ⊢ f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f [PROOFSTEP] simp only [ContinuousLinearEquiv.symm_comp_self, Function.comp.left_id] [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x x : ℝ hx : x ∈ s → DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x xs : x ∈ s this : f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f ⊢ DifferentiableWithinAt ℝ f s x [PROOFSTEP] rw [this] [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) H : ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x x : ℝ hx : x ∈ s → DifferentiableWithinAt ℝ (↑(LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V))) ∘ f) s x xs : x ∈ s this : f = (↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f ⊢ DifferentiableWithinAt ℝ ((↑(ContinuousLinearEquiv.symm A) ∘ ↑A) ∘ f) s x [PROOFSTEP] exact A.symm.differentiableAt.comp_differentiableWithinAt x (hx xs) [GOAL] case H α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ (↑A ∘ f) s x [PROOFSTEP] apply ae_differentiableWithinAt_of_mem_pi [GOAL] case H.h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s A : V ≃L[ℝ] ↑(Basis.ofVectorSpaceIndex ℝ V) → ℝ := LinearEquiv.toContinuousLinearEquiv (Basis.equivFun (Basis.ofVectorSpace ℝ V)) ⊢ LocallyBoundedVariationOn (↑A ∘ f) s [PROOFSTEP] exact A.lipschitz.comp_locallyBoundedVariationOn h [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s hs : MeasurableSet s ⊢ ∀ᵐ (x : ℝ) ∂Measure.restrict volume s, DifferentiableWithinAt ℝ f s x [PROOFSTEP] rw [ae_restrict_iff' hs] [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V s : Set ℝ h : LocallyBoundedVariationOn f s hs : MeasurableSet s ⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x [PROOFSTEP] exact h.ae_differentiableWithinAt_of_mem [GOAL] α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V h : LocallyBoundedVariationOn f univ ⊢ ∀ᵐ (x : ℝ), DifferentiableAt ℝ f x [PROOFSTEP] filter_upwards [h.ae_differentiableWithinAt_of_mem] with x hx [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V h : LocallyBoundedVariationOn f univ x : ℝ hx : x ∈ univ → DifferentiableWithinAt ℝ f univ x ⊢ DifferentiableAt ℝ f x [PROOFSTEP] rw [differentiableWithinAt_univ] at hx [GOAL] case h α : Type u_1 inst✝⁴ : LinearOrder α E : Type u_2 inst✝³ : PseudoEMetricSpace E V : Type u_3 inst✝² : NormedAddCommGroup V inst✝¹ : NormedSpace ℝ V inst✝ : FiniteDimensional ℝ V f : ℝ → V h : LocallyBoundedVariationOn f univ x : ℝ hx : x ∈ univ → DifferentiableAt ℝ f x ⊢ DifferentiableAt ℝ f x [PROOFSTEP] exact hx (mem_univ _)
{"mathlib_filename": "Mathlib.Analysis.BoundedVariation", "llama_tokens": 119388}
[GOAL] ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] by_cases A : ∃ i ∈ s, z i = 0 ∧ w i ≠ 0 [GOAL] case pos ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∃ i, i ∈ s ∧ z i = 0 ∧ w i ≠ 0 ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] rcases A with ⟨i, his, hzi, hwi⟩ [GOAL] case pos.intro.intro.intro ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i i : ι his : i ∈ s hzi : z i = 0 hwi : w i ≠ 0 ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] rw [prod_eq_zero his] [GOAL] case pos.intro.intro.intro ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i i : ι his : i ∈ s hzi : z i = 0 hwi : w i ≠ 0 ⊢ 0 ≤ ∑ i in s, w i * z i [PROOFSTEP] exact sum_nonneg fun j hj => mul_nonneg (hw j hj) (hz j hj) [GOAL] case pos.intro.intro.intro ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i i : ι his : i ∈ s hzi : z i = 0 hwi : w i ≠ 0 ⊢ z i ^ w i = 0 [PROOFSTEP] rw [hzi] [GOAL] case pos.intro.intro.intro ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i i : ι his : i ∈ s hzi : z i = 0 hwi : w i ≠ 0 ⊢ 0 ^ w i = 0 [PROOFSTEP] exact zero_rpow hwi [GOAL] case neg ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ¬∃ i, i ∈ s ∧ z i = 0 ∧ w i ≠ 0 ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] simp only [not_exists, not_and, Ne.def, Classical.not_not] at A [GOAL] case neg ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] have := convexOn_exp.map_sum_le hw hw' fun i _ => Set.mem_univ <| log (z i) [GOAL] case neg ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : exp (∑ i in s, w i • log (z i)) ≤ ∑ i in s, w i • exp (log (z i)) ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] simp only [exp_sum, (· ∘ ·), smul_eq_mul, mul_comm (w _) (log _)] at this [GOAL] case neg ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] convert this using 1 <;> [apply prod_congr rfl; apply sum_congr rfl] [GOAL] case neg ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∏ i in s, z i ^ w i ≤ ∑ i in s, w i * z i [PROOFSTEP] convert this using 1 [GOAL] case h.e'_3 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∏ i in s, z i ^ w i = ∏ x in s, exp (log (z x) * w x) [PROOFSTEP] apply prod_congr rfl [GOAL] case h.e'_4 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∑ i in s, w i * z i = ∑ x in s, w x * exp (log (z x)) [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_3 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∀ (x : ι), x ∈ s → z x ^ w x = exp (log (z x) * w x) [PROOFSTEP] intro i hi [GOAL] case h.e'_4 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) ⊢ ∀ (x : ι), x ∈ s → w x * z x = w x * exp (log (z x)) [PROOFSTEP] intro i hi [GOAL] case h.e'_3 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s ⊢ z i ^ w i = exp (log (z i) * w i) [PROOFSTEP] cases' eq_or_lt_of_le (hz i hi) with hz hz [GOAL] case h.e'_3.inl ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s hz : 0 = z i ⊢ z i ^ w i = exp (log (z i) * w i) [PROOFSTEP] simp [A i hi hz.symm] [GOAL] case h.e'_3.inr ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s hz : 0 < z i ⊢ z i ^ w i = exp (log (z i) * w i) [PROOFSTEP] exact rpow_def_of_pos hz _ [GOAL] case h.e'_4 ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s ⊢ w i * z i = w i * exp (log (z i)) [PROOFSTEP] cases' eq_or_lt_of_le (hz i hi) with hz hz [GOAL] case h.e'_4.inl ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s hz : 0 = z i ⊢ w i * z i = w i * exp (log (z i)) [PROOFSTEP] simp [A i hi hz.symm] [GOAL] case h.e'_4.inr ι : Type u s : Finset ι w z : ι → ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz✝ : ∀ (i : ι), i ∈ s → 0 ≤ z i A : ∀ (x : ι), x ∈ s → z x = 0 → w x = 0 this : ∏ x in s, exp (log (z x) * w x) ≤ ∑ x in s, w x * exp (log (z x)) i : ι hi : i ∈ s hz : 0 < z i ⊢ w i * z i = w i * exp (log (z i)) [PROOFSTEP] rw [exp_log hz] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∏ i in s, z i ^ w i = ∏ i in s, x ^ w i [PROOFSTEP] refine' prod_congr rfl fun i hi => _ [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s ⊢ z i ^ w i = x ^ w i [PROOFSTEP] cases' eq_or_ne (w i) 0 with h₀ h₀ [GOAL] case inl ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s h₀ : w i = 0 ⊢ z i ^ w i = x ^ w i [PROOFSTEP] rw [h₀, rpow_zero, rpow_zero] [GOAL] case inr ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s h₀ : w i ≠ 0 ⊢ z i ^ w i = x ^ w i [PROOFSTEP] rw [hx i hi h₀] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∏ i in s, x ^ w i = x [PROOFSTEP] rw [← rpow_sum_of_nonneg _ hw, hw', rpow_one] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ 0 ≤ x [PROOFSTEP] have : (∑ i in s, w i) ≠ 0 := by rw [hw'] exact one_ne_zero [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∑ i in s, w i ≠ 0 [PROOFSTEP] rw [hw'] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x this : ∑ i in s, w i ≠ 0 ⊢ 0 ≤ x [PROOFSTEP] obtain ⟨i, his, hi⟩ := exists_ne_zero_of_sum_ne_zero this [GOAL] case intro.intro ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x this : ∑ i in s, w i ≠ 0 i : ι his : i ∈ s hi : w i ≠ 0 ⊢ 0 ≤ x [PROOFSTEP] rw [← hx i his hi] [GOAL] case intro.intro ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x this : ∑ i in s, w i ≠ 0 i : ι his : i ∈ s hi : w i ≠ 0 ⊢ 0 ≤ z i [PROOFSTEP] exact hz i his [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw' : ∑ i in s, w i = 1 hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∑ i in s, w i * z i = ∑ i in s, w i * x [PROOFSTEP] refine' sum_congr rfl fun i hi => _ [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw' : ∑ i in s, w i = 1 hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s ⊢ w i * z i = w i * x [PROOFSTEP] cases' eq_or_ne (w i) 0 with hwi hwi [GOAL] case inl ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw' : ∑ i in s, w i = 1 hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s hwi : w i = 0 ⊢ w i * z i = w i * x [PROOFSTEP] rw [hwi, zero_mul, zero_mul] [GOAL] case inr ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw' : ∑ i in s, w i = 1 hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x i : ι hi : i ∈ s hwi : w i ≠ 0 ⊢ w i * z i = w i * x [PROOFSTEP] rw [hx i hi hwi] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw' : ∑ i in s, w i = 1 hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∑ i in s, w i * x = x [PROOFSTEP] rw [← sum_mul, hw', one_mul] [GOAL] ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∏ i in s, z i ^ w i = ∑ i in s, w i * z i [PROOFSTEP] rw [geom_mean_weighted_of_constant, arith_mean_weighted_of_constant] [GOAL] case x ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ℝ [PROOFSTEP] assumption [GOAL] case hw' ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∑ i in s, w i = 1 [PROOFSTEP] assumption [GOAL] case hx ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x [PROOFSTEP] assumption [GOAL] case hw ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∀ (i : ι), i ∈ s → 0 ≤ w i [PROOFSTEP] assumption [GOAL] case hw' ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∑ i in s, w i = 1 [PROOFSTEP] assumption [GOAL] case hz ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∀ (i : ι), i ∈ s → 0 ≤ z i [PROOFSTEP] assumption [GOAL] case hx ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ (i : ι), i ∈ s → 0 ≤ w i hw' : ∑ i in s, w i = 1 hz : ∀ (i : ι), i ∈ s → 0 ≤ z i hx : ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x ⊢ ∀ (i : ι), i ∈ s → w i ≠ 0 → z i = x [PROOFSTEP] assumption [GOAL] ι : Type u s : Finset ι w z : ι → ℝ≥0 hw' : ∑ i in s, w i = 1 ⊢ ∏ i in s, z i ^ ↑(w i) ≤ ∑ i in s, w i * z i [PROOFSTEP] exact_mod_cast Real.geom_mean_le_arith_mean_weighted _ _ _ (fun i _ => (w i).coe_nonneg) (by assumption_mod_cast) fun i _ => (z i).coe_nonneg [GOAL] ι : Type u s : Finset ι w z : ι → ℝ≥0 hw' : ∑ i in s, w i = 1 ⊢ ∑ i in s, ↑(w i) = 1 [PROOFSTEP] assumption_mod_cast [GOAL] ι : Type u s : Finset ι w₁ w₂ p₁ p₂ : ℝ≥0 ⊢ w₁ + w₂ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ ≤ w₁ * p₁ + w₂ * p₂ [PROOFSTEP] simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty, Fin.cons_succ, Fin.cons_zero, add_zero, mul_one] using geom_mean_le_arith_mean_weighted univ ![w₁, w₂] ![p₁, p₂] [GOAL] ι : Type u s : Finset ι w₁ w₂ w₃ p₁ p₂ p₃ : ℝ≥0 ⊢ w₁ + w₂ + w₃ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ * p₃ ^ ↑w₃ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ [PROOFSTEP] simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty, Fin.cons_succ, Fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc] using geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃] ![p₁, p₂, p₃] [GOAL] ι : Type u s : Finset ι w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ≥0 ⊢ w₁ + w₂ + w₃ + w₄ = 1 → p₁ ^ ↑w₁ * p₂ ^ ↑w₂ * p₃ ^ ↑w₃ * p₄ ^ ↑w₄ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄ [PROOFSTEP] simpa only [Fin.prod_univ_succ, Fin.sum_univ_succ, Finset.prod_empty, Finset.sum_empty, Fintype.univ_of_isEmpty, Fin.cons_succ, Fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc] using geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃, w₄] ![p₁, p₂, p₃, p₄] [GOAL] ι : Type u s : Finset ι w₁ w₂ p₁ p₂ : ℝ hw₁ : 0 ≤ w₁ hw₂ : 0 ≤ w₂ hp₁ : 0 ≤ p₁ hp₂ : 0 ≤ p₂ hw : w₁ + w₂ = 1 ⊢ ↑({ val := w₁, property := hw₁ } + { val := w₂, property := hw₂ }) = ↑1 [PROOFSTEP] assumption [GOAL] ι : Type u s : Finset ι w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ hw₁ : 0 ≤ w₁ hw₂ : 0 ≤ w₂ hw₃ : 0 ≤ w₃ hw₄ : 0 ≤ w₄ hp₁ : 0 ≤ p₁ hp₂ : 0 ≤ p₂ hp₃ : 0 ≤ p₃ hp₄ : 0 ≤ p₄ hw : w₁ + w₂ + w₃ + w₄ = 1 ⊢ ↑({ val := w₁, property := hw₁ } + { val := w₂, property := hw₂ } + { val := w₃, property := hw₃ } + { val := w₄, property := hw₄ }) = ↑1 [PROOFSTEP] assumption [GOAL] ι : Type u s : Finset ι a b p q : ℝ ha : 0 ≤ a hb : 0 ≤ b hpq : IsConjugateExponent p q ⊢ a * b ≤ a ^ p / p + b ^ q / q [PROOFSTEP] simpa [← rpow_mul, ha, hb, hpq.ne_zero, hpq.symm.ne_zero, _root_.div_eq_inv_mul] using geom_mean_le_arith_mean2_weighted hpq.one_div_nonneg hpq.symm.one_div_nonneg (rpow_nonneg_of_nonneg ha p) (rpow_nonneg_of_nonneg hb q) hpq.inv_add_inv_conj [GOAL] ι : Type u s : Finset ι a b : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ a * b ≤ a ^ p / Real.toNNReal p + b ^ q / Real.toNNReal q [PROOFSTEP] nth_rw 1 [← Real.coe_toNNReal p hpq.nonneg] [GOAL] ι : Type u s : Finset ι a b : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ a * b ≤ a ^ ↑(Real.toNNReal p) / Real.toNNReal p + b ^ q / Real.toNNReal q [PROOFSTEP] nth_rw 1 [← Real.coe_toNNReal q hpq.symm.nonneg] [GOAL] ι : Type u s : Finset ι a b : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ a * b ≤ a ^ ↑(Real.toNNReal p) / Real.toNNReal p + b ^ ↑(Real.toNNReal q) / Real.toNNReal q [PROOFSTEP] exact young_inequality a b hpq.one_lt_nnreal hpq.inv_add_inv_conj_nnreal [GOAL] ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] by_cases h : a = ⊤ ∨ b = ⊤ [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] refine' le_trans le_top (le_of_eq _) [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ ⊤ = a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] repeat rw [div_eq_mul_inv] [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ ⊤ = a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q / ENNReal.ofReal q [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] case pos ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ∨ b = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] cases' h with h h [GOAL] case pos.inl ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] rw [h] [GOAL] case pos.inr ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : b = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] rw [h] [GOAL] case pos.inl ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a = ⊤ ⊢ ⊤ = ⊤ ^ p * (ENNReal.ofReal p)⁻¹ + b ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] simp [h, hpq.pos, hpq.symm.pos] [GOAL] case pos.inr ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : b = ⊤ ⊢ ⊤ = a ^ p * (ENNReal.ofReal p)⁻¹ + ⊤ ^ q * (ENNReal.ofReal q)⁻¹ [PROOFSTEP] simp [h, hpq.pos, hpq.symm.pos] [GOAL] case neg ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : ¬(a = ⊤ ∨ b = ⊤) ⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] push_neg at h [GOAL] case neg ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a ≠ ⊤ ∧ b ≠ ⊤ ⊢ a * b ≤ a ^ p / ENNReal.ofReal p + b ^ q / ENNReal.ofReal q [PROOFSTEP] rw [← coe_toNNReal h.left, ← coe_toNNReal h.right, ← coe_mul, coe_rpow_of_nonneg _ hpq.nonneg, coe_rpow_of_nonneg _ hpq.symm.nonneg, ENNReal.ofReal, ENNReal.ofReal, ← @coe_div (Real.toNNReal p) _ (by simp [hpq.pos]), ← @coe_div (Real.toNNReal q) _ (by simp [hpq.symm.pos]), ← coe_add, coe_le_coe] [GOAL] ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a ≠ ⊤ ∧ b ≠ ⊤ ⊢ Real.toNNReal p ≠ 0 [PROOFSTEP] simp [hpq.pos] [GOAL] ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a ≠ ⊤ ∧ b ≠ ⊤ ⊢ Real.toNNReal q ≠ 0 [PROOFSTEP] simp [hpq.symm.pos] [GOAL] case neg ι : Type u s : Finset ι a b : ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q h : a ≠ ⊤ ∧ b ≠ ⊤ ⊢ ENNReal.toNNReal a * ENNReal.toNNReal b ≤ ENNReal.toNNReal a ^ p / Real.toNNReal p + ENNReal.toNNReal b ^ q / Real.toNNReal q [PROOFSTEP] exact NNReal.young_inequality_real a.toNNReal b.toNNReal hpq [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 ⊢ ∑ i in s, f i * g i ≤ 1 [PROOFSTEP] have hp_ne_zero : Real.toNNReal p ≠ 0 := (zero_lt_one.trans hpq.one_lt_nnreal).ne.symm [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 ⊢ ∑ i in s, f i * g i ≤ 1 [PROOFSTEP] have hq_ne_zero : Real.toNNReal q ≠ 0 := (zero_lt_one.trans hpq.symm.one_lt_nnreal).ne.symm [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 hq_ne_zero : Real.toNNReal q ≠ 0 ⊢ ∑ i in s, f i * g i ≤ 1 [PROOFSTEP] calc ∑ i in s, f i * g i ≤ ∑ i in s, (f i ^ p / Real.toNNReal p + g i ^ q / Real.toNNReal q) := Finset.sum_le_sum fun i _ => young_inequality_real (f i) (g i) hpq _ = (∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q := by rw [sum_add_distrib, sum_div, sum_div] _ ≤ 1 / Real.toNNReal p + 1 / Real.toNNReal q := by refine' add_le_add _ _ · rwa [div_le_iff hp_ne_zero, div_mul_cancel _ hp_ne_zero] · rwa [div_le_iff hq_ne_zero, div_mul_cancel _ hq_ne_zero] _ = 1 := hpq.inv_add_inv_conj_nnreal [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 hq_ne_zero : Real.toNNReal q ≠ 0 ⊢ ∑ i in s, (f i ^ p / Real.toNNReal p + g i ^ q / Real.toNNReal q) = (∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q [PROOFSTEP] rw [sum_add_distrib, sum_div, sum_div] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 hq_ne_zero : Real.toNNReal q ≠ 0 ⊢ (∑ i in s, f i ^ p) / Real.toNNReal p + (∑ i in s, g i ^ q) / Real.toNNReal q ≤ 1 / Real.toNNReal p + 1 / Real.toNNReal q [PROOFSTEP] refine' add_le_add _ _ [GOAL] case refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 hq_ne_zero : Real.toNNReal q ≠ 0 ⊢ (∑ i in s, f i ^ p) / Real.toNNReal p ≤ 1 / Real.toNNReal p [PROOFSTEP] rwa [div_le_iff hp_ne_zero, div_mul_cancel _ hp_ne_zero] [GOAL] case refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p ≤ 1 hg : ∑ i in s, g i ^ q ≤ 1 hp_ne_zero : Real.toNNReal p ≠ 0 hq_ne_zero : Real.toNNReal q ≠ 0 ⊢ (∑ i in s, g i ^ q) / Real.toNNReal q ≤ 1 / Real.toNNReal q [PROOFSTEP] rwa [div_le_iff hq_ne_zero, div_mul_cancel _ hq_ne_zero] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp only [hf, hpq.ne_zero, one_div, sum_eq_zero_iff, zero_rpow, zero_mul, inv_eq_zero, Ne.def, not_false_iff, le_zero_iff, mul_eq_zero] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p = 0 ⊢ ∀ (x : ι), x ∈ s → f x = 0 ∨ g x = 0 [PROOFSTEP] intro i his [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p = 0 i : ι his : i ∈ s ⊢ f i = 0 ∨ g i = 0 [PROOFSTEP] left [GOAL] case h ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p = 0 i : ι his : i ∈ s ⊢ f i = 0 [PROOFSTEP] rw [sum_eq_zero_iff] at hf [GOAL] case h ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∀ (x : ι), x ∈ s → f x ^ p = 0 i : ι his : i ∈ s ⊢ f i = 0 [PROOFSTEP] exact (rpow_eq_zero_iff.mp (hf i his)).left [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] by_cases hF_zero : ∑ i in s, f i ^ p = 0 [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ∑ i in s, f i ^ p = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] exact inner_le_Lp_mul_Lp_of_norm_eq_zero s f g hpq hF_zero [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] by_cases hG_zero : ∑ i in s, g i ^ q = 0 [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ∑ i in s, g i ^ q = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] calc ∑ i in s, f i * g i = ∑ i in s, g i * f i := by congr with i rw [mul_comm] _ ≤ (∑ i in s, g i ^ q) ^ (1 / q) * (∑ i in s, f i ^ p) ^ (1 / p) := (inner_le_Lp_mul_Lp_of_norm_eq_zero s g f hpq.symm hG_zero) _ = (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) := mul_comm _ _ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ∑ i in s, g i ^ q = 0 ⊢ ∑ i in s, f i * g i = ∑ i in s, g i * f i [PROOFSTEP] congr with i [GOAL] case e_f.h.a ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ∑ i in s, g i ^ q = 0 i : ι ⊢ ↑(f i * g i) = ↑(g i * f i) [PROOFSTEP] rw [mul_comm] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] let f' i := f i / (∑ i in s, f i ^ p) ^ (1 / p) [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] let g' i := g i / (∑ i in s, g i ^ q) ^ (1 / q) [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] suffices (∑ i in s, f' i * g' i) ≤ 1 by simp_rw [div_mul_div_comm, ← sum_div] at this rwa [div_le_iff, one_mul] at this refine' mul_ne_zero _ _ · rw [Ne.def, rpow_eq_zero_iff, not_and_or] exact Or.inl hF_zero · rw [Ne.def, rpow_eq_zero_iff, not_and_or] exact Or.inl hG_zero [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : ∑ i in s, f' i * g' i ≤ 1 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp_rw [div_mul_div_comm, ← sum_div] at this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] rwa [div_le_iff, one_mul] at this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 [PROOFSTEP] refine' mul_ne_zero _ _ [GOAL] case refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 [PROOFSTEP] rw [Ne.def, rpow_eq_zero_iff, not_and_or] [GOAL] case refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ ¬∑ i in s, f i ^ p = 0 ∨ ¬1 / p ≠ 0 [PROOFSTEP] exact Or.inl hF_zero [GOAL] case refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 [PROOFSTEP] rw [Ne.def, rpow_eq_zero_iff, not_and_or] [GOAL] case refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) this : (∑ i in s, f i * g i) / ((∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q)) ≤ 1 ⊢ ¬∑ i in s, g i ^ q = 0 ∨ ¬1 / q ≠ 0 [PROOFSTEP] exact Or.inl hG_zero [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) ⊢ ∑ i in s, f' i * g' i ≤ 1 [PROOFSTEP] refine' inner_le_Lp_mul_Lp_of_norm_le_one s f' g' hpq (le_of_eq _) (le_of_eq _) [GOAL] case neg.refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) ⊢ ∑ i in s, f' i ^ p = 1 [PROOFSTEP] simp_rw [div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.ne_zero, rpow_one, div_self hF_zero] [GOAL] case neg.refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hF_zero : ¬∑ i in s, f i ^ p = 0 hG_zero : ¬∑ i in s, g i ^ q = 0 f' : ι → ℝ≥0 := fun i => f i / (∑ i in s, f i ^ p) ^ (1 / p) g' : ι → ℝ≥0 := fun i => g i / (∑ i in s, g i ^ q) ^ (1 / q) ⊢ ∑ i in s, g' i ^ q = 1 [PROOFSTEP] simp_rw [div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.symm.ne_zero, rpow_one, div_self hG_zero] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q ⊢ (Summable fun i => f i * g i) ∧ ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] have H₁ : ∀ s : Finset ι, ∑ i in s, f i * g i ≤ (∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q) := by intro s refine' le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le) · rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos)] exact sum_le_tsum _ (fun _ _ => zero_le _) hf · rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos)] exact sum_le_tsum _ (fun _ _ => zero_le _) hg [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q ⊢ ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] intro s [GOAL] ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q s : Finset ι ⊢ ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] refine' le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le) [GOAL] case refine'_1 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q s : Finset ι ⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) [PROOFSTEP] rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos)] [GOAL] case refine'_1 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q s : Finset ι ⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p [PROOFSTEP] exact sum_le_tsum _ (fun _ _ => zero_le _) hf [GOAL] case refine'_2 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q s : Finset ι ⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos)] [GOAL] case refine'_2 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q s : Finset ι ⊢ ∑ i in s, g i ^ q ≤ ∑' (i : ι), g i ^ q [PROOFSTEP] exact sum_le_tsum _ (fun _ _ => zero_le _) hg [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ (Summable fun i => f i * g i) ∧ ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] have bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i) := by refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩ rintro a ⟨s, rfl⟩ exact H₁ s [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ BddAbove (Set.range fun s => ∑ i in s, f i * g i) [PROOFSTEP] refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ∈ upperBounds (Set.range fun s => ∑ i in s, f i * g i) [PROOFSTEP] rintro a ⟨s, rfl⟩ [GOAL] case intro ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) s : Finset ι ⊢ (fun s => ∑ i in s, f i * g i) s ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] exact H₁ s [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i) ⊢ (Summable fun i => f i * g i) ∧ ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] have H₂ : Summable _ := (hasSum_of_isLUB _ (isLUB_ciSup bdd)).summable [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i) H₂ : Summable fun i => f i * g i ⊢ (Summable fun i => f i * g i) ∧ ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] exact ⟨H₂, tsum_le_of_sum_le H₂ H₁⟩ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) ⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C [PROOFSTEP] obtain ⟨H₁, H₂⟩ := inner_le_Lp_mul_Lq_tsum hpq hf.summable hg.summable [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C [PROOFSTEP] have hA : A = (∑' i : ι, f i ^ p) ^ (1 / p) := by rw [hf.tsum_eq, rpow_inv_rpow_self hpq.ne_zero] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ A = (∑' (i : ι), f i ^ p) ^ (1 / p) [PROOFSTEP] rw [hf.tsum_eq, rpow_inv_rpow_self hpq.ne_zero] [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) ⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C [PROOFSTEP] have hB : B = (∑' i : ι, g i ^ q) ^ (1 / q) := by rw [hg.tsum_eq, rpow_inv_rpow_self hpq.symm.ne_zero] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) ⊢ B = (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] rw [hg.tsum_eq, rpow_inv_rpow_self hpq.symm.ne_zero] [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ ∃ C, C ≤ A * B ∧ HasSum (fun i => f i * g i) C [PROOFSTEP] refine' ⟨∑' i, f i * g i, _, _⟩ [GOAL] case intro.refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ ∑' (i : ι), f i * g i ≤ A * B [PROOFSTEP] simpa [hA, hB] using H₂ [GOAL] case intro.refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ q) (B ^ q) H₁ : Summable fun i => f i * g i H₂ : ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ HasSum (fun i => f i * g i) (∑' (i : ι), f i * g i) [PROOFSTEP] simpa only [rpow_self_rpow_inv hpq.ne_zero] using H₁.hasSum [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp : 1 ≤ p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] cases' eq_or_lt_of_le hp with hp hp [GOAL] case inl ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 = p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] simp [← hp] [GOAL] case inr ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] let q : ℝ := p / (p - 1) [GOAL] case inr ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hpq : p.IsConjugateExponent q := by rw [Real.isConjugateExponent_iff hp] [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) ⊢ Real.IsConjugateExponent p q [PROOFSTEP] rw [Real.isConjugateExponent_iff hp] [GOAL] case inr ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero [GOAL] case inr ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hq : 1 / q * p = p - 1 := by rw [← hpq.div_conj_eq_sub_one] ring [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ 1 / q * p = p - 1 [PROOFSTEP] rw [← hpq.div_conj_eq_sub_one] [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ 1 / q * p = p / q [PROOFSTEP] ring [GOAL] case inr ι : Type u s : Finset ι f : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 hq : 1 / q * p = p - 1 ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] simpa only [NNReal.mul_rpow, ← NNReal.rpow_mul, hp₁, hq, one_mul, one_rpow, rpow_one, Pi.one_apply, sum_const, Nat.smul_one_eq_coe] using NNReal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ IsGreatest ((fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1}) ((∑ i in s, f i ^ p) ^ (1 / p)) [PROOFSTEP] constructor [GOAL] case left ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ (∑ i in s, f i ^ p) ^ (1 / p) ∈ (fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1} [PROOFSTEP] use fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q) [GOAL] case h ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧ ((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] by_cases hf : ∑ i in s, f i ^ p = 0 [GOAL] case pos ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ∑ i in s, f i ^ p = 0 ⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧ ((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] simp [hf, hpq.ne_zero, hpq.symm.ne_zero] [GOAL] case neg ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 ⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧ ((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] have A : p + q - q ≠ 0 := by simp [hpq.ne_zero] [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 ⊢ p + q - q ≠ 0 [PROOFSTEP] simp [hpq.ne_zero] [GOAL] case neg ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 ⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧ ((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] have B : ∀ y : ℝ≥0, y * y ^ p / y = y ^ p := by refine' fun y => mul_div_cancel_left_of_imp fun h => _ simp [h, hpq.ne_zero] [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 ⊢ ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p [PROOFSTEP] refine' fun y => mul_div_cancel_left_of_imp fun h => _ [GOAL] ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 y : ℝ≥0 h : y = 0 ⊢ y ^ p = 0 [PROOFSTEP] simp [h, hpq.ne_zero] [GOAL] case neg ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p ⊢ (fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) ∈ {g | ∑ i in s, g i ^ q ≤ 1} ∧ ((fun g => ∑ i in s, f i * g i) fun i => f i ^ p / f i / (∑ i in s, f i ^ p) ^ (1 / q)) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] simp only [Set.mem_setOf_eq, div_rpow, ← sum_div, ← rpow_mul, div_mul_cancel _ hpq.symm.ne_zero, rpow_one, div_le_iff hf, one_mul, hpq.mul_eq_add, ← rpow_sub' _ A, _root_.add_sub_cancel, le_refl, true_and_iff, ← mul_div_assoc, B] [GOAL] case neg ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p ⊢ (∑ i in s, f i ^ p) / (∑ i in s, f i ^ p) ^ (1 / q) = (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] rw [div_eq_iff, ← rpow_add hf, hpq.inv_add_inv_conj, rpow_one] [GOAL] case neg ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q hf : ¬∑ i in s, f i ^ p = 0 A : p + q - q ≠ 0 B : ∀ (y : ℝ≥0), y * y ^ p / y = y ^ p ⊢ (∑ i in s, f i ^ p) ^ (1 / q) ≠ 0 [PROOFSTEP] simpa [hpq.symm.ne_zero] using hf [GOAL] case right ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ (∑ i in s, f i ^ p) ^ (1 / p) ∈ upperBounds ((fun g => ∑ i in s, f i * g i) '' {g | ∑ i in s, g i ^ q ≤ 1}) [PROOFSTEP] rintro _ ⟨g, hg, rfl⟩ [GOAL] case right.intro.intro ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q g : ι → ℝ≥0 hg : g ∈ {g | ∑ i in s, g i ^ q ≤ 1} ⊢ (fun g => ∑ i in s, f i * g i) g ≤ (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] apply le_trans (inner_le_Lp_mul_Lq s f g hpq) [GOAL] case right.intro.intro ι : Type u s : Finset ι f : ι → ℝ≥0 p q : ℝ hpq : Real.IsConjugateExponent p q g : ι → ℝ≥0 hg : g ∈ {g | ∑ i in s, g i ^ q ≤ 1} ⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑ i in s, f i ^ p) ^ (1 / p) [PROOFSTEP] simpa only [mul_one] using mul_le_mul_left' (NNReal.rpow_le_one hg (le_of_lt hpq.symm.one_div_pos)) _ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] rcases eq_or_lt_of_le hp with (rfl | hp) [GOAL] case inl ι : Type u s : Finset ι f g : ι → ℝ≥0 hp : 1 ≤ 1 ⊢ (∑ i in s, (f i + g i) ^ 1) ^ (1 / 1) ≤ (∑ i in s, f i ^ 1) ^ (1 / 1) + (∑ i in s, g i ^ 1) ^ (1 / 1) [PROOFSTEP] simp [Finset.sum_add_distrib] [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] have hpq := Real.isConjugateExponent_conjugateExponent hp [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p hpq : Real.IsConjugateExponent p (Real.conjugateExponent p) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] have := isGreatest_Lp s (f + g) hpq [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p hpq : Real.IsConjugateExponent p (Real.conjugateExponent p) this : IsGreatest ((fun g_1 => ∑ i in s, (f + g) i * g_1 i) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}) ((∑ i in s, (f + g) i ^ p) ^ (1 / p)) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] simp only [Pi.add_apply, add_mul, sum_add_distrib] at this [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p hpq : Real.IsConjugateExponent p (Real.conjugateExponent p) this : IsGreatest ((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}) ((∑ x in s, (f x + g x) ^ p) ^ (1 / p)) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] rcases this.1 with ⟨φ, hφ, H⟩ [GOAL] case inr.intro.intro ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p hpq : Real.IsConjugateExponent p (Real.conjugateExponent p) this : IsGreatest ((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}) ((∑ x in s, (f x + g x) ^ p) ^ (1 / p)) φ : ι → ℝ≥0 hφ : φ ∈ {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1} H : (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ = (∑ x in s, (f x + g x) ^ p) ^ (1 / p) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] rw [← H] [GOAL] case inr.intro.intro ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp✝ : 1 ≤ p hp : 1 < p hpq : Real.IsConjugateExponent p (Real.conjugateExponent p) this : IsGreatest ((fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) '' {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1}) ((∑ x in s, (f x + g x) ^ p) ^ (1 / p)) φ : ι → ℝ≥0 hφ : φ ∈ {g | ∑ i in s, g i ^ Real.conjugateExponent p ≤ 1} H : (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ = (∑ x in s, (f x + g x) ^ p) ^ (1 / p) ⊢ (fun a => ∑ x in s, f x * a x + ∑ x in s, g x * a x) φ ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] exact add_le_add ((isGreatest_Lp s f hpq).2 ⟨φ, hφ, rfl⟩) ((isGreatest_Lp s g hpq).2 ⟨φ, hφ, rfl⟩) [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] have H₁ : ∀ s : Finset ι, (∑ i in s, (f i + g i) ^ p) ≤ ((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p := by intro s rw [← NNReal.rpow_one_div_le_iff pos] refine' le_trans (Lp_add_le s f g hp) (add_le_add _ _) <;> rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)] <;> refine' sum_le_tsum _ (fun _ _ => zero_le _) _ exacts [hf, hg] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p ⊢ ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p [PROOFSTEP] intro s [GOAL] ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p [PROOFSTEP] rw [← NNReal.rpow_one_div_le_iff pos] [GOAL] ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] refine' le_trans (Lp_add_le s f g hp) (add_le_add _ _) [GOAL] case refine'_1 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) [PROOFSTEP] rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)] [GOAL] case refine'_2 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ (∑ i in s, g i ^ p) ^ (1 / p) ≤ (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr pos)] [GOAL] case refine'_1 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p [PROOFSTEP] refine' sum_le_tsum _ (fun _ _ => zero_le _) _ [GOAL] case refine'_2 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ ∑ i in s, g i ^ p ≤ ∑' (i : ι), g i ^ p [PROOFSTEP] refine' sum_le_tsum _ (fun _ _ => zero_le _) _ [GOAL] case refine'_1 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ Summable fun i => f i ^ p case refine'_2 ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p s : Finset ι ⊢ Summable fun i => g i ^ p [PROOFSTEP] exacts [hf, hg] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] have bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) := by refine' ⟨((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p, _⟩ rintro a ⟨s, rfl⟩ exact H₁ s [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p ⊢ BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) [PROOFSTEP] refine' ⟨((∑' i, f i ^ p) ^ (1 / p) + (∑' i, g i ^ p) ^ (1 / p)) ^ p, _⟩ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p ⊢ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p ∈ upperBounds (Set.range fun s => ∑ i in s, (f i + g i) ^ p) [PROOFSTEP] rintro a ⟨s, rfl⟩ [GOAL] case intro ι : Type u s✝ : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p s : Finset ι ⊢ (fun s => ∑ i in s, (f i + g i) ^ p) s ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p [PROOFSTEP] exact H₁ s [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] have H₂ : Summable _ := (hasSum_of_isLUB _ (isLUB_ciSup bdd)).summable [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) H₂ : Summable fun i => (f i + g i) ^ p ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] refine' ⟨H₂, _⟩ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) H₂ : Summable fun i => (f i + g i) ^ p ⊢ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] rw [NNReal.rpow_one_div_le_iff pos] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 p : ℝ hp : 1 ≤ p hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ p pos : 0 < p H₁ : ∀ (s : Finset ι), ∑ i in s, (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p bdd : BddAbove (Set.range fun s => ∑ i in s, (f i + g i) ^ p) H₂ : Summable fun i => (f i + g i) ^ p ⊢ ∑' (i : ι), (f i + g i) ^ p ≤ ((∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p)) ^ p [PROOFSTEP] refine' tsum_le_of_sum_le H₂ H₁ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) ⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] have hp' : p ≠ 0 := (lt_of_lt_of_le zero_lt_one hp).ne' [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 ⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] obtain ⟨H₁, H₂⟩ := Lp_add_le_tsum hp hf.summable hg.summable [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) ⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] have hA : A = (∑' i : ι, f i ^ p) ^ (1 / p) := by rw [hf.tsum_eq, rpow_inv_rpow_self hp'] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) ⊢ A = (∑' (i : ι), f i ^ p) ^ (1 / p) [PROOFSTEP] rw [hf.tsum_eq, rpow_inv_rpow_self hp'] [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) ⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] have hB : B = (∑' i : ι, g i ^ p) ^ (1 / p) := by rw [hg.tsum_eq, rpow_inv_rpow_self hp'] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) ⊢ B = (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] rw [hg.tsum_eq, rpow_inv_rpow_self hp'] [GOAL] case intro ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p) ⊢ ∃ C, C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] refine' ⟨(∑' i, (f i + g i) ^ p) ^ (1 / p), _, _⟩ [GOAL] case intro.refine'_1 ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p) ⊢ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ A + B [PROOFSTEP] simpa [hA, hB] using H₂ [GOAL] case intro.refine'_2 ι : Type u s : Finset ι f g : ι → ℝ≥0 A B : ℝ≥0 p : ℝ hp : 1 ≤ p hf : HasSum (fun i => f i ^ p) (A ^ p) hg : HasSum (fun i => g i ^ p) (B ^ p) hp' : p ≠ 0 H₁ : Summable fun i => (f i + g i) ^ p H₂ : (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p) ⊢ HasSum (fun i => (f i + g i) ^ p) (((∑' (i : ι), (f i + g i) ^ p) ^ (1 / p)) ^ p) [PROOFSTEP] simpa only [rpow_self_rpow_inv hp'] using H₁.hasSum [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q) [PROOFSTEP] have := NNReal.coe_le_coe.2 (NNReal.inner_le_Lp_mul_Lq s (fun i => ⟨_, abs_nonneg (f i)⟩) (fun i => ⟨_, abs_nonneg (g i)⟩) hpq) [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q this : ↑(∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i * (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i) ≤ ↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p) ^ (1 / p) * (∑ i in s, (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i ^ q) ^ (1 / q)) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q) [PROOFSTEP] push_cast at this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q this : ∑ x in s, |f x| * |g x| ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) * (∑ x in s, |g x| ^ q) ^ (1 / q) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q) [PROOFSTEP] refine' le_trans (sum_le_sum fun i _ => _) this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q this : ∑ x in s, |f x| * |g x| ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) * (∑ x in s, |g x| ^ q) ^ (1 / q) i : ι x✝ : i ∈ s ⊢ f i * g i ≤ |f i| * |g i| [PROOFSTEP] simp only [← abs_mul, le_abs_self] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p ⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p [PROOFSTEP] have := NNReal.coe_le_coe.2 (NNReal.rpow_sum_le_const_mul_sum_rpow s (fun i => ⟨_, abs_nonneg (f i)⟩) hp) [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : ↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i) ^ p) ≤ ↑(↑(card s) ^ (p - 1) * ∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p) ⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p [PROOFSTEP] push_cast at this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : (∑ x in s, |f x|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ x in s, |f x| ^ p ⊢ (∑ i in s, |f i|) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, |f i| ^ p [PROOFSTEP] exact this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p ⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p) [PROOFSTEP] have := NNReal.coe_le_coe.2 (NNReal.Lp_add_le s (fun i => ⟨_, abs_nonneg (f i)⟩) (fun i => ⟨_, abs_nonneg (g i)⟩) hp) [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : ↑((∑ i in s, ((fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i + (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i) ^ p) ^ (1 / p)) ≤ ↑((∑ i in s, (fun i => { val := |f i|, property := (_ : 0 ≤ |f i|) }) i ^ p) ^ (1 / p) + (∑ i in s, (fun i => { val := |g i|, property := (_ : 0 ≤ |g i|) }) i ^ p) ^ (1 / p)) ⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p) [PROOFSTEP] push_cast at this [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p) ⊢ (∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p) [PROOFSTEP] refine' le_trans (rpow_le_rpow _ (sum_le_sum fun i _ => _) _) this [GOAL] case refine'_1 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p) ⊢ 0 ≤ ∑ i in s, |f i + g i| ^ p [PROOFSTEP] simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow] [GOAL] case refine'_2 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p) i : ι x✝ : i ∈ s ⊢ |f i + g i| ^ p ≤ (|f i| + |g i|) ^ p [PROOFSTEP] simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow] [GOAL] case refine'_3 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p this : (∑ x in s, (|f x| + |g x|) ^ p) ^ (1 / p) ≤ (∑ x in s, |f x| ^ p) ^ (1 / p) + (∑ x in s, |g x| ^ p) ^ (1 / p) ⊢ 0 ≤ 1 / p [PROOFSTEP] simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add, rpow_le_rpow] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] convert inner_le_Lp_mul_Lq s f g hpq using 3 [GOAL] case h.e'_4.h.e'_5.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_4.h.e'_6.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, g i ^ q = ∑ i in s, |g i| ^ q [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_4.h.e'_5.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p [PROOFSTEP] intro i hi [GOAL] case h.e'_4.h.e'_6.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∀ (x : ι), x ∈ s → g x ^ q = |g x| ^ q [PROOFSTEP] intro i hi [GOAL] case h.e'_4.h.e'_5.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i i : ι hi : i ∈ s ⊢ f i ^ p = |f i| ^ p [PROOFSTEP] simp only [abs_of_nonneg, hf i hi, hg i hi] [GOAL] case h.e'_4.h.e'_6.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i i : ι hi : i ∈ s ⊢ g i ^ q = |g i| ^ q [PROOFSTEP] simp only [abs_of_nonneg, hf i hi, hg i hi] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hf : ∀ (i : ι), 0 ≤ f i hg : ∀ (i : ι), 0 ≤ g i hf_sum : Summable fun i => f i ^ p hg_sum : Summable fun i => g i ^ q ⊢ (Summable fun i => f i * g i) ∧ ∑' (i : ι), f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] lift f to ι → ℝ≥0 using hf [GOAL] case intro ι : Type u s : Finset ι g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q hg : ∀ (i : ι), 0 ≤ g i hg_sum : Summable fun i => g i ^ q f : ι → ℝ≥0 hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p ⊢ (Summable fun i => (fun i => ↑(f i)) i * g i) ∧ ∑' (i : ι), (fun i => ↑(f i)) i * g i ≤ (∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) [PROOFSTEP] lift g to ι → ℝ≥0 using hg [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f : ι → ℝ≥0 hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p g : ι → ℝ≥0 hg_sum : Summable fun i => (fun i => ↑(g i)) i ^ q ⊢ (Summable fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) ∧ ∑' (i : ι), (fun i => ↑(f i)) i * (fun i => ↑(g i)) i ≤ (∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) * (∑' (i : ι), (fun i => ↑(g i)) i ^ q) ^ (1 / q) [PROOFSTEP] norm_cast at * [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f g : ι → ℝ≥0 hf_sum : Summable fun a => f a ^ p hg_sum : Summable fun a => g a ^ q ⊢ (Summable fun a => f a * g a) ∧ ∑' (a : ι), f a * g a ≤ (∑' (a : ι), f a ^ p) ^ (1 / p) * (∑' (a : ι), g a ^ q) ^ (1 / q) [PROOFSTEP] exact NNReal.inner_le_Lp_mul_Lq_tsum hpq hf_sum hg_sum [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q A B : ℝ hA : 0 ≤ A hB : 0 ≤ B hf : ∀ (i : ι), 0 ≤ f i hg : ∀ (i : ι), 0 ≤ g i hf_sum : HasSum (fun i => f i ^ p) (A ^ p) hg_sum : HasSum (fun i => g i ^ q) (B ^ q) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => f i * g i) C [PROOFSTEP] lift f to ι → ℝ≥0 using hf [GOAL] case intro ι : Type u s : Finset ι g : ι → ℝ p q : ℝ hpq : IsConjugateExponent p q A B : ℝ hA : 0 ≤ A hB : 0 ≤ B hg : ∀ (i : ι), 0 ≤ g i hg_sum : HasSum (fun i => g i ^ q) (B ^ q) f : ι → ℝ≥0 hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * g i) C [PROOFSTEP] lift g to ι → ℝ≥0 using hg [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q A B : ℝ hA : 0 ≤ A hB : 0 ≤ B f : ι → ℝ≥0 hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p) g : ι → ℝ≥0 hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (B ^ q) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C [PROOFSTEP] lift A to ℝ≥0 using hA [GOAL] case intro.intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q B : ℝ hB : 0 ≤ B f g : ι → ℝ≥0 hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (B ^ q) A : ℝ≥0 hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C [PROOFSTEP] lift B to ℝ≥0 using hB [GOAL] case intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f g : ι → ℝ≥0 A : ℝ≥0 hf_sum : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p) B : ℝ≥0 hg_sum : HasSum (fun i => (fun i => ↑(g i)) i ^ q) (↑B ^ q) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C [PROOFSTEP] norm_cast at hf_sum hg_sum [GOAL] case intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f g : ι → ℝ≥0 A B : ℝ≥0 hf_sum : HasSum (fun a => f a ^ p) (A ^ p) hg_sum : HasSum (fun a => g a ^ q) (B ^ q) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C [PROOFSTEP] obtain ⟨C, hC, H⟩ := NNReal.inner_le_Lp_mul_Lq_hasSum hpq hf_sum hg_sum [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f g : ι → ℝ≥0 A B : ℝ≥0 hf_sum : HasSum (fun a => f a ^ p) (A ^ p) hg_sum : HasSum (fun a => g a ^ q) (B ^ q) C : ℝ≥0 hC : C ≤ A * B H : HasSum (fun i => f i * g i) C ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A * ↑B ∧ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) C [PROOFSTEP] refine' ⟨C, C.prop, hC, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hpq : IsConjugateExponent p q f g : ι → ℝ≥0 A B : ℝ≥0 hf_sum : HasSum (fun a => f a ^ p) (A ^ p) hg_sum : HasSum (fun a => g a ^ q) (B ^ q) C : ℝ≥0 hC : C ≤ A * B H : HasSum (fun i => f i * g i) C ⊢ HasSum (fun i => (fun i => ↑(f i)) i * (fun i => ↑(g i)) i) ↑C [PROOFSTEP] norm_cast [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] convert rpow_sum_le_const_mul_sum_rpow s f hp using 2 [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ ∑ i in s, f i = ∑ i in s, |f i| [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_4.h.e'_6 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ ∀ (x : ι), x ∈ s → f x = |f x| [PROOFSTEP] intro i hi [GOAL] case h.e'_4.h.e'_6 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p [PROOFSTEP] intro i hi [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i i : ι hi : i ∈ s ⊢ f i = |f i| [PROOFSTEP] simp only [abs_of_nonneg, hf i hi] [GOAL] case h.e'_4.h.e'_6 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i i : ι hi : i ∈ s ⊢ f i ^ p = |f i| ^ p [PROOFSTEP] simp only [abs_of_nonneg, hf i hi] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] convert Lp_add_le s f g hp using 2 <;> [skip; congr 1; congr 1] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] convert Lp_add_le s f g hp using 2 [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, (f i + g i) ^ p = ∑ i in s, |f i + g i| ^ p [PROOFSTEP] skip [GOAL] case h.e'_4.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ (∑ i in s, f i ^ p) ^ (1 / p) = (∑ i in s, |f i| ^ p) ^ (1 / p) [PROOFSTEP] congr 1 [GOAL] case h.e'_4.h.e'_6 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ (∑ i in s, g i ^ p) ^ (1 / p) = (∑ i in s, |g i| ^ p) ^ (1 / p) [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, (f i + g i) ^ p = ∑ i in s, |f i + g i| ^ p [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_4.h.e'_5.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, f i ^ p = ∑ i in s, |f i| ^ p [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_4.h.e'_6.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∑ i in s, g i ^ p = ∑ i in s, |g i| ^ p [PROOFSTEP] apply sum_congr rfl [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∀ (x : ι), x ∈ s → (f x + g x) ^ p = |f x + g x| ^ p [PROOFSTEP] intro i hi [GOAL] case h.e'_4.h.e'_5.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∀ (x : ι), x ∈ s → f x ^ p = |f x| ^ p [PROOFSTEP] intro i hi [GOAL] case h.e'_4.h.e'_6.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i ⊢ ∀ (x : ι), x ∈ s → g x ^ p = |g x| ^ p [PROOFSTEP] intro i hi [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i i : ι hi : i ∈ s ⊢ (f i + g i) ^ p = |f i + g i| ^ p [PROOFSTEP] simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg] [GOAL] case h.e'_4.h.e'_5.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i i : ι hi : i ∈ s ⊢ f i ^ p = |f i| ^ p [PROOFSTEP] simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg] [GOAL] case h.e'_4.h.e'_6.e_a ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), i ∈ s → 0 ≤ f i hg : ∀ (i : ι), i ∈ s → 0 ≤ g i i : ι hi : i ∈ s ⊢ g i ^ p = |g i| ^ p [PROOFSTEP] simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), 0 ≤ f i hg : ∀ (i : ι), 0 ≤ g i hf_sum : Summable fun i => f i ^ p hg_sum : Summable fun i => g i ^ p ⊢ (Summable fun i => (f i + g i) ^ p) ∧ (∑' (i : ι), (f i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] lift f to ι → ℝ≥0 using hf [GOAL] case intro ι : Type u s : Finset ι g : ι → ℝ p q : ℝ hp : 1 ≤ p hg : ∀ (i : ι), 0 ≤ g i hg_sum : Summable fun i => g i ^ p f : ι → ℝ≥0 hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p ⊢ (Summable fun i => ((fun i => ↑(f i)) i + g i) ^ p) ∧ (∑' (i : ι), ((fun i => ↑(f i)) i + g i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) + (∑' (i : ι), g i ^ p) ^ (1 / p) [PROOFSTEP] lift g to ι → ℝ≥0 using hg [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f : ι → ℝ≥0 hf_sum : Summable fun i => (fun i => ↑(f i)) i ^ p g : ι → ℝ≥0 hg_sum : Summable fun i => (fun i => ↑(g i)) i ^ p ⊢ (Summable fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) ∧ (∑' (i : ι), ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) ^ (1 / p) ≤ (∑' (i : ι), (fun i => ↑(f i)) i ^ p) ^ (1 / p) + (∑' (i : ι), (fun i => ↑(g i)) i ^ p) ^ (1 / p) [PROOFSTEP] norm_cast0 at * [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ f g : ι → ℝ≥0 hp : 1 ≤ p hf_sum : Summable fun a => f a ^ p hg_sum : Summable fun a => g a ^ p ⊢ (Summable fun a => (f a + g a) ^ p) ∧ (∑' (a : ι), (f a + g a) ^ p) ^ (1 / p) ≤ (∑' (a : ι), f a ^ p) ^ (1 / p) + (∑' (a : ι), g a ^ p) ^ (1 / p) [PROOFSTEP] exact NNReal.Lp_add_le_tsum hp hf_sum hg_sum [GOAL] ι : Type u s : Finset ι f g : ι → ℝ p q : ℝ hp : 1 ≤ p hf : ∀ (i : ι), 0 ≤ f i hg : ∀ (i : ι), 0 ≤ g i A B : ℝ hA : 0 ≤ A hB : 0 ≤ B hfA : HasSum (fun i => f i ^ p) (A ^ p) hgB : HasSum (fun i => g i ^ p) (B ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => (f i + g i) ^ p) (C ^ p) [PROOFSTEP] lift f to ι → ℝ≥0 using hf [GOAL] case intro ι : Type u s : Finset ι g : ι → ℝ p q : ℝ hp : 1 ≤ p hg : ∀ (i : ι), 0 ≤ g i A B : ℝ hA : 0 ≤ A hB : 0 ≤ B hgB : HasSum (fun i => g i ^ p) (B ^ p) f : ι → ℝ≥0 hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + g i) ^ p) (C ^ p) [PROOFSTEP] lift g to ι → ℝ≥0 using hg [GOAL] case intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p A B : ℝ hA : 0 ≤ A hB : 0 ≤ B f : ι → ℝ≥0 hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (A ^ p) g : ι → ℝ≥0 hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (B ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p) [PROOFSTEP] lift A to ℝ≥0 using hA [GOAL] case intro.intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p B : ℝ hB : 0 ≤ B f g : ι → ℝ≥0 hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (B ^ p) A : ℝ≥0 hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p) [PROOFSTEP] lift B to ℝ≥0 using hB [GOAL] case intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f g : ι → ℝ≥0 A : ℝ≥0 hfA : HasSum (fun i => (fun i => ↑(f i)) i ^ p) (↑A ^ p) B : ℝ≥0 hgB : HasSum (fun i => (fun i => ↑(g i)) i ^ p) (↑B ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p) [PROOFSTEP] norm_cast at hfA hgB [GOAL] case intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f g : ι → ℝ≥0 A B : ℝ≥0 hfA : HasSum (fun a => f a ^ p) (A ^ p) hgB : HasSum (fun a => g a ^ p) (B ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p) [PROOFSTEP] obtain ⟨C, hC₁, hC₂⟩ := NNReal.Lp_add_le_hasSum hp hfA hgB [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f g : ι → ℝ≥0 A B : ℝ≥0 hfA : HasSum (fun a => f a ^ p) (A ^ p) hgB : HasSum (fun a => g a ^ p) (B ^ p) C : ℝ≥0 hC₁ : C ≤ A + B hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p) ⊢ ∃ C, 0 ≤ C ∧ C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (C ^ p) [PROOFSTEP] use C [GOAL] case h ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f g : ι → ℝ≥0 A B : ℝ≥0 hfA : HasSum (fun a => f a ^ p) (A ^ p) hgB : HasSum (fun a => g a ^ p) (B ^ p) C : ℝ≥0 hC₁ : C ≤ A + B hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p) ⊢ 0 ≤ ↑C ∧ ↑C ≤ ↑A + ↑B ∧ HasSum (fun i => ((fun i => ↑(f i)) i + (fun i => ↑(g i)) i) ^ p) (↑C ^ p) [PROOFSTEP] norm_cast [GOAL] case h ι : Type u s : Finset ι p q : ℝ hp : 1 ≤ p f g : ι → ℝ≥0 A B : ℝ≥0 hfA : HasSum (fun a => f a ^ p) (A ^ p) hgB : HasSum (fun a => g a ^ p) (B ^ p) C : ℝ≥0 hC₁ : C ≤ A + B hC₂ : HasSum (fun i => (f i + g i) ^ p) (C ^ p) ⊢ 0 ≤ C ∧ C ≤ A + B ∧ HasSum (fun a => (f a + g a) ^ p) (C ^ p) [PROOFSTEP] exact ⟨zero_le _, hC₁, hC₂⟩ [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] by_cases H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0 [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] replace H : (∀ i ∈ s, f i = 0) ∨ ∀ i ∈ s, g i = 0 [GOAL] case H ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0 ⊢ (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0 [PROOFSTEP] simpa [ENNReal.rpow_eq_zero_iff, hpq.pos, hpq.symm.pos, asymm hpq.pos, asymm hpq.symm.pos, sum_eq_zero_iff_of_nonneg] using H [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] have : ∀ i ∈ s, f i * g i = 0 := fun i hi => by cases' H with H H <;> simp [H i hi] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0 i : ι hi : i ∈ s ⊢ f i * g i = 0 [PROOFSTEP] cases' H with H H [GOAL] case inl ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q i : ι hi : i ∈ s H : ∀ (i : ι), i ∈ s → f i = 0 ⊢ f i * g i = 0 [PROOFSTEP] simp [H i hi] [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q i : ι hi : i ∈ s H : ∀ (i : ι), i ∈ s → g i = 0 ⊢ f i * g i = 0 [PROOFSTEP] simp [H i hi] [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0 this : ∀ (i : ι), i ∈ s → f i * g i = 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] have : ∑ i in s, f i * g i = ∑ i in s, 0 := sum_congr rfl this [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∀ (i : ι), i ∈ s → f i = 0) ∨ ∀ (i : ι), i ∈ s → g i = 0 this✝ : ∀ (i : ι), i ∈ s → f i * g i = 0 this : ∑ i in s, f i * g i = ∑ i in s, 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp [this] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : ¬((∑ i in s, f i ^ p) ^ (1 / p) = 0 ∨ (∑ i in s, g i ^ q) ^ (1 / q) = 0) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] push_neg at H [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] by_cases H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤ [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] cases' H' with H' H' [GOAL] case pos.inl ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp [H', -one_div, -sum_eq_zero_iff, -rpow_eq_zero_iff, H] [GOAL] case pos.inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∑ i in s, g i ^ q) ^ (1 / q) = ⊤ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp [H', -one_div, -sum_eq_zero_iff, -rpow_eq_zero_iff, H] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤ [GOAL] case H' ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ q) ^ (1 / q) = ⊤) ⊢ (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ [PROOFSTEP] simpa [ENNReal.rpow_eq_top_iff, asymm hpq.pos, asymm hpq.symm.pos, hpq.pos, hpq.symm.pos, ENNReal.sum_eq_top_iff, not_or] using H' [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] have := ENNReal.coe_le_coe.2 (@NNReal.inner_le_Lp_mul_Lq _ s (fun i => ENNReal.toNNReal (f i)) (fun i => ENNReal.toNNReal (g i)) _ _ hpq) [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ↑(∑ i in s, (fun i => ENNReal.toNNReal (f i)) i * (fun i => ENNReal.toNNReal (g i)) i) ≤ ↑((∑ i in s, (fun i => ENNReal.toNNReal (f i)) i ^ p) ^ (1 / p) * (∑ i in s, (fun i => ENNReal.toNNReal (g i)) i ^ q) ^ (1 / q)) ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] simp [← ENNReal.coe_rpow_of_nonneg, le_of_lt hpq.pos, le_of_lt hpq.one_div_pos, le_of_lt hpq.symm.pos, le_of_lt hpq.symm.one_div_pos] at this [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] convert this using 1 <;> [skip; congr 2] <;> [skip; skip; simp; skip; simp] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] convert this using 1 <;> [skip; congr 2] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i ≤ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_3 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) [PROOFSTEP] skip [GOAL] case h.e'_4 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ (∑ i in s, f i ^ p) ^ (1 / p) * (∑ i in s, g i ^ q) ^ (1 / q) = (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ [PROOFSTEP] congr 2 [GOAL] case h.e'_3 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) [PROOFSTEP] skip [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p [PROOFSTEP] skip [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ 1 / p = p⁻¹ [PROOFSTEP] simp [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, g i ^ q = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q [PROOFSTEP] skip [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ 1 / q = q⁻¹ [PROOFSTEP] simp [GOAL] case h.e'_3 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i * g i = ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_3 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ i : ι hi : i ∈ s ⊢ f i * g i = ↑(ENNReal.toNNReal (f i)) * ↑(ENNReal.toNNReal (g i)) [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm] [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ i : ι hi : i ∈ s ⊢ f i ^ p = ↑(ENNReal.toNNReal (f i)) ^ p [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm] [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ ⊢ ∑ i in s, g i ^ q = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_4.e_a.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hpq : Real.IsConjugateExponent p q H : (∑ i in s, f i ^ p) ^ (1 / p) ≠ 0 ∧ (∑ i in s, g i ^ q) ^ (1 / q) ≠ 0 H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ∑ x in s, ↑(ENNReal.toNNReal (f x)) * ↑(ENNReal.toNNReal (g x)) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ p⁻¹ * (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ q) ^ q⁻¹ i : ι hi : i ∈ s ⊢ g i ^ q = ↑(ENNReal.toNNReal (g i)) ^ q [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi, -WithZero.coe_mul, WithTop.coe_mul.symm] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] cases' eq_or_lt_of_le hp with hp hp [GOAL] case inl ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp✝ : 1 ≤ p hp : 1 = p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] simp [← hp] [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp✝ : 1 ≤ p hp : 1 < p ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] let q : ℝ := p / (p - 1) [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hpq : p.IsConjugateExponent q := by rw [Real.isConjugateExponent_iff hp] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) ⊢ Real.IsConjugateExponent p q [PROOFSTEP] rw [Real.isConjugateExponent_iff hp] [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] have hq : 1 / q * p = p - 1 := by rw [← hpq.div_conj_eq_sub_one] ring [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ 1 / q * p = p - 1 [PROOFSTEP] rw [← hpq.div_conj_eq_sub_one] [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 ⊢ 1 / q * p = p / q [PROOFSTEP] ring [GOAL] case inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q✝ : ℝ hp✝ : 1 ≤ p hp : 1 < p q : ℝ := p / (p - 1) hpq : Real.IsConjugateExponent p q hp₁ : 1 / p * p = 1 hq : 1 / q * p = p - 1 ⊢ (∑ i in s, f i) ^ p ≤ ↑(card s) ^ (p - 1) * ∑ i in s, f i ^ p [PROOFSTEP] simpa only [ENNReal.mul_rpow_of_nonneg _ _ hpq.nonneg, ← ENNReal.rpow_mul, hp₁, hq, coe_one, one_mul, one_rpow, rpow_one, Pi.one_apply, sum_const, Nat.smul_one_eq_coe] using ENNReal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg [GOAL] ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] by_cases H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤ [GOAL] case pos ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤ ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] cases' H' with H' H' [GOAL] case pos.inl ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : (∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] simp [H', -one_div] [GOAL] case pos.inr ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : (∑ i in s, g i ^ p) ^ (1 / p) = ⊤ ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] simp [H', -one_div] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤) pos : 0 < p ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤ [GOAL] case H' ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p H' : ¬((∑ i in s, f i ^ p) ^ (1 / p) = ⊤ ∨ (∑ i in s, g i ^ p) ^ (1 / p) = ⊤) pos : 0 < p ⊢ (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ [PROOFSTEP] simpa [ENNReal.rpow_eq_top_iff, asymm pos, pos, ENNReal.sum_eq_top_iff, not_or] using H' [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] have := ENNReal.coe_le_coe.2 (@NNReal.Lp_add_le _ s (fun i => ENNReal.toNNReal (f i)) (fun i => ENNReal.toNNReal (g i)) _ hp) [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : ↑((∑ i in s, ((fun i => ENNReal.toNNReal (f i)) i + (fun i => ENNReal.toNNReal (g i)) i) ^ p) ^ (1 / p)) ≤ ↑((∑ i in s, (fun i => ENNReal.toNNReal (f i)) i ^ p) ^ (1 / p) + (∑ i in s, (fun i => ENNReal.toNNReal (g i)) i ^ p) ^ (1 / p)) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] push_cast [← ENNReal.coe_rpow_of_nonneg, le_of_lt pos, le_of_lt (one_div_pos.2 pos)] at this [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] convert this using 2 <;> [skip; congr 1; congr 1] [GOAL] case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ (∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i in s, f i ^ p) ^ (1 / p) + (∑ i in s, g i ^ p) ^ (1 / p) [PROOFSTEP] convert this using 2 [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ ∑ i in s, (f i + g i) ^ p = ∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p [PROOFSTEP] skip [GOAL] case h.e'_4.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ (∑ i in s, f i ^ p) ^ (1 / p) = (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) [PROOFSTEP] congr 1 [GOAL] case h.e'_4.h.e'_6 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ (∑ i in s, g i ^ p) ^ (1 / p) = (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ ∑ i in s, (f i + g i) ^ p = ∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_3.h.e'_5 ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) i : ι hi : i ∈ s ⊢ (f i + g i) ^ p = (↑(ENNReal.toNNReal (f i)) + ↑(ENNReal.toNNReal (g i))) ^ p [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi] [GOAL] case h.e'_4.h.e'_5.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ ∑ i in s, f i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_4.h.e'_5.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) i : ι hi : i ∈ s ⊢ f i ^ p = ↑(ENNReal.toNNReal (f i)) ^ p [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi] [GOAL] case h.e'_4.h.e'_6.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) ⊢ ∑ i in s, g i ^ p = ∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p [PROOFSTEP] refine Finset.sum_congr rfl fun i hi => ?_ [GOAL] case h.e'_4.h.e'_6.e_a ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p q : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ (i : ι), i ∈ s → f i ≠ ⊤) ∧ ∀ (i : ι), i ∈ s → g i ≠ ⊤ this : (∑ x in s, (↑(ENNReal.toNNReal (f x)) + ↑(ENNReal.toNNReal (g x))) ^ p) ^ (1 / p) ≤ (∑ x in s, ↑(ENNReal.toNNReal (f x)) ^ p) ^ (1 / p) + (∑ x in s, ↑(ENNReal.toNNReal (g x)) ^ p) ^ (1 / p) i : ι hi : i ∈ s ⊢ g i ^ p = ↑(ENNReal.toNNReal (g i)) ^ p [PROOFSTEP] simp [H'.1 i hi, H'.2 i hi]
{"mathlib_filename": "Mathlib.Analysis.MeanInequalities", "llama_tokens": 62944}
[GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s x : E x✝² : x ∈ s y : E x✝¹ : y ∈ s a b : ℝ ha : 0 ≤ a hb : 0 ≤ b x✝ : a + b = 1 ⊢ ‖a • x‖ + ‖b • y‖ = a * ‖x‖ + b * ‖y‖ [PROOFSTEP] rw [norm_smul, norm_smul, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E z : E hs : Convex ℝ s ⊢ ConvexOn ℝ s fun z' => dist z' z [PROOFSTEP] simpa [dist_eq_norm, preimage_preimage] using (convexOn_norm (hs.translate (-z))).comp_affineMap (AffineMap.id ℝ E - AffineMap.const ℝ E z) [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E a : E r : ℝ ⊢ Convex ℝ (ball a r) [PROOFSTEP] simpa only [Metric.ball, sep_univ] using (convexOn_univ_dist a).convex_lt r [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E a : E r : ℝ ⊢ Convex ℝ (closedBall a r) [PROOFSTEP] simpa only [Metric.closedBall, sep_univ] using (convexOn_univ_dist a).convex_le r [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ ⊢ Convex ℝ (Metric.thickening δ s) [PROOFSTEP] rw [← add_ball_zero] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ ⊢ Convex ℝ (s + ball 0 δ) [PROOFSTEP] exact hs.add (convex_ball 0 _) [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ ⊢ Convex ℝ (Metric.cthickening δ s) [PROOFSTEP] obtain hδ | hδ := le_total 0 δ [GOAL] case inl ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ hδ : 0 ≤ δ ⊢ Convex ℝ (Metric.cthickening δ s) [PROOFSTEP] rw [cthickening_eq_iInter_thickening hδ] [GOAL] case inl ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ hδ : 0 ≤ δ ⊢ Convex ℝ (⋂ (ε : ℝ) (_ : δ < ε), Metric.thickening ε s) [PROOFSTEP] exact convex_iInter₂ fun _ _ => hs.thickening _ [GOAL] case inr ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ hδ : δ ≤ 0 ⊢ Convex ℝ (Metric.cthickening δ s) [PROOFSTEP] rw [cthickening_of_nonpos hδ] [GOAL] case inr ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E hs : Convex ℝ s δ : ℝ hδ : δ ≤ 0 ⊢ Convex ℝ (closure s) [PROOFSTEP] exact hs.closure [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t✝ s t : Set E x y : E hx : x ∈ ↑(convexHull ℝ) s hy : y ∈ ↑(convexHull ℝ) t ⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y' [PROOFSTEP] rcases convexHull_exists_dist_ge hx y with ⟨x', hx', Hx'⟩ [GOAL] case intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t✝ s t : Set E x y : E hx : x ∈ ↑(convexHull ℝ) s hy : y ∈ ↑(convexHull ℝ) t x' : E hx' : x' ∈ s Hx' : dist x y ≤ dist x' y ⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y' [PROOFSTEP] rcases convexHull_exists_dist_ge hy x' with ⟨y', hy', Hy'⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t✝ s t : Set E x y : E hx : x ∈ ↑(convexHull ℝ) s hy : y ∈ ↑(convexHull ℝ) t x' : E hx' : x' ∈ s Hx' : dist x y ≤ dist x' y y' : E hy' : y' ∈ t Hy' : dist y x' ≤ dist y' x' ⊢ ∃ x', x' ∈ s ∧ ∃ y', y' ∈ t ∧ dist x y ≤ dist x' y' [PROOFSTEP] use x', hx', y', hy' [GOAL] case right ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t✝ s t : Set E x y : E hx : x ∈ ↑(convexHull ℝ) s hy : y ∈ ↑(convexHull ℝ) t x' : E hx' : x' ∈ s Hx' : dist x y ≤ dist x' y y' : E hy' : y' ∈ t Hy' : dist y x' ≤ dist y' x' ⊢ dist x y ≤ dist x' y' [PROOFSTEP] exact le_trans Hx' (dist_comm y x' ▸ dist_comm y' x' ▸ Hy') [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E ⊢ EMetric.diam (↑(convexHull ℝ) s) = EMetric.diam s [PROOFSTEP] refine' (EMetric.diam_le fun x hx y hy => _).antisymm (EMetric.diam_mono <| subset_convexHull ℝ s) [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E x : E hx : x ∈ ↑(convexHull ℝ) s y : E hy : y ∈ ↑(convexHull ℝ) s ⊢ edist x y ≤ EMetric.diam s [PROOFSTEP] rcases convexHull_exists_dist_ge2 hx hy with ⟨x', hx', y', hy', H⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E x : E hx : x ∈ ↑(convexHull ℝ) s y : E hy : y ∈ ↑(convexHull ℝ) s x' : E hx' : x' ∈ s y' : E hy' : y' ∈ s H : dist x y ≤ dist x' y' ⊢ edist x y ≤ EMetric.diam s [PROOFSTEP] rw [edist_dist] [GOAL] case intro.intro.intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E x : E hx : x ∈ ↑(convexHull ℝ) s y : E hy : y ∈ ↑(convexHull ℝ) s x' : E hx' : x' ∈ s y' : E hy' : y' ∈ s H : dist x y ≤ dist x' y' ⊢ ENNReal.ofReal (dist x y) ≤ EMetric.diam s [PROOFSTEP] apply le_trans (ENNReal.ofReal_le_ofReal H) [GOAL] case intro.intro.intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E x : E hx : x ∈ ↑(convexHull ℝ) s y : E hy : y ∈ ↑(convexHull ℝ) s x' : E hx' : x' ∈ s y' : E hy' : y' ∈ s H : dist x y ≤ dist x' y' ⊢ ENNReal.ofReal (dist x' y') ≤ EMetric.diam s [PROOFSTEP] rw [← edist_dist] [GOAL] case intro.intro.intro.intro ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E x : E hx : x ∈ ↑(convexHull ℝ) s y : E hy : y ∈ ↑(convexHull ℝ) s x' : E hx' : x' ∈ s y' : E hy' : y' ∈ s H : dist x y ≤ dist x' y' ⊢ edist x' y' ≤ EMetric.diam s [PROOFSTEP] exact EMetric.edist_le_diam_of_mem hx' hy' [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E ⊢ diam (↑(convexHull ℝ) s) = diam s [PROOFSTEP] simp only [Metric.diam, convexHull_ediam] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s✝ t s : Set E ⊢ Metric.Bounded (↑(convexHull ℝ) s) ↔ Metric.Bounded s [PROOFSTEP] simp only [Metric.bounded_iff_ediam_ne_top, convexHull_ediam] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E r : ℝ r_pos : 0 < r ⊢ Set.Nonempty (ball x r) [PROOFSTEP] simp [r_pos] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x y z : E h : y ∈ [x-[ℝ]z] ⊢ dist x y + dist y z = dist x z [PROOFSTEP] simp only [dist_eq_norm, mem_segment_iff_sameRay] at * [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x y z : E h : SameRay ℝ (y - x) (z - y) ⊢ ‖x - y‖ + ‖y - z‖ = ‖x - z‖ [PROOFSTEP] simpa only [sub_add_sub_cancel', norm_sub_rev] using h.norm_add.symm [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E ⊢ IsConnected {y | SameRay ℝ x y} [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E hx : x = 0 ⊢ IsConnected {y | SameRay ℝ x y} [PROOFSTEP] simpa [hx] using isConnected_univ (α := E) [GOAL] case neg ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E hx : ¬x = 0 ⊢ IsConnected {y | SameRay ℝ x y} [PROOFSTEP] simp_rw [← exists_nonneg_left_iff_sameRay hx] [GOAL] case neg ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E hx : ¬x = 0 ⊢ IsConnected {y | ∃ r, 0 ≤ r ∧ r • x = y} [PROOFSTEP] exact isConnected_Ici.image _ (continuous_id.smul continuous_const).continuousOn [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E hx : x ≠ 0 ⊢ IsConnected {y | SameRay ℝ x y ∧ y ≠ 0} [PROOFSTEP] simp_rw [← exists_pos_left_iff_sameRay_and_ne_zero hx] [GOAL] ι : Type u_1 E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s t : Set E x : E hx : x ≠ 0 ⊢ IsConnected {y | ∃ r, 0 < r ∧ r • x = y} [PROOFSTEP] exact isConnected_Ioi.image _ (continuous_id.smul continuous_const).continuousOn
{"mathlib_filename": "Mathlib.Analysis.Convex.Normed", "llama_tokens": 4445}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ gauge s x = sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] rw [gauge] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ sInf {r | 0 < r ∧ x ∈ r • s} = sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] apply congr_arg [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ {r | 0 < r ∧ x ∈ r • s} = {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] ext [GOAL] case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E x✝ : ℝ ⊢ x✝ ∈ {r | 0 < r ∧ x ∈ r • s} ↔ x✝ ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] simp only [mem_setOf, mem_Ioi] [GOAL] case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E x✝ : ℝ ⊢ 0 < x✝ ∧ x ∈ x✝ • s ↔ 0 < x✝ ∧ x✝⁻¹ • x ∈ s [PROOFSTEP] exact and_congr_right fun hr => mem_smul_set_iff_inv_smul_mem₀ hr.ne' _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E absorbs : Absorbent ℝ s h : gauge s x < a ⊢ ∃ b, 0 < b ∧ b < a ∧ x ∈ b • s [PROOFSTEP] obtain ⟨b, ⟨hb, hx⟩, hba⟩ := exists_lt_of_csInf_lt absorbs.gauge_set_nonempty h [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E absorbs : Absorbent ℝ s h : gauge s x < a b : ℝ hba : b < a hb : 0 < b hx : x ∈ b • s ⊢ ∃ b, 0 < b ∧ b < a ∧ x ∈ b • s [PROOFSTEP] exact ⟨b, hb, hba, hx⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ ⊢ gauge s 0 = 0 [PROOFSTEP] rw [gauge_def'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0 [PROOFSTEP] by_cases h : (0 : E) ∈ s [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ h : 0 ∈ s ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0 [PROOFSTEP] simp only [smul_zero, sep_true, h, csInf_Ioi] [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ h : ¬0 ∈ s ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ s} = 0 [PROOFSTEP] simp only [smul_zero, sep_false, h, Real.sInf_empty] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ ⊢ gauge 0 = 0 [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ gauge 0 x = OfNat.ofNat 0 x [PROOFSTEP] rw [gauge_def'] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ 0} = OfNat.ofNat 0 x [PROOFSTEP] obtain rfl | hx := eq_or_ne x 0 [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • 0 ∈ 0} = OfNat.ofNat 0 0 [PROOFSTEP] simp only [csInf_Ioi, mem_zero, Pi.zero_apply, eq_self_iff_true, sep_true, smul_zero] [GOAL] case h.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hx : x ≠ 0 ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ 0} = OfNat.ofNat 0 x [PROOFSTEP] simp only [mem_zero, Pi.zero_apply, inv_eq_zero, smul_eq_zero] [GOAL] case h.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hx : x ≠ 0 ⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ x = 0)} = 0 [PROOFSTEP] convert Real.sInf_empty [GOAL] case h.e'_2.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hx : x ≠ 0 ⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ x = 0)} = ∅ [PROOFSTEP] exact eq_empty_iff_forall_not_mem.2 fun r hr => hr.2.elim (ne_of_gt hr.1) hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ ⊢ gauge ∅ = 0 [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x✝ : E ⊢ gauge ∅ x✝ = OfNat.ofNat 0 x✝ [PROOFSTEP] simp only [gauge_def', Real.sInf_empty, mem_empty_iff_false, Pi.zero_apply, sep_false] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ h : s ⊆ 0 ⊢ gauge s = 0 [PROOFSTEP] obtain rfl | rfl := subset_singleton_iff_eq.1 h [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E t : Set E a : ℝ h : ∅ ⊆ 0 ⊢ gauge ∅ = 0 case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E t : Set E a : ℝ h : {0} ⊆ 0 ⊢ gauge {0} = 0 [PROOFSTEP] exacts [gauge_empty, gauge_zero'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ symmetric : ∀ (x : E), x ∈ s → -x ∈ s x : E ⊢ gauge s (-x) = gauge s x [PROOFSTEP] have : ∀ x, -x ∈ s ↔ x ∈ s := fun x => ⟨fun h => by simpa using symmetric _ h, symmetric x⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ symmetric : ∀ (x : E), x ∈ s → -x ∈ s x✝ x : E h : -x ∈ s ⊢ x ∈ s [PROOFSTEP] simpa using symmetric _ h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ symmetric : ∀ (x : E), x ∈ s → -x ∈ s x : E this : ∀ (x : E), -x ∈ s ↔ x ∈ s ⊢ gauge s (-x) = gauge s x [PROOFSTEP] simp_rw [gauge_def', smul_neg, this] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ gauge (-s) (-x) = gauge s x [PROOFSTEP] simp_rw [gauge_def', smul_neg, neg_mem_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ⊢ gauge (-s) x = gauge s (-x) [PROOFSTEP] rw [← gauge_neg_set_neg, neg_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ha : 0 ≤ a hx : x ∈ a • s ⊢ gauge s x ≤ a [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E x : E ha : 0 ≤ 0 hx : x ∈ 0 • s ⊢ gauge s x ≤ 0 [PROOFSTEP] rw [mem_singleton_iff.1 (zero_smul_set_subset _ hx), gauge_zero] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E ha : 0 ≤ a hx : x ∈ a • s ha' : 0 < a ⊢ gauge s x ≤ a [PROOFSTEP] exact csInf_le gauge_set_bddBelow ⟨ha', hx⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a ⊢ {x | gauge s x ≤ a} = ⋂ (r : ℝ) (_ : a < r), r • s [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E ⊢ x ∈ {x | gauge s x ≤ a} ↔ x ∈ ⋂ (r : ℝ) (_ : a < r), r • s [PROOFSTEP] simp_rw [Set.mem_iInter, Set.mem_setOf_eq] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E ⊢ gauge s x ≤ a ↔ ∀ (i : ℝ), a < i → x ∈ i • s [PROOFSTEP] refine' ⟨fun h r hr => _, fun h => le_of_forall_pos_lt_add fun ε hε => _⟩ [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r ⊢ x ∈ r • s [PROOFSTEP] have hr' := ha.trans_lt hr [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r ⊢ x ∈ r • s [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ hr'.ne'] [GOAL] case h.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r ⊢ r⁻¹ • x ∈ s [PROOFSTEP] obtain ⟨δ, δ_pos, hδr, hδ⟩ := exists_lt_of_gauge_lt hs₂ (h.trans_lt hr) [GOAL] case h.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : x ∈ δ • s ⊢ r⁻¹ • x ∈ s [PROOFSTEP] suffices (r⁻¹ * δ) • δ⁻¹ • x ∈ s by rwa [smul_smul, mul_inv_cancel_right₀ δ_pos.ne'] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : x ∈ δ • s this : (r⁻¹ * δ) • δ⁻¹ • x ∈ s ⊢ r⁻¹ • x ∈ s [PROOFSTEP] rwa [smul_smul, mul_inv_cancel_right₀ δ_pos.ne'] at this [GOAL] case h.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : x ∈ δ • s ⊢ (r⁻¹ * δ) • δ⁻¹ • x ∈ s [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ δ_pos.ne'] at hδ [GOAL] case h.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : δ⁻¹ • x ∈ s ⊢ (r⁻¹ * δ) • δ⁻¹ • x ∈ s [PROOFSTEP] refine' hs₁.smul_mem_of_zero_mem hs₀ hδ ⟨by positivity, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : δ⁻¹ • x ∈ s ⊢ 0 ≤ r⁻¹ * δ [PROOFSTEP] positivity [GOAL] case h.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : δ⁻¹ • x ∈ s ⊢ r⁻¹ * δ ≤ 1 [PROOFSTEP] rw [inv_mul_le_iff hr', mul_one] [GOAL] case h.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : gauge s x ≤ a r : ℝ hr : a < r hr' : 0 < r δ : ℝ δ_pos : 0 < δ hδr : δ < r hδ : δ⁻¹ • x ∈ s ⊢ δ ≤ r [PROOFSTEP] exact hδr.le [GOAL] case h.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : ∀ (i : ℝ), a < i → x ∈ i • s ε : ℝ hε : 0 < ε ⊢ gauge s x < a + ε [PROOFSTEP] have hε' := (lt_add_iff_pos_right a).2 (half_pos hε) [GOAL] case h.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : Absorbent ℝ s ha : 0 ≤ a x : E h : ∀ (i : ℝ), a < i → x ∈ i • s ε : ℝ hε : 0 < ε hε' : a < a + ε / 2 ⊢ gauge s x < a + ε [PROOFSTEP] exact (gauge_le_of_mem (ha.trans hε'.le) <| h _ hε').trans_lt (add_lt_add_left (half_lt_self hε) _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ ⊢ {x | gauge s x < a} = ⋃ (r : ℝ) (_ : 0 < r) (_ : r < a), r • s [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ x✝ : E ⊢ x✝ ∈ {x | gauge s x < a} ↔ x✝ ∈ ⋃ (r : ℝ) (_ : 0 < r) (_ : r < a), r • s [PROOFSTEP] simp_rw [mem_setOf, mem_iUnion, exists_prop] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ x✝ : E ⊢ gauge s x✝ < a ↔ ∃ i, 0 < i ∧ i < a ∧ x✝ ∈ i • s [PROOFSTEP] exact ⟨exists_lt_of_gauge_lt absorbs, fun ⟨r, hr₀, hr₁, hx⟩ => (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ ⊢ {x | gauge s x < a} = ⋃ (r : ℝ) (_ : r ∈ Ioo 0 a), r • s [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ x✝ : E ⊢ x✝ ∈ {x | gauge s x < a} ↔ x✝ ∈ ⋃ (r : ℝ) (_ : r ∈ Ioo 0 a), r • s [PROOFSTEP] simp_rw [mem_setOf, mem_iUnion, exists_prop, mem_Ioo, and_assoc] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ absorbs : Absorbent ℝ s a : ℝ x✝ : E ⊢ gauge s x✝ < a ↔ ∃ i, 0 < i ∧ i < a ∧ x✝ ∈ i • s [PROOFSTEP] exact ⟨exists_lt_of_gauge_lt absorbs, fun ⟨r, hr₀, hr₁, hx⟩ => (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E absorbs : Absorbent ℝ s hgauge : gauge s x < 1 ⊢ ∃ y, y ∈ s ∧ x ∈ openSegment ℝ 0 y [PROOFSTEP] rcases exists_lt_of_gauge_lt absorbs hgauge with ⟨r, hr₀, hr₁, y, hy, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ absorbs : Absorbent ℝ s r : ℝ hr₀ : 0 < r hr₁ : r < 1 y : E hy : y ∈ s hgauge : gauge s ((fun x => r • x) y) < 1 ⊢ ∃ y_1, y_1 ∈ s ∧ (fun x => r • x) y ∈ openSegment ℝ 0 y_1 [PROOFSTEP] refine ⟨y, hy, 1 - r, r, ?_⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ absorbs : Absorbent ℝ s r : ℝ hr₀ : 0 < r hr₁ : r < 1 y : E hy : y ∈ s hgauge : gauge s ((fun x => r • x) y) < 1 ⊢ ∃ x x x, (1 - r) • 0 + r • y = (fun x => r • x) y [PROOFSTEP] simp [*] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hx : x ∈ s ⊢ x ∈ 1 • s [PROOFSTEP] rwa [one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s x y : E ⊢ gauge s (x + y) ≤ gauge s x + gauge s y [PROOFSTEP] refine' le_of_forall_pos_lt_add fun ε hε => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s x y : E ε : ℝ hε : 0 < ε ⊢ gauge s (x + y) < gauge s x + gauge s y + ε [PROOFSTEP] obtain ⟨a, ha, ha', x, hx, rfl⟩ := exists_lt_of_gauge_lt absorbs (lt_add_of_pos_right (gauge s x) (half_pos hε)) [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s y : E ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 ⊢ gauge s ((fun x => a • x) x + y) < gauge s ((fun x => a • x) x) + gauge s y + ε [PROOFSTEP] obtain ⟨b, hb, hb', y, hy, rfl⟩ := exists_lt_of_gauge_lt absorbs (lt_add_of_pos_right (gauge s y) (half_pos hε)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 b : ℝ hb : 0 < b y : E hy : y ∈ s hb' : b < gauge s ((fun x => b • x) y) + ε / 2 ⊢ gauge s ((fun x => a • x) x + (fun x => b • x) y) < gauge s ((fun x => a • x) x) + gauge s ((fun x => b • x) y) + ε [PROOFSTEP] calc gauge s (a • x + b • y) ≤ a + b := gauge_le_of_mem (by positivity) <| by rw [hs.add_smul ha.le hb.le] exact add_mem_add (smul_mem_smul_set hx) (smul_mem_smul_set hy) _ < gauge s (a • x) + gauge s (b • y) + ε := by linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 b : ℝ hb : 0 < b y : E hy : y ∈ s hb' : b < gauge s ((fun x => b • x) y) + ε / 2 ⊢ 0 ≤ a + b [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 b : ℝ hb : 0 < b y : E hy : y ∈ s hb' : b < gauge s ((fun x => b • x) y) + ε / 2 ⊢ a • x + b • y ∈ (a + b) • s [PROOFSTEP] rw [hs.add_smul ha.le hb.le] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 b : ℝ hb : 0 < b y : E hy : y ∈ s hb' : b < gauge s ((fun x => b • x) y) + ε / 2 ⊢ a • x + b • y ∈ a • s + b • s [PROOFSTEP] exact add_mem_add (smul_mem_smul_set hx) (smul_mem_smul_set hy) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s absorbs : Absorbent ℝ s ε : ℝ hε : 0 < ε a : ℝ ha : 0 < a x : E hx : x ∈ s ha' : a < gauge s ((fun x => a • x) x) + ε / 2 b : ℝ hb : 0 < b y : E hy : y ∈ s hb' : b < gauge s ((fun x => b • x) y) + ε / 2 ⊢ a + b < gauge s (a • x) + gauge s (b • y) + ε [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s h₀ : 0 ∈ s absorbs : Absorbent ℝ s a : ℝ ⊢ Convex ℝ {x | gauge s x ≤ a} [PROOFSTEP] by_cases ha : 0 ≤ a [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s h₀ : 0 ∈ s absorbs : Absorbent ℝ s a : ℝ ha : 0 ≤ a ⊢ Convex ℝ {x | gauge s x ≤ a} [PROOFSTEP] rw [gauge_le_eq hs h₀ absorbs ha] [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s h₀ : 0 ∈ s absorbs : Absorbent ℝ s a : ℝ ha : 0 ≤ a ⊢ Convex ℝ (⋂ (r : ℝ) (_ : a < r), r • s) [PROOFSTEP] exact convex_iInter fun i => convex_iInter fun _ => hs.smul _ [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s h₀ : 0 ∈ s absorbs : Absorbent ℝ s a : ℝ ha : ¬0 ≤ a ⊢ Convex ℝ {x | gauge s x ≤ a} [PROOFSTEP] convert convex_empty (𝕜 := ℝ) (E := E) [GOAL] case h.e'_6 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Convex ℝ s h₀ : 0 ∈ s absorbs : Absorbent ℝ s a : ℝ ha : ¬0 ≤ a ⊢ {x | gauge s x ≤ a} = ∅ [PROOFSTEP] exact eq_empty_iff_forall_not_mem.2 fun x hx => ha <| (gauge_nonneg _).trans hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a✝ : ℝ hs : Balanced ℝ s x : E hx : x ∈ s a : ℝ ha₀ : 0 ≤ a ha₁ : a ≤ 1 ⊢ ‖a‖ ≤ 1 [PROOFSTEP] rwa [Real.norm_of_nonneg ha₀] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hs₀ : StarConvex ℝ 0 s hs₂ : Absorbs ℝ s {x} hx : ¬x ∈ a • s ⊢ a ≤ gauge s x [PROOFSTEP] rw [starConvex_zero_iff] at hs₀ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s hs₂ : Absorbs ℝ s {x} hx : ¬x ∈ a • s ⊢ a ≤ gauge s x [PROOFSTEP] obtain ⟨r, hr, h⟩ := hs₂ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s hx : ¬x ∈ a • s r : ℝ hr : 0 < r h : ∀ (a : ℝ), r ≤ ‖a‖ → {x} ⊆ a • s ⊢ a ≤ gauge s x [PROOFSTEP] refine' le_csInf ⟨r, hr, singleton_subset_iff.1 <| h _ (Real.norm_of_nonneg hr.le).ge⟩ _ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s hx : ¬x ∈ a • s r : ℝ hr : 0 < r h : ∀ (a : ℝ), r ≤ ‖a‖ → {x} ⊆ a • s ⊢ ∀ (b : ℝ), b ∈ {r | 0 < r ∧ x ∈ r • s} → a ≤ b [PROOFSTEP] rintro b ⟨hb, x, hx', rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s ⊢ a ≤ b [PROOFSTEP] refine' not_lt.1 fun hba => hx _ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ⊢ (fun x => b • x) x ∈ a • s [PROOFSTEP] have ha := hb.trans hba [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ (fun x => b • x) x ∈ a • s [PROOFSTEP] refine' ⟨(a⁻¹ * b) • x, hs₀ hx' (by positivity) _, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ 0 ≤ a⁻¹ * b [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ a⁻¹ * b ≤ 1 [PROOFSTEP] rw [← div_eq_inv_mul] [GOAL] case intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ b / a ≤ 1 [PROOFSTEP] exact div_le_one_of_le hba.le ha.le [GOAL] case intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ (fun x => a • x) ((a⁻¹ * b) • x) = (fun x => b • x) x [PROOFSTEP] dsimp only [GOAL] case intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ hs₀ : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : ℝ⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s r : ℝ hr : 0 < r b : ℝ hb : 0 < b x : E hx' : x ∈ s hx : ¬(fun x => b • x) x ∈ a • s h : ∀ (a : ℝ), r ≤ ‖a‖ → {(fun x => b • x) x} ⊆ a • s hba : b < a ha : 0 < a ⊢ a • (a⁻¹ * b) • x = b • x [PROOFSTEP] rw [← mul_smul, mul_inv_cancel_left₀ ha.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ x : E hs₁ : StarConvex ℝ 0 s hs₂ : Absorbs ℝ s {x} hx : ¬x ∈ s ⊢ ¬x ∈ 1 • s [PROOFSTEP] rwa [one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ⊢ gauge s (a • x) = a • gauge s x [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E x : E ha : 0 ≤ 0 ⊢ gauge s (0 • x) = 0 • gauge s x [PROOFSTEP] rw [zero_smul, gauge_zero, zero_smul] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a ⊢ gauge s (a • x) = a • gauge s x [PROOFSTEP] rw [gauge_def', gauge_def', ← Real.sInf_smul_of_nonneg ha] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} = sInf (a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}) [PROOFSTEP] congr 1 [GOAL] case inr.e_a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a ⊢ {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} = a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] ext r [GOAL] case inr.e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ ⊢ r ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s} ↔ r ∈ a • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] simp_rw [Set.mem_smul_set, Set.mem_sep_iff] [GOAL] case inr.e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ ⊢ r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s ↔ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] constructor [GOAL] case inr.e_a.h.mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ ⊢ r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s → ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] rintro ⟨hr, hx⟩ [GOAL] case inr.e_a.h.mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : r ∈ Ioi 0 hx : r⁻¹ • a • x ∈ s ⊢ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] simp_rw [mem_Ioi] at hr ⊢ [GOAL] case inr.e_a.h.mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hx : r⁻¹ • a • x ∈ s hr : 0 < r ⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] rw [← mem_smul_set_iff_inv_smul_mem₀ hr.ne'] at hx [GOAL] case inr.e_a.h.mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hx : a • x ∈ r • s hr : 0 < r ⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] have := smul_pos (inv_pos.2 ha') hr [GOAL] case inr.e_a.h.mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hx : a • x ∈ r • s hr : 0 < r this : 0 < a⁻¹ • r ⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a • y = r [PROOFSTEP] refine' ⟨a⁻¹ • r, ⟨this, _⟩, smul_inv_smul₀ ha'.ne' _⟩ [GOAL] case inr.e_a.h.mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hx : a • x ∈ r • s hr : 0 < r this : 0 < a⁻¹ • r ⊢ (a⁻¹ • r)⁻¹ • x ∈ s [PROOFSTEP] rwa [← mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc, mem_smul_set_iff_inv_smul_mem₀ (inv_ne_zero ha'.ne'), inv_inv] [GOAL] case inr.e_a.h.mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ ⊢ (∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a • y = r) → r ∈ Ioi 0 ∧ r⁻¹ • a • x ∈ s [PROOFSTEP] rintro ⟨r, ⟨hr, hx⟩, rfl⟩ [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : r ∈ Ioi 0 hx : r⁻¹ • x ∈ s ⊢ a • r ∈ Ioi 0 ∧ (a • r)⁻¹ • a • x ∈ s [PROOFSTEP] rw [mem_Ioi] at hr ⊢ [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : r⁻¹ • x ∈ s ⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s [PROOFSTEP] rw [← mem_smul_set_iff_inv_smul_mem₀ hr.ne'] at hx [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : x ∈ r • s ⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s [PROOFSTEP] have := smul_pos ha' hr [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : x ∈ r • s this : 0 < a • r ⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s [PROOFSTEP] refine' ⟨this, _⟩ [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : x ∈ r • s this : 0 < a • r ⊢ (a • r)⁻¹ • a • x ∈ s [PROOFSTEP] rw [← mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc] [GOAL] case inr.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : x ∈ r • s this : 0 < a • r ⊢ a • x ∈ a • r • s [PROOFSTEP] exact smul_mem_smul_set hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ⊢ gauge (a • s) = a⁻¹ • gauge s [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E ha : 0 ≤ 0 ⊢ gauge (0 • s) = 0⁻¹ • gauge s [PROOFSTEP] rw [inv_zero, zero_smul, gauge_of_subset_zero (zero_smul_set_subset _)] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a ⊢ gauge (a • s) = a⁻¹ • gauge s [PROOFSTEP] ext x [GOAL] case inr.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E ⊢ gauge (a • s) x = (a⁻¹ • gauge s) x [PROOFSTEP] rw [gauge_def', Pi.smul_apply, gauge_def', ← Real.sInf_smul_of_nonneg (inv_nonneg.2 ha)] [GOAL] case inr.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E ⊢ sInf {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} = sInf (a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s}) [PROOFSTEP] congr 1 [GOAL] case inr.h.e_a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E ⊢ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} = a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] ext r [GOAL] case inr.h.e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ ⊢ r ∈ {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ a • s} ↔ r ∈ a⁻¹ • {r | r ∈ Ioi 0 ∧ r⁻¹ • x ∈ s} [PROOFSTEP] simp_rw [Set.mem_smul_set, Set.mem_sep_iff] [GOAL] case inr.h.e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ ⊢ (r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x) ↔ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r [PROOFSTEP] constructor [GOAL] case inr.h.e_a.h.mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ ⊢ (r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x) → ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r [PROOFSTEP] rintro ⟨hr, y, hy, h⟩ [GOAL] case inr.h.e_a.h.mp.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ hr : r ∈ Ioi 0 y : E hy : y ∈ s h : a • y = r⁻¹ • x ⊢ ∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r [PROOFSTEP] simp_rw [mem_Ioi] at hr ⊢ [GOAL] case inr.h.e_a.h.mp.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ y : E hy : y ∈ s h : a • y = r⁻¹ • x hr : 0 < r ⊢ ∃ y, (0 < y ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r [PROOFSTEP] refine' ⟨a • r, ⟨smul_pos ha' hr, _⟩, inv_smul_smul₀ ha'.ne' _⟩ [GOAL] case inr.h.e_a.h.mp.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ y : E hy : y ∈ s h : a • y = r⁻¹ • x hr : 0 < r ⊢ (a • r)⁻¹ • x ∈ s [PROOFSTEP] rwa [smul_inv₀, smul_assoc, ← h, inv_smul_smul₀ ha'.ne'] [GOAL] case inr.h.e_a.h.mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ ⊢ (∃ y, (y ∈ Ioi 0 ∧ y⁻¹ • x ∈ s) ∧ a⁻¹ • y = r) → r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = r⁻¹ • x [PROOFSTEP] rintro ⟨r, ⟨hr, hx⟩, rfl⟩ [GOAL] case inr.h.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ hr : r ∈ Ioi 0 hx : r⁻¹ • x ∈ s ⊢ a⁻¹ • r ∈ Ioi 0 ∧ ∃ y, y ∈ s ∧ a • y = (a⁻¹ • r)⁻¹ • x [PROOFSTEP] rw [mem_Ioi] at hr ⊢ [GOAL] case inr.h.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ hr : 0 < r hx : r⁻¹ • x ∈ s ⊢ 0 < a⁻¹ • r ∧ ∃ y, y ∈ s ∧ a • y = (a⁻¹ • r)⁻¹ • x [PROOFSTEP] refine' ⟨smul_pos (inv_pos.2 ha') hr, r⁻¹ • x, hx, _⟩ [GOAL] case inr.h.e_a.h.mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : MulActionWithZero α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E a : α ha : 0 ≤ a ha' : 0 < a x : E r : ℝ hr : 0 < r hx : r⁻¹ • x ∈ s ⊢ a • r⁻¹ • x = (a⁻¹ • r)⁻¹ • x [PROOFSTEP] rw [smul_inv₀, smul_assoc, inv_inv] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α ⊢ gauge (a • s) = |a|⁻¹ • gauge s [PROOFSTEP] rw [← gauge_smul_left_of_nonneg (abs_nonneg a)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α ⊢ gauge (a • s) = gauge (|a| • s) [PROOFSTEP] obtain h | h := abs_choice a [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = a ⊢ gauge (a • s) = gauge (|a| • s) [PROOFSTEP] rw [h] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a ⊢ gauge (a • s) = gauge (|a| • s) [PROOFSTEP] rw [h, Set.neg_smul_set, ← Set.smul_set_neg] -- Porting note: was congr [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a ⊢ gauge (a • s) = gauge (a • -s) [PROOFSTEP] apply congr_arg [GOAL] case inr.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a ⊢ a • s = a • -s [PROOFSTEP] apply congr_arg [GOAL] case inr.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a ⊢ s = -s [PROOFSTEP] ext y [GOAL] case inr.h.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a y : E ⊢ y ∈ s ↔ y ∈ -s [PROOFSTEP] refine' ⟨symmetric _, fun hy => _⟩ [GOAL] case inr.h.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a y : E hy : y ∈ -s ⊢ y ∈ s [PROOFSTEP] rw [← neg_neg y] [GOAL] case inr.h.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℝ E s✝ t : Set E a✝ : ℝ α : Type u_4 inst✝⁶ : LinearOrderedField α inst✝⁵ : MulActionWithZero α ℝ inst✝⁴ : OrderedSMul α ℝ inst✝³ : Module α E inst✝² : SMulCommClass α ℝ ℝ inst✝¹ : IsScalarTower α ℝ ℝ inst✝ : IsScalarTower α ℝ E s : Set E symmetric : ∀ (x : E), x ∈ s → -x ∈ s a : α h : |a| = -a y : E hy : y ∈ -s ⊢ - -y ∈ s [PROOFSTEP] exact symmetric _ hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E ⊢ gauge s (‖r‖ • x) = gauge s (r • x) [PROOFSTEP] unfold gauge [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E ⊢ sInf {r_1 | 0 < r_1 ∧ ‖r‖ • x ∈ r_1 • s} = sInf {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s} [PROOFSTEP] congr with θ [GOAL] case e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E θ : ℝ ⊢ θ ∈ {r_1 | 0 < r_1 ∧ ‖r‖ • x ∈ r_1 • s} ↔ θ ∈ {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s} [PROOFSTEP] rw [@IsROrC.real_smul_eq_coe_smul 𝕜] [GOAL] case e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E θ : ℝ ⊢ θ ∈ {r_1 | 0 < r_1 ∧ ↑‖r‖ • x ∈ r_1 • s} ↔ θ ∈ {r_1 | 0 < r_1 ∧ r • x ∈ r_1 • s} [PROOFSTEP] refine' and_congr_right fun hθ => (hs.smul _).mem_smul_iff _ [GOAL] case e_a.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E θ : ℝ hθ : 0 < θ ⊢ ‖↑‖r‖‖ = ‖r‖ [PROOFSTEP] rw [IsROrC.norm_ofReal, abs_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : IsROrC 𝕜 inst✝¹ : Module 𝕜 E inst✝ : IsScalarTower ℝ 𝕜 E hs : Balanced 𝕜 s r : 𝕜 x : E ⊢ gauge s (r • x) = ‖r‖ * gauge s x [PROOFSTEP] rw [← smul_eq_mul, ← gauge_smul_of_nonneg (norm_nonneg r), gauge_norm_smul hs] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E ⊢ interior s ⊆ {x | gauge s x < 1} [PROOFSTEP] intro x hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s ⊢ x ∈ {x | gauge s x < 1} [PROOFSTEP] have H₁ : Tendsto (fun r : ℝ ↦ r⁻¹ • x) (𝓝[<] 1) (𝓝 ((1 : ℝ)⁻¹ • x)) := ((tendsto_id.inv₀ one_ne_zero).smul tendsto_const_nhds).mono_left inf_le_left [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 (1⁻¹ • x)) ⊢ x ∈ {x | gauge s x < 1} [PROOFSTEP] rw [inv_one, one_smul] at H₁ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) ⊢ x ∈ {x | gauge s x < 1} [PROOFSTEP] have H₂ : ∀ᶠ r in 𝓝[<] (1 : ℝ), x ∈ r • s ∧ 0 < r ∧ r < 1 [GOAL] case H₂ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) ⊢ ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1 [PROOFSTEP] filter_upwards [H₁ (mem_interior_iff_mem_nhds.1 hx), Ioo_mem_nhdsWithin_Iio' one_pos] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) ⊢ ∀ (a : ℝ), a ∈ (fun r => r⁻¹ • x) ⁻¹' s → a ∈ Ioo 0 1 → x ∈ a • s ∧ 0 < a ∧ a < 1 [PROOFSTEP] intro r h₁ h₂ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) r : ℝ h₁ : r ∈ (fun r => r⁻¹ • x) ⁻¹' s h₂ : r ∈ Ioo 0 1 ⊢ x ∈ r • s ∧ 0 < r ∧ r < 1 [PROOFSTEP] exact ⟨(mem_smul_set_iff_inv_smul_mem₀ h₂.1.ne' _ _).2 h₁, h₂⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) H₂ : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1 ⊢ x ∈ {x | gauge s x < 1} [PROOFSTEP] rcases H₂.exists with ⟨r, hxr, hr₀, hr₁⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s✝ t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s H₁ : Tendsto (fun r => r⁻¹ • x) (𝓝[Iio 1] 1) (𝓝 x) H₂ : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, x ∈ r • s ∧ 0 < r ∧ r < 1 r : ℝ hxr : x ∈ r • s hr₀ : 0 < r hr₁ : r < 1 ⊢ x ∈ {x | gauge s x < 1} [PROOFSTEP] exact (gauge_le_of_mem hr₀.le hxr).trans_lt hr₁ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : IsOpen s ⊢ {x | gauge s x < 1} = s [PROOFSTEP] refine' (gauge_lt_one_subset_self hs₁ ‹_› <| absorbent_nhds_zero <| hs₂.mem_nhds hs₀).antisymm _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : IsOpen s ⊢ s ⊆ {x | gauge s x < 1} [PROOFSTEP] convert interior_subset_gauge_lt_one s [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs₁ : Convex ℝ s hs₀ : 0 ∈ s hs₂ : IsOpen s ⊢ s = interior s [PROOFSTEP] exact hs₂.interior_eq.symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs₂ : IsOpen s x : E hx : x ∈ s ⊢ x ∈ interior s [PROOFSTEP] rwa [hs₂.interior_eq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E ε : ℝ hε : 0 < ε hs₂ : IsOpen s hx : x ∈ ε • s ⊢ gauge s x < ε [PROOFSTEP] have : ε⁻¹ • x ∈ s := by rwa [← mem_smul_set_iff_inv_smul_mem₀ hε.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E ε : ℝ hε : 0 < ε hs₂ : IsOpen s hx : x ∈ ε • s ⊢ ε⁻¹ • x ∈ s [PROOFSTEP] rwa [← mem_smul_set_iff_inv_smul_mem₀ hε.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E ε : ℝ hε : 0 < ε hs₂ : IsOpen s hx : x ∈ ε • s this : ε⁻¹ • x ∈ s ⊢ gauge s x < ε [PROOFSTEP] have h_gauge_lt := gauge_lt_one_of_mem_of_open hs₂ this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E ε : ℝ hε : 0 < ε hs₂ : IsOpen s hx : x ∈ ε • s this : ε⁻¹ • x ∈ s h_gauge_lt : gauge s (ε⁻¹ • x) < 1 ⊢ gauge s x < ε [PROOFSTEP] rwa [gauge_smul_of_nonneg (inv_nonneg.2 hε.le), smul_eq_mul, inv_mul_lt_iff hε, mul_one] at h_gauge_lt [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 ⊢ x ∈ closure s [PROOFSTEP] have : ∀ᶠ r : ℝ in 𝓝[<] 1, r • x ∈ s [GOAL] case this 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 ⊢ ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s [PROOFSTEP] filter_upwards [Ico_mem_nhdsWithin_Iio' one_pos] with r ⟨hr₀, hr₁⟩ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 r : ℝ hr₀ : 0 ≤ r hr₁ : r < 1 ⊢ r • x ∈ s [PROOFSTEP] apply gauge_lt_one_subset_self hc hs₀ ha [GOAL] case h.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 r : ℝ hr₀ : 0 ≤ r hr₁ : r < 1 ⊢ r • x ∈ {x | gauge s x < 1} [PROOFSTEP] rw [mem_setOf_eq, gauge_smul_of_nonneg hr₀] [GOAL] case h.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 r : ℝ hr₀ : 0 ≤ r hr₁ : r < 1 ⊢ r • gauge s x < 1 [PROOFSTEP] exact mul_lt_one_of_nonneg_of_lt_one_left hr₀ hr₁ h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s ⊢ x ∈ closure s [PROOFSTEP] refine mem_closure_of_tendsto ?_ this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s ⊢ Filter.Tendsto (fun x_1 => x_1 • x) (𝓝[Iio 1] 1) (𝓝 x) [PROOFSTEP] exact Filter.Tendsto.mono_left (Continuous.tendsto' (by continuity) _ _ (one_smul _ _)) inf_le_left [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s t : Set E a : ℝ inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : 0 ∈ s ha : Absorbent ℝ s h : gauge s x ≤ 1 this : ∀ᶠ (r : ℝ) in 𝓝[Iio 1] 1, r • x ∈ s ⊢ Continuous fun x_1 => x_1 • x [PROOFSTEP] continuity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ⊢ Continuous (gauge s) [PROOFSTEP] have ha : Absorbent ℝ s := absorbent_nhds_zero hs₀ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s ⊢ Continuous (gauge s) [PROOFSTEP] simp only [continuous_iff_continuousAt, ContinuousAt, (nhds_basis_Icc_pos _).tendsto_right_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s ⊢ ∀ (x : E) (i : ℝ), 0 < i → ∀ᶠ (x_1 : E) in 𝓝 x, gauge s x_1 ∈ Icc (gauge s x - i) (gauge s x + i) [PROOFSTEP] intro x ε hε₀ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε ⊢ ∀ᶠ (x_1 : E) in 𝓝 x, gauge s x_1 ∈ Icc (gauge s x - ε) (gauge s x + ε) [PROOFSTEP] rw [← map_add_left_nhds_zero, eventually_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε ⊢ ∀ᶠ (a : E) in 𝓝 0, gauge s ((fun x x_1 => x + x_1) x a) ∈ Icc (gauge s x - ε) (gauge s x + ε) [PROOFSTEP] have : ε • s ∩ -(ε • s) ∈ 𝓝 0 [GOAL] case this 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε ⊢ ε • s ∩ -(ε • s) ∈ 𝓝 0 [PROOFSTEP] exact inter_mem ((set_smul_mem_nhds_zero_iff hε₀.ne').2 hs₀) (neg_mem_nhds_zero _ ((set_smul_mem_nhds_zero_iff hε₀.ne').2 hs₀)) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 ⊢ ∀ᶠ (a : E) in 𝓝 0, gauge s ((fun x x_1 => x + x_1) x a) ∈ Icc (gauge s x - ε) (gauge s x + ε) [PROOFSTEP] filter_upwards [this] with y hy [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s (x + y) ∈ Icc (gauge s x - ε) (gauge s x + ε) [PROOFSTEP] constructor [GOAL] case h.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s x - ε ≤ gauge s (x + y) [PROOFSTEP] rw [sub_le_iff_le_add] [GOAL] case h.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s x ≤ gauge s (x + y) + ε [PROOFSTEP] calc gauge s x = gauge s (x + y + (-y)) := by simp _ ≤ gauge s (x + y) + gauge s (-y) := (gauge_add_le hc ha _ _) _ ≤ gauge s (x + y) + ε := add_le_add_left (gauge_le_of_mem hε₀.le (mem_neg.1 hy.2)) _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s x = gauge s (x + y + -y) [PROOFSTEP] simp [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ha : Absorbent ℝ s x : E ε : ℝ hε₀ : 0 < ε this : ε • s ∩ -(ε • s) ∈ 𝓝 0 y : E hy : y ∈ ε • s ∩ -(ε • s) ⊢ gauge s (x + y) ≤ gauge s x + ε [PROOFSTEP] calc gauge s (x + y) ≤ gauge s x + gauge s y := gauge_add_le hc ha _ _ _ ≤ gauge s x + ε := add_le_add_left (gauge_le_of_mem hε₀.le hy.1) _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ⊢ {x | gauge s x < 1} = interior s [PROOFSTEP] refine Subset.antisymm (fun x hx ↦ ?_) (interior_subset_gauge_lt_one s) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 x : E hx : x ∈ {x | gauge s x < 1} ⊢ x ∈ interior s [PROOFSTEP] rcases mem_openSegment_of_gauge_lt_one (absorbent_nhds_zero hs₀) hx with ⟨y, hys, hxy⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 x : E hx : x ∈ {x | gauge s x < 1} y : E hys : y ∈ s hxy : x ∈ openSegment ℝ 0 y ⊢ x ∈ interior s [PROOFSTEP] exact hc.openSegment_interior_self_subset_interior (mem_interior_iff_mem_nhds.2 hs₀) hys hxy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ⊢ gauge s x = 1 ↔ x ∈ frontier s [PROOFSTEP] rw [eq_iff_le_not_lt, gauge_le_one_iff_mem_closure hc hs₀, gauge_lt_one_iff_mem_interior hc hs₀] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E a : ℝ inst✝² : TopologicalSpace E inst✝¹ : TopologicalAddGroup E inst✝ : ContinuousSMul ℝ E x : E hc : Convex ℝ s hs₀ : s ∈ 𝓝 0 ⊢ x ∈ closure s ∧ ¬x ∈ interior s ↔ x ∈ frontier s [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E x : E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s ⊢ gauge s x = 0 ↔ x = 0 [PROOFSTEP] refine ⟨not_imp_not.1 fun (h : x ≠ 0) ↦ ne_of_gt ?_, fun h ↦ h.symm ▸ gauge_zero⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E x : E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s h : x ≠ 0 ⊢ 0 < gauge s x [PROOFSTEP] rcases hb (isOpen_compl_singleton.mem_nhds h.symm) with ⟨c, hc₀, hc⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E x : E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s h : x ≠ 0 c : ℝ hc₀ : 0 < c hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {x}ᶜ ⊢ 0 < gauge s x [PROOFSTEP] refine (inv_pos.2 hc₀).trans_le <| le_csInf hs.gauge_set_nonempty ?_ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E x : E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s h : x ≠ 0 c : ℝ hc₀ : 0 < c hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {x}ᶜ ⊢ ∀ (b : ℝ), b ∈ {r | 0 < r ∧ x ∈ r • s} → c⁻¹ ≤ b [PROOFSTEP] rintro r ⟨hr₀, x, hx, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r x : E hx : x ∈ s h : (fun x => r • x) x ≠ 0 hc : ∀ (a : ℝ), c ≤ ‖a‖ → s ⊆ a • {(fun x => r • x) x}ᶜ ⊢ c⁻¹ ≤ r [PROOFSTEP] contrapose! hc [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r x : E hx : x ∈ s h : (fun x => r • x) x ≠ 0 hc : r < c⁻¹ ⊢ ∃ a, c ≤ ‖a‖ ∧ ¬s ⊆ a • {r • x}ᶜ [PROOFSTEP] refine ⟨r⁻¹, ?_, fun h ↦ ?_⟩ [GOAL] case intro.intro.intro.intro.intro.refine_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r x : E hx : x ∈ s h : (fun x => r • x) x ≠ 0 hc : r < c⁻¹ ⊢ c ≤ ‖r⁻¹‖ [PROOFSTEP] rw [norm_inv, Real.norm_of_nonneg hr₀.le, le_inv hc₀ hr₀] [GOAL] case intro.intro.intro.intro.intro.refine_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r x : E hx : x ∈ s h : (fun x => r • x) x ≠ 0 hc : r < c⁻¹ ⊢ r ≤ c⁻¹ [PROOFSTEP] exact hc.le [GOAL] case intro.intro.intro.intro.intro.refine_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r x : E hx : x ∈ s h✝ : (fun x => r • x) x ≠ 0 hc : r < c⁻¹ h : s ⊆ r⁻¹ • {r • x}ᶜ ⊢ False [PROOFSTEP] rcases h hx with ⟨y, hy, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.refine_2.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s c : ℝ hc₀ : 0 < c r : ℝ hr₀ : 0 < r hc : r < c⁻¹ y : E hx : (fun x => r⁻¹ • x) y ∈ s h✝ : (fun x => r • x) ((fun x => r⁻¹ • x) y) ≠ 0 h : s ⊆ r⁻¹ • {r • (fun x => r⁻¹ • x) y}ᶜ hy : y ∈ {r • (fun x => r⁻¹ • x) y}ᶜ ⊢ False [PROOFSTEP] simp [hr₀.ne'] at hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℝ E s t : Set E a : ℝ inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E x : E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s ⊢ 0 < gauge s x ↔ x ≠ 0 [PROOFSTEP] simp only [(gauge_nonneg _).gt_iff_ne, Ne.def, gauge_eq_zero hs hb] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s t : Set E a : ℝ inst✝⁴ : IsROrC 𝕜 inst✝³ : Module 𝕜 E inst✝² : IsScalarTower ℝ 𝕜 E hs₀ : Balanced 𝕜 s hs₁ : Convex ℝ s hs₂ : Absorbent ℝ s inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : IsOpen s ⊢ Seminorm.ball (gaugeSeminorm hs₀ hs₁ hs₂) 0 1 = s [PROOFSTEP] rw [Seminorm.ball_zero_eq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E s t : Set E a : ℝ inst✝⁴ : IsROrC 𝕜 inst✝³ : Module 𝕜 E inst✝² : IsScalarTower ℝ 𝕜 E hs₀ : Balanced 𝕜 s hs₁ : Convex ℝ s hs₂ : Absorbent ℝ s inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : IsOpen s ⊢ {y | ↑(gaugeSeminorm hs₀ hs₁ hs₂) y < 1} = s [PROOFSTEP] exact gauge_lt_one_eq_self_of_open hs₁ hs₂.zero_mem hs [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E ⊢ gauge (ball p 0 1) = ↑p [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E ⊢ gauge (ball p 0 1) x = ↑p x [PROOFSTEP] obtain hp | hp := {r : ℝ | 0 < r ∧ x ∈ r • p.ball 0 1}.eq_empty_or_nonempty [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ ⊢ gauge (ball p 0 1) x = ↑p x [PROOFSTEP] rw [gauge, hp, Real.sInf_empty] [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ ⊢ 0 = ↑p x [PROOFSTEP] by_contra h [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ h : ¬0 = ↑p x ⊢ False [PROOFSTEP] have hpx : 0 < p x := (map_nonneg _ _).lt_of_ne h [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ h : ¬0 = ↑p x hpx : 0 < ↑p x ⊢ False [PROOFSTEP] have hpx₂ : 0 < 2 * p x := mul_pos zero_lt_two hpx [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ h : ¬0 = ↑p x hpx : 0 < ↑p x hpx₂ : 0 < 2 * ↑p x ⊢ False [PROOFSTEP] refine' hp.subset ⟨hpx₂, (2 * p x)⁻¹ • x, _, smul_inv_smul₀ hpx₂.ne' _⟩ [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ h : ¬0 = ↑p x hpx : 0 < ↑p x hpx₂ : 0 < 2 * ↑p x ⊢ (2 * ↑p x)⁻¹ • x ∈ ball p 0 1 [PROOFSTEP] rw [p.mem_ball_zero, map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos (inv_pos.2 hpx₂), inv_mul_lt_iff hpx₂, mul_one] [GOAL] case h.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : {r | 0 < r ∧ x ∈ r • ball p 0 1} = ∅ h : ¬0 = ↑p x hpx : 0 < ↑p x hpx₂ : 0 < 2 * ↑p x ⊢ ↑p x < 2 * ↑p x [PROOFSTEP] exact lt_mul_of_one_lt_left hpx one_lt_two [GOAL] case h.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} ⊢ gauge (ball p 0 1) x = ↑p x [PROOFSTEP] refine' IsGLB.csInf_eq ⟨fun r => _, fun r hr => le_of_forall_pos_le_add fun ε hε => _⟩ hp [GOAL] case h.inr.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} r : ℝ ⊢ r ∈ {r | 0 < r ∧ x ∈ r • ball p 0 1} → ↑p x ≤ r [PROOFSTEP] rintro ⟨hr, y, hy, rfl⟩ [GOAL] case h.inr.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E r : ℝ hr : 0 < r y : E hy : y ∈ ball p 0 1 hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1} ⊢ ↑p ((fun x => r • x) y) ≤ r [PROOFSTEP] rw [p.mem_ball_zero] at hy [GOAL] case h.inr.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E r : ℝ hr : 0 < r y : E hy : ↑p y < 1 hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1} ⊢ ↑p ((fun x => r • x) y) ≤ r [PROOFSTEP] rw [map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos hr] [GOAL] case h.inr.refine'_1.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E r : ℝ hr : 0 < r y : E hy : ↑p y < 1 hp : Set.Nonempty {r_1 | 0 < r_1 ∧ (fun x => r • x) y ∈ r_1 • ball p 0 1} ⊢ r * ↑p y ≤ r [PROOFSTEP] exact mul_le_of_le_one_right hr.le hy.le [GOAL] case h.inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} r : ℝ hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1} ε : ℝ hε : 0 < ε ⊢ r ≤ ↑p x + ε [PROOFSTEP] have hpε : 0 < p x + ε := -- Porting note: was `by positivity`add_pos_of_nonneg_of_pos (map_nonneg _ _) hε [GOAL] case h.inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} r : ℝ hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1} ε : ℝ hε : 0 < ε hpε : 0 < ↑p x + ε ⊢ r ≤ ↑p x + ε [PROOFSTEP] refine' hr ⟨hpε, (p x + ε)⁻¹ • x, _, smul_inv_smul₀ hpε.ne' _⟩ [GOAL] case h.inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} r : ℝ hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1} ε : ℝ hε : 0 < ε hpε : 0 < ↑p x + ε ⊢ (↑p x + ε)⁻¹ • x ∈ ball p 0 1 [PROOFSTEP] rw [p.mem_ball_zero, map_smul_eq_mul, Real.norm_eq_abs, abs_of_pos (inv_pos.2 hpε), inv_mul_lt_iff hpε, mul_one] [GOAL] case h.inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s t : Set E a : ℝ p : Seminorm ℝ E x : E hp : Set.Nonempty {r | 0 < r ∧ x ∈ r • ball p 0 1} r : ℝ hr : r ∈ lowerBounds {r | 0 < r ∧ x ∈ r • ball p 0 1} ε : ℝ hε : 0 < ε hpε : 0 < ↑p x + ε ⊢ ↑p x < ↑p x + ε [PROOFSTEP] exact lt_add_of_pos_right _ hε [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E ⊢ gauge (ball 0 1) x = ‖x‖ [PROOFSTEP] rw [← ball_normSeminorm ℝ, Seminorm.gauge_ball, coe_normSeminorm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E ⊢ gauge (ball 0 r) x = ‖x‖ / r [PROOFSTEP] rcases hr.eq_or_lt with rfl | hr [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E x✝ x : E hr : 0 ≤ 0 ⊢ gauge (ball 0 0) x = ‖x‖ / 0 [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr✝ : 0 ≤ r x : E hr : 0 < r ⊢ gauge (ball 0 r) x = ‖x‖ / r [PROOFSTEP] rw [← smul_unitBall_of_pos hr, gauge_smul_left, Pi.smul_apply, gauge_unit_ball, smul_eq_mul, abs_of_nonneg hr.le, div_eq_inv_mul] [GOAL] case inr.symmetric 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr✝ : 0 ≤ r x : E hr : 0 < r ⊢ ∀ (x : E), x ∈ ball 0 1 → -x ∈ ball 0 1 [PROOFSTEP] simp_rw [mem_ball_zero_iff, norm_neg] [GOAL] case inr.symmetric 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr✝ : 0 ≤ r x : E hr : 0 < r ⊢ ∀ (x : E), ‖x‖ < 1 → ‖x‖ < 1 [PROOFSTEP] exact fun _ => id [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E ⊢ gauge (closure 0) x = OfNat.ofNat 0 x [PROOFSTEP] simp only [← singleton_zero, gauge_def', mem_closure_zero_iff_norm, norm_smul, mul_eq_zero, norm_eq_zero, inv_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E ⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x [PROOFSTEP] rcases(norm_nonneg x).eq_or_gt with hx | hx [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E hx : ‖x‖ = 0 ⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x [PROOFSTEP] convert csInf_Ioi (a := (0 : ℝ)) [GOAL] case h.e'_2.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E hx : ‖x‖ = 0 ⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = Ioi 0 [PROOFSTEP] exact Set.ext fun r ↦ and_iff_left (.inr hx) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E hx : 0 < ‖x‖ ⊢ sInf {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = OfNat.ofNat 0 x [PROOFSTEP] convert Real.sInf_empty [GOAL] case h.e'_2.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ x : E hx : 0 < ‖x‖ ⊢ {r | r ∈ Ioi 0 ∧ (r = 0 ∨ ‖x‖ = 0)} = ∅ [PROOFSTEP] exact eq_empty_of_forall_not_mem fun r ⟨hr₀, hr⟩ ↦ hx.ne' <| hr.resolve_left hr₀.out.ne' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E ⊢ gauge (closedBall 0 r) x = ‖x‖ / r [PROOFSTEP] rcases hr.eq_or_lt with rfl | hr' [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E x✝ x : E hr : 0 ≤ 0 ⊢ gauge (closedBall 0 0) x = ‖x‖ / 0 [PROOFSTEP] rw [div_zero, closedBall_zero', singleton_zero, gauge_closure_zero] [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E x✝ x : E hr : 0 ≤ 0 ⊢ OfNat.ofNat 0 x = 0 [PROOFSTEP] rfl [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r ⊢ gauge (closedBall 0 r) x = ‖x‖ / r [PROOFSTEP] apply le_antisymm [GOAL] case inr.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r ⊢ gauge (closedBall 0 r) x ≤ ‖x‖ / r [PROOFSTEP] rw [← gauge_ball hr] [GOAL] case inr.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r ⊢ gauge (closedBall 0 r) x ≤ gauge (ball 0 r) x [PROOFSTEP] exact gauge_mono (absorbent_ball_zero hr') ball_subset_closedBall x [GOAL] case inr.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r ⊢ ‖x‖ / r ≤ gauge (closedBall 0 r) x [PROOFSTEP] suffices : ∀ᶠ R in 𝓝[>] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x [GOAL] case inr.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r this : ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x ⊢ ‖x‖ / r ≤ gauge (closedBall 0 r) x [PROOFSTEP] refine le_of_tendsto ?_ this [GOAL] case inr.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r this : ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x ⊢ Filter.Tendsto (fun c => ‖x‖ / c) (𝓝[Ioi r] r) (𝓝 (‖x‖ / r)) [PROOFSTEP] exact tendsto_const_nhds.div inf_le_left hr'.ne' [GOAL] case this 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r ⊢ ∀ᶠ (R : ℝ) in 𝓝[Ioi r] r, ‖x‖ / R ≤ gauge (closedBall 0 r) x [PROOFSTEP] filter_upwards [self_mem_nhdsWithin] with R hR [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r R : ℝ hR : R ∈ Ioi r ⊢ ‖x‖ / R ≤ gauge (closedBall 0 r) x [PROOFSTEP] rw [← gauge_ball (hr.trans hR.out.le)] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r R : ℝ hR : R ∈ Ioi r ⊢ gauge (ball 0 R) x ≤ gauge (closedBall 0 r) x [PROOFSTEP] refine gauge_mono ?_ (closedBall_subset_ball hR) _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x✝ : E hr : 0 ≤ r x : E hr' : 0 < r R : ℝ hR : R ∈ Ioi r ⊢ Absorbent ℝ (closedBall 0 r) [PROOFSTEP] exact (absorbent_ball_zero hr').subset ball_subset_closedBall [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s ⊢ r * gauge s x ≤ ‖x‖ [PROOFSTEP] obtain hr | hr := le_or_lt r 0 [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s hr : r ≤ 0 ⊢ r * gauge s x ≤ ‖x‖ [PROOFSTEP] exact (mul_nonpos_of_nonpos_of_nonneg hr <| gauge_nonneg _).trans (norm_nonneg _) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s hr : 0 < r ⊢ r * gauge s x ≤ ‖x‖ [PROOFSTEP] rw [mul_comm, ← le_div_iff hr, ← gauge_ball hr.le] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : ball 0 r ⊆ s hr : 0 < r ⊢ gauge s x ≤ gauge (ball 0 r) x [PROOFSTEP] exact gauge_mono (absorbent_ball_zero hr) hs x [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r✝ : ℝ x✝ : E r : ℝ≥0 hc : Convex ℝ s hr : 0 < r hs : ball 0 ↑r ⊆ s this : Absorbent ℝ (ball 0 ↑r) x y : E ⊢ gauge s x = gauge s (y + (x - y)) [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r✝ : ℝ x✝ : E r : ℝ≥0 hc : Convex ℝ s hr : 0 < r hs : ball 0 ↑r ⊆ s this : Absorbent ℝ (ball 0 ↑r) x y : E ⊢ gauge s y + ‖x - y‖ / ↑r = gauge s y + ↑r⁻¹ * dist x y [PROOFSTEP] rw [dist_eq_norm, div_eq_inv_mul, NNReal.coe_inv] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : Absorbent ℝ s hr : 0 ≤ r hsr : s ⊆ closedBall 0 r ⊢ ‖x‖ / r ≤ gauge s x [PROOFSTEP] rw [← gauge_closedBall hr] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E r : ℝ x : E hs : Absorbent ℝ s hr : 0 ≤ r hsr : s ⊆ closedBall 0 r ⊢ gauge (closedBall 0 r) x ≤ gauge s x [PROOFSTEP] exact gauge_mono hs hsr _
{"mathlib_filename": "Mathlib.Analysis.Convex.Gauge", "llama_tokens": 47012}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E ⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E ⊢ StarConvex 𝕜 x s → ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s [PROOFSTEP] rintro h y hy z ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h hy ha hb hab [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E ⊢ (∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s) → StarConvex 𝕜 x s [PROOFSTEP] rintro h y hy a b ha hb hab [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E h : ∀ ⦃y : E⦄, y ∈ s → [x-[𝕜]y] ⊆ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h hy ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E ⊢ StarConvex 𝕜 x s ↔ ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • {x} + b • s ⊆ s [PROOFSTEP] refine' ⟨_, fun h y hy a b ha hb hab => h ha hb hab (add_mem_add (smul_mem_smul_set <| mem_singleton _) ⟨_, hy, rfl⟩)⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E ⊢ StarConvex 𝕜 x s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • {x} + b • s ⊆ s [PROOFSTEP] rintro hA a b ha hb hab w ⟨au, bv, ⟨u, rfl : u = x, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s t : Set E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 u : E hA : StarConvex 𝕜 u s v : E hv : v ∈ s ⊢ (fun x x_1 => x + x_1) ((fun x => a • x) u) ((fun x => b • x) v) ∈ s [PROOFSTEP] exact hA hv ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 x t ⊢ StarConvex 𝕜 x (s ∪ t) [PROOFSTEP] rintro y (hy | hy) a b ha hb hab [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 x t y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s ∪ t [PROOFSTEP] exact Or.inl (hs hy ha hb hab) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 x t y : E hy : y ∈ t a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s ∪ t [PROOFSTEP] exact Or.inr (ht hy ha hb hab) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s✝ t : Set E ι : Sort u_4 s : ι → Set E hs : ∀ (i : ι), StarConvex 𝕜 x (s i) ⊢ StarConvex 𝕜 x (⋃ (i : ι), s i) [PROOFSTEP] rintro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s✝ t : Set E ι : Sort u_4 s : ι → Set E hs : ∀ (i : ι), StarConvex 𝕜 x (s i) y : E hy : y ∈ ⋃ (i : ι), s i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ⋃ (i : ι), s i [PROOFSTEP] rw [mem_iUnion] at hy ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s✝ t : Set E ι : Sort u_4 s : ι → Set E hs : ∀ (i : ι), StarConvex 𝕜 x (s i) y : E hy : ∃ i, y ∈ s i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] obtain ⟨i, hy⟩ := hy [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s✝ t : Set E ι : Sort u_4 s : ι → Set E hs : ∀ (i : ι), StarConvex 𝕜 x (s i) y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι hy : y ∈ s i ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] exact ⟨i, hs i hy ha hb hab⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E S : Set (Set E) hS : ∀ (s : Set E), s ∈ S → StarConvex 𝕜 x s ⊢ StarConvex 𝕜 x (⋃₀ S) [PROOFSTEP] rw [sUnion_eq_iUnion] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F x : E s t : Set E S : Set (Set E) hS : ∀ (s : Set E), s ∈ S → StarConvex 𝕜 x s ⊢ StarConvex 𝕜 x (⋃ (i : ↑S), ↑i) [PROOFSTEP] exact starConvex_iUnion fun s => hS _ s.2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 x s h : Set.Nonempty s ⊢ x ∈ s [PROOFSTEP] obtain ⟨y, hy⟩ := h [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hs : StarConvex 𝕜 x s y : E hy : y ∈ s ⊢ x ∈ s [PROOFSTEP] convert hs hy zero_le_one le_rfl (add_zero 1) [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hs : StarConvex 𝕜 x s y : E hy : y ∈ s ⊢ x = 1 • x + 0 • y [PROOFSTEP] rw [one_smul, zero_smul, add_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hx : x ∈ s ⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s [PROOFSTEP] refine' ⟨fun h y hy a b ha hb hab => h hy ha.le hb.le hab, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hx : x ∈ s ⊢ (∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) → StarConvex 𝕜 x s [PROOFSTEP] intro h y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | ha := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 • x + b • y ∈ s [PROOFSTEP] rw [zero_add] at hab [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 ⊢ 0 • x + b • y ∈ s [PROOFSTEP] rwa [hab, one_smul, zero_smul, zero_add] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha✝ : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha : 0 < a ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | hb := hb.eq_or_lt [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a : 𝕜 ha✝ : 0 ≤ a ha : 0 < a hb : 0 ≤ 0 hab : a + 0 = 1 ⊢ a • x + 0 • y ∈ s [PROOFSTEP] rw [add_zero] at hab [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a : 𝕜 ha✝ : 0 ≤ a ha : 0 < a hb : 0 ≤ 0 hab : a = 1 ⊢ a • x + 0 • y ∈ s [PROOFSTEP] rwa [hab, one_smul, zero_smul, add_zero] [GOAL] case inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha✝ : 0 ≤ a hb✝ : 0 ≤ b hab : a + b = 1 ha : 0 < a hb : 0 < b ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hx : x ∈ s ⊢ StarConvex 𝕜 x s ↔ ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s [PROOFSTEP] refine' ⟨fun h y hy _ a b ha hb hab => h hy ha.le hb.le hab, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hx : x ∈ s ⊢ (∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) → StarConvex 𝕜 x s [PROOFSTEP] intro h y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 • x + b • y ∈ s [PROOFSTEP] rw [zero_add] at hab [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 ⊢ 0 • x + b • y ∈ s [PROOFSTEP] rwa [hab, zero_smul, one_smul, zero_add] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | hb' := hb.eq_or_lt [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a : 𝕜 ha : 0 ≤ a ha' : 0 < a hb : 0 ≤ 0 hab : a + 0 = 1 ⊢ a • x + 0 • y ∈ s [PROOFSTEP] rw [add_zero] at hab [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a : 𝕜 ha : 0 ≤ a ha' : 0 < a hb : 0 ≤ 0 hab : a = 1 ⊢ a • x + 0 • y ∈ s [PROOFSTEP] rwa [hab, zero_smul, one_smul, add_zero] [GOAL] case inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a hb' : 0 < b ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | hxy := eq_or_ne x y [GOAL] case inr.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a hb' : 0 < b hy : x ∈ s ⊢ a • x + b • x ∈ s [PROOFSTEP] rwa [Convex.combo_self hab] [GOAL] case inr.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hx : x ∈ s h : ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a hb' : 0 < b hxy : x ≠ y ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h hy hxy ha' hb' hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x✝ y z : E s : Set E x : E ⊢ StarConvex 𝕜 x {x} [PROOFSTEP] rintro y (rfl : y = x) a b _ _ hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E y : E a b : 𝕜 a✝¹ : 0 ≤ a a✝ : 0 ≤ b hab : a + b = 1 ⊢ a • y + b • y ∈ {y} [PROOFSTEP] exact Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 x s f : E →ₗ[𝕜] F ⊢ StarConvex 𝕜 (↑f x) (↑f '' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hs : StarConvex 𝕜 x s f : E →ₗ[𝕜] F y : F hy : y ∈ ↑f '' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑f x + b • y ∈ ↑f '' s [PROOFSTEP] obtain ⟨y', hy', rfl⟩ := hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 x s f : E →ₗ[𝕜] F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ a • ↑f x + b • ↑f y' ∈ ↑f '' s [PROOFSTEP] exact ⟨a • x + b • y', hs hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 x s f : E →ₗ[𝕜] F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ ↑f (a • x + b • y') = a • ↑f x + b • ↑f y' [PROOFSTEP] rw [f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s✝ : Set E s : Set F f : E →ₗ[𝕜] F hs : StarConvex 𝕜 (↑f x) s ⊢ StarConvex 𝕜 x (↑f ⁻¹' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s✝ : Set E s : Set F f : E →ₗ[𝕜] F hs : StarConvex 𝕜 (↑f x) s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f ⁻¹' s [PROOFSTEP] rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s✝ : Set E s : Set F f : E →ₗ[𝕜] F hs : StarConvex 𝕜 (↑f x) s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ s [PROOFSTEP] exact hs hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 y t ⊢ StarConvex 𝕜 (x + y) (s + t) [PROOFSTEP] rw [← add_image_prod] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 y t ⊢ StarConvex 𝕜 (x + y) ((fun x => x.fst + x.snd) '' s ×ˢ t) [PROOFSTEP] exact (hs.prod ht).is_linear_image IsLinearMap.isLinearMap_add [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E ⊢ StarConvex 𝕜 (z + x) ((fun x => z + x) '' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z✝ : E s : Set E hs : StarConvex 𝕜 x s z y : E hy : y ∈ (fun x => z + x) '' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • (z + x) + b • y ∈ (fun x => z + x) '' s [PROOFSTEP] obtain ⟨y', hy', rfl⟩ := hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ a • (z + x) + b • (fun x => z + x) y' ∈ (fun x => z + x) '' s [PROOFSTEP] refine' ⟨a • x + b • y', hs hy' ha hb hab, _⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ (fun x => z + x) (a • x + b • y') = a • (z + x) + b • (fun x => z + x) y' [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E ⊢ StarConvex 𝕜 (x + z) ((fun x => x + z) '' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z✝ : E s : Set E hs : StarConvex 𝕜 x s z y : E hy : y ∈ (fun x => x + z) '' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • (x + z) + b • y ∈ (fun x => x + z) '' s [PROOFSTEP] obtain ⟨y', hy', rfl⟩ := hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ a • (x + z) + b • (fun x => x + z) y' ∈ (fun x => x + z) '' s [PROOFSTEP] refine' ⟨a • x + b • y', hs hy' ha hb hab, _⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z✝ : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ (fun x => x + z) (a • x + b • y') = a • (x + z) + b • (fun x => x + z) y' [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 (z + x) s ⊢ StarConvex 𝕜 x ((fun x => z + x) ⁻¹' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hs : StarConvex 𝕜 (z + x) s y : E hy : y ∈ (fun x => z + x) ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s [PROOFSTEP] have h := hs hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ z : E s : Set E hs : StarConvex 𝕜 (z + x) s y : E hy : y ∈ (fun x => z + x) ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h : a • (z + x) + b • (fun x => z + x) y ∈ s ⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s [PROOFSTEP] rwa [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 (x + z) s ⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s) [PROOFSTEP] rw [add_comm] at hs [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E s : Set E hs : StarConvex 𝕜 (z + x) s ⊢ StarConvex 𝕜 x ((fun x => x + z) ⁻¹' s) [PROOFSTEP] simpa only [add_comm] using hs.preimage_add_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedCommSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E s : Set E hs : StarConvex 𝕜 x s z : E c : 𝕜 ⊢ StarConvex 𝕜 (z + c • x) ((fun x => z + c • x) '' s) [PROOFSTEP] have h := (hs.smul c).add_left z [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedCommSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E s : Set E hs : StarConvex 𝕜 x s z : E c : 𝕜 h : StarConvex 𝕜 (z + c • x) ((fun x => z + x) '' (c • s)) ⊢ StarConvex 𝕜 (z + c • x) ((fun x => z + c • x) '' s) [PROOFSTEP] rwa [← image_smul, image_image] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E ⊢ StarConvex 𝕜 0 s ↔ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s [PROOFSTEP] refine' forall_congr' fun x => forall_congr' fun _ => ⟨fun h a ha₀ ha₁ => _, fun h a b ha hb hab => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E x : E x✝ : x ∈ s h : ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • 0 + b • x ∈ s a : 𝕜 ha₀ : 0 ≤ a ha₁ : a ≤ 1 ⊢ a • x ∈ s [PROOFSTEP] simpa only [sub_add_cancel, eq_self_iff_true, forall_true_left, zero_add, smul_zero] using h (sub_nonneg_of_le ha₁) ha₀ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E x : E x✝ : x ∈ s h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • 0 + b • x ∈ s [PROOFSTEP] rw [smul_zero, zero_add] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E x : E x✝ : x ∈ s h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ b • x ∈ s [PROOFSTEP] exact h hb (by rw [← hab]; exact le_add_of_nonneg_left ha) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E x : E x✝ : x ∈ s h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ b ≤ 1 [PROOFSTEP] rw [← hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMulWithZero 𝕜 E s : Set E x : E x✝ : x ∈ s h : ∀ ⦃a : 𝕜⦄, 0 ≤ a → a ≤ 1 → a • x ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ b ≤ a + b [PROOFSTEP] exact le_add_of_nonneg_left ha [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : x + y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ x + t • y ∈ s [PROOFSTEP] have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : x + y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ x + t • y = (1 - t) • x + t • (x + y) [PROOFSTEP] rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : x + y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x + t • y ∈ s [PROOFSTEP] rw [h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : x + y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ (1 - t) • x + t • (x + y) ∈ s [PROOFSTEP] exact hs hy (sub_nonneg_of_le ht₁) ht₀ (sub_add_cancel _ _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 0 s hx : x ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ t • x ∈ s [PROOFSTEP] simpa using hs.add_smul_mem (by simpa using hx) ht₀ ht₁ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 0 s hx : x ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ 0 + x ∈ s [PROOFSTEP] simpa using hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ x + t • (y - x) ∈ s [PROOFSTEP] apply hs.segment_subset hy [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ x + t • (y - x) ∈ [x-[𝕜]y] [PROOFSTEP] rw [segment_eq_image'] [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t✝ : Set E hs : StarConvex 𝕜 x s hy : y ∈ s t : 𝕜 ht₀ : 0 ≤ t ht₁ : t ≤ 1 ⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Icc 0 1 [PROOFSTEP] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set F hs : StarConvex 𝕜 (↑f x) s ⊢ StarConvex 𝕜 x (↑f ⁻¹' s) [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set F hs : StarConvex 𝕜 (↑f x) s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f ⁻¹' s [PROOFSTEP] rw [mem_preimage, Convex.combo_affine_apply hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set F hs : StarConvex 𝕜 (↑f x) s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ s [PROOFSTEP] exact hs hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set E hs : StarConvex 𝕜 x s ⊢ StarConvex 𝕜 (↑f x) (↑f '' s) [PROOFSTEP] rintro y ⟨y', ⟨hy', hy'f⟩⟩ a b ha hb hab [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set E hs : StarConvex 𝕜 x s y : F y' : E hy' : y' ∈ s hy'f : ↑f y' = y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑f x + b • y ∈ ↑f '' s [PROOFSTEP] refine' ⟨a • x + b • y', ⟨hs hy' ha hb hab, _⟩⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y✝ : E s✝ t : Set E f : E →ᵃ[𝕜] F s : Set E hs : StarConvex 𝕜 x s y : F y' : E hy' : y' ∈ s hy'f : ↑f y' = y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ↑f (a • x + b • y') = a • ↑f x + b • y [PROOFSTEP] rw [Convex.combo_affine_apply hab, hy'f] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t : Set E hs : StarConvex 𝕜 x s ⊢ StarConvex 𝕜 (-x) (-s) [PROOFSTEP] rw [← image_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t : Set E hs : StarConvex 𝕜 x s ⊢ StarConvex 𝕜 (-x) (Neg.neg '' s) [PROOFSTEP] exact hs.is_linear_image IsLinearMap.isLinearMap_neg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 y t ⊢ StarConvex 𝕜 (x - y) (s - t) [PROOFSTEP] simp_rw [sub_eq_add_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E s t : Set E hs : StarConvex 𝕜 x s ht : StarConvex 𝕜 y t ⊢ StarConvex 𝕜 (x + -y) (s + -t) [PROOFSTEP] exact hs.add ht.neg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ s [PROOFSTEP] apply h hy [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ 0 ≤ a / (a + b) [PROOFSTEP] positivity [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ 0 ≤ b / (a + b) [PROOFSTEP] positivity [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div] [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ (a + b) / (a + b) = 1 [PROOFSTEP] exact div_self hab.ne' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] have h' := h hy ha hb [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h' : 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s ⊢ a • x + b • y ∈ s [PROOFSTEP] rw [hab, div_one, div_one] at h' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h' : 0 < 1 → a • x + b • y ∈ s ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h' zero_lt_one [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E hs : StarConvex 𝕜 0 s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ x ∈ t • s [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E hs : StarConvex 𝕜 0 s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ t⁻¹ • x ∈ s [PROOFSTEP] exact hs.smul_mem hx (by positivity) (inv_le_one ht) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E hs : StarConvex 𝕜 0 s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ 0 ≤ t⁻¹ [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x ⊢ StarConvex 𝕜 x s [PROOFSTEP] intro y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain hxy | hyx := h _ hy [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ a • x + b • y ∈ s [PROOFSTEP] refine' hs.out hx hy (mem_Icc.2 ⟨_, _⟩) [GOAL] case inl.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ x ≤ a • x + b • y case inl.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ a • x + b • y ≤ y [PROOFSTEP] calc x = a • x + b • x := (Convex.combo_self hab _).symm _ ≤ a • x + b • y := by gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ a • x + b • x ≤ a • x + b • y [PROOFSTEP] gcongr [GOAL] case inl.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ a • x + b • y ≤ y [PROOFSTEP] calc a • x + b • y ≤ a • y + b • y := by gcongr _ = y := Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x ≤ y ⊢ a • x + b • y ≤ a • y + b • y [PROOFSTEP] gcongr [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ a • x + b • y ∈ s [PROOFSTEP] refine' hs.out hy hx (mem_Icc.2 ⟨_, _⟩) [GOAL] case inr.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ y ≤ a • x + b • y case inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ a • x + b • y ≤ x [PROOFSTEP] calc y = a • y + b • y := (Convex.combo_self hab _).symm _ ≤ a • x + b • y := by gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ a • y + b • y ≤ a • x + b • y [PROOFSTEP] gcongr [GOAL] case inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ a • x + b • y ≤ x [PROOFSTEP] calc a • x + b • y ≤ a • x + b • x := by gcongr _ = x := Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x : E s : Set E hs : OrdConnected s hx : x ∈ s h : ∀ (y : E), y ∈ s → x ≤ y ∨ y ≤ x y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hyx : y ≤ x ⊢ a • x + b • y ≤ a • x + b • x [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝ : LinearOrderedField 𝕜 x : 𝕜 s : Set 𝕜 hx : x ∈ s ⊢ StarConvex 𝕜 x s ↔ OrdConnected s [PROOFSTEP] simp_rw [ordConnected_iff_uIcc_subset_left hx, starConvex_iff_segment_subset, segment_eq_uIcc]
{"mathlib_filename": "Mathlib.Analysis.Convex.Star", "llama_tokens": 23614}
[GOAL] V : Type u_1 inst✝² : TopologicalSpace V inst✝¹ : AddCommGroup V inst✝ : Module ℝ V K L : ConvexBody V h : K.carrier = L.carrier ⊢ K = L [PROOFSTEP] cases K [GOAL] case mk V : Type u_1 inst✝² : TopologicalSpace V inst✝¹ : AddCommGroup V inst✝ : Module ℝ V L : ConvexBody V carrier✝ : Set V convex'✝ : Convex ℝ carrier✝ isCompact'✝ : IsCompact carrier✝ nonempty'✝ : Set.Nonempty carrier✝ h : { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ }.carrier = L.carrier ⊢ { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ } = L [PROOFSTEP] cases L [GOAL] case mk.mk V : Type u_1 inst✝² : TopologicalSpace V inst✝¹ : AddCommGroup V inst✝ : Module ℝ V carrier✝¹ : Set V convex'✝¹ : Convex ℝ carrier✝¹ isCompact'✝¹ : IsCompact carrier✝¹ nonempty'✝¹ : Set.Nonempty carrier✝¹ carrier✝ : Set V convex'✝ : Convex ℝ carrier✝ isCompact'✝ : IsCompact carrier✝ nonempty'✝ : Set.Nonempty carrier✝ h : { carrier := carrier✝¹, convex' := convex'✝¹, isCompact' := isCompact'✝¹, nonempty' := nonempty'✝¹ }.carrier = { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ }.carrier ⊢ { carrier := carrier✝¹, convex' := convex'✝¹, isCompact' := isCompact'✝¹, nonempty' := nonempty'✝¹ } = { carrier := carrier✝, convex' := convex'✝, isCompact' := isCompact'✝, nonempty' := nonempty'✝ } [PROOFSTEP] congr [GOAL] V : Type u_1 inst✝¹ : SeminormedAddCommGroup V inst✝ : NormedSpace ℝ V K✝ L✝ K L : ConvexBody V ⊢ EMetric.hausdorffEdist ↑K ↑L ≠ ⊤ [PROOFSTEP] apply_rules [Metric.hausdorffEdist_ne_top_of_nonempty_of_bounded, ConvexBody.nonempty, ConvexBody.bounded] [GOAL] V : Type u_1 inst✝¹ : SeminormedAddCommGroup V inst✝ : NormedSpace ℝ V K L x✝¹ x✝ : ConvexBody V ⊢ (fun x y => ↑{ val := Metric.hausdorffDist ↑x ↑y, property := (_ : 0 ≤ Metric.hausdorffDist ↑x ↑y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] V : Type u_1 inst✝¹ : SeminormedAddCommGroup V inst✝ : NormedSpace ℝ V K L : ConvexBody V ⊢ EMetric.hausdorffEdist ↑K ↑L = edist K L [PROOFSTEP] rw [edist_dist] [GOAL] V : Type u_1 inst✝¹ : SeminormedAddCommGroup V inst✝ : NormedSpace ℝ V K L : ConvexBody V ⊢ EMetric.hausdorffEdist ↑K ↑L = ENNReal.ofReal (dist K L) [PROOFSTEP] exact (ENNReal.ofReal_toReal hausdorffEdist_ne_top).symm
{"mathlib_filename": "Mathlib.Analysis.Convex.Body", "llama_tokens": 1162}
[GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E s t : Set E inst✝ : Subsingleton ι p : ι → E ⊢ ConvexIndependent 𝕜 p [PROOFSTEP] intro s x hx [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E s✝ t : Set E inst✝ : Subsingleton ι p : ι → E s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) ⊢ x ∈ s [PROOFSTEP] have : (convexHull 𝕜 (p '' s)).Nonempty := ⟨p x, hx⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E s✝ t : Set E inst✝ : Subsingleton ι p : ι → E s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) this : Set.Nonempty (↑(convexHull 𝕜) (p '' s)) ⊢ x ∈ s [PROOFSTEP] rw [convexHull_nonempty_iff, Set.nonempty_image_iff] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E s✝ t : Set E inst✝ : Subsingleton ι p : ι → E s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) this : Set.Nonempty s ⊢ x ∈ s [PROOFSTEP] rwa [Subsingleton.mem_iff_nonempty] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p ⊢ Injective p [PROOFSTEP] refine' fun i j hij => hc { j } i _ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p i j : ι hij : p i = p j ⊢ p i ∈ ↑(convexHull 𝕜) (p '' {j}) [PROOFSTEP] rw [hij, Set.image_singleton, convexHull_singleton] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p i j : ι hij : p i = p j ⊢ p j ∈ {p j} [PROOFSTEP] exact Set.mem_singleton _ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E ι' : Type u_4 f : ι' ↪ ι p : ι → E hc : ConvexIndependent 𝕜 p ⊢ ConvexIndependent 𝕜 (p ∘ ↑f) [PROOFSTEP] intro s x hx [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E ι' : Type u_4 f : ι' ↪ ι p : ι → E hc : ConvexIndependent 𝕜 p s : Set ι' x : ι' hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s) ⊢ x ∈ s [PROOFSTEP] rw [← f.injective.mem_set_image] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E ι' : Type u_4 f : ι' ↪ ι p : ι → E hc : ConvexIndependent 𝕜 p s : Set ι' x : ι' hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s) ⊢ ↑f x ∈ ↑f '' s [PROOFSTEP] exact hc _ _ (by rwa [Set.image_image]) [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E ι' : Type u_4 f : ι' ↪ ι p : ι → E hc : ConvexIndependent 𝕜 p s : Set ι' x : ι' hx : (p ∘ ↑f) x ∈ ↑(convexHull 𝕜) (p ∘ ↑f '' s) ⊢ p (↑f x) ∈ ↑(convexHull 𝕜) (p '' (↑f '' s)) [PROOFSTEP] rwa [Set.image_image] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p ⊢ ConvexIndependent 𝕜 Subtype.val [PROOFSTEP] let f : Set.range p → ι := fun x => x.property.choose [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) ⊢ ConvexIndependent 𝕜 Subtype.val [PROOFSTEP] have hf : ∀ x, p (f x) = x := fun x => x.property.choose_spec [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x ⊢ ConvexIndependent 𝕜 Subtype.val [PROOFSTEP] let fe : Set.range p ↪ ι := ⟨f, fun x₁ x₂ he => Subtype.ext (hf x₁ ▸ hf x₂ ▸ he ▸ rfl)⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } ⊢ ConvexIndependent 𝕜 Subtype.val [PROOFSTEP] convert hc.comp_embedding fe [GOAL] case h.e'_7 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } ⊢ Subtype.val = p ∘ ↑fe [PROOFSTEP] ext [GOAL] case h.e'_7.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E hc : ConvexIndependent 𝕜 p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } x✝ : { x // x ∈ Set.range p } ⊢ ↑x✝ = (p ∘ ↑fe) x✝ [PROOFSTEP] rw [Embedding.coeFn_mk, comp_apply, hf] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E p : ι → E ⊢ ConvexIndependent 𝕜 p ↔ ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) [PROOFSTEP] refine' ⟨fun hc i s h => _, fun h s i hi => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E hc : ConvexIndependent 𝕜 p i : ι s : Set ι h : p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) ⊢ False [PROOFSTEP] rw [hc.mem_convexHull_iff] at h [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E hc : ConvexIndependent 𝕜 p i : ι s : Set ι h : i ∈ s \ {i} ⊢ False [PROOFSTEP] exact h.2 (Set.mem_singleton _) [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) s : Set ι i : ι hi : p i ∈ ↑(convexHull 𝕜) (p '' s) ⊢ i ∈ s [PROOFSTEP] by_contra H [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) s : Set ι i : ι hi : p i ∈ ↑(convexHull 𝕜) (p '' s) H : ¬i ∈ s ⊢ False [PROOFSTEP] refine' h i s _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) s : Set ι i : ι hi : p i ∈ ↑(convexHull 𝕜) (p '' s) H : ¬i ∈ s ⊢ p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) [PROOFSTEP] rw [Set.diff_singleton_eq_self H] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t : Set E p : ι → E h : ∀ (i : ι) (s : Set ι), ¬p i ∈ ↑(convexHull 𝕜) (p '' (s \ {i})) s : Set ι i : ι hi : p i ∈ ↑(convexHull 𝕜) (p '' s) H : ¬i ∈ s ⊢ p i ∈ ↑(convexHull 𝕜) (p '' s) [PROOFSTEP] exact hi [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ ConvexIndependent 𝕜 Subtype.val ↔ ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ ConvexIndependent 𝕜 Subtype.val → ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t [PROOFSTEP] rintro hc t h x ⟨hxs, hxt⟩ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hc : ConvexIndependent 𝕜 Subtype.val t : Set E h : t ⊆ s x : E hxs : x ∈ s hxt : x ∈ ↑(convexHull 𝕜) t ⊢ x ∈ t [PROOFSTEP] refine' hc {x | ↑x ∈ t} ⟨x, hxs⟩ _ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hc : ConvexIndependent 𝕜 Subtype.val t : Set E h : t ⊆ s x : E hxs : x ∈ s hxt : x ∈ ↑(convexHull 𝕜) t ⊢ ↑{ val := x, property := hxs } ∈ ↑(convexHull 𝕜) (Subtype.val '' {x | ↑x ∈ t}) [PROOFSTEP] rw [Subtype.coe_image_of_subset h] [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hc : ConvexIndependent 𝕜 Subtype.val t : Set E h : t ⊆ s x : E hxs : x ∈ s hxt : x ∈ ↑(convexHull 𝕜) t ⊢ ↑{ val := x, property := hxs } ∈ ↑(convexHull 𝕜) t [PROOFSTEP] exact hxt [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) → ConvexIndependent 𝕜 Subtype.val [PROOFSTEP] intro hc t x h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hc : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t t : Set { x // x ∈ s } x : { x // x ∈ s } h : ↑x ∈ ↑(convexHull 𝕜) (Subtype.val '' t) ⊢ x ∈ t [PROOFSTEP] rw [← Subtype.coe_injective.mem_set_image] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hc : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t t : Set { x // x ∈ s } x : { x // x ∈ s } h : ↑x ∈ ↑(convexHull 𝕜) (Subtype.val '' t) ⊢ ↑x ∈ (fun a => ↑a) '' t [PROOFSTEP] exact hc (t.image ((↑) : s → E)) (Subtype.coe_image_subset s t) ⟨x.prop, h⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ ConvexIndependent 𝕜 Subtype.val ↔ ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] rw [convexIndependent_set_iff_inter_convexHull_subset] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) ↔ ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ (∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t) → ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) [PROOFSTEP] rintro hs x hxs hx [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E hs : ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t x : E hxs : x ∈ s hx : x ∈ ↑(convexHull 𝕜) (s \ {x}) ⊢ False [PROOFSTEP] exact (hs _ (Set.diff_subset _ _) ⟨hxs, hx⟩).2 (Set.mem_singleton _) [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t s : Set E ⊢ (∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x})) → ∀ (t : Set E), t ⊆ s → s ∩ ↑(convexHull 𝕜) t ⊆ t [PROOFSTEP] rintro hs t ht x ⟨hxs, hxt⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hs : ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) t : Set E ht : t ⊆ s x : E hxs : x ∈ s hxt : x ∈ ↑(convexHull 𝕜) t ⊢ x ∈ t [PROOFSTEP] by_contra h [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ s : Set E hs : ∀ (x : E), x ∈ s → ¬x ∈ ↑(convexHull 𝕜) (s \ {x}) t : Set E ht : t ⊆ s x : E hxs : x ∈ s hxt : x ∈ ↑(convexHull 𝕜) t h : ¬x ∈ t ⊢ False [PROOFSTEP] exact hs _ hxs (convexHull_mono (Set.subset_diff_singleton ht h) hxt) [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E p : ι → E ⊢ ConvexIndependent 𝕜 p ↔ ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s [PROOFSTEP] refine' ⟨fun hc s x hx => hc s x _, fun h s x hx => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E hc : ConvexIndependent 𝕜 p s : Finset ι x : ι hx : p x ∈ ↑(convexHull 𝕜) ↑(image p s) ⊢ p x ∈ ↑(convexHull 𝕜) (p '' ↑s) [PROOFSTEP] rwa [Finset.coe_image] at hx [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) ⊢ x ∈ s [PROOFSTEP] have hp : Injective p := by rintro a b hab rw [← mem_singleton] refine' h { b } a _ rw [hab, image_singleton, coe_singleton, convexHull_singleton] exact Set.mem_singleton _ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) ⊢ Injective p [PROOFSTEP] rintro a b hab [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) a b : ι hab : p a = p b ⊢ a = b [PROOFSTEP] rw [← mem_singleton] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) a b : ι hab : p a = p b ⊢ a ∈ {b} [PROOFSTEP] refine' h { b } a _ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) a b : ι hab : p a = p b ⊢ p a ∈ ↑(convexHull 𝕜) ↑(image p {b}) [PROOFSTEP] rw [hab, image_singleton, coe_singleton, convexHull_singleton] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) a b : ι hab : p a = p b ⊢ p b ∈ {p b} [PROOFSTEP] exact Set.mem_singleton _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ↑(convexHull 𝕜) (p '' s) hp : Injective p ⊢ x ∈ s [PROOFSTEP] rw [convexHull_eq_union_convexHull_finite_subsets] at hx [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ p '' s), ↑(convexHull 𝕜) ↑t hp : Injective p ⊢ x ∈ s [PROOFSTEP] simp_rw [Set.mem_iUnion] at hx [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p hx : ∃ i i_1, p x ∈ ↑(convexHull 𝕜) ↑i ⊢ x ∈ s [PROOFSTEP] obtain ⟨t, ht, hx⟩ := hx [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ x ∈ s [PROOFSTEP] rw [← hp.mem_set_image] [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ p x ∈ p '' s [PROOFSTEP] refine' ht _ [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ p x ∈ ↑t [PROOFSTEP] suffices x ∈ t.preimage p (hp.injOn _) by rwa [mem_preimage, ← mem_coe] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t this : x ∈ preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t)) ⊢ p x ∈ ↑t [PROOFSTEP] rwa [mem_preimage, ← mem_coe] at this [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ x ∈ preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t)) [PROOFSTEP] refine' h _ x _ [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ p x ∈ ↑(convexHull 𝕜) ↑(image p (preimage t p (_ : Set.InjOn p (p ⁻¹' ↑t)))) [PROOFSTEP] rwa [t.image_preimage p (hp.injOn _), filter_true_of_mem] [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ : Set E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ ↑(convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p t : Finset E ht : ↑t ⊆ p '' s hx : p x ∈ ↑(convexHull 𝕜) ↑t ⊢ ∀ (x : E), x ∈ t → x ∈ Set.range p [PROOFSTEP] exact fun y hy => s.image_subset_range p (ht <| mem_coe.2 hy)
{"mathlib_filename": "Mathlib.Analysis.Convex.Independent", "llama_tokens": 10533}
[GOAL] E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x : E h : StarConvex ℝ x s hne : Set.Nonempty s ⊢ ContractibleSpace ↑s [PROOFSTEP] refine' (contractible_iff_id_nullhomotopic s).2 ⟨⟨x, h.mem hne⟩, ⟨⟨⟨fun p => ⟨p.1.1 • x + (1 - p.1.1) • (p.2 : E), _⟩, _⟩, fun x => _, fun x => _⟩⟩⟩ [GOAL] case refine'_1 E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x : E h : StarConvex ℝ x s hne : Set.Nonempty s p : ↑unitInterval × ↑s ⊢ ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd ∈ s [PROOFSTEP] exact h p.2.2 p.1.2.1 (sub_nonneg.2 p.1.2.2) (add_sub_cancel'_right _ _) [GOAL] case refine'_2 E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x : E h : StarConvex ℝ x s hne : Set.Nonempty s ⊢ Continuous fun p => { val := ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x + (1 - ↑p.fst) • ↑p.snd ∈ s) } [PROOFSTEP] exact ((continuous_subtype_val.fst'.smul continuous_const).add ((continuous_const.sub continuous_subtype_val.fst').smul continuous_subtype_val.snd')).subtype_mk _ [GOAL] case refine'_3 E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x✝ : E h : StarConvex ℝ x✝ s hne : Set.Nonempty s x : ↑s ⊢ ContinuousMap.toFun (ContinuousMap.mk fun p => { val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) }) (0, x) = ↑(ContinuousMap.id ↑s) x [PROOFSTEP] ext1 [GOAL] case refine'_3.a E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x✝ : E h : StarConvex ℝ x✝ s hne : Set.Nonempty s x : ↑s ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun p => { val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) }) (0, x)) = ↑(↑(ContinuousMap.id ↑s) x) [PROOFSTEP] simp [GOAL] case refine'_4 E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x✝ : E h : StarConvex ℝ x✝ s hne : Set.Nonempty s x : ↑s ⊢ ContinuousMap.toFun (ContinuousMap.mk fun p => { val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) }) (1, x) = ↑(ContinuousMap.const ↑s { val := x✝, property := (_ : x✝ ∈ s) }) x [PROOFSTEP] ext1 [GOAL] case refine'_4.a E : Type u_1 inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul ℝ E s : Set E x✝ : E h : StarConvex ℝ x✝ s hne : Set.Nonempty s x : ↑s ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun p => { val := ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd, property := (_ : ↑p.fst • x✝ + (1 - ↑p.fst) • ↑p.snd ∈ s) }) (1, x)) = ↑(↑(ContinuousMap.const ↑s { val := x✝, property := (_ : x✝ ∈ s) }) x) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Analysis.Convex.Contractible", "llama_tokens": 1678}
[GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E h : ¬AffineIndependent 𝕜 Subtype.val x : E m : x ∈ ↑(convexHull 𝕜) ↑t ⊢ ∃ y, x ∈ ↑(convexHull 𝕜) ↑(erase t ↑y) [PROOFSTEP] simp only [Finset.convexHull_eq, mem_setOf_eq] at m ⊢ [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E h : ¬AffineIndependent 𝕜 Subtype.val x : E m : ∃ w x_1 x_2, centerMass t w id = x ⊢ ∃ y w x_1 x_2, centerMass (erase t ↑y) w id = x [PROOFSTEP] obtain ⟨f, fpos, fsum, rfl⟩ := m [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E h : ¬AffineIndependent 𝕜 Subtype.val f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] obtain ⟨g, gcombo, gsum, gpos⟩ := exists_nontrivial_relation_sum_zero_of_not_affine_ind h [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E h : ¬AffineIndependent 𝕜 Subtype.val f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ x, x ∈ t ∧ g x ≠ 0 ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] replace gpos := exists_pos_of_sum_zero_of_exists_nonzero g gsum gpos [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E h : ¬AffineIndependent 𝕜 Subtype.val f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] clear h [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] let s := @Finset.filter _ (fun z => 0 < g z) (fun _ => LinearOrder.decidableLT _ _) t [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] obtain ⟨i₀, mem, w⟩ : ∃ i₀ ∈ s, ∀ i ∈ s, f i₀ / g i₀ ≤ f i / g i := by apply s.exists_min_image fun z => f z / g z obtain ⟨x, hx, hgx⟩ : ∃ x ∈ t, 0 < g x := gpos exact ⟨x, mem_filter.mpr ⟨hx, hgx⟩⟩ [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t ⊢ ∃ i₀, i₀ ∈ s ∧ ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i [PROOFSTEP] apply s.exists_min_image fun z => f z / g z [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t ⊢ Finset.Nonempty s [PROOFSTEP] obtain ⟨x, hx, hgx⟩ : ∃ x ∈ t, 0 < g x := gpos [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 s : Finset E := filter (fun z => 0 < g z) t x : E hx : x ∈ t hgx : 0 < g x ⊢ Finset.Nonempty s [PROOFSTEP] exact ⟨x, mem_filter.mpr ⟨hx, hgx⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] have hg : 0 < g i₀ := by rw [mem_filter] at mem exact mem.2 [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i ⊢ 0 < g i₀ [PROOFSTEP] rw [mem_filter] at mem [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ t ∧ 0 < g i₀ w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i ⊢ 0 < g i₀ [PROOFSTEP] exact mem.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] have hi₀ : i₀ ∈ t := filter_subset _ _ mem [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] let k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] have hk : k i₀ = 0 := by field_simp [ne_of_gt hg] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z ⊢ k i₀ = 0 [PROOFSTEP] field_simp [ne_of_gt hg] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] have ksum : ∑ e in t.erase i₀, k e = 1 := by calc ∑ e in t.erase i₀, k e = ∑ e in t, k e := by conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] _ = ∑ e in t, (f e - f i₀ / g i₀ * g e) := rfl _ = 1 := by rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ⊢ ∑ e in erase t i₀, k e = 1 [PROOFSTEP] calc ∑ e in t.erase i₀, k e = ∑ e in t, k e := by conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] _ = ∑ e in t, (f e - f i₀ / g i₀ * g e) := rfl _ = 1 := by rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ⊢ ∑ e in erase t i₀, k e = ∑ e in t, k e [PROOFSTEP] conv_rhs => rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 | ∑ e in t, k e [PROOFSTEP] rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 | ∑ e in t, k e [PROOFSTEP] rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 | ∑ e in t, k e [PROOFSTEP] rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ⊢ ∑ e in t, (f e - f i₀ / g i₀ * g e) = 1 [PROOFSTEP] rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∃ y w x x, centerMass (erase t ↑y) w id = centerMass t f id [PROOFSTEP] refine' ⟨⟨i₀, hi₀⟩, k, _, by convert ksum, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∑ y in erase t ↑{ val := i₀, property := hi₀ }, k y = 1 [PROOFSTEP] convert ksum [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∀ (y : E), y ∈ erase t ↑{ val := i₀, property := hi₀ } → 0 ≤ k y [PROOFSTEP] simp only [and_imp, sub_nonneg, mem_erase, Ne.def, Subtype.coe_mk] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∀ (y : E), ¬y = i₀ → y ∈ t → f i₀ / g i₀ * g y ≤ f y [PROOFSTEP] intro e _ het [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t ⊢ f i₀ / g i₀ * g e ≤ f e [PROOFSTEP] by_cases hes : e ∈ s [GOAL] case pos 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : e ∈ s ⊢ f i₀ / g i₀ * g e ≤ f e [PROOFSTEP] have hge : 0 < g e := by rw [mem_filter] at hes exact hes.2 [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : e ∈ s ⊢ 0 < g e [PROOFSTEP] rw [mem_filter] at hes [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : e ∈ t ∧ 0 < g e ⊢ 0 < g e [PROOFSTEP] exact hes.2 [GOAL] case pos 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : e ∈ s hge : 0 < g e ⊢ f i₀ / g i₀ * g e ≤ f e [PROOFSTEP] rw [← le_div_iff hge] [GOAL] case pos 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : e ∈ s hge : 0 < g e ⊢ f i₀ / g i₀ ≤ f e / g e [PROOFSTEP] exact w _ hes [GOAL] case neg 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : ¬e ∈ s ⊢ f i₀ / g i₀ * g e ≤ f e [PROOFSTEP] calc _ ≤ 0 := by apply mul_nonpos_of_nonneg_of_nonpos · apply div_nonneg (fpos i₀ (mem_of_subset (filter_subset _ t) mem)) (le_of_lt hg) · simpa only [mem_filter, het, true_and_iff, not_lt] using hes _ ≤ f e := fpos e het [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : ¬e ∈ s ⊢ f i₀ / g i₀ * g e ≤ 0 [PROOFSTEP] apply mul_nonpos_of_nonneg_of_nonpos [GOAL] case ha 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : ¬e ∈ s ⊢ 0 ≤ f i₀ / g i₀ [PROOFSTEP] apply div_nonneg (fpos i₀ (mem_of_subset (filter_subset _ t) mem)) (le_of_lt hg) [GOAL] case hb 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 e : E a✝ : ¬e = i₀ het : e ∈ t hes : ¬e ∈ s ⊢ g e ≤ 0 [PROOFSTEP] simpa only [mem_filter, het, true_and_iff, not_lt] using hes [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ centerMass (erase t ↑{ val := i₀, property := hi₀ }) k id = centerMass t f id [PROOFSTEP] rw [Subtype.coe_mk, centerMass_eq_of_sum_1 _ id ksum] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∑ i in erase t i₀, k i • id i = centerMass t f id [PROOFSTEP] calc ∑ e in t.erase i₀, k e • e = ∑ e in t, k e • e := sum_erase _ (by rw [hk, zero_smul]) _ = ∑ e in t, (f e - f i₀ / g i₀ * g e) • e := rfl _ = t.centerMass f id := by simp only [sub_smul, mul_smul, sum_sub_distrib, ← smul_sum, gcombo, smul_zero, sub_zero, centerMass, fsum, inv_one, one_smul, id.def] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ k i₀ • i₀ = 0 [PROOFSTEP] rw [hk, zero_smul] [GOAL] 𝕜 : Type u_1 E : Type u inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : DecidableEq E t : Finset E f : E → 𝕜 fpos : ∀ (y : E), y ∈ t → 0 ≤ f y fsum : ∑ y in t, f y = 1 g : E → 𝕜 gcombo : ∑ e in t, g e • e = 0 gsum : ∑ e in t, g e = 0 gpos : ∃ i, i ∈ t ∧ 0 < g i s : Finset E := filter (fun z => 0 < g z) t i₀ : E mem : i₀ ∈ s w : ∀ (i : E), i ∈ s → f i₀ / g i₀ ≤ f i / g i hg : 0 < g i₀ hi₀ : i₀ ∈ t k : E → 𝕜 := fun z => f z - f i₀ / g i₀ * g z hk : k i₀ = 0 ksum : ∑ e in erase t i₀, k e = 1 ⊢ ∑ e in t, (f e - f i₀ / g i₀ * g e) • e = centerMass t f id [PROOFSTEP] simp only [sub_smul, mul_smul, sum_sub_distrib, ← smul_sum, gcombo, smul_zero, sub_zero, centerMass, fsum, inv_one, one_smul, id.def] [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ Set.Nonempty {t | ↑t ⊆ s ∧ x ∈ ↑(convexHull 𝕜) ↑t} [PROOFSTEP] simpa only [convexHull_eq_union_convexHull_finite_subsets s, exists_prop, mem_iUnion] using hx [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ Finset.Nonempty (minCardFinsetOfMemConvexHull hx) [PROOFSTEP] rw [← Finset.coe_nonempty, ← @convexHull_nonempty_iff 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ Set.Nonempty (↑(convexHull 𝕜) ↑(minCardFinsetOfMemConvexHull hx)) [PROOFSTEP] exact ⟨x, mem_minCardFinsetOfMemConvexHull hx⟩ [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s t : Finset E ht₁ : ↑t ⊆ s ht₂ : x ∈ ↑(convexHull 𝕜) ↑t ⊢ t ∈ {t | ↑t ⊆ s ∧ x ∈ ↑(convexHull 𝕜) ↑t} [PROOFSTEP] exact ⟨ht₁, ht₂⟩ [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ AffineIndependent 𝕜 Subtype.val [PROOFSTEP] let k := (minCardFinsetOfMemConvexHull hx).card - 1 [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 ⊢ AffineIndependent 𝕜 Subtype.val [PROOFSTEP] have hk : (minCardFinsetOfMemConvexHull hx).card = k + 1 := (Nat.succ_pred_eq_of_pos (Finset.card_pos.mpr (minCardFinsetOfMemConvexHull_nonempty hx))).symm [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 ⊢ AffineIndependent 𝕜 Subtype.val [PROOFSTEP] classical by_contra h obtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx) have contra := minCardFinsetOfMemConvexHull_card_le_card hx (Set.Subset.trans (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx)) (minCardFinsetOfMemConvexHull_subseteq hx)) hp rw [← not_lt] at contra apply contra erw [card_erase_of_mem p.2, hk] exact lt_add_one _ [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 ⊢ AffineIndependent 𝕜 Subtype.val [PROOFSTEP] by_contra h [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val ⊢ False [PROOFSTEP] obtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx) [GOAL] case intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val p : ↑↑(minCardFinsetOfMemConvexHull hx) hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p) ⊢ False [PROOFSTEP] have contra := minCardFinsetOfMemConvexHull_card_le_card hx (Set.Subset.trans (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx)) (minCardFinsetOfMemConvexHull_subseteq hx)) hp [GOAL] case intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val p : ↑↑(minCardFinsetOfMemConvexHull hx) hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p) contra : card (minCardFinsetOfMemConvexHull hx) ≤ card (erase (minCardFinsetOfMemConvexHull hx) ↑p) ⊢ False [PROOFSTEP] rw [← not_lt] at contra [GOAL] case intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val p : ↑↑(minCardFinsetOfMemConvexHull hx) hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p) contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx) ⊢ False [PROOFSTEP] apply contra [GOAL] case intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val p : ↑↑(minCardFinsetOfMemConvexHull hx) hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p) contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx) ⊢ card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx) [PROOFSTEP] erw [card_erase_of_mem p.2, hk] [GOAL] case intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s k : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1 hk : card (minCardFinsetOfMemConvexHull hx) = k + 1 h : ¬AffineIndependent 𝕜 Subtype.val p : ↑↑(minCardFinsetOfMemConvexHull hx) hp : x ∈ ↑(convexHull 𝕜) ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p) contra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx) ⊢ k + 1 - 1 < k + 1 [PROOFSTEP] exact lt_add_one _ [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ ↑(convexHull 𝕜) s = ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t [PROOFSTEP] apply Set.Subset.antisymm [GOAL] case h₁ 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ ↑(convexHull 𝕜) s ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t [PROOFSTEP] intro x hx [GOAL] case h₁ 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t [PROOFSTEP] simp only [exists_prop, Set.mem_iUnion] [GOAL] case h₁ 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ ∃ i, ↑i ⊆ s ∧ AffineIndependent 𝕜 Subtype.val ∧ x ∈ ↑(convexHull 𝕜) ↑i [PROOFSTEP] exact ⟨Caratheodory.minCardFinsetOfMemConvexHull hx, Caratheodory.minCardFinsetOfMemConvexHull_subseteq hx, Caratheodory.affineIndependent_minCardFinsetOfMemConvexHull hx, Caratheodory.mem_minCardFinsetOfMemConvexHull hx⟩ [GOAL] case h₂ 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] iterate 3 convert Set.iUnion_subset _; intro [GOAL] case h₂ 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] convert Set.iUnion_subset _ [GOAL] case h₂.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ ∀ (i : Finset E), ⋃ (_ : ↑i ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] intro [GOAL] case h₂.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E i✝ : Finset E ⊢ ⋃ (_ : ↑i✝ ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝ ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] convert Set.iUnion_subset _ [GOAL] case h₂.convert_5.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E i✝ : Finset E ⊢ ↑i✝ ⊆ s → ⋃ (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝ ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] intro [GOAL] case h₂.convert_5.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E i✝¹ : Finset E i✝ : ↑i✝¹ ⊆ s ⊢ ⋃ (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑i✝¹ ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] convert Set.iUnion_subset _ [GOAL] case h₂.convert_5.convert_5.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E i✝¹ : Finset E i✝ : ↑i✝¹ ⊆ s ⊢ AffineIndependent 𝕜 Subtype.val → ↑(convexHull 𝕜) ↑i✝¹ ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] intro [GOAL] case h₂.convert_5.convert_5.convert_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E i✝² : Finset E i✝¹ : ↑i✝² ⊆ s i✝ : AffineIndependent 𝕜 Subtype.val ⊢ ↑(convexHull 𝕜) ↑i✝² ⊆ ↑(convexHull 𝕜) s [PROOFSTEP] exact convexHull_mono ‹_› [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ↑(convexHull 𝕜) s ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] rw [convexHull_eq_union] at hx [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : x ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s) (_ : AffineIndependent 𝕜 Subtype.val), ↑(convexHull 𝕜) ↑t ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] simp only [exists_prop, Set.mem_iUnion] at hx [GOAL] 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E hx : ∃ i, ↑i ⊆ s ∧ AffineIndependent 𝕜 Subtype.val ∧ x ∈ ↑(convexHull 𝕜) ↑i ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] obtain ⟨t, ht₁, ht₂, ht₃⟩ := hx [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val ht₃ : x ∈ ↑(convexHull 𝕜) ↑t ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] simp only [t.convexHull_eq, exists_prop, Set.mem_setOf_eq] at ht₃ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val ht₃ : ∃ w, (∀ (y : E), y ∈ t → 0 ≤ w y) ∧ ∑ y in t, w y = 1 ∧ centerMass t w id = x ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] obtain ⟨w, hw₁, hw₂, hw₃⟩ := ht₃ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] let t' := t.filter fun i => w i ≠ 0 [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∃ ι x_1 z w x_2 x_3 x_4, ∑ i : ι, w i = 1 ∧ ∑ i : ι, w i • z i = x [PROOFSTEP] refine' ⟨t', t'.fintypeCoeSort, ((↑) : t' → E), w ∘ ((↑) : t' → E), _, _, _, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ Set.range Subtype.val ⊆ s [PROOFSTEP] rw [Subtype.range_coe_subtype] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ {x | x ∈ t'} ⊆ s [PROOFSTEP] exact Subset.trans (Finset.filter_subset _ t) ht₁ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ AffineIndependent 𝕜 Subtype.val [PROOFSTEP] exact ht₂.comp_embedding ⟨_, inclusion_injective (Finset.filter_subset (fun i => w i ≠ 0) t)⟩ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∀ (i : { x // x ∈ t' }), 0 < (w ∘ Subtype.val) i [PROOFSTEP] exact fun i => (hw₁ _ (Finset.mem_filter.mp i.2).1).lt_of_ne (Finset.mem_filter.mp i.property).2.symm [GOAL] case intro.intro.intro.intro.intro.intro.refine'_4 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ i : { x // x ∈ t' }, (w ∘ Subtype.val) i = 1 [PROOFSTEP] erw [Finset.sum_attach, Finset.sum_filter_ne_zero, hw₂] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ i : { x // x ∈ t' }, (w ∘ Subtype.val) i • ↑i = x [PROOFSTEP] change (∑ i : t' in t'.attach, (fun e => w e • e) ↑i) = x [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ i in attach t', (fun e => w e • e) ↑i = x [PROOFSTEP] erw [Finset.sum_attach (f := fun e => w e • e), Finset.sum_filter_of_ne] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ x in t, w x • x = x [PROOFSTEP] rw [t.centerMass_eq_of_sum_1 id hw₂] at hw₃ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : ∑ i in t, w i • id i = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ x in t, w x • x = x [PROOFSTEP] exact hw₃ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∀ (x : E), x ∈ t → w x • x ≠ 0 → w x ≠ 0 [PROOFSTEP] intro e _ hwe contra [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t e : E a✝ : e ∈ t hwe : w e • e ≠ 0 contra : w e = 0 ⊢ False [PROOFSTEP] apply hwe [GOAL] case intro.intro.intro.intro.intro.intro.refine'_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ (y : E), y ∈ t → 0 ≤ w y hw₂ : ∑ y in t, w y = 1 hw₃ : centerMass t w id = x t' : Finset E := filter (fun i => w i ≠ 0) t e : E a✝ : e ∈ t hwe : w e • e ≠ 0 contra : w e = 0 ⊢ w e • e = 0 [PROOFSTEP] rw [contra, zero_smul]
{"mathlib_filename": "Mathlib.Analysis.Convex.Caratheodory", "llama_tokens": 23345}
[GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s ⊢ Set.Nonempty (extremePoints ℝ s) [PROOFSTEP] let S : Set (Set E) := {t | t.Nonempty ∧ IsClosed t ∧ IsExtreme ℝ s t} [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} ⊢ Set.Nonempty (extremePoints ℝ s) [PROOFSTEP] rsuffices ⟨t, ⟨⟨x, hxt⟩, htclos, hst⟩, hBmin⟩ : ∃ t ∈ S, ∀ u ∈ S, u ⊆ t → u = t [GOAL] case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t ⊢ Set.Nonempty (extremePoints ℝ s) [PROOFSTEP] refine' ⟨x, mem_extremePoints_iff_extreme_singleton.2 _⟩ [GOAL] case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t ⊢ IsExtreme ℝ s {x} [PROOFSTEP] rwa [← eq_singleton_iff_unique_mem.2 ⟨hxt, fun y hyB => ?_⟩] [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyB : y ∈ t ⊢ y = x [PROOFSTEP] by_contra hyx [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyB : y ∈ t hyx : ¬y = x ⊢ False [PROOFSTEP] obtain ⟨l, hl⟩ := geometric_hahn_banach_point_point hyx [GOAL] case intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyB : y ∈ t hyx : ¬y = x l : E →L[ℝ] ℝ hl : ↑l y < ↑l x ⊢ False [PROOFSTEP] obtain ⟨z, hzt, hz⟩ := (isCompact_of_isClosed_subset hscomp htclos hst.1).exists_forall_ge ⟨x, hxt⟩ l.continuous.continuousOn [GOAL] case intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyB : y ∈ t hyx : ¬y = x l : E →L[ℝ] ℝ hl : ↑l y < ↑l x z : E hzt : z ∈ t hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z ⊢ False [PROOFSTEP] have h : IsExposed ℝ t ({z ∈ t | ∀ w ∈ t, l w ≤ l z}) := fun _ => ⟨l, rfl⟩ [GOAL] case intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyB : y ∈ t hyx : ¬y = x l : E →L[ℝ] ℝ hl : ↑l y < ↑l x z : E hzt : z ∈ t hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z h : IsExposed ℝ t {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z} ⊢ False [PROOFSTEP] rw [← hBmin ({z ∈ t | ∀ w ∈ t, l w ≤ l z}) ⟨⟨z, hzt, hz⟩, h.isClosed htclos, hst.trans h.isExtreme⟩ (t.sep_subset _)] at hyB [GOAL] case intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} t : Set E hBmin : ∀ (u : Set E), u ∈ S → u ⊆ t → u = t x : E hxt : x ∈ t htclos : IsClosed t hst : IsExtreme ℝ s t y : E hyx : ¬y = x l : E →L[ℝ] ℝ hyB : y ∈ {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z} hl : ↑l y < ↑l x z : E hzt : z ∈ t hz : ∀ (y : E), y ∈ t → ↑l y ≤ ↑l z h : IsExposed ℝ t {z | z ∈ t ∧ ∀ (w : E), w ∈ t → ↑l w ≤ ↑l z} ⊢ False [PROOFSTEP] exact hl.not_le (hyB.2 x hxt) [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} ⊢ ∃ t, t ∈ S ∧ ∀ (u : Set E), u ∈ S → u ⊆ t → u = t [PROOFSTEP] refine' zorn_superset _ fun F hFS hF => _ [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F ⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ F → lb ⊆ s [PROOFSTEP] obtain rfl | hFnemp := F.eq_empty_or_nonempty [GOAL] case inl E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} hFS : ∅ ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) ∅ ⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ ∅ → lb ⊆ s [PROOFSTEP] exact ⟨s, ⟨hsnemp, hscomp.isClosed, IsExtreme.rfl⟩, fun _ => False.elim⟩ [GOAL] case inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F ⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set E), s ∈ F → lb ⊆ s [PROOFSTEP] refine' ⟨⋂₀ F, ⟨_, isClosed_sInter fun t ht => (hFS ht).2.1, isExtreme_sInter hFnemp fun t ht => (hFS ht).2.2⟩, fun t ht => sInter_subset_of_mem ht⟩ [GOAL] case inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F ⊢ Set.Nonempty (⋂₀ F) [PROOFSTEP] haveI : Nonempty (↥F) := hFnemp.to_subtype [GOAL] case inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F this : Nonempty ↑F ⊢ Set.Nonempty (⋂₀ F) [PROOFSTEP] rw [sInter_eq_iInter] [GOAL] case inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F this : Nonempty ↑F ⊢ Set.Nonempty (⋂ (i : ↑F), ↑i) [PROOFSTEP] refine' IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed _ (fun t u => _) (fun t => (hFS t.mem).1) (fun t => isCompact_of_isClosed_subset hscomp (hFS t.mem).2.1 (hFS t.mem).2.2.1) fun t => (hFS t.mem).2.1 [GOAL] case inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F this : Nonempty ↑F t u : ↑F ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z [PROOFSTEP] obtain htu | hut := hF.total t.mem u.mem [GOAL] case inr.inl E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F this : Nonempty ↑F t u : ↑F htu : ↑t ⊆ ↑u ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z case inr.inr E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hsnemp : Set.Nonempty s S : Set (Set E) := {t | Set.Nonempty t ∧ IsClosed t ∧ IsExtreme ℝ s t} F : Set (Set E) hFS : F ⊆ S hF : IsChain (fun x x_1 => x ⊆ x_1) F hFnemp : Set.Nonempty F this : Nonempty ↑F t u : ↑F hut : ↑u ⊆ ↑t ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ↑t ↑z ∧ (fun x x_1 => x ⊇ x_1) ↑u ↑z [PROOFSTEP] exacts [⟨t, Subset.rfl, htu⟩, ⟨u, hut, Subset.rfl⟩] [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s ⊢ closure (↑(convexHull ℝ) (extremePoints ℝ s)) = s [PROOFSTEP] apply (closure_minimal (convexHull_min extremePoints_subset hAconv) hscomp.isClosed).antisymm [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s ⊢ s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) [PROOFSTEP] by_contra hs [GOAL] E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) ⊢ False [PROOFSTEP] obtain ⟨x, hxA, hxt⟩ := not_subset.1 hs [GOAL] case intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) x : E hxA : x ∈ s hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) ⊢ False [PROOFSTEP] obtain ⟨l, r, hlr, hrx⟩ := geometric_hahn_banach_closed_point (convex_convexHull _ _).closure isClosed_closure hxt [GOAL] case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) x : E hxA : x ∈ s hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) l : E →L[ℝ] ℝ r : ℝ hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r hrx : r < ↑l x ⊢ False [PROOFSTEP] have h : IsExposed ℝ s ({y ∈ s | ∀ z ∈ s, l z ≤ l y}) := fun _ => ⟨l, rfl⟩ [GOAL] case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) x : E hxA : x ∈ s hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) l : E →L[ℝ] ℝ r : ℝ hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r hrx : r < ↑l x h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y} ⊢ False [PROOFSTEP] obtain ⟨z, hzA, hz⟩ := hscomp.exists_forall_ge ⟨x, hxA⟩ l.continuous.continuousOn [GOAL] case intro.intro.intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) x : E hxA : x ∈ s hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) l : E →L[ℝ] ℝ r : ℝ hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r hrx : r < ↑l x h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y} z : E hzA : z ∈ s hz : ∀ (y : E), y ∈ s → ↑l y ≤ ↑l z ⊢ False [PROOFSTEP] obtain ⟨y, hy⟩ := (h.isCompact hscomp).has_extreme_point ⟨z, hzA, hz⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E inst✝⁴ : TopologicalSpace E inst✝³ : T2Space E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E s : Set E hscomp : IsCompact s hAconv : Convex ℝ s hs : ¬s ⊆ closure (↑(convexHull ℝ) (extremePoints ℝ s)) x : E hxA : x ∈ s hxt : ¬x ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) l : E →L[ℝ] ℝ r : ℝ hlr : ∀ (a : E), a ∈ closure (↑(convexHull ℝ) (extremePoints ℝ s)) → ↑l a < r hrx : r < ↑l x h : IsExposed ℝ s {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y} z : E hzA : z ∈ s hz : ∀ (y : E), y ∈ s → ↑l y ≤ ↑l z y : E hy : y ∈ extremePoints ℝ {y | y ∈ s ∧ ∀ (z : E), z ∈ s → ↑l z ≤ ↑l y} ⊢ False [PROOFSTEP] linarith [hlr _ (subset_closure <| subset_convexHull _ _ <| h.isExtreme.extremePoints_subset_extremePoints hy), hy.1.2 x hxA]
{"mathlib_filename": "Mathlib.Analysis.Convex.KreinMilman", "llama_tokens": 8046}
[GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ⊢ ∫ (x : α), f x ∂μ ∈ s [PROOFSTEP] borelize E [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E ⊢ ∫ (x : α), f x ∂μ ∈ s [PROOFSTEP] rcases hfi.aestronglyMeasurable with ⟨g, hgm, hfg⟩ [GOAL] case intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g ⊢ ∫ (x : α), f x ∂μ ∈ s [PROOFSTEP] haveI : SeparableSpace (range g ∩ s : Set E) := (hgm.isSeparable_range.mono (inter_subset_left _ _)).separableSpace [GOAL] case intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) ⊢ ∫ (x : α), f x ∂μ ∈ s [PROOFSTEP] obtain ⟨y₀, h₀⟩ : (range g ∩ s).Nonempty := by rcases(hf.and hfg).exists with ⟨x₀, h₀⟩ exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) ⊢ Set.Nonempty (range g ∩ s) [PROOFSTEP] rcases(hf.and hfg).exists with ⟨x₀, h₀⟩ [GOAL] case intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) x₀ : α h₀ : f x₀ ∈ s ∧ f x₀ = g x₀ ⊢ Set.Nonempty (range g ∩ s) [PROOFSTEP] exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) x₀ : α h₀ : f x₀ ∈ s ∧ f x₀ = g x₀ ⊢ f x₀ ∈ range g [PROOFSTEP] simp only [h₀.2, mem_range_self] [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s ⊢ ∫ (x : α), f x ∂μ ∈ s [PROOFSTEP] rw [integral_congr_ae hfg] [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s ⊢ ∫ (a : α), g a ∂μ ∈ s [PROOFSTEP] rw [integrable_congr hfg] at hfi [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s ⊢ ∫ (a : α), g a ∂μ ∈ s [PROOFSTEP] have hg : ∀ᵐ x ∂μ, g x ∈ closure (range g ∩ s) := by filter_upwards [hfg.rw (fun _ y => y ∈ s) hf] with x hx apply subset_closure exact ⟨mem_range_self _, hx⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s ⊢ ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) [PROOFSTEP] filter_upwards [hfg.rw (fun _ y => y ∈ s) hf] with x hx [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s x : α hx : g x ∈ s ⊢ g x ∈ closure (range g ∩ s) [PROOFSTEP] apply subset_closure [GOAL] case h.a α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s x : α hx : g x ∈ s ⊢ g x ∈ range g ∩ s [PROOFSTEP] exact ⟨mem_range_self _, hx⟩ [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) ⊢ ∫ (a : α), g a ∂μ ∈ s [PROOFSTEP] set G : ℕ → SimpleFunc α E := SimpleFunc.approxOn _ hgm.measurable (range g ∩ s) y₀ h₀ [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ ⊢ ∫ (a : α), g a ∂μ ∈ s [PROOFSTEP] have : Tendsto (fun n => (G n).integral μ) atTop (𝓝 <| ∫ x, g x ∂μ) := tendsto_integral_approxOn_of_measurable hfi _ hg _ (integrable_const _) [GOAL] case intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) ⊢ ∫ (a : α), g a ∂μ ∈ s [PROOFSTEP] refine' hsc.mem_of_tendsto this (eventually_of_forall fun n => hs.sum_mem _ _ _) [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ ⊢ ∀ (i : E), i ∈ SimpleFunc.range (G n) → 0 ≤ ENNReal.toReal (↑↑μ (↑(G n) ⁻¹' {i})) [PROOFSTEP] exact fun _ _ => ENNReal.toReal_nonneg [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ ⊢ ∑ i in SimpleFunc.range (G n), ENNReal.toReal (↑↑μ (↑(G n) ⁻¹' {i})) = 1 [PROOFSTEP] rw [← ENNReal.toReal_sum, (G n).sum_range_measure_preimage_singleton, measure_univ, ENNReal.one_toReal] [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ ⊢ ∀ (a : E), a ∈ SimpleFunc.range (G n) → ↑↑μ (↑(G n) ⁻¹' {a}) ≠ ⊤ [PROOFSTEP] exact fun _ _ => measure_ne_top _ _ [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ ⊢ ∀ (i : E), i ∈ SimpleFunc.range (G n) → ↑↑(ContinuousLinearMap.id ℝ E) i ∈ s [PROOFSTEP] simp only [SimpleFunc.mem_range, forall_range_iff] [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ ⊢ ∀ (i : α), ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) i) ∈ s [PROOFSTEP] intro x [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ x : α ⊢ ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) x) ∈ s [PROOFSTEP] apply inter_subset_right (range g) [GOAL] case intro.intro.intro.refine'_3.a α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g✝ : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hs : Convex ℝ s hsc : IsClosed s hf : ∀ᵐ (x : α) ∂μ, f x ∈ s this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : α → E hfi : Integrable g hgm : StronglyMeasurable g hfg : f =ᶠ[ae μ] g this✝ : SeparableSpace ↑(range g ∩ s) y₀ : E h₀ : y₀ ∈ range g ∩ s hg : ∀ᵐ (x : α) ∂μ, g x ∈ closure (range g ∩ s) G : ℕ → SimpleFunc α E := SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ this : Tendsto (fun n => SimpleFunc.integral μ (G n)) atTop (𝓝 (∫ (x : α), g x ∂μ)) n : ℕ x : α ⊢ ↑↑(ContinuousLinearMap.id ℝ E) (↑(SimpleFunc.approxOn g (_ : Measurable g) (range g ∩ s) y₀ h₀ n) x) ∈ range g ∩ s [PROOFSTEP] exact SimpleFunc.approxOn_mem hgm.measurable h₀ _ _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : NeZero μ hs : Convex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ⊢ ⨍ (x : α), f x ∂μ ∈ s [PROOFSTEP] refine' hs.integral_mem hsc (ae_mono' _ hfs) hfi.to_average [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : NeZero μ hs : Convex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ⊢ (↑↑μ univ)⁻¹ • μ ≪ μ [PROOFSTEP] exact AbsolutelyContinuous.smul (refl _) _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : NeZero μ hg : ConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd} [PROOFSTEP] have ht_mem : ∀ᵐ x ∂μ, (f x, g (f x)) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := hfs.mono fun x hx => ⟨hx, le_rfl⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : NeZero μ hg : ConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ht_mem : ∀ᵐ (x : α) ∂μ, (f x, g (f x)) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd} ⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd} [PROOFSTEP] exact average_pair hfi hgi ▸ hg.convex_epigraph.average_mem (hsc.epigraph hgc) ht_mem (hfi.prod_mk hgi) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : NeZero μ hg : ConcaveOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ (⨍ (x : α), f x ∂μ, ⨍ (x : α), g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ p.snd ≤ g p.fst} [PROOFSTEP] simpa only [mem_setOf_eq, Pi.neg_apply, average_neg, neg_le_neg_iff] using hg.neg.average_mem_epigraph hgc.neg hsc hfs hfi hgi.neg [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ hg : ConcaveOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s h0 : ↑↑μ t ≠ 0 ht : ↑↑μ t ≠ ⊤ hfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s hfi : IntegrableOn f t hgi : IntegrableOn (g ∘ f) t ⊢ (⨍ (x : α) in t, f x ∂μ, ⨍ (x : α) in t, g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ p.snd ≤ g p.fst} [PROOFSTEP] simpa only [mem_setOf_eq, Pi.neg_apply, average_neg, neg_le_neg_iff] using hg.neg.set_average_mem_epigraph hgc.neg hsc h0 ht hfs hfi hgi.neg [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hg : ConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ g (∫ (x : α), f x ∂μ) ≤ ∫ (x : α), g (f x) ∂μ [PROOFSTEP] simpa only [average_eq_integral] using hg.map_average_le hgc hsc hfs hfi hgi [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsProbabilityMeasure μ hg : ConcaveOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ ∫ (x : α), g (f x) ∂μ ≤ g (∫ (x : α), f x ∂μ) [PROOFSTEP] simpa only [average_eq_integral] using hg.le_map_average hgc hsc hfs hfi hgi [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ [PROOFSTEP] refine' or_iff_not_imp_right.mpr fun H => _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ¬∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) [PROOFSTEP] push_neg at H [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) [PROOFSTEP] refine' hfi.ae_eq_of_forall_set_integral_eq _ _ (integrable_const _) fun t ht ht' => _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t ht' : ↑↑μ t < ⊤ ⊢ ∫ (x : α) in t, f x ∂μ = ∫ (x : α) in t, const α (⨍ (x : α), f x ∂μ) x ∂μ [PROOFSTEP] clear ht' [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t ⊢ ∫ (x : α) in t, f x ∂μ = ∫ (x : α) in t, const α (⨍ (x : α), f x ∂μ) x ∂μ [PROOFSTEP] simp only [const_apply, set_integral_const] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] by_cases h₀ : μ t = 0 [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ↑↑μ t = 0 ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] rw [restrict_eq_zero.2 h₀, integral_zero_measure, h₀, ENNReal.zero_toReal, zero_smul] [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] by_cases h₀' : μ tᶜ = 0 [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 h₀' : ↑↑μ tᶜ = 0 ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] rw [← ae_eq_univ] at h₀' [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 h₀' : t =ᶠ[ae μ] univ ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] rw [restrict_congr_set h₀', restrict_univ, measure_congr h₀', measure_smul_average] [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 h₀' : ¬↑↑μ tᶜ = 0 ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] have := average_mem_openSegment_compl_self ht.nullMeasurableSet h₀ h₀' hfi [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 h₀' : ¬↑↑μ tᶜ = 0 this : ⨍ (x : α), f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in t, f x ∂μ) (⨍ (x : α) in tᶜ, f x ∂μ) ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] rw [← H t ht h₀ h₀', openSegment_same, mem_singleton_iff] at this [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hfi : Integrable f H : ∀ (t : Set α), MeasurableSet t → ↑↑μ t ≠ 0 → ↑↑μ tᶜ ≠ 0 → ⨍ (x : α) in t, f x ∂μ = ⨍ (x : α) in tᶜ, f x ∂μ t : Set α ht : MeasurableSet t h₀ : ¬↑↑μ t = 0 h₀' : ¬↑↑μ tᶜ = 0 this : ⨍ (x : α), f x ∂μ = ⨍ (x : α) in t, f x ∂μ ⊢ ∫ (x : α) in t, f x ∂μ = ENNReal.toReal (↑↑μ t) • ⨍ (x : α), f x ∂μ [PROOFSTEP] rw [this, measure_smul_setAverage _ (measure_ne_top μ _)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ t ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in t, f x ∂μ ∈ interior s ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] rw [← measure_toMeasurable] at h0 [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ (toMeasurable μ t) ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in t, f x ∂μ ∈ interior s ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] rw [← restrict_toMeasurable (measure_ne_top μ t)] at ht [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ (toMeasurable μ t) ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] by_cases h0' : μ (toMeasurable μ t)ᶜ = 0 [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ (toMeasurable μ t) ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s h0' : ↑↑μ (toMeasurable μ t)ᶜ = 0 ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] rw [← ae_eq_univ] at h0' [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ (toMeasurable μ t) ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s h0' : toMeasurable μ t =ᶠ[ae μ] univ ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] rwa [restrict_congr_set h0', restrict_univ] at ht [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : Convex ℝ s h0 : ↑↑μ (toMeasurable μ t) ≠ 0 hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ht : ⨍ (x : α) in toMeasurable μ t, f x ∂μ ∈ interior s h0' : ¬↑↑μ (toMeasurable μ t)ᶜ = 0 ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] exact hs.openSegment_interior_closure_subset_interior ht (hs.set_average_mem_closure h0' (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn) (average_mem_openSegment_compl_self (measurableSet_toMeasurable μ t).nullMeasurableSet h0 h0' hfi) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : StrictConvex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] have : ∀ {t}, μ t ≠ 0 → (⨍ x in t, f x ∂μ) ∈ s := fun ht => hs.convex.set_average_mem hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : StrictConvex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] refine' (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : StrictConvex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ⊢ (∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ) → ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] rintro ⟨t, hm, h₀, h₀', hne⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hs : StrictConvex ℝ s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ ⊢ ⨍ (x : α), f x ∂μ ∈ interior s [PROOFSTEP] exact hs.openSegment_subset (this h₀) (this h₀') hne (average_mem_openSegment_compl_self hm.nullMeasurableSet h₀ h₀' hfi) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] have : ∀ {t}, μ t ≠ 0 → (⨍ x in t, f x ∂μ) ∈ s ∧ g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ := fun ht => hg.convexOn.set_average_mem_epigraph hgc hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrableOn hgi.integrableOn [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] refine' (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ ⊢ (∃ t, MeasurableSet t ∧ ↑↑μ t ≠ 0 ∧ ↑↑μ tᶜ ≠ 0 ∧ ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ) → g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] rintro ⟨t, hm, h₀, h₀', hne⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] rcases average_mem_openSegment_compl_self hm.nullMeasurableSet h₀ h₀' (hfi.prod_mk hgi) with ⟨a, b, ha, hb, hab, h_avg⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 h_avg : a • ⨍ (x : α) in t, (f x, (g ∘ f) x) ∂μ + b • ⨍ (x : α) in tᶜ, (f x, (g ∘ f) x) ∂μ = ⨍ (x : α), (f x, (g ∘ f) x) ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] rw [average_pair hfi hgi, average_pair hfi.integrableOn hgi.integrableOn, average_pair hfi.integrableOn hgi.integrableOn, Prod.smul_mk, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff] at h_avg [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 h_avg : a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧ a • ⨍ (x : α) in t, (g ∘ f) x ∂μ + b • ⨍ (x : α) in tᶜ, (g ∘ f) x ∂μ = ⨍ (x : α), (g ∘ f) x ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] simp only [Function.comp] at h_avg [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 h_avg : a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧ a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ = ⨍ (x : α), g (f x) ∂μ ⊢ g (⨍ (x : α), f x ∂μ) < ⨍ (x : α), g (f x) ∂μ [PROOFSTEP] rw [← h_avg.1, ← h_avg.2] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t✝ : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConvexOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) this : ∀ {t : Set α}, ↑↑μ t ≠ 0 → ⨍ (x : α) in t, f x ∂μ ∈ s ∧ g (⨍ (x : α) in t, f x ∂μ) ≤ ⨍ (x : α) in t, g (f x) ∂μ t : Set α hm : MeasurableSet t h₀ : ↑↑μ t ≠ 0 h₀' : ↑↑μ tᶜ ≠ 0 hne : ⨍ (x : α) in t, f x ∂μ ≠ ⨍ (x : α) in tᶜ, f x ∂μ a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 h_avg : a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ = ⨍ (x : α), f x ∂μ ∧ a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ = ⨍ (x : α), g (f x) ∂μ ⊢ g (a • ⨍ (x : α) in t, f x ∂μ + b • ⨍ (x : α) in tᶜ, f x ∂μ) < a • ⨍ (x : α) in t, g (f x) ∂μ + b • ⨍ (x : α) in tᶜ, g (f x) ∂μ [PROOFSTEP] calc g ((a • ⨍ x in t, f x ∂μ) + b • ⨍ x in tᶜ, f x ∂μ) < a * g (⨍ x in t, f x ∂μ) + b * g (⨍ x in tᶜ, f x ∂μ) := hg.2 (this h₀).1 (this h₀').1 hne ha hb hab _ ≤ (a * ⨍ x in t, g (f x) ∂μ) + b * ⨍ x in tᶜ, g (f x) ∂μ := add_le_add (mul_le_mul_of_nonneg_left (this h₀).2 ha.le) (mul_le_mul_of_nonneg_left (this h₀').2 hb.le) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : IsFiniteMeasure μ hg : StrictConcaveOn ℝ s g hgc : ContinuousOn g s hsc : IsClosed s hfs : ∀ᵐ (x : α) ∂μ, f x ∈ s hfi : Integrable f hgi : Integrable (g ∘ f) ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ⨍ (x : α), g (f x) ∂μ < g (⨍ (x : α), f x ∂μ) [PROOFSTEP] simpa only [Pi.neg_apply, average_neg, neg_lt_neg_iff] using hg.neg.ae_eq_const_or_map_average_lt hgc.neg hsc hfs hfi hgi.neg [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] cases' le_or_lt C 0 with hC0 hC0 [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : C ≤ 0 ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] have : f =ᵐ[μ] 0 := h_le.mono fun x hx => norm_le_zero_iff.1 (hx.trans hC0) [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : C ≤ 0 this : f =ᶠ[ae μ] 0 ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] simp only [average_congr this, Pi.zero_apply, average_zero] [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : C ≤ 0 this : f =ᶠ[ae μ] 0 ⊢ f =ᶠ[ae μ] const α 0 ∨ ‖0‖ < C [PROOFSTEP] exact Or.inl this [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] by_cases hfi : Integrable f μ [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : ¬Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] swap [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : ¬Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] simp [average_eq, integral_undef hfi, hC0, ENNReal.toReal_pos_iff] [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] cases' (le_top : μ univ ≤ ∞).eq_or_lt with hμt hμt [GOAL] case pos.inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f hμt : ↑↑μ univ = ⊤ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] simp [average_eq, hμt, hC0] [GOAL] case pos.inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f hμt : ↑↑μ univ < ⊤ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] haveI : IsFiniteMeasure μ := ⟨hμt⟩ [GOAL] case pos.inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f hμt : ↑↑μ univ < ⊤ this : IsFiniteMeasure μ ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] replace h_le : ∀ᵐ x ∂μ, f x ∈ closedBall (0 : E) C [GOAL] case h_le α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C hC0 : 0 < C hfi : Integrable f hμt : ↑↑μ univ < ⊤ this : IsFiniteMeasure μ ⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C [PROOFSTEP] simpa only [mem_closedBall_zero_iff] [GOAL] case pos.inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E hC0 : 0 < C hfi : Integrable f hμt : ↑↑μ univ < ⊤ this : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C [PROOFSTEP] simpa only [interior_closedBall _ hC0.ne', mem_ball_zero_iff] using (strictConvex_closedBall ℝ (0 : E) C).ae_eq_const_or_average_mem_interior isClosed_ball h_le hfi [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C [PROOFSTEP] cases' eq_or_ne μ 0 with h₀ h₀ [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ = 0 ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C [PROOFSTEP] left [GOAL] case inl.h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ = 0 ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) [PROOFSTEP] simp [h₀, EventuallyEq] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ ≠ 0 ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C [PROOFSTEP] have hμ : 0 < (μ univ).toReal := by simp [ENNReal.toReal_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ ≠ 0 ⊢ 0 < ENNReal.toReal (↑↑μ univ) [PROOFSTEP] simp [ENNReal.toReal_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ ≠ 0 hμ : 0 < ENNReal.toReal (↑↑μ univ) ⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C [PROOFSTEP] refine' (ae_eq_const_or_norm_average_lt_of_norm_le_const h_le).imp_right fun H => _ [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝¹ : StrictConvexSpace ℝ E inst✝ : IsFiniteMeasure μ h_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C h₀ : μ ≠ 0 hμ : 0 < ENNReal.toReal (↑↑μ univ) H : ‖⨍ (x : α), f x ∂μ‖ < C ⊢ ‖∫ (x : α), f x ∂μ‖ < ENNReal.toReal (↑↑μ univ) * C [PROOFSTEP] rwa [average_eq, norm_smul, norm_inv, Real.norm_eq_abs, abs_of_pos hμ, ← div_eq_inv_mul, div_lt_iff' hμ] at H [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E ht : ↑↑μ t ≠ ⊤ h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C ⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨ ‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑μ t) * C [PROOFSTEP] haveI := Fact.mk ht.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E ht : ↑↑μ t ≠ ⊤ h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C this : Fact (↑↑μ t < ⊤) ⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨ ‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑μ t) * C [PROOFSTEP] rw [← restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ : Measure α s : Set E t : Set α f : α → E g : E → ℝ C : ℝ inst✝ : StrictConvexSpace ℝ E ht : ↑↑μ t ≠ ⊤ h_le : ∀ᵐ (x : α) ∂Measure.restrict μ t, ‖f x‖ ≤ C this : Fact (↑↑μ t < ⊤) ⊢ f =ᶠ[ae (Measure.restrict μ t)] const α (⨍ (x : α) in t, f x ∂μ) ∨ ‖∫ (x : α) in t, f x ∂μ‖ < ENNReal.toReal (↑↑(Measure.restrict μ t) univ) * C [PROOFSTEP] exact ae_eq_const_or_norm_integral_lt_of_norm_le_const h_le
{"mathlib_filename": "Mathlib.Analysis.Convex.Integral", "llama_tokens": 31864}
[GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s t s₁ s₂ t₁ t₂ u : Set E x y : E ⊢ x ∈ convexJoin 𝕜 s t ↔ ∃ a, a ∈ s ∧ ∃ b, b ∈ t ∧ x ∈ segment 𝕜 a b [PROOFSTEP] simp [convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t✝ s₁ s₂ t₁ t₂ u : Set E x y : E s t : Set E ⊢ ⋃ (i₂ : E) (_ : i₂ ∈ t) (i₁ : E) (_ : i₁ ∈ s), segment 𝕜 i₁ i₂ = convexJoin 𝕜 t s [PROOFSTEP] simp_rw [convexJoin, segment_symm] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s t✝ s₁ s₂ t₁ t₂ u : Set E x y : E t : Set E ⊢ convexJoin 𝕜 ∅ t = ∅ [PROOFSTEP] simp [convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t s₁ s₂ t₁ t₂ u : Set E x y : E s : Set E ⊢ convexJoin 𝕜 s ∅ = ∅ [PROOFSTEP] simp [convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s t✝ s₁ s₂ t₁ t₂ u : Set E x✝ y : E t : Set E x : E ⊢ convexJoin 𝕜 {x} t = ⋃ (y : E) (_ : y ∈ t), segment 𝕜 x y [PROOFSTEP] simp [convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t s₁ s₂ t₁ t₂ u : Set E x y✝ : E s : Set E y : E ⊢ convexJoin 𝕜 s {y} = ⋃ (x : E) (_ : x ∈ s), segment 𝕜 x y [PROOFSTEP] simp [convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s t s₁ s₂ t₁ t₂ u : Set E x✝ y x : E ⊢ convexJoin 𝕜 {x} {y} = segment 𝕜 x y [PROOFSTEP] simp [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s t✝ s₁✝ s₂✝ t₁ t₂ u : Set E x y : E s₁ s₂ t : Set E ⊢ convexJoin 𝕜 (s₁ ∪ s₂) t = convexJoin 𝕜 s₁ t ∪ convexJoin 𝕜 s₂ t [PROOFSTEP] simp_rw [convexJoin, mem_union, iUnion_or, iUnion_union_distrib] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t s₁ s₂ t₁✝ t₂✝ u : Set E x y : E s t₁ t₂ : Set E ⊢ convexJoin 𝕜 s (t₁ ∪ t₂) = convexJoin 𝕜 s t₁ ∪ convexJoin 𝕜 s t₂ [PROOFSTEP] simp_rw [convexJoin_comm s, convexJoin_union_left] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t✝ s₁ s₂ t₁ t₂ u : Set E x y : E s : ι → Set E t : Set E ⊢ convexJoin 𝕜 (⋃ (i : ι), s i) t = ⋃ (i : ι), convexJoin 𝕜 (s i) t [PROOFSTEP] simp_rw [convexJoin, mem_iUnion, iUnion_exists] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t✝ s₁ s₂ t₁ t₂ u : Set E x y : E s : ι → Set E t : Set E ⊢ ⋃ (x : E) (i : ι) (_ : x ∈ s i) (y : E) (_ : y ∈ t), segment 𝕜 x y = ⋃ (i : ι) (x : E) (_ : x ∈ s i) (y : E) (_ : y ∈ t), segment 𝕜 x y [PROOFSTEP] exact iUnion_comm _ [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t✝ s₁ s₂ t₁ t₂ u : Set E x y : E s : Set E t : ι → Set E ⊢ convexJoin 𝕜 s (⋃ (i : ι), t i) = ⋃ (i : ι), convexJoin 𝕜 s (t i) [PROOFSTEP] simp_rw [convexJoin_comm s, convexJoin_iUnion_left] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u ⊆ convexJoin 𝕜 s (convexJoin 𝕜 t u) [PROOFSTEP] simp_rw [subset_def, mem_convexJoin] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ ∀ (x : E), (∃ a, (∃ a_1, a_1 ∈ s ∧ ∃ b, b ∈ t ∧ a ∈ segment 𝕜 a_1 b) ∧ ∃ b, b ∈ u ∧ x ∈ segment 𝕜 a b) → ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ x ∈ segment 𝕜 a b [PROOFSTEP] rintro _ ⟨z, ⟨x, hx, y, hy, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩, z, hz, a₂, b₂, ha₂, hb₂, hab₂, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 ⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b [PROOFSTEP] obtain rfl | hb₂ := hb₂.eq_or_lt [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ 0 hab₂ : a₂ + 0 = 1 ⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + 0 • z ∈ segment 𝕜 a b [PROOFSTEP] refine' ⟨x, hx, y, ⟨y, hy, z, hz, left_mem_segment 𝕜 _ _⟩, a₁, b₁, ha₁, hb₁, hab₁, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ 0 hab₂ : a₂ + 0 = 1 ⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z [PROOFSTEP] rw [add_zero] at hab₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ 0 hab₂ : a₂ = 1 ⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z [PROOFSTEP] rw [hab₂, one_smul, zero_smul, add_zero] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b [PROOFSTEP] have ha₂b₁ : 0 ≤ a₂ * b₁ := mul_nonneg ha₂ hb₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ ⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b [PROOFSTEP] have hab : 0 < a₂ * b₁ + b₂ := add_pos_of_nonneg_of_pos ha₂b₁ hb₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b [PROOFSTEP] refine' ⟨x, hx, (a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z, ⟨y, hy, z, hz, _, _, _, _, _, rfl⟩, a₂ * a₁, a₂ * b₁ + b₂, mul_nonneg ha₂ ha₁, hab.le, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_1 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ 0 ≤ a₂ * b₁ / (a₂ * b₁ + b₂) [PROOFSTEP] exact div_nonneg ha₂b₁ hab.le [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_2 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ 0 ≤ b₂ / (a₂ * b₁ + b₂) [PROOFSTEP] exact div_nonneg hb₂.le hab.le [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_3 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ a₂ * b₁ / (a₂ * b₁ + b₂) + b₂ / (a₂ * b₁ + b₂) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_4 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ a₂ * a₁ + (a₂ * b₁ + b₂) = 1 [PROOFSTEP] rw [← add_assoc, ← mul_add, hab₁, mul_one, hab₂] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_5 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x✝ y✝ : E s t u : Set E x : E hx : x ∈ s y : E hy : y ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 z : E hz : z ∈ u a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂✝ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 hb₂ : 0 < b₂ ha₂b₁ : 0 ≤ a₂ * b₁ hab : 0 < a₂ * b₁ + b₂ ⊢ (a₂ * a₁) • x + (a₂ * b₁ + b₂) • ((a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z) = a₂ • (a₁ • x + b₁ • y) + b₂ • z [PROOFSTEP] simp_rw [smul_add, ← mul_smul, mul_div_cancel' _ hab.ne', add_assoc] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 s (convexJoin 𝕜 t u) [PROOFSTEP] refine' (convexJoin_assoc_aux _ _ _).antisymm _ [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 s (convexJoin 𝕜 t u) ⊆ convexJoin 𝕜 (convexJoin 𝕜 s t) u [PROOFSTEP] simp_rw [convexJoin_comm s, convexJoin_comm _ u] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 (convexJoin 𝕜 u t) s ⊆ convexJoin 𝕜 u (convexJoin 𝕜 t s) [PROOFSTEP] exact convexJoin_assoc_aux _ _ _ [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 s (convexJoin 𝕜 t u) = convexJoin 𝕜 t (convexJoin 𝕜 s u) [PROOFSTEP] simp_rw [← convexJoin_assoc, convexJoin_comm] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u : Set E ⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u = convexJoin 𝕜 (convexJoin 𝕜 s u) t [PROOFSTEP] simp_rw [convexJoin_assoc, convexJoin_comm] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s✝ t✝ u✝ : Set E x y : E s t u v : Set E ⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) (convexJoin 𝕜 u v) = convexJoin 𝕜 (convexJoin 𝕜 s u) (convexJoin 𝕜 t v) [PROOFSTEP] simp_rw [← convexJoin_assoc, convexJoin_right_comm] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ Convex 𝕜 (convexJoin 𝕜 s t) [PROOFSTEP] simp only [Convex, StarConvex, convexJoin, mem_iUnion] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ ∀ ⦃x : E⦄, (∃ i h i_1 i_2, x ∈ [i-[𝕜]i_1]) → ∀ ⦃y : E⦄, (∃ i h i_1 i_2, y ∈ [i-[𝕜]i_1]) → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → ∃ i h i_1 i_2, a • x + b • y ∈ [i-[𝕜]i_1] [PROOFSTEP] rintro _ ⟨x₁, hx₁, y₁, hy₁, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩ _ ⟨x₂, hx₂, y₂, hy₂, a₂, b₂, ha₂, hb₂, hab₂, rfl⟩ p q hp hq hpq [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 ⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1] [PROOFSTEP] rcases hs.exists_mem_add_smul_eq hx₁ hx₂ (mul_nonneg hp ha₁) (mul_nonneg hq ha₂) with ⟨x, hxs, hx⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ ⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1] [PROOFSTEP] rcases ht.exists_mem_add_smul_eq hy₁ hy₂ (mul_nonneg hp hb₁) (mul_nonneg hq hb₂) with ⟨y, hyt, hy⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ ∃ i h i_1 i_2, p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1] [PROOFSTEP] refine ⟨_, hxs, _, hyt, p * a₁ + q * a₂, p * b₁ + q * b₂, ?_, ?_, ?_, ?_⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ 0 ≤ p * a₁ + q * a₂ [PROOFSTEP] try positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ 0 ≤ p * a₁ + q * a₂ [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ 0 ≤ p * b₁ + q * b₂ [PROOFSTEP] try positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ 0 ≤ p * b₁ + q * b₂ [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1 [PROOFSTEP] try positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1 [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) [PROOFSTEP] try positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ p * a₁ + q * a₂ + (p * b₁ + q * b₂) = 1 [PROOFSTEP] rwa [add_add_add_comm, ← mul_add, ← mul_add, hab₁, hab₂, mul_one, mul_one] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ (p * a₁ + q * a₂) • x + (p * b₁ + q * b₂) • y = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) [PROOFSTEP] rw [hx, hy, add_add_add_comm] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_4 ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x✝ y✝ : E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ y : E hyt : y ∈ t hy : (p * b₁ + q * b₂) • y = (p * b₁) • y₁ + (q * b₂) • y₂ ⊢ (p * a₁) • x₁ + (p * b₁) • y₁ + ((q * a₂) • x₂ + (q * b₂) • y₂) = p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) [PROOFSTEP] simp only [smul_add, smul_smul] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Set.Nonempty s ht : Set.Nonempty t ⊢ ↑(convexHull 𝕜) (s ∪ t) = convexJoin 𝕜 (↑(convexHull 𝕜) s) (↑(convexHull 𝕜) t) [PROOFSTEP] rw [← convexHull_convexHull_union_left, ← convexHull_convexHull_union_right] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Set.Nonempty s ht : Set.Nonempty t ⊢ ↑(convexHull 𝕜) (↑(convexHull 𝕜) s ∪ ↑(convexHull 𝕜) t) = convexJoin 𝕜 (↑(convexHull 𝕜) s) (↑(convexHull 𝕜) t) [PROOFSTEP] exact (convex_convexHull 𝕜 s).convexHull_union (convex_convexHull 𝕜 t) hs.convexHull ht.convexHull [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y : E hs : Set.Nonempty s ⊢ ↑(convexHull 𝕜) (insert x s) = convexJoin 𝕜 {x} (↑(convexHull 𝕜) s) [PROOFSTEP] rw [insert_eq, convexHull_union (singleton_nonempty _) hs, convexHull_singleton] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y a b c d : E ⊢ convexJoin 𝕜 (segment 𝕜 a b) (segment 𝕜 c d) = ↑(convexHull 𝕜) {a, b, c, d} [PROOFSTEP] simp_rw [← convexHull_pair, convexHull_insert (insert_nonempty _ _), convexHull_insert (singleton_nonempty _), convexJoin_assoc, convexHull_singleton] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y a b c : E ⊢ convexJoin 𝕜 (segment 𝕜 a b) {c} = ↑(convexHull 𝕜) {a, b, c} [PROOFSTEP] rw [← pair_eq_singleton, ← convexJoin_segments, segment_same, pair_eq_singleton] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t u : Set E x y a b c : E ⊢ convexJoin 𝕜 {a} (segment 𝕜 b c) = ↑(convexHull 𝕜) {a, b, c} [PROOFSTEP] rw [← segment_same 𝕜, convexJoin_segments, insert_idem]
{"mathlib_filename": "Mathlib.Analysis.Convex.Join", "llama_tokens": 15486}
[GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S ⊢ Equivalence fun rs rs' => ∃ u v, rs'.fst * ↑u = rs.fst * v ∧ ↑rs'.snd * ↑u = ↑rs.snd * v [PROOFSTEP] refine ⟨fun _ => ⟨1, 1, by simp⟩, ?_, ?_⟩ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S x✝ : R × { x // x ∈ S } ⊢ x✝.fst * ↑1 = x✝.fst * 1 ∧ ↑x✝.snd * ↑1 = ↑x✝.snd * 1 [PROOFSTEP] simp [GOAL] case refine_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S ⊢ ∀ {x y : R × { x // x ∈ S }}, (∃ u v, y.fst * ↑u = x.fst * v ∧ ↑y.snd * ↑u = ↑x.snd * v) → ∃ u v, x.fst * ↑u = y.fst * v ∧ ↑x.snd * ↑u = ↑y.snd * v [PROOFSTEP] rintro ⟨r, s⟩ ⟨r', s'⟩ ⟨u, v, hru, hsu⟩ [GOAL] case refine_1.mk.mk.intro.intro.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : (r', s').fst * ↑u = (r, s).fst * v hsu : ↑(r', s').snd * ↑u = ↑(r, s).snd * v ⊢ ∃ u v, (r, s).fst * ↑u = (r', s').fst * v ∧ ↑(r, s).snd * ↑u = ↑(r', s').snd * v [PROOFSTEP] dsimp only at * [GOAL] case refine_1.mk.mk.intro.intro.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v ⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v [PROOFSTEP] rcases oreCondition (s : R) s' with ⟨r₂, s₂, h₁⟩ [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ ⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v [PROOFSTEP] rcases oreCondition r₂ u with ⟨r₃, s₃, h₂⟩ [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ ⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v [PROOFSTEP] have : (s : R) * ((v : R) * r₃) = (s : R) * (s₂ * s₃) := by -- porting note: the proof used `assoc_rw`rw [← mul_assoc _ (s₂ : R), h₁, mul_assoc, h₂, ← mul_assoc, ← hsu, mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ ⊢ ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) [PROOFSTEP] rw [← mul_assoc _ (s₂ : R), h₁, mul_assoc, h₂, ← mul_assoc, ← hsu, mul_assoc] [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) ⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v [PROOFSTEP] rcases ore_left_cancel (v * r₃) (s₂ * s₃) s this with ⟨w, hw⟩ [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) w : { x // x ∈ S } hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w ⊢ ∃ u v, r * ↑u = r' * v ∧ ↑s * ↑u = ↑s' * v [PROOFSTEP] refine ⟨s₂ * s₃ * w, u * r₃ * w, ?_, ?_⟩ [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) w : { x // x ∈ S } hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w ⊢ r * ↑(s₂ * s₃ * w) = r' * (↑u * r₃ * ↑w) [PROOFSTEP] simp only [Submonoid.coe_mul, ← hw] [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) w : { x // x ∈ S } hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w ⊢ ↑s * ↑(s₂ * s₃ * w) = ↑s' * (↑u * r₃ * ↑w) [PROOFSTEP] simp only [Submonoid.coe_mul, ← hw] [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) w : { x // x ∈ S } hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w ⊢ r * (v * r₃ * ↑w) = r' * (↑u * r₃ * ↑w) [PROOFSTEP] simp only [← mul_assoc, hru] [GOAL] case refine_1.mk.mk.intro.intro.intro.mk.mk.mk.mk.intro.refine_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } r' : R s' u : { x // x ∈ S } v : R hru : r' * ↑u = r * v hsu : ↑s' * ↑u = ↑s * v r₂ : R s₂ : { x // x ∈ S } h₁ : ↑s * ↑s₂ = ↑s' * r₂ r₃ : R s₃ : { x // x ∈ S } h₂ : r₂ * ↑s₃ = ↑u * r₃ this : ↑s * (v * r₃) = ↑s * (↑s₂ * ↑s₃) w : { x // x ∈ S } hw : v * r₃ * ↑w = ↑s₂ * ↑s₃ * ↑w ⊢ ↑s * (v * r₃ * ↑w) = ↑s' * (↑u * r₃ * ↑w) [PROOFSTEP] simp only [← mul_assoc, hsu] [GOAL] case refine_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S ⊢ ∀ {x y z : R × { x // x ∈ S }}, (∃ u v, y.fst * ↑u = x.fst * v ∧ ↑y.snd * ↑u = ↑x.snd * v) → (∃ u v, z.fst * ↑u = y.fst * v ∧ ↑z.snd * ↑u = ↑y.snd * v) → ∃ u v, z.fst * ↑u = x.fst * v ∧ ↑z.snd * ↑u = ↑x.snd * v [PROOFSTEP] rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ ⟨r₃, s₃⟩ ⟨u, v, hur₁, hs₁u⟩ ⟨u', v', hur₂, hs₂u⟩ [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v hs₁u : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v u' : { x // x ∈ S } v' : R hur₂ : (r₃, s₃).fst * ↑u' = (r₂, s₂).fst * v' hs₂u : ↑(r₃, s₃).snd * ↑u' = ↑(r₂, s₂).snd * v' ⊢ ∃ u v, (r₃, s₃).fst * ↑u = (r₁, s₁).fst * v ∧ ↑(r₃, s₃).snd * ↑u = ↑(r₁, s₁).snd * v [PROOFSTEP] rcases oreCondition v' u with ⟨r', s', h⟩ [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v hs₁u : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v u' : { x // x ∈ S } v' : R hur₂ : (r₃, s₃).fst * ↑u' = (r₂, s₂).fst * v' hs₂u : ↑(r₃, s₃).snd * ↑u' = ↑(r₂, s₂).snd * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ ∃ u v, (r₃, s₃).fst * ↑u = (r₁, s₁).fst * v ∧ ↑(r₃, s₃).snd * ↑u = ↑(r₁, s₁).snd * v [PROOFSTEP] dsimp only at * [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : r₂ * ↑u = r₁ * v hs₁u : ↑s₂ * ↑u = ↑s₁ * v u' : { x // x ∈ S } v' : R hur₂ : r₃ * ↑u' = r₂ * v' hs₂u : ↑s₃ * ↑u' = ↑s₂ * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ ∃ u v, r₃ * ↑u = r₁ * v ∧ ↑s₃ * ↑u = ↑s₁ * v [PROOFSTEP] refine ⟨u' * s', v * r', ?_, ?_⟩ [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : r₂ * ↑u = r₁ * v hs₁u : ↑s₂ * ↑u = ↑s₁ * v u' : { x // x ∈ S } v' : R hur₂ : r₃ * ↑u' = r₂ * v' hs₂u : ↑s₃ * ↑u' = ↑s₂ * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ r₃ * ↑(u' * s') = r₁ * (v * r') [PROOFSTEP] simp only [Submonoid.coe_mul, ← mul_assoc] [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : r₂ * ↑u = r₁ * v hs₁u : ↑s₂ * ↑u = ↑s₁ * v u' : { x // x ∈ S } v' : R hur₂ : r₃ * ↑u' = r₂ * v' hs₂u : ↑s₃ * ↑u' = ↑s₂ * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ ↑s₃ * ↑(u' * s') = ↑s₁ * (v * r') [PROOFSTEP] simp only [Submonoid.coe_mul, ← mul_assoc] [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : r₂ * ↑u = r₁ * v hs₁u : ↑s₂ * ↑u = ↑s₁ * v u' : { x // x ∈ S } v' : R hur₂ : r₃ * ↑u' = r₂ * v' hs₂u : ↑s₃ * ↑u' = ↑s₂ * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ r₃ * ↑u' * ↑s' = r₁ * v * r' [PROOFSTEP] rw [hur₂, mul_assoc, h, ← mul_assoc, hur₁] [GOAL] case refine_2.mk.mk.mk.intro.intro.intro.intro.intro.intro.mk.mk.refine_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ u : { x // x ∈ S } v : R hur₁ : r₂ * ↑u = r₁ * v hs₁u : ↑s₂ * ↑u = ↑s₁ * v u' : { x // x ∈ S } v' : R hur₂ : r₃ * ↑u' = r₂ * v' hs₂u : ↑s₃ * ↑u' = ↑s₂ * v' r' : R s' : { x // x ∈ S } h : v' * ↑s' = ↑u * r' ⊢ ↑s₃ * ↑u' * ↑s' = ↑s₁ * v * r' [PROOFSTEP] rw [hs₂u, mul_assoc, h, ← mul_assoc, hs₁u] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S β : OreLocalization R S → Prop c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s) ⊢ ∀ (q : OreLocalization R S), β q [PROOFSTEP] apply Quotient.ind [GOAL] case a R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S β : OreLocalization R S → Prop c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s) ⊢ ∀ (a : R × { x // x ∈ S }), β (Quotient.mk (oreEqv R S) a) [PROOFSTEP] rintro ⟨r, s⟩ [GOAL] case a.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S β : OreLocalization R S → Prop c : ∀ (r : R) (s : { x // x ∈ S }), β (r /ₒ s) r : R s : { x // x ∈ S } ⊢ β (Quotient.mk (oreEqv R S) (r, s)) [PROOFSTEP] exact c r s [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ r /ₒ s = r * t /ₒ { val := ↑s * t, property := hst } [PROOFSTEP] apply Quotient.sound [GOAL] case a R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ (r, s) ≈ (r * t, { val := ↑s * t, property := hst }) [PROOFSTEP] refine' ⟨s, t * s, _, _⟩ [GOAL] case a.refine'_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ (r * t, { val := ↑s * t, property := hst }).fst * ↑s = (r, s).fst * (t * ↑s) [PROOFSTEP] dsimp [GOAL] case a.refine'_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ ↑(r * t, { val := ↑s * t, property := hst }).snd * ↑s = ↑(r, s).snd * (t * ↑s) [PROOFSTEP] dsimp [GOAL] case a.refine'_1 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ r * t * ↑s = r * (t * ↑s) [PROOFSTEP] rw [mul_assoc] [GOAL] case a.refine'_2 R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } t : R hst : ↑s * t ∈ S ⊢ ↑s * t * ↑s = ↑s * (t * ↑s) [PROOFSTEP] rw [mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s s' : { x // x ∈ S } ⊢ ↑s * ↑s' ∈ S [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s s' : { x // x ∈ S } ⊢ ↑(s * s') ∈ S [PROOFSTEP] apply SetLike.coe_mem [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t ⊢ r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s [PROOFSTEP] rcases oreCondition r₂ t with ⟨r₂', t', hr₂⟩ -- porting note: todo: use `assoc_rw`? [GOAL] case mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s [PROOFSTEP] calc r₁ * r * r₂ /ₒ s = r₁ * r * r₂ * t' /ₒ (s * t') := OreLocalization.expand (r₁ * r * r₂) s t' _ _ = r₁ * r * (r₂ * t') /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r * (t * r₂') /ₒ (s * t') := by rw [hr₂] _ = r₁ * (r * t) * r₂' /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * (r' * t) * r₂' /ₒ (s * t') := by rw [h] _ = r₁ * r' * (t * r₂') /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r' * (r₂ * t') /ₒ (s * t') := by rw [hr₂] _ = r₁ * r' * r₂ * t' /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r' * r₂ /ₒ s := (OreLocalization.expand _ _ _ _).symm [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r * r₂ * ↑t' /ₒ (s * t') = r₁ * r * (r₂ * ↑t') /ₒ (s * t') [PROOFSTEP] simp [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r * (r₂ * ↑t') /ₒ (s * t') = r₁ * r * (↑t * r₂') /ₒ (s * t') [PROOFSTEP] rw [hr₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r * (↑t * r₂') /ₒ (s * t') = r₁ * (r * ↑t) * r₂' /ₒ (s * t') [PROOFSTEP] simp [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * (r * ↑t) * r₂' /ₒ (s * t') = r₁ * (r' * ↑t) * r₂' /ₒ (s * t') [PROOFSTEP] rw [h] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * (r' * ↑t) * r₂' /ₒ (s * t') = r₁ * r' * (↑t * r₂') /ₒ (s * t') [PROOFSTEP] simp [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r' * (↑t * r₂') /ₒ (s * t') = r₁ * r' * (r₂ * ↑t') /ₒ (s * t') [PROOFSTEP] rw [hr₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r r' r₁ r₂ : R s t : { x // x ∈ S } h : r * ↑t = r' * ↑t r₂' : R t' : { x // x ∈ S } hr₂ : r₂ * ↑t' = ↑t * r₂' ⊢ r₁ * r' * (r₂ * ↑t') /ₒ (s * t') = r₁ * r' * r₂ * ↑t' /ₒ (s * t') [PROOFSTEP] simp [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : (r₂, s₂).fst * ↑u = (r₁, s₁).fst * v hs₂ : ↑(r₂, s₂).snd * ↑u = ↑(r₁, s₁).snd * v ⊢ (fun p => P p.fst p.snd) (r₁, s₁) = (fun p => P p.fst p.snd) (r₂, s₂) [PROOFSTEP] dsimp at * [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v ⊢ P r₁ s₁ = P r₂ s₂ [PROOFSTEP] have s₁vS : (s₁ : R) * v ∈ S := by rw [← hs₂, ← S.coe_mul] exact SetLike.coe_mem (s₂ * u) [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v ⊢ ↑s₁ * v ∈ S [PROOFSTEP] rw [← hs₂, ← S.coe_mul] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v ⊢ ↑(s₂ * u) ∈ S [PROOFSTEP] exact SetLike.coe_mem (s₂ * u) [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v s₁vS : ↑s₁ * v ∈ S ⊢ P r₁ s₁ = P r₂ s₂ [PROOFSTEP] replace hs₂ : s₂ * u = ⟨(s₁ : R) * v, s₁vS⟩ [GOAL] case hs₂ R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v s₁vS : ↑s₁ * v ∈ S ⊢ s₂ * u = { val := ↑s₁ * v, property := s₁vS } [PROOFSTEP] ext [GOAL] case hs₂.a R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v hs₂ : ↑s₂ * ↑u = ↑s₁ * v s₁vS : ↑s₁ * v ∈ S ⊢ ↑(s₂ * u) = ↑{ val := ↑s₁ * v, property := s₁vS } [PROOFSTEP] simp [hs₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v s₁vS : ↑s₁ * v ∈ S hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS } ⊢ P r₁ s₁ = P r₂ s₂ [PROOFSTEP] rw [hP r₁ v s₁ s₁vS, hP r₂ u s₂ (by norm_cast; rwa [hs₂]), hr₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v s₁vS : ↑s₁ * v ∈ S hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS } ⊢ ↑s₂ * ↑u ∈ S [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v s₁vS : ↑s₁ * v ∈ S hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS } ⊢ ↑(s₂ * u) ∈ S [PROOFSTEP] rwa [hs₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v s₁vS : ↑s₁ * v ∈ S hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS } ⊢ P (r₁ * v) { val := ↑s₁ * v, property := s₁vS } = P (r₁ * v) { val := ↑s₂ * ↑u, property := (_ : ↑s₂ * ↑u ∈ S) } [PROOFSTEP] simp only [← hs₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → C hP : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), P r s = P (r * t) { val := ↑s * t, property := ht } x✝² x✝¹ : R × { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } x✝ : (r₁, s₁) ≈ (r₂, s₂) u : { x // x ∈ S } v : R hr₂ : r₂ * ↑u = r₁ * v s₁vS : ↑s₁ * v ∈ S hs₂ : s₂ * u = { val := ↑s₁ * v, property := s₁vS } ⊢ P (r₁ * v) (s₂ * u) = P (r₁ * v) { val := ↑s₂ * ↑u, property := (_ : ↑s₂ * ↑u ∈ S) } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ : R s₁ : { x // x ∈ S } r₂ t₂ : R s₂ : { x // x ∈ S } ht₂ : ↑s₂ * t₂ ∈ S ⊢ P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } [PROOFSTEP] have := hP r₁ 1 s₁ (by simp) r₂ t₂ s₂ ht₂ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ : R s₁ : { x // x ∈ S } r₂ t₂ : R s₂ : { x // x ∈ S } ht₂ : ↑s₂ * t₂ ∈ S ⊢ ↑s₁ * 1 ∈ S [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ : R s₁ : { x // x ∈ S } r₂ t₂ : R s₂ : { x // x ∈ S } ht₂ : ↑s₂ * t₂ ∈ S this : P r₁ s₁ r₂ s₂ = P (r₁ * 1) { val := ↑s₁ * 1, property := (_ : ↑s₁ * 1 ∈ S) } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } ⊢ P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } [PROOFSTEP] simp [this] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S ⊢ (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) r₁ s₁ = (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S x : OreLocalization R S ⊢ (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) r₁ s₁ x = (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } x [PROOFSTEP] induction' x using OreLocalization.ind with r₂ s₂ [GOAL] case h.c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S r₂ : R s₂ : { x // x ∈ S } ⊢ (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) r₁ s₁ (r₂ /ₒ s₂) = (fun r₁ s₁ => liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ })) (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ /ₒ s₂) [PROOFSTEP] dsimp only [GOAL] case h.c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S r₂ : R s₂ : { x // x ∈ S } ⊢ liftExpand (P r₁ s₁) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P r₁ s₁ (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }) (r₂ /ₒ s₂) = liftExpand (P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ }) (_ : ∀ (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ }) (r₂ /ₒ s₂) [PROOFSTEP] rw [liftExpand_of, liftExpand_of, hP r₁ t₁ s₁ ht₁ r₂ 1 s₂ (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S r₂ : R s₂ : { x // x ∈ S } ⊢ ↑s₂ * 1 ∈ S [PROOFSTEP] simp [GOAL] case h.c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S C : Sort u_2 P : R → { x // x ∈ S } → R → { x // x ∈ S } → C hP : ∀ (r₁ t₁ : R) (s₁ : { x // x ∈ S }) (ht₁ : ↑s₁ * t₁ ∈ S) (r₂ t₂ : R) (s₂ : { x // x ∈ S }) (ht₂ : ↑s₂ * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * t₂) { val := ↑s₂ * t₂, property := ht₂ } r₁ t₁ : R s₁ : { x // x ∈ S } ht₁ : ↑s₁ * t₁ ∈ S r₂ : R s₂ : { x // x ∈ S } ⊢ P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } (r₂ * 1) { val := ↑s₂ * 1, property := (_ : ↑s₂ * 1 ∈ S) } = P (r₁ * t₁) { val := ↑s₁ * t₁, property := ht₁ } r₂ s₂ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v ⊢ OreLocalization.mul' r₁ s₁ r₂ s₂ = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] simp only [mul'] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v ⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] have h₀ := ore_eq r₂ s₁ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v h₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * oreNum r₂ s₁ ⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] set v₀ := oreNum r₂ s₁ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ h₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * v₀ ⊢ r₁ * v₀ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] set u₀ := oreDenom r₂ s₁ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ ⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] rcases oreCondition (u₀ : R) u with ⟨r₃, s₃, h₃⟩ [GOAL] case mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ ⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] have := calc (s₁ : R) * (v * r₃) = r₂ * u * r₃ := by rw [← mul_assoc, ← huv] _ = r₂ * u₀ * s₃ := by rw [mul_assoc, mul_assoc, h₃] _ = s₁ * (v₀ * s₃) := by rw [← mul_assoc, h₀] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ ⊢ ↑s₁ * (v * r₃) = r₂ * ↑u * r₃ [PROOFSTEP] rw [← mul_assoc, ← huv] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ ⊢ r₂ * ↑u * r₃ = r₂ * ↑u₀ * ↑s₃ [PROOFSTEP] rw [mul_assoc, mul_assoc, h₃] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ ⊢ r₂ * ↑u₀ * ↑s₃ = ↑s₁ * (v₀ * ↑s₃) [PROOFSTEP] rw [← mul_assoc, h₀] [GOAL] case mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) ⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] rcases ore_left_cancel _ _ _ this with ⟨s₄, hs₄⟩ [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u) [PROOFSTEP] symm [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * v /ₒ (s₂ * u) = r₁ * v₀ /ₒ (s₂ * u₀) [PROOFSTEP] rw [oreDiv_eq_iff] [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ ∃ u_1 v_1, r₁ * v₀ * ↑u_1 = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑u_1 = ↑(s₂ * u) * v_1 [PROOFSTEP] use s₃ * s₄ [GOAL] case h R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ ∃ v_1, r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * v_1 [PROOFSTEP] use r₃ * s₄ [GOAL] case h R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * (r₃ * ↑s₄) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case h R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄) [PROOFSTEP] constructor [GOAL] case h.left R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) [PROOFSTEP] rw [mul_assoc (b := v₀), ← mul_assoc (a := v₀), ← hs₄] [GOAL] case h.left R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ r₁ * (v * r₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) [PROOFSTEP] simp only [mul_assoc] [GOAL] case h.right R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄) [PROOFSTEP] rw [mul_assoc (b := (u₀ : R)), ← mul_assoc (a := (u₀ : R)), h₃] [GOAL] case h.right R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ u : { x // x ∈ S } v : R huv : r₂ * ↑u = ↑s₁ * v v₀ : R := oreNum r₂ s₁ u₀ : { x // x ∈ S } := oreDenom r₂ s₁ h₀ : r₂ * ↑u₀ = ↑s₁ * v₀ r₃ : R s₃ : { x // x ∈ S } h₃ : ↑u₀ * ↑s₃ = ↑u * r₃ this : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃) s₄ : { x // x ∈ S } hs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄ ⊢ ↑s₂ * (↑u * r₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄) [PROOFSTEP] simp only [mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] have h₁ := ore_eq r₁ s₂ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S h₁ : r₁ * ↑(oreDenom r₁ s₂) = ↑s₂ * oreNum r₁ s₂ ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] set r₁' := oreNum r₁ s₂ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ h₁ : r₁ * ↑(oreDenom r₁ s₂) = ↑s₂ * r₁' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] set s₂' := oreDenom r₁ s₂ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] rcases oreCondition (↑s₂ * r₁') ⟨s₂ * p, hp⟩ with ⟨p', s_star, h₂⟩ [GOAL] case mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * r₁' * ↑s_star = ↑{ val := ↑s₂ * p, property := hp } * p' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] dsimp at h₂ [GOAL] case mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] rcases oreCondition r (s₂' * s_star) with ⟨p_flat, s_flat, h₃⟩ [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(s₂' * s_star) * p_flat ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] simp only [S.coe_mul] at h₃ [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] have : r₁ * r * s_flat = s₂ * p * (p' * p_flat) := by rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃] simp only [mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat) [PROOFSTEP] rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ r₁ * (↑(oreDenom r₁ s₂) * ↑s_star * p_flat) = r₁ * ↑s₂' * ↑s_star * p_flat [PROOFSTEP] simp only [mul_assoc] [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat this : r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat) ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = OreLocalization.mul' (r₂ * p) { val := ↑s₂ * p, property := hp } (r₁ * r) { val := ↑s₁ * r, property := hr } [PROOFSTEP] rw [mul'_char (r₂ * p) (r₁ * r) ⟨↑s₂ * p, hp⟩ ⟨↑s₁ * r, hr⟩ _ _ this] [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat this : r₁ * r * ↑s_flat = ↑s₂ * p * (p' * p_flat) ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat) [PROOFSTEP] clear this [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat) [PROOFSTEP] have hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S := by rw [mul_assoc, mul_assoc, ← mul_assoc (s₂' : R), ← h₃, ← mul_assoc] exact S.mul_mem hr (SetLike.coe_mem s_flat) [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S [PROOFSTEP] rw [mul_assoc, mul_assoc, ← mul_assoc (s₂' : R), ← h₃, ← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat ⊢ ↑s₁ * r * ↑s_flat ∈ S [PROOFSTEP] exact S.mul_mem hr (SetLike.coe_mem s_flat) [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat) [PROOFSTEP] have : (⟨↑s₁ * r, hr⟩ : S) * s_flat = ⟨s₁ * s₂' * s_star * p_flat, hsssp⟩ := by ext simp only [Submonoid.coe_mul] rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ ↑({ val := ↑s₁ * r, property := hr } * s_flat) = ↑{ val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case a R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ ↑s₁ * r * ↑s_flat = ↑s₁ * ↑(oreDenom r₁ s₂) * ↑s_star * p_flat [PROOFSTEP] rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc] [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S this : { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ ({ val := ↑s₁ * r, property := hr } * s_flat) [PROOFSTEP] rw [this] [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S this : { val := ↑s₁ * r, property := hr } * s_flat = { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] clear this [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] rcases ore_left_cancel (p * p') (r₁' * (s_star : R)) s₂ (by simp [← mul_assoc, h₂]) with ⟨s₂'', h₂''⟩ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S ⊢ ↑s₂ * (p * p') = ↑s₂ * (r₁' * ↑s_star) [PROOFSTEP] simp [← mul_assoc, h₂] [GOAL] case mk.mk.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S s₂'' : { x // x ∈ S } h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂'' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * p * (p' * p_flat) /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] rw [← mul_assoc, mul_assoc r₂, OreLocalization.eq_of_num_factor_eq h₂''] [GOAL] case mk.mk.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S s₂'' : { x // x ∈ S } h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂'' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * (r₁' * ↑s_star) * p_flat /ₒ { val := ↑s₁ * ↑s₂' * ↑s_star * p_flat, property := hsssp } [PROOFSTEP] norm_cast at hsssp ⊢ [GOAL] case mk.mk.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑(s₁ * s₂' * s_star) * p_flat ∈ S s₂'' : { x // x ∈ S } h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂'' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * (r₁' * ↑s_star) * p_flat /ₒ { val := ↑(s₁ * s₂' * s_star) * p_flat, property := (_ : (fun x => x ∈ S) (↑(s₁ * s₂' * s_star) * p_flat)) } [PROOFSTEP] rw [← OreLocalization.expand _ _ _ hsssp, ← mul_assoc] [GOAL] case mk.mk.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₂ p : R s₂ : { x // x ∈ S } hp : ↑s₂ * p ∈ S r₁ r : R s₁ : { x // x ∈ S } hr : ↑s₁ * r ∈ S r₁' : R := oreNum r₁ s₂ s₂' : { x // x ∈ S } := oreDenom r₁ s₂ h₁ : r₁ * ↑s₂' = ↑s₂ * r₁' p' : R s_star : { x // x ∈ S } h₂ : ↑s₂ * oreNum r₁ s₂ * ↑s_star = ↑s₂ * p * p' p_flat : R s_flat : { x // x ∈ S } h₃ : r * ↑s_flat = ↑(oreDenom r₁ s₂) * ↑s_star * p_flat hsssp : ↑(s₁ * s₂' * s_star) * p_flat ∈ S s₂'' : { x // x ∈ S } h₂'' : p * p' * ↑s₂'' = r₁' * ↑s_star * ↑s₂'' ⊢ OreLocalization.mul' r₂ s₂ r₁ s₁ = r₂ * r₁' * ↑s_star /ₒ (s₁ * s₂' * s_star) [PROOFSTEP] apply OreLocalization.expand [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R hr : r ∈ S ⊢ r /ₒ { val := r, property := hr } = 1 [PROOFSTEP] rw [OreLocalization.one_def, oreDiv_eq_iff] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R hr : r ∈ S ⊢ ∃ u v, 1 * ↑u = r * v ∧ ↑1 * ↑u = ↑{ val := r, property := hr } * v [PROOFSTEP] exact ⟨⟨r, hr⟩, 1, by simp, by simp⟩ [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R hr : r ∈ S ⊢ 1 * ↑{ val := r, property := hr } = r * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R hr : r ∈ S ⊢ ↑1 * ↑{ val := r, property := hr } = ↑{ val := r, property := hr } * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ 1 * x = x [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ 1 * (r /ₒ s) = r /ₒ s [PROOFSTEP] simp [OreLocalization.one_def, oreDiv_mul_char (1 : R) r (1 : S) s r 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r * ↑1 = ↑1 * r [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ x * 1 = x [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r /ₒ s * 1 = r /ₒ s [PROOFSTEP] simp [OreLocalization.one_def, oreDiv_mul_char r 1 s 1 1 s (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ 1 * ↑s = ↑s * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S x y z : OreLocalization R S ⊢ x * y * z = x * (y * z) [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S y z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * y * z = r₁ /ₒ s₁ * (y * z) [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * z = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * z) [PROOFSTEP] induction' z using OreLocalization.ind with r₃ s₃ [GOAL] case c.c.c R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃)) [PROOFSTEP] rcases oreDivMulChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩ [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa) ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃)) [PROOFSTEP] rw [ha'] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa) ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃)) [PROOFSTEP] clear ha' [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃)) [PROOFSTEP] rcases oreDivMulChar' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb hb' : r₂ /ₒ s₂ * (r₃ /ₒ s₃) = r₂ * rb /ₒ (s₃ * sb) ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂ * (r₃ /ₒ s₃)) [PROOFSTEP] rw [hb'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb hb' : r₂ /ₒ s₂ * (r₃ /ₒ s₃) = r₂ * rb /ₒ (s₃ * sb) ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) [PROOFSTEP] clear hb' [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) [PROOFSTEP] rcases oreCondition rb sa with ⟨rc, sc, hc⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₁ * ra /ₒ (s₂ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) [PROOFSTEP] rw [oreDiv_mul_char (r₁ * ra) r₃ (s₂ * sa) s₃ rc (sb * sc) (by simp only [Submonoid.coe_mul] rw [← mul_assoc, hb, mul_assoc, hc, ← mul_assoc])] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₃ * ↑(sb * sc) = ↑(s₂ * sa) * rc [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₃ * (↑sb * ↑sc) = ↑s₂ * ↑sa * rc [PROOFSTEP] rw [← mul_assoc, hb, mul_assoc, hc, ← mul_assoc] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₁ * ra * rc /ₒ (s₃ * (sb * sc)) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) [PROOFSTEP] rw [mul_assoc, ← mul_assoc s₃] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₁ * (ra * rc) /ₒ (s₃ * sb * sc) = r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) [PROOFSTEP] symm [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₁ /ₒ s₁ * (r₂ * rb /ₒ (s₃ * sb)) = r₁ * (ra * rc) /ₒ (s₃ * sb * sc) [PROOFSTEP] apply oreDiv_mul_char [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.huv R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra rb : R sb : { x // x ∈ S } hb : r₃ * ↑sb = ↑s₂ * rb rc : R sc : { x // x ∈ S } hc : rb * ↑sc = ↑sa * rc ⊢ r₂ * rb * ↑sc = ↑s₁ * (ra * rc) [PROOFSTEP] rw [mul_assoc, hc, ← mul_assoc (b := ra), ← ha, mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S s s' : { x // x ∈ S } ⊢ ↑s /ₒ s' * (↑s' /ₒ s) = 1 [PROOFSTEP] simp [oreDiv_mul_char (s : R) s' s' s 1 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S s s' : { x // x ∈ S } ⊢ ↑s' * ↑1 = ↑s' * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s t : { x // x ∈ S } ⊢ r /ₒ s * (1 /ₒ t) = r /ₒ (t * s) [PROOFSTEP] simp [oreDiv_mul_char r 1 s t 1 s (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s t : { x // x ∈ S } ⊢ 1 * ↑s = ↑s * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s t : { x // x ∈ S } ⊢ r /ₒ s * (↑s /ₒ t) = r /ₒ t [PROOFSTEP] simp [oreDiv_mul_char r s s t 1 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r : R s t : { x // x ∈ S } ⊢ ↑s * ↑1 = ↑s * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s t : { x // x ∈ S } ⊢ r₁ /ₒ s * (↑s * r₂ /ₒ t) = r₁ * r₂ /ₒ t [PROOFSTEP] simp [oreDiv_mul_char r₁ (s * r₂) s t r₂ 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s t : { x // x ∈ S } ⊢ ↑s * r₂ * ↑1 = ↑s * r₂ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S p r : R s : { x // x ∈ S } ⊢ r /ₒ 1 * (p /ₒ s) = r * p /ₒ s [PROOFSTEP] simp [oreDiv_mul_char r p 1 s p 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Monoid R S : Submonoid R inst✝ : OreSet S p r : R s : { x // x ∈ S } ⊢ p * ↑1 = ↑1 * p [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S ⊢ (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht } [PROOFSTEP] simp only [] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S ⊢ ↑f r * ↑(↑fS s)⁻¹ = ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] have : (fS ⟨s * t, ht⟩ : T) = fS s * f t := by simp only [← hf, MonoidHom.map_mul] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S ⊢ ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t [PROOFSTEP] simp only [← hf, MonoidHom.map_mul] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t ⊢ ↑f r * ↑(↑fS s)⁻¹ = ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] conv_rhs => rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)] rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t | ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)] rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t | ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)] rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t | ↑f (r * t) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t | ↑f r * ↑((↑fS s)⁻¹ * ↑fS s) * ↑f t * ↑(↑fS { val := ↑s * t, property := ht })⁻¹ [PROOFSTEP] rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T), ← this, mul_assoc] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x : OreLocalization R S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S this : ↑(↑fS { val := ↑s * t, property := ht }) = ↑(↑fS s) * ↑f t ⊢ ↑f r * ↑(↑fS s)⁻¹ = ↑f r * ↑(↑fS s)⁻¹ * (↑(↑fS { val := ↑s * t, property := ht }) * ↑(↑fS { val := ↑s * t, property := ht })⁻¹) [PROOFSTEP] simp only [mul_one, Units.mul_inv] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) ⊢ (fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x) 1 = 1 [PROOFSTEP] simp only [] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) 1 = 1 [PROOFSTEP] rw [OreLocalization.one_def, liftExpand_of] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) ⊢ ↑f 1 * ↑(↑fS 1)⁻¹ = 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x y : OreLocalization R S ⊢ OneHom.toFun { toFun := fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x, map_one' := (_ : (fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x, map_one' := (_ : (fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x) 1 = 1) } x * OneHom.toFun { toFun := fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x, map_one' := (_ : (fun x => liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x) 1 = 1) } y [PROOFSTEP] simp only [] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) x y : OreLocalization R S ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (x * y) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) x * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) y [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) y : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁ * y) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁) * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) y [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁ * (r₂ /ₒ s₂)) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁) * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₂ /ₒ s₂) [PROOFSTEP] rcases oreDivMulChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩ [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa) ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁ * (r₂ /ₒ s₂)) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁) * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₂ /ₒ s₂) [PROOFSTEP] rw [ha'] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ha' : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * ra /ₒ (s₂ * sa) ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ * ra /ₒ (s₂ * sa)) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁) * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₂ /ₒ s₂) [PROOFSTEP] clear ha' [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ⊢ liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ * ra /ₒ (s₂ * sa)) = liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₁ /ₒ s₁) * liftExpand (fun r s => ↑f r * ↑(↑fS s)⁻¹) (_ : ∀ (r t : R) (s : { x // x ∈ S }) (ht : ↑s * t ∈ S), (fun r s => ↑f r * ↑(↑fS s)⁻¹) r s = (fun r s => ↑f r * ↑(↑fS s)⁻¹) (r * t) { val := ↑s * t, property := ht }) (r₂ /ₒ s₂) [PROOFSTEP] rw [liftExpand_of, liftExpand_of, liftExpand_of] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ⊢ ↑f (r₁ * ra) * ↑(↑fS (s₂ * sa))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹) [PROOFSTEP] conv_rhs => congr ·skip congr rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹) [PROOFSTEP] congr ·skip congr rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹) [PROOFSTEP] congr ·skip congr rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f r₂ * ↑(↑fS s₂)⁻¹) [PROOFSTEP] congr [GOAL] case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] ·skip [GOAL] case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₁ * ↑(↑fS s₁)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] congr [GOAL] case a.a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑f r₂ case a.a R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra | ↑(↑fS s₂)⁻¹ [PROOFSTEP] rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ⊢ ↑f (r₁ * ra) * ↑(↑fS (s₂ * sa))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ * (↑f ↑s₁ * ↑f ra * ↑(↑fS sa)⁻¹ * ↑(↑fS s₂)⁻¹) [PROOFSTEP] rw [mul_assoc, mul_assoc, mul_assoc, ← mul_assoc _ (f s₁), hf s₁, (fS s₁).inv_mul, one_mul, f.map_mul, mul_assoc, fS.map_mul, ← Units.val_mul] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : r₂ * ↑sa = ↑s₁ * ra ⊢ ↑f r₁ * (↑f ra * ↑(↑fS s₂ * ↑fS sa)⁻¹) = ↑f r₁ * (↑f ra * ↑((↑fS sa)⁻¹ * (↑fS s₂)⁻¹)) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r : R ⊢ ↑(universalMulHom f fS hf) (↑numeratorHom r) = ↑f r [PROOFSTEP] simp [numeratorHom_apply, universalMulHom_apply] [GOAL] R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) φ : OreLocalization R S →* T huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r ⊢ φ = universalMulHom f fS hf [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) φ : OreLocalization R S →* T huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r x : OreLocalization R S ⊢ ↑φ x = ↑(universalMulHom f fS hf) x [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case h.c R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Monoid T f : R →* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) φ : OreLocalization R S →* T huniv : ∀ (r : R), ↑φ (↑numeratorHom r) = ↑f r r : R s : { x // x ∈ S } ⊢ ↑φ (r /ₒ s) = ↑(universalMulHom f fS hf) (r /ₒ s) [PROOFSTEP] rw [universalMulHom_apply, ← huniv r, numeratorHom_apply, ← mul_one (φ (r /ₒ s)), ← Units.val_one, ← mul_right_inv (fS s), Units.val_mul, ← mul_assoc, ← hf, ← huniv, ← φ.map_mul, numeratorHom_apply, OreLocalization.mul_cancel] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r₂ /ₒ (s₁ * s₂) [PROOFSTEP] rw [oreDiv_mul_char r₁ r₂ s₁ s₂ r₂ s₁ (by simp [mul_comm]), mul_comm s₂] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } ⊢ r₂ * ↑s₁ = ↑s₁ * r₂ [PROOFSTEP] simp [mul_comm] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization x y : OreLocalization R S ⊢ x * y = y * x [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization y : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * y = y * (r₁ /ₒ s₁) [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S src✝ : Monoid (OreLocalization R S) := instMonoidOreLocalization r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₂ /ₒ s₂ * (r₁ /ₒ s₁) [PROOFSTEP] rw [oreDiv_mul_oreDiv_comm, oreDiv_mul_oreDiv_comm, mul_comm r₁, mul_comm s₁] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R ⊢ OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } (r₁ * r₂) = OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } r₁ * OneHom.toFun { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) } r₂ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S z : OreLocalization R S ⊢ ∃ x, z * OneHom.toFun ↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) } ↑x.snd = OneHom.toFun (↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }) x.fst [PROOFSTEP] induction' z using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ ∃ x, r /ₒ s * OneHom.toFun ↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) } ↑x.snd = OneHom.toFun (↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }) x.fst [PROOFSTEP] use(r, s) [GOAL] case h R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r /ₒ s * OneHom.toFun ↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) } ↑(r, s).snd = OneHom.toFun ↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) } (r, s).fst [PROOFSTEP] dsimp [GOAL] case h R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r /ₒ s * ↑numeratorHom ↑s = ↑numeratorHom r [PROOFSTEP] rw [numeratorHom_apply, numeratorHom_apply] [GOAL] case h R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r /ₒ s * (↑s /ₒ 1) = r /ₒ 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }) r₁ = OneHom.toFun (↑{ toOneHom := { toFun := ↑numeratorHom, map_one' := (_ : ↑numeratorHom 1 = ↑numeratorHom 1) }, map_mul' := (_ : ∀ (r₁ r₂ : R), ↑numeratorHom (r₁ * r₂) = ↑numeratorHom r₁ * ↑numeratorHom r₂) }) r₂ ↔ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R ⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂ ↔ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R ⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂ → ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R h : ↑numeratorHom r₁ = ↑numeratorHom r₂ ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h [GOAL] case mp R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R h : ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] rcases h with ⟨u, v, h₁, h₂⟩ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R u : { x // x ∈ S } v : R h₁ : r₂ * ↑u = r₁ * v h₂ : ↑1 * ↑u = ↑1 * v ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] dsimp at h₂ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R u : { x // x ∈ S } v : R h₁ : r₂ * ↑u = r₁ * v h₂ : 1 * ↑u = 1 * v ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] rw [one_mul, one_mul] at h₂ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R u : { x // x ∈ S } v : R h₁ : r₂ * ↑u = r₁ * v h₂ : ↑u = v ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] subst h₂ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R u : { x // x ∈ S } h₁ : r₂ * ↑u = r₁ * ↑u ⊢ ∃ c, ↑c * r₁ = ↑c * r₂ [PROOFSTEP] use u [GOAL] case h R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R u : { x // x ∈ S } h₁ : r₂ * ↑u = r₁ * ↑u ⊢ ↑u * r₁ = ↑u * r₂ [PROOFSTEP] simpa only [mul_comm] using h₁.symm [GOAL] case mpr R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R ⊢ (∃ c, ↑c * r₁ = ↑c * r₂) → ↑numeratorHom r₁ = ↑numeratorHom r₂ [PROOFSTEP] rintro ⟨s, h⟩ [GOAL] case mpr.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s : { x // x ∈ S } h : ↑s * r₁ = ↑s * r₂ ⊢ ↑numeratorHom r₁ = ↑numeratorHom r₂ [PROOFSTEP] rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] [GOAL] case mpr.intro R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s : { x // x ∈ S } h : ↑s * r₁ = ↑s * r₂ ⊢ ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v [PROOFSTEP] refine' ⟨s, s, _, _⟩ [GOAL] case mpr.intro.refine'_1 R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s : { x // x ∈ S } h : ↑s * r₁ = ↑s * r₂ ⊢ r₂ * ↑s = r₁ * ↑s [PROOFSTEP] simpa [mul_comm] using h.symm [GOAL] case mpr.intro.refine'_2 R : Type u_1 inst✝¹ : CommMonoid R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s : { x // x ∈ S } h : ↑s * r₁ = ↑s * r₂ ⊢ ↑1 * ↑s = ↑1 * ↑s [PROOFSTEP] simp [one_mul] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ⊢ OreLocalization.add'' r₁ s₁ r₂ s₂ = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] simp only [add''] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] have ha := ore_eq (s₁ : R) s₂ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] set! ra := oreNum (s₁ : R) s₂ with h [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ h : ra = oreNum (↑s₁) s₂ ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] rw [← h] at * [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ h : ra = ra ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] clear h [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] set! sa := oreDenom (s₁ : R) s₂ with h [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ h : sa = oreDenom (↑s₁) s₂ ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra) /ₒ (s₁ * oreDenom (↑s₁) s₂) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] rw [← h] at * [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ h : sa = sa ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] clear h [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] rcases oreCondition (sa : R) sb with ⟨rc, sc, hc⟩ -- s*, r* [GOAL] case mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] have : (s₂ : R) * (rb * rc) = s₂ * (ra * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc ⊢ ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) [PROOFSTEP] rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha] [GOAL] case mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] rcases ore_left_cancel _ _ s₂ this with ⟨sd, hd⟩ -- s# [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) = (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) [PROOFSTEP] symm [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ (r₁ * ↑sb + r₂ * rb) /ₒ (s₁ * sb) = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) [PROOFSTEP] rw [oreDiv_eq_iff] [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ ∃ u v, (r₁ * ↑sa + r₂ * ra) * ↑u = (r₁ * ↑sb + r₂ * rb) * v ∧ ↑(s₁ * sa) * ↑u = ↑(s₁ * sb) * v [PROOFSTEP] use sc * sd [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ ∃ v, (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * v ∧ ↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * v [PROOFSTEP] use rc * sd [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd) ∧ ↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * (rc * ↑sd) [PROOFSTEP] constructor [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ (r₁ * ↑sa + r₂ * ra) * ↑(sc * sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ ↑(s₁ * sa) * ↑(sc * sd) = ↑(s₁ * sb) * (rc * ↑sd) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) = (r₁ * ↑sb + r₂ * rb) * (rc * ↑sd) [PROOFSTEP] noncomm_ring [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ r₁ * (↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd)) + r₂ * (oreNum (↑s₁) s₂ * (↑sc * ↑sd)) = r₁ * (↑sb * (rc * ↑sd)) + r₂ * (rb * (rc * ↑sd)) [PROOFSTEP] rw [← mul_assoc (a := rb), hd, ← mul_assoc (a := (sa : R)), hc] [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ r₁ * (↑sb * rc * ↑sd) + r₂ * (oreNum (↑s₁) s₂ * (↑sc * ↑sd)) = r₁ * (↑sb * (rc * ↑sd)) + r₂ * (ra * ↑sc * ↑sd) [PROOFSTEP] noncomm_ring [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ ↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₁ * ↑sb * (rc * ↑sd) [PROOFSTEP] rw [mul_assoc (a := (s₁ : R)), ← mul_assoc (a := (sa : R)), hc] [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } rb : R sb : { x // x ∈ S } hb : ↑s₁ * ↑sb = ↑s₂ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ rc : R sc : { x // x ∈ S } hc : ↑sa * ↑sc = ↑sb * rc this : ↑s₂ * (rb * rc) = ↑s₂ * (ra * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ra * ↑sc * ↑sd ⊢ ↑s₁ * (↑sb * rc * ↑sd) = ↑s₁ * ↑sb * (rc * ↑sd) [PROOFSTEP] noncomm_ring [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } ⊢ ∀ (a b : R × { x // x ∈ S }), a ≈ b → OreLocalization.add'' a.fst a.snd r₂ s₂ = OreLocalization.add'' b.fst b.snd r₂ s₂ [PROOFSTEP] rintro ⟨r₁', s₁'⟩ ⟨r₁, s₁⟩ ⟨sb, rb, hb, hb'⟩ -- s*, r* [GOAL] case mk.mk.intro.intro.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb ⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂ [PROOFSTEP] rcases oreCondition (s₁' : R) s₂ with ⟨rc, sc, hc⟩ --s~~, r~~ [GOAL] case mk.mk.intro.intro.intro.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc ⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂ [PROOFSTEP] rcases oreCondition rb sc with ⟨rd, sd, hd⟩ -- s#, r# [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : (r₁, s₁).fst * ↑sb = (r₁', s₁').fst * rb hb' : ↑(r₁, s₁).snd * ↑sb = ↑(r₁', s₁').snd * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd ⊢ OreLocalization.add'' (r₁', s₁').fst (r₁', s₁').snd r₂ s₂ = OreLocalization.add'' (r₁, s₁).fst (r₁, s₁).snd r₂ s₂ [PROOFSTEP] dsimp at * [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd ⊢ OreLocalization.add'' r₁' s₁' r₂ s₂ = OreLocalization.add'' r₁ s₁ r₂ s₂ [PROOFSTEP] rw [add''_char _ _ _ _ rc sc hc] [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd ⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = OreLocalization.add'' r₁ s₁ r₂ s₂ [PROOFSTEP] have : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) := by simp only [Submonoid.coe_mul] rw [← mul_assoc, hb', mul_assoc, hd, ← mul_assoc, hc, mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd ⊢ ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd ⊢ ↑s₁ * (↑sb * ↑sd) = ↑s₂ * (rc * rd) [PROOFSTEP] rw [← mul_assoc, hb', mul_assoc, hd, ← mul_assoc, hc, mul_assoc] [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = OreLocalization.add'' r₁ s₁ r₂ s₂ [PROOFSTEP] rw [add''_char _ _ _ _ (rc * rd : R) (sb * sd : S) this] [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = (r₁ * ↑(sb * sd) + r₂ * (rc * rd)) /ₒ (s₁ * (sb * sd)) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ (r₁' * ↑sc + r₂ * rc) /ₒ (s₁' * sc) = (r₁ * (↑sb * ↑sd) + r₂ * (rc * rd)) /ₒ (s₁ * (sb * sd)) [PROOFSTEP] rw [← mul_assoc (a := r₁) (b := (sb : R)), hb, mul_assoc (a := r₁') (b := (rb : R)), hd, ← mul_assoc, ← mul_assoc, ← add_mul, oreDiv_eq_iff] [GOAL] case mk.mk.intro.intro.intro.mk.mk.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ ∃ u v, (r₁' * ↑sc + r₂ * rc) * rd * ↑u = (r₁' * ↑sc + r₂ * rc) * v ∧ ↑(s₁ * (sb * sd)) * ↑u = ↑(s₁' * sc) * v [PROOFSTEP] use 1 [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ ∃ v, (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * v ∧ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * v [PROOFSTEP] use rd [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * rd ∧ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * rd [PROOFSTEP] constructor [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ (r₁' * ↑sc + r₂ * rc) * rd * ↑1 = (r₁' * ↑sc + r₂ * rc) * rd [PROOFSTEP] simp [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) ⊢ ↑(s₁ * (sb * sd)) * ↑1 = ↑(s₁' * sc) * rd [PROOFSTEP] simp only [mul_one, Submonoid.coe_one, Submonoid.coe_mul] at this ⊢ [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₂ : R s₂ : { x // x ∈ S } r₁' : R s₁' : { x // x ∈ S } r₁ : R s₁ : { x // x ∈ S } sb : { x // x ∈ S } rb : R hb : r₁ * ↑sb = r₁' * rb hb' : ↑s₁ * ↑sb = ↑s₁' * rb rc : R sc : { x // x ∈ S } hc : ↑s₁' * ↑sc = ↑s₂ * rc rd : R sd : { x // x ∈ S } hd : rb * ↑sd = ↑sc * rd this : ↑s₁ * (↑sb * ↑sd) = ↑s₂ * (rc * rd) ⊢ ↑s₁ * (↑sb * ↑sd) = ↑s₁' * ↑sc * rd [PROOFSTEP] rw [hc, this, mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } ⊢ OreLocalization.add' r₁ s₁ (r₂ /ₒ s₂) = OreLocalization.add' r₂ s₂ (r₁ /ₒ s₁) [PROOFSTEP] simp only [add', oreDiv, add'', Quotient.mk', Quotient.lift_mk] -- Porting note: `Quotient.eq` should be used in `rw` instead of `simp` [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } ⊢ Quotient.mk (oreEqv R S) (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) = Quotient.mk (oreEqv R S) (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] rw [Quotient.eq] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } ⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] have hb := ore_eq (↑s₂) s₁ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } hb : ↑s₂ * ↑(oreDenom (↑s₂) s₁) = ↑s₁ * oreNum (↑s₂) s₁ ⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁, s₂ * oreDenom (↑s₂) s₁) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] set rb := oreNum (↑s₂) s₁ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ hb : ↑s₂ * ↑(oreDenom (↑s₂) s₁) = ↑s₁ * rb ⊢ (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * rb, s₂ * oreDenom (↑s₂) s₁) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] set sb := oreDenom (↑s₂) s₁ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] have ha := ore_eq (↑s₁) s₂ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * oreNum (↑s₁) s₂ ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] set ra := oreNum (↑s₁) s₂ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ ha : ↑s₁ * ↑(oreDenom (↑s₁) s₂) = ↑s₂ * ra ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * ra, s₁ * oreDenom (↑s₁) s₂) [PROOFSTEP] set sa := oreDenom (↑s₁) s₂ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa) [PROOFSTEP] rcases oreCondition ra sb with ⟨rc, sc, hc⟩ -- r#, s# [GOAL] case mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa) [PROOFSTEP] have : (s₁ : R) * (rb * rc) = s₁ * (sa * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc ⊢ ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) [PROOFSTEP] rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc] [GOAL] case mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa) [PROOFSTEP] rcases ore_left_cancel _ _ s₁ this with ⟨sd, hd⟩ -- s+ [GOAL] case mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ (r₂ * ↑sb + r₁ * rb, s₂ * sb) ≈ (r₁ * ↑sa + r₂ * ra, s₁ * sa) [PROOFSTEP] use sc * sd [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ ∃ v, (r₁ * ↑sa + r₂ * ra, s₁ * sa).fst * ↑(sc * sd) = (r₂ * ↑sb + r₁ * rb, s₂ * sb).fst * v ∧ ↑(r₁ * ↑sa + r₂ * ra, s₁ * sa).snd * ↑(sc * sd) = ↑(r₂ * ↑sb + r₁ * rb, s₂ * sb).snd * v [PROOFSTEP] use rc * sd [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ (r₁ * ↑sa + r₂ * ra, s₁ * sa).fst * ↑(sc * sd) = (r₂ * ↑sb + r₁ * rb, s₂ * sb).fst * (rc * ↑sd) ∧ ↑(r₁ * ↑sa + r₂ * ra, s₁ * sa).snd * ↑(sc * sd) = ↑(r₂ * ↑sb + r₁ * rb, s₂ * sb).snd * (rc * ↑sd) [PROOFSTEP] dsimp [GOAL] case h R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) = (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁) * (rc * ↑sd) ∧ ↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd) [PROOFSTEP] constructor [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ (r₁ * ↑(oreDenom (↑s₁) s₂) + r₂ * oreNum (↑s₁) s₂) * (↑sc * ↑sd) = (r₂ * ↑(oreDenom (↑s₂) s₁) + r₁ * oreNum (↑s₂) s₁) * (rc * ↑sd) [PROOFSTEP] rw [add_mul, add_mul, add_comm, mul_assoc (a := r₁) (b := (sa : R)), ← mul_assoc (a := (sa : R)), ← hd, mul_assoc (a := r₂) (b := ra), ← mul_assoc (a := ra) (b := (sc : R)), hc] [GOAL] case h.left R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ r₂ * (↑sb * rc * ↑sd) + r₁ * (rb * rc * ↑sd) = r₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd) + r₁ * oreNum (↑s₂) s₁ * (rc * ↑sd) [PROOFSTEP] simp only [mul_assoc] [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ ↑s₁ * ↑(oreDenom (↑s₁) s₂) * (↑sc * ↑sd) = ↑s₂ * ↑(oreDenom (↑s₂) s₁) * (rc * ↑sd) [PROOFSTEP] rw [mul_assoc, ← mul_assoc (sa : R), ← hd, hb] [GOAL] case h.right R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ r₂ : R s₁ s₂ : { x // x ∈ S } rb : R := oreNum (↑s₂) s₁ sb : { x // x ∈ S } := oreDenom (↑s₂) s₁ hb : ↑s₂ * ↑sb = ↑s₁ * rb ra : R := oreNum (↑s₁) s₂ sa : { x // x ∈ S } := oreDenom (↑s₁) s₂ ha : ↑s₁ * ↑sa = ↑s₂ * ra rc : R sc : { x // x ∈ S } hc : ra * ↑sc = ↑sb * rc this : ↑s₁ * (rb * rc) = ↑s₁ * (↑sa * ↑sc) sd : { x // x ∈ S } hd : rb * rc * ↑sd = ↑sa * ↑sc * ↑sd ⊢ ↑s₁ * (rb * rc * ↑sd) = ↑s₁ * rb * (rc * ↑sd) [PROOFSTEP] simp only [mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ ∀ (a b : R × { x // x ∈ S }), a ≈ b → (fun rs => OreLocalization.add' rs.fst rs.snd x) a = (fun rs => OreLocalization.add' rs.fst rs.snd x) b [PROOFSTEP] rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ hyz [GOAL] case mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } hyz : (r₁, s₁) ≈ (r₂, s₂) ⊢ (fun rs => OreLocalization.add' rs.fst rs.snd x) (r₁, s₁) = (fun rs => OreLocalization.add' rs.fst rs.snd x) (r₂, s₂) [PROOFSTEP] induction' x using OreLocalization.ind with r₃ s₃ [GOAL] case mk.mk.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } hyz : (r₁, s₁) ≈ (r₂, s₂) r₃ : R s₃ : { x // x ∈ S } ⊢ (fun rs => OreLocalization.add' rs.fst rs.snd (r₃ /ₒ s₃)) (r₁, s₁) = (fun rs => OreLocalization.add' rs.fst rs.snd (r₃ /ₒ s₃)) (r₂, s₂) [PROOFSTEP] dsimp [GOAL] case mk.mk.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } hyz : (r₁, s₁) ≈ (r₂, s₂) r₃ : R s₃ : { x // x ∈ S } ⊢ OreLocalization.add' r₁ s₁ (r₃ /ₒ s₃) = OreLocalization.add' r₂ s₂ (r₃ /ₒ s₃) [PROOFSTEP] rw [add'_comm, add'_comm r₂] -- Porting note: `Quotient.mk'` required [GOAL] case mk.mk.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } hyz : (r₁, s₁) ≈ (r₂, s₂) r₃ : R s₃ : { x // x ∈ S } ⊢ OreLocalization.add' r₃ s₃ (r₁ /ₒ s₁) = OreLocalization.add' r₃ s₃ (r₂ /ₒ s₂) [PROOFSTEP] simp [(· /ₒ ·), Quotient.mk', Quotient.sound hyz] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r r' : R s : { x // x ∈ S } ⊢ r /ₒ s + r' /ₒ s = (r + r') /ₒ s [PROOFSTEP] simp [oreDiv_add_char s s 1 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r r' : R s : { x // x ∈ S } ⊢ ↑s * ↑1 = ↑s * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x y z : OreLocalization R S ⊢ x + y + z = x + (y + z) [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S y z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ + y + z = r₁ /ₒ s₁ + (y + z) [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + z = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + z) [PROOFSTEP] induction' z using OreLocalization.ind with r₃ s₃ [GOAL] case c.c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃) [PROOFSTEP] rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩ [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) ⊢ r₁ /ₒ s₁ + r₂ /ₒ s₂ + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃) [PROOFSTEP] rw [ha'] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃) [PROOFSTEP] clear ha' [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃) [PROOFSTEP] rcases oreDivAddChar' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb hb' : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ /ₒ s₂ + r₃ /ₒ s₃) [PROOFSTEP] rw [hb'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb hb' : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] clear hb' [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] rcases oreDivAddChar' (r₁ * sa + r₂ * ra) r₃ (s₁ * sa) s₃ with ⟨rc, sc, hc, q⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc q : (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] rw [q] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc q : (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) + r₃ /ₒ s₃ = ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) ⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] clear q [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc ⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] rcases oreDivAddChar' r₁ (r₂ * sb + r₃ * rb) s₁ (s₂ * sb) with ⟨rd, sd, hd, q⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd q : r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd) ⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) [PROOFSTEP] rw [q] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd q : r₁ /ₒ s₁ + (r₂ * ↑sb + r₃ * rb) /ₒ (s₂ * sb) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd) ⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd) [PROOFSTEP] clear q [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ ((r₁ * ↑sa + r₂ * ra) * ↑sc + r₃ * rc) /ₒ (s₁ * sa * sc) = (r₁ * ↑sd + (r₂ * ↑sb + r₃ * rb) * rd) /ₒ (s₁ * sd) [PROOFSTEP] simp only [right_distrib, mul_assoc, add_assoc] -- Porting note: `simp` required because `repeat' rw` behaves differently [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ (r₁ * (↑sa * ↑sc) + (r₂ * (ra * ↑sc) + r₃ * rc)) /ₒ (s₁ * (sa * sc)) = (r₁ * ↑sd + (r₂ * (↑sb * rd) + r₃ * (rb * rd))) /ₒ (s₁ * sd) [PROOFSTEP] simp only [← add_oreDiv] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ r₁ * (↑sa * ↑sc) /ₒ (s₁ * (sa * sc)) + (r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) + r₃ * rc /ₒ (s₁ * (sa * sc))) = r₁ * ↑sd /ₒ (s₁ * sd) + (r₂ * (↑sb * rd) /ₒ (s₁ * sd) + r₃ * (rb * rd) /ₒ (s₁ * sd)) [PROOFSTEP] congr 1 [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ r₁ * (↑sa * ↑sc) /ₒ (s₁ * (sa * sc)) = r₁ * ↑sd /ₒ (s₁ * sd) [PROOFSTEP] rw [← OreLocalization.expand', ← mul_assoc, ← mul_assoc, ← OreLocalization.expand', ← OreLocalization.expand'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) + r₃ * rc /ₒ (s₁ * (sa * sc)) = r₂ * (↑sb * rd) /ₒ (s₁ * sd) + r₃ * (rb * rd) /ₒ (s₁ * sd) [PROOFSTEP] congr 1 [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) = r₂ * (↑sb * rd) /ₒ (s₁ * sd) [PROOFSTEP] simp_rw [← Submonoid.coe_mul] at ha hd [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd ⊢ r₂ * (ra * ↑sc) /ₒ (s₁ * (sa * sc)) = r₂ * (↑sb * rd) /ₒ (s₁ * sd) [PROOFSTEP] rw [Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← OreLocalization.expand, ← OreLocalization.expand', Subtype.coe_eq_of_eq_mk ha, ← OreLocalization.expand] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd ⊢ r₂ /ₒ s₂ = r₂ * ↑sb /ₒ (s₂ * sb) [PROOFSTEP] apply OreLocalization.expand' [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd ⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd) [PROOFSTEP] rcases oreCondition (sd : R) (sa * sc) with ⟨re, _, _⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑s₂ * ↑sb = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa) * ↑sc = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑s₁ * ↑sd = ↑(s₂ * sb) * rd re : R fst✝ : { x // x ∈ S } snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re ⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd) [PROOFSTEP] simp_rw [← Submonoid.coe_mul] at hb hc hd [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑(s₂ * sb) = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa * sc) = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd re : R fst✝ : { x // x ∈ S } snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re ⊢ r₃ * rc /ₒ (s₁ * (sa * sc)) = r₃ * (rb * rd) /ₒ (s₁ * sd) [PROOFSTEP] rw [← mul_assoc, Subtype.coe_eq_of_eq_mk hc] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑(s₂ * sb) = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa * sc) = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd re : R fst✝ : { x // x ∈ S } snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re ⊢ r₃ * rc /ₒ { val := ↑s₃ * rc, property := (_ : ↑s₃ * rc ∈ ↑S) } = r₃ * (rb * rd) /ₒ (s₁ * sd) [PROOFSTEP] rw [← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hb] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro.mk.mk.intro.e_a.e_a.mk.mk R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra rb : R sb : { x // x ∈ S } hb : ↑(s₂ * sb) = ↑s₃ * rb rc : R sc : { x // x ∈ S } hc : ↑(s₁ * sa * sc) = ↑s₃ * rc rd : R sd : { x // x ∈ S } hd : ↑(s₁ * sd) = ↑(s₂ * sb) * rd re : R fst✝ : { x // x ∈ S } snd✝ : ↑sd * ↑fst✝ = ↑(sa * sc) * re ⊢ r₃ /ₒ s₃ = r₃ * rb /ₒ { val := ↑s₃ * rb, property := (_ : ↑s₃ * rb ∈ ↑S) } [PROOFSTEP] apply OreLocalization.expand [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S s : { x // x ∈ S } ⊢ 0 /ₒ s = 0 [PROOFSTEP] rw [OreLocalization.zero_def, oreDiv_eq_iff] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S s : { x // x ∈ S } ⊢ ∃ u v, 0 * ↑u = 0 * v ∧ ↑1 * ↑u = ↑s * v [PROOFSTEP] exact ⟨s, 1, by simp⟩ [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S s : { x // x ∈ S } ⊢ 0 * ↑s = 0 * 1 ∧ ↑1 * ↑s = ↑s * 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ 0 + x = x [PROOFSTEP] induction x using OreLocalization.ind [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r✝ : R s✝ : { x // x ∈ S } ⊢ 0 + r✝ /ₒ s✝ = r✝ /ₒ s✝ [PROOFSTEP] rw [← zero_div_eq_zero, add_oreDiv] [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r✝ : R s✝ : { x // x ∈ S } ⊢ (0 + r✝) /ₒ s✝ = r✝ /ₒ s✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x y : OreLocalization R S ⊢ x + y = y + x [PROOFSTEP] induction x using OreLocalization.ind [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S y : OreLocalization R S r✝ : R s✝ : { x // x ∈ S } ⊢ r✝ /ₒ s✝ + y = y + r✝ /ₒ s✝ [PROOFSTEP] induction y using OreLocalization.ind [GOAL] case c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r✝¹ : R s✝¹ : { x // x ∈ S } r✝ : R s✝ : { x // x ∈ S } ⊢ r✝¹ /ₒ s✝¹ + r✝ /ₒ s✝ = r✝ /ₒ s✝ + r✝¹ /ₒ s✝¹ [PROOFSTEP] change add' _ _ (_ /ₒ _) = _ [GOAL] case c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r✝¹ : R s✝¹ : { x // x ∈ S } r✝ : R s✝ : { x // x ∈ S } ⊢ OreLocalization.add' (r✝, s✝).fst (r✝, s✝).snd (r✝¹ /ₒ s✝¹) = r✝ /ₒ s✝ + r✝¹ /ₒ s✝¹ [PROOFSTEP] apply add'_comm [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S src✝ : Add (OreLocalization R S) := instAddOreLocalization x : OreLocalization R S ⊢ x + 0 = x [PROOFSTEP] rw [OreLocalization.add_comm, OreLocalization.zero_add] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ 0 * x = 0 [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ 0 * (r /ₒ s) = 0 [PROOFSTEP] rw [OreLocalization.zero_def, oreDiv_mul_char 0 r 1 s r 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r * ↑1 = ↑1 * r [PROOFSTEP] simp [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ 0 * r /ₒ (s * 1) = 0 /ₒ 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ x * 0 = 0 [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r /ₒ s * 0 = 0 [PROOFSTEP] rw [OreLocalization.zero_def, oreDiv_mul_char r 0 s 1 0 1 (by simp)] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ 0 * ↑1 = ↑s * 0 [PROOFSTEP] simp [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ r * 0 /ₒ (1 * 1) = 0 /ₒ 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x y z : OreLocalization R S ⊢ x * (y + z) = x * y + x * z [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S y z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (y + z) = r₁ /ₒ s₁ * y + r₁ /ₒ s₁ * z [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + z) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * z [PROOFSTEP] induction' z using OreLocalization.ind with r₃ s₃ [GOAL] case c.c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rcases oreDivAddChar' r₂ r₃ s₂ s₃ with ⟨ra, sa, ha, q⟩ [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra q : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa) ⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂ + r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rw [q] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra q : r₂ /ₒ s₂ + r₃ /ₒ s₃ = (r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] clear q [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ /ₒ s₂) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rw [OreLocalization.expand' r₂ s₂ sa] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rcases oreDivMulChar' r₁ (r₂ * sa) s₁ (s₂ * sa) with ⟨rb, sb, hb, q⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb q : r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rw [q] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb q : r₁ /ₒ s₁ * (r₂ * ↑sa /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] clear q [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] have hs₃rasb : ↑s₃ * (ra * sb) ∈ S := by rw [← mul_assoc, ← ha] norm_cast apply SetLike.coe_mem [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb ⊢ ↑s₃ * (ra * ↑sb) ∈ S [PROOFSTEP] rw [← mul_assoc, ← ha] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb ⊢ ↑s₂ * ↑sa * ↑sb ∈ S [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb ⊢ ↑(s₂ * sa * sb) ∈ S [PROOFSTEP] apply SetLike.coe_mem [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ /ₒ s₃) [PROOFSTEP] rw [OreLocalization.expand _ _ _ hs₃rasb] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ { val := ↑s₃ * (ra * ↑sb), property := hs₃rasb }) [PROOFSTEP] have ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * sb) := by simp [ha, ← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ⊢ ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) [PROOFSTEP] simp [ha, ← mul_assoc] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ { val := ↑s₃ * (ra * ↑sb), property := hs₃rasb }) [PROOFSTEP] rw [← Subtype.coe_eq_of_eq_mk ha'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) [PROOFSTEP] rcases oreDivMulChar' r₁ (r₃ * (ra * sb)) s₁ (s₂ * sa * sb) with ⟨rc, sc, hc, hc'⟩ [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) [PROOFSTEP] rw [hc'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = r₁ * rb /ₒ (s₂ * sa * sb) + r₁ * rc /ₒ (s₂ * sa * sb * sc) [PROOFSTEP] rw [oreDiv_add_char (s₂ * sa * sb) (s₂ * sa * sb * sc) 1 sc (by simp)] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ ↑(s₂ * sa * sb) * ↑sc = ↑(s₂ * sa * sb * sc) * 1 [PROOFSTEP] simp [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) /ₒ (s₂ * sa)) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc) [PROOFSTEP] rw [OreLocalization.expand' (r₂ * ↑sa + r₃ * ra) (s₂ * sa) (sb * sc)] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc) [PROOFSTEP] conv_lhs => congr ·skip congr rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))) [PROOFSTEP] congr ·skip congr rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))) [PROOFSTEP] congr ·skip congr rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ * ((r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc))) [PROOFSTEP] congr [GOAL] case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc)) [PROOFSTEP] ·skip [GOAL] case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | r₁ /ₒ s₁ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) /ₒ (s₂ * sa * (sb * sc)) [PROOFSTEP] congr [GOAL] case a.r R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | (r₂ * ↑sa + r₃ * ra) * ↑(sb * sc) case a.s R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) | s₂ * sa * (sb * sc) [PROOFSTEP] rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ /ₒ s₁ * (↑s₁ * (rb * ↑sc + rc) /ₒ (s₂ * sa * (sb * sc))) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc) [PROOFSTEP] rw [OreLocalization.mul_cancel'] [GOAL] case c.c.c.mk.mk.intro.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₂ * ↑sa = ↑s₃ * ra rb : R sb : { x // x ∈ S } hb : r₂ * ↑sa * ↑sb = ↑s₁ * rb hs₃rasb : ↑s₃ * (ra * ↑sb) ∈ S ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * ↑sb) rc : R sc : { x // x ∈ S } hc : r₃ * (ra * ↑sb) * ↑sc = ↑s₁ * rc hc' : r₁ /ₒ s₁ * (r₃ * (ra * ↑sb) /ₒ (s₂ * sa * sb)) = r₁ * rc /ₒ (s₂ * sa * sb * sc) ⊢ r₁ * (rb * ↑sc + rc) /ₒ (s₂ * sa * (sb * sc)) = (r₁ * rb * ↑sc + r₁ * rc * 1) /ₒ (s₂ * sa * sb * sc) [PROOFSTEP] simp only [mul_one, Submonoid.coe_mul, mul_add, ← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S x y z : OreLocalization R S ⊢ (x + y) * z = x * z + y * z [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S y z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ (r₁ /ₒ s₁ + y) * z = r₁ /ₒ s₁ * z + y * z [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S z : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * z = r₁ /ₒ s₁ * z + r₂ /ₒ s₂ * z [PROOFSTEP] induction' z using OreLocalization.ind with r₃ s₃ [GOAL] case c.c.c R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩ [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) ⊢ (r₁ /ₒ s₁ + r₂ /ₒ s₂) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] rw [ha'] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ha' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] clear ha' [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑s₁ * ↑sa = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] norm_cast at ha [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ /ₒ s₁ * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] rw [OreLocalization.expand' r₁ s₁ sa] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ /ₒ s₂ * (r₃ /ₒ s₃) [PROOFSTEP] rw [OreLocalization.expand r₂ s₂ ra (by rw [← ha]; apply SetLike.coe_mem)] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ ↑s₂ * ra ∈ S [PROOFSTEP] rw [← ha] [GOAL] R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ ↑(s₁ * sa) ∈ S [PROOFSTEP] apply SetLike.coe_mem [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ { val := ↑s₂ * ra, property := (_ : ↑s₂ * ra ∈ S) } * (r₃ /ₒ s₃) [PROOFSTEP] rw [← Subtype.coe_eq_of_eq_mk ha] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃) [PROOFSTEP] repeat rw [oreDiv_mul_oreDiv] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) /ₒ (s₁ * sa) * (r₃ /ₒ s₃) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃) [PROOFSTEP] rw [oreDiv_mul_oreDiv] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) = r₁ * ↑sa /ₒ (s₁ * sa) * (r₃ /ₒ s₃) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃) [PROOFSTEP] rw [oreDiv_mul_oreDiv] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) = r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) + r₂ * ra /ₒ (s₁ * sa) * (r₃ /ₒ s₃) [PROOFSTEP] rw [oreDiv_mul_oreDiv] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) = r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) + r₂ * ra * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) [PROOFSTEP] rw [oreDiv_mul_oreDiv] [GOAL] case c.c.c.mk.mk.intro R : Type u_1 inst✝¹ : Semiring R S : Submonoid R inst✝ : OreSet S r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } ra : R sa : { x // x ∈ S } ha : ↑(s₁ * sa) = ↑s₂ * ra ⊢ (r₁ * ↑sa + r₂ * ra) * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) = r₁ * ↑sa * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) + r₂ * ra * oreNum r₃ (s₁ * sa) /ₒ (s₃ * oreDenom r₃ (s₁ * sa)) [PROOFSTEP] simp only [add_mul, add_oreDiv] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf ⊢ OneHom.toFun (↑{ toOneHom := ↑src✝, map_mul' := (_ : ∀ (x y : OreLocalization R S), OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) }) 0 = 0 [PROOFSTEP] change (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) 0 = 0 [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf ⊢ ↑(universalMulHom (↑f) fS hf) 0 = 0 [PROOFSTEP] rw [OreLocalization.zero_def, universalMulHom_apply] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf ⊢ ↑↑f 0 * ↑(↑fS 1)⁻¹ = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf x y : OreLocalization R S ⊢ OneHom.toFun (↑{ toOneHom := ↑src✝, map_mul' := (_ : ∀ (x y : OreLocalization R S), OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) }) (x + y) = OneHom.toFun (↑{ toOneHom := ↑src✝, map_mul' := (_ : ∀ (x y : OreLocalization R S), OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) }) x + OneHom.toFun (↑{ toOneHom := ↑src✝, map_mul' := (_ : ∀ (x y : OreLocalization R S), OneHom.toFun (↑src✝) (x * y) = OneHom.toFun (↑src✝) x * OneHom.toFun (↑src✝) y) }) y [PROOFSTEP] change (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) (x + y) = (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) x + (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) y [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf x y : OreLocalization R S ⊢ ↑(universalMulHom (↑f) fS hf) (x + y) = ↑(universalMulHom (↑f) fS hf) x + ↑(universalMulHom (↑f) fS hf) y [PROOFSTEP] induction' x using OreLocalization.ind with r₁ s₁ [GOAL] case c R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf y : OreLocalization R S r₁ : R s₁ : { x // x ∈ S } ⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + y) = ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) y [PROOFSTEP] induction' y using OreLocalization.ind with r₂ s₂ [GOAL] case c.c R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } ⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + r₂ /ₒ s₂) = ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂) [PROOFSTEP] rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨r₃, s₃, h₃, h₃'⟩ [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ h₃' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃) ⊢ ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁ + r₂ /ₒ s₂) = ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂) [PROOFSTEP] rw [h₃'] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ h₃' : r₁ /ₒ s₁ + r₂ /ₒ s₂ = (r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃) ⊢ ↑(universalMulHom (↑f) fS hf) ((r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)) = ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂) [PROOFSTEP] clear h₃' [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑(universalMulHom (↑f) fS hf) ((r₁ * ↑s₃ + r₂ * r₃) /ₒ (s₁ * s₃)) = ↑(universalMulHom (↑f) fS hf) (r₁ /ₒ s₁) + ↑(universalMulHom (↑f) fS hf) (r₂ /ₒ s₂) [PROOFSTEP] simp only [universalMulHom_apply, RingHom.toMonoidHom_eq_coe, MonoidHom.coe_coe] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f (r₁ * ↑s₃ + r₂ * r₃) * ↑(↑fS (s₁ * s₃))⁻¹ = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] simp only [mul_inv_rev, MonoidHom.map_mul, RingHom.map_add, RingHom.map_mul, Units.val_mul] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ (↑f r₁ * ↑f ↑s₃ + ↑f r₂ * ↑f r₃) * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] rw [add_mul, ← mul_assoc, mul_assoc (f r₁), hf, ← Units.val_mul] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f r₁ * ↑(↑fS s₃ * (↑fS s₃)⁻¹) * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] simp only [mul_one, mul_right_inv, Units.val_one] [GOAL] case c.c.mk.mk.intro R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₁ * ↑(↑fS s₁)⁻¹ + ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] congr 1 [GOAL] case c.c.mk.mk.intro.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f r₂ * ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] rw [mul_assoc] [GOAL] case c.c.mk.mk.intro.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f r₂ * (↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹)) = ↑f r₂ * ↑(↑fS s₂)⁻¹ [PROOFSTEP] congr 1 [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑s₁ * ↑s₃ = ↑s₂ * r₃ ⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹ [PROOFSTEP] norm_cast at h₃ [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ ⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹ [PROOFSTEP] have h₃' := Subtype.coe_eq_of_eq_mk h₃ [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } ⊢ ↑f r₃ * (↑(↑fS s₃)⁻¹ * ↑(↑fS s₁)⁻¹) = ↑(↑fS s₂)⁻¹ [PROOFSTEP] rw [← Units.val_mul, ← mul_inv_rev, ← fS.map_mul, h₃'] [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } ⊢ ↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ = ↑(↑fS s₂)⁻¹ [PROOFSTEP] have hs₂r₃ : ↑s₂ * r₃ ∈ S := by rw [← h₃] exact SetLike.coe_mem (s₁ * s₃) [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } ⊢ ↑s₂ * r₃ ∈ S [PROOFSTEP] rw [← h₃] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } ⊢ ↑(s₁ * s₃) ∈ S [PROOFSTEP] exact SetLike.coe_mem (s₁ * s₃) [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S ⊢ ↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ = ↑(↑fS s₂)⁻¹ [PROOFSTEP] apply (Units.inv_mul_cancel_left (fS s₂) _).symm.trans [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S ⊢ ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) = ↑(↑fS s₂)⁻¹ [PROOFSTEP] conv_lhs => congr ·skip rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc] congr ·skip rw [← hf, ← mul_assoc (f s₂), ← f.map_mul] conv => congr ·skip congr rw [← h₃] rw [hf, ← mul_assoc, ← h₃', Units.inv_mul] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) [PROOFSTEP] congr ·skip rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc] congr ·skip rw [← hf, ← mul_assoc (f s₂), ← f.map_mul] conv => congr ·skip congr rw [← h₃] rw [hf, ← mul_assoc, ← h₃', Units.inv_mul] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) [PROOFSTEP] congr ·skip rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc] congr ·skip rw [← hf, ← mul_assoc (f s₂), ← f.map_mul] conv => congr ·skip congr rw [← h₃] rw [hf, ← mul_assoc, ← h₃', Units.inv_mul] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) [PROOFSTEP] congr [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] ·skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂)⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc] [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) * (↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹))) [PROOFSTEP] congr [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) [PROOFSTEP] ·skip [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) [PROOFSTEP] skip [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) [PROOFSTEP] skip [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) [PROOFSTEP] skip [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑(↑fS s₂) * (↑f r₃ * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹)) [PROOFSTEP] rw [← hf, ← mul_assoc (f s₂), ← f.map_mul] [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] conv => congr ·skip congr rw [← h₃] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] congr ·skip congr rw [← h₃] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] congr [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ [PROOFSTEP] ·skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ [PROOFSTEP] skip [GOAL] case a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑f (↑s₂ * r₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ [PROOFSTEP] congr [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑f (↑s₂ * r₃) case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹ [PROOFSTEP] rw [← h₃] [GOAL] case a.a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S | ↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ })⁻¹ * (↑f ↑(s₁ * s₃) * ↑(↑fS { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) })⁻¹) [PROOFSTEP] rw [hf, ← mul_assoc, ← h₃', Units.inv_mul] [GOAL] case c.c.mk.mk.intro.e_a.e_a R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) src✝ : OreLocalization R S →* T := universalMulHom (↑f) fS hf r₁ : R s₁ : { x // x ∈ S } r₂ : R s₂ : { x // x ∈ S } r₃ : R s₃ : { x // x ∈ S } h₃ : ↑(s₁ * s₃) = ↑s₂ * r₃ h₃' : s₁ * s₃ = { val := ↑s₂ * r₃, property := (_ : ↑s₂ * r₃ ∈ ↑S) } hs₂r₃ : ↑s₂ * r₃ ∈ S ⊢ ↑(↑fS s₂)⁻¹ * (↑(↑fS { val := ↑s₂ * r₃, property := hs₂r₃ }) * (1 * ↑(↑fS (s₁ * s₃))⁻¹)) = ↑(↑fS s₂)⁻¹ [PROOFSTEP] rw [one_mul, ← h₃', Units.mul_inv, mul_one] [GOAL] R : Type u_1 inst✝² : Semiring R S : Submonoid R inst✝¹ : OreSet S T : Type u_2 inst✝ : Semiring T f : R →+* T fS : { x // x ∈ S } →* Tˣ hf : ∀ (s : { x // x ∈ S }), ↑f ↑s = ↑(↑fS s) r : R ⊢ ↑(universalHom f fS hf) (↑numeratorHom r) = ↑f r [PROOFSTEP] simp [numeratorHom_apply, universalHom_apply] [GOAL] R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S ⊢ (fun r s => -r /ₒ s) r s = (fun r s => -r /ₒ s) (r * t) { val := ↑s * t, property := ht } [PROOFSTEP] simp only [] [GOAL] R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S r t : R s : { x // x ∈ S } ht : ↑s * t ∈ S ⊢ -r /ₒ s = -(r * t) /ₒ { val := ↑s * t, property := ht } [PROOFSTEP] rw [neg_mul_eq_neg_mul, ← OreLocalization.expand] [GOAL] R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S x : OreLocalization R S ⊢ -x + x = 0 [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S r : R s : { x // x ∈ S } ⊢ -(r /ₒ s) + r /ₒ s = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S hS : S ≤ R⁰ r₁ r₂ : R h : ↑numeratorHom r₁ = ↑numeratorHom r₂ ⊢ r₁ = r₂ [PROOFSTEP] rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h [GOAL] R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S hS : S ≤ R⁰ r₁ r₂ : R h : ∃ u v, r₂ * ↑u = r₁ * v ∧ ↑1 * ↑u = ↑1 * v ⊢ r₁ = r₂ [PROOFSTEP] rcases h with ⟨u, v, h₁, h₂⟩ [GOAL] case intro.intro.intro R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S hS : S ≤ R⁰ r₁ r₂ : R u : { x // x ∈ S } v : R h₁ : r₂ * ↑u = r₁ * v h₂ : ↑1 * ↑u = ↑1 * v ⊢ r₁ = r₂ [PROOFSTEP] simp only [S.coe_one, one_mul] at h₂ [GOAL] case intro.intro.intro R : Type u_1 inst✝¹ : Ring R S : Submonoid R inst✝ : OreSet S hS : S ≤ R⁰ r₁ r₂ : R u : { x // x ∈ S } v : R h₁ : r₂ * ↑u = r₁ * v h₂ : ↑u = v ⊢ r₁ = r₂ [PROOFSTEP] rwa [← h₂, mul_cancel_right_mem_nonZeroDivisors (hS (SetLike.coe_mem u)), eq_comm] at h₁ [GOAL] R : Type u_1 inst✝² : Ring R S : Submonoid R inst✝¹ : OreSet S inst✝ : Nontrivial R hS : S ≤ R⁰ h : 0 = 1 ⊢ False [PROOFSTEP] rw [OreLocalization.one_def, OreLocalization.zero_def] at h [GOAL] R : Type u_1 inst✝² : Ring R S : Submonoid R inst✝¹ : OreSet S inst✝ : Nontrivial R hS : S ≤ R⁰ h : 0 /ₒ 1 = 1 /ₒ 1 ⊢ False [PROOFSTEP] apply nonZeroDivisors.coe_ne_zero 1 (numeratorHom_inj hS h).symm [GOAL] R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R ⊢ ∀ (r t : R) (s : { x // x ∈ R⁰ }) (ht : ↑s * t ∈ R⁰), (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := ht } [PROOFSTEP] intro r t s hst [GOAL] R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ ⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := hst } [PROOFSTEP] by_cases hr : r = 0 [GOAL] case pos R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : r = 0 ⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := hst } [PROOFSTEP] simp [hr] [GOAL] case neg R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := hst } [PROOFSTEP] by_cases ht : t = 0 [GOAL] case pos R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ht : t = 0 ⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := hst } [PROOFSTEP] exfalso [GOAL] case pos.h R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ht : t = 0 ⊢ False [PROOFSTEP] apply nonZeroDivisors.coe_ne_zero ⟨_, hst⟩ [GOAL] case pos.h R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ht : t = 0 ⊢ ↑{ val := ↑s * t, property := hst } = 0 [PROOFSTEP] simp [ht, mul_zero] [GOAL] case neg R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ht : ¬t = 0 ⊢ (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) r s = (fun r s => if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) (r * t) { val := ↑s * t, property := hst } [PROOFSTEP] simp only [hr, ht, dif_neg, not_false_iff, or_self_iff, mul_eq_zero] [GOAL] case neg R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R r t : R s : { x // x ∈ R⁰ } hst : ↑s * t ∈ R⁰ hr : ¬r = 0 ht : ¬t = 0 ⊢ ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) } = ↑s * t /ₒ { val := r * t, property := (_ : ∀ (x : R), x * (r * t) = 0 → x = 0) } [PROOFSTEP] apply OreLocalization.expand [GOAL] R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h : x ≠ 0 ⊢ x * x⁻¹ = 1 [PROOFSTEP] induction' x using OreLocalization.ind with r s [GOAL] case c R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 ⊢ r /ₒ s * (r /ₒ s)⁻¹ = 1 [PROOFSTEP] rw [OreLocalization.inv_def, OreLocalization.one_def] [GOAL] case c R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 ⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1 [PROOFSTEP] by_cases hr : r = 0 [GOAL] case pos R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 hr : r = 0 ⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1 [PROOFSTEP] exfalso [GOAL] case pos.h R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 hr : r = 0 ⊢ False [PROOFSTEP] apply h [GOAL] case pos.h R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 hr : r = 0 ⊢ r /ₒ s = 0 [PROOFSTEP] simp [hr] [GOAL] case neg R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 hr : ¬r = 0 ⊢ (r /ₒ s * if hr : r = 0 then 0 else ↑s /ₒ { val := r, property := (_ : ∀ (x : R), x * r = 0 → x = 0) }) = 1 /ₒ 1 [PROOFSTEP] simp [hr] [GOAL] case neg R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R x : OreLocalization R R⁰ h✝ : x ≠ 0 r : R s : { x // x ∈ R⁰ } h : r /ₒ s ≠ 0 hr : ¬r = 0 ⊢ 1 = 1 /ₒ 1 [PROOFSTEP] apply OreLocalization.div_eq_one' [GOAL] R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R ⊢ 0⁻¹ = 0 [PROOFSTEP] rw [OreLocalization.zero_def, OreLocalization.inv_def] [GOAL] R : Type u_1 inst✝³ : Ring R inst✝² : Nontrivial R inst✝¹ : OreSet R⁰ inst✝ : NoZeroDivisors R ⊢ (if hr : 0 = 0 then 0 else ↑1 /ₒ { val := 0, property := (_ : ∀ (x : R), x * 0 = 0 → x = 0) }) = 0 /ₒ 1 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.RingTheory.OreLocalization.Basic", "llama_tokens": 122969}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x : E ⊢ Convex 𝕜 s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • s + b • s ⊆ s [PROOFSTEP] rintro hA a b ha hb hab w ⟨au, bv, ⟨u, hu, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x : E hA : Convex 𝕜 s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 u : E hu : u ∈ s v : E hv : v ∈ s ⊢ (fun x x_1 => x + x_1) ((fun x => a • x) u) ((fun x => b • x) v) ∈ s [PROOFSTEP] exact hA hu hv ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) ⊢ Convex 𝕜 (⋃ (i : ι), s i) [PROOFSTEP] rintro x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) x : E hx : x ∈ ⋃ (i : ι), s i y : E hy : y ∈ ⋃ (i : ι), s i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ⋃ (i : ι), s i [PROOFSTEP] rw [mem_iUnion] at hx hy ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) x : E hx : ∃ i, x ∈ s i y : E hy : ∃ i, y ∈ s i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] obtain ⟨i, hx⟩ := hx [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) x y : E hy : ∃ i, y ∈ s i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι hx : x ∈ s i ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] obtain ⟨j, hy⟩ := hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] obtain ⟨k, hik, hjk⟩ := hdir i j [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ : E ι : Sort u_5 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hc : ∀ ⦃i : ι⦄, Convex 𝕜 (s i) x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j k : ι hik : s i ⊆ s k hjk : s j ⊆ s k ⊢ ∃ i, a • x + b • y ∈ s i [PROOFSTEP] exact ⟨k, hc (hik hx) (hjk hy) ha hb hab⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x : E c : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) c hc : ∀ ⦃A : Set E⦄, A ∈ c → Convex 𝕜 A ⊢ Convex 𝕜 (⋃₀ c) [PROOFSTEP] rw [sUnion_eq_iUnion] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x : E c : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) c hc : ∀ ⦃A : Set E⦄, A ∈ c → Convex 𝕜 A ⊢ Convex 𝕜 (⋃ (i : ↑c), ↑i) [PROOFSTEP] exact (directedOn_iff_directed.1 hdir).convex_iUnion fun A => hc A.2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E ⊢ Convex 𝕜 s ↔ Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s [PROOFSTEP] refine' convex_iff_forall_pos.trans ⟨fun h x hx y hy _ => h hx hy, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E ⊢ (Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) → ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s [PROOFSTEP] intro h x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] obtain rfl | hxy := eq_or_ne x y [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s x : E hx : x ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hy : x ∈ s ⊢ a • x + b • x ∈ s [PROOFSTEP] rwa [Convex.combo_self hab] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hxy : x ≠ y ⊢ a • x + b • y ∈ s [PROOFSTEP] exact h hx hy hxy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ x y : E ⊢ Convex 𝕜 [x-[𝕜]y] [PROOFSTEP] rintro p ⟨ap, bp, hap, hbp, habp, rfl⟩ q ⟨aq, bq, haq, hbq, habq, rfl⟩ a b ha hb hab [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ x y : E ap bp : 𝕜 hap : 0 ≤ ap hbp : 0 ≤ bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 ≤ aq hbq : 0 ≤ bq habq : aq + bq = 1 a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • (ap • x + bp • y) + b • (aq • x + bq • y) ∈ [x-[𝕜]y] [PROOFSTEP] refine' ⟨a * ap + b * aq, a * bp + b * bq, add_nonneg (mul_nonneg ha hap) (mul_nonneg hb haq), add_nonneg (mul_nonneg ha hbp) (mul_nonneg hb hbq), _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ x y : E ap bp : 𝕜 hap : 0 ≤ ap hbp : 0 ≤ bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 ≤ aq hbq : 0 ≤ bq habq : aq + bq = 1 a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a * ap + b * aq + (a * bp + b * bq) = 1 [PROOFSTEP] rw [add_add_add_comm, ← mul_add, ← mul_add, habp, habq, mul_one, mul_one, hab] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ x y : E ap bp : 𝕜 hap : 0 ≤ ap hbp : 0 ≤ bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 ≤ aq hbq : 0 ≤ bq habq : aq + bq = 1 a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (a * ap + b * aq) • x + (a * bp + b * bq) • y = a • (ap • x + bp • y) + b • (aq • x + bq • y) [PROOFSTEP] simp_rw [add_smul, mul_smul, smul_add] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ x y : E ap bp : 𝕜 hap : 0 ≤ ap hbp : 0 ≤ bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 ≤ aq hbq : 0 ≤ bq habq : aq + bq = 1 a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ap • x + b • aq • x + (a • bp • y + b • bq • y) = a • ap • x + a • bp • y + (b • aq • x + b • bq • y) [PROOFSTEP] exact add_add_add_comm _ _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s f : E →ₗ[𝕜] F ⊢ Convex 𝕜 (↑f '' s) [PROOFSTEP] intro x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E hs : Convex 𝕜 s f : E →ₗ[𝕜] F x : F hx : x ∈ ↑f '' s y : F hy : y ∈ ↑f '' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f '' s [PROOFSTEP] obtain ⟨x', hx', rfl⟩ := mem_image_iff_bex.1 hx [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s f : E →ₗ[𝕜] F y : F hy : y ∈ ↑f '' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : E hx' : x' ∈ s hx : ↑f x' ∈ ↑f '' s ⊢ a • ↑f x' + b • y ∈ ↑f '' s [PROOFSTEP] obtain ⟨y', hy', rfl⟩ := mem_image_iff_bex.1 hy [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s f : E →ₗ[𝕜] F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : E hx' : x' ∈ s hx : ↑f x' ∈ ↑f '' s y' : E hy' : y' ∈ s hy : ↑f y' ∈ ↑f '' s ⊢ a • ↑f x' + b • ↑f y' ∈ ↑f '' s [PROOFSTEP] exact ⟨a • x' + b • y', hs hx' hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s f : E →ₗ[𝕜] F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : E hx' : x' ∈ s hx : ↑f x' ∈ ↑f '' s y' : E hy' : y' ∈ s hy : ↑f y' ∈ ↑f '' s ⊢ ↑f (a • x' + b • y') = a • ↑f x' + b • ↑f y' [PROOFSTEP] rw [f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E x : E s : Set F hs : Convex 𝕜 s f : E →ₗ[𝕜] F ⊢ Convex 𝕜 (↑f ⁻¹' s) [PROOFSTEP] intro x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E x✝ : E s : Set F hs : Convex 𝕜 s f : E →ₗ[𝕜] F x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f ⁻¹' s [PROOFSTEP] rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E x✝ : E s : Set F hs : Convex 𝕜 s f : E →ₗ[𝕜] F x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ s [PROOFSTEP] exact hs hx hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ Convex 𝕜 (s + t) [PROOFSTEP] rw [← add_image_prod] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ Convex 𝕜 ((fun x => x.fst + x.snd) '' s ×ˢ t) [PROOFSTEP] exact (hs.prod ht).is_linear_image IsLinearMap.isLinearMap_add [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s z : E ⊢ Convex 𝕜 (z +ᵥ s) [PROOFSTEP] simp_rw [← image_vadd, vadd_eq_add, ← singleton_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s z : E ⊢ Convex 𝕜 ({z} + s) [PROOFSTEP] exact (convex_singleton _).add hs [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s z : E ⊢ Convex 𝕜 ((fun x => z + x) ⁻¹' s) [PROOFSTEP] intro x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E hs : Convex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s [PROOFSTEP] have h := hs hx hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E hs : Convex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ s ⊢ a • x + b • y ∈ (fun x => z + x) ⁻¹' s [PROOFSTEP] rwa [smul_add, smul_add, add_add_add_comm, ← add_smul, hab, one_smul] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : Convex 𝕜 s z : E ⊢ Convex 𝕜 ((fun x => x + z) ⁻¹' s) [PROOFSTEP] simpa only [add_comm] using hs.translate_preimage_right z [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x : E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β f : E → β h : IsLinearMap 𝕜 f r : β ⊢ Convex 𝕜 {w | f w = r} [PROOFSTEP] simp_rw [le_antisymm_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x : E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β f : E → β h : IsLinearMap 𝕜 f r : β ⊢ Convex 𝕜 {w | f w ≤ r ∧ r ≤ f w} [PROOFSTEP] exact (convex_halfspace_le h r).inter (convex_halfspace_ge h r) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r : β ⊢ Convex 𝕜 (Iio r) [PROOFSTEP] intro x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x✝ : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r x : β hx : x ∈ Iio r y : β hy : y ∈ Iio r a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ Iio r [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x✝ : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r x : β hx : x ∈ Iio r y : β hy : y ∈ Iio r b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 • x + b • y ∈ Iio r [PROOFSTEP] rw [zero_add] at hab [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x✝ : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r x : β hx : x ∈ Iio r y : β hy : y ∈ Iio r b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 ⊢ 0 • x + b • y ∈ Iio r [PROOFSTEP] rwa [zero_smul, zero_add, hab, one_smul] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x✝ : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r x : β hx : x ∈ Iio r y : β hy : y ∈ Iio r a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a ⊢ a • x + b • y ∈ Iio r [PROOFSTEP] rw [mem_Iio] at hx hy [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : Module 𝕜 E inst✝³ : Module 𝕜 F s : Set E x✝ : E inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β r x : β hx : x < r y : β hy : y < r a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a ⊢ a • x + b • y ∈ Iio r [PROOFSTEP] calc a • x + b • y < a • r + b • r := add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hx ha') (smul_le_smul_of_nonneg hy.le hb) _ = r := Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedCommSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E hs : Convex 𝕜 s z : E c : 𝕜 ⊢ Convex 𝕜 ((fun x => z + c • x) '' s) [PROOFSTEP] simpa only [← image_smul, ← image_vadd, image_image] using (hs.smul c).vadd z [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b : E ⊢ Convex 𝕜 (openSegment 𝕜 a b) [PROOFSTEP] rw [convex_iff_openSegment_subset] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b : E ⊢ ∀ ⦃x : E⦄, x ∈ openSegment 𝕜 a b → ∀ ⦃y : E⦄, y ∈ openSegment 𝕜 a b → openSegment 𝕜 x y ⊆ openSegment 𝕜 a b [PROOFSTEP] rintro p ⟨ap, bp, hap, hbp, habp, rfl⟩ q ⟨aq, bq, haq, hbq, habq, rfl⟩ z ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a✝ b✝ : E ap bp : 𝕜 hap : 0 < ap hbp : 0 < bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 < aq hbq : 0 < bq habq : aq + bq = 1 a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • (ap • a✝ + bp • b✝) + b • (aq • a✝ + bq • b✝) ∈ openSegment 𝕜 a✝ b✝ [PROOFSTEP] refine' ⟨a * ap + b * aq, a * bp + b * bq, by positivity, by positivity, _, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a✝ b✝ : E ap bp : 𝕜 hap : 0 < ap hbp : 0 < bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 < aq hbq : 0 < bq habq : aq + bq = 1 a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 < a * ap + b * aq [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a✝ b✝ : E ap bp : 𝕜 hap : 0 < ap hbp : 0 < bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 < aq hbq : 0 < bq habq : aq + bq = 1 a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 < a * bp + b * bq [PROOFSTEP] positivity [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a✝ b✝ : E ap bp : 𝕜 hap : 0 < ap hbp : 0 < bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 < aq hbq : 0 < bq habq : aq + bq = 1 a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a * ap + b * aq + (a * bp + b * bq) = 1 [PROOFSTEP] rw [add_add_add_comm, ← mul_add, ← mul_add, habp, habq, mul_one, mul_one, hab] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : StrictOrderedCommSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a✝ b✝ : E ap bp : 𝕜 hap : 0 < ap hbp : 0 < bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 < aq hbq : 0 < bq habq : aq + bq = 1 a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (a * ap + b * aq) • a✝ + (a * bp + b * bq) • b✝ = a • (ap • a✝ + bp • b✝) + b • (aq • a✝ + bq • b✝) [PROOFSTEP] simp_rw [add_smul, mul_smul, smul_add, add_add_add_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x y : E hx : x ∈ s hy : x + y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ x + t • y ∈ s [PROOFSTEP] have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x y : E hx : x ∈ s hy : x + y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ x + t • y = (1 - t) • x + t • (x + y) [PROOFSTEP] rw [smul_add, ← add_assoc, ← add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x y : E hx : x ∈ s hy : x + y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x + t • y ∈ s [PROOFSTEP] rw [h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x y : E hx : x ∈ s hy : x + y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ (1 - t) • x + t • (x + y) ∈ s [PROOFSTEP] exact hs hx hy (sub_nonneg_of_le ht.2) ht.1 (sub_add_cancel _ _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ t • x ∈ s [PROOFSTEP] simpa using hs.add_smul_mem zero_mem (by simpa using hx) ht [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E hs : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ 0 + x ∈ s [PROOFSTEP] simpa using hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E h : Convex 𝕜 s x y : E hx : x ∈ s hy : y ∈ s ⊢ MapsTo (↑(AffineMap.lineMap x y)) (Icc 0 1) s [PROOFSTEP] simpa only [mapsTo', segment_eq_image_lineMap] using h.segment_subset hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E h : Convex 𝕜 s x y : E hx : x ∈ s hy : y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ x + t • (y - x) ∈ s [PROOFSTEP] rw [add_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E h : Convex 𝕜 s x y : E hx : x ∈ s hy : y ∈ s t : 𝕜 ht : t ∈ Icc 0 1 ⊢ t • (y - x) + x ∈ s [PROOFSTEP] exact h.lineMap_mem hx hy ht [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E Q : AffineSubspace 𝕜 E ⊢ Convex 𝕜 ↑Q [PROOFSTEP] intro x hx y hy a b _ _ hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E Q : AffineSubspace 𝕜 E x : E hx : x ∈ ↑Q y : E hy : y ∈ ↑Q a b : 𝕜 a✝¹ : 0 ≤ a a✝ : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑Q [PROOFSTEP] rw [eq_sub_of_add_eq hab, ← AffineMap.lineMap_apply_module] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E Q : AffineSubspace 𝕜 E x : E hx : x ∈ ↑Q y : E hy : y ∈ ↑Q a b : 𝕜 a✝¹ : 0 ≤ a a✝ : 0 ≤ b hab : a + b = 1 ⊢ ↑(AffineMap.lineMap x y) b ∈ ↑Q [PROOFSTEP] exact AffineMap.lineMap_mem b hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E f : E →ᵃ[𝕜] F hs : Convex 𝕜 s ⊢ Convex 𝕜 (↑f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E f : E →ᵃ[𝕜] F hs : Convex 𝕜 s x : E hx : x ∈ s ⊢ StarConvex 𝕜 (↑f x) (↑f '' s) [PROOFSTEP] exact (hs hx).affine_image _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ Convex 𝕜 (s - t) [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t ⊢ Convex 𝕜 (s + -t) [PROOFSTEP] exact hs.add ht.neg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ x ∈ t • s [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ t⁻¹ • x ∈ s [PROOFSTEP] exact h.smul_mem_of_zero_mem zero_mem hx ⟨inv_nonneg.2 (zero_le_one.trans ht), inv_le_one ht⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E p q : 𝕜 hx : x ∈ s hy : y ∈ s hp : 0 ≤ p hq : 0 ≤ q ⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y [PROOFSTEP] rcases _root_.em (p = 0 ∧ q = 0) with (⟨rfl, rfl⟩ | hpq) [GOAL] case inl.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E hx : x ∈ s hy : y ∈ s hp hq : 0 ≤ 0 ⊢ ∃ z, z ∈ s ∧ (0 + 0) • z = 0 • x + 0 • y [PROOFSTEP] use x, hx [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E hx : x ∈ s hy : y ∈ s hp hq : 0 ≤ 0 ⊢ (0 + 0) • x = 0 • x + 0 • y [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E p q : 𝕜 hx : x ∈ s hy : y ∈ s hp : 0 ≤ p hq : 0 ≤ q hpq : ¬(p = 0 ∧ q = 0) ⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y [PROOFSTEP] replace hpq : 0 < p + q := (add_nonneg hp hq).lt_of_ne' (mt (add_eq_zero_iff' hp hq).1 hpq) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E p q : 𝕜 hx : x ∈ s hy : y ∈ s hp : 0 ≤ p hq : 0 ≤ q hpq : 0 < p + q ⊢ ∃ z, z ∈ s ∧ (p + q) • z = p • x + q • y [PROOFSTEP] refine ⟨_, convex_iff_div.1 h hx hy hp hq hpq, ?_⟩ [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h : Convex 𝕜 s x y : E p q : 𝕜 hx : x ∈ s hy : y ∈ s hp : 0 ≤ p hq : 0 ≤ q hpq : 0 < p + q ⊢ (p + q) • ((p / (p + q)) • x + (q / (p + q)) • y) = p • x + q • y [PROOFSTEP] simp only [smul_add, smul_smul, mul_div_cancel' _ hpq.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h_conv : Convex 𝕜 s p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q ⊢ p • s + q • s ⊆ (p + q) • s [PROOFSTEP] rintro _ ⟨_, _, ⟨v₁, h₁, rfl⟩, ⟨v₂, h₂, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E h_conv : Convex 𝕜 s p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q v₁ : E h₁ : v₁ ∈ s v₂ : E h₂ : v₂ ∈ s ⊢ (fun x x_1 => x + x_1) ((fun x => p • x) v₁) ((fun x => q • x) v₂) ∈ (p + q) • s [PROOFSTEP] exact h_conv.exists_mem_add_smul_eq h₁ h₂ hp hq [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E s : Set E hs : OrdConnected s h : IsChain (fun x x_1 => x ≤ x_1) s ⊢ Convex 𝕜 s [PROOFSTEP] refine' convex_iff_segment_subset.mpr fun x hx y hy => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E s : Set E hs : OrdConnected s h : IsChain (fun x x_1 => x ≤ x_1) s x : E hx : x ∈ s y : E hy : y ∈ s ⊢ [x-[𝕜]y] ⊆ s [PROOFSTEP] obtain hxy | hyx := h.total hx hy [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E s : Set E hs : OrdConnected s h : IsChain (fun x x_1 => x ≤ x_1) s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≤ y ⊢ [x-[𝕜]y] ⊆ s [PROOFSTEP] exact (segment_subset_Icc hxy).trans (hs.out hx hy) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E s : Set E hs : OrdConnected s h : IsChain (fun x x_1 => x ≤ x_1) s x : E hx : x ∈ s y : E hy : y ∈ s hyx : y ≤ x ⊢ [x-[𝕜]y] ⊆ s [PROOFSTEP] rw [segment_symm] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E s : Set E hs : OrdConnected s h : IsChain (fun x x_1 => x ≤ x_1) s x : E hx : x ∈ s y : E hy : y ∈ s hyx : y ≤ x ⊢ [y-[𝕜]x] ⊆ s [PROOFSTEP] exact (segment_subset_Icc hyx).trans (hs.out hy hx) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 ⊢ Convex 𝕜 s ↔ OrdConnected s [PROOFSTEP] simp_rw [convex_iff_segment_subset, segment_eq_uIcc, ordConnected_iff_uIcc_subset] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E ⊢ Convex 𝕜 ↑K [PROOFSTEP] repeat' intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E ⊢ Convex 𝕜 ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E ⊢ x✝ ∈ ↑K → StarConvex 𝕜 x✝ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝ : x✝ ∈ ↑K ⊢ StarConvex 𝕜 x✝ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝ : x✝ ∈ ↑K y✝ : E ⊢ y✝ ∈ ↑K → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x✝ + b • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝¹ : x✝ ∈ ↑K y✝ : E a✝ : y✝ ∈ ↑K ⊢ ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x✝ + b • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝² : x✝ ∈ ↑K y✝ : E a✝¹ : y✝ ∈ ↑K a✝ : 𝕜 ⊢ ∀ ⦃b : 𝕜⦄, 0 ≤ a✝ → 0 ≤ b → a✝ + b = 1 → a✝ • x✝ + b • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝² : x✝ ∈ ↑K y✝ : E a✝¹ : y✝ ∈ ↑K a✝ b✝ : 𝕜 ⊢ 0 ≤ a✝ → 0 ≤ b✝ → a✝ + b✝ = 1 → a✝ • x✝ + b✝ • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝³ : x✝ ∈ ↑K y✝ : E a✝² : y✝ ∈ ↑K a✝¹ b✝ : 𝕜 a✝ : 0 ≤ a✝¹ ⊢ 0 ≤ b✝ → a✝¹ + b✝ = 1 → a✝¹ • x✝ + b✝ • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝⁴ : x✝ ∈ ↑K y✝ : E a✝³ : y✝ ∈ ↑K a✝² b✝ : 𝕜 a✝¹ : 0 ≤ a✝² a✝ : 0 ≤ b✝ ⊢ a✝² + b✝ = 1 → a✝² • x✝ + b✝ • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝⁵ : x✝ ∈ ↑K y✝ : E a✝⁴ : y✝ ∈ ↑K a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ a✝³ • x✝ + b✝ • y✝ ∈ ↑K [PROOFSTEP] intro [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝⁵ : x✝ ∈ ↑K y✝ : E a✝⁴ : y✝ ∈ ↑K a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ a✝³ • x✝ + b✝ • y✝ ∈ ↑K [PROOFSTEP] refine' add_mem (smul_mem _ _ _) (smul_mem _ _ _) [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝⁵ : x✝ ∈ ↑K y✝ : E a✝⁴ : y✝ ∈ ↑K a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ x✝ ∈ K [PROOFSTEP] assumption [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K : Submodule 𝕜 E x✝ : E a✝⁵ : x✝ ∈ ↑K y✝ : E a✝⁴ : y✝ ∈ ↑K a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ y✝ ∈ K [PROOFSTEP] assumption [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι ⊢ stdSimplex 𝕜 ι = (⋂ (x : ι), {f | 0 ≤ f x}) ∩ {f | ∑ x : ι, f x = 1} [PROOFSTEP] ext f [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 ⊢ f ∈ stdSimplex 𝕜 ι ↔ f ∈ (⋂ (x : ι), {f | 0 ≤ f x}) ∩ {f | ∑ x : ι, f x = 1} [PROOFSTEP] simp only [stdSimplex, Set.mem_inter_iff, Set.mem_iInter, Set.mem_setOf_eq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι ⊢ Convex 𝕜 (stdSimplex 𝕜 ι) [PROOFSTEP] refine' fun f hf g hg a b ha hb hab => ⟨fun x => _, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x : ι ⊢ 0 ≤ (a • f + b • g) x [PROOFSTEP] apply_rules [add_nonneg, mul_nonneg, hf.1, hg.1] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∑ x : ι, (a • f + b • g) x = 1 [PROOFSTEP] erw [Finset.sum_add_distrib] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∑ x : ι, (a • f) x + ∑ x : ι, (b • g) x = 1 [PROOFSTEP] simp only [Pi.smul_apply] -- Porting note: `erw` failed to rewrite with `← Finset.smul_sum` [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∑ x : ι, a • f x + ∑ x : ι, b • g x = 1 [PROOFSTEP] rw [← Finset.smul_sum, ← Finset.smul_sum, hf.2, hg.2, smul_eq_mul, smul_eq_mul, mul_one, mul_one] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a + b = 1 [PROOFSTEP] exact hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι i j : ι ⊢ 0 ≤ (fun j => if i = j then 1 else 0) j [PROOFSTEP] simp only [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι i j : ι ⊢ 0 ≤ if i = j then 1 else 0 [PROOFSTEP] split_ifs [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι i j : ι h✝ : i = j ⊢ 0 ≤ 1 [PROOFSTEP] norm_num [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι i j : ι h✝ : ¬i = j ⊢ 0 ≤ 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 β : Type u_4 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι i : ι ⊢ ∑ x : ι, (fun j => if i = j then 1 else 0) x = 1 [PROOFSTEP] rw [Finset.sum_ite_eq, if_pos (Finset.mem_univ _)]
{"mathlib_filename": "Mathlib.Analysis.Convex.Basic", "llama_tokens": 22802}
[GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : StrictConvexSpace 𝕜 E x : E r : ℝ ⊢ StrictConvex 𝕜 (closedBall x r) [PROOFSTEP] cases' le_or_lt r 0 with hr hr [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : StrictConvexSpace 𝕜 E x : E r : ℝ hr : r ≤ 0 ⊢ StrictConvex 𝕜 (closedBall x r) [PROOFSTEP] exact (subsingleton_closedBall x hr).strictConvex [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : StrictConvexSpace 𝕜 E x : E r : ℝ hr : 0 < r ⊢ StrictConvex 𝕜 (closedBall x r) [PROOFSTEP] rw [← vadd_closedBall_zero] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : StrictConvexSpace 𝕜 E x : E r : ℝ hr : 0 < r ⊢ StrictConvex 𝕜 (x +ᵥ closedBall 0 r) [PROOFSTEP] exact (StrictConvexSpace.strictConvex_closedBall r hr).vadd _ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : LinearMap.CompatibleSMul E E 𝕜 ℝ h : StrictConvex 𝕜 (closedBall 0 1) r : ℝ hr : 0 < r ⊢ StrictConvex 𝕜 (closedBall 0 r) [PROOFSTEP] simpa only [smul_closedUnitBall_of_nonneg hr.le] using h.smul r [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1 ⊢ StrictConvexSpace ℝ E [PROOFSTEP] refine' StrictConvexSpace.of_strictConvex_closed_unit_ball ℝ ((convex_closedBall _ _).strictConvex' fun x hx y hy hne => _) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1 x : E hx : x ∈ closedBall 0 1 \ interior (closedBall 0 1) y : E hy : y ∈ closedBall 0 1 \ interior (closedBall 0 1) hne : x ≠ y ⊢ (fun x y => ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1)) x y [PROOFSTEP] rw [interior_closedBall (0 : E) one_ne_zero, closedBall_diff_ball, mem_sphere_zero_iff_norm] at hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1 x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 hne : x ≠ y ⊢ ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1) [PROOFSTEP] rcases h x y hx hy hne with ⟨a, b, hab, hlt⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1 x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 hne : x ≠ y a b : ℝ hab : a + b = 1 hlt : ‖a • x + b • y‖ < 1 ⊢ ∃ c, ↑(AffineMap.lineMap x y) c ∈ interior (closedBall 0 1) [PROOFSTEP] use b [GOAL] case h 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, a + b = 1 ∧ ‖a • x + b • y‖ < 1 x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 hne : x ≠ y a b : ℝ hab : a + b = 1 hlt : ‖a • x + b • y‖ < 1 ⊢ ↑(AffineMap.lineMap x y) b ∈ interior (closedBall 0 1) [PROOFSTEP] rwa [AffineMap.lineMap_apply_module, interior_closedBall (0 : E) one_ne_zero, mem_ball_zero_iff, sub_eq_iff_eq_add.2 hab.symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1 ⊢ StrictConvexSpace ℝ E [PROOFSTEP] refine' StrictConvexSpace.of_strictConvex_closed_unit_ball ℝ ((convex_closedBall _ _).strictConvex _) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1 ⊢ Set.Pairwise (closedBall 0 1 \ interior (closedBall 0 1)) fun x y => Set.Nonempty ([x-[ℝ]y] \ frontier (closedBall 0 1)) [PROOFSTEP] simp only [interior_closedBall _ one_ne_zero, closedBall_diff_ball, Set.Pairwise, frontier_closedBall _ one_ne_zero, mem_sphere_zero_iff_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1 ⊢ ∀ ⦃x : E⦄, ‖x‖ = 1 → ∀ ⦃y : E⦄, ‖y‖ = 1 → x ≠ y → Set.Nonempty ([x-[ℝ]y] \ sphere 0 1) [PROOFSTEP] intro x hx y hy hne [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1 x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 hne : x ≠ y ⊢ Set.Nonempty ([x-[ℝ]y] \ sphere 0 1) [PROOFSTEP] rcases h x y hx hy hne with ⟨a, b, ha, hb, hab, hne'⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ ‖a • x + b • y‖ ≠ 1 x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 hne : x ≠ y a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hne' : ‖a • x + b • y‖ ≠ 1 ⊢ Set.Nonempty ([x-[ℝ]y] \ sphere 0 1) [PROOFSTEP] exact ⟨_, ⟨a, b, ha, hb, hab, rfl⟩, mt mem_sphere_zero_iff_norm.1 hne'⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2 ⊢ StrictConvexSpace ℝ E [PROOFSTEP] refine' StrictConvexSpace.of_norm_combo_ne_one fun x y hx hy hne => ⟨1 / 2, 1 / 2, one_half_pos.le, one_half_pos.le, add_halves _, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2 x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 hne : x ≠ y ⊢ ‖(1 / 2) • x + (1 / 2) • y‖ ≠ 1 [PROOFSTEP] rw [← smul_add, norm_smul, Real.norm_of_nonneg one_half_pos.le, one_div, ← div_eq_inv_mul, Ne.def, div_eq_one_iff_eq (two_ne_zero' ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2 x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 hne : x ≠ y ⊢ ¬‖x + y‖ = 2 [PROOFSTEP] exact h hx hy hne [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y ⊢ StrictConvexSpace ℝ E [PROOFSTEP] refine' StrictConvexSpace.of_pairwise_sphere_norm_ne_two fun x hx y hy => mt fun h₂ => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y x : E hx : x ∈ sphere 0 1 y : E hy : y ∈ sphere 0 1 h₂ : ‖x + y‖ = 2 ⊢ x = y [PROOFSTEP] rw [mem_sphere_zero_iff_norm] at hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedLinearOrderedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E h : ∀ (x y : E), ‖x‖ = 1 → ‖y‖ = 1 → ‖x + y‖ = 2 → SameRay ℝ x y x : E hx : ‖x‖ = 1 y : E hy : ‖y‖ = 1 h₂ : ‖x + y‖ = 2 ⊢ x = y [PROOFSTEP] exact (sameRay_iff_of_norm_eq (hx.trans hy.symm)).1 (h x y hx hy h₂) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : x ∈ closedBall z r hy : y ∈ closedBall z r hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ ball z r [PROOFSTEP] rcases eq_or_ne r 0 with (rfl | hr) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b : ℝ hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hx : x ∈ closedBall z 0 hy : y ∈ closedBall z 0 ⊢ a • x + b • y ∈ ball z 0 [PROOFSTEP] rw [closedBall_zero, mem_singleton_iff] at hx hy [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b : ℝ hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hx : x = z hy : y = z ⊢ a • x + b • y ∈ ball z 0 [PROOFSTEP] exact (hne (hx.trans hy.symm)).elim [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : x ∈ closedBall z r hy : y ∈ closedBall z r hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hr : r ≠ 0 ⊢ a • x + b • y ∈ ball z r [PROOFSTEP] simp only [← interior_closedBall _ hr] at hx hy ⊢ [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : x ∈ closedBall z r hy : y ∈ closedBall z r hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hr : r ≠ 0 ⊢ a • x + b • y ∈ interior (closedBall z r) [PROOFSTEP] exact strictConvex_closedBall ℝ z r hx hy hne ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : ‖x‖ ≤ r hy : ‖y‖ ≤ r hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ‖a • x + b • y‖ < r [PROOFSTEP] simp only [← mem_ball_zero_iff, ← mem_closedBall_zero_iff] at hx hy ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hne : x ≠ y ha : 0 < a hb : 0 < b hab : a + b = 1 hx : x ∈ closedBall 0 r hy : y ∈ closedBall 0 r ⊢ a • x + b • y ∈ ball 0 r [PROOFSTEP] exact combo_mem_ball_of_ne hx hy hne ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ x y ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] simp only [sameRay_iff_inv_norm_smul_eq, not_or, ← Ne.def] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : x ≠ 0 ∧ y ≠ 0 ∧ ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] rcases h with ⟨hx, hy, hne⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : x ≠ 0 hy : y ≠ 0 hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] rw [← norm_pos_iff] at hx hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] have hxy : 0 < ‖x‖ + ‖y‖ := add_pos hx hy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y hxy : 0 < ‖x‖ + ‖y‖ ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] have := combo_mem_ball_of_ne (inv_norm_smul_mem_closed_unit_ball x) (inv_norm_smul_mem_closed_unit_ball y) hne (div_pos hx hxy) (div_pos hy hxy) (by rw [← add_div, div_self hxy.ne']) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y hxy : 0 < ‖x‖ + ‖y‖ ⊢ ‖x‖ / (‖x‖ + ‖y‖) + ‖y‖ / (‖x‖ + ‖y‖) = 1 [PROOFSTEP] rw [← add_div, div_self hxy.ne'] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ hx : 0 < ‖x‖ hy : 0 < ‖y‖ hne : ‖x‖⁻¹ • x ≠ ‖y‖⁻¹ • y hxy : 0 < ‖x‖ + ‖y‖ this : (‖x‖ / (‖x‖ + ‖y‖)) • ‖x‖⁻¹ • x + (‖y‖ / (‖x‖ + ‖y‖)) • ‖y‖⁻¹ • y ∈ ball 0 1 ⊢ ‖x + y‖ < ‖x‖ + ‖y‖ [PROOFSTEP] rwa [mem_ball_zero_iff, div_eq_inv_mul, div_eq_inv_mul, mul_smul, mul_smul, smul_inv_smul₀ hx.ne', smul_inv_smul₀ hy.ne', ← smul_add, norm_smul, Real.norm_of_nonneg (inv_pos.2 hxy).le, ← div_eq_inv_mul, div_lt_one hxy] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ x y ⊢ ‖x‖ - ‖y‖ < ‖x - y‖ [PROOFSTEP] nth_rw 1 [← sub_add_cancel x y] at h ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ (x - y + y) y ⊢ ‖x - y + y‖ - ‖y‖ < ‖x - y‖ [PROOFSTEP] exact sub_lt_iff_lt_add.2 (norm_add_lt_of_not_sameRay fun H' => h <| H'.add_left SameRay.rfl) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ x y ⊢ |‖x‖ - ‖y‖| < ‖x - y‖ [PROOFSTEP] refine' abs_sub_lt_iff.2 ⟨lt_norm_sub_of_not_sameRay h, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ x y ⊢ ‖y‖ - ‖x‖ < ‖x - y‖ [PROOFSTEP] rw [norm_sub_rev] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ¬SameRay ℝ x y ⊢ ‖y‖ - ‖x‖ < ‖y - x‖ [PROOFSTEP] exact lt_norm_sub_of_not_sameRay (mt SameRay.symm h) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ ⊢ dist x y + dist y z = dist x z ↔ y ∈ [x-[ℝ]z] [PROOFSTEP] simp only [mem_segment_iff_sameRay, sameRay_iff_norm_add, dist_eq_norm', sub_add_sub_cancel', eq_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NormedLinearOrderedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace ℝ E inst✝ : StrictConvexSpace ℝ E x y z : E a b r : ℝ h : ‖x‖ = ‖y‖ ⊢ ‖(1 / 2) • (x + y)‖ < ‖x‖ ↔ x ≠ y [PROOFSTEP] rw [norm_smul, Real.norm_of_nonneg (one_div_nonneg.2 zero_le_two), ← inv_eq_one_div, ← div_eq_inv_mul, div_lt_iff (zero_lt_two' ℝ), mul_two, ← not_sameRay_iff_of_norm_eq h, not_sameRay_iff_norm_add_lt, h] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] have : y -ᵥ x ∈ [(0 : E)-[ℝ]z -ᵥ x] := by rw [← dist_add_dist_eq_iff, dist_zero_left, dist_vsub_cancel_right, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy, hyz, ← add_mul, add_sub_cancel'_right, one_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z ⊢ y -ᵥ x ∈ [0-[ℝ]z -ᵥ x] [PROOFSTEP] rw [← dist_add_dist_eq_iff, dist_zero_left, dist_vsub_cancel_right, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy, hyz, ← add_mul, add_sub_cancel'_right, one_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x] ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rcases eq_or_ne x z with (rfl | hne) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y : PE hxy : dist x y = r * dist x x hyz : dist y x = (1 - r) * dist x x this : y -ᵥ x ∈ [0-[ℝ]x -ᵥ x] ⊢ y = ↑(AffineMap.lineMap x x) r [PROOFSTEP] obtain rfl : y = x := by simpa [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y : PE hxy : dist x y = r * dist x x hyz : dist y x = (1 - r) * dist x x this : y -ᵥ x ∈ [0-[ℝ]x -ᵥ x] ⊢ y = x [PROOFSTEP] simpa [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE y : PE hxy : dist y y = r * dist y y hyz : dist y y = (1 - r) * dist y y this : y -ᵥ y ∈ [0-[ℝ]y -ᵥ y] ⊢ y = ↑(AffineMap.lineMap y y) r [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x] hne : x ≠ z ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rw [← dist_ne_zero] at hne [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z this : y -ᵥ x ∈ [0-[ℝ]z -ᵥ x] hne✝ : x ≠ z hne : dist x z ≠ 0 ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rcases this with ⟨a, b, _, hb, _, H⟩ [GOAL] case inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a✝ b✝ r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z hne✝ : x ≠ z hne : dist x z ≠ 0 a b : ℝ w✝¹ : 0 ≤ a hb : 0 ≤ b w✝ : a + b = 1 H : a • 0 + b • (z -ᵥ x) = y -ᵥ x ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rw [smul_zero, zero_add] at H [GOAL] case inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a✝ b✝ r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z hne✝ : x ≠ z hne : dist x z ≠ 0 a b : ℝ w✝¹ : 0 ≤ a hb : 0 ≤ b w✝ : a + b = 1 H : b • (z -ᵥ x) = y -ᵥ x ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] have H' := congr_arg norm H [GOAL] case inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a✝ b✝ r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z hne✝ : x ≠ z hne : dist x z ≠ 0 a b : ℝ w✝¹ : 0 ≤ a hb : 0 ≤ b w✝ : a + b = 1 H : b • (z -ᵥ x) = y -ᵥ x H' : ‖b • (z -ᵥ x)‖ = ‖y -ᵥ x‖ ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rw [norm_smul, Real.norm_of_nonneg hb, ← dist_eq_norm_vsub', ← dist_eq_norm_vsub', hxy, mul_left_inj' hne] at H' [GOAL] case inr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a✝ b✝ r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hxy : dist x y = r * dist x z hyz : dist y z = (1 - r) * dist x z hne✝ : x ≠ z hne : dist x z ≠ 0 a b : ℝ w✝¹ : 0 ≤ a hb : 0 ≤ b w✝ : a + b = 1 H : b • (z -ᵥ x) = y -ᵥ x H' : b = r ⊢ y = ↑(AffineMap.lineMap x z) r [PROOFSTEP] rw [AffineMap.lineMap_apply, ← H', H, vsub_vadd] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hx : dist x y = dist x z / 2 hy : dist y z = dist x z / 2 ⊢ y = midpoint ℝ x z [PROOFSTEP] apply eq_lineMap_of_dist_eq_mul_of_dist_eq_mul [GOAL] case hxy 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hx : dist x y = dist x z / 2 hy : dist y z = dist x z / 2 ⊢ dist x y = ⅟2 * dist x z [PROOFSTEP] rwa [invOf_eq_inv, ← div_eq_inv_mul] [GOAL] case hyz 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z✝ : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE x y z : PE hx : dist x y = dist x z / 2 hy : dist y z = dist x z / 2 ⊢ dist y z = (1 - ⅟2) * dist x z [PROOFSTEP] rwa [invOf_eq_inv, ← one_div, sub_half, one_div, ← div_eq_inv_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f x y : PF ⊢ f (midpoint ℝ x y) = midpoint ℝ (f x) (f y) [PROOFSTEP] apply eq_midpoint_of_dist_eq_half [GOAL] case hx 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f x y : PF ⊢ dist (f x) (f (midpoint ℝ x y)) = dist (f x) (f y) / 2 [PROOFSTEP] rw [hi.dist_eq, hi.dist_eq] [GOAL] case hx 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f x y : PF ⊢ dist x (midpoint ℝ x y) = dist x y / 2 [PROOFSTEP] simp only [dist_left_midpoint, Real.norm_of_nonneg zero_le_two, div_eq_inv_mul] [GOAL] case hy 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f x y : PF ⊢ dist (f (midpoint ℝ x y)) (f y) = dist (f x) (f y) / 2 [PROOFSTEP] rw [hi.dist_eq, hi.dist_eq] [GOAL] case hy 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y✝ z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f x y : PF ⊢ dist (midpoint ℝ x y) y = dist x y / 2 [PROOFSTEP] simp only [dist_midpoint_right, Real.norm_of_nonneg zero_le_two, div_eq_inv_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝¹⁰ : NormedLinearOrderedField 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : StrictConvexSpace ℝ E x✝ y z : E a b r : ℝ F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F PF : Type u PE : Type u_4 inst✝³ : MetricSpace PF inst✝² : MetricSpace PE inst✝¹ : NormedAddTorsor F PF inst✝ : NormedAddTorsor E PE f : PF → PE hi : Isometry f src✝ : PF →ᵃ[ℝ] PE := AffineMap.ofMapMidpoint f (_ : ∀ (x y : PF), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)) (_ : Continuous f) x : F ⊢ ‖↑{ toFun := src✝.toFun, linear := src✝.linear, map_vadd' := (_ : ∀ (p : PF) (v : F), AffineMap.toFun src✝ (v +ᵥ p) = ↑src✝.linear v +ᵥ AffineMap.toFun src✝ p) }.linear x‖ = ‖x‖ [PROOFSTEP] simp [AffineMap.ofMapMidpoint, ← dist_eq_norm_vsub E, hi.dist_eq]
{"mathlib_filename": "Mathlib.Analysis.Convex.StrictConvexSpace", "llama_tokens": 15662}
[GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] have hxz := hxy.trans hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z ⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] rw [← sub_pos] at hxy hxz hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x ⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] suffices f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) by ring_nf at this ⊢ linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x this : f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) ⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] ring_nf at this ⊢ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ ≤ (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z ⊢ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x ≤ -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] set a := (z - y) / (z - x) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] set b := (y - x) / (z - x) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] have hy : a • x + b • z = y := by field_simp rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ a • x + b • z = y [PROOFSTEP] field_simp [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ ((z - y) * x + (y - x) * z) / (z - x) = y [PROOFSTEP] rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ ((z - y) * x + (y - x) * z) / (z - x) = y [PROOFSTEP] rw [div_eq_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ (z - y) * x + (y - x) * z = y * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ z - x ≠ 0 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] have key := hf.2 hx hz (show 0 ≤ a by apply div_nonneg <;> linarith) (show 0 ≤ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp rw [div_eq_iff] <;> [ring; linarith]) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ a [PROOFSTEP] apply div_nonneg [GOAL] case ha 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ z - y [PROOFSTEP] linarith [GOAL] case hb 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ b [PROOFSTEP] apply div_nonneg [GOAL] case ha 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ y - x [PROOFSTEP] linarith [GOAL] case hb 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ 0 ≤ z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ a + b = 1 [PROOFSTEP] field_simp [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ (z - x) / (z - x) = 1 [PROOFSTEP] rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ (z - x) / (z - x) = 1 [PROOFSTEP] rw [div_eq_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ z - x = 1 * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ z - x ≠ 0 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f (a • x + b • z) ≤ a • f x + b • f z ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] rw [hy] at key [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y ≤ a • f x + b • f z ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] replace key := mul_le_mul_of_nonneg_left key hxz.le [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : (z - x) * f y ≤ (z - x) * (a • f x + b • f z) ⊢ f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y) [PROOFSTEP] field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z ⊢ (f y * (z - y) + f y * (y - x)) / ((y - x) * (z - y)) ≤ (f x * (z - y) + f z * (y - x)) / ((y - x) * (z - y)) [PROOFSTEP] rw [div_le_div_right] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z ⊢ f y * (z - y) + f y * (y - x) ≤ f x * (z - y) + f z * (y - x) [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) ≤ (z - y) * f x + (y - x) * f z ⊢ 0 < (y - x) * (z - y) [PROOFSTEP] nlinarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) [PROOFSTEP] have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : -(((-f) z - (-f) y) / (z - y)) ≤ -(((-f) y - (-f) x) / (y - x)) ⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) [PROOFSTEP] simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) ⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) [PROOFSTEP] exact this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y) [PROOFSTEP] have hxz := hxy.trans hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z ⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y) [PROOFSTEP] have hxz' := hxz.ne [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z hxz' : x ≠ z ⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y) [PROOFSTEP] rw [← sub_pos] at hxy hxz hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z ⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y) [PROOFSTEP] suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊢ linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z this : f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) ⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y) [PROOFSTEP] ring_nf at this ⊢ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ < (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z ⊢ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x < -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] set a := (z - y) / (z - x) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] set b := (y - x) / (z - x) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] have hy : a • x + b • z = y := by field_simp rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ a • x + b • z = y [PROOFSTEP] field_simp [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ ((z - y) * x + (y - x) * z) / (z - x) = y [PROOFSTEP] rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ ((z - y) * x + (y - x) * z) / (z - x) = y [PROOFSTEP] rw [div_eq_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ (z - y) * x + (y - x) * z = y * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) ⊢ z - x ≠ 0 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] have key := hf.2 hx hz hxz' (div_pos hyz hxz) (div_pos hxy hxz) (show a + b = 1 by field_simp rw [div_eq_iff] <;> [ring; linarith]) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ a + b = 1 [PROOFSTEP] field_simp [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ (z - x) / (z - x) = 1 [PROOFSTEP] rw [div_eq_iff] <;> [ring; linarith] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ (z - x) / (z - x) = 1 [PROOFSTEP] rw [div_eq_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ z - x = 1 * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y ⊢ z - x ≠ 0 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f (((z - y) / (z - x)) • x + ((y - x) / (z - x)) • z) < ((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] rw [hy] at key [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y < ((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] replace key := mul_lt_mul_of_pos_left key hxz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : (z - x) * f y < (z - x) * (((z - y) / (z - x)) • f x + ((y - x) / (z - x)) • f z) ⊢ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) [PROOFSTEP] field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) < (z - y) * f x + (y - x) * f z ⊢ (f y * (z - y) + f y * (y - x)) / ((y - x) * (z - y)) < (f x * (z - y) + f z * (y - x)) / ((y - x) * (z - y)) [PROOFSTEP] rw [div_lt_div_right] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) < (z - y) * f x + (y - x) * f z ⊢ f y * (z - y) + f y * (y - x) < f x * (z - y) + f z * (y - x) [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy✝ : x < y hxy : 0 < y - x hyz✝ : y < z hyz : 0 < z - y hxz✝ : x < z hxz : 0 < z - x hxz' : x ≠ z a : 𝕜 := (z - y) / (z - x) b : 𝕜 := (y - x) / (z - x) hy : a • x + b • z = y key : f y * (z - x) < (z - y) * f x + (y - x) * f z ⊢ 0 < (y - x) * (z - y) [PROOFSTEP] nlinarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x) [PROOFSTEP] have := neg_lt_neg (StrictConvexOn.slope_strict_mono_adjacent hf.neg hx hz hxy hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : -(((-f) z - (-f) y) / (z - y)) < -(((-f) y - (-f) x) / (y - x)) ⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x) [PROOFSTEP] simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : (f z - f y) / (z - y) < (f y - f x) / (y - x) ⊢ (f z - f y) / (z - y) < (f y - f x) / (y - x) [PROOFSTEP] exact this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] let y := a * x + b * z [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have hxy : x < y := by rw [← one_mul x, ← hab, add_mul] exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ x < y [PROOFSTEP] rw [← one_mul x, ← hab, add_mul] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ a * x + b * x < y [PROOFSTEP] exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have hyz : y < z := by rw [← one_mul z, ← hab, add_mul] exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ y < z [PROOFSTEP] rw [← one_mul z, ← hab, add_mul] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ y < a * z + b * z [PROOFSTEP] exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) := (div_le_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have hxz : 0 < z - x := sub_pos.2 (hxy.trans hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have ha : (z - y) / (z - x) = a := by rw [eq_comm, ← sub_eq_iff_eq_add'] at hab simp_rw [div_eq_iff hxz.ne', ← hab] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ⊢ (z - y) / (z - x) = a [PROOFSTEP] rw [eq_comm, ← sub_eq_iff_eq_add'] at hab [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : 1 - a = b y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ⊢ (z - y) / (z - x) = a [PROOFSTEP] simp_rw [div_eq_iff hxz.ne', ← hab] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : 1 - a = b y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ⊢ z - (a * x + (1 - a) * z) = a * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] have hb : (y - x) / (z - x) = b := by rw [eq_comm, ← sub_eq_iff_eq_add] at hab simp_rw [div_eq_iff hxz.ne', ← hab] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (y - x) / (z - x) = b [PROOFSTEP] rw [eq_comm, ← sub_eq_iff_eq_add] at hab [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : 1 - b = a y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (y - x) / (z - x) = b [PROOFSTEP] simp_rw [div_eq_iff hxz.ne', ← hab] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : 1 - b = a y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (1 - b) * x + b * z - x = b * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb✝ : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a hb : (y - x) / (z - x) = b ⊢ f (a • x + b • z) ≤ a • f x + b • f z [PROOFSTEP] rwa [sub_mul, sub_mul, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le, ← mul_add, sub_add_sub_cancel, ← le_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) ⊢ ConcaveOn 𝕜 s f [PROOFSTEP] rw [← neg_convexOn_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) ⊢ ConvexOn 𝕜 s (-f) [PROOFSTEP] refine' convexOn_of_slope_mono_adjacent hs fun hx hz hxy hyz => _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ ((-f) y✝ - (-f) x✝) / (y✝ - x✝) ≤ ((-f) z✝ - (-f) y✝) / (z✝ - y✝) [PROOFSTEP] rw [← neg_le_neg_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ -(((-f) z✝ - (-f) y✝) / (z✝ - y✝)) ≤ -(((-f) y✝ - (-f) x✝) / (y✝ - x✝)) [PROOFSTEP] simp_rw [← neg_div, neg_sub, Pi.neg_apply, neg_sub_neg] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) ≤ (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ (f z✝ - f y✝) / (z✝ - y✝) ≤ (f y✝ - f x✝) / (y✝ - x✝) [PROOFSTEP] exact hf hx hz hxy hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] let y := a * x + b * z [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have hxy : x < y := by rw [← one_mul x, ← hab, add_mul] exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ x < y [PROOFSTEP] rw [← one_mul x, ← hab, add_mul] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z ⊢ a * x + b * x < y [PROOFSTEP] exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have hyz : y < z := by rw [← one_mul z, ← hab, add_mul] exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ y < z [PROOFSTEP] rw [← one_mul z, ← hab, add_mul] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y ⊢ y < a * z + b * z [PROOFSTEP] exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have : (f y - f x) * (z - y) < (f z - f y) * (y - x) := (div_lt_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have hxz : 0 < z - x := sub_pos.2 (hxy.trans hyz) [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have ha : (z - y) / (z - x) = a := by rw [eq_comm, ← sub_eq_iff_eq_add'] at hab simp_rw [div_eq_iff hxz.ne', ← hab] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ⊢ (z - y) / (z - x) = a [PROOFSTEP] rw [eq_comm, ← sub_eq_iff_eq_add'] at hab [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : 1 - a = b y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ⊢ (z - y) / (z - x) = a [PROOFSTEP] simp_rw [div_eq_iff hxz.ne', ← hab] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha : 0 < a hb : 0 < b hab : 1 - a = b y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ⊢ z - (a * x + (1 - a) * z) = a * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] have hb : (y - x) / (z - x) = b := by rw [eq_comm, ← sub_eq_iff_eq_add] at hab simp_rw [div_eq_iff hxz.ne', ← hab] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (y - x) / (z - x) = b [PROOFSTEP] rw [eq_comm, ← sub_eq_iff_eq_add] at hab [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : 1 - b = a y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (y - x) / (z - x) = b [PROOFSTEP] simp_rw [div_eq_iff hxz.ne', ← hab] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb : 0 < b hab : 1 - b = a y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a ⊢ (1 - b) * x + b * z - x = b * (z - x) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f y - f x) / (y - x) < (f z - f y) / (z - y) x : 𝕜 hx : x ∈ s z : 𝕜 hz : z ∈ s hxz✝ : x < z a b : 𝕜 ha✝ : 0 < a hb✝ : 0 < b hab : a + b = 1 y : 𝕜 := a * x + b * z hxy : x < y hyz : y < z this : (f y - f x) * (z - y) < (f z - f y) * (y - x) hxz : 0 < z - x ha : (z - y) / (z - x) = a hb : (y - x) / (z - x) = b ⊢ f (a • x + b • z) < a • f x + b • f z [PROOFSTEP] rwa [sub_mul, sub_mul, sub_lt_iff_lt_add', ← add_sub_assoc, lt_sub_iff_add_lt, ← mul_add, sub_add_sub_cancel, ← lt_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x) ⊢ StrictConcaveOn 𝕜 s f [PROOFSTEP] rw [← neg_strictConvexOn_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x) ⊢ StrictConvexOn 𝕜 s (-f) [PROOFSTEP] refine' strictConvexOn_of_slope_strict_mono_adjacent hs fun hx hz hxy hyz => _ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ ((-f) y✝ - (-f) x✝) / (y✝ - x✝) < ((-f) z✝ - (-f) y✝) / (z✝ - y✝) [PROOFSTEP] rw [← neg_lt_neg_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ -(((-f) z✝ - (-f) y✝) / (z✝ - y✝)) < -(((-f) y✝ - (-f) x✝) / (y✝ - x✝)) [PROOFSTEP] simp_rw [← neg_div, neg_sub, Pi.neg_apply, neg_sub_neg] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hs : Convex 𝕜 s hf : ∀ {x y z : 𝕜}, x ∈ s → z ∈ s → x < y → y < z → (f z - f y) / (z - y) < (f y - f x) / (y - x) x✝ y✝ z✝ : 𝕜 hx : x✝ ∈ s hz : z✝ ∈ s hxy : x✝ < y✝ hyz : y✝ < z✝ ⊢ (f z✝ - f y✝) / (z✝ - y✝) < (f y✝ - f x✝) / (y✝ - x✝) [PROOFSTEP] exact hf hx hz hxy hyz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z [PROOFSTEP] have hxy' : 0 < y - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z [PROOFSTEP] have hyz' : 0 < z - y := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y ⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (z - x) * f y ≤ (z - y) * f x + (y - x) * f z [PROOFSTEP] rw [← le_div_iff' hxz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] have ha : 0 ≤ (z - y) / (z - x) := by positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ 0 ≤ (z - y) / (z - x) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) ⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] have hb : 0 ≤ (y - x) / (z - x) := by positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) ⊢ 0 ≤ (y - x) / (z - x) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ f y ≤ ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] calc f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) := ?_ _ ≤ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := (hf.2 hx hz ha hb ?_) _ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_ [GOAL] case calc_1 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) [PROOFSTEP] congr 1 [GOAL] case calc_1.e_a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ y = (z - y) / (z - x) * x + (y - x) / (z - x) * z [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] case calc_1.e_a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ y * (z - x) = (z - y) * x + (y - x) * z [PROOFSTEP] ring [GOAL] case calc_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ Div.div (z - y) (z - x) + Div.div (y - x) (z - x) = 1 [PROOFSTEP] show (z - y) / (z - x) + (y - x) / (z - x) = 1 [GOAL] case calc_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ (z - y) / (z - x) + (y - x) / (z - x) = 1 [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] case calc_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 ≤ (z - y) / (z - x) hb : 0 ≤ (y - x) / (z - x) ⊢ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z = ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x) [PROOFSTEP] have hxy' : 0 < y - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x) [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hxz' : 0 < z - x ⊢ (f y - f x) / (y - x) ≤ (f z - f x) / (z - x) [PROOFSTEP] rw [div_le_div_iff hxy' hxz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hxz' : 0 < z - x ⊢ (f y - f x) * (z - x) ≤ (f z - f x) * (y - x) [PROOFSTEP] linarith only [hf.secant_mono_aux1 hx hz hxy hyz] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] have hyz' : 0 < z - y := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y ⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (f z - f x) / (z - x) ≤ (f z - f y) / (z - y) [PROOFSTEP] rw [div_le_div_iff hxz' hyz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (f z - f x) * (z - y) ≤ (f z - f y) * (z - x) [PROOFSTEP] linarith only [hf.secant_mono_aux1 hx hz hxy hyz] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x ≤ y ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] rcases eq_or_lt_of_le hxy with (rfl | hxy) [GOAL] case inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x : 𝕜 ha : a ∈ s hx : x ∈ s hxa : x ≠ a hy : x ∈ s hya : x ≠ a hxy : x ≤ x ⊢ (f x - f a) / (x - a) ≤ (f x - f a) / (x - a) [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy✝ : x ≤ y hxy : x < y ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] cases' lt_or_gt_of_ne hxa with hxa hxa [GOAL] case inr.inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] cases' lt_or_gt_of_ne hya with hya hya [GOAL] case inr.inl.inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y < a ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] convert hf.secant_mono_aux3 hx ha hxy hya using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y < a ⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y < a ⊢ (f y - f a) / (y - a) = (f a - f y) / (a - y) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y < a ⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x) [PROOFSTEP] field_simp [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y < a ⊢ -(f y - f a) / -(y - a) = (f a - f y) / (a - y) [PROOFSTEP] field_simp [GOAL] case inr.inl.inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y > a ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] convert hf.slope_mono_adjacent hx hy hxa hya using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y > a ⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x < a hya : y > a ⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x) [PROOFSTEP] field_simp [GOAL] case inr.inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya : y ≠ a hxy✝ : x ≤ y hxy : x < y hxa : x > a ⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a) [PROOFSTEP] exact hf.secant_mono_aux2 ha hy hxa hxy [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z [PROOFSTEP] have hxy' : 0 < y - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z [PROOFSTEP] have hyz' : 0 < z - y := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y ⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (z - x) * f y < (z - y) * f x + (y - x) * f z [PROOFSTEP] rw [← lt_div_iff' hxz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] have ha : 0 < (z - y) / (z - x) := by positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ⊢ 0 < (z - y) / (z - x) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) ⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] have hb : 0 < (y - x) / (z - x) := by positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) ⊢ 0 < (y - x) / (z - x) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ f y < ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] calc f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) := ?_ _ < (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := (hf.2 hx hz (by linarith) ha hb ?_) _ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ x ≠ z [PROOFSTEP] linarith [GOAL] case calc_1 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ f y = f ((z - y) / (z - x) * x + (y - x) / (z - x) * z) [PROOFSTEP] congr 1 [GOAL] case calc_1.e_a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ y = (z - y) / (z - x) * x + (y - x) / (z - x) * z [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] case calc_1.e_a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ y * (z - x) = (z - y) * x + (y - x) * z [PROOFSTEP] ring [GOAL] case calc_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ Div.div (z - y) (z - x) + Div.div (y - x) (z - x) = 1 [PROOFSTEP] show (z - y) / (z - x) + (y - x) / (z - x) = 1 [GOAL] case calc_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ (z - y) / (z - x) + (y - x) / (z - x) = 1 [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] case calc_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hyz' : 0 < z - y hxz' : 0 < z - x ha : 0 < (z - y) / (z - x) hb : 0 < (y - x) / (z - x) ⊢ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z = ((z - y) * f x + (y - x) * f z) / (z - x) [PROOFSTEP] field_simp [hxy'.ne', hyz'.ne', hxz'.ne'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x) [PROOFSTEP] have hxy' : 0 < y - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x) [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hxz' : 0 < z - x ⊢ (f y - f x) / (y - x) < (f z - f x) / (z - x) [PROOFSTEP] rw [div_lt_div_iff hxy' hxz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxy' : 0 < y - x hxz' : 0 < z - x ⊢ (f y - f x) * (z - x) < (f z - f x) * (y - x) [PROOFSTEP] linarith only [hf.secant_strict_mono_aux1 hx hz hxy hyz] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y) [PROOFSTEP] have hyz' : 0 < z - y := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y ⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y) [PROOFSTEP] have hxz' : 0 < z - x := by linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y ⊢ 0 < z - x [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (f z - f x) / (z - x) < (f z - f y) / (z - y) [PROOFSTEP] rw [div_lt_div_iff hxz' hyz'] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hyz' : 0 < z - y hxz' : 0 < z - x ⊢ (f z - f x) * (z - y) < (f z - f y) * (z - x) [PROOFSTEP] linarith only [hf.secant_strict_mono_aux1 hx hz hxy hyz] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y ⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a) [PROOFSTEP] cases' lt_or_gt_of_ne hxa with hxa hxa [GOAL] case inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya : y ≠ a hxy : x < y hxa : x < a ⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a) [PROOFSTEP] cases' lt_or_gt_of_ne hya with hya hya [GOAL] case inl.inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y < a ⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a) [PROOFSTEP] convert hf.secant_strict_mono_aux3 hx ha hxy hya using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y < a ⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y < a ⊢ (f y - f a) / (y - a) = (f a - f y) / (a - y) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y < a ⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x) [PROOFSTEP] field_simp [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y < a ⊢ -(f y - f a) / -(y - a) = (f a - f y) / (a - y) [PROOFSTEP] field_simp [GOAL] case inl.inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y > a ⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a) [PROOFSTEP] convert hf.slope_strict_mono_adjacent hx hy hxa hya using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y > a ⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x) [PROOFSTEP] rw [← neg_div_neg_eq] [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya✝ : y ≠ a hxy : x < y hxa : x < a hya : y > a ⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x) [PROOFSTEP] field_simp [GOAL] case inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConvexOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa✝ : x ≠ a hya : y ≠ a hxy : x < y hxa : x > a ⊢ (f x - f a) / (x - a) < (f y - f a) / (y - a) [PROOFSTEP] exact hf.secant_strict_mono_aux2 ha hy hxa hxy [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y ⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a) [PROOFSTEP] have key := hf.neg.secant_strict_mono ha hx hy hxa hya hxy [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : ((-f) x - (-f) a) / (x - a) < ((-f) y - (-f) a) / (y - a) ⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a) [PROOFSTEP] simp only [Pi.neg_apply] at key [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ (f y - f a) / (y - a) < (f x - f a) / (x - a) [PROOFSTEP] rw [← neg_lt_neg_iff] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ -((f x - f a) / (x - a)) < -((f y - f a) / (y - a)) [PROOFSTEP] convert key using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ -((f x - f a) / (x - a)) = (-f x - -f a) / (x - a) [PROOFSTEP] field_simp [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ -((f y - f a) / (y - a)) = (-f y - -f a) / (y - a) [PROOFSTEP] field_simp [GOAL] case h.e'_3 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ (f a - f x) / (x - a) = (-f x + f a) / (x - a) [PROOFSTEP] ring [GOAL] case h.e'_4 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : StrictConcaveOn 𝕜 s f a x y : 𝕜 ha : a ∈ s hx : x ∈ s hy : y ∈ s hxa : x ≠ a hya : y ≠ a hxy : x < y key : (-f x - -f a) / (x - a) < (-f y - -f a) / (y - a) ⊢ (f a - f y) / (y - a) = (-f y + f a) / (y - a) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y ⊢ StrictMonoOn f (s ∩ Set.Ici y) [PROOFSTEP] intro u hu v hv huv [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v ⊢ f u < f v [PROOFSTEP] have step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z := by intros z hz refine hf.lt_right_of_left_lt hx hz.1 ?_ hxy' rw [openSegment_eq_Ioo (hxy.trans hz.2)] exact ⟨hxy, hz.2⟩ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v ⊢ ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z [PROOFSTEP] intros z hz [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v z : 𝕜 hz : z ∈ s ∩ Set.Ioi y ⊢ f y < f z [PROOFSTEP] refine hf.lt_right_of_left_lt hx hz.1 ?_ hxy' [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v z : 𝕜 hz : z ∈ s ∩ Set.Ioi y ⊢ y ∈ openSegment 𝕜 x z [PROOFSTEP] rw [openSegment_eq_Ioo (hxy.trans hz.2)] [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v z : 𝕜 hz : z ∈ s ∩ Set.Ioi y ⊢ y ∈ Set.Ioo x z [PROOFSTEP] exact ⟨hxy, hz.2⟩ [GOAL] 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z ⊢ f u < f v [PROOFSTEP] rcases eq_or_lt_of_le hu.2 with (rfl | hu2) [GOAL] case inl 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y v : 𝕜 hv : v ∈ s ∩ Set.Ici y step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu : y ∈ s ∩ Set.Ici y huv : y < v ⊢ f y < f v [PROOFSTEP] exact step1 ⟨hv.1, huv⟩ [GOAL] case inr 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ f u < f v [PROOFSTEP] refine' hf.lt_right_of_left_lt _ hv.1 _ (step1 ⟨hu.1, hu2⟩) [GOAL] case inr.refine'_1 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ y ∈ s [PROOFSTEP] apply hf.1.segment_subset hx hu.1 [GOAL] case inr.refine'_1.a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ y ∈ segment 𝕜 x u [PROOFSTEP] rw [segment_eq_Icc (hxy.le.trans hu.2)] [GOAL] case inr.refine'_1.a 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ y ∈ Set.Icc x u [PROOFSTEP] exact ⟨hxy.le, hu.2⟩ [GOAL] case inr.refine'_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ u ∈ openSegment 𝕜 y v [PROOFSTEP] rw [openSegment_eq_Ioo (hu2.trans huv)] [GOAL] case inr.refine'_2 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConvexOn 𝕜 s f x y : 𝕜 hx : x ∈ s hxy : x < y hxy' : f x < f y u : 𝕜 hu : u ∈ s ∩ Set.Ici y v : 𝕜 hv : v ∈ s ∩ Set.Ici y huv : u < v step1 : ∀ {z : 𝕜}, z ∈ s ∩ Set.Ioi y → f y < f z hu2 : y < u ⊢ u ∈ Set.Ioo y v [PROOFSTEP] exact ⟨hu2, huv⟩
{"mathlib_filename": "Mathlib.Analysis.Convex.Slope", "llama_tokens": 44727}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s✝ t s : Set H c : ℝ hc : 0 < c y : H hy : y ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} x : H hx : x ∈ s ⊢ 0 ≤ inner x (c • y) [PROOFSTEP] rw [real_inner_smul_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s✝ t s : Set H c : ℝ hc : 0 < c y : H hy : y ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} x : H hx : x ∈ s ⊢ 0 ≤ c * inner x y [PROOFSTEP] exact mul_nonneg hc.le (hy x hx) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s✝ t s : Set H u : H hu : u ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} v : H hv : v ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} x : H hx : x ∈ s ⊢ 0 ≤ inner x (u + v) [PROOFSTEP] rw [inner_add_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s✝ t s : Set H u : H hu : u ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} v : H hv : v ∈ {y | ∀ (x : H), x ∈ s → 0 ≤ inner x y} x : H hx : x ∈ s ⊢ 0 ≤ inner x u + inner x v [PROOFSTEP] exact add_nonneg (hu x hx) (hv x hx) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ innerDualCone univ = 0 [PROOFSTEP] suffices ∀ x : H, x ∈ (univ : Set H).innerDualCone → x = 0 by apply SetLike.coe_injective exact eq_singleton_iff_unique_mem.mpr ⟨fun x _ => (inner_zero_right _).ge, this⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H this : ∀ (x : H), x ∈ innerDualCone univ → x = 0 ⊢ innerDualCone univ = 0 [PROOFSTEP] apply SetLike.coe_injective [GOAL] case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H this : ∀ (x : H), x ∈ innerDualCone univ → x = 0 ⊢ ↑(innerDualCone univ) = ↑0 [PROOFSTEP] exact eq_singleton_iff_unique_mem.mpr ⟨fun x _ => (inner_zero_right _).ge, this⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ ∀ (x : H), x ∈ innerDualCone univ → x = 0 [PROOFSTEP] exact fun x hx => by simpa [← real_inner_self_nonpos] using hx (-x) (mem_univ _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : H hx : x ∈ innerDualCone univ ⊢ x = 0 [PROOFSTEP] simpa [← real_inner_self_nonpos] using hx (-x) (mem_univ _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : H x✝ : x ∈ s ⊢ 0 ≤ inner x 0 [PROOFSTEP] rw [inner_zero_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s✝ t : Set H x : H s : Set H ⊢ innerDualCone (insert x s) = innerDualCone {x} ⊓ innerDualCone s [PROOFSTEP] rw [insert_eq, innerDualCone_union] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ι : Sort u_6 f : ι → Set H ⊢ innerDualCone (⋃ (i : ι), f i) = ⨅ (i : ι), innerDualCone (f i) [PROOFSTEP] refine' le_antisymm (le_iInf fun i x hx y hy => hx _ <| mem_iUnion_of_mem _ hy) _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ι : Sort u_6 f : ι → Set H ⊢ ⨅ (i : ι), innerDualCone (f i) ≤ innerDualCone (⋃ (i : ι), f i) [PROOFSTEP] intro x hx y hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ι : Sort u_6 f : ι → Set H x : H hx : x ∈ ⨅ (i : ι), innerDualCone (f i) y : H hy : y ∈ ⋃ (i : ι), f i ⊢ 0 ≤ inner y x [PROOFSTEP] rw [ConvexCone.mem_iInf] at hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ι : Sort u_6 f : ι → Set H x : H hx : ∀ (i : ι), x ∈ innerDualCone (f i) y : H hy : y ∈ ⋃ (i : ι), f i ⊢ 0 ≤ inner y x [PROOFSTEP] obtain ⟨j, hj⟩ := mem_iUnion.mp hy [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ι : Sort u_6 f : ι → Set H x : H hx : ∀ (i : ι), x ∈ innerDualCone (f i) y : H hy : y ∈ ⋃ (i : ι), f i j : ι hj : y ∈ f j ⊢ 0 ≤ inner y x [PROOFSTEP] exact hx _ _ hj [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H S : Set (Set H) ⊢ innerDualCone (⋃₀ S) = sInf (innerDualCone '' S) [PROOFSTEP] simp_rw [sInf_image, sUnion_eq_biUnion, innerDualCone_iUnion] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ ↑(innerDualCone s) = ⋂ (i : ↑s), ↑(innerDualCone {↑i}) [PROOFSTEP] rw [← ConvexCone.coe_iInf, ← innerDualCone_iUnion, iUnion_of_singleton_coe] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ IsClosed ↑(innerDualCone s) [PROOFSTEP] rw [innerDualCone_eq_iInter_innerDualCone_singleton] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ IsClosed (⋂ (i : ↑s), ↑(innerDualCone {↑i})) [PROOFSTEP] apply isClosed_iInter [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H ⊢ ∀ (i : ↑s), IsClosed ↑(innerDualCone {↑i}) [PROOFSTEP] intro x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : ↑s ⊢ IsClosed ↑(innerDualCone {↑x}) [PROOFSTEP] have h : ({↑x} : Set H).innerDualCone = (inner x : H → ℝ) ⁻¹' Set.Ici 0 := by rw [innerDualCone_singleton, ConvexCone.coe_comap, ConvexCone.coe_positive, innerₛₗ_apply_coe] -- the preimage is closed as `inner x` is continuous and `[0, ∞)` is closed [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : ↑s ⊢ ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0 [PROOFSTEP] rw [innerDualCone_singleton, ConvexCone.coe_comap, ConvexCone.coe_positive, innerₛₗ_apply_coe] -- the preimage is closed as `inner x` is continuous and `[0, ∞)` is closed [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : ↑s h : ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0 ⊢ IsClosed ↑(innerDualCone {↑x}) [PROOFSTEP] rw [h] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H x : ↑s h : ↑(innerDualCone {↑x}) = inner ↑x ⁻¹' Ici 0 ⊢ IsClosed (inner ↑x ⁻¹' Ici 0) [PROOFSTEP] exact isClosed_Ici.preimage (continuous_const.inner continuous_id') [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K ⊢ Pointed K [PROOFSTEP] obtain ⟨x, hx⟩ := ne [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K ⊢ Pointed K [PROOFSTEP] let f : ℝ → H := (· • x) -- f (0, ∞) is a subset of K [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x ⊢ Pointed K [PROOFSTEP] have fI : f '' Set.Ioi 0 ⊆ (K : Set H) := by rintro _ ⟨_, h, rfl⟩ exact K.smul_mem (Set.mem_Ioi.1 h) hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x ⊢ f '' Ioi 0 ⊆ ↑K [PROOFSTEP] rintro _ ⟨_, h, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x w✝ : ℝ h : w✝ ∈ Ioi 0 ⊢ f w✝ ∈ ↑K [PROOFSTEP] exact K.smul_mem (Set.mem_Ioi.1 h) hx [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K ⊢ Pointed K [PROOFSTEP] have clf : closure (f '' Set.Ioi 0) ⊆ (K : Set H) := hc.closure_subset_iff.2 fI [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K clf : closure (f '' Ioi 0) ⊆ ↑K ⊢ Pointed K [PROOFSTEP] have fc : ContinuousWithinAt f (Set.Ioi (0 : ℝ)) 0 := (continuous_id.smul continuous_const).continuousWithinAt [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K clf : closure (f '' Ioi 0) ⊆ ↑K fc : ContinuousWithinAt f (Ioi 0) 0 ⊢ Pointed K [PROOFSTEP] have mem₀ := fc.mem_closure_image (by rw [closure_Ioi (0 : ℝ), mem_Ici]) -- as 0 ∈ closure f (0, ∞) and closure f (0, ∞) ⊆ K, 0 ∈ K. [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K clf : closure (f '' Ioi 0) ⊆ ↑K fc : ContinuousWithinAt f (Ioi 0) 0 ⊢ 0 ∈ closure (Ioi 0) [PROOFSTEP] rw [closure_Ioi (0 : ℝ), mem_Ici] [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K clf : closure (f '' Ioi 0) ⊆ ↑K fc : ContinuousWithinAt f (Ioi 0) 0 mem₀ : f 0 ∈ closure (f '' Ioi 0) ⊢ Pointed K [PROOFSTEP] have f₀ : f 0 = 0 := zero_smul ℝ x [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H s t : Set H K : ConvexCone ℝ H hc : IsClosed ↑K x : H hx : x ∈ ↑K f : ℝ → H := fun x_1 => x_1 • x fI : f '' Ioi 0 ⊆ ↑K clf : closure (f '' Ioi 0) ⊆ ↑K fc : ContinuousWithinAt f (Ioi 0) 0 mem₀ : f 0 ∈ closure (f '' Ioi 0) f₀ : f 0 = 0 ⊢ Pointed K [PROOFSTEP] simpa only [f₀, ConvexCone.Pointed, ← SetLike.mem_coe] using mem_of_subset_of_mem clf mem₀ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K ⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0 [PROOFSTEP] obtain ⟨z, hzK, infi⟩ := exists_norm_eq_iInf_of_complete_convex ne hc.isComplete K.convex b [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ ⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0 [PROOFSTEP] have hinner := (norm_eq_iInf_iff_real_inner_le_zero K.convex hzK).1 infi [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 ⊢ ∃ y, (∀ (x : H), x ∈ K → 0 ≤ inner x y) ∧ inner y b < 0 [PROOFSTEP] use z - b [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 ⊢ (∀ (x : H), x ∈ K → 0 ≤ inner x (z - b)) ∧ inner (z - b) b < 0 [PROOFSTEP] constructor [GOAL] case h.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 ⊢ ∀ (x : H), x ∈ K → 0 ≤ inner x (z - b) [PROOFSTEP] rintro x hxK [GOAL] case h.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 x : H hxK : x ∈ K ⊢ 0 ≤ inner x (z - b) [PROOFSTEP] specialize hinner _ (K.add_mem hxK hzK) [GOAL] case h.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ x : H hxK : x ∈ K hinner : inner (b - z) (x + z - z) ≤ 0 ⊢ 0 ≤ inner x (z - b) [PROOFSTEP] rwa [add_sub_cancel, real_inner_comm, ← neg_nonneg, neg_eq_neg_one_mul, ← real_inner_smul_right, neg_smul, one_smul, neg_sub] at hinner [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 ⊢ inner (z - b) b < 0 [PROOFSTEP] have hinner₀ := hinner 0 (K.pointed_of_nonempty_of_isClosed ne hc) -- the rest of the proof is a straightforward calculation [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : inner (b - z) (0 - z) ≤ 0 ⊢ inner (z - b) b < 0 [PROOFSTEP] rw [zero_sub, inner_neg_right, Right.neg_nonpos_iff] at hinner₀ [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z ⊢ inner (z - b) b < 0 [PROOFSTEP] have hbz : b - z ≠ 0 := by rw [sub_ne_zero] contrapose! hzK rwa [← hzK] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z ⊢ b - z ≠ 0 [PROOFSTEP] rw [sub_ne_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z ⊢ b ≠ z [PROOFSTEP] contrapose! hzK [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z hzK : b = z ⊢ ¬z ∈ ↑K [PROOFSTEP] rwa [← hzK] [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z hbz : b - z ≠ 0 ⊢ inner (z - b) b < 0 [PROOFSTEP] rw [← neg_zero, lt_neg, ← neg_one_mul, ← real_inner_smul_left, smul_sub, neg_smul, one_smul, neg_smul, neg_sub_neg, one_smul] [GOAL] case h.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z hbz : b - z ≠ 0 ⊢ 0 < inner (b - z) b [PROOFSTEP] calc 0 < ⟪b - z, b - z⟫_ℝ := lt_of_not_le ((Iff.not real_inner_self_nonpos).2 hbz) _ = ⟪b - z, b - z⟫_ℝ + 0 := (add_zero _).symm _ ≤ ⟪b - z, b - z⟫_ℝ + ⟪b - z, z⟫_ℝ := (add_le_add rfl.ge hinner₀) _ = ⟪b - z, b - z + z⟫_ℝ := (inner_add_right _ _ _).symm _ = ⟪b - z, b⟫_ℝ := by rw [sub_add_cancel] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K b : H disj : ¬b ∈ K z : H hzK : z ∈ ↑K infi : ‖b - z‖ = ⨅ (w : ↑↑K), ‖b - ↑w‖ hinner : ∀ (w : H), w ∈ ↑K → inner (b - z) (w - z) ≤ 0 hinner₀ : 0 ≤ inner (b - z) z hbz : b - z ≠ 0 ⊢ inner (b - z) (b - z + z) = inner (b - z) b [PROOFSTEP] rw [sub_add_cancel] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K ⊢ innerDualCone ↑(innerDualCone ↑K) = K [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H ⊢ x ∈ innerDualCone ↑(innerDualCone ↑K) ↔ x ∈ K [PROOFSTEP] constructor [GOAL] case h.mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H ⊢ x ∈ innerDualCone ↑(innerDualCone ↑K) → x ∈ K [PROOFSTEP] rw [mem_innerDualCone, ← SetLike.mem_coe] [GOAL] case h.mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H ⊢ (∀ (x_1 : H), x_1 ∈ ↑(innerDualCone ↑K) → 0 ≤ inner x_1 x) → x ∈ ↑K [PROOFSTEP] contrapose! [GOAL] case h.mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H ⊢ ¬x ∈ ↑K → ∃ x_1, x_1 ∈ ↑(innerDualCone ↑K) ∧ inner x_1 x < 0 [PROOFSTEP] exact K.hyperplane_separation_of_nonempty_of_isClosed_of_nmem ne hc [GOAL] case h.mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H ⊢ x ∈ K → x ∈ innerDualCone ↑(innerDualCone ↑K) [PROOFSTEP] rintro hxK y h [GOAL] case h.mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H hxK : x ∈ K y : H h : y ∈ ↑(innerDualCone ↑K) ⊢ 0 ≤ inner y x [PROOFSTEP] specialize h x hxK [GOAL] case h.mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 H : Type u_5 inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℝ H s t : Set H inst✝ : CompleteSpace H K : ConvexCone ℝ H ne : Set.Nonempty ↑K hc : IsClosed ↑K x : H hxK : x ∈ K y : H h : 0 ≤ inner x y ⊢ 0 ≤ inner y x [PROOFSTEP] rwa [real_inner_comm]
{"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Dual", "llama_tokens": 11741}
[GOAL] p : ℝ[X] ⊢ Tendsto (fun x => eval x p / exp x) atTop (𝓝 0) [PROOFSTEP] induction p using Polynomial.induction_on' with | h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) | h_add p q hp hq => simpa [add_div] using hp.add hq [GOAL] p : ℝ[X] ⊢ Tendsto (fun x => eval x p / exp x) atTop (𝓝 0) [PROOFSTEP] induction p using Polynomial.induction_on' with | h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) | h_add p q hp hq => simpa [add_div] using hp.add hq [GOAL] case h_monomial n : ℕ c : ℝ ⊢ Tendsto (fun x => eval x (↑(monomial n) c) / exp x) atTop (𝓝 0) [PROOFSTEP] | h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) [GOAL] case h_monomial n : ℕ c : ℝ ⊢ Tendsto (fun x => eval x (↑(monomial n) c) / exp x) atTop (𝓝 0) [PROOFSTEP] simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) [GOAL] case h_add p q : ℝ[X] hp : Tendsto (fun x => eval x p / exp x) atTop (𝓝 0) hq : Tendsto (fun x => eval x q / exp x) atTop (𝓝 0) ⊢ Tendsto (fun x => eval x (p + q) / exp x) atTop (𝓝 0) [PROOFSTEP] | h_add p q hp hq => simpa [add_div] using hp.add hq [GOAL] case h_add p q : ℝ[X] hp : Tendsto (fun x => eval x p / exp x) atTop (𝓝 0) hq : Tendsto (fun x => eval x q / exp x) atTop (𝓝 0) ⊢ Tendsto (fun x => eval x (p + q) / exp x) atTop (𝓝 0) [PROOFSTEP] simpa [add_div] using hp.add hq
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.PolynomialExp", "llama_tokens": 777}
[GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J✝ J : FractionalIdeal R₁⁰ K h : J ≠ 0 ⊢ ↑J⁻¹ = IsLocalization.coeSubmodule K ⊤ / ↑J [PROOFSTEP] rw [inv_nonzero] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J✝ J : FractionalIdeal R₁⁰ K h : J ≠ 0 ⊢ ↑{ val := ↑1 / ↑J, property := (_ : IsFractional R₁⁰ (↑1 / ↑J)) } = IsLocalization.coeSubmodule K ⊤ / ↑J case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J✝ J : FractionalIdeal R₁⁰ K h : J ≠ 0 ⊢ J ≠ 0 [PROOFSTEP] rfl [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J✝ J : FractionalIdeal R₁⁰ K h : J ≠ 0 ⊢ J ≠ 0 [PROOFSTEP] assumption [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K hI : I ≠ 0 hJ : J ≠ 0 hIJ : I ≤ J ⊢ J⁻¹ ≤ I⁻¹ [PROOFSTEP] intro x [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K hI : I ≠ 0 hJ : J ≠ 0 hIJ : I ≤ J x : K ⊢ x ∈ (fun a => ↑a) J⁻¹ → x ∈ (fun a => ↑a) I⁻¹ [PROOFSTEP] simp only [val_eq_coe, mem_coe, mem_inv_iff hJ, mem_inv_iff hI] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K hI : I ≠ 0 hJ : J ≠ 0 hIJ : I ≤ J x : K ⊢ (∀ (y : K), y ∈ J → x * y ∈ 1) → ∀ (y : K), y ∈ I → x * y ∈ 1 [PROOFSTEP] exact fun h y hy => h y (hIJ hy) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 ⊢ J = I⁻¹ [PROOFSTEP] have hI : I ≠ 0 := ne_zero_of_mul_eq_one I J h [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ J = I⁻¹ [PROOFSTEP] suffices h' : I * (1 / I) = 1 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 h' : I * (1 / I) = 1 ⊢ J = I⁻¹ [PROOFSTEP] exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl [GOAL] case h' R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ I * (1 / I) = 1 [PROOFSTEP] apply le_antisymm [GOAL] case h'.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ I * (1 / I) ≤ 1 [PROOFSTEP] apply mul_le.mpr _ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ ∀ (i : K), i ∈ I → ∀ (j : K), j ∈ 1 / I → i * j ∈ 1 [PROOFSTEP] intro x hx y hy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 x : K hx : x ∈ I y : K hy : y ∈ 1 / I ⊢ x * y ∈ 1 [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 x : K hx : x ∈ I y : K hy : y ∈ 1 / I ⊢ y * x ∈ 1 [PROOFSTEP] exact (mem_div_iff_of_nonzero hI).mp hy x hx [GOAL] case h'.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ 1 ≤ I * (1 / I) [PROOFSTEP] rw [← h] [GOAL] case h'.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ I * J ≤ I * (I * J / I) [PROOFSTEP] apply mul_left_mono I [GOAL] case h'.a.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ J ≤ I * J / I [PROOFSTEP] apply (le_div_iff_of_nonzero hI).mpr _ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 ⊢ ∀ (x : K), x ∈ J → ∀ (y : K), y ∈ I → x * y ∈ I * J [PROOFSTEP] intro y hy x hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 y : K hy : y ∈ J x : K hx : x ∈ I ⊢ y * x ∈ I * J [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I J : FractionalIdeal R₁⁰ K h : I * J = 1 hI : I ≠ 0 y : K hy : y ∈ J x : K hx : x ∈ I ⊢ x * y ∈ I * J [PROOFSTEP] exact mul_mem_mul hx hy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A R₁ : Type u_4 inst✝³ : CommRing R₁ inst✝² : IsDomain R₁ inst✝¹ : Algebra R₁ K inst✝ : IsFractionRing R₁ K I✝ J✝ I : FractionalIdeal R₁⁰ K x✝ : ∃ J, I * J = 1 J : FractionalIdeal R₁⁰ K hJ : I * J = 1 ⊢ I * I⁻¹ = 1 [PROOFSTEP] rwa [← right_inverse_eq K I J hJ] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K h : K ≃ₐ[R₁] K' ⊢ map (↑h) I⁻¹ = (map (↑h) I)⁻¹ [PROOFSTEP] rw [inv_eq, map_div, map_one, inv_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x y : K ⊢ spanSingleton R₁⁰ x / spanSingleton R₁⁰ y = spanSingleton R₁⁰ (x / y) [PROOFSTEP] rw [div_spanSingleton, mul_comm, spanSingleton_mul_spanSingleton, div_eq_mul_inv] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : K hx : x ≠ 0 ⊢ spanSingleton R₁⁰ x / spanSingleton R₁⁰ x = 1 [PROOFSTEP] rw [spanSingleton_div_spanSingleton, div_self hx, spanSingleton_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : R₁ hx : x ≠ 0 ⊢ ↑(Ideal.span {x}) / ↑(Ideal.span {x}) = 1 [PROOFSTEP] rw [coeIdeal_span_singleton, spanSingleton_div_self K <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R₁ K).mpr hx] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : K hx : x ≠ 0 ⊢ spanSingleton R₁⁰ x * (spanSingleton R₁⁰ x)⁻¹ = 1 [PROOFSTEP] rw [spanSingleton_inv, spanSingleton_mul_spanSingleton, mul_inv_cancel hx, spanSingleton_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : R₁ hx : x ≠ 0 ⊢ ↑(Ideal.span {x}) * (↑(Ideal.span {x}))⁻¹ = 1 [PROOFSTEP] rw [coeIdeal_span_singleton, spanSingleton_mul_inv K <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R₁ K).mpr hx] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : K hx : x ≠ 0 ⊢ (spanSingleton R₁⁰ x)⁻¹ * spanSingleton R₁⁰ x = 1 [PROOFSTEP] rw [mul_comm, spanSingleton_mul_inv K hx] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A R₁ : Type u_4 inst✝⁶ : CommRing R₁ inst✝⁵ : IsDomain R₁ inst✝⁴ : Algebra R₁ K inst✝³ : IsFractionRing R₁ K I J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝² : Field K' inst✝¹ : Algebra R₁ K' inst✝ : IsFractionRing R₁ K' x : R₁ hx : x ≠ 0 ⊢ (↑(Ideal.span {x}))⁻¹ * ↑(Ideal.span {x}) = 1 [PROOFSTEP] rw [mul_comm, coe_ideal_span_singleton_mul_inv K hx] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1 [PROOFSTEP] conv_lhs => congr; rw [eq_spanSingleton_of_principal I] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 | I * spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] congr; rw [eq_spanSingleton_of_principal I] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 | I * spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] congr; rw [eq_spanSingleton_of_principal I] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 | I * spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] congr [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 | I case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 | spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] rw [eq_spanSingleton_of_principal I] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ spanSingleton R₁⁰ (generator ↑I) * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1 [PROOFSTEP] rw [spanSingleton_mul_spanSingleton, mul_inv_cancel, spanSingleton_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ generator ↑I ≠ 0 [PROOFSTEP] intro generator_I_eq_zero [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 generator_I_eq_zero : generator ↑I = 0 ⊢ False [PROOFSTEP] apply h [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing A inst✝¹² : Field K inst✝¹¹ : IsDomain A R₁✝ : Type u_4 inst✝¹⁰ : CommRing R₁✝ inst✝⁹ : IsDomain R₁✝ inst✝⁸ : Algebra R₁✝ K inst✝⁷ : IsFractionRing R₁✝ K I✝ J : FractionalIdeal R₁✝⁰ K K' : Type u_5 inst✝⁶ : Field K' inst✝⁵ : Algebra R₁✝ K' inst✝⁴ : IsFractionRing R₁✝ K' R₁ : Type u_6 inst✝³ : CommRing R₁ inst✝² : Algebra R₁ K inst✝¹ : IsLocalization R₁⁰ K I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 generator_I_eq_zero : generator ↑I = 0 ⊢ I = 0 [PROOFSTEP] rw [eq_spanSingleton_of_principal I, generator_I_eq_zero, spanSingleton_zero] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I ⊢ I * I⁻¹ = 1 ↔ generator ↑I ≠ 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I ⊢ I * I⁻¹ = 1 → generator ↑I ≠ 0 [PROOFSTEP] intro hI hg [GOAL] case mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hI : I * I⁻¹ = 1 hg : generator ↑I = 0 ⊢ False [PROOFSTEP] apply ne_zero_of_mul_eq_one _ _ hI [GOAL] case mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hI : I * I⁻¹ = 1 hg : generator ↑I = 0 ⊢ I = 0 [PROOFSTEP] rw [eq_spanSingleton_of_principal I, hg, spanSingleton_zero] [GOAL] case mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I ⊢ generator ↑I ≠ 0 → I * I⁻¹ = 1 [PROOFSTEP] intro hg [GOAL] case mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 ⊢ I * I⁻¹ = 1 [PROOFSTEP] apply invertible_of_principal [GOAL] case mpr.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 ⊢ I ≠ 0 [PROOFSTEP] rw [eq_spanSingleton_of_principal I] [GOAL] case mpr.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 ⊢ spanSingleton R₁⁰ (generator ↑I) ≠ 0 [PROOFSTEP] intro hI [GOAL] case mpr.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 hI : spanSingleton R₁⁰ (generator ↑I) = 0 ⊢ False [PROOFSTEP] have := mem_spanSingleton_self R₁⁰ (generator (I : Submodule R₁ K)) [GOAL] case mpr.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 hI : spanSingleton R₁⁰ (generator ↑I) = 0 this : generator ↑I ∈ spanSingleton R₁⁰ (generator ↑I) ⊢ False [PROOFSTEP] rw [hI, mem_zero_iff] at this [GOAL] case mpr.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I hg : generator ↑I ≠ 0 hI : spanSingleton R₁⁰ (generator ↑I) = 0 this : generator ↑I = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ IsPrincipal ↑I⁻¹ [PROOFSTEP] rw [val_eq_coe, isPrincipal_iff] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ ∃ x, I⁻¹ = spanSingleton R₁⁰ x [PROOFSTEP] use(generator (I : Submodule R₁ K))⁻¹ [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] have hI : I * spanSingleton _ (generator (I : Submodule R₁ K))⁻¹ = 1 [GOAL] case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 ⊢ I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1 case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 hI : I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1 ⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] apply mul_generator_self_inv _ I h [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A R₁ : Type u_4 inst✝⁷ : CommRing R₁ inst✝⁶ : IsDomain R₁ inst✝⁵ : Algebra R₁ K inst✝⁴ : IsFractionRing R₁ K I✝ J : FractionalIdeal R₁⁰ K K' : Type u_5 inst✝³ : Field K' inst✝² : Algebra R₁ K' inst✝¹ : IsFractionRing R₁ K' I : FractionalIdeal R₁⁰ K inst✝ : IsPrincipal ↑I h : I ≠ 0 hI : I * spanSingleton R₁⁰ (generator ↑I)⁻¹ = 1 ⊢ I⁻¹ = spanSingleton R₁⁰ (generator ↑I)⁻¹ [PROOFSTEP] exact (right_inverse_eq _ I (spanSingleton _ (generator (I : Submodule R₁ K))⁻¹) hI).symm [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K ⊢ IsDedekindDomainInv A ↔ ∀ (I : FractionalIdeal A⁰ K), I ≠ ⊥ → I * I⁻¹ = 1 [PROOFSTEP] let h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := FractionalIdeal.mapEquiv (FractionRing.algEquiv A K) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K) ⊢ IsDedekindDomainInv A ↔ ∀ (I : FractionalIdeal A⁰ K), I ≠ ⊥ → I * I⁻¹ = 1 [PROOFSTEP] refine h.toEquiv.forall_congr (fun {x} => ?_) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K) x : FractionalIdeal A⁰ (FractionRing A) ⊢ x ≠ ⊥ → x * x⁻¹ = 1 ↔ ↑h.toEquiv x ≠ ⊥ → ↑h.toEquiv x * (↑h.toEquiv x)⁻¹ = 1 [PROOFSTEP] rw [← h.toEquiv.apply_eq_iff_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : FractionalIdeal A⁰ (FractionRing A) ≃+* FractionalIdeal A⁰ K := mapEquiv (FractionRing.algEquiv A K) x : FractionalIdeal A⁰ (FractionRing A) ⊢ x ≠ ⊥ → ↑h.toEquiv (x * x⁻¹) = ↑h.toEquiv 1 ↔ ↑h.toEquiv x ≠ ⊥ → ↑h.toEquiv x * (↑h.toEquiv x)⁻¹ = 1 [PROOFSTEP] simp [IsDedekindDomainInv] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x hI : IsUnit (adjoinIntegral A⁰ x hx) ⊢ adjoinIntegral A⁰ x hx = 1 [PROOFSTEP] set I := adjoinIntegral A⁰ x hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I ⊢ I = 1 [PROOFSTEP] have mul_self : I * I = I := by apply coeToSubmodule_injective; simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I ⊢ I * I = I [PROOFSTEP] apply coeToSubmodule_injective [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I ⊢ (fun I => ↑I) (I * I) = (fun I => ↑I) I [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I mul_self : I * I = I ⊢ I = 1 [PROOFSTEP] convert congr_arg (· * I⁻¹) mul_self [GOAL] case h.e'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I mul_self : I * I = I ⊢ I = I * I * I⁻¹ [PROOFSTEP] simp only [(mul_inv_cancel_iff_isUnit K).mpr hI, mul_assoc, mul_one] [GOAL] case h.e'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : K hx : IsIntegral A x I : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx hI : IsUnit I mul_self : I * I = I ⊢ 1 = I * I⁻¹ [PROOFSTEP] simp only [(mul_inv_cancel_iff_isUnit K).mpr hI, mul_assoc, mul_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A ⊢ IsNoetherianRing A [PROOFSTEP] refine' isNoetherianRing_iff.mpr ⟨fun I : Ideal A => _⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A I : Ideal A ⊢ Submodule.FG I [PROOFSTEP] by_cases hI : I = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A I : Ideal A hI : I = ⊥ ⊢ Submodule.FG I [PROOFSTEP] rw [hI] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A I : Ideal A hI : I = ⊥ ⊢ Submodule.FG ⊥ [PROOFSTEP] apply Submodule.fg_bot [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A I : Ideal A hI : ¬I = ⊥ ⊢ Submodule.FG I [PROOFSTEP] have hI : (I : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr hI [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A I : Ideal A hI✝ : ¬I = ⊥ hI : ↑I ≠ 0 ⊢ Submodule.FG I [PROOFSTEP] exact I.fg_of_isUnit (IsFractionRing.injective A (FractionRing A)) (h.isUnit hI) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A ⊢ IsIntegrallyClosed A [PROOFSTEP] refine ⟨fun {x hx} => ?_⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A x : FractionRing A hx : IsIntegral A x ⊢ ∃ y, ↑(algebraMap A (FractionRing A)) y = x [PROOFSTEP] rw [← Set.mem_range, ← Algebra.mem_bot, ← Subalgebra.mem_toSubmodule, Algebra.toSubmodule_bot, ← coe_spanSingleton A⁰ (1 : FractionRing A), spanSingleton_one, ← FractionalIdeal.adjoinIntegral_eq_one_of_isUnit x hx (h.isUnit _)] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A x : FractionRing A hx : IsIntegral A x ⊢ x ∈ ↑(adjoinIntegral A⁰ x hx) [PROOFSTEP] exact mem_adjoinIntegral_self A⁰ x hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A x : FractionRing A hx : IsIntegral A x ⊢ adjoinIntegral A⁰ x hx ≠ 0 [PROOFSTEP] exact fun h => one_ne_zero (eq_zero_iff.mp h 1 (Algebra.adjoin A { x }).one_mem) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A ⊢ ∀ {p : Ideal A}, p ≠ ⊥ → Ideal.IsPrime p → Ideal.IsMaximal p [PROOFSTEP] rintro P P_ne hP [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P ⊢ Ideal.IsMaximal P [PROOFSTEP] refine Ideal.isMaximal_def.mpr ⟨hP.ne_top, fun M hM => ?_⟩ -- We may assume `P` and `M` (as fractional ideals) are nonzero. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M ⊢ M = ⊤ [PROOFSTEP] have P'_ne : (P : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr P_ne [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 ⊢ M = ⊤ [PROOFSTEP] have M'_ne : (M : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr (lt_of_le_of_lt bot_le hM).ne' [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 ⊢ M = ⊤ [PROOFSTEP] suffices (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ P by rw [eq_top_iff, ← coeIdeal_le_coeIdeal (FractionRing A), coeIdeal_top] calc (1 : FractionalIdeal A⁰ (FractionRing A)) = _ * _ * _ := ?_ _ ≤ _ * _ := (mul_right_mono ((P : FractionalIdeal A⁰ (FractionRing A))⁻¹ * M : FractionalIdeal A⁰ (FractionRing A)) this) _ = M := ?_ · rw [mul_assoc, ← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul, h.inv_mul_eq_one M'_ne] · rw [← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul] -- Suppose we have `x ∈ M⁻¹ * P`, then in fact `x = algebraMap _ _ y` for some `y`. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 this : (↑M)⁻¹ * ↑P ≤ ↑P ⊢ M = ⊤ [PROOFSTEP] rw [eq_top_iff, ← coeIdeal_le_coeIdeal (FractionRing A), coeIdeal_top] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 this : (↑M)⁻¹ * ↑P ≤ ↑P ⊢ 1 ≤ ↑M [PROOFSTEP] calc (1 : FractionalIdeal A⁰ (FractionRing A)) = _ * _ * _ := ?_ _ ≤ _ * _ := (mul_right_mono ((P : FractionalIdeal A⁰ (FractionRing A))⁻¹ * M : FractionalIdeal A⁰ (FractionRing A)) this) _ = M := ?_ [GOAL] case calc_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 this : (↑M)⁻¹ * ↑P ≤ ↑P ⊢ 1 = (↑M)⁻¹ * ↑P * ((↑P)⁻¹ * ↑M) [PROOFSTEP] rw [mul_assoc, ← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul, h.inv_mul_eq_one M'_ne] [GOAL] case calc_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 this : (↑M)⁻¹ * ↑P ≤ ↑P ⊢ ↑P * ((↑P)⁻¹ * ↑M) = ↑M [PROOFSTEP] rw [← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul] -- Suppose we have `x ∈ M⁻¹ * P`, then in fact `x = algebraMap _ _ y` for some `y`. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 ⊢ (↑M)⁻¹ * ↑P ≤ ↑P [PROOFSTEP] intro x hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 x : FractionRing A hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) ⊢ x ∈ (fun a => ↑a) ↑P [PROOFSTEP] have le_one : (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ 1 := by rw [← h.inv_mul_eq_one M'_ne] exact mul_left_mono _ ((coeIdeal_le_coeIdeal (FractionRing A)).mpr hM.le) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 x : FractionRing A hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) ⊢ (↑M)⁻¹ * ↑P ≤ 1 [PROOFSTEP] rw [← h.inv_mul_eq_one M'_ne] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 x : FractionRing A hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) ⊢ (↑M)⁻¹ * ↑P ≤ (↑M)⁻¹ * ↑M [PROOFSTEP] exact mul_left_mono _ ((coeIdeal_le_coeIdeal (FractionRing A)).mpr hM.le) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 x : FractionRing A hx : x ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) le_one : (↑M)⁻¹ * ↑P ≤ 1 ⊢ x ∈ (fun a => ↑a) ↑P [PROOFSTEP] obtain ⟨y, _hy, rfl⟩ := (mem_coeIdeal _).mp (le_one hx) -- Since `M` is strictly greater than `P`, let `z ∈ M \ P`. [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] obtain ⟨z, hzM, hzp⟩ := SetLike.exists_of_lt hM [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) z : A hzM : z ∈ M hzp : ¬z ∈ P ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] have zy_mem := mul_mem_mul (mem_coeIdeal_of_mem A⁰ hzM) hx [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) z : A hzM : z ∈ M hzp : ¬z ∈ P zy_mem : ↑(algebraMap A (FractionRing A)) z * ↑(algebraMap A (FractionRing A)) y ∈ ↑M * ((↑M)⁻¹ * ↑P) ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] rw [← RingHom.map_mul, ← mul_assoc, h.mul_inv_eq_one M'_ne, one_mul] at zy_mem [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) z : A hzM : z ∈ M hzp : ¬z ∈ P zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] obtain ⟨zy, hzy, zy_eq⟩ := (mem_coeIdeal A⁰).mp zy_mem [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) z : A hzM : z ∈ M hzp : ¬z ∈ P zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P zy : A hzy : zy ∈ P zy_eq : ↑(algebraMap A ((fun x => FractionRing A) z)) zy = ↑(algebraMap A (FractionRing A)) (z * y) ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] rw [IsFractionRing.injective A (FractionRing A) zy_eq] at hzy [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : Ideal.IsPrime P M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 M'_ne : ↑M ≠ 0 le_one : (↑M)⁻¹ * ↑P ≤ 1 y : A _hy : y ∈ ⊤ hx : ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ((↑M)⁻¹ * ↑P) z : A hzM : z ∈ M hzp : ¬z ∈ P zy_mem : ↑(algebraMap A (FractionRing A)) (z * y) ∈ ↑P zy : A hzy : z * y ∈ P zy_eq : ↑(algebraMap A ((fun x => FractionRing A) z)) zy = ↑(algebraMap A (FractionRing A)) (z * y) ⊢ ↑(algebraMap A (FractionRing A)) y ∈ (fun a => ↑a) ↑P [PROOFSTEP] exact mem_coeIdeal_of_mem A⁰ (Or.resolve_left (hP.mem_or_mem hzy) hzp) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] obtain ⟨Z₀, hZ₀⟩ := PrimeSpectrum.exists_primeSpectrum_prod_le_and_ne_bot_of_domain hNF hI0 [GOAL] case intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] obtain ⟨Z, ⟨hZI, hprodZ⟩, h_eraseZ⟩ := Multiset.wellFounded_lt.has_min (fun Z => (Z.map PrimeSpectrum.asIdeal).prod ≤ I ∧ (Z.map PrimeSpectrum.asIdeal).prod ≠ ⊥) ⟨Z₀, hZ₀⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] have hZM : Multiset.prod (Z.map PrimeSpectrum.asIdeal) ≤ M := le_trans hZI hIM [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] have hZ0 : Z ≠ 0 := by rintro rfl; simp [hM.ne_top] at hZM [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M ⊢ Z ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < 0 hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal 0) ≤ M ⊢ False [PROOFSTEP] simp [hM.ne_top] at hZM [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] obtain ⟨_, hPZ', hPM⟩ := (hM.isPrime.multiset_prod_le (mt Multiset.map_eq_zero.mp hZ0)).mp hZM [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 w✝ : Ideal A hPZ' : w✝ ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : w✝ ≤ M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] obtain ⟨P, hPZ, rfl⟩ := Multiset.mem_map.mp hPZ' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] classical have := Multiset.map_erase PrimeSpectrum.asIdeal PrimeSpectrum.ext P Z obtain ⟨hP0, hZP0⟩ : P.asIdeal ≠ ⊥ ∧ ((Z.erase P).map PrimeSpectrum.asIdeal).prod ≠ ⊥ := by rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ have hPM' := (P.IsPrime.isMaximal hP0).eq_of_le hM.ne_top hPM subst hPM' refine ⟨Z.erase P, ?_, ?_⟩ · convert hZI rw [this, Multiset.cons_erase hPZ'] · refine fun h => h_eraseZ (Z.erase P) ⟨h, ?_⟩ (Multiset.erase_lt.mpr hPZ) exact hZP0 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] have := Multiset.map_erase PrimeSpectrum.asIdeal PrimeSpectrum.ext P Z [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] obtain ⟨hP0, hZP0⟩ : P.asIdeal ≠ ⊥ ∧ ((Z.erase P).map PrimeSpectrum.asIdeal).prod ≠ ⊥ := by rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal ⊢ P.asIdeal ≠ ⊥ ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ [PROOFSTEP] rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ← this] at hprodZ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] have hPM' := (P.IsPrime.isMaximal hP0).eq_of_le hM.ne_top hPM [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I M : Ideal A hI0 : I ≠ ⊥ hIM : I ≤ M hM : Ideal.IsMaximal M Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ M hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z hPM : P.asIdeal ≤ M this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hPM' : P.asIdeal = M ⊢ ∃ Z, Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] subst hPM' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hIM : I ≤ P.asIdeal hM : Ideal.IsMaximal P.asIdeal hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal hPM : P.asIdeal ≤ P.asIdeal ⊢ ∃ Z, Multiset.prod (P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I [PROOFSTEP] refine ⟨Z.erase P, ?_, ?_⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hIM : I ≤ P.asIdeal hM : Ideal.IsMaximal P.asIdeal hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal hPM : P.asIdeal ≤ P.asIdeal ⊢ Multiset.prod (P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I [PROOFSTEP] convert hZI [GOAL] case h.e'_3.h.e'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hIM : I ≤ P.asIdeal hM : Ideal.IsMaximal P.asIdeal hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal hPM : P.asIdeal ≤ P.asIdeal ⊢ P.asIdeal ::ₘ Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.map PrimeSpectrum.asIdeal Z [PROOFSTEP] rw [this, Multiset.cons_erase hPZ'] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hIM : I ≤ P.asIdeal hM : Ideal.IsMaximal P.asIdeal hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal hPM : P.asIdeal ≤ P.asIdeal ⊢ ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I [PROOFSTEP] refine fun h => h_eraseZ (Z.erase P) ⟨h, ?_⟩ (Multiset.erase_lt.mpr hPZ) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ Z₀ : Multiset (PrimeSpectrum A) hZ₀ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z₀) ≠ ⊥ Z : Multiset (PrimeSpectrum A) h_eraseZ : ∀ (x : Multiset (PrimeSpectrum A)), (x ∈ fun Z => Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥) → ¬x < Z hZI : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I hprodZ : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥ hZ0 : Z ≠ 0 P : PrimeSpectrum A hPZ : P ∈ Z hPZ' : P.asIdeal ∈ Multiset.map PrimeSpectrum.asIdeal Z this : Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P) = Multiset.erase (Multiset.map PrimeSpectrum.asIdeal Z) P.asIdeal hP0 : P.asIdeal ≠ ⊥ hZP0 : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ hIM : I ≤ P.asIdeal hM : Ideal.IsMaximal P.asIdeal hZM : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ P.asIdeal hPM : P.asIdeal ≤ P.asIdeal h : Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≤ I ⊢ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal (Multiset.erase Z P)) ≠ ⊥ [PROOFSTEP] exact hZP0 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] suffices ∀ {M : Ideal A} (_hM : M.IsMaximal), ∃ x : K, x ∈ (M⁻¹ : FractionalIdeal A⁰ K) ∧ x ∉ (1 : FractionalIdeal A⁰ K) by obtain ⟨M, hM, hIM⟩ : ∃ M : Ideal A, IsMaximal M ∧ I ≤ M := Ideal.exists_le_maximal I hI1 skip have hM0 := (M.bot_lt_of_maximal hNF).ne' obtain ⟨x, hxM, hx1⟩ := this hM refine ⟨x, inv_anti_mono ?_ ?_ ((coeIdeal_le_coeIdeal _).mpr hIM) hxM, hx1⟩ <;> rw [coeIdeal_ne_zero] <;> assumption -- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] obtain ⟨M, hM, hIM⟩ : ∃ M : Ideal A, IsMaximal M ∧ I ≤ M := Ideal.exists_le_maximal I hI1 [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] skip [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have hM0 := (M.bot_lt_of_maximal hNF).ne' [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] obtain ⟨x, hxM, hx1⟩ := this hM [GOAL] case intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ x : K hxM : x ∈ (↑M)⁻¹ hx1 : ¬x ∈ 1 ⊢ ∃ x, x ∈ (↑I)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] refine ⟨x, inv_anti_mono ?_ ?_ ((coeIdeal_le_coeIdeal _).mpr hIM) hxM, hx1⟩ [GOAL] case intro.intro.intro.intro.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ x : K hxM : x ∈ (↑M)⁻¹ hx1 : ¬x ∈ 1 ⊢ ↑I ≠ 0 [PROOFSTEP] rw [coeIdeal_ne_zero] [GOAL] case intro.intro.intro.intro.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ x : K hxM : x ∈ (↑M)⁻¹ hx1 : ¬x ∈ 1 ⊢ ↑M ≠ 0 [PROOFSTEP] rw [coeIdeal_ne_zero] [GOAL] case intro.intro.intro.intro.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ x : K hxM : x ∈ (↑M)⁻¹ hx1 : ¬x ∈ 1 ⊢ I ≠ ⊥ [PROOFSTEP] assumption -- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`. [GOAL] case intro.intro.intro.intro.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ this : ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 M : Ideal A hM : IsMaximal M hIM : I ≤ M hM0 : M ≠ ⊥ x : K hxM : x ∈ (↑M)⁻¹ hx1 : ¬x ∈ 1 ⊢ M ≠ ⊥ [PROOFSTEP] assumption -- Let `a` be a nonzero element of `M` and `J` the ideal generated by `a`. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ ⊢ ∀ {M : Ideal A}, IsMaximal M → ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] intro M hM [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] skip [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] obtain ⟨⟨a, haM⟩, ha0⟩ := Submodule.nonzero_mem_of_bot_lt (M.bot_lt_of_maximal hNF) [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : { val := a, property := haM } ≠ 0 ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] replace ha0 : a ≠ 0 := Subtype.coe_injective.ne ha0 [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] let J : Ideal A := Ideal.span { a } [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have hJ0 : J ≠ ⊥ := mt Ideal.span_singleton_eq_bot.mp ha0 [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have hJM : J ≤ M := Ideal.span_le.mpr (Set.singleton_subset_iff.mpr haM) [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have hM0 : ⊥ < M := M.bot_lt_of_maximal hNF [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] obtain ⟨Z, hle, hnle⟩ := exists_multiset_prod_cons_le_and_prod_not_le hNF hJ0 hJM [GOAL] case intro.mk.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] obtain ⟨b, hbZ, hbJ⟩ := SetLike.not_le_iff_exists.mp hnle [GOAL] case intro.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have hnz_fa : algebraMap A K a ≠ 0 := mt ((injective_iff_map_eq_zero _).mp (IsFractionRing.injective A K) a) ha0 [GOAL] case intro.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] have _hb0 : algebraMap A K b ≠ 0 := mt ((injective_iff_map_eq_zero _).mp (IsFractionRing.injective A K) b) fun h => hbJ <| h.symm ▸ J.zero_mem [GOAL] case intro.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 ⊢ ∃ x, x ∈ (↑M)⁻¹ ∧ ¬x ∈ 1 [PROOFSTEP] refine' ⟨algebraMap A K b * (algebraMap A K a)⁻¹, (mem_inv_iff _).mpr _, _⟩ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 ⊢ ↑M ≠ 0 [PROOFSTEP] exact coeIdeal_ne_zero.mpr hM0.ne' [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 ⊢ ∀ (y : K), y ∈ ↑M → ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * y ∈ 1 [PROOFSTEP] rintro y₀ hy₀ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y₀ : K hy₀ : y₀ ∈ ↑M ⊢ ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * y₀ ∈ 1 [PROOFSTEP] obtain ⟨y, h_Iy, rfl⟩ := (mem_coeIdeal _).mp hy₀ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M ⊢ ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ * ↑(algebraMap A K) y ∈ 1 [PROOFSTEP] rw [mul_comm, ← mul_assoc, ← RingHom.map_mul] [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M ⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1 [PROOFSTEP] have h_yb : y * b ∈ J := by apply hle rw [Multiset.prod_cons] exact Submodule.smul_mem_smul h_Iy hbZ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M ⊢ y * b ∈ J [PROOFSTEP] apply hle [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M ⊢ y * b ∈ Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) [PROOFSTEP] rw [Multiset.prod_cons] [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M ⊢ y * b ∈ M * Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) [PROOFSTEP] exact Submodule.smul_mem_smul h_Iy hbZ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M h_yb : y * b ∈ J ⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1 [PROOFSTEP] rw [Ideal.mem_span_singleton'] at h_yb [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M h_yb : ∃ a_1, a_1 * a = y * b ⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1 [PROOFSTEP] rcases h_yb with ⟨c, hc⟩ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M c : A hc : c * a = y * b ⊢ ↑(algebraMap A K) (y * b) * (↑(algebraMap A K) a)⁻¹ ∈ 1 [PROOFSTEP] rw [← hc, RingHom.map_mul, mul_assoc, mul_inv_cancel hnz_fa, mul_one] [GOAL] case intro.mk.intro.intro.intro.intro.refine'_2.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 y : A h_Iy : y ∈ M hy₀ : ↑(algebraMap A K) y ∈ ↑M c : A hc : c * a = y * b ⊢ ↑(algebraMap A K) c ∈ 1 [PROOFSTEP] apply coe_mem_one [GOAL] case intro.mk.intro.intro.intro.intro.refine'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 ⊢ ¬↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ ∈ 1 [PROOFSTEP] refine' mt (mem_one_iff _).mp _ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 ⊢ ¬∃ x', ↑(algebraMap A K) x' = ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ [PROOFSTEP] rintro ⟨x', h₂_abs⟩ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_3.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 x' : A h₂_abs : ↑(algebraMap A K) x' = ↑(algebraMap A K) b * (↑(algebraMap A K) a)⁻¹ ⊢ False [PROOFSTEP] rw [← div_eq_mul_inv, eq_div_iff_mul_eq hnz_fa, ← RingHom.map_mul] at h₂_abs [GOAL] case intro.mk.intro.intro.intro.intro.refine'_3.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 x' : A h₂_abs : ↑(algebraMap A K) (x' * a) = ↑(algebraMap A K) b ⊢ False [PROOFSTEP] have := Ideal.mem_span_singleton'.mpr ⟨x', IsFractionRing.injective A K h₂_abs⟩ [GOAL] case intro.mk.intro.intro.intro.intro.refine'_3.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A hNF : ¬IsField A I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ M : Ideal A hM : IsMaximal M a : A haM : a ∈ M ha0 : a ≠ 0 J : Ideal A := span {a} hJ0 : J ≠ ⊥ hJM : J ≤ M hM0 : ⊥ < M Z : Multiset (PrimeSpectrum A) hle : Multiset.prod (M ::ₘ Multiset.map PrimeSpectrum.asIdeal Z) ≤ J hnle : ¬Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ J b : A hbZ : b ∈ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) hbJ : ¬b ∈ J hnz_fa : ↑(algebraMap A K) a ≠ 0 _hb0 : ↑(algebraMap A K) b ≠ 0 x' : A h₂_abs : ↑(algebraMap A K) (x' * a) = ↑(algebraMap A K) b this : b ∈ span {a} ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI : I ≠ ⊥ ⊢ 1 ∈ (↑I)⁻¹ [PROOFSTEP] rw [mem_inv_iff (coeIdeal_ne_zero.mpr hI)] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI : I ≠ ⊥ ⊢ ∀ (y : K), y ∈ ↑I → 1 * y ∈ 1 [PROOFSTEP] intro y hy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI : I ≠ ⊥ y : K hy : y ∈ ↑I ⊢ 1 * y ∈ 1 [PROOFSTEP] rw [one_mul] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI : I ≠ ⊥ y : K hy : y ∈ ↑I ⊢ y ∈ 1 [PROOFSTEP] exact coeIdeal_le_one hy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] by_cases hI1 : I = ⊤ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : I = ⊤ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] rw [hI1, coeIdeal_top, one_mul, inv_one] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] by_cases hNF : IsField A [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : IsField A ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] letI := hNF.toField [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : IsField A this : Field A := IsField.toField hNF ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] rcases hI1 (I.eq_bot_or_top.resolve_left hI0) with ⟨⟩ -- We'll show a contradiction with `exists_not_mem_one_of_ne_bot`: -- `J⁻¹ = (I * I⁻¹)⁻¹` cannot have an element `x ∉ 1`, so it must equal `1`. [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] obtain ⟨J, hJ⟩ : ∃ J : Ideal A, (J : FractionalIdeal A⁰ K) = I * (I : FractionalIdeal A⁰ K)⁻¹ := le_one_iff_exists_coeIdeal.mp mul_one_div_le_one [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] by_cases hJ0 : J = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : J = ⊥ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] subst hJ0 [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A hJ : ↑⊥ = ↑I * (↑I)⁻¹ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] refine' absurd _ hI0 [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A hJ : ↑⊥ = ↑I * (↑I)⁻¹ ⊢ I = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← coeIdeal_le_coeIdeal K, hJ] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A hJ : ↑⊥ = ↑I * (↑I)⁻¹ ⊢ ↑I ≤ ↑I * (↑I)⁻¹ [PROOFSTEP] exact coe_ideal_le_self_mul_inv K I [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] by_cases hJ1 : J = ⊤ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ hJ1 : J = ⊤ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] rw [← hJ, hJ1, coeIdeal_top] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ hJ1 : ¬J = ⊤ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] obtain ⟨x, hx, hx1⟩ : ∃ x : K, x ∈ (J : FractionalIdeal A⁰ K)⁻¹ ∧ x ∉ (1 : FractionalIdeal A⁰ K) := exists_not_mem_one_of_ne_bot hNF hJ0 hJ1 [GOAL] case neg.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ hJ1 : ¬J = ⊤ x : K hx : x ∈ (↑J)⁻¹ hx1 : ¬x ∈ 1 ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] contrapose! hx1 with h_abs [GOAL] case neg.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ hJ1 : ¬J = ⊤ x : K hx : x ∈ (↑J)⁻¹ h_abs : ↑I * (↑I)⁻¹ ≠ 1 ⊢ x ∈ 1 [PROOFSTEP] rw [hJ] at hx [GOAL] case neg.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hI1 : ¬I = ⊤ hNF : ¬IsField A J : Ideal A hJ : ↑J = ↑I * (↑I)⁻¹ hJ0 : ¬J = ⊥ hJ1 : ¬J = ⊤ x : K hx : x ∈ (↑I * (↑I)⁻¹)⁻¹ h_abs : ↑I * (↑I)⁻¹ ≠ 1 ⊢ x ∈ 1 [PROOFSTEP] exact hI hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ ⊢ ↑I * (↑I)⁻¹ = 1 [PROOFSTEP] apply mul_inv_cancel_of_le_one hI0 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ ⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1 [PROOFSTEP] by_cases hJ0 : I * (I : FractionalIdeal A⁰ K)⁻¹ = 0 [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ↑I * (↑I)⁻¹ = 0 ⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1 [PROOFSTEP] rw [hJ0, inv_zero'] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ↑I * (↑I)⁻¹ = 0 ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le _ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 ⊢ (↑I * (↑I)⁻¹)⁻¹ ≤ 1 [PROOFSTEP] intro x hx [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ ⊢ x ∈ (fun a => ↑a) 1 [PROOFSTEP] suffices x ∈ integralClosure A K by rwa [IsIntegrallyClosed.integralClosure_eq_bot, Algebra.mem_bot, Set.mem_range, ← mem_one_iff] at this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ this : x ∈ integralClosure A K ⊢ x ∈ (fun a => ↑a) 1 [PROOFSTEP] rwa [IsIntegrallyClosed.integralClosure_eq_bot, Algebra.mem_bot, Set.mem_range, ← mem_one_iff] at this [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ ⊢ x ∈ integralClosure A K [PROOFSTEP] rw [mem_integralClosure_iff_mem_FG] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ ⊢ ∃ M, Submodule.FG (↑Subalgebra.toSubmodule M) ∧ x ∈ M [PROOFSTEP] have x_mul_mem : ∀ b ∈ (I⁻¹ : FractionalIdeal A⁰ K), x * b ∈ (I⁻¹ : FractionalIdeal A⁰ K) := by intro b hb rw [mem_inv_iff] dsimp only at hx rw [val_eq_coe, mem_coe, mem_inv_iff] at hx swap; · exact hJ0 swap; · exact coeIdeal_ne_zero.mpr hI0 simp only [mul_assoc, mul_comm b] at hx ⊢ intro y hy exact hx _ (mul_mem_mul hy hb) -- It turns out the subalgebra consisting of all `p(x)` for `p : A[X]` works. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ ⊢ ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ [PROOFSTEP] intro b hb [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ x * b ∈ (↑I)⁻¹ [PROOFSTEP] rw [mem_inv_iff] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1 case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I ≠ 0 [PROOFSTEP] dsimp only at hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ ↑(↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1 case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I ≠ 0 [PROOFSTEP] rw [val_eq_coe, mem_coe, mem_inv_iff] at hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1 b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1 case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I * (↑I)⁻¹ ≠ 0 case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I ≠ 0 [PROOFSTEP] swap [GOAL] case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I * (↑I)⁻¹ ≠ 0 [PROOFSTEP] exact hJ0 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1 b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1 case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I ≠ 0 [PROOFSTEP] swap [GOAL] case hI R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ b : K hb : b ∈ (↑I)⁻¹ ⊢ ↑I ≠ 0 [PROOFSTEP] exact coeIdeal_ne_zero.mpr hI0 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1 b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * b * y ∈ 1 [PROOFSTEP] simp only [mul_assoc, mul_comm b] at hx ⊢ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1 b : K hb : b ∈ (↑I)⁻¹ ⊢ ∀ (y : K), y ∈ ↑I → x * (y * b) ∈ 1 [PROOFSTEP] intro y hy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : ∀ (y : K), y ∈ ↑I * (↑I)⁻¹ → x * y ∈ 1 b : K hb : b ∈ (↑I)⁻¹ y : K hy : y ∈ ↑I ⊢ x * (y * b) ∈ 1 [PROOFSTEP] exact hx _ (mul_mem_mul hy hb) -- It turns out the subalgebra consisting of all `p(x)` for `p : A[X]` works. [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ ⊢ ∃ M, Submodule.FG (↑Subalgebra.toSubmodule M) ∧ x ∈ M [PROOFSTEP] refine ⟨AlgHom.range (Polynomial.aeval x : A[X] →ₐ[A] K), isNoetherian_submodule.mp (isNoetherian (I : FractionalIdeal A⁰ K)⁻¹) _ fun y hy => ?_, ⟨Polynomial.X, Polynomial.aeval_X x⟩⟩ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ y : K hy : y ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) ⊢ y ∈ ↑(↑I)⁻¹ [PROOFSTEP] obtain ⟨p, rfl⟩ := (AlgHom.mem_range _).mp hy [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) ⊢ ↑(Polynomial.aeval x) p ∈ ↑(↑I)⁻¹ [PROOFSTEP] rw [Polynomial.aeval_eq_sum_range] [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) ⊢ (Finset.sum (Finset.range (Polynomial.natDegree p + 1)) fun i => Polynomial.coeff p i • x ^ i) ∈ ↑(↑I)⁻¹ [PROOFSTEP] refine Submodule.sum_mem _ fun i hi => Submodule.smul_mem _ _ ?_ [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) i : ℕ hi : i ∈ Finset.range (Polynomial.natDegree p + 1) ⊢ x ^ i ∈ ↑(↑I)⁻¹ [PROOFSTEP] clear hi [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) i : ℕ ⊢ x ^ i ∈ ↑(↑I)⁻¹ [PROOFSTEP] induction' i with i ih [GOAL] case neg.intro.zero R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) ⊢ x ^ Nat.zero ∈ ↑(↑I)⁻¹ [PROOFSTEP] rw [pow_zero] [GOAL] case neg.intro.zero R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) ⊢ 1 ∈ ↑(↑I)⁻¹ [PROOFSTEP] exact one_mem_inv_coe_ideal hI0 [GOAL] case neg.intro.succ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) i : ℕ ih : x ^ i ∈ ↑(↑I)⁻¹ ⊢ x ^ Nat.succ i ∈ ↑(↑I)⁻¹ [PROOFSTEP] show x ^ i.succ ∈ (I⁻¹ : FractionalIdeal A⁰ K) [GOAL] case neg.intro.succ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) i : ℕ ih : x ^ i ∈ ↑(↑I)⁻¹ ⊢ x ^ Nat.succ i ∈ (↑I)⁻¹ [PROOFSTEP] rw [pow_succ] [GOAL] case neg.intro.succ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hJ0 : ¬↑I * (↑I)⁻¹ = 0 x : K hx : x ∈ (fun a => ↑a) (↑I * (↑I)⁻¹)⁻¹ x_mul_mem : ∀ (b : K), b ∈ (↑I)⁻¹ → x * b ∈ (↑I)⁻¹ p : A[X] hy : ↑(Polynomial.aeval x) p ∈ ↑Subalgebra.toSubmodule (AlgHom.range (Polynomial.aeval x)) i : ℕ ih : x ^ i ∈ ↑(↑I)⁻¹ ⊢ x * x ^ i ∈ (↑I)⁻¹ [PROOFSTEP] exact x_mul_mem _ ih [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I : FractionalIdeal A⁰ K hne : I ≠ 0 ⊢ I * I⁻¹ = 1 [PROOFSTEP] obtain ⟨a, J, ha, hJ⟩ : ∃ (a : A) (aI : Ideal A), a ≠ 0 ∧ I = spanSingleton A⁰ (algebraMap A K a)⁻¹ * aI := exists_eq_spanSingleton_mul I [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I : FractionalIdeal A⁰ K hne : I ≠ 0 a : A J : Ideal A ha : a ≠ 0 hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ⊢ I * I⁻¹ = 1 [PROOFSTEP] suffices h₂ : I * (spanSingleton A⁰ (algebraMap _ _ a) * (J : FractionalIdeal A⁰ K)⁻¹) = 1 [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I : FractionalIdeal A⁰ K hne : I ≠ 0 a : A J : Ideal A ha : a ≠ 0 hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J h₂ : I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1 ⊢ I * I⁻¹ = 1 [PROOFSTEP] rw [mul_inv_cancel_iff] [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I : FractionalIdeal A⁰ K hne : I ≠ 0 a : A J : Ideal A ha : a ≠ 0 hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J h₂ : I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1 ⊢ ∃ J, I * J = 1 [PROOFSTEP] exact ⟨spanSingleton A⁰ (algebraMap _ _ a) * (J : FractionalIdeal A⁰ K)⁻¹, h₂⟩ [GOAL] case h₂ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I : FractionalIdeal A⁰ K hne : I ≠ 0 a : A J : Ideal A ha : a ≠ 0 hJ : I = spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ⊢ I * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1 [PROOFSTEP] subst hJ [GOAL] case h₂ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A a : A J : Ideal A ha : a ≠ 0 hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0 ⊢ spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J * (spanSingleton A⁰ (↑(algebraMap A K) a) * (↑J)⁻¹) = 1 [PROOFSTEP] rw [mul_assoc, mul_left_comm (J : FractionalIdeal A⁰ K), coe_ideal_mul_inv, mul_one, spanSingleton_mul_spanSingleton, inv_mul_cancel, spanSingleton_one] [GOAL] case h₂ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A a : A J : Ideal A ha : a ≠ 0 hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0 ⊢ ↑(algebraMap A K) a ≠ 0 [PROOFSTEP] exact mt ((injective_iff_map_eq_zero (algebraMap A K)).mp (IsFractionRing.injective A K) _) ha [GOAL] case h₂.hI0 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A a : A J : Ideal A ha : a ≠ 0 hne : spanSingleton A⁰ (↑(algebraMap A K) a)⁻¹ * ↑J ≠ 0 ⊢ J ≠ ⊥ [PROOFSTEP] exact coeIdeal_ne_zero.mp (right_ne_zero_of_mul hne) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 ⊢ ∀ {I I' : FractionalIdeal A⁰ K}, I * J ≤ I' * J ↔ I ≤ I' [PROOFSTEP] intro I I' [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K ⊢ I * J ≤ I' * J ↔ I ≤ I' [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K ⊢ I * J ≤ I' * J → I ≤ I' [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K h : I * J ≤ I' * J ⊢ I ≤ I' [PROOFSTEP] convert mul_right_mono J⁻¹ h [GOAL] case h.e'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K h : I * J ≤ I' * J ⊢ I = (fun J_1 => J_1 * J⁻¹) (I * J) [PROOFSTEP] dsimp only [GOAL] case h.e'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K h : I * J ≤ I' * J ⊢ I' = (fun J_1 => J_1 * J⁻¹) (I' * J) [PROOFSTEP] dsimp only [GOAL] case h.e'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K h : I * J ≤ I' * J ⊢ I = I * J * J⁻¹ [PROOFSTEP] rw [mul_assoc, FractionalIdeal.mul_inv_cancel hJ, mul_one] [GOAL] case h.e'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K h : I * J ≤ I' * J ⊢ I' = I' * J * J⁻¹ [PROOFSTEP] rw [mul_assoc, FractionalIdeal.mul_inv_cancel hJ, mul_one] [GOAL] case mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K ⊢ I ≤ I' → I * J ≤ I' * J [PROOFSTEP] exact fun h => mul_right_mono J h [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K ⊢ J * I ≤ J * I' ↔ I ≤ I' [PROOFSTEP] convert mul_right_le_iff hJ using 1 [GOAL] case h.e'_1.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A J : FractionalIdeal A⁰ K hJ : J ≠ 0 I I' : FractionalIdeal A⁰ K ⊢ J * I ≤ J * I' ↔ I * J ≤ I' * J [PROOFSTEP] simp only [mul_comm] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K ⊢ I / J = I * J⁻¹ [PROOFSTEP] by_cases hJ : J = 0 [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : J = 0 ⊢ I / J = I * J⁻¹ [PROOFSTEP] rw [hJ, div_zero, inv_zero', mul_zero] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 ⊢ I / J = I * J⁻¹ [PROOFSTEP] refine' le_antisymm ((mul_right_le_iff hJ).mp _) ((le_div_iff_mul_le hJ).mpr _) [GOAL] case neg.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 ⊢ I / J * J ≤ I * J⁻¹ * J [PROOFSTEP] rw [mul_assoc, mul_comm J⁻¹, FractionalIdeal.mul_inv_cancel hJ, mul_one, mul_le] [GOAL] case neg.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 ⊢ ∀ (i : K), i ∈ I / J → ∀ (j : K), j ∈ J → i * j ∈ I [PROOFSTEP] intro x hx y hy [GOAL] case neg.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 x : K hx : x ∈ I / J y : K hy : y ∈ J ⊢ x * y ∈ I [PROOFSTEP] rw [mem_div_iff_of_nonzero hJ] at hx [GOAL] case neg.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 x : K hx : ∀ (y : K), y ∈ J → x * y ∈ I y : K hy : y ∈ J ⊢ x * y ∈ I [PROOFSTEP] exact hx y hy [GOAL] case neg.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : IsDedekindDomain A I J : FractionalIdeal A⁰ K hJ : ¬J = 0 ⊢ I * J⁻¹ * J ≤ I [PROOFSTEP] rw [mul_assoc, mul_comm J⁻¹, FractionalIdeal.mul_inv_cancel hJ, mul_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : CommSemiring (FractionalIdeal A⁰ K) := commSemiring ⊢ CancelCommMonoidWithZero (FractionalIdeal A⁰ K) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I ⊢ I ∣ J [PROOFSTEP] by_cases hI : I = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : I = ⊥ ⊢ I ∣ J [PROOFSTEP] have hJ : J = ⊥ := by rwa [hI, ← eq_bot_iff] at h [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : I = ⊥ ⊢ J = ⊥ [PROOFSTEP] rwa [hI, ← eq_bot_iff] at h [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : I = ⊥ hJ : J = ⊥ ⊢ I ∣ J [PROOFSTEP] rw [hI, hJ] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ ⊢ I ∣ J [PROOFSTEP] have hI' : (I : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr hI [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 ⊢ I ∣ J [PROOFSTEP] have : (I : FractionalIdeal A⁰ (FractionRing A))⁻¹ * J ≤ 1 := le_trans (mul_left_mono (↑I)⁻¹ ((coeIdeal_le_coeIdeal _).mpr h)) (le_of_eq (inv_mul_cancel hI')) [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 this : (↑I)⁻¹ * ↑J ≤ 1 ⊢ I ∣ J [PROOFSTEP] obtain ⟨H, hH⟩ := le_one_iff_exists_coeIdeal.mp this [GOAL] case neg.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 this : (↑I)⁻¹ * ↑J ≤ 1 H : Ideal A hH : ↑H = (↑I)⁻¹ * ↑J ⊢ I ∣ J [PROOFSTEP] use H [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 this : (↑I)⁻¹ * ↑J ≤ 1 H : Ideal A hH : ↑H = (↑I)⁻¹ * ↑J ⊢ J = I * H [PROOFSTEP] refine coeIdeal_injective (show (J : FractionalIdeal A⁰ (FractionRing A)) = ↑(I * H) from ?_) [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A h : J ≤ I hI : ¬I = ⊥ hI' : ↑I ≠ 0 this : (↑I)⁻¹ * ↑J ≤ 1 H : Ideal A hH : ↑H = (↑I)⁻¹ * ↑J ⊢ ↑J = ↑(I * H) [PROOFSTEP] rw [coeIdeal_mul, hH, ← mul_assoc, mul_inv_cancel hI', one_mul] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A x✝ : DvdNotUnit I J hI : I ≠ 0 H : Ideal A hunit : ¬IsUnit H hmul : J = I * H h : J = I ⊢ I * H = I * 1 [PROOFSTEP] rw [← hmul, h, mul_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K ⊢ WellFounded DvdNotUnit [PROOFSTEP] have : WellFounded ((· > ·) : Ideal A → Ideal A → Prop) := isNoetherian_iff_wellFounded.mp (isNoetherianRing_iff.mp IsDedekindDomain.toIsNoetherian) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K this : WellFounded fun x x_1 => x > x_1 ⊢ WellFounded DvdNotUnit [PROOFSTEP] convert this [GOAL] case h.e'_2.h.h.h.e R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K this : WellFounded fun x x_1 => x > x_1 x✝¹ x✝ : Ideal A ⊢ DvdNotUnit = GT.gt [PROOFSTEP] ext [GOAL] case h.e'_2.h.h.h.e.h.h.a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K this : WellFounded fun x x_1 => x > x_1 x✝³ x✝² x✝¹ x✝ : Ideal A ⊢ DvdNotUnit x✝¹ x✝ ↔ x✝¹ > x✝ [PROOFSTEP] rw [Ideal.dvdNotUnit_iff_lt] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K ⊢ ∀ {a : Ideal A}, Irreducible a ↔ Prime a [PROOFSTEP] intro P [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A ⊢ Irreducible P ↔ Prime P [PROOFSTEP] exact ⟨fun hirr => ⟨hirr.ne_zero, hirr.not_unit, fun I J => by have : P.IsMaximal := by refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩ intro J hJ obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit) rw [Ideal.dvd_iff_le, Ideal.dvd_iff_le, Ideal.dvd_iff_le, SetLike.le_def, SetLike.le_def, SetLike.le_def] contrapose! rintro ⟨⟨x, x_mem, x_not_mem⟩, ⟨y, y_mem, y_not_mem⟩⟩ exact ⟨x * y, Ideal.mul_mem_mul x_mem y_mem, mt this.isPrime.mem_or_mem (not_or_of_not x_not_mem y_not_mem)⟩⟩, Prime.irreducible⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A ⊢ P ∣ I * J → P ∣ I ∨ P ∣ J [PROOFSTEP] have : P.IsMaximal := by refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩ intro J hJ obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A ⊢ IsMaximal P [PROOFSTEP] refine ⟨⟨mt Ideal.isUnit_iff.mpr hirr.not_unit, ?_⟩⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A ⊢ ∀ (b : Ideal A), P < b → b = ⊤ [PROOFSTEP] intro J hJ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J✝ J : Ideal A hJ : P < J ⊢ J = ⊤ [PROOFSTEP] obtain ⟨_J_ne, H, hunit, P_eq⟩ := Ideal.dvdNotUnit_iff_lt.mpr hJ [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J✝ J : Ideal A hJ : P < J _J_ne : J ≠ 0 H : Ideal A hunit : ¬IsUnit H P_eq : P = J * H ⊢ J = ⊤ [PROOFSTEP] exact Ideal.isUnit_iff.mp ((hirr.isUnit_or_isUnit P_eq).resolve_right hunit) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A this : IsMaximal P ⊢ P ∣ I * J → P ∣ I ∨ P ∣ J [PROOFSTEP] rw [Ideal.dvd_iff_le, Ideal.dvd_iff_le, Ideal.dvd_iff_le, SetLike.le_def, SetLike.le_def, SetLike.le_def] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A this : IsMaximal P ⊢ (∀ ⦃x : A⦄, x ∈ I * J → x ∈ P) → (∀ ⦃x : A⦄, x ∈ I → x ∈ P) ∨ ∀ ⦃x : A⦄, x ∈ J → x ∈ P [PROOFSTEP] contrapose! [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A this : IsMaximal P ⊢ ((Exists fun ⦃x⦄ => x ∈ I ∧ ¬x ∈ P) ∧ Exists fun ⦃x⦄ => x ∈ J ∧ ¬x ∈ P) → Exists fun ⦃x⦄ => x ∈ I * J ∧ ¬x ∈ P [PROOFSTEP] rintro ⟨⟨x, x_mem, x_not_mem⟩, ⟨y, y_mem, y_not_mem⟩⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hirr : Irreducible P I J : Ideal A this : IsMaximal P x : A x_mem : x ∈ I x_not_mem : ¬x ∈ P y : A y_mem : y ∈ J y_not_mem : ¬y ∈ P ⊢ Exists fun ⦃x⦄ => x ∈ I * J ∧ ¬x ∈ P [PROOFSTEP] exact ⟨x * y, Ideal.mul_mem_mul x_mem y_mem, mt this.isPrime.mem_or_mem (not_or_of_not x_not_mem y_not_mem)⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A h : Prime P ⊢ IsPrime P [PROOFSTEP] refine ⟨?_, fun hxy => ?_⟩ [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A h : Prime P ⊢ P ≠ ⊤ [PROOFSTEP] rintro rfl [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : Prime ⊤ ⊢ False [PROOFSTEP] rw [← Ideal.one_eq_top] at h [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : Prime 1 ⊢ False [PROOFSTEP] exact h.not_unit isUnit_one [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A h : Prime P x✝ y✝ : A hxy : x✝ * y✝ ∈ P ⊢ x✝ ∈ P ∨ y✝ ∈ P [PROOFSTEP] simp only [← Ideal.dvd_span_singleton, ← Ideal.span_singleton_mul_span_singleton] at hxy ⊢ [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A h : Prime P x✝ y✝ : A hxy : P ∣ span {x✝} * span {y✝} ⊢ P ∣ span {x✝} ∨ P ∣ span {y✝} [PROOFSTEP] exact h.dvd_or_dvd hxy [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hP : P ≠ ⊥ h : IsPrime P ⊢ Prime P [PROOFSTEP] refine ⟨hP, mt Ideal.isUnit_iff.mp h.ne_top, fun I J hIJ => ?_⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P : Ideal A hP : P ≠ ⊥ h : IsPrime P I J : Ideal A hIJ : P ∣ I * J ⊢ P ∣ I ∨ P ∣ J [PROOFSTEP] simpa only [Ideal.dvd_iff_le] using h.mul_le.mp (Ideal.le_of_dvd hIJ) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ e : ℕ he : 2 ≤ e ⊢ I ^ e < I [PROOFSTEP] convert I.strictAnti_pow hI0 hI1 he [GOAL] case h.e'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ e : ℕ he : 2 ≤ e ⊢ I = (fun x x_1 => x ^ x_1) I 1 [PROOFSTEP] dsimp only [GOAL] case h.e'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I : Ideal A hI0 : I ≠ ⊥ hI1 : I ≠ ⊤ e : ℕ he : 2 ≤ e ⊢ I = I ^ 1 [PROOFSTEP] rw [pow_one] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i ⊢ I = P ^ i [PROOFSTEP] have := Classical.decEq (Ideal A) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this : DecidableEq (Ideal A) ⊢ I = P ^ i [PROOFSTEP] refine le_antisymm hle ?_ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this : DecidableEq (Ideal A) ⊢ P ^ i ≤ I [PROOFSTEP] have P_prime' := Ideal.prime_of_isPrime hP P_prime [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this : DecidableEq (Ideal A) P_prime' : Prime P ⊢ P ^ i ≤ I [PROOFSTEP] have h1 : I ≠ ⊥ := (lt_of_le_of_lt bot_le hlt).ne' [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this : DecidableEq (Ideal A) P_prime' : Prime P h1 : I ≠ ⊥ ⊢ P ^ i ≤ I [PROOFSTEP] have := pow_ne_zero i hP [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 ⊢ P ^ i ≤ I [PROOFSTEP] have h3 := pow_ne_zero (i + 1) hP [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hlt : P ^ (i + 1) < I hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ P ^ i ≤ I [PROOFSTEP] rw [← Ideal.dvdNotUnit_iff_lt, dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors h1 h3, normalizedFactors_pow, normalizedFactors_irreducible P_prime'.irreducible, Multiset.nsmul_singleton, Multiset.lt_replicate_succ] at hlt [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ P ^ i ≤ I [PROOFSTEP] rw [← Ideal.dvd_iff_le, dvd_iff_normalizedFactors_le_normalizedFactors, normalizedFactors_pow, normalizedFactors_irreducible P_prime'.irreducible, Multiset.nsmul_singleton] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ normalizedFactors I ≤ Multiset.replicate i (↑normalize P) case hx R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ I ≠ 0 case hy R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ P ^ i ≠ 0 [PROOFSTEP] all_goals assumption [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ normalizedFactors I ≤ Multiset.replicate i (↑normalize P) [PROOFSTEP] assumption [GOAL] case hx R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ I ≠ 0 [PROOFSTEP] assumption [GOAL] case hy R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K P I : Ideal A P_prime : IsPrime P hP : P ≠ ⊥ i : ℕ hle : I ≤ P ^ i this✝ : DecidableEq (Ideal A) hlt : normalizedFactors I ≤ Multiset.replicate i (↑normalize P) P_prime' : Prime P h1 : I ≠ ⊥ this : P ^ i ≠ 0 h3 : P ^ (i + 1) ≠ 0 ⊢ P ^ i ≠ 0 [PROOFSTEP] assumption [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K x : A n : ℕ I : Ideal A ⊢ Associates.mk I ^ n ≤ Associates.mk (span {x}) ↔ x ∈ I ^ n [PROOFSTEP] simp_rw [← Associates.dvd_eq_le, ← Associates.mk_pow, Associates.mk_dvd_mk, Ideal.dvd_span_singleton] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] let I : FractionalIdeal A⁰ K := spanFinset A s f [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] have hI0 : I ≠ 0 := spanFinset_ne_zero.mpr ⟨j, hjs, hjf⟩ -- We claim the multiplier `a` we're looking for is in `I⁻¹ \ (J / I)`. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] suffices ↑J / I < I⁻¹ by obtain ⟨_, a, hI, hpI⟩ := SetLike.lt_iff_le_and_exists.mp this rw [mem_inv_iff hI0] at hI refine' ⟨a, fun i hi => _, _⟩ -- By definition, `a ∈ I⁻¹` multiplies elements of `I` into elements of `1`, -- in other words, `a * f i` is an integer. · exact (mem_one_iff _).mp (hI (f i) (Submodule.subset_span (Set.mem_image_of_mem f hi))) · contrapose! hpI refine' (mem_div_iff_of_nonzero hI0).mpr fun y hy => Submodule.span_induction hy _ _ _ _ · rintro _ ⟨i, hi, rfl⟩; exact hpI i hi · rw [mul_zero]; exact Submodule.zero_mem _ · intro x y hx hy; rw [mul_add]; exact Submodule.add_mem _ hx hy · intro b x hx; rw [mul_smul_comm]; exact Submodule.smul_mem _ b hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] obtain ⟨_, a, hI, hpI⟩ := SetLike.lt_iff_le_and_exists.mp this [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : a ∈ I⁻¹ hpI : ¬a ∈ ↑J / I ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] rw [mem_inv_iff hI0] at hI [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ¬a ∈ ↑J / I ⊢ ∃ a, (∀ (i : ι), i ∈ s → IsLocalization.IsInteger A (a * f i)) ∧ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] refine' ⟨a, fun i hi => _, _⟩ -- By definition, `a ∈ I⁻¹` multiplies elements of `I` into elements of `1`, -- in other words, `a * f i` is an integer. [GOAL] case intro.intro.intro.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ¬a ∈ ↑J / I i : ι hi : i ∈ s ⊢ IsLocalization.IsInteger A (a * f i) [PROOFSTEP] exact (mem_one_iff _).mp (hI (f i) (Submodule.subset_span (Set.mem_image_of_mem f hi))) [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ¬a ∈ ↑J / I ⊢ ∃ i, i ∈ s ∧ ¬a * f i ∈ ↑J [PROOFSTEP] contrapose! hpI [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J ⊢ a ∈ ↑J / spanFinset A s f [PROOFSTEP] refine' (mem_div_iff_of_nonzero hI0).mpr fun y hy => Submodule.span_induction hy _ _ _ _ [GOAL] case intro.intro.intro.refine'_2.refine'_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I ⊢ ∀ (x : K), x ∈ f '' ↑s → a * x ∈ ↑J [PROOFSTEP] rintro _ ⟨i, hi, rfl⟩ [GOAL] case intro.intro.intro.refine'_2.refine'_1.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I i : ι hi : i ∈ ↑s ⊢ a * f i ∈ ↑J [PROOFSTEP] exact hpI i hi [GOAL] case intro.intro.intro.refine'_2.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I ⊢ a * 0 ∈ ↑J [PROOFSTEP] rw [mul_zero] [GOAL] case intro.intro.intro.refine'_2.refine'_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I ⊢ 0 ∈ ↑J [PROOFSTEP] exact Submodule.zero_mem _ [GOAL] case intro.intro.intro.refine'_2.refine'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I ⊢ ∀ (x y : K), a * x ∈ ↑J → a * y ∈ ↑J → a * (x + y) ∈ ↑J [PROOFSTEP] intro x y hx hy [GOAL] case intro.intro.intro.refine'_2.refine'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y✝ : K hy✝ : y✝ ∈ I x y : K hx : a * x ∈ ↑J hy : a * y ∈ ↑J ⊢ a * (x + y) ∈ ↑J [PROOFSTEP] rw [mul_add] [GOAL] case intro.intro.intro.refine'_2.refine'_3 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y✝ : K hy✝ : y✝ ∈ I x y : K hx : a * x ∈ ↑J hy : a * y ∈ ↑J ⊢ a * x + a * y ∈ ↑J [PROOFSTEP] exact Submodule.add_mem _ hx hy [GOAL] case intro.intro.intro.refine'_2.refine'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I ⊢ ∀ (a_1 : A) (x : K), a * x ∈ ↑J → a * a_1 • x ∈ ↑J [PROOFSTEP] intro b x hx [GOAL] case intro.intro.intro.refine'_2.refine'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I b : A x : K hx : a * x ∈ ↑J ⊢ a * b • x ∈ ↑J [PROOFSTEP] rw [mul_smul_comm] [GOAL] case intro.intro.intro.refine'_2.refine'_4 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 this : ↑J / I < I⁻¹ left✝ : ↑J / I ≤ I⁻¹ a : K hI : ∀ (y : K), y ∈ I → a * y ∈ 1 hpI : ∀ (i : ι), i ∈ s → a * f i ∈ ↑J y : K hy : y ∈ I b : A x : K hx : a * x ∈ ↑J ⊢ b • (a * x) ∈ ↑J [PROOFSTEP] exact Submodule.smul_mem _ b hx [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 ⊢ ↑J / I < I⁻¹ [PROOFSTEP] calc ↑J / I = ↑J * I⁻¹ := div_eq_mul_inv (↑J) I _ < 1 * I⁻¹ := (mul_right_strictMono (inv_ne_zero hI0) ?_) _ = I⁻¹ := one_mul _ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 ⊢ ↑J < 1 [PROOFSTEP] rw [← coeIdeal_top] -- And multiplying by `I⁻¹` is indeed strictly monotone. [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K J : Ideal A hJ : J ≠ ⊤ ι : Type u_4 s : Finset ι f : ι → K j : ι hjs : j ∈ s hjf : f j ≠ 0 I : FractionalIdeal A⁰ K := spanFinset A s f hI0 : I ≠ 0 ⊢ ↑J < ↑⊤ [PROOFSTEP] exact strictMono_of_le_iff_le (fun _ _ => (coeIdeal_le_coeIdeal K).symm) (lt_top_iff_ne_top.mpr hJ) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] letI := Classical.decEq (Ideal A) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this : DecidableEq (Ideal A) := Classical.decEq (Ideal A) ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] letI := Classical.decEq (Associates (Ideal A)) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] letI := UniqueFactorizationMonoid.toNormalizedGCDMonoid (Ideal A) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] have hgcd : gcd I J = I ⊔ J := by rw [gcd_eq_normalize _ _, normalize_eq] · rw [dvd_iff_le, sup_le_iff, ← dvd_iff_le, ← dvd_iff_le] exact ⟨gcd_dvd_left _ _, gcd_dvd_right _ _⟩ · rw [dvd_gcd_iff, dvd_iff_le, dvd_iff_le] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ gcd I J = I ⊔ J [PROOFSTEP] rw [gcd_eq_normalize _ _, normalize_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ gcd I J ∣ I ⊔ J [PROOFSTEP] rw [dvd_iff_le, sup_le_iff, ← dvd_iff_le, ← dvd_iff_le] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ gcd I J ∣ I ∧ gcd I J ∣ J [PROOFSTEP] exact ⟨gcd_dvd_left _ _, gcd_dvd_right _ _⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ I ⊔ J ∣ gcd I J [PROOFSTEP] rw [dvd_gcd_iff, dvd_iff_le, dvd_iff_le] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) ⊢ I ≤ I ⊔ J ∧ J ≤ I ⊔ J [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] have hlcm : lcm I J = I ⊓ J := by rw [lcm_eq_normalize _ _, normalize_eq] · rw [lcm_dvd_iff, dvd_iff_le, dvd_iff_le] simp · rw [dvd_iff_le, le_inf_iff, ← dvd_iff_le, ← dvd_iff_le] exact ⟨dvd_lcm_left _ _, dvd_lcm_right _ _⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ lcm I J = I ⊓ J [PROOFSTEP] rw [lcm_eq_normalize _ _, normalize_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ lcm I J ∣ I ⊓ J [PROOFSTEP] rw [lcm_dvd_iff, dvd_iff_le, dvd_iff_le] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ I ⊓ J ≤ I ∧ I ⊓ J ≤ J [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ I ⊓ J ∣ lcm I J [PROOFSTEP] rw [dvd_iff_le, le_inf_iff, ← dvd_iff_le, ← dvd_iff_le] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J ⊢ I ∣ lcm I J ∧ J ∣ lcm I J [PROOFSTEP] exact ⟨dvd_lcm_left _ _, dvd_lcm_right _ _⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A this✝¹ : DecidableEq (Ideal A) := Classical.decEq (Ideal A) this✝ : DecidableEq (Associates (Ideal A)) := Classical.decEq (Associates (Ideal A)) this : NormalizedGCDMonoid (Ideal A) := toNormalizedGCDMonoid (Ideal A) hgcd : gcd I J = I ⊔ J hlcm : lcm I J = I ⊓ J ⊢ (I ⊔ J) * (I ⊓ J) = I * J [PROOFSTEP] rw [← hgcd, ← hlcm, associated_iff_eq.mp (gcd_mul_lcm _ _)] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid x✝¹ x✝ : Ideal A ⊢ (fun x x_1 => x ⊔ x_1) x✝¹ x✝ ∣ x✝¹ [PROOFSTEP] simpa only [dvd_iff_le] using le_sup_left [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid x✝¹ x✝ : Ideal A ⊢ (fun x x_1 => x ⊔ x_1) x✝¹ x✝ ∣ x✝ [PROOFSTEP] simpa only [dvd_iff_le] using le_sup_right [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid ⊢ ∀ {a b c : Ideal A}, a ∣ c → a ∣ b → a ∣ (fun x x_1 => x ⊔ x_1) c b [PROOFSTEP] simp only [dvd_iff_le] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid ⊢ ∀ {a b c : Ideal A}, c ≤ a → b ≤ a → c ⊔ b ≤ a [PROOFSTEP] exact fun h1 h2 => @sup_le (Ideal A) _ _ _ _ h1 h2 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid x✝¹ x✝ : Ideal A ⊢ Associated ((fun x x_1 => x ⊔ x_1) x✝¹ x✝ * (fun x x_1 => x ⊓ x_1) x✝¹ x✝) (x✝¹ * x✝) [PROOFSTEP] rw [associated_iff_eq, sup_mul_inf] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid x✝ : Ideal A ⊢ (fun x x_1 => x ⊓ x_1) 0 x✝ = 0 [PROOFSTEP] simp only [zero_eq_bot, bot_inf_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K src✝ : NormalizationMonoid (Ideal A) := normalizationMonoid x✝ : Ideal A ⊢ (fun x x_1 => x ⊓ x_1) x✝ 0 = 0 [PROOFSTEP] simp only [zero_eq_bot, inf_bot_eq] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDedekindDomain A inst✝¹ : Algebra A K inst✝ : IsFractionRing A K I J : Ideal A coprime : I ⊔ J = ⊤ ⊢ I ⊓ J = I * J [PROOFSTEP] rw [← associated_iff_eq.mp (gcd_mul_lcm I J), lcm_eq_inf I J, gcd_eq_sup, coprime, top_mul] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ ⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] have H : normalizedFactors (normalizedFactors I ∩ normalizedFactors J).prod = normalizedFactors I ∩ normalizedFactors J := by apply normalizedFactors_prod_of_prime intro p hp rw [mem_inter] at hp exact prime_of_normalized_factor p hp.left [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ ⊢ normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J [PROOFSTEP] apply normalizedFactors_prod_of_prime [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ ⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p [PROOFSTEP] intro p hp [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ p : Ideal T hp : p ∈ normalizedFactors I ∩ normalizedFactors J ⊢ Prime p [PROOFSTEP] rw [mem_inter] at hp [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ p : Ideal T hp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J ⊢ Prime p [PROOFSTEP] exact prime_of_normalized_factor p hp.left [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J ⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] have := Multiset.prod_ne_zero_of_prime (normalizedFactors I ∩ normalizedFactors J) fun _ h => prime_of_normalized_factor _ (Multiset.mem_inter.1 h).1 [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ I ⊔ J ≤ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] rw [sup_le_iff, ← dvd_iff_le, ← dvd_iff_le] [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I ∧ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J [PROOFSTEP] constructor [GOAL] case a.left R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I [PROOFSTEP] rw [dvd_iff_normalizedFactors_le_normalizedFactors this hI, H] [GOAL] case a.left R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors I [PROOFSTEP] exact inf_le_left [GOAL] case a.right R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J [PROOFSTEP] rw [dvd_iff_normalizedFactors_le_normalizedFactors this hJ, H] [GOAL] case a.right R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors J [PROOFSTEP] exact inf_le_right [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≤ I ⊔ J [PROOFSTEP] rw [← dvd_iff_le, dvd_iff_normalizedFactors_le_normalizedFactors, normalizedFactors_prod_of_prime, le_iff_count] [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ ∀ (a : Ideal T), count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] intro a [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 a : Ideal T ⊢ count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J) [PROOFSTEP] rw [Multiset.count_inter] [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 a : Ideal T ⊢ count a (normalizedFactors (I ⊔ J)) ≤ min (count a (normalizedFactors I)) (count a (normalizedFactors J)) [PROOFSTEP] exact le_min (count_le_of_ideal_ge le_sup_left hI a) (count_le_of_ideal_ge le_sup_right hJ a) [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p [PROOFSTEP] intro p hp [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 p : Ideal T hp : p ∈ normalizedFactors I ∩ normalizedFactors J ⊢ Prime p [PROOFSTEP] rw [mem_inter] at hp [GOAL] case a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 p : Ideal T hp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J ⊢ Prime p [PROOFSTEP] exact prime_of_normalized_factor p hp.left [GOAL] case a.hx R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ I ⊔ J ≠ 0 [PROOFSTEP] exact ne_bot_of_le_ne_bot hI le_sup_left [GOAL] case a.hy R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : J ≠ ⊥ H : normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) = normalizedFactors I ∩ normalizedFactors J this : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 ⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0 [PROOFSTEP] exact this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ ⊢ J ^ n ⊔ I = J ^ min (count J (normalizedFactors I)) n [PROOFSTEP] rw [sup_eq_prod_inf_factors (pow_ne_zero n hJ.ne_zero) hI, min_comm, normalizedFactors_of_irreducible_pow hJ, normalize_eq J, replicate_inter, prod_replicate] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ multiplicity J I ⊢ J ^ n ⊔ I = J ^ n [PROOFSTEP] by_cases hI : I = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ multiplicity J I hI : I = ⊥ ⊢ J ^ n ⊔ I = J ^ n [PROOFSTEP] simp_all [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ multiplicity J I hI : ¬I = ⊥ ⊢ J ^ n ⊔ I = J ^ n [PROOFSTEP] rw [irreducible_pow_sup hI hJ, min_eq_right] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ multiplicity J I hI : ¬I = ⊥ ⊢ n ≤ count J (normalizedFactors I) [PROOFSTEP] rwa [multiplicity_eq_count_normalizedFactors hJ hI, PartENat.coe_le_coe, normalize_eq J] at hn [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ hn : multiplicity J I ≤ ↑n ⊢ J ^ n ⊔ I = J ^ Part.get (multiplicity J I) (_ : (multiplicity J I).Dom) [PROOFSTEP] rw [irreducible_pow_sup hI hJ, min_eq_left] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ hn : multiplicity J I ≤ ↑n ⊢ J ^ count J (normalizedFactors I) = J ^ Part.get (multiplicity J I) (_ : (multiplicity J I).Dom) R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ hn : multiplicity J I ≤ ↑n ⊢ count J (normalizedFactors I) ≤ n [PROOFSTEP] congr [GOAL] case e_a R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ hn : multiplicity J I ≤ ↑n ⊢ count J (normalizedFactors I) = Part.get (multiplicity J I) (_ : (multiplicity J I).Dom) [PROOFSTEP] rw [← PartENat.natCast_inj, PartENat.natCast_get, multiplicity_eq_count_normalizedFactors hJ hI, normalize_eq J] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A T : Type u_4 inst✝² : CommRing T inst✝¹ : IsDomain T inst✝ : IsDedekindDomain T I J : Ideal T hI : I ≠ ⊥ hJ : Irreducible J n : ℕ hn : multiplicity J I ≤ ↑n ⊢ count J (normalizedFactors I) ≤ n [PROOFSTEP] rwa [multiplicity_eq_count_normalizedFactors hJ hI, PartENat.coe_le_coe, normalize_eq J] at hn [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K ⊢ ⨅ (v : HeightOneSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ R⁰) = ⊥ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ x ∈ ⨅ (v : HeightOneSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ R⁰) ↔ x ∈ ⊥ [PROOFSTEP] rw [Algebra.mem_iInf] [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) ↔ x ∈ ⊥ [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → x ∈ ⊥ case h.mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ x ∈ ⊥ → ∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰) [PROOFSTEP] by_cases hR : IsField R [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K hR : IsField R ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → x ∈ ⊥ [PROOFSTEP] rcases Function.bijective_iff_has_inverse.mp (IsField.localization_map_bijective (Rₘ := K) (flip nonZeroDivisors.ne_zero rfl : 0 ∉ R⁰) hR) with ⟨algebra_map_inv, _, algebra_map_right_inv⟩ [GOAL] case pos.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K hR : IsField R algebra_map_inv : K → R left✝ : Function.LeftInverse algebra_map_inv ↑(algebraMap R K) algebra_map_right_inv : Function.RightInverse algebra_map_inv ↑(algebraMap R K) ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → x ∈ ⊥ [PROOFSTEP] exact fun _ => Algebra.mem_bot.mpr ⟨algebra_map_inv x, algebra_map_right_inv x⟩ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K hR : ¬IsField R ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → x ∈ ⊥ case h.mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ x ∈ ⊥ → ∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰) [PROOFSTEP] all_goals rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K hR : ¬IsField R ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → x ∈ ⊥ [PROOFSTEP] rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf] [GOAL] case h.mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ x ∈ ⊥ → ∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰) [PROOFSTEP] rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K hR : ¬IsField R ⊢ (∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰) [PROOFSTEP] exact fun hx ⟨v, hv⟩ => hx ((equivMaximalSpectrum hR).symm ⟨v, hv⟩) [GOAL] case h.mpr R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R v : HeightOneSpectrum R inst✝ : Algebra R K hK : IsFractionRing R K x : K ⊢ (∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰)) → ∀ (i : HeightOneSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ R⁰) [PROOFSTEP] exact fun hx ⟨v, hv, hbot⟩ => hx ⟨v, hv.isMaximal hbot⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : { p // p ∣ I } ⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J [PROOFSTEP] have : RingHom.ker (Ideal.Quotient.mk J) ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) X)) := ker_le_comap (Ideal.Quotient.mk J) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : { p // p ∣ I } this : RingHom.ker (Ideal.Quotient.mk J) ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J [PROOFSTEP] rw [mk_ker] at this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : { p // p ∣ I } this : J ≤ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J [PROOFSTEP] exact dvd_iff_le.mpr this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f ⊢ Monotone fun X => { val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)), property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) } [PROOFSTEP] rintro ⟨X, hX⟩ ⟨Y, hY⟩ h [GOAL] case mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : Ideal R hX : X ∣ I Y : Ideal R hY : Y ∣ I h : { val := X, property := hX } ≤ { val := Y, property := hY } ⊢ (fun X => { val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)), property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) }) { val := X, property := hX } ≤ (fun X => { val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)), property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) }) { val := Y, property := hY } [PROOFSTEP] rw [← Subtype.coe_le_coe, Subtype.coe_mk, Subtype.coe_mk] at h ⊢ [GOAL] case mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : Ideal R hX : X ∣ I Y : Ideal R hY : Y ∣ I h : X ≤ Y ⊢ comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) X)) ≤ ↑((fun X => { val := comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)), property := (_ : comap (Ideal.Quotient.mk J) (map f (map (Ideal.Quotient.mk I) ↑X)) ∣ J) }) { val := Y, property := hY }) [PROOFSTEP] rw [Subtype.coe_mk, comap_le_comap_iff_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, map_le_iff_le_comap, Subtype.coe_mk, comap_map_of_surjective _ hf (map (Ideal.Quotient.mk I) Y)] [GOAL] case mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : Ideal R hX : X ∣ I Y : Ideal R hY : Y ∣ I h : X ≤ Y ⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y ⊔ comap f ⊥ [PROOFSTEP] suffices map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y by exact le_sup_of_le_left this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : Ideal R hX : X ∣ I Y : Ideal R hY : Y ∣ I h : X ≤ Y this : map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y ⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y ⊔ comap f ⊥ [PROOFSTEP] exact le_sup_of_le_left this [GOAL] case mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A f : R ⧸ I →+* A ⧸ J hf : Function.Surjective ↑f X : Ideal R hX : X ∣ I Y : Ideal R hY : Y ∣ I h : X ≤ Y ⊢ map (Ideal.Quotient.mk I) X ≤ map (Ideal.Quotient.mk I) Y [PROOFSTEP] rwa [map_le_iff_le_comap, comap_map_of_surjective (Ideal.Quotient.mk I) Quotient.mk_surjective, ← RingHom.ker_eq_comap_bot, mk_ker, sup_eq_left.mpr <| le_of_dvd hY] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Field K inst✝¹ : IsDomain A inst✝ : IsDedekindDomain A I : Ideal R J : Ideal A X : { p // p ∣ J } ⊢ ↑(idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.id (A ⧸ J)))) X = ↑OrderHom.id X [PROOFSTEP] simp only [idealFactorsFunOfQuotHom, map_id, OrderHom.coe_mk, OrderHom.id_coe, id.def, comap_map_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk J), mk_ker, sup_eq_left.mpr (dvd_iff_le.mp X.prop), Subtype.coe_eta] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝² : CommRing B inst✝¹ : IsDomain B inst✝ : IsDedekindDomain B L : Ideal B f : R ⧸ I →+* A ⧸ J g : A ⧸ J →+* B ⧸ L hf : Function.Surjective ↑f hg : Function.Surjective ↑g ⊢ OrderHom.comp (idealFactorsFunOfQuotHom hg) (idealFactorsFunOfQuotHom hf) = idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp g f)) [PROOFSTEP] refine OrderHom.ext _ _ (funext fun x => ?_) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝² : CommRing B inst✝¹ : IsDomain B inst✝ : IsDedekindDomain B L : Ideal B f : R ⧸ I →+* A ⧸ J g : A ⧸ J →+* B ⧸ L hf : Function.Surjective ↑f hg : Function.Surjective ↑g x : { p // p ∣ I } ⊢ ↑(OrderHom.comp (idealFactorsFunOfQuotHom hg) (idealFactorsFunOfQuotHom hf)) x = ↑(idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp g f))) x [PROOFSTEP] rw [idealFactorsFunOfQuotHom, idealFactorsFunOfQuotHom, OrderHom.comp_coe, OrderHom.coe_mk, OrderHom.coe_mk, Function.comp_apply, idealFactorsFunOfQuotHom, OrderHom.coe_mk, Subtype.mk_eq_mk, Subtype.coe_mk, map_comap_of_surjective (Ideal.Quotient.mk J) Quotient.mk_surjective, map_map] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J ⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J} [PROOFSTEP] have f_surj : Function.Surjective (f : R ⧸ I →+* A ⧸ J) := f.surjective [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f ⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J} [PROOFSTEP] have fsym_surj : Function.Surjective (f.symm : A ⧸ J →+* R ⧸ I) := f.symm.surjective [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) ⊢ ↑{p | p ∣ I} ≃o ↑{p | p ∣ J} [PROOFSTEP] refine OrderIso.ofHomInv (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) ?_ ?_ [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id [PROOFSTEP] have := idealFactorsFunOfQuotHom_comp fsym_surj f_surj [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) = idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp ↑f ↑(RingEquiv.symm f))) ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id [PROOFSTEP] simp only [RingEquiv.comp_symm, idealFactorsFunOfQuotHom_id] at this [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id [PROOFSTEP] rw [← this] [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) = OrderHom.id ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom f_surj) ↑(idealFactorsFunOfQuotHom fsym_surj) = OrderHom.comp (idealFactorsFunOfQuotHom f_surj) (idealFactorsFunOfQuotHom fsym_surj) [PROOFSTEP] congr [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id [PROOFSTEP] have := idealFactorsFunOfQuotHom_comp f_surj fsym_surj [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) = idealFactorsFunOfQuotHom (_ : Function.Surjective ↑(RingHom.comp ↑(RingEquiv.symm f) ↑f)) ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id [PROOFSTEP] simp only [RingEquiv.symm_comp, idealFactorsFunOfQuotHom_id] at this [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) = OrderHom.id ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.id [PROOFSTEP] rw [← this] [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J f_surj : Function.Surjective ↑↑f fsym_surj : Function.Surjective ↑↑(RingEquiv.symm f) this : OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) = OrderHom.id ⊢ OrderHom.comp ↑(idealFactorsFunOfQuotHom fsym_surj) ↑(idealFactorsFunOfQuotHom f_surj) = OrderHom.comp (idealFactorsFunOfQuotHom fsym_surj) (idealFactorsFunOfQuotHom f_surj) [PROOFSTEP] congr [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L✝ : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J L M : Ideal R hL : L ∣ I hM : M ∣ I ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL }) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM }) ↔ L ∣ M [PROOFSTEP] suffices idealFactorsEquivOfQuotEquiv f ⟨M, hM⟩ ≤ idealFactorsEquivOfQuotEquiv f ⟨L, hL⟩ ↔ (⟨M, hM⟩ : {p : Ideal R | p ∣ I}) ≤ ⟨L, hL⟩ by rw [dvd_iff_le, dvd_iff_le, Subtype.coe_le_coe, this, Subtype.mk_le_mk] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L✝ : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J L M : Ideal R hL : L ∣ I hM : M ∣ I this : ↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM } ≤ ↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL } ↔ { val := M, property := hM } ≤ { val := L, property := hL } ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL }) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM }) ↔ L ∣ M [PROOFSTEP] rw [dvd_iff_le, dvd_iff_le, Subtype.coe_le_coe, this, Subtype.mk_le_mk] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : CommRing A inst✝⁷ : Field K inst✝⁶ : IsDomain A inst✝⁵ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁴ : CommRing B inst✝³ : IsDomain B inst✝² : IsDedekindDomain B L✝ : Ideal B inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J L M : Ideal R hL : L ∣ I hM : M ∣ I ⊢ ↑(idealFactorsEquivOfQuotEquiv f) { val := M, property := hM } ≤ ↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := hL } ↔ { val := M, property := hM } ≤ { val := L, property := hL } [PROOFSTEP] exact (idealFactorsEquivOfQuotEquiv f).le_iff_le [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J [PROOFSTEP] by_cases hI : I = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : I = ⊥ ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J [PROOFSTEP] exfalso [GOAL] case pos.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : I = ⊥ ⊢ False [PROOFSTEP] rw [hI, bot_eq_zero, normalizedFactors_zero, ← Multiset.empty_eq_zero] at hL [GOAL] case pos.h R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ ∅ hI : I = ⊥ ⊢ False [PROOFSTEP] exact Finset.not_mem_empty _ hL [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : ¬I = ⊥ ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := L, property := (_ : L ∣ I) }) ∈ normalizedFactors J [PROOFSTEP] refine mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors hI hJ hL (d := (idealFactorsEquivOfQuotEquiv f).toEquiv) ?_ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : ¬I = ⊥ ⊢ ∀ (l l' : { l // l ∣ I }), ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l') ↔ ↑l ∣ ↑l' [PROOFSTEP] rintro ⟨l, hl⟩ ⟨l', hl'⟩ [GOAL] case neg.mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : ¬I = ⊥ l : Ideal R hl : l ∣ I l' : Ideal R hl' : l' ∣ I ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l, property := hl }) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l', property := hl' }) ↔ ↑{ val := l, property := hl } ∣ ↑{ val := l', property := hl' } [PROOFSTEP] rw [Subtype.coe_mk, Subtype.coe_mk] [GOAL] case neg.mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L✝ : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I hI : ¬I = ⊥ l : Ideal R hl : l ∣ I l' : Ideal R hl' : l' ∣ I ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l, property := hl }) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv { val := l', property := hl' }) ↔ ↑{ val := l, property := hl } ∣ ↑{ val := l', property := hl' } [PROOFSTEP] apply idealFactorsEquivOfQuotEquiv_is_dvd_iso f [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hI : I ≠ ⊥ hJ : J ≠ ⊥ j : ↑{M | M ∈ normalizedFactors J} ⊢ ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈ {L | L ∈ normalizedFactors I} [PROOFSTEP] rw [idealFactorsEquivOfQuotEquiv_symm] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hI : I ≠ ⊥ hJ : J ≠ ⊥ j : ↑{M | M ∈ normalizedFactors J} ⊢ ↑(↑(idealFactorsEquivOfQuotEquiv (RingEquiv.symm f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈ {L | L ∈ normalizedFactors I} [PROOFSTEP] exact idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors f.symm hI j.prop [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hI : I ≠ ⊥ hJ : J ≠ ⊥ x✝ : ↑{L | L ∈ normalizedFactors I} j : Ideal R hj : j ∈ {L | L ∈ normalizedFactors I} ⊢ (fun j => { val := ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }), property := (_ : ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈ {L | L ∈ normalizedFactors I}) }) ((fun j => { val := ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }), property := (_ : ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }) ∈ normalizedFactors J) }) { val := j, property := hj }) = { val := j, property := hj } [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing A inst✝⁹ : Field K inst✝⁸ : IsDomain A inst✝⁷ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁶ : CommRing B inst✝⁵ : IsDomain B inst✝⁴ : IsDedekindDomain B L : Ideal B inst✝³ : IsDomain R inst✝² : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝¹ : DecidableEq (Ideal R) inst✝ : DecidableEq (Ideal A) hI : I ≠ ⊥ hJ : J ≠ ⊥ x✝ : ↑{M | M ∈ normalizedFactors J} j : Ideal A hj : j ∈ {M | M ∈ normalizedFactors J} ⊢ (fun j => { val := ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }), property := (_ : ↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑j, property := (_ : ↑j ∣ I) }) ∈ normalizedFactors J) }) ((fun j => { val := ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }), property := (_ : ↑(↑(OrderIso.symm (idealFactorsEquivOfQuotEquiv f)) { val := ↑j, property := (_ : ↑j ∣ J) }) ∈ {L | L ∈ normalizedFactors I}) }) { val := j, property := hj }) = { val := j, property := hj } [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹³ : CommRing R inst✝¹² : CommRing A inst✝¹¹ : Field K inst✝¹⁰ : IsDomain A inst✝⁹ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁸ : CommRing B inst✝⁷ : IsDomain B inst✝⁶ : IsDedekindDomain B L✝ : Ideal B inst✝⁵ : IsDomain R inst✝⁴ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝³ : DecidableEq (Ideal R) inst✝² : DecidableEq (Ideal A) inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 hI : I ≠ ⊥ hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I ⊢ multiplicity (↑(↑(normalizedFactorsEquivOfQuotEquiv f hI hJ) { val := L, property := hL })) J = multiplicity L I [PROOFSTEP] rw [normalizedFactorsEquivOfQuotEquiv, Equiv.coe_fn_mk, Subtype.coe_mk] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹³ : CommRing R inst✝¹² : CommRing A inst✝¹¹ : Field K inst✝¹⁰ : IsDomain A inst✝⁹ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁸ : CommRing B inst✝⁷ : IsDomain B inst✝⁶ : IsDedekindDomain B L✝ : Ideal B inst✝⁵ : IsDomain R inst✝⁴ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝³ : DecidableEq (Ideal R) inst✝² : DecidableEq (Ideal A) inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 hI : I ≠ ⊥ hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I ⊢ multiplicity (↑(↑(idealFactorsEquivOfQuotEquiv f) { val := ↑{ val := L, property := hL }, property := (_ : ↑{ val := L, property := hL } ∣ I) })) J = multiplicity L I [PROOFSTEP] refine multiplicity_factor_dvd_iso_eq_multiplicity_of_mem_normalizedFactors hI hJ hL (d := (idealFactorsEquivOfQuotEquiv f).toEquiv) ?_ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹³ : CommRing R inst✝¹² : CommRing A inst✝¹¹ : Field K inst✝¹⁰ : IsDomain A inst✝⁹ : IsDedekindDomain A I : Ideal R J : Ideal A B : Type u_4 inst✝⁸ : CommRing B inst✝⁷ : IsDomain B inst✝⁶ : IsDedekindDomain B L✝ : Ideal B inst✝⁵ : IsDomain R inst✝⁴ : IsDedekindDomain R f : R ⧸ I ≃+* A ⧸ J inst✝³ : DecidableEq (Ideal R) inst✝² : DecidableEq (Ideal A) inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 hI : I ≠ ⊥ hJ : J ≠ ⊥ L : Ideal R hL : L ∈ normalizedFactors I ⊢ ∀ (l l' : { l // l ∣ I }), ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l) ∣ ↑(↑(idealFactorsEquivOfQuotEquiv f).toEquiv l') ↔ ↑l ∣ ↑l' [PROOFSTEP] exact fun ⟨l, hl⟩ ⟨l', hl'⟩ => idealFactorsEquivOfQuotEquiv_is_dvd_iso f hl hl' [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Field K inst✝ : IsDomain A I J : Ideal R h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P ⊢ I ⊔ J = ⊤ [PROOFSTEP] by_contra hIJ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Field K inst✝ : IsDomain A I J : Ideal R h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P hIJ : ¬I ⊔ J = ⊤ ⊢ False [PROOFSTEP] obtain ⟨P, hP, hIJ⟩ := Ideal.exists_le_maximal _ hIJ [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Field K inst✝ : IsDomain A I J : Ideal R h : ∀ (P : Ideal R), I ≤ P → J ≤ P → ¬IsPrime P hIJ✝ : ¬I ⊔ J = ⊤ P : Ideal R hP : IsMaximal P hIJ : I ⊔ J ≤ P ⊢ False [PROOFSTEP] exact h P (le_trans le_sup_left hIJ) (le_trans le_sup_right hIJ) hP.isPrime [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n : ℕ h : a * b ∈ I ^ n ⊢ a ∈ I ∨ b ∈ I ^ n [PROOFSTEP] cases n [GOAL] case zero R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R h : a * b ∈ I ^ Nat.zero ⊢ a ∈ I ∨ b ∈ I ^ Nat.zero [PROOFSTEP] simp [GOAL] case succ R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ h : a * b ∈ I ^ Nat.succ n✝ ⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝ [PROOFSTEP] by_cases hI0 : I = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ h : a * b ∈ I ^ Nat.succ n✝ hI0 : I = ⊥ ⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝ [PROOFSTEP] simpa [pow_succ, hI0] using h [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ h : a * b ∈ I ^ Nat.succ n✝ hI0 : ¬I = ⊥ ⊢ a ∈ I ∨ b ∈ I ^ Nat.succ n✝ [PROOFSTEP] simp only [← Submodule.span_singleton_le_iff_mem, Ideal.submodule_span_eq, ← Ideal.dvd_iff_le, ← Ideal.span_singleton_mul_span_singleton] at h ⊢ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ hI0 : ¬I = ⊥ h : I ^ Nat.succ n✝ ∣ span {a} * span {b} ⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b} [PROOFSTEP] by_cases ha : I ∣ span { a } [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ hI0 : ¬I = ⊥ h : I ^ Nat.succ n✝ ∣ span {a} * span {b} ha : I ∣ span {a} ⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b} [PROOFSTEP] exact Or.inl ha [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ hI0 : ¬I = ⊥ h : I ^ Nat.succ n✝ ∣ span {a} * span {b} ha : ¬I ∣ span {a} ⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b} [PROOFSTEP] rw [mul_comm] at h [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : IsPrime I a b : R n✝ : ℕ hI0 : ¬I = ⊥ h : I ^ Nat.succ n✝ ∣ span {b} * span {a} ha : ¬I ∣ span {a} ⊢ I ∣ span {a} ∨ I ^ Nat.succ n✝ ∣ span {b} [PROOFSTEP] exact Or.inr (Prime.pow_dvd_of_dvd_mul_right ((Ideal.prime_iff_isPrime hI0).mpr hI) _ ha h) [GOAL] R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I J K : Ideal R coprime : ∀ (P : Ideal R), J ≤ P → K ≤ P → ¬IsPrime P hJ : I ≤ J hK : I ≤ K ⊢ I ≤ J * K [PROOFSTEP] simp only [← Ideal.dvd_iff_le] at coprime hJ hK ⊢ [GOAL] R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ : J ∣ I hK : K ∣ I ⊢ J * K ∣ I [PROOFSTEP] by_cases hJ0 : J = 0 [GOAL] case pos R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ : J ∣ I hK : K ∣ I hJ0 : J = 0 ⊢ J * K ∣ I [PROOFSTEP] simpa only [hJ0, zero_mul] using hJ [GOAL] case neg R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ : J ∣ I hK : K ∣ I hJ0 : ¬J = 0 ⊢ J * K ∣ I [PROOFSTEP] obtain ⟨I', rfl⟩ := hK [GOAL] case neg.intro R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ0 : ¬J = 0 I' : Ideal R hJ : J ∣ K * I' ⊢ J * K ∣ K * I' [PROOFSTEP] rw [mul_comm] [GOAL] case neg.intro R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ0 : ¬J = 0 I' : Ideal R hJ : J ∣ K * I' ⊢ K * J ∣ K * I' [PROOFSTEP] refine mul_dvd_mul_left K (UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors (b := K) hJ0 ?_ hJ) [GOAL] case neg.intro R : Type u_1 A : Type u_2 K✝ : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K✝ inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R J K : Ideal R coprime : ∀ (P : Ideal R), P ∣ J → P ∣ K → ¬IsPrime P hJ0 : ¬J = 0 I' : Ideal R hJ : J ∣ K * I' ⊢ ∀ {d : Ideal R}, d ∣ J → d ∣ K → ¬Prime d [PROOFSTEP] exact fun hPJ hPK => mt Ideal.isPrime_of_prime (coprime _ hPJ hPK) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I P : Ideal R hP : IsPrime P n : ℕ h : I ^ n ≤ P ⊢ I ≤ P [PROOFSTEP] by_cases hP0 : P = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I P : Ideal R hP : IsPrime P n : ℕ h : I ^ n ≤ P hP0 : P = ⊥ ⊢ I ≤ P [PROOFSTEP] simp only [hP0, le_bot_iff] at h ⊢ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I P : Ideal R hP : IsPrime P n : ℕ hP0 : P = ⊥ h : I ^ n = ⊥ ⊢ I = ⊥ [PROOFSTEP] exact pow_eq_zero h [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I P : Ideal R hP : IsPrime P n : ℕ h : I ^ n ≤ P hP0 : ¬P = ⊥ ⊢ I ≤ P [PROOFSTEP] rw [← Ideal.dvd_iff_le] at h ⊢ [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I P : Ideal R hP : IsPrime P n : ℕ h : P ∣ I ^ n hP0 : ¬P = ⊥ ⊢ P ∣ I [PROOFSTEP] exact ((Ideal.prime_iff_isPrime hP0).mpr hP).dvd_of_dvd_pow h [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R P : Ideal R hP : IsPrime P ⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P [PROOFSTEP] by_cases hP0 : P = ⊥ [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R P : Ideal R hP : IsPrime P hP0 : P = ⊥ ⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P [PROOFSTEP] simp only [hP0, le_bot_iff] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R P : Ideal R hP : IsPrime P hP0 : P = ⊥ ⊢ ∏ i in s, f i = ⊥ ↔ ∃ i, i ∈ s ∧ f i = ⊥ [PROOFSTEP] rw [← Ideal.zero_eq_bot, Finset.prod_eq_zero_iff] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R P : Ideal R hP : IsPrime P hP0 : ¬P = ⊥ ⊢ ∏ i in s, f i ≤ P ↔ ∃ i, i ∈ s ∧ f i ≤ P [PROOFSTEP] simp only [← Ideal.dvd_iff_le] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R P : Ideal R hP : IsPrime P hP0 : ¬P = ⊥ ⊢ P ∣ ∏ i in s, f i ↔ ∃ i, i ∈ s ∧ P ∣ f i [PROOFSTEP] exact ((Ideal.prime_iff_isPrime hP0).mpr hP).dvd_finset_prod_iff _ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (f i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j ⊢ (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i [PROOFSTEP] letI := Classical.decEq ι [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (f i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j this : DecidableEq ι := Classical.decEq ι ⊢ (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i [PROOFSTEP] revert prime coprime [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι ⊢ (∀ (i : ι), i ∈ s → Prime (f i)) → (∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) → (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i [PROOFSTEP] refine s.induction ?_ ?_ [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι ⊢ (∀ (i : ι), i ∈ ∅ → Prime (f i)) → (∀ (i : ι), i ∈ ∅ → ∀ (j : ι), j ∈ ∅ → i ≠ j → f i ≠ f j) → (Finset.inf ∅ fun i => f i ^ e i) = ∏ i in ∅, f i ^ e i [PROOFSTEP] simp [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → ((∀ (i : ι), i ∈ s → Prime (f i)) → (∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) → (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i) → (∀ (i : ι), i ∈ insert a s → Prime (f i)) → (∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j) → (Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i [PROOFSTEP] intro a s ha ih prime coprime [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → Prime (f i)) → (∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ≠ f j) → (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ⊢ (Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i [PROOFSTEP] specialize ih (fun i hi => prime i (Finset.mem_insert_of_mem hi)) fun i hi j hj => coprime i (Finset.mem_insert_of_mem hi) j (Finset.mem_insert_of_mem hj) [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i ⊢ (Finset.inf (insert a s) fun i => f i ^ e i) = ∏ i in insert a s, f i ^ e i [PROOFSTEP] rw [Finset.inf_insert, Finset.prod_insert ha, ih] [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i ⊢ f a ^ e a ⊓ ∏ i in s, f i ^ e i = f a ^ e a * ∏ x in s, f x ^ e x [PROOFSTEP] refine' le_antisymm (Ideal.le_mul_of_no_prime_factors _ inf_le_left inf_le_right) Ideal.mul_le_inf [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i ⊢ ∀ (P : Ideal R), f a ^ e a ≤ P → ∏ x in s, f x ^ e x ≤ P → ¬IsPrime P [PROOFSTEP] intro P hPa hPs hPp [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp : IsPrime P ⊢ False [PROOFSTEP] haveI := hPp [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝ : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this : IsPrime P ⊢ False [PROOFSTEP] obtain ⟨b, hb, hPb⟩ := Ideal.prod_le_prime.mp hPs [GOAL] case refine_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝ : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P ⊢ False [PROOFSTEP] haveI := Ideal.isPrime_of_prime (prime a (Finset.mem_insert_self a s)) [GOAL] case refine_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝¹ : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this : IsPrime (f a) ⊢ False [PROOFSTEP] haveI := Ideal.isPrime_of_prime (prime b (Finset.mem_insert_of_mem hb)) [GOAL] case refine_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ False [PROOFSTEP] refine coprime a (Finset.mem_insert_self a s) b (Finset.mem_insert_of_mem hb) ?_ ?_ [GOAL] case refine_2.intro.intro.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ a ≠ b [PROOFSTEP] rintro rfl [GOAL] case refine_2.intro.intro.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (f a) hb : a ∈ s hPb : f a ^ e a ≤ P this : IsPrime (f a) ⊢ False [PROOFSTEP] contradiction [GOAL] case refine_2.intro.intro.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ f a = f b [PROOFSTEP] refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPa)).trans ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPb)).symm [GOAL] case refine_2.intro.intro.refine_2.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ f a ≠ ⊥ case refine_2.intro.intro.refine_2.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ f b ≠ ⊥ [PROOFSTEP] exact (prime a (Finset.mem_insert_self a s)).ne_zero [GOAL] case refine_2.intro.intro.refine_2.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s✝ : Finset ι f : ι → Ideal R e : ι → ℕ this✝² : DecidableEq ι := Classical.decEq ι a : ι s : Finset ι ha : ¬a ∈ s prime : ∀ (i : ι), i ∈ insert a s → Prime (f i) coprime : ∀ (i : ι), i ∈ insert a s → ∀ (j : ι), j ∈ insert a s → i ≠ j → f i ≠ f j ih : (Finset.inf s fun i => f i ^ e i) = ∏ i in s, f i ^ e i P : Ideal R hPa : f a ^ e a ≤ P hPs : ∏ x in s, f x ^ e x ≤ P hPp this✝¹ : IsPrime P b : ι hb : b ∈ s hPb : f b ^ e b ≤ P this✝ : IsPrime (f a) this : IsPrime (f b) ⊢ f b ≠ ⊥ [PROOFSTEP] exact (prime b (Finset.mem_insert_of_mem hb)).ne_zero [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P i) coprime : ∀ (i j : ι), i ≠ j → P i ≠ P j prod_eq : ∏ i : ι, P i ^ e i = I ⊢ I = ⨅ (i : ι), P i ^ e i [PROOFSTEP] simp only [← prod_eq, Finset.inf_eq_iInf, Finset.mem_univ, ciInf_pos, ← IsDedekindDomain.inf_prime_pow_eq_prod _ _ _ (fun i _ => prime i) fun i _ j _ => coprime i j] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P i) coprime : ∀ (i j : ι), i ≠ j → P i ≠ P j prod_eq : ∏ i : ι, P i ^ e i = I i j : ι hij : i ≠ j ⊢ ∀ (P_1 : Ideal R), P i ^ e i ≤ P_1 → P j ^ e j ≤ P_1 → ¬IsPrime P_1 [PROOFSTEP] intro P hPi hPj hPp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp : IsPrime P ⊢ False [PROOFSTEP] haveI := hPp [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this : IsPrime P ⊢ False [PROOFSTEP] haveI := Ideal.isPrime_of_prime (prime i) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝ : IsPrime P this : IsPrime (P✝ i) ⊢ False [PROOFSTEP] haveI := Ideal.isPrime_of_prime (prime j) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (P✝ i) this : IsPrime (P✝ j) ⊢ False [PROOFSTEP] refine coprime i j hij ?_ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (P✝ i) this : IsPrime (P✝ j) ⊢ P✝ i = P✝ j [PROOFSTEP] refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPi)).trans ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp (Ideal.le_of_pow_le_prime hPj)).symm [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (P✝ i) this : IsPrime (P✝ j) ⊢ P✝ i ≠ ⊥ case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (P✝ i) this : IsPrime (P✝ j) ⊢ P✝ j ≠ ⊥ [PROOFSTEP] exact (prime i).ne_zero [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Field K inst✝³ : IsDomain A inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R ι : Type u_4 inst✝ : Fintype ι I : Ideal R P✝ : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), Prime (P✝ i) coprime : ∀ (i j : ι), i ≠ j → P✝ i ≠ P✝ j prod_eq : ∏ i : ι, P✝ i ^ e i = I i j : ι hij : i ≠ j P : Ideal R hPi : P✝ i ^ e i ≤ P hPj : P✝ j ^ e j ≤ P hPp this✝¹ : IsPrime P this✝ : IsPrime (P✝ i) this : IsPrime (P✝ j) ⊢ P✝ j ≠ ⊥ [PROOFSTEP] exact (prime j).ne_zero [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ ⊢ Multiset.prod (Multiset.map (fun P => P) (factors I)) = Multiset.prod (factors I) [PROOFSTEP] rw [Multiset.map_id'] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j x : (i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i ⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = x { val := i, property := hi } [PROOFSTEP] let f := IsDedekindDomain.quotientEquivPiOfFinsetProdEq _ P e prime coprime rfl [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j x : (i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) := quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i) ⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = x { val := i, property := hi } [PROOFSTEP] obtain ⟨y, rfl⟩ := f.surjective x [GOAL] case intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) := quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i) y : R ⧸ ∏ i in s, P i ^ e i ⊢ ∃ y_1, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y_1 = ↑f y { val := i, property := hi } [PROOFSTEP] obtain ⟨z, rfl⟩ := Ideal.Quotient.mk_surjective y [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j f : R ⧸ ∏ i in s, P i ^ e i ≃+* ((i : { x // x ∈ s }) → R ⧸ P ↑i ^ e ↑i) := quotientEquivPiOfFinsetProdEq (∏ i in s, P i ^ e i) P e prime coprime (_ : ∏ i in s, P i ^ e i = ∏ i in s, P i ^ e i) z : R ⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = ↑f (↑(Ideal.Quotient.mk (∏ i in s, P i ^ e i)) z) { val := i, property := hi } [PROOFSTEP] exact ⟨z, fun i _hi => rfl⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j x : { x // x ∈ s } → R ⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), y - x { val := i, property := hi } ∈ P i ^ e i [PROOFSTEP] obtain ⟨y, hy⟩ := IsDedekindDomain.exists_representative_mod_finset P e prime coprime fun i => Ideal.Quotient.mk _ (x i) [GOAL] case intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : Field K inst✝² : IsDomain A inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ι : Type u_4 s : Finset ι P : ι → Ideal R e : ι → ℕ prime : ∀ (i : ι), i ∈ s → Prime (P i) coprime : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → P i ≠ P j x : { x // x ∈ s } → R y : R hy : ∀ (i : ι) (hi : i ∈ s), ↑(Ideal.Quotient.mk (P i ^ e i)) y = ↑(Ideal.Quotient.mk (P ↑{ val := i, property := hi } ^ e ↑{ val := i, property := hi })) (x { val := i, property := hi }) ⊢ ∃ y, ∀ (i : ι) (hi : i ∈ s), y - x { val := i, property := hi } ∈ P i ^ e i [PROOFSTEP] exact ⟨y, fun i hi => Ideal.Quotient.eq.mp (hy i hi)⟩ [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b ⊢ span {a} ∈ normalizedFactors (span {b}) [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : b = 0 ⊢ span {a} ∈ normalizedFactors (span {b}) [PROOFSTEP] rw [Ideal.span_singleton_eq_bot.mpr hb, bot_eq_zero, normalizedFactors_zero] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : b = 0 ⊢ span {a} ∈ 0 [PROOFSTEP] rw [hb, normalizedFactors_zero] at ha [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ 0 hb : b = 0 ⊢ span {a} ∈ 0 [PROOFSTEP] exact absurd ha (Multiset.not_mem_zero a) [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 ⊢ span {a} ∈ normalizedFactors (span {b}) [PROOFSTEP] suffices Prime (Ideal.span ({ a } : Set R)) by obtain ⟨c, hc, hc'⟩ := exists_mem_normalizedFactors_of_dvd ?_ this.irreducible (dvd_iff_le.mpr (span_singleton_le_span_singleton.mpr (dvd_of_mem_normalizedFactors ha))) rwa [associated_iff_eq.mp hc'] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 this : Prime (span {a}) ⊢ span {a} ∈ normalizedFactors (span {b}) [PROOFSTEP] obtain ⟨c, hc, hc'⟩ := exists_mem_normalizedFactors_of_dvd ?_ this.irreducible (dvd_iff_le.mpr (span_singleton_le_span_singleton.mpr (dvd_of_mem_normalizedFactors ha))) [GOAL] case intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 this : Prime (span {a}) c : Ideal R hc : c ∈ normalizedFactors (span {b}) hc' : Associated (span {a}) c ⊢ span {a} ∈ normalizedFactors (span {b}) [PROOFSTEP] rwa [associated_iff_eq.mp hc'] [GOAL] case neg.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 this : Prime (span {a}) ⊢ span {b} ≠ 0 [PROOFSTEP] by_contra h [GOAL] case neg.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 this : Prime (span {a}) h : span {b} = 0 ⊢ False [PROOFSTEP] exact hb (span_singleton_eq_bot.mp h) [GOAL] case neg.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 ⊢ Prime (span {a}) [PROOFSTEP] rw [prime_iff_isPrime] [GOAL] case neg.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 ⊢ IsPrime (span {a}) [PROOFSTEP] exact (span_singleton_prime (prime_of_normalized_factor a ha).ne_zero).mpr (prime_of_normalized_factor a ha) [GOAL] case neg.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 ⊢ span {a} ≠ ⊥ [PROOFSTEP] by_contra h [GOAL] case neg.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : NormalizationMonoid R inst✝¹ : DecidableEq R inst✝ : DecidableEq (Ideal R) a b : R ha : a ∈ normalizedFactors b hb : ¬b = 0 h : span {a} = ⊥ ⊢ False [PROOFSTEP] exact (prime_of_normalized_factor a ha).ne_zero (span_singleton_eq_bot.mp h) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R ⊢ multiplicity (span {a}) (span {b}) = multiplicity a b [PROOFSTEP] by_cases h : Finite a b [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ multiplicity (span {a}) (span {b}) = multiplicity a b [PROOFSTEP] rw [← PartENat.natCast_get (finite_iff_dom.mp h)] [GOAL] case pos R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ multiplicity (span {a}) (span {b}) = ↑(Part.get (multiplicity a b) (_ : (multiplicity a b).Dom)) [PROOFSTEP] refine (multiplicity.unique (show Ideal.span { a } ^ (multiplicity a b).get h ∣ Ideal.span { b } from ?_) ?_).symm [GOAL] case pos.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ span {a} ^ Part.get (multiplicity a b) h ∣ span {b} [PROOFSTEP] rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd] [GOAL] case pos.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ ¬span {a} ^ (Part.get (multiplicity a b) h + 1) ∣ span {b} [PROOFSTEP] rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd] [GOAL] case pos.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ a ^ Part.get (multiplicity a b) h ∣ b case pos.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ ¬a ^ (Part.get (multiplicity a b) h + 1) ∣ b [PROOFSTEP] exact pow_multiplicity_dvd h [GOAL] case pos.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : multiplicity.Finite a b ⊢ ¬a ^ (Part.get (multiplicity a b) h + 1) ∣ b [PROOFSTEP] exact multiplicity.is_greatest ((PartENat.lt_coe_iff _ _).mpr (Exists.intro (finite_iff_dom.mp h) (Nat.lt_succ_self _))) [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : ¬multiplicity.Finite a b ⊢ multiplicity (span {a}) (span {b}) = multiplicity a b [PROOFSTEP] suffices ¬Finite (Ideal.span ({ a } : Set R)) (Ideal.span ({ b } : Set R)) by rw [finite_iff_dom, PartENat.not_dom_iff_eq_top] at h this rw [h, this] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : ¬multiplicity.Finite a b this : ¬multiplicity.Finite (span {a}) (span {b}) ⊢ multiplicity (span {a}) (span {b}) = multiplicity a b [PROOFSTEP] rw [finite_iff_dom, PartENat.not_dom_iff_eq_top] at h this [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h✝ : ¬multiplicity.Finite a b h : multiplicity a b = ⊤ this✝ : ¬multiplicity.Finite (span {a}) (span {b}) this : multiplicity (span {a}) (span {b}) = ⊤ ⊢ multiplicity (span {a}) (span {b}) = multiplicity a b [PROOFSTEP] rw [h, this] [GOAL] case neg R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : ¬multiplicity.Finite a b ⊢ ¬multiplicity.Finite (span {a}) (span {b}) [PROOFSTEP] exact not_finite_iff_forall.mpr fun n => by rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd] exact not_finite_iff_forall.mp h n [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : ¬multiplicity.Finite a b n : ℕ ⊢ span {a} ^ n ∣ span {b} [PROOFSTEP] rw [Ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : IsDomain A inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 a b : R h : ¬multiplicity.Finite a b n : ℕ ⊢ a ^ n ∣ b [PROOFSTEP] exact not_finite_iff_forall.mp h n [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 ⊢ ↑{d | d ∈ normalizedFactors r} ≃ ↑{I | I ∈ normalizedFactors (span {r})} [PROOFSTEP] refine Equiv.ofBijective ?_ ?_ [GOAL] case refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 ⊢ ↑{d | d ∈ normalizedFactors r} → ↑{I | I ∈ normalizedFactors (span {r})} [PROOFSTEP] exact fun d => ⟨Ideal.span {↑d}, singleton_span_mem_normalizedFactors_of_mem_normalizedFactors d.prop⟩ [GOAL] case refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 ⊢ Function.Bijective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) } [PROOFSTEP] refine ⟨?_, ?_⟩ [GOAL] case refine_2.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 ⊢ Function.Injective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) } [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ h [GOAL] case refine_2.refine_1.mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 a : R ha : a ∈ {d | d ∈ normalizedFactors r} b : R hb : b ∈ {d | d ∈ normalizedFactors r} h : (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) { val := a, property := ha } = (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) { val := b, property := hb } ⊢ { val := a, property := ha } = { val := b, property := hb } [PROOFSTEP] rw [Subtype.mk_eq_mk, Ideal.span_singleton_eq_span_singleton, Subtype.coe_mk, Subtype.coe_mk] at h [GOAL] case refine_2.refine_1.mk.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 a : R ha : a ∈ {d | d ∈ normalizedFactors r} b : R hb : b ∈ {d | d ∈ normalizedFactors r} h : Associated a b ⊢ { val := a, property := ha } = { val := b, property := hb } [PROOFSTEP] exact Subtype.mk_eq_mk.mpr (mem_normalizedFactors_eq_of_associated ha hb h) [GOAL] case refine_2.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 ⊢ Function.Surjective fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) } [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case refine_2.refine_2.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} ⊢ ∃ a, (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a = { val := i, property := hi } [PROOFSTEP] have : i.IsPrime := isPrime_of_prime (prime_of_normalized_factor i hi) [GOAL] case refine_2.refine_2.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} this : IsPrime i ⊢ ∃ a, (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a = { val := i, property := hi } [PROOFSTEP] have := exists_mem_normalizedFactors_of_dvd hr (Submodule.IsPrincipal.prime_generator_of_isPrime i (prime_of_normalized_factor i hi).ne_zero).irreducible ?_ [GOAL] case refine_2.refine_2.mk.refine_2 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} this✝ : IsPrime i this : ∃ q, q ∈ normalizedFactors r ∧ Associated (Submodule.IsPrincipal.generator i) q ⊢ ∃ a, (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a = { val := i, property := hi } [PROOFSTEP] obtain ⟨a, ha, ha'⟩ := this [GOAL] case refine_2.refine_2.mk.refine_2.intro.intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} this : IsPrime i a : R ha : a ∈ normalizedFactors r ha' : Associated (Submodule.IsPrincipal.generator i) a ⊢ ∃ a, (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) a = { val := i, property := hi } [PROOFSTEP] use⟨a, ha⟩ [GOAL] case h R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} this : IsPrime i a : R ha : a ∈ normalizedFactors r ha' : Associated (Submodule.IsPrincipal.generator i) a ⊢ (fun d => { val := span {↑d}, property := (_ : span {↑d} ∈ normalizedFactors (span {r})) }) { val := a, property := ha } = { val := i, property := hi } [PROOFSTEP] simp only [Subtype.coe_mk, Subtype.mk_eq_mk, ← span_singleton_eq_span_singleton.mpr ha', Ideal.span_singleton_generator] [GOAL] case refine_2.refine_2.mk.refine_1 R : Type u_1 A : Type u_2 K : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing A inst✝⁶ : Field K inst✝⁵ : IsDomain A inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : DecidableEq R inst✝¹ : DecidableEq (Ideal R) inst✝ : NormalizationMonoid R r : R hr : r ≠ 0 i : Ideal R hi : i ∈ {I | I ∈ normalizedFactors (span {r})} this : IsPrime i ⊢ Submodule.IsPrincipal.generator i ∣ r [PROOFSTEP] exact (Submodule.IsPrincipal.mem_iff_generator_dvd i).mp ((show Ideal.span { r } ≤ i from dvd_iff_le.mp (dvd_of_mem_normalizedFactors hi)) (mem_span_singleton.mpr (dvd_refl r))) [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A inst✝⁶ : IsDomain R inst✝⁵ : IsPrincipalIdealRing R inst✝⁴ : DecidableEq R inst✝³ : DecidableEq (Ideal R) inst✝² : NormalizationMonoid R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 r d : R hr : r ≠ 0 hd : d ∈ normalizedFactors r ⊢ multiplicity d r = multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr) { val := d, property := hd })) (span {r}) [PROOFSTEP] simp only [normalizedFactorsEquivSpanNormalizedFactors, multiplicity_eq_multiplicity_span, Subtype.coe_mk, Equiv.ofBijective_apply] [GOAL] R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A inst✝⁶ : IsDomain R inst✝⁵ : IsPrincipalIdealRing R inst✝⁴ : DecidableEq R inst✝³ : DecidableEq (Ideal R) inst✝² : NormalizationMonoid R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 r : R hr : r ≠ 0 I : ↑{I | I ∈ normalizedFactors (span {r})} ⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r}) [PROOFSTEP] obtain ⟨x, hx⟩ := (normalizedFactorsEquivSpanNormalizedFactors hr).surjective I [GOAL] case intro R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A inst✝⁶ : IsDomain R inst✝⁵ : IsPrincipalIdealRing R inst✝⁴ : DecidableEq R inst✝³ : DecidableEq (Ideal R) inst✝² : NormalizationMonoid R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 r : R hr : r ≠ 0 I : ↑{I | I ∈ normalizedFactors (span {r})} x : ↑{d | d ∈ normalizedFactors r} hx : ↑(normalizedFactorsEquivSpanNormalizedFactors hr) x = I ⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r}) [PROOFSTEP] obtain ⟨a, ha⟩ := x [GOAL] case intro.mk R : Type u_1 A : Type u_2 K : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing A inst✝⁸ : Field K inst✝⁷ : IsDomain A inst✝⁶ : IsDomain R inst✝⁵ : IsPrincipalIdealRing R inst✝⁴ : DecidableEq R inst✝³ : DecidableEq (Ideal R) inst✝² : NormalizationMonoid R inst✝¹ : DecidableRel fun x x_1 => x ∣ x_1 inst✝ : DecidableRel fun x x_1 => x ∣ x_1 r : R hr : r ≠ 0 I : ↑{I | I ∈ normalizedFactors (span {r})} a : R ha : a ∈ {d | d ∈ normalizedFactors r} hx : ↑(normalizedFactorsEquivSpanNormalizedFactors hr) { val := a, property := ha } = I ⊢ multiplicity (↑(↑(normalizedFactorsEquivSpanNormalizedFactors hr).symm I)) r = multiplicity (↑I) (span {r}) [PROOFSTEP] rw [hx.symm, Equiv.symm_apply_apply, Subtype.coe_mk, multiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_multiplicity hr ha, hx]
{"mathlib_filename": "Mathlib.RingTheory.DedekindDomain.Ideal", "llama_tokens": 147765}
[GOAL] l : Filter ℂ hre : Tendsto re l atTop r : ℝ hr : im =O[l] fun z => z.re ^ r n : ℕ ⊢ (fun z => z.im ^ ↑n) =O[l] fun z => (z.re ^ r) ^ ↑n [PROOFSTEP] norm_cast [GOAL] l : Filter ℂ hre : Tendsto re l atTop r : ℝ hr : im =O[l] fun z => z.re ^ r n : ℕ ⊢ (fun z => z.im ^ n) =O[l] fun z => (z.re ^ r) ^ n [PROOFSTEP] exact hr.pow n [GOAL] l : Filter ℂ hre : Tendsto re l atTop r : ℝ hr : im =O[l] fun z => z.re ^ r n : ℕ z : ℂ hz : 0 ≤ z.re ⊢ (fun z => (z.re ^ r) ^ ↑n) z = (fun z => z.re ^ (r * ↑n)) z [PROOFSTEP] simp only [Real.rpow_mul hz r n, Real.rpow_nat_cast] [GOAL] l : Filter ℂ hre : Tendsto re l atTop n : ℕ hr : im =O[l] fun z => z.re ^ ↑n ⊢ im =O[l] fun z => z.re ^ ↑n [PROOFSTEP] norm_cast at hr [GOAL] l : Filter ℂ hre : Tendsto re l atTop n : ℕ hr : im =O[l] fun z => z.re ^ n ⊢ im =O[l] fun z => z.re ^ ↑n [PROOFSTEP] simpa only [Real.rpow_nat_cast] [GOAL] l : Filter ℂ hre : Tendsto re l atTop him : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun z => |z.im| ⊢ im =O[l] fun z => z.re ^ ↑0 [PROOFSTEP] norm_cast [GOAL] l : Filter ℂ hre : Tendsto re l atTop him : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun z => |z.im| ⊢ im =O[l] fun z => z.re ^ 0 [PROOFSTEP] simpa only [pow_zero] using @IsBoundedUnder.isBigO_const ℂ ℝ ℝ _ _ _ l him 1 one_ne_zero [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ ∀ (x : ℂ), ((fun z => z.im ^ ↑n) ^ 2) x = (x.im ^ ↑n) ^ 2 [PROOFSTEP] simp [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ x✝ : ℂ ⊢ (x✝.im ^ ↑n) ^ 2 = x✝.im ^ (2 * ↑n) [PROOFSTEP] norm_cast [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ x✝ : ℂ ⊢ (x✝.im ^ n) ^ 2 = x✝.im ^ (2 * n) [PROOFSTEP] rw [pow_mul'] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ (fun z => z.im ^ (2 * ↑n)) =O[l] fun z => Real.exp z.re [PROOFSTEP] have := hl.isBigO_im_pow_re (2 * n) [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ this : (fun z => z.im ^ ↑(2 * n)) =O[l] fun z => Real.exp z.re ⊢ (fun z => z.im ^ (2 * ↑n)) =O[l] fun z => Real.exp z.re [PROOFSTEP] norm_cast at * [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ x✝ : ℂ ⊢ Real.exp x✝.re = Real.exp x✝.re ^ 1 [PROOFSTEP] norm_cast [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ x✝ : ℂ ⊢ Real.exp x✝.re = Real.exp x✝.re ^ 1 [PROOFSTEP] rw [pow_one] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ (fun z => Real.exp z.re ^ 1) =o[l] fun z => Real.exp z.re ^ 2 [PROOFSTEP] have := (isLittleO_pow_pow_atTop_of_lt one_lt_two).comp_tendsto <| Real.tendsto_exp_atTop.comp hl.tendsto_re [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ this : ((fun x => x ^ 1) ∘ Real.exp ∘ re) =o[l] ((fun x => x ^ 2) ∘ Real.exp ∘ re) ⊢ (fun z => Real.exp z.re ^ 1) =o[l] fun z => Real.exp z.re ^ 2 [PROOFSTEP] simpa only [pow_one, Real.rpow_one, Real.rpow_two] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ ∀ (x : ℂ), Real.exp x.re ^ 2 = ((fun z => Real.exp z.re) ^ 2) x [PROOFSTEP] simp [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ (fun z => |z.im| ^ ↑n) ≤ᶠ[l] fun z => Real.exp z.re [PROOFSTEP] simpa using (hl.isLittleO_im_pow_exp_re n).bound zero_lt_one [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re ⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] have h2 : 0 < Real.sqrt 2 := by simp [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re ⊢ 0 < Real.sqrt 2 [PROOFSTEP] simp [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 ⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] have hz' : 1 ≤ abs z := hz.trans (re_le_abs z) [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z ⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] have _ : 0 < abs z := one_pos.trans_le hz' [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z ⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] have hm₀ : 0 < max z.re |z.im| := lt_max_iff.2 (Or.inl <| one_pos.trans_le hz) [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] rw [one_mul, Real.norm_eq_abs, _root_.abs_of_nonneg (Real.log_nonneg hz')] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ Real.log (↑abs z) ≤ ‖Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|)‖ [PROOFSTEP] refine' le_trans _ (le_abs_self _) [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ Real.log (↑abs z) ≤ Real.log (Real.sqrt 2) + Real.log (max z.re |z.im|) [PROOFSTEP] rw [← Real.log_mul, Real.log_le_log, ← _root_.abs_of_nonneg (le_trans zero_le_one hz)] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ ↑abs z ≤ Real.sqrt 2 * max |z.re| |z.im| case h l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ 0 < ↑abs z case h₁ l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ 0 < Real.sqrt 2 * max z.re |z.im| case hx l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ Real.sqrt 2 ≠ 0 case hy l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < Real.sqrt 2 hz' : 1 ≤ ↑abs z x✝ : 0 < ↑abs z hm₀ : 0 < max z.re |z.im| ⊢ max z.re |z.im| ≠ 0 [PROOFSTEP] exacts [abs_le_sqrt_two_mul_max z, one_pos.trans_le hz', mul_pos h2 hm₀, h2.ne', hm₀.ne'] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l n : ℕ ⊢ ∀ᶠ (x : ℂ) in l, ↑n * ‖Real.log (max x.re |x.im|)‖ ≤ ‖x.re‖ [PROOFSTEP] filter_upwards [isLittleO_iff_nat_mul_le'.1 hl.isLittleO_log_re_re n, hl.abs_im_pow_eventuallyLE_exp_re n, hl.tendsto_re.eventually_gt_atTop 1] with z hre him h₁ [GOAL] case h l : Filter ℂ hl : IsExpCmpFilter l n : ℕ z : ℂ hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖ him : |z.im| ^ ↑n ≤ Real.exp z.re h₁ : 1 < z.re ⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖ [PROOFSTEP] cases' le_total |z.im| z.re with hle hle [GOAL] case h.inl l : Filter ℂ hl : IsExpCmpFilter l n : ℕ z : ℂ hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖ him : |z.im| ^ ↑n ≤ Real.exp z.re h₁ : 1 < z.re hle : |z.im| ≤ z.re ⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖ [PROOFSTEP] rwa [max_eq_left hle] [GOAL] case h.inr l : Filter ℂ hl : IsExpCmpFilter l n : ℕ z : ℂ hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖ him : |z.im| ^ ↑n ≤ Real.exp z.re h₁ : 1 < z.re hle : z.re ≤ |z.im| ⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖ [PROOFSTEP] have H : 1 < |z.im| := h₁.trans_le hle [GOAL] case h.inr l : Filter ℂ hl : IsExpCmpFilter l n : ℕ z : ℂ hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖ him : |z.im| ^ ↑n ≤ Real.exp z.re h₁ : 1 < z.re hle : z.re ≤ |z.im| H : 1 < |z.im| ⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖ [PROOFSTEP] norm_cast at * [GOAL] case h.inr l : Filter ℂ hl : IsExpCmpFilter l n : ℕ z : ℂ hre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖ hle : z.re ≤ |z.im| him : |z.im| ^ n ≤ Real.exp z.re h₁ : 1 < z.re H : 1 < |z.im| ⊢ ↑n * ‖Real.log (max z.re |z.im|)‖ ≤ ‖z.re‖ [PROOFSTEP] rwa [max_eq_right hle, Real.norm_eq_abs, Real.norm_eq_abs, abs_of_pos (Real.log_pos H), ← Real.log_pow, Real.log_le_iff_le_exp (pow_pos (one_pos.trans H) _), abs_of_pos (one_pos.trans h₁)] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : 0 < b z : ℂ hz : z ≠ 0 ⊢ (let_fun this := fun z => ↑abs z ^ a.re; this) z = (fun z => Real.exp (a.re * Real.log (↑abs z))) z [PROOFSTEP] simp only [Real.rpow_def_of_pos, abs.pos hz, mul_comm] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : 0 < b ⊢ (fun z => Real.exp (a.re * Real.log (↑abs z))) =o[l] fun x => ‖exp (↑b * x)‖ [PROOFSTEP] simp only [norm_eq_abs, abs_exp, ofReal_mul_re, Real.isLittleO_exp_comp_exp_comp] [GOAL] l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : 0 < b ⊢ Tendsto (fun x => b * x.re - a.re * Real.log (↑abs x)) l atTop [PROOFSTEP] refine' (IsEquivalent.refl.sub_isLittleO _).symm.tendsto_atTop (hl.tendsto_re.const_mul_atTop hb) [GOAL] l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : 0 < b ⊢ (fun x => a.re * Real.log (↑abs x)) =o[l] fun x => b * x.re [PROOFSTEP] exact (hl.isLittleO_log_abs_re.const_mul_left _).const_mul_right hb.ne' [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ a₁ a₂ z : ℂ hz : z ≠ 0 ⊢ (fun z => z ^ a₁ * exp (↑b₁ * z)) z = (fun z => z ^ a₂ * exp (↑b₁ * z) * z ^ (a₁ - a₂)) z [PROOFSTEP] simp only [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ a₁ a₂ z : ℂ hz : z ≠ 0 ⊢ z ^ a₁ * exp (↑b₁ * z) = z ^ a₂ * exp (↑b₁ * z) * z ^ (a₁ - a₂) [PROOFSTEP] rw [mul_right_comm, ← cpow_add _ _ hz, add_sub_cancel'_right] [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ a₁ a₂ : ℂ ⊢ (fun z => z ^ a₂ * exp (↑b₁ * z) * exp (↑(b₂ - b₁) * z)) =ᶠ[l] fun z => z ^ a₂ * exp (↑b₂ * z) [PROOFSTEP] simp only [ofReal_sub, sub_mul, mul_assoc, ← exp_add, add_sub_cancel'_right] [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ a₁ a₂ : ℂ ⊢ (fun z => z ^ a₂ * exp (↑b₂ * z)) =ᶠ[l] fun z => z ^ a₂ * exp (↑b₂ * z) [PROOFSTEP] norm_cast [GOAL] l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : b < 0 ⊢ (fun z => exp (↑b * z)) =o[l] fun z => z ^ a [PROOFSTEP] simpa using hl.isLittleO_cpow_mul_exp hb 0 a [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ m n : ℕ ⊢ (fun z => z ^ ↑m * exp (↑b₁ * z)) =o[l] fun z => z ^ ↑n * exp (↑b₂ * z) [PROOFSTEP] simpa only [cpow_nat_cast] using hl.isLittleO_cpow_mul_exp hb m n [GOAL] l : Filter ℂ b₁ b₂ : ℝ hl : IsExpCmpFilter l hb : b₁ < b₂ m n : ℤ ⊢ (fun z => z ^ ↑m * exp (↑b₁ * z)) =o[l] fun z => z ^ ↑n * exp (↑b₂ * z) [PROOFSTEP] simpa only [cpow_int_cast] using hl.isLittleO_cpow_mul_exp hb m n
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.CompareExp", "llama_tokens": 5629}
[GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] have hp₀' : 0 < 1 / p := by positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 ⊢ 0 < 1 / p [PROOFSTEP] positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] have hp₁' : 1 < 1 / p := by rw [one_lt_div hp₀]; exact hp₁ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p ⊢ 1 < 1 / p [PROOFSTEP] rw [one_lt_div hp₀] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p ⊢ p < 1 [PROOFSTEP] exact hp₁ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] let f := NNReal.orderIsoRpow (1 / p) hp₀' [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] have h₁ : StrictConvexOn ℝ≥0 univ f := by refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩ exact (strictConvexOn_rpow hp₁').2 (by positivity : 0 ≤ x) (by positivity : 0 ≤ y) (by simp [hxy]) ha hb (by simp; norm_cast) [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' ⊢ StrictConvexOn ℝ≥0 univ ↑f [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ↑f (a • x + b • y) < a • ↑f x + b • ↑f y [PROOFSTEP] exact (strictConvexOn_rpow hp₁').2 (by positivity : 0 ≤ x) (by positivity : 0 ≤ y) (by simp [hxy]) ha hb (by simp; norm_cast) [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 ≤ x [PROOFSTEP] positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 ≤ y [PROOFSTEP] positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (fun a => ↑a) x ≠ (fun a => ↑a) y [PROOFSTEP] simp [hxy] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ↑(↑(RingHom.id ℝ≥0) a) + ↑(↑(RingHom.id ℝ≥0) b) = 1 [PROOFSTEP] simp [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ↑a + ↑b = 1 [PROOFSTEP] norm_cast [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' h₁ : StrictConvexOn ℝ≥0 univ ↑f ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] have h₂ : ∀ x, f.symm x = x ^ p := by simp [NNReal.orderIsoRpow_symm_eq] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' h₁ : StrictConvexOn ℝ≥0 univ ↑f ⊢ ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p [PROOFSTEP] simp [NNReal.orderIsoRpow_symm_eq] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' h₁ : StrictConvexOn ℝ≥0 univ ↑f h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' h₁ : StrictConvexOn ℝ≥0 univ ↑f h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] simp only [← h₂] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 hp₀' : 0 < 1 / p hp₁' : 1 < 1 / p f : ℝ≥0 ≃o ℝ≥0 := orderIsoRpow (1 / p) hp₀' h₁ : StrictConvexOn ℝ≥0 univ ↑f h₂ : ∀ (x : ℝ≥0), ↑(OrderIso.symm f) x = x ^ p x : ℝ≥0 x✝¹ : x ∈ univ y : ℝ≥0 x✝ : y ∈ univ hxy : x ≠ y a b : ℝ≥0 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) x + b • ↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) y < ↑(OrderIso.symm (orderIsoRpow (1 / p) hp₀')) (a • x + b • y) [PROOFSTEP] exact (f.strictConcaveOn_symm h₁).2 (Set.mem_univ x) (Set.mem_univ y) hxy ha hb hab [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] by_cases hp : p = 0 [GOAL] case pos p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] exact ⟨convex_univ, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 x✝⁷ : ℝ≥0 x✝⁶ : x✝⁷ ∈ univ x✝⁵ : ℝ≥0 x✝⁴ : x✝⁵ ∈ univ x✝³ x✝² : ℝ≥0 x✝¹ : 0 ≤ x✝³ x✝ : 0 ≤ x✝² hab : x✝³ + x✝² = 1 ⊢ x✝³ • (fun x => x ^ p) x✝⁷ + x✝² • (fun x => x ^ p) x✝⁵ ≤ (fun x => x ^ p) (x✝³ • x✝⁷ + x✝² • x✝⁵) [PROOFSTEP] simp [hp, hab] [GOAL] case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp by_cases hp' : p = 1 case pos => exact ⟨convex_univ, by simp [hp']⟩ case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp by_cases hp' : p = 1 case pos => exact ⟨convex_univ, by simp [hp']⟩ case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] push_neg at hp [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] by_cases hp' : p = 1 [GOAL] case pos p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_univ, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_univ, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] exact ⟨convex_univ, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ∀ ⦃x : ℝ≥0⦄, x ∈ univ → ∀ ⦃y : ℝ≥0⦄, y ∈ univ → ∀ ⦃a b : ℝ≥0⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • (fun x => x ^ p) x + b • (fun x => x ^ p) y ≤ (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] simp [hp'] [GOAL] case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] push_neg at hp' [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p ≠ 1 ⊢ ConcaveOn ℝ≥0 univ fun x => x ^ p [PROOFSTEP] exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p ≠ 1 ⊢ 0 < p [PROOFSTEP] positivity [GOAL] ⊢ StrictConcaveOn ℝ≥0 univ ↑sqrt [PROOFSTEP] have : NNReal.sqrt = fun (x : ℝ≥0) ↦ x ^ (1 / (2 : ℝ)) := by ext x; exact_mod_cast NNReal.sqrt_eq_rpow x [GOAL] ⊢ ↑sqrt = fun x => x ^ (1 / 2) [PROOFSTEP] ext x [GOAL] case h.a x : ℝ≥0 ⊢ ↑(↑sqrt x) = ↑(x ^ (1 / 2)) [PROOFSTEP] exact_mod_cast NNReal.sqrt_eq_rpow x [GOAL] this : ↑sqrt = fun x => x ^ (1 / 2) ⊢ StrictConcaveOn ℝ≥0 univ ↑sqrt [PROOFSTEP] rw [this] [GOAL] this : ↑sqrt = fun x => x ^ (1 / 2) ⊢ StrictConcaveOn ℝ≥0 univ fun x => x ^ (1 / 2) [PROOFSTEP] exact strictConcaveOn_rpow (by positivity) (by linarith) [GOAL] this : ↑sqrt = fun x => x ^ (1 / 2) ⊢ 0 < 1 / 2 [PROOFSTEP] positivity [GOAL] this : ↑sqrt = fun x => x ^ (1 / 2) ⊢ 1 / 2 < 1 [PROOFSTEP] linarith [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 ⊢ StrictConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] refine ⟨convex_Ici _, fun x hx y hy hxy a b ha hb hab => ?_⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] let x' : ℝ≥0 := ⟨x, hx⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] let y' : ℝ≥0 := ⟨y, hy⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] let a' : ℝ≥0 := ⟨a, by positivity⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } ⊢ 0 ≤ a [PROOFSTEP] positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] let b' : ℝ≥0 := ⟨b, by positivity⟩ [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } ⊢ 0 ≤ b [PROOFSTEP] positivity [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] have hx' : (fun z => z ^ p) x = (fun z => z ^ p) x' := rfl [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] have hy' : (fun z => z ^ p) y = (fun z => z ^ p) y' := rfl [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] have hxy' : x' ≠ y' := Subtype.ne_of_val_ne hxy [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] have hab' : a' + b' = 1 := by ext; simp [hab] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' ⊢ a' + b' = 1 [PROOFSTEP] ext [GOAL] case a p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' ⊢ ↑(a' + b') = ↑1 [PROOFSTEP] simp [hab] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' hab' : a' + b' = 1 ⊢ a • (fun x => x ^ p) x + b • (fun x => x ^ p) y < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] rw [hx', hy'] [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' hab' : a' + b' = 1 ⊢ a • ↑((fun z => z ^ p) x') + b • ↑((fun z => z ^ p) y') < (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] exact (NNReal.strictConcaveOn_rpow hp₀ hp₁).2 (Set.mem_univ x') (Set.mem_univ y') hxy' (by exact_mod_cast ha) (by exact_mod_cast hb) hab' [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' hab' : a' + b' = 1 ⊢ 0 < a' [PROOFSTEP] exact_mod_cast ha [GOAL] p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := { val := x, property := hx } y' : ℝ≥0 := { val := y, property := hy } a' : ℝ≥0 := { val := a, property := (_ : 0 ≤ a) } b' : ℝ≥0 := { val := b, property := (_ : 0 ≤ b) } hx' : (fun z => z ^ p) x = ↑((fun z => z ^ p) x') hy' : (fun z => z ^ p) y = ↑((fun z => z ^ p) y') hxy' : x' ≠ y' hab' : a' + b' = 1 ⊢ 0 < b' [PROOFSTEP] exact_mod_cast hb [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] by_cases hp : p = 0 [GOAL] case pos p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] exact ⟨convex_Ici 0, fun _ _ _ _ _ _ _ _ hab => by simp [hp, hab]⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p = 0 x✝⁷ : ℝ x✝⁶ : x✝⁷ ∈ Ici 0 x✝⁵ : ℝ x✝⁴ : x✝⁵ ∈ Ici 0 x✝³ x✝² : ℝ x✝¹ : 0 ≤ x✝³ x✝ : 0 ≤ x✝² hab : x✝³ + x✝² = 1 ⊢ x✝³ • (fun x => x ^ p) x✝⁷ + x✝² • (fun x => x ^ p) x✝⁵ ≤ (fun x => x ^ p) (x✝³ • x✝⁷ + x✝² • x✝⁵) [PROOFSTEP] simp [hp, hab] [GOAL] case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp by_cases hp' : p = 1 case pos => exact ⟨convex_Ici 0, by simp [hp']⟩ case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp by_cases hp' : p = 1 case pos => exact ⟨convex_Ici 0, by simp [hp']⟩ case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : ¬p = 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] push_neg at hp [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] by_cases hp' : p = 1 [GOAL] case pos p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_Ici 0, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case pos => exact ⟨convex_Ici 0, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] exact ⟨convex_Ici 0, by simp [hp']⟩ [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p = 1 ⊢ ∀ ⦃x : ℝ⦄, x ∈ Ici 0 → ∀ ⦃y : ℝ⦄, y ∈ Ici 0 → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • (fun x => x ^ p) x + b • (fun x => x ^ p) y ≤ (fun x => x ^ p) (a • x + b • y) [PROOFSTEP] simp [hp'] [GOAL] case neg p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] case neg => push_neg at hp' exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : ¬p = 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] push_neg at hp' [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p ≠ 1 ⊢ ConcaveOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] exact (strictConcaveOn_rpow (by positivity) (lt_of_le_of_ne hp₁ hp')).concaveOn [GOAL] p : ℝ hp₀ : 0 ≤ p hp₁ : p ≤ 1 hp : p ≠ 0 hp' : p ≠ 1 ⊢ 0 < p [PROOFSTEP] positivity [GOAL] ⊢ StrictConcaveOn ℝ (Ici 0) sqrt [PROOFSTEP] have : Real.sqrt = fun (x : ℝ) ↦ x ^ (1 / (2 : ℝ)) := by ext x; exact Real.sqrt_eq_rpow x [GOAL] ⊢ sqrt = fun x => x ^ (1 / 2) [PROOFSTEP] ext x [GOAL] case h x : ℝ ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] exact Real.sqrt_eq_rpow x [GOAL] this : sqrt = fun x => x ^ (1 / 2) ⊢ StrictConcaveOn ℝ (Ici 0) sqrt [PROOFSTEP] rw [this] [GOAL] this : sqrt = fun x => x ^ (1 / 2) ⊢ StrictConcaveOn ℝ (Ici 0) fun x => x ^ (1 / 2) [PROOFSTEP] exact strictConcaveOn_rpow (by positivity) (by linarith) [GOAL] this : sqrt = fun x => x ^ (1 / 2) ⊢ 0 < 1 / 2 [PROOFSTEP] positivity [GOAL] this : sqrt = fun x => x ^ (1 / 2) ⊢ 1 / 2 < 1 [PROOFSTEP] linarith
{"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Pow", "llama_tokens": 12248}
[GOAL] 𝕜 : Type u_1 inst✝³ : OrderedSemiring 𝕜 E : Type u_2 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : SMul 𝕜 E S T : ProperCone 𝕜 E h : S.toConvexCone = T.toConvexCone ⊢ S = T [PROOFSTEP] cases S [GOAL] case mk 𝕜 : Type u_1 inst✝³ : OrderedSemiring 𝕜 E : Type u_2 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : SMul 𝕜 E T : ProperCone 𝕜 E toConvexCone✝ : ConvexCone 𝕜 E nonempty'✝ : Set.Nonempty toConvexCone✝.carrier is_closed'✝ : IsClosed toConvexCone✝.carrier h : { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ }.toConvexCone = T.toConvexCone ⊢ { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ } = T [PROOFSTEP] cases T [GOAL] case mk.mk 𝕜 : Type u_1 inst✝³ : OrderedSemiring 𝕜 E : Type u_2 inst✝² : AddCommMonoid E inst✝¹ : TopologicalSpace E inst✝ : SMul 𝕜 E toConvexCone✝¹ : ConvexCone 𝕜 E nonempty'✝¹ : Set.Nonempty toConvexCone✝¹.carrier is_closed'✝¹ : IsClosed toConvexCone✝¹.carrier toConvexCone✝ : ConvexCone 𝕜 E nonempty'✝ : Set.Nonempty toConvexCone✝.carrier is_closed'✝ : IsClosed toConvexCone✝.carrier h : { toConvexCone := toConvexCone✝¹, nonempty' := nonempty'✝¹, is_closed' := is_closed'✝¹ }.toConvexCone = { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ }.toConvexCone ⊢ { toConvexCone := toConvexCone✝¹, nonempty' := nonempty'✝¹, is_closed' := is_closed'✝¹ } = { toConvexCone := toConvexCone✝, nonempty' := nonempty'✝, is_closed' := is_closed'✝ } [PROOFSTEP] congr [GOAL] 𝕜 : Type u_1 inst✝⁴ : OrderedSemiring 𝕜 E : Type u_2 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : Module 𝕜 E ⊢ ConvexCone.Pointed 0.toConvexCone [PROOFSTEP] simp [ConvexCone.pointed_zero] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G K : ProperCone ℝ E ⊢ (map (ContinuousLinearMap.id ℝ E) K).toConvexCone = K.toConvexCone [PROOFSTEP] simpa using IsClosed.closure_eq K.isClosed [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G K : ProperCone ℝ E y : E ⊢ y ∈ dual K ↔ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner x y [PROOFSTEP] rw [← mem_coe, coe_dual, mem_innerDualCone _ _] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G K : ProperCone ℝ E y : E ⊢ (∀ (x : E), x ∈ ↑K → 0 ≤ inner x y) ↔ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner x y [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G f : E →L[ℝ] F S : ProperCone ℝ F ⊢ 0 ∈ (ConvexCone.comap (↑f) S.toConvexCone).carrier [PROOFSTEP] simp only [ConvexCone.comap, mem_preimage, map_zero, SetLike.mem_coe, mem_coe] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G f : E →L[ℝ] F S : ProperCone ℝ F ⊢ 0 ∈ S [PROOFSTEP] apply ProperCone.pointed [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G f : E →L[ℝ] F S : ProperCone ℝ F ⊢ IsClosed (ConvexCone.comap (↑f) S.toConvexCone).carrier [PROOFSTEP] simp only [ConvexCone.comap, ContinuousLinearMap.coe_coe] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G f : E →L[ℝ] F S : ProperCone ℝ F ⊢ IsClosed (↑f ⁻¹' ↑S.toConvexCone) [PROOFSTEP] apply IsClosed.preimage f.2 S.isClosed [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F G : Type u_3 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G g : F →L[ℝ] G f : E →L[ℝ] F S : ProperCone ℝ G ⊢ ↑(comap f (comap g S)) = ↑(comap (comp g f) S) [PROOFSTEP] congr [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F ⊢ b ∈ map f K → ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b [PROOFSTEP] simp only [ProperCone.mem_map, ProperCone.mem_dual, adjoint_inner_right, ConvexCone.mem_closure, mem_closure_iff_seq_limit] -- there is a sequence `seq : ℕ → F` in the image of `f` that converges to `b` [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F ⊢ (∃ x, (∀ (n : ℕ), x n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone)) ∧ Tendsto x atTop (nhds b)) → ∀ (y : F), (∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y) → 0 ≤ inner y b [PROOFSTEP] rintro ⟨seq, hmem, htends⟩ y hinner [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y ⊢ 0 ≤ inner y b [PROOFSTEP] suffices h : ∀ n, 0 ≤ ⟪y, seq n⟫_ℝ [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y h : ∀ (n : ℕ), 0 ≤ inner y (seq n) ⊢ 0 ≤ inner y b case h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y ⊢ ∀ (n : ℕ), 0 ≤ inner y (seq n) [PROOFSTEP] exact ge_of_tendsto' (Continuous.seqContinuous (Continuous.inner (@continuous_const _ _ _ _ y) continuous_id) htends) h [GOAL] case h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y ⊢ ∀ (n : ℕ), 0 ≤ inner y (seq n) [PROOFSTEP] intro n [GOAL] case h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y n : ℕ ⊢ 0 ≤ inner y (seq n) [PROOFSTEP] obtain ⟨_, h, hseq⟩ := hmem n [GOAL] case h.intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F seq : ℕ → F hmem : ∀ (n : ℕ), seq n ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) htends : Tendsto seq atTop (nhds b) y : F hinner : ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y n : ℕ w✝ : E h : w✝ ∈ ↑K.toConvexCone hseq : ↑↑f w✝ = seq n ⊢ 0 ≤ inner y (seq n) [PROOFSTEP] simpa only [← hseq, real_inner_comm] using hinner h [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F ⊢ (∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b) → b ∈ map f K [PROOFSTEP] intro h [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b ⊢ b ∈ map f K [PROOFSTEP] contrapose! h [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K ⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0 [PROOFSTEP] obtain ⟨y, hxy, hyb⟩ := ConvexCone.hyperplane_separation_of_nonempty_of_isClosed_of_nmem _ (K.map f).nonempty (K.map f).isClosed h [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 ⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0 [PROOFSTEP] refine' ⟨y, _, hyb⟩ [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 ⊢ ↑(↑adjoint f) y ∈ dual K [PROOFSTEP] simp_rw [ProperCone.mem_dual, adjoint_inner_right] [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 ⊢ ∀ ⦃x : E⦄, x ∈ K → 0 ≤ inner (↑f x) y [PROOFSTEP] intro x hxK [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ 0 ≤ inner (↑f x) y [PROOFSTEP] apply hxy (f x) [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ ↑f x ∈ (map f K).toConvexCone [PROOFSTEP] rw [ProperCone.coe_map] [GOAL] case intro.intro E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ ↑f x ∈ ConvexCone.closure (ConvexCone.map (↑f) K.toConvexCone) [PROOFSTEP] apply subset_closure [GOAL] case intro.intro.a E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ ↑f x ∈ ↑(ConvexCone.map (↑f) K.toConvexCone) [PROOFSTEP] rw [SetLike.mem_coe, ConvexCone.mem_map] [GOAL] case intro.intro.a E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ ∃ x_1, x_1 ∈ K.toConvexCone ∧ ↑↑f x_1 = ↑f x [PROOFSTEP] refine' ⟨x, hxK, by rw [coe_coe]⟩ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F h : ¬b ∈ map f K y : F hxy : ∀ (x : F), x ∈ (map f K).toConvexCone → 0 ≤ inner x y hyb : inner y b < 0 x : E hxK : x ∈ K ⊢ ↑↑f x = ↑f x [PROOFSTEP] rw [coe_coe] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F disj : ¬b ∈ map f K ⊢ ∃ y, ↑(↑adjoint f) y ∈ dual K ∧ inner y b < 0 [PROOFSTEP] contrapose! disj [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F inst✝ : CompleteSpace F K : ProperCone ℝ E f : E →L[ℝ] F b : F disj : ∀ (y : F), ↑(↑adjoint f) y ∈ dual K → 0 ≤ inner y b ⊢ b ∈ map f K [PROOFSTEP] rwa [K.hyperplane_separation]
{"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Proper", "llama_tokens": 7270}
[GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y f : P →ᵃ[R] P' ⊢ WSameSide (AffineSubspace.map f s) (↑f x) (↑f y) [PROOFSTEP] rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WSameSide (AffineSubspace.map f s) (↑f x) (↑f y) [PROOFSTEP] refine' ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂) [PROOFSTEP] simp_rw [← linearMap_vsub] [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ SameRay R (↑f.linear (x -ᵥ p₁)) (↑f.linear (y -ᵥ p₂)) [PROOFSTEP] exact h.map f.linear [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f ⊢ WSameSide (map f s) (↑f x) (↑f y) ↔ WSameSide s x y [PROOFSTEP] refine' ⟨fun h => _, fun h => h.map _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f h : WSameSide (map f s) (↑f x) (↑f y) ⊢ WSameSide s x y [PROOFSTEP] rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₁ : P' hfp₁ : fp₁ ∈ map f s fp₂ : P' hfp₂ : fp₂ ∈ map f s h : SameRay R (↑f x -ᵥ fp₁) (↑f y -ᵥ fp₂) ⊢ WSameSide s x y [PROOFSTEP] rw [mem_map] at hfp₁ hfp₂ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₁ : P' hfp₁ : ∃ y, y ∈ s ∧ ↑f y = fp₁ fp₂ : P' hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂ h : SameRay R (↑f x -ᵥ fp₁) (↑f y -ᵥ fp₂) ⊢ WSameSide s x y [PROOFSTEP] rcases hfp₁ with ⟨p₁, hp₁, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₂ : P' hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂ p₁ : P hp₁ : p₁ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ fp₂) ⊢ WSameSide s x y [PROOFSTEP] rcases hfp₂ with ⟨p₂, hp₂, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂) ⊢ WSameSide s x y [PROOFSTEP] refine' ⟨p₁, hp₁, p₂, hp₂, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f y -ᵥ ↑f p₂) ⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] simp_rw [← linearMap_vsub, (f.linear_injective_iff.2 hf).sameRay_map_iff] at h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] exact h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f ⊢ SSameSide (map f s) (↑f x) (↑f y) ↔ SSameSide s x y [PROOFSTEP] simp_rw [SSameSide, hf.wSameSide_map_iff, mem_map_iff_mem_of_injective hf] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WOppSide s x y f : P →ᵃ[R] P' ⊢ WOppSide (AffineSubspace.map f s) (↑f x) (↑f y) [PROOFSTEP] rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WOppSide (AffineSubspace.map f s) (↑f x) (↑f y) [PROOFSTEP] refine' ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y) [PROOFSTEP] simp_rw [← linearMap_vsub] [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (↑f.linear (x -ᵥ p₁)) (↑f.linear (p₂ -ᵥ y)) [PROOFSTEP] exact h.map f.linear [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f ⊢ WOppSide (map f s) (↑f x) (↑f y) ↔ WOppSide s x y [PROOFSTEP] refine' ⟨fun h => _, fun h => h.map _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f h : WOppSide (map f s) (↑f x) (↑f y) ⊢ WOppSide s x y [PROOFSTEP] rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₁ : P' hfp₁ : fp₁ ∈ map f s fp₂ : P' hfp₂ : fp₂ ∈ map f s h : SameRay R (↑f x -ᵥ fp₁) (fp₂ -ᵥ ↑f y) ⊢ WOppSide s x y [PROOFSTEP] rw [mem_map] at hfp₁ hfp₂ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₁ : P' hfp₁ : ∃ y, y ∈ s ∧ ↑f y = fp₁ fp₂ : P' hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂ h : SameRay R (↑f x -ᵥ fp₁) (fp₂ -ᵥ ↑f y) ⊢ WOppSide s x y [PROOFSTEP] rcases hfp₁ with ⟨p₁, hp₁, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f fp₂ : P' hfp₂ : ∃ y, y ∈ s ∧ ↑f y = fp₂ p₁ : P hp₁ : p₁ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (fp₂ -ᵥ ↑f y) ⊢ WOppSide s x y [PROOFSTEP] rcases hfp₂ with ⟨p₂, hp₂, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y) ⊢ WOppSide s x y [PROOFSTEP] refine' ⟨p₁, hp₁, p₂, hp₂, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (↑f x -ᵥ ↑f p₁) (↑f p₂ -ᵥ ↑f y) ⊢ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] simp_rw [← linearMap_vsub, (f.linear_injective_iff.2 hf).sameRay_map_iff] at h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] exact h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P f : P →ᵃ[R] P' hf : Function.Injective ↑f ⊢ SOppSide (map f s) (↑f x) (↑f y) ↔ SOppSide s x y [PROOFSTEP] simp_rw [SOppSide, hf.wOppSide_map_iff, mem_map_iff_mem_of_injective hf] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ SSameSide s x y ↔ SSameSide s y x [PROOFSTEP] rw [SSameSide, SSameSide, wSameSide_comm, and_comm (b := x ∉ s)] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WOppSide s x y ↔ WOppSide s y x [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WOppSide s x y → WOppSide s y x [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WOppSide s y x [PROOFSTEP] refine' ⟨p₂, hp₂, p₁, hp₁, _⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (y -ᵥ p₂) (p₁ -ᵥ x) [PROOFSTEP] rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WOppSide s y x → WOppSide s x y [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x) ⊢ WOppSide s x y [PROOFSTEP] refine' ⟨p₂, hp₂, p₁, hp₁, _⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x) ⊢ SameRay R (x -ᵥ p₂) (p₁ -ᵥ y) [PROOFSTEP] rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ SOppSide s x y ↔ SOppSide s y x [PROOFSTEP] rw [SOppSide, SOppSide, wOppSide_comm, and_comm (b := x ∉ s)] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ WSameSide s x y [PROOFSTEP] refine' ⟨x, hx, x, hx, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ SameRay R (x -ᵥ x) (y -ᵥ x) [PROOFSTEP] rw [vsub_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ SameRay R 0 (y -ᵥ x) [PROOFSTEP] apply SameRay.zero_left [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ WOppSide s x y [PROOFSTEP] refine' ⟨x, hx, x, hx, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ SameRay R (x -ᵥ x) (x -ᵥ y) [PROOFSTEP] rw [vsub_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s ⊢ SameRay R 0 (x -ᵥ y) [PROOFSTEP] apply SameRay.zero_left [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WSameSide s (v +ᵥ x) y ↔ WSameSide s x y [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WSameSide s (v +ᵥ x) y → WSameSide s x y [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (v +ᵥ x -ᵥ p₁) (y -ᵥ p₂) ⊢ WSameSide s x y [PROOFSTEP] refine' ⟨-v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction (Submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (v +ᵥ x -ᵥ p₁) (y -ᵥ p₂) ⊢ SameRay R (x -ᵥ (-v +ᵥ p₁)) (y -ᵥ p₂) [PROOFSTEP] rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ← vadd_vsub_assoc] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WSameSide s x y → WSameSide s (v +ᵥ x) y [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WSameSide s (v +ᵥ x) y [PROOFSTEP] refine' ⟨v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ SameRay R (v +ᵥ x -ᵥ (v +ᵥ p₁)) (y -ᵥ p₂) [PROOFSTEP] rwa [vadd_vsub_vadd_cancel_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WSameSide s x (v +ᵥ y) ↔ WSameSide s x y [PROOFSTEP] rw [wSameSide_comm, wSameSide_vadd_left_iff hv, wSameSide_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ SSameSide s (v +ᵥ x) y ↔ SSameSide s x y [PROOFSTEP] rw [SSameSide, SSameSide, wSameSide_vadd_left_iff hv, vadd_mem_iff_mem_of_mem_direction hv] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ SSameSide s x (v +ᵥ y) ↔ SSameSide s x y [PROOFSTEP] rw [sSameSide_comm, sSameSide_vadd_left_iff hv, sSameSide_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WOppSide s (v +ᵥ x) y ↔ WOppSide s x y [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WOppSide s (v +ᵥ x) y → WOppSide s x y [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (v +ᵥ x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WOppSide s x y [PROOFSTEP] refine' ⟨-v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction (Submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (v +ᵥ x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (x -ᵥ (-v +ᵥ p₁)) (p₂ -ᵥ y) [PROOFSTEP] rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ← vadd_vsub_assoc] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WOppSide s x y → WOppSide s (v +ᵥ x) y [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WOppSide s (v +ᵥ x) y [PROOFSTEP] refine' ⟨v +ᵥ p₁, AffineSubspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩ [GOAL] case mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ SameRay R (v +ᵥ x -ᵥ (v +ᵥ p₁)) (p₂ -ᵥ y) [PROOFSTEP] rwa [vadd_vsub_vadd_cancel_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ WOppSide s x (v +ᵥ y) ↔ WOppSide s x y [PROOFSTEP] rw [wOppSide_comm, wOppSide_vadd_left_iff hv, wOppSide_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ SOppSide s (v +ᵥ x) y ↔ SOppSide s x y [PROOFSTEP] rw [SOppSide, SOppSide, wOppSide_vadd_left_iff hv, vadd_mem_iff_mem_of_mem_direction hv] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P v : V hv : v ∈ direction s ⊢ SOppSide s x (v +ᵥ y) ↔ SOppSide s x y [PROOFSTEP] rw [sOppSide_comm, sOppSide_vadd_left_iff hv, sOppSide_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : 0 ≤ t ⊢ WSameSide s (t • (x -ᵥ p₁) +ᵥ p₂) x [PROOFSTEP] refine' ⟨p₂, hp₂, p₁, hp₁, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : 0 ≤ t ⊢ SameRay R (t • (x -ᵥ p₁) +ᵥ p₂ -ᵥ p₂) (x -ᵥ p₁) [PROOFSTEP] rw [vadd_vsub] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : 0 ≤ t ⊢ SameRay R (t • (x -ᵥ p₁)) (x -ᵥ p₁) [PROOFSTEP] exact SameRay.sameRay_nonneg_smul_left _ ht [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t ≤ 0 ⊢ WOppSide s (t • (x -ᵥ p₁) +ᵥ p₂) x [PROOFSTEP] refine' ⟨p₂, hp₂, p₁, hp₁, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t ≤ 0 ⊢ SameRay R (t • (x -ᵥ p₁) +ᵥ p₂ -ᵥ p₂) (p₁ -ᵥ x) [PROOFSTEP] rw [vadd_vsub, ← neg_neg t, neg_smul, ← smul_neg, neg_vsub_eq_vsub_rev] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P p₁ p₂ x : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t ≤ 0 ⊢ SameRay R (-t • (p₁ -ᵥ x)) (p₁ -ᵥ x) [PROOFSTEP] exact SameRay.sameRay_nonneg_smul_left _ (neg_nonneg.2 ht) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P h : Wbtw R x y z hx : x ∈ s ⊢ WSameSide s y z [PROOFSTEP] rcases h with ⟨t, ⟨ht0, -⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : x ∈ s t : R ht0 : 0 ≤ t ⊢ WSameSide s (↑(lineMap x z) t) z [PROOFSTEP] exact wSameSide_lineMap_left z hx ht0 [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P h : Wbtw R x y z hy : y ∈ s ⊢ WOppSide s x z [PROOFSTEP] rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ⊢ WOppSide s x z [PROOFSTEP] refine' ⟨_, hy, _, hy, _⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z) [PROOFSTEP] rcases ht1.lt_or_eq with (ht1' | rfl) [GOAL] case intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z) case intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 hy : ↑(lineMap x z) 1 ∈ s ⊢ SameRay R (x -ᵥ ↑(lineMap x z) 1) (↑(lineMap x z) 1 -ᵥ z) [PROOFSTEP] swap [GOAL] case intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 hy : ↑(lineMap x z) 1 ∈ s ⊢ SameRay R (x -ᵥ ↑(lineMap x z) 1) (↑(lineMap x z) 1 -ᵥ z) [PROOFSTEP] rw [lineMap_apply_one] [GOAL] case intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 hy : ↑(lineMap x z) 1 ∈ s ⊢ SameRay R (x -ᵥ z) (z -ᵥ z) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z) [PROOFSTEP] rcases ht0.lt_or_eq with (ht0' | rfl) [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ht0' : 0 < t ⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z) case intro.intro.intro.inl.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 hy : ↑(lineMap x z) 0 ∈ s ht1' : 0 < 1 ⊢ SameRay R (x -ᵥ ↑(lineMap x z) 0) (↑(lineMap x z) 0 -ᵥ z) [PROOFSTEP] swap [GOAL] case intro.intro.intro.inl.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 hy : ↑(lineMap x z) 0 ∈ s ht1' : 0 < 1 ⊢ SameRay R (x -ᵥ ↑(lineMap x z) 0) (↑(lineMap x z) 0 -ᵥ z) [PROOFSTEP] rw [lineMap_apply_zero] [GOAL] case intro.intro.intro.inl.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 hy : ↑(lineMap x z) 0 ∈ s ht1' : 0 < 1 ⊢ SameRay R (x -ᵥ x) (x -ᵥ z) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ht0' : 0 < t ⊢ SameRay R (x -ᵥ ↑(lineMap x z) t) (↑(lineMap x z) t -ᵥ z) [PROOFSTEP] refine' Or.inr (Or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩) -- TODO: after lean4#2336 "simp made no progress feature" -- had to add `_` to several lemmas here. Not sure why! [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ht0' : 0 < t ⊢ (1 - t) • (x -ᵥ ↑(lineMap x z) t) = t • (↑(lineMap x z) t -ᵥ z) [PROOFSTEP] simp_rw [lineMap_apply _, vadd_vsub_assoc _, vsub_vadd_eq_vsub_sub _, ← neg_vsub_eq_vsub_rev z x, vsub_self _, zero_sub, ← neg_one_smul R (z -ᵥ x), ← add_smul, smul_neg, ← neg_smul, smul_smul] [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : StrictOrderedCommRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s ht1' : t < 1 ht0' : 0 < t ⊢ (-(1 - t) * t) • (z -ᵥ x) = (t * (t + -1)) • (z -ᵥ x) [PROOFSTEP] ring_nf [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x : P ⊢ WOppSide s x x ↔ x ∈ s [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x : P ⊢ WOppSide s x x → x ∈ s [PROOFSTEP] rintro ⟨p₁, hp₁, p₂, hp₂, h⟩ [GOAL] case mp.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x) ⊢ x ∈ s [PROOFSTEP] obtain ⟨a, -, -, -, -, h₁, -⟩ := h.exists_eq_smul_add [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x) a : R h₁ : x -ᵥ p₁ = a • (x -ᵥ p₁ + (p₂ -ᵥ x)) ⊢ x ∈ s [PROOFSTEP] rw [add_comm, vsub_add_vsub_cancel, ← eq_vadd_iff_vsub_eq] at h₁ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x) a : R h₁ : x = a • (p₂ -ᵥ p₁) +ᵥ p₁ ⊢ x ∈ s [PROOFSTEP] rw [h₁] [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : SameRay R (x -ᵥ p₁) (p₂ -ᵥ x) a : R h₁ : x = a • (p₂ -ᵥ p₁) +ᵥ p₁ ⊢ a • (p₂ -ᵥ p₁) +ᵥ p₁ ∈ s [PROOFSTEP] exact s.smul_vsub_vadd_mem a hp₂ hp₁ hp₁ [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x : P ⊢ x ∈ s → WOppSide s x x [PROOFSTEP] exact fun h => ⟨x, h, x, h, SameRay.rfl⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x : P ⊢ ¬SOppSide s x x [PROOFSTEP] rw [SOppSide] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x : P ⊢ ¬(WOppSide s x x ∧ ¬x ∈ s ∧ ¬x ∈ s) [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ WSameSide s x y ↔ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ WSameSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩ [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x -ᵥ p₁' = 0 ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h0 [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x = p₁' ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [h0] [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x = p₁' ⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] exact Or.inl hp₁' [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : y -ᵥ p₂' = 0 ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] refine' Or.inr ⟨p₂', hp₂', _⟩ [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : y -ᵥ p₂' = 0 ⊢ SameRay R (x -ᵥ p₁) (y -ᵥ p₂') [PROOFSTEP] rw [h0] [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : y -ᵥ p₂' = 0 ⊢ SameRay R (x -ᵥ p₁) 0 [PROOFSTEP] exact SameRay.zero_right _ [GOAL] case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ hr : r₁ • (x -ᵥ p₁') = r₂ • (y -ᵥ p₂') ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] refine' Or.inr ⟨(r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂', Or.inr (Or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩ [GOAL] case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ hr : r₁ • (x -ᵥ p₁') = r₂ • (y -ᵥ p₂') ⊢ r₁ • (x -ᵥ p₁) = r₂ • (y -ᵥ ((r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂')) [PROOFSTEP] rw [vsub_vadd_eq_vsub_sub, smul_sub, ← hr, smul_smul, mul_div_cancel' _ hr₂.ne.symm, ← smul_sub, vsub_sub_vsub_cancel_right] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) → WSameSide s x y [PROOFSTEP] rintro (h' | ⟨h₁, h₂, h₃⟩) [GOAL] case mpr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s h' : x ∈ s ⊢ WSameSide s x y [PROOFSTEP] exact wSameSide_of_left_mem y h' [GOAL] case mpr.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s h₁ : P h₂ : h₁ ∈ s h₃ : SameRay R (x -ᵥ p₁) (y -ᵥ h₁) ⊢ WSameSide s x y [PROOFSTEP] exact ⟨p₁, h, h₁, h₂, h₃⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ WSameSide s x y ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [wSameSide_comm, wSameSide_iff_exists_left h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (x -ᵥ p₂_1)) ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] simp_rw [SameRay.sameRay_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ SSameSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [SSameSide, and_comm, wSameSide_iff_exists_left h, and_assoc, and_congr_right_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ ¬x ∈ s → (¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) ↔ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) [PROOFSTEP] intro hx [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s hx : ¬x ∈ s ⊢ ¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂)) ↔ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [or_iff_right hx] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ SSameSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] rw [sSameSide_comm, sSameSide_iff_exists_left h, ← and_assoc, and_comm (a := y ∉ s), and_assoc] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (x -ᵥ p₂_1)) ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (y -ᵥ p₂) [PROOFSTEP] simp_rw [SameRay.sameRay_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ WOppSide s x y ↔ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ WOppSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩ [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x -ᵥ p₁' = 0 ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h0 [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x = p₁' ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [h0] [GOAL] case mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : x = p₁' ⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] exact Or.inl hp₁' [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : p₂' -ᵥ y = 0 ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] refine' Or.inr ⟨p₂', hp₂', _⟩ [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : p₂' -ᵥ y = 0 ⊢ SameRay R (x -ᵥ p₁) (p₂' -ᵥ y) [PROOFSTEP] rw [h0] [GOAL] case mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s h0 : p₂' -ᵥ y = 0 ⊢ SameRay R (x -ᵥ p₁) 0 [PROOFSTEP] exact SameRay.zero_right _ [GOAL] case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ hr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y) ⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] refine' Or.inr ⟨(-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂', Or.inr (Or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩ [GOAL] case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s p₁' : P hp₁' : p₁' ∈ s p₂' : P hp₂' : p₂' ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ hr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y) ⊢ r₁ • (x -ᵥ p₁) = r₂ • ((-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂' -ᵥ y) [PROOFSTEP] rw [vadd_vsub_assoc, smul_add, ← hr, smul_smul, neg_div, mul_neg, mul_div_cancel' _ hr₂.ne.symm, neg_smul, neg_add_eq_sub, ← smul_sub, vsub_sub_vsub_cancel_right] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → WOppSide s x y [PROOFSTEP] rintro (h' | ⟨h₁, h₂, h₃⟩) [GOAL] case mpr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s h' : x ∈ s ⊢ WOppSide s x y [PROOFSTEP] exact wOppSide_of_left_mem y h' [GOAL] case mpr.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s h₁ : P h₂ : h₁ ∈ s h₃ : SameRay R (x -ᵥ p₁) (h₁ -ᵥ y) ⊢ WOppSide s x y [PROOFSTEP] exact ⟨p₁, h, h₁, h₂, h₃⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ WOppSide s x y ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [wOppSide_comm, wOppSide_iff_exists_left h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)) ↔ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ (y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x)) → y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rintro (hy | ⟨p, hp, hr⟩) [GOAL] case mp.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s hy : y ∈ s ⊢ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] exact Or.inl hy [GOAL] case mp.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s p : P hp : p ∈ s hr : SameRay R (y -ᵥ p₂) (p -ᵥ x) ⊢ y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] refine' Or.inr ⟨p, hp, _⟩ [GOAL] case mp.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s p : P hp : p ∈ s hr : SameRay R (y -ᵥ p₂) (p -ᵥ x) ⊢ SameRay R (x -ᵥ p) (p₂ -ᵥ y) [PROOFSTEP] rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ (y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x) [PROOFSTEP] rintro (hy | ⟨p, hp, hr⟩) [GOAL] case mpr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s hy : y ∈ s ⊢ y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x) [PROOFSTEP] exact Or.inl hy [GOAL] case mpr.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s p : P hp : p ∈ s hr : SameRay R (x -ᵥ p) (p₂ -ᵥ y) ⊢ y ∈ s ∨ ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ x) [PROOFSTEP] refine' Or.inr ⟨p, hp, _⟩ [GOAL] case mpr.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s p : P hp : p ∈ s hr : SameRay R (x -ᵥ p) (p₂ -ᵥ y) ⊢ SameRay R (y -ᵥ p₂) (p -ᵥ x) [PROOFSTEP] rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ SOppSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [SOppSide, and_comm, wOppSide_iff_exists_left h, and_assoc, and_congr_right_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s ⊢ ¬x ∈ s → (¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) [PROOFSTEP] intro hx [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P h : p₁ ∈ s hx : ¬x ∈ s ⊢ ¬y ∈ s ∧ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [or_iff_right hx] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ SOppSide s x y ↔ ¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [SOppSide, and_comm, wOppSide_iff_exists_right h, and_assoc, and_congr_right_iff, and_congr_right_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s ⊢ ¬x ∈ s → ¬y ∈ s → ((y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) [PROOFSTEP] rintro _ hy [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₂ : P h : p₂ ∈ s a✝ : ¬x ∈ s hy : ¬y ∈ s ⊢ (y ∈ s ∨ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) ↔ ∃ p₁, p₁ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) [PROOFSTEP] rw [or_iff_right hy] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hxy : WSameSide s x y hyz : WSameSide s y z hy : ¬y ∈ s ⊢ WSameSide s x z [PROOFSTEP] rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hyz : WSameSide s y z hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WSameSide s x z [PROOFSTEP] rw [wSameSide_iff_exists_left hp₂, or_iff_right hy] at hyz [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (z -ᵥ p₂_1) hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WSameSide s x z [PROOFSTEP] rcases hyz with ⟨p₃, hp₃, hyz⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃) ⊢ WSameSide s x z [PROOFSTEP] refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃) ⊢ y -ᵥ p₂ = 0 → x -ᵥ p₁ = 0 ∨ z -ᵥ p₃ = 0 [PROOFSTEP] refine' fun h => False.elim _ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃) h : y -ᵥ p₂ = 0 ⊢ False [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (z -ᵥ p₃) h : y = p₂ ⊢ False [PROOFSTEP] exact hy (h.symm ▸ hp₂) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hxy : WSameSide s x y hyz : WOppSide s y z hy : ¬y ∈ s ⊢ WOppSide s x z [PROOFSTEP] rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hyz : WOppSide s y z hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WOppSide s x z [PROOFSTEP] rw [wOppSide_iff_exists_left hp₂, or_iff_right hy] at hyz [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ z) hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) ⊢ WOppSide s x z [PROOFSTEP] rcases hyz with ⟨p₃, hp₃, hyz⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z) ⊢ WOppSide s x z [PROOFSTEP] refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z) ⊢ y -ᵥ p₂ = 0 → x -ᵥ p₁ = 0 ∨ p₃ -ᵥ z = 0 [PROOFSTEP] refine' fun h => False.elim _ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z) h : y -ᵥ p₂ = 0 ⊢ False [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (y -ᵥ p₂) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z) h : y = p₂ ⊢ False [PROOFSTEP] exact hy (h.symm ▸ hp₂) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hxy : WOppSide s x y hyz : WOppSide s y z hy : ¬y ∈ s ⊢ WSameSide s x z [PROOFSTEP] rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hyz : WOppSide s y z hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WSameSide s x z [PROOFSTEP] rw [wOppSide_iff_exists_left hp₂, or_iff_right hy] at hyz [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hyz : ∃ p₂_1, p₂_1 ∈ s ∧ SameRay R (y -ᵥ p₂) (p₂_1 -ᵥ z) hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) ⊢ WSameSide s x z [PROOFSTEP] rcases hyz with ⟨p₃, hp₃, hyz⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (y -ᵥ p₂) (p₃ -ᵥ z) ⊢ WSameSide s x z [PROOFSTEP] rw [← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] at hyz [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃) ⊢ WSameSide s x z [PROOFSTEP] refine' ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃) ⊢ p₂ -ᵥ y = 0 → x -ᵥ p₁ = 0 ∨ z -ᵥ p₃ = 0 [PROOFSTEP] refine' fun h => False.elim _ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃) h : p₂ -ᵥ y = 0 ⊢ False [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P hy : ¬y ∈ s p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s hxy : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y) p₃ : P hp₃ : p₃ ∈ s hyz : SameRay R (p₂ -ᵥ y) (z -ᵥ p₃) h : p₂ = y ⊢ False [PROOFSTEP] exact hy (h ▸ hp₂) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WSameSide s x y ∧ WOppSide s x y ↔ x ∈ s ∨ y ∈ s [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WSameSide s x y ∧ WOppSide s x y → x ∈ s ∨ y ∈ s [PROOFSTEP] rintro ⟨hs, ho⟩ [GOAL] case mp.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hs : WSameSide s x y ho : WOppSide s x y ⊢ x ∈ s ∨ y ∈ s [PROOFSTEP] rw [wOppSide_comm] at ho [GOAL] case mp.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hs : WSameSide s x y ho : WOppSide s y x ⊢ x ∈ s ∨ y ∈ s [PROOFSTEP] by_contra h [GOAL] case mp.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hs : WSameSide s x y ho : WOppSide s y x h : ¬(x ∈ s ∨ y ∈ s) ⊢ False [PROOFSTEP] rw [not_or] at h [GOAL] case mp.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hs : WSameSide s x y ho : WOppSide s y x h : ¬x ∈ s ∧ ¬y ∈ s ⊢ False [PROOFSTEP] exact h.1 (wOppSide_self_iff.1 (hs.trans_wOppSide ho h.2)) [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ x ∈ s ∨ y ∈ s → WSameSide s x y ∧ WOppSide s x y [PROOFSTEP] rintro (h | h) [GOAL] case mpr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : x ∈ s ⊢ WSameSide s x y ∧ WOppSide s x y [PROOFSTEP] exact ⟨wSameSide_of_left_mem y h, wOppSide_of_left_mem y h⟩ [GOAL] case mpr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : y ∈ s ⊢ WSameSide s x y ∧ WOppSide s x y [PROOFSTEP] exact ⟨wSameSide_of_right_mem x h, wOppSide_of_right_mem x h⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y ⊢ ¬SOppSide s x y [PROOFSTEP] intro ho [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y ho : SOppSide s x y ⊢ False [PROOFSTEP] have hxy := wSameSide_and_wOppSide_iff.1 ⟨h, ho.1⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y ho : SOppSide s x y hxy : x ∈ s ∨ y ∈ s ⊢ False [PROOFSTEP] rcases hxy with (hx | hy) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y ho : SOppSide s x y hx : x ∈ s ⊢ False [PROOFSTEP] exact ho.2.1 hx [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WSameSide s x y ho : SOppSide s x y hy : y ∈ s ⊢ False [PROOFSTEP] exact ho.2.2 hy [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SSameSide s x y ⊢ ¬WOppSide s x y [PROOFSTEP] intro ho [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SSameSide s x y ho : WOppSide s x y ⊢ False [PROOFSTEP] have hxy := wSameSide_and_wOppSide_iff.1 ⟨h.1, ho⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SSameSide s x y ho : WOppSide s x y hxy : x ∈ s ∨ y ∈ s ⊢ False [PROOFSTEP] rcases hxy with (hx | hy) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SSameSide s x y ho : WOppSide s x y hx : x ∈ s ⊢ False [PROOFSTEP] exact h.2.1 hx [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SSameSide s x y ho : WOppSide s x y hy : y ∈ s ⊢ False [PROOFSTEP] exact h.2.2 hy [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P ⊢ WOppSide s x y ↔ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] refine' ⟨fun h => _, fun ⟨p, hp, h⟩ => h.wOppSide₁₃ hp⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : WOppSide s x y ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] rcases h with ⟨p₁, hp₁, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩ [GOAL] case intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : x -ᵥ p₁ = 0 ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : x = p₁ ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] rw [h] [GOAL] case intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : x = p₁ ⊢ ∃ p, p ∈ s ∧ Wbtw R p₁ p y [PROOFSTEP] exact ⟨p₁, hp₁, wbtw_self_left _ _ _⟩ [GOAL] case intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : p₂ -ᵥ y = 0 ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] rw [← h] [GOAL] case intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ ∃ p, p ∈ s ∧ Wbtw R x p p₂ [PROOFSTEP] exact ⟨p₂, hp₂, wbtw_self_right _ _ _⟩ [GOAL] case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) ⊢ ∃ p, p ∈ s ∧ Wbtw R x p y [PROOFSTEP] refine' ⟨lineMap x y (r₂ / (r₁ + r₂)), _, _⟩ [GOAL] case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) ⊢ ↑(lineMap x y) (r₂ / (r₁ + r₂)) ∈ s [PROOFSTEP] have : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) := by rw [add_comm (y -ᵥ p₂), smul_sub, smul_add, add_sub_assoc, add_assoc, add_right_eq_self, div_eq_inv_mul, ← neg_vsub_eq_vsub_rev, smul_neg, ← smul_smul, ← h, smul_smul, ← neg_smul, ← sub_smul, ← div_eq_inv_mul, ← div_eq_inv_mul, ← neg_div, ← sub_div, sub_eq_add_neg, ← neg_add, neg_div, div_self (Left.add_pos hr₁ hr₂).ne.symm, neg_one_smul, neg_add_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) ⊢ (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) [PROOFSTEP] rw [add_comm (y -ᵥ p₂), smul_sub, smul_add, add_sub_assoc, add_assoc, add_right_eq_self, div_eq_inv_mul, ← neg_vsub_eq_vsub_rev, smul_neg, ← smul_smul, ← h, smul_smul, ← neg_smul, ← sub_smul, ← div_eq_inv_mul, ← div_eq_inv_mul, ← neg_div, ← sub_div, sub_eq_add_neg, ← neg_add, neg_div, div_self (Left.add_pos hr₁ hr₂).ne.symm, neg_one_smul, neg_add_self] [GOAL] case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) this : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) ⊢ ↑(lineMap x y) (r₂ / (r₁ + r₂)) ∈ s [PROOFSTEP] rw [lineMap_apply, ← vsub_vadd x p₁, ← vsub_vadd y p₂, vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, ← vadd_assoc, vadd_eq_add, this] [GOAL] case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) this : (r₂ / (r₁ + r₂)) • (y -ᵥ p₂ + (p₂ -ᵥ p₁) - (x -ᵥ p₁)) + (x -ᵥ p₁) = (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) ⊢ (r₂ / (r₁ + r₂)) • (p₂ -ᵥ p₁) +ᵥ p₁ ∈ s [PROOFSTEP] exact s.smul_vsub_vadd_mem (r₂ / (r₁ + r₂)) hp₂ hp₁ hp₁ [GOAL] case intro.intro.intro.intro.inr.inr.intro.intro.intro.intro.refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y p₁ : P hp₁ : p₁ ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p₁) = r₂ • (p₂ -ᵥ y) ⊢ Wbtw R x (↑(lineMap x y) (r₂ / (r₁ + r₂))) y [PROOFSTEP] exact Set.mem_image_of_mem _ ⟨div_nonneg hr₂.le (Left.add_pos hr₁ hr₂).le, div_le_one_of_le (le_add_of_nonneg_left hr₁.le) (Left.add_pos hr₁ hr₂).le⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SOppSide s x y ⊢ ∃ p, p ∈ s ∧ Sbtw R x p y [PROOFSTEP] obtain ⟨p, hp, hw⟩ := wOppSide_iff_exists_wbtw.1 h.wOppSide [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SOppSide s x y p : P hp : p ∈ s hw : Wbtw R x p y ⊢ ∃ p, p ∈ s ∧ Sbtw R x p y [PROOFSTEP] refine' ⟨p, hp, hw, _, _⟩ [GOAL] case intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SOppSide s x y p : P hp : p ∈ s hw : Wbtw R x p y ⊢ p ≠ x [PROOFSTEP] rintro rfl [GOAL] case intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P y p : P hp : p ∈ s h : SOppSide s p y hw : Wbtw R p p y ⊢ False [PROOFSTEP] exact h.2.1 hp [GOAL] case intro.intro.refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P h : SOppSide s x y p : P hp : p ∈ s hw : Wbtw R x p y ⊢ p ≠ y [PROOFSTEP] rintro rfl [GOAL] case intro.intro.refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hp : p ∈ s h : SOppSide s x p hw : Wbtw R x p p ⊢ False [PROOFSTEP] exact h.2.2 hp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P h : Sbtw R x y z hx : ¬x ∈ s hy : y ∈ s ⊢ SOppSide s x z [PROOFSTEP] refine' ⟨h.wbtw.wOppSide₁₃ hy, hx, fun hz => hx _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y z : P h : Sbtw R x y z hx : ¬x ∈ s hy : y ∈ s hz : z ∈ s ⊢ x ∈ s [PROOFSTEP] rcases h with ⟨⟨t, ⟨ht0, ht1⟩, rfl⟩, hyx, hyz⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : ↑(lineMap x z) t ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ⊢ x ∈ s [PROOFSTEP] rw [lineMap_apply] at hy [GOAL] case intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : t • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ⊢ x ∈ s [PROOFSTEP] have ht : t ≠ 1 := by rintro rfl simp [lineMap_apply] at hyz [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : t • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ⊢ t ≠ 1 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 hy : 1 • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) 1 ≠ x hyz : ↑(lineMap x z) 1 ≠ z ⊢ False [PROOFSTEP] simp [lineMap_apply] at hyz [GOAL] case intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : t • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ht : t ≠ 1 ⊢ x ∈ s [PROOFSTEP] have hy' := vsub_mem_direction hy hz [GOAL] case intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : t • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ht : t ≠ 1 hy' : t • (z -ᵥ x) +ᵥ x -ᵥ z ∈ direction s ⊢ x ∈ s [PROOFSTEP] rw [vadd_vsub_assoc, ← neg_vsub_eq_vsub_rev z, ← neg_one_smul R (z -ᵥ x), ← add_smul, ← sub_eq_add_neg, s.direction.smul_mem_iff (sub_ne_zero_of_ne ht)] at hy' [GOAL] case intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x z : P hx : ¬x ∈ s hz : z ∈ s t : R ht0 : 0 ≤ t ht1 : t ≤ 1 hy : t • (z -ᵥ x) +ᵥ x ∈ s hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ht : t ≠ 1 hy' : z -ᵥ x ∈ direction s ⊢ x ∈ s [PROOFSTEP] rwa [vadd_mem_iff_mem_of_mem_direction (Submodule.smul_mem _ _ hy')] at hy [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ p₂ : P hx : ¬x ∈ s hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : 0 < t ⊢ SSameSide s (t • (x -ᵥ p₁) +ᵥ p₂) x [PROOFSTEP] refine' ⟨wSameSide_smul_vsub_vadd_left x hp₁ hp₂ ht.le, fun h => hx _, hx⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ p₂ : P hx : ¬x ∈ s hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : 0 < t h : t • (x -ᵥ p₁) +ᵥ p₂ ∈ s ⊢ x ∈ s [PROOFSTEP] rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne.symm, vsub_right_mem_direction_iff_mem hp₁] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ p₂ : P hx : ¬x ∈ s hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t < 0 ⊢ SOppSide s (t • (x -ᵥ p₁) +ᵥ p₂) x [PROOFSTEP] refine' ⟨wOppSide_smul_vsub_vadd_left x hp₁ hp₂ ht.le, fun h => hx _, hx⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p₁ p₂ : P hx : ¬x ∈ s hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s t : R ht : t < 0 h : t • (x -ᵥ p₁) +ᵥ p₂ ∈ s ⊢ x ∈ s [PROOFSTEP] rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne, vsub_right_mem_direction_iff_mem hp₁] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s ⊢ {y | WSameSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s [PROOFSTEP] ext y [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ y ∈ {y | WSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s [PROOFSTEP] simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Ici] [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ WSameSide s x y ↔ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ WSameSide s x y → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [wSameSide_iff_exists_left hp, or_iff_right hx] [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩ [GOAL] case h.mp.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : x -ᵥ p = 0 ⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : x = p ⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hx (h.symm ▸ hp)) [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : y -ᵥ p₂ = 0 ⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : y = p₂ ⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨0, p₂, le_refl _, hp₂, _⟩ [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : y = p₂ ⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] simp [h] [GOAL] case h.mp.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂) ⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨r₁ / r₂, p₂, (div_pos hr₁ hr₂).le, hp₂, _⟩ [GOAL] case h.mp.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂) ⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] rw [div_eq_inv_mul, ← smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, vsub_vadd] [GOAL] case h.mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WSameSide s x y [PROOFSTEP] rintro ⟨t, p', ht, hp', rfl⟩ [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s t : R p' : P ht : 0 ≤ t hp' : p' ∈ ↑s ⊢ WSameSide s x (t • (x -ᵥ p) +ᵥ p') [PROOFSTEP] exact wSameSide_smul_vsub_vadd_right x hp hp' ht [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s ⊢ {y | SSameSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ioi 0) ↑s [PROOFSTEP] ext y [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ y ∈ {y | SSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ioi 0) ↑s [PROOFSTEP] simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Ioi] [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ SSameSide s x y ↔ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ SSameSide s x y → ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [sSameSide_iff_exists_left hp] [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩ [GOAL] case h.mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : x -ᵥ p = 0 ⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : x = p ⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hx (h.symm ▸ hp)) [GOAL] case h.mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : y -ᵥ p₂ = 0 ⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : y = p₂ ⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hy (h.symm ▸ hp₂)) [GOAL] case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂) ⊢ ∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨r₁ / r₂, p₂, div_pos hr₁ hr₂, hp₂, _⟩ [GOAL] case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂) ⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] rw [div_eq_inv_mul, ← smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, vsub_vadd] [GOAL] case h.mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ a b, 0 < a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → SSameSide s x y [PROOFSTEP] rintro ⟨t, p', ht, hp', rfl⟩ [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s t : R p' : P ht : 0 < t hp' : p' ∈ ↑s ⊢ SSameSide s x (t • (x -ᵥ p) +ᵥ p') [PROOFSTEP] exact sSameSide_smul_vsub_vadd_right hx hp hp' ht [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s ⊢ {y | WOppSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iic 0) ↑s [PROOFSTEP] ext y [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ y ∈ {y | WOppSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iic 0) ↑s [PROOFSTEP] simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Iic] [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ WOppSide s x y ↔ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ WOppSide s x y → ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [wOppSide_iff_exists_left hp, or_iff_right hx] [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (p₂ -ᵥ y)) → ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩ [GOAL] case h.mp.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : x -ᵥ p = 0 ⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : x = p ⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hx (h.symm ▸ hp)) [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : p₂ -ᵥ y = 0 ⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨0, p₂, le_refl _, hp₂, _⟩ [GOAL] case h.mp.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] simp [h] [GOAL] case h.mp.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y) ⊢ ∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨-r₁ / r₂, p₂, (div_neg_of_neg_of_pos (Left.neg_neg_iff.2 hr₁) hr₂).le, hp₂, _⟩ [GOAL] case h.mp.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y) ⊢ (-r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] rw [div_eq_inv_mul, ← smul_smul, neg_smul, h, smul_neg, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, neg_vsub_eq_vsub_rev, vsub_vadd] [GOAL] case h.mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ a b, a ≤ 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WOppSide s x y [PROOFSTEP] rintro ⟨t, p', ht, hp', rfl⟩ [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s t : R p' : P ht : t ≤ 0 hp' : p' ∈ ↑s ⊢ WOppSide s x (t • (x -ᵥ p) +ᵥ p') [PROOFSTEP] exact wOppSide_smul_vsub_vadd_right x hp hp' ht [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s ⊢ {y | SOppSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) ↑s [PROOFSTEP] ext y [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ y ∈ {y | SOppSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) ↑s [PROOFSTEP] simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Iio] [GOAL] case h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ SOppSide s x y ↔ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ SOppSide s x y → ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [sOppSide_iff_exists_left hp] [GOAL] case h.mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (¬x ∈ s ∧ ¬y ∈ s ∧ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (p₂ -ᵥ y)) → ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩ [GOAL] case h.mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : x -ᵥ p = 0 ⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : x = p ⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hx (h.symm ▸ hp)) [GOAL] case h.mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : p₂ -ᵥ y = 0 ⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case h.mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] exact False.elim (hy (h ▸ hp₂)) [GOAL] case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y) ⊢ ∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y [PROOFSTEP] refine' ⟨-r₁ / r₂, p₂, div_neg_of_neg_of_pos (Left.neg_neg_iff.2 hr₁) hr₂, hp₂, _⟩ [GOAL] case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P hy : ¬y ∈ s p₂ : P hp₂ : p₂ ∈ s r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y) ⊢ (-r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y [PROOFSTEP] rw [div_eq_inv_mul, ← smul_smul, neg_smul, h, smul_neg, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul, neg_vsub_eq_vsub_rev, vsub_vadd] [GOAL] case h.mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s y : P ⊢ (∃ a b, a < 0 ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → SOppSide s x y [PROOFSTEP] rintro ⟨t, p', ht, hp', rfl⟩ [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x p : P hx : ¬x ∈ s hp : p ∈ s t : R p' : P ht : t < 0 hp' : p' ∈ ↑s ⊢ SOppSide s x (t • (x -ᵥ p) +ᵥ p') [PROOFSTEP] exact sOppSide_smul_vsub_vadd_right hx hp hp' ht [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s hy : ¬y ∈ s ⊢ SOppSide s y (↑(pointReflection R x) y) [PROOFSTEP] refine' (sbtw_pointReflection_of_ne R fun h => hy _).sOppSide_of_not_mem_of_mem hy hx [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : LinearOrderedField R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' s : AffineSubspace R P x y : P hx : x ∈ s hy : ¬y ∈ s h : x = y ⊢ y ∈ s [PROOFSTEP] rwa [← h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsConnected {y | WSameSide s x y} [PROOFSTEP] obtain ⟨p, hp⟩ := h [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s ⊢ IsConnected {y | WSameSide s x y} [PROOFSTEP] haveI : Nonempty s := ⟨⟨p, hp⟩⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected {y | WSameSide s x y} [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : x ∈ s ⊢ IsConnected {y | WSameSide s x y} [PROOFSTEP] simp only [wSameSide_of_left_mem, hx] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : x ∈ s ⊢ IsConnected {y | True} [PROOFSTEP] have := AddTorsor.connectedSpace V P [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this✝ : Nonempty { x // x ∈ s } hx : x ∈ s this : ConnectedSpace P ⊢ IsConnected {y | True} [PROOFSTEP] exact isConnected_univ [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ IsConnected {y | WSameSide s x y} [PROOFSTEP] rw [setOf_wSameSide_eq_image2 hx hp, ← Set.image_prod] [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Ici 0 ×ˢ ↑s) [PROOFSTEP] refine' (isConnected_Ici.prod (isConnected_iff_connectedSpace.2 _)).image _ ((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ ConnectedSpace ↑↑s [PROOFSTEP] convert AddTorsor.connectedSpace s.direction s [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P ⊢ IsPreconnected {y | WSameSide s x y} [PROOFSTEP] rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : ↑s = ∅ ⊢ IsPreconnected {y | WSameSide s x y} [PROOFSTEP] rw [coe_eq_bot_iff] at h [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | WSameSide s x y} [PROOFSTEP] simp only [h, not_wSameSide_bot] [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsPreconnected {y | WSameSide s x y} [PROOFSTEP] exact (isConnected_setOf_wSameSide x h).isPreconnected [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s h : Set.Nonempty ↑s ⊢ IsConnected {y | SSameSide s x y} [PROOFSTEP] obtain ⟨p, hp⟩ := h [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s ⊢ IsConnected {y | SSameSide s x y} [PROOFSTEP] haveI : Nonempty s := ⟨⟨p, hp⟩⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected {y | SSameSide s x y} [PROOFSTEP] rw [setOf_sSameSide_eq_image2 hx hp, ← Set.image_prod] [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Ioi 0 ×ˢ ↑s) [PROOFSTEP] refine' (isConnected_Ioi.prod (isConnected_iff_connectedSpace.2 _)).image _ ((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ ConnectedSpace ↑↑s [PROOFSTEP] convert AddTorsor.connectedSpace s.direction s [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : ↑s = ∅ ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] rw [coe_eq_bot_iff] at h [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] simp only [h, not_sSameSide_bot] [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : x ∈ s ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] simp only [hx, SSameSide, not_true, false_and_iff, and_false_iff] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : x ∈ s ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : ¬x ∈ s ⊢ IsPreconnected {y | SSameSide s x y} [PROOFSTEP] exact (isConnected_setOf_sSameSide hx h).isPreconnected [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsConnected {y | WOppSide s x y} [PROOFSTEP] obtain ⟨p, hp⟩ := h [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s ⊢ IsConnected {y | WOppSide s x y} [PROOFSTEP] haveI : Nonempty s := ⟨⟨p, hp⟩⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected {y | WOppSide s x y} [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : x ∈ s ⊢ IsConnected {y | WOppSide s x y} [PROOFSTEP] simp only [wOppSide_of_left_mem, hx] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : x ∈ s ⊢ IsConnected {y | True} [PROOFSTEP] have := AddTorsor.connectedSpace V P [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this✝ : Nonempty { x // x ∈ s } hx : x ∈ s this : ConnectedSpace P ⊢ IsConnected {y | True} [PROOFSTEP] exact isConnected_univ [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ IsConnected {y | WOppSide s x y} [PROOFSTEP] rw [setOf_wOppSide_eq_image2 hx hp, ← Set.image_prod] [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Iic 0 ×ˢ ↑s) [PROOFSTEP] refine' (isConnected_Iic.prod (isConnected_iff_connectedSpace.2 _)).image _ ((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } hx : ¬x ∈ s ⊢ ConnectedSpace ↑↑s [PROOFSTEP] convert AddTorsor.connectedSpace s.direction s [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P ⊢ IsPreconnected {y | WOppSide s x y} [PROOFSTEP] rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : ↑s = ∅ ⊢ IsPreconnected {y | WOppSide s x y} [PROOFSTEP] rw [coe_eq_bot_iff] at h [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | WOppSide s x y} [PROOFSTEP] simp only [h, not_wOppSide_bot] [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsPreconnected {y | WOppSide s x y} [PROOFSTEP] exact (isConnected_setOf_wOppSide x h).isPreconnected [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s h : Set.Nonempty ↑s ⊢ IsConnected {y | SOppSide s x y} [PROOFSTEP] obtain ⟨p, hp⟩ := h [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s ⊢ IsConnected {y | SOppSide s x y} [PROOFSTEP] haveI : Nonempty s := ⟨⟨p, hp⟩⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected {y | SOppSide s x y} [PROOFSTEP] rw [setOf_sOppSide_eq_image2 hx hp, ← Set.image_prod] [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ IsConnected ((fun x_1 => x_1.fst • (x -ᵥ p) +ᵥ x_1.snd) '' Set.Iio 0 ×ˢ ↑s) [PROOFSTEP] refine' (isConnected_Iio.prod (isConnected_iff_connectedSpace.2 _)).image _ ((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : ¬x ∈ s p : P hp : p ∈ ↑s this : Nonempty { x // x ∈ s } ⊢ ConnectedSpace ↑↑s [PROOFSTEP] convert AddTorsor.connectedSpace s.direction s [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] rcases Set.eq_empty_or_nonempty (s : Set P) with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : ↑s = ∅ ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] rw [coe_eq_bot_iff] at h [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] simp only [h, not_sOppSide_bot] [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : x ∈ s ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] simp only [hx, SOppSide, not_true, false_and_iff, and_false_iff] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : x ∈ s ⊢ IsPreconnected {y | False} [PROOFSTEP] exact isPreconnected_empty [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : Set.Nonempty ↑s hx : ¬x ∈ s ⊢ IsPreconnected {y | SOppSide s x y} [PROOFSTEP] exact (isConnected_setOf_sOppSide hx h).isPreconnected
{"mathlib_filename": "Mathlib.Analysis.Convex.Side", "llama_tokens": 78467}
[GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 ⊢ StrictConvex 𝕜 univ [PROOFSTEP] intro x _ y _ _ a b _ _ _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝⁶ b✝ : 𝕜 x : E a✝⁵ : x ∈ univ y : E a✝⁴ : y ∈ univ a✝³ : x ≠ y a b : 𝕜 a✝² : 0 < a a✝¹ : 0 < b a✝ : a + b = 1 ⊢ a • x + b • y ∈ interior univ [PROOFSTEP] rw [interior_univ] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝⁶ b✝ : 𝕜 x : E a✝⁵ : x ∈ univ y : E a✝⁴ : y ∈ univ a✝³ : x ≠ y a b : 𝕜 a✝² : 0 < a a✝¹ : 0 < b a✝ : a + b = 1 ⊢ a • x + b • y ∈ univ [PROOFSTEP] exact mem_univ _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t ⊢ StrictConvex 𝕜 (s ∩ t) [PROOFSTEP] intro x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝ b✝ : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t x : E hx : x ∈ s ∩ t y : E hy : y ∈ s ∩ t hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (s ∩ t) [PROOFSTEP] rw [interior_inter] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝ b✝ : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t x : E hx : x ∈ s ∩ t y : E hy : y ∈ s ∩ t hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s ∩ interior t [PROOFSTEP] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x y : E a b : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) ⊢ StrictConvex 𝕜 (⋃ (i : ι), s i) [PROOFSTEP] rintro x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x : E hx : x ∈ ⋃ (i : ι), s i y : E hy : y ∈ ⋃ (i : ι), s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i) [PROOFSTEP] rw [mem_iUnion] at hx hy [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x : E hx : ∃ i, x ∈ s i y : E hy : ∃ i, y ∈ s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i) [PROOFSTEP] obtain ⟨i, hx⟩ := hx [GOAL] case intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hy : ∃ i, y ∈ s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i ⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i) [PROOFSTEP] obtain ⟨j, hy⟩ := hy [GOAL] case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j ⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i) [PROOFSTEP] obtain ⟨k, hik, hjk⟩ := hdir i j [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j k : ι hik : s i ⊆ s k hjk : s j ⊆ s k ⊢ a • x + b • y ∈ interior (⋃ (i : ι), s i) [PROOFSTEP] exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 S : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S hS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (⋃₀ S) [PROOFSTEP] rw [sUnion_eq_iUnion] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 S : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S hS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (⋃ (i : ↑S), ↑i) [PROOFSTEP] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ↑f ⊢ StrictConvex 𝕜 (↑f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ↑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : ↑f x ≠ ↑f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s) [PROOFSTEP] refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ↑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : ↑f x ≠ ↑f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ↑f (a • x + b • y) = a • ↑f x + b • ↑f y [PROOFSTEP] rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f ⊢ StrictConvex 𝕜 (↑f ⁻¹' s) [PROOFSTEP] intro x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (↑f ⁻¹' s) [PROOFSTEP] refine' preimage_interior_subset_interior_preimage hf _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f ⁻¹' interior s [PROOFSTEP] rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ interior s [PROOFSTEP] exact hs hx hy (hfinj.ne hxy) ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s ⊢ StrictConvex 𝕜 s [PROOFSTEP] refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y ⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y [PROOFSTEP] cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y ⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y [PROOFSTEP] cases' hxy.lt_or_lt with hlt hlt [GOAL] case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : x < y ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] skip [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : y < x ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] rw [openSegment_symm] [GOAL] case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : x < y ⊢ openSegment 𝕜 x y ⊆ interior s [PROOFSTEP] exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : y < x ⊢ openSegment 𝕜 y x ⊆ interior s [PROOFSTEP] exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) [PROOFSTEP] intro x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior ((fun x => z + x) ⁻¹' s) [PROOFSTEP] refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s [PROOFSTEP] have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ interior s ⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s [PROOFSTEP] rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) [PROOFSTEP] simpa only [add_comm] using hs.preimage_add_right z [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t ⊢ StrictConvex 𝕜 (s + t) [PROOFSTEP] rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • (fun x x_1 => x + x_1) v w + b • (fun x x_1 => x + x_1) x y ∈ interior (s + t) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t) [PROOFSTEP] obtain rfl | hvx := eq_or_ne v x [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ a • v + b • v + (a • w + b • y) ∈ interior (s + t) [PROOFSTEP] refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ a • v + b • v + (a • w + b • y) ∈ interior ({v} + t) [PROOFSTEP] rw [Convex.combo_self hab, singleton_add] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ v + (a • w + b • y) ∈ interior ((fun x x_1 => x + x_1) v '' t) [PROOFSTEP] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hvx : v ≠ x ⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t) [PROOFSTEP] exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => z + x) '' s) [PROOFSTEP] simpa only [singleton_add] using (strictConvex_singleton z).add hs [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => x + z) '' s) [PROOFSTEP] simpa only [add_comm] using hs.add_left z [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s c : 𝕝 ⊢ StrictConvex 𝕜 (c • s) [PROOFSTEP] obtain rfl | hc := eq_or_ne c 0 [GOAL] case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (0 • s) [PROOFSTEP] exact (subsingleton_zero_smul_set _).strictConvex [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s c : 𝕝 hc : c ≠ 0 ⊢ StrictConvex 𝕜 (c • s) [PROOFSTEP] exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) [PROOFSTEP] classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) [PROOFSTEP] obtain rfl | hc := eq_or_ne c 0 [GOAL] case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 ((fun z => 0 • z) ⁻¹' s) [PROOFSTEP] simp_rw [zero_smul, preimage_const] [GOAL] case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (if 0 ∈ s then univ else ∅) [PROOFSTEP] split_ifs [GOAL] case pos 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s h✝ : 0 ∈ s ⊢ StrictConvex 𝕜 univ [PROOFSTEP] exact strictConvex_univ [GOAL] case neg 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s h✝ : ¬0 ∈ s ⊢ StrictConvex 𝕜 ∅ [PROOFSTEP] exact strictConvex_empty [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) [PROOFSTEP] refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ Continuous ↑(↑(LinearMap.lsmul 𝕜 E) c) [PROOFSTEP] unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ [GOAL] case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ Continuous ↑(↑{ toAddHom := { toFun := fun m => { toAddHom := { toFun := (fun x x_1 => x • x_1) m, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) }, map_smul' := (_ : ∀ (c m : 𝕜), AddHom.toFun { toFun := fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) } (c • m) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) } m) } c) [PROOFSTEP] exact continuous_const_smul _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s ⊢ x = y [PROOFSTEP] obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one [GOAL] case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ x = y [PROOFSTEP] classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) [GOAL] case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ x = y [PROOFSTEP] by_contra hxy [GOAL] case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 hxy : ¬x = y ⊢ False [PROOFSTEP] exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • y ∈ interior s [PROOFSTEP] have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • y = (1 - t) • x + t • (x + y) [PROOFSTEP] rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x + t • y ∈ interior s [PROOFSTEP] rw [h] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ (1 - t) • x + t • (x + y) ∈ interior s [PROOFSTEP] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) [GOAL] case refine'_1 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h✝ : x + t • y = (1 - t) • x + t • (x + y) h : x = x + y ⊢ ?refine'_2 h + y = ?refine'_2 h + 0 case refine'_2 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x = x + y → E [PROOFSTEP] rw [← h, add_zero] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ t • x ∈ interior s [PROOFSTEP] simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ 0 + x ∈ s [PROOFSTEP] simpa using hx [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ interior s [PROOFSTEP] apply h.openSegment_subset hx hy hxy [GOAL] case a 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ openSegment 𝕜 x y [PROOFSTEP] rw [openSegment_eq_image'] [GOAL] case a 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1 [PROOFSTEP] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x y : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f ⊢ StrictConvex 𝕜 (↑f ⁻¹' s) [PROOFSTEP] intro x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (↑f ⁻¹' s) [PROOFSTEP] refine' preimage_interior_subset_interior_preimage hf _ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ ↑f ⁻¹' interior s [PROOFSTEP] rw [mem_preimage, Convex.combo_affine_apply hab] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ↑f hfinj : Injective ↑f x : E hx : x ∈ ↑f ⁻¹' s y : E hy : y ∈ ↑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ interior s [PROOFSTEP] exact hs hx hy (hfinj.ne hxy) ha hb hab [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : IsOpenMap ↑f ⊢ StrictConvex 𝕜 (↑f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x✝ y✝ : E hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : IsOpenMap ↑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : ↑f x ≠ ↑f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s) [PROOFSTEP] exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s [PROOFSTEP] apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ (a + b) / (a + b) = 1 [PROOFSTEP] exact div_self (add_pos ha hb).ne' [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s [PROOFSTEP] convert h hx hy hxy ha hb [GOAL] case h.e'_4.h.e'_5.h.e'_5 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a = a / (a + b) [PROOFSTEP] rw [hab, div_one] [GOAL] case h.e'_4.h.e'_6.h.e'_5 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ b = b / (a + b) [PROOFSTEP] rw [hab, div_one] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht : 1 < t ⊢ x ∈ t • interior s [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne'] [GOAL] 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht : 1 < t ⊢ t⁻¹ • x ∈ interior s [PROOFSTEP] exact hs.smul_mem_of_zero_mem zero_mem hx hx₀ (inv_pos.2 <| zero_lt_one.trans ht) (inv_lt_one ht)
{"mathlib_filename": "Mathlib.Analysis.Convex.Strict", "llama_tokens": 24129}
[GOAL] c : ℝ ⊢ IntegrableOn exp (Iic c) [PROOFSTEP] refine' integrableOn_Iic_of_intervalIntegral_norm_bounded (exp c) c (fun y => intervalIntegrable_exp.1) tendsto_id (eventually_of_mem (Iic_mem_atBot 0) fun y _ => _) [GOAL] c y : ℝ x✝ : y ∈ Iic 0 ⊢ ∫ (x : ℝ) in id y..c, ‖exp x‖ ≤ exp c [PROOFSTEP] simp_rw [norm_of_nonneg (exp_pos _).le, integral_exp, sub_le_self_iff] [GOAL] c y : ℝ x✝ : y ∈ Iic 0 ⊢ 0 ≤ exp (id y) [PROOFSTEP] exact (exp_pos _).le [GOAL] c : ℝ ⊢ ∫ (x : ℝ) in Iic c, exp x = exp c [PROOFSTEP] refine' tendsto_nhds_unique (intervalIntegral_tendsto_integral_Iic _ (integrableOn_exp_Iic _) tendsto_id) _ [GOAL] c : ℝ ⊢ Tendsto (fun i => ∫ (x : ℝ) in id i..c, exp x) atBot (𝓝 (exp c)) [PROOFSTEP] simp_rw [integral_exp, show 𝓝 (exp c) = 𝓝 (exp c - 0) by rw [sub_zero]] [GOAL] c : ℝ ⊢ 𝓝 (exp c) = 𝓝 (exp c - 0) [PROOFSTEP] rw [sub_zero] [GOAL] c : ℝ ⊢ Tendsto (fun i => exp c - exp (id i)) atBot (𝓝 (exp c - 0)) [PROOFSTEP] exact tendsto_exp_atBot.const_sub _ [GOAL] c : ℝ ⊢ ∫ (x : ℝ) in Ioi c, exp (-x) = exp (-c) [PROOFSTEP] simpa only [integral_comp_neg_Ioi] using integral_exp_Iic (-c) [GOAL] ⊢ ∫ (x : ℝ) in Ioi 0, exp (-x) = 1 [PROOFSTEP] simpa only [neg_zero, exp_zero] using integral_exp_neg_Ioi 0 [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c ⊢ IntegrableOn (fun t => t ^ a) (Ioi c) [PROOFSTEP] have hd : ∀ (x : ℝ) (_ : x ∈ Ici c), HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x := by intro x hx convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1 field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm] [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c ⊢ ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x [PROOFSTEP] intro x hx [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x [PROOFSTEP] convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1 [GOAL] case h.e'_7 a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ x ^ a = (a + 1) * x ^ (a + 1 - 1) / (a + 1) [PROOFSTEP] field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm] [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ a + 1 < 0 [PROOFSTEP] linarith [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ IntegrableOn (fun t => t ^ a) (Ioi c) [PROOFSTEP] have ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) := by apply Tendsto.div_const simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1)) [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) [PROOFSTEP] apply Tendsto.div_const [GOAL] case hf a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ Tendsto (fun a_1 => a_1 ^ (a + 1)) atTop (𝓝 0) [PROOFSTEP] simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1)) [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ 0 < -(a + 1) [PROOFSTEP] linarith [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) ⊢ IntegrableOn (fun t => t ^ a) (Ioi c) [PROOFSTEP] exact integrableOn_Ioi_deriv_of_nonneg' hd (fun t ht => rpow_nonneg_of_nonneg (hc.trans ht).le a) ht [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c ⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1) [PROOFSTEP] have hd : ∀ (x : ℝ) (_ : x ∈ Ici c), HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x := by intro x hx convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1 field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm] [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c ⊢ ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x [PROOFSTEP] intro x hx [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x [PROOFSTEP] convert (hasDerivAt_rpow_const (p := a + 1) (Or.inl (hc.trans_le hx).ne')).div_const _ using 1 [GOAL] case h.e'_7 a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ x ^ a = (a + 1) * x ^ (a + 1 - 1) / (a + 1) [PROOFSTEP] field_simp [show a + 1 ≠ 0 from ne_of_lt (by linarith), mul_comm] [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ici c ⊢ a + 1 < 0 [PROOFSTEP] linarith [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1) [PROOFSTEP] have ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) := by apply Tendsto.div_const simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1)) [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) [PROOFSTEP] apply Tendsto.div_const [GOAL] case hf a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ Tendsto (fun a_1 => a_1 ^ (a + 1)) atTop (𝓝 0) [PROOFSTEP] simpa only [neg_neg] using tendsto_rpow_neg_atTop (by linarith : 0 < -(a + 1)) [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ⊢ 0 < -(a + 1) [PROOFSTEP] linarith [GOAL] a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) ⊢ ∫ (t : ℝ) in Ioi c, t ^ a = -c ^ (a + 1) / (a + 1) [PROOFSTEP] convert integral_Ioi_of_hasDerivAt_of_tendsto' hd (integrableOn_Ioi_rpow_of_lt ha hc) ht using 1 [GOAL] case h.e'_3 a : ℝ ha : a < -1 c : ℝ hc : 0 < c hd : ∀ (x : ℝ), x ∈ Ici c → HasDerivAt (fun t => t ^ (a + 1) / (a + 1)) (x ^ a) x ht : Tendsto (fun t => t ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1))) ⊢ -c ^ (a + 1) / (a + 1) = 0 / (a + 1) - c ^ (a + 1) / (a + 1) [PROOFSTEP] simp only [neg_div, zero_div, zero_sub] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ IntegrableOn (fun t => ↑t ^ a) (Ioi c) [PROOFSTEP] rw [IntegrableOn, ← integrable_norm_iff, ← IntegrableOn] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ IntegrableOn (fun a_1 => ‖↑a_1 ^ a‖) (Ioi c) a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ AEStronglyMeasurable (fun t => ↑t ^ a) (Measure.restrict volume (Ioi c)) [PROOFSTEP] refine' (integrableOn_Ioi_rpow_of_lt ha hc).congr_fun (fun x hx => _) measurableSet_Ioi [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ioi c ⊢ x ^ a.re = ‖↑x ^ a‖ [PROOFSTEP] dsimp only [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c x : ℝ hx : x ∈ Ioi c ⊢ x ^ a.re = ‖↑x ^ a‖ [PROOFSTEP] rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos (hc.trans hx)] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ AEStronglyMeasurable (fun t => ↑t ^ a) (Measure.restrict volume (Ioi c)) [PROOFSTEP] refine' ContinuousOn.aestronglyMeasurable (fun t ht => _) measurableSet_Ioi [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c t : ℝ ht : t ∈ Ioi c ⊢ ContinuousWithinAt (fun t => ↑t ^ a) (Ioi c) t [PROOFSTEP] exact (Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr (hc.trans ht).ne')).continuousWithinAt [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ ∫ (t : ℝ) in Ioi c, ↑t ^ a = -↑c ^ (a + 1) / (a + 1) [PROOFSTEP] refine' tendsto_nhds_unique (intervalIntegral_tendsto_integral_Ioi c (integrableOn_Ioi_cpow_of_lt ha hc) tendsto_id) _ [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ Tendsto (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) [PROOFSTEP] suffices Tendsto (fun x : ℝ => ((x : ℂ) ^ (a + 1) - (c : ℂ) ^ (a + 1)) / (a + 1)) atTop (𝓝 <| -c ^ (a + 1) / (a + 1)) by refine' this.congr' ((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _)) dsimp only rw [integral_cpow, id.def] refine' Or.inr ⟨_, not_mem_uIcc_of_lt hc hx⟩ apply_fun Complex.re rw [Complex.neg_re, Complex.one_re] exact ha.ne [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) ⊢ Tendsto (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) [PROOFSTEP] refine' this.congr' ((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _)) [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1) = (fun i => ∫ (x : ℝ) in c..id i, ↑x ^ a) x [PROOFSTEP] dsimp only [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1) = ∫ (x : ℝ) in c..id x, ↑x ^ a [PROOFSTEP] rw [integral_cpow, id.def] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ -1 < a.re ∨ a ≠ -1 ∧ ¬0 ∈ uIcc c (id x) [PROOFSTEP] refine' Or.inr ⟨_, not_mem_uIcc_of_lt hc hx⟩ [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ a ≠ -1 [PROOFSTEP] apply_fun Complex.re [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ a.re ≠ (-1).re [PROOFSTEP] rw [Complex.neg_re, Complex.one_re] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c this : Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) x : ℝ hx : 0 < x ⊢ a.re ≠ -1 [PROOFSTEP] exact ha.ne [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ Tendsto (fun x => (↑x ^ (a + 1) - ↑c ^ (a + 1)) / (a + 1)) atTop (𝓝 (-↑c ^ (a + 1) / (a + 1))) [PROOFSTEP] simp_rw [← zero_sub, sub_div] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ Tendsto (fun x => ↑x ^ (a + 1) / (a + 1) - ↑c ^ (a + 1) / (a + 1)) atTop (𝓝 (0 / (a + 1) - ↑c ^ (a + 1) / (a + 1))) [PROOFSTEP] refine' (Tendsto.div_const _ _).sub_const _ [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ Tendsto (fun x => ↑x ^ (a + 1)) atTop (𝓝 0) [PROOFSTEP] rw [tendsto_zero_iff_norm_tendsto_zero] [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ Tendsto (fun e => ‖↑e ^ (a + 1)‖) atTop (𝓝 0) [PROOFSTEP] refine' (tendsto_rpow_neg_atTop (by linarith : 0 < -(a.re + 1))).congr' ((eventually_gt_atTop 0).mp (eventually_of_forall fun x hx => _)) [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ 0 < -(a.re + 1) [PROOFSTEP] linarith [GOAL] a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c x : ℝ hx : 0 < x ⊢ x ^ (- -(a.re + 1)) = (fun e => ‖↑e ^ (a + 1)‖) x [PROOFSTEP] simp_rw [neg_neg, Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx, Complex.add_re, Complex.one_re]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.ImproperIntegrals", "llama_tokens": 6371}
[GOAL] n : ℕ hn : 2 ≤ n ⊢ StrictConvexOn ℝ (Ici 0) fun x => x ^ n [PROOFSTEP] apply StrictMonoOn.strictConvexOn_of_deriv (convex_Ici _) (continuousOn_pow _) [GOAL] n : ℕ hn : 2 ≤ n ⊢ StrictMonoOn (deriv fun x => x ^ n) (interior (Ici 0)) [PROOFSTEP] rw [deriv_pow', interior_Ici] [GOAL] n : ℕ hn : 2 ≤ n ⊢ StrictMonoOn (fun x => ↑n * x ^ (n - 1)) (Ioi 0) [PROOFSTEP] exact fun x (hx : 0 < x) y hy hxy => mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_left hxy hx.le <| Nat.sub_pos_of_lt hn) (Nat.cast_pos.2 <| zero_lt_two.trans_le hn) [GOAL] n : ℕ hn : Even n h : n ≠ 0 ⊢ StrictConvexOn ℝ univ fun x => x ^ n [PROOFSTEP] apply StrictMono.strictConvexOn_univ_of_deriv (continuous_pow n) [GOAL] n : ℕ hn : Even n h : n ≠ 0 ⊢ StrictMono (deriv fun a => a ^ n) [PROOFSTEP] rw [deriv_pow'] [GOAL] n : ℕ hn : Even n h : n ≠ 0 ⊢ StrictMono fun x => ↑n * x ^ (n - 1) [PROOFSTEP] replace h := Nat.pos_of_ne_zero h [GOAL] n : ℕ hn : Even n h : 0 < n ⊢ StrictMono fun x => ↑n * x ^ (n - 1) [PROOFSTEP] exact StrictMono.const_mul (Odd.strictMono_pow <| Nat.Even.sub_odd h hn <| Nat.odd_iff.2 rfl) (Nat.cast_pos.2 h) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedCommRing β f : α → β inst✝ : DecidablePred fun x => f x ≤ 0 s : Finset α h0 : Even (card (filter (fun x => f x ≤ 0) s)) x : α x✝ : x ∈ s ⊢ 0 ≤ (if f x ≤ 0 then -1 else 1) * f x [PROOFSTEP] split_ifs with hx [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedCommRing β f : α → β inst✝ : DecidablePred fun x => f x ≤ 0 s : Finset α h0 : Even (card (filter (fun x => f x ≤ 0) s)) x : α x✝ : x ∈ s hx : f x ≤ 0 ⊢ 0 ≤ -1 * f x [PROOFSTEP] simp [hx] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedCommRing β f : α → β inst✝ : DecidablePred fun x => f x ≤ 0 s : Finset α h0 : Even (card (filter (fun x => f x ≤ 0) s)) x : α x✝ : x ∈ s hx : ¬f x ≤ 0 ⊢ 0 ≤ 1 * f x [PROOFSTEP] simp at hx ⊢ [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedCommRing β f : α → β inst✝ : DecidablePred fun x => f x ≤ 0 s : Finset α h0 : Even (card (filter (fun x => f x ≤ 0) s)) x : α x✝ : x ∈ s hx : 0 < f x ⊢ 0 ≤ f x [PROOFSTEP] exact le_of_lt hx [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrderedCommRing β f : α → β inst✝ : DecidablePred fun x => f x ≤ 0 s : Finset α h0 : Even (card (filter (fun x => f x ≤ 0) s)) ⊢ ∏ x in s, (if f x ≤ 0 then -1 else 1) * f x = ∏ x in s, f x [PROOFSTEP] rw [Finset.prod_mul_distrib, Finset.prod_ite, Finset.prod_const_one, mul_one, Finset.prod_const, neg_one_pow_eq_pow_mod_two, Nat.even_iff.1 h0, pow_zero, one_mul] [GOAL] m : ℤ n : ℕ hn : Even n ⊢ 0 ≤ ∏ k in Finset.range n, (m - ↑k) [PROOFSTEP] rcases hn with ⟨n, rfl⟩ [GOAL] case intro m : ℤ n : ℕ ⊢ 0 ≤ ∏ k in Finset.range (n + n), (m - ↑k) [PROOFSTEP] induction' n with n ihn [GOAL] case intro.zero m : ℤ ⊢ 0 ≤ ∏ k in Finset.range (Nat.zero + Nat.zero), (m - ↑k) [PROOFSTEP] simp [GOAL] case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (n + n), (m - ↑k) ⊢ 0 ≤ ∏ k in Finset.range (Nat.succ n + Nat.succ n), (m - ↑k) [PROOFSTEP] rw [← two_mul] at ihn [GOAL] case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) ⊢ 0 ≤ ∏ k in Finset.range (Nat.succ n + Nat.succ n), (m - ↑k) [PROOFSTEP] rw [← two_mul, Nat.succ_eq_add_one, mul_add, mul_one, ← one_add_one_eq_two, ← add_assoc, Finset.prod_range_succ, Finset.prod_range_succ, mul_assoc] [GOAL] case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) ⊢ 0 ≤ (∏ x in Finset.range ((1 + 1) * n), (m - ↑x)) * ((m - ↑((1 + 1) * n)) * (m - ↑((1 + 1) * n + 1))) [PROOFSTEP] refine' mul_nonneg ihn _ [GOAL] case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) ⊢ 0 ≤ (m - ↑((1 + 1) * n)) * (m - ↑((1 + 1) * n + 1)) [PROOFSTEP] generalize (1 + 1) * n = k [GOAL] case intro.succ m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) k : ℕ ⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1)) [PROOFSTEP] cases' le_or_lt m k with hmk hmk [GOAL] case intro.succ.inl m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) k : ℕ hmk : m ≤ ↑k ⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1)) [PROOFSTEP] have : m ≤ k + 1 := hmk.trans (lt_add_one (k : ℤ)).le [GOAL] case intro.succ.inl m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) k : ℕ hmk : m ≤ ↑k this : m ≤ ↑k + 1 ⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1)) [PROOFSTEP] convert mul_nonneg_of_nonpos_of_nonpos (sub_nonpos_of_le hmk) _ [GOAL] case intro.succ.inl.convert_2 m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) k : ℕ hmk : m ≤ ↑k this : m ≤ ↑k + 1 ⊢ m - ↑(k + 1) ≤ 0 [PROOFSTEP] convert sub_nonpos_of_le this [GOAL] case intro.succ.inr m : ℤ n : ℕ ihn : 0 ≤ ∏ k in Finset.range (2 * n), (m - ↑k) k : ℕ hmk : ↑k < m ⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1)) [PROOFSTEP] exact mul_nonneg (sub_nonneg_of_le hmk.le) (sub_nonneg_of_le hmk) [GOAL] m : ℤ n : ℕ hn : Even n hm : ¬m ∈ Ico 0 ↑n ⊢ 0 < ∏ k in Finset.range n, (m - ↑k) [PROOFSTEP] refine' (int_prod_range_nonneg m n hn).lt_of_ne fun h => hm _ [GOAL] m : ℤ n : ℕ hn : Even n hm : ¬m ∈ Ico 0 ↑n h : 0 = ∏ k in Finset.range n, (m - ↑k) ⊢ m ∈ Ico 0 ↑n [PROOFSTEP] rw [eq_comm, Finset.prod_eq_zero_iff] at h [GOAL] m : ℤ n : ℕ hn : Even n hm : ¬m ∈ Ico 0 ↑n h : ∃ a, a ∈ Finset.range n ∧ m - ↑a = 0 ⊢ m ∈ Ico 0 ↑n [PROOFSTEP] obtain ⟨a, ha, h⟩ := h [GOAL] case intro.intro m : ℤ n : ℕ hn : Even n hm : ¬m ∈ Ico 0 ↑n a : ℕ ha : a ∈ Finset.range n h : m - ↑a = 0 ⊢ m ∈ Ico 0 ↑n [PROOFSTEP] rw [sub_eq_zero.1 h] [GOAL] case intro.intro m : ℤ n : ℕ hn : Even n hm : ¬m ∈ Ico 0 ↑n a : ℕ ha : a ∈ Finset.range n h : m - ↑a = 0 ⊢ ↑a ∈ Ico 0 ↑n [PROOFSTEP] exact ⟨Int.ofNat_zero_le _, Int.ofNat_lt.2 <| Finset.mem_range.1 ha⟩ [GOAL] m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 ⊢ StrictConvexOn ℝ (Ioi 0) fun x => x ^ m [PROOFSTEP] apply strictConvexOn_of_deriv2_pos' (convex_Ioi 0) [GOAL] case hf m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 ⊢ ContinuousOn (fun x => x ^ m) (Ioi 0) [PROOFSTEP] exact (continuousOn_zpow₀ m).mono fun x hx => ne_of_gt hx [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 ⊢ ∀ (x : ℝ), x ∈ Ioi 0 → 0 < deriv^[2] (fun x => x ^ m) x [PROOFSTEP] intro x hx [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : x ∈ Ioi 0 ⊢ 0 < deriv^[2] (fun x => x ^ m) x [PROOFSTEP] rw [mem_Ioi] at hx [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x ⊢ 0 < deriv^[2] (fun x => x ^ m) x [PROOFSTEP] rw [iter_deriv_zpow] [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x ⊢ 0 < (∏ i in Finset.range 2, (↑m - ↑i)) * x ^ (m - ↑2) [PROOFSTEP] refine' mul_pos _ (zpow_pos_of_pos hx _) [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x ⊢ 0 < ∏ i in Finset.range 2, (↑m - ↑i) [PROOFSTEP] norm_cast [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x ⊢ 0 < ∏ i in Finset.range 2, (m - ↑i) [PROOFSTEP] refine' int_prod_range_pos (by simp only) fun hm => _ [GOAL] m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x ⊢ Even 2 [PROOFSTEP] simp only [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x hm : m ∈ Ico 0 ↑2 ⊢ False [PROOFSTEP] rw [← Finset.coe_Ico] at hm [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x hm✝ : m ∈ Ico 0 ↑2 hm : m ∈ ↑(Finset.Ico 0 ↑2) ⊢ False [PROOFSTEP] norm_cast at hm [GOAL] case hf'' m : ℤ hm₀ : m ≠ 0 hm₁ : m ≠ 1 x : ℝ hx : 0 < x hm✝ : m ∈ Ico 0 ↑2 hm : m ∈ Finset.Ico 0 2 ⊢ False [PROOFSTEP] fin_cases hm [GOAL] case hf''.head x : ℝ hx : 0 < x hm₀ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ≠ 0 hm₁ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ≠ 1 hm : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 0 ∈ Ico 0 ↑2 ⊢ False [PROOFSTEP] simp_all -- Porting note: `simp_all` was `cc` [GOAL] case hf''.tail.head x : ℝ hx : 0 < x hm₀ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ≠ 0 hm₁ : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ≠ 1 hm : ↑(Function.Embedding.trans Nat.castEmbedding (addLeftEmbedding 0)) 1 ∈ Ico 0 ↑2 ⊢ False [PROOFSTEP] simp_all -- Porting note: `simp_all` was `cc` [GOAL] x : ℝ hx : x ≠ 0 ⊢ HasDerivAt (fun x => sqrt x * log x) ((2 + log x) / (2 * sqrt x)) x [PROOFSTEP] convert (hasDerivAt_sqrt hx).mul (hasDerivAt_log hx) using 1 [GOAL] case h.e'_7 x : ℝ hx : x ≠ 0 ⊢ (2 + log x) / (2 * sqrt x) = 1 / (2 * sqrt x) * log x + sqrt x * x⁻¹ [PROOFSTEP] rw [add_div, div_mul_right (sqrt x) two_ne_zero, ← div_eq_mul_inv, sqrt_div_self', add_comm, div_eq_mul_one_div, mul_comm] [GOAL] x : ℝ ⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x) [PROOFSTEP] cases' lt_or_le 0 x with hx hx [GOAL] case inl x : ℝ hx : 0 < x ⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x) [PROOFSTEP] exact (hasDerivAt_sqrt_mul_log hx.ne').deriv [GOAL] case inr x : ℝ hx : x ≤ 0 ⊢ deriv (fun x => sqrt x * log x) x = (2 + log x) / (2 * sqrt x) [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero] [GOAL] case inr x : ℝ hx : x ≤ 0 ⊢ deriv (fun x => sqrt x * log x) x = 0 [PROOFSTEP] refine' HasDerivWithinAt.deriv_eq_zero _ (uniqueDiffOn_Iic 0 x hx) [GOAL] case inr x : ℝ hx : x ≤ 0 ⊢ HasDerivWithinAt (fun x => sqrt x * log x) 0 (Iic 0) x [PROOFSTEP] refine' (hasDerivWithinAt_const x _ 0).congr_of_mem (fun x hx => _) hx [GOAL] case inr x✝ : ℝ hx✝ : x✝ ≤ 0 x : ℝ hx : x ∈ Iic 0 ⊢ sqrt x * log x = 0 [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos hx, zero_mul] [GOAL] x : ℝ ⊢ deriv^[2] (fun x => sqrt x * log x) x = -log x / (↑4 * sqrt x ^ 3) [PROOFSTEP] simp only [Nat.iterate, deriv_sqrt_mul_log'] [GOAL] x : ℝ ⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3) [PROOFSTEP] cases' le_or_lt x 0 with hx hx [GOAL] case inl x : ℝ hx : x ≤ 0 ⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3) [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos hx, zero_pow zero_lt_three, mul_zero, div_zero] [GOAL] case inl x : ℝ hx : x ≤ 0 ⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = 0 [PROOFSTEP] refine' HasDerivWithinAt.deriv_eq_zero _ (uniqueDiffOn_Iic 0 x hx) [GOAL] case inl x : ℝ hx : x ≤ 0 ⊢ HasDerivWithinAt (fun x => (2 + log x) / (2 * sqrt x)) 0 (Iic 0) x [PROOFSTEP] refine' (hasDerivWithinAt_const _ _ 0).congr_of_mem (fun x hx => _) hx [GOAL] case inl x✝ : ℝ hx✝ : x✝ ≤ 0 x : ℝ hx : x ∈ Iic 0 ⊢ (2 + log x) / (2 * sqrt x) = 0 [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero] [GOAL] case inr x : ℝ hx : 0 < x ⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3) [PROOFSTEP] have h₀ : sqrt x ≠ 0 := sqrt_ne_zero'.2 hx [GOAL] case inr x : ℝ hx : 0 < x h₀ : sqrt x ≠ 0 ⊢ deriv (fun x => (2 + log x) / (2 * sqrt x)) x = -log x / (↑4 * sqrt x ^ 3) [PROOFSTEP] convert (((hasDerivAt_log hx.ne').const_add 2).div ((hasDerivAt_sqrt hx.ne').const_mul 2) <| mul_ne_zero two_ne_zero h₀).deriv using 1 [GOAL] case h.e'_3 x : ℝ hx : 0 < x h₀ : sqrt x ≠ 0 ⊢ -log x / (↑4 * sqrt x ^ 3) = (x⁻¹ * (2 * sqrt x) - (2 + log x) * (2 * (1 / (2 * sqrt x)))) / (2 * sqrt x) ^ 2 [PROOFSTEP] nth_rw 3 [← mul_self_sqrt hx.le] [GOAL] case h.e'_3 x : ℝ hx : 0 < x h₀ : sqrt x ≠ 0 ⊢ -log x / (↑4 * sqrt x ^ 3) = ((sqrt x * sqrt x)⁻¹ * (2 * sqrt x) - (2 + log x) * (2 * (1 / (2 * sqrt x)))) / (2 * sqrt x) ^ 2 [PROOFSTEP] field_simp [GOAL] case h.e'_3 x : ℝ hx : 0 < x h₀ : sqrt x ≠ 0 ⊢ -(log x * (sqrt x * sqrt x * (2 * sqrt x) * (2 * sqrt x) ^ 2)) = (2 * sqrt x * (2 * sqrt x) - sqrt x * sqrt x * ((2 + log x) * 2)) * (4 * sqrt x ^ 3) [PROOFSTEP] ring [GOAL] ⊢ StrictConcaveOn ℝ (Ioi 1) fun x => sqrt x * log x [PROOFSTEP] apply strictConcaveOn_of_deriv2_neg' (convex_Ioi 1) _ fun x hx => ?_ [GOAL] ⊢ ContinuousOn (fun x => sqrt x * log x) (Ioi 1) [PROOFSTEP] exact continuous_sqrt.continuousOn.mul (continuousOn_log.mono fun x hx => ne_of_gt (zero_lt_one.trans hx)) [GOAL] x : ℝ hx : x ∈ Ioi 1 ⊢ deriv^[2] (fun x => sqrt x * log x) x < 0 [PROOFSTEP] rw [deriv2_sqrt_mul_log x] [GOAL] x : ℝ hx : x ∈ Ioi 1 ⊢ -log x / (↑4 * sqrt x ^ 3) < 0 [PROOFSTEP] exact div_neg_of_neg_of_pos (neg_neg_of_pos (log_pos hx)) (mul_pos four_pos (pow_pos (sqrt_pos.mpr (zero_lt_one.trans hx)) 3)) [GOAL] ⊢ StrictConcaveOn ℝ (Icc 0 π) sin [PROOFSTEP] apply strictConcaveOn_of_deriv2_neg (convex_Icc _ _) continuousOn_sin fun x hx => ?_ [GOAL] x : ℝ hx : x ∈ interior (Icc 0 π) ⊢ deriv^[2] sin x < 0 [PROOFSTEP] rw [interior_Icc] at hx [GOAL] x : ℝ hx : x ∈ Ioo 0 π ⊢ deriv^[2] sin x < 0 [PROOFSTEP] simp [sin_pos_of_mem_Ioo hx] [GOAL] ⊢ StrictConcaveOn ℝ (Icc (-(π / 2)) (π / 2)) cos [PROOFSTEP] apply strictConcaveOn_of_deriv2_neg (convex_Icc _ _) continuousOn_cos fun x hx => ?_ [GOAL] x : ℝ hx : x ∈ interior (Icc (-(π / 2)) (π / 2)) ⊢ deriv^[2] cos x < 0 [PROOFSTEP] rw [interior_Icc] at hx [GOAL] x : ℝ hx : x ∈ Ioo (-(π / 2)) (π / 2) ⊢ deriv^[2] cos x < 0 [PROOFSTEP] simp [cos_pos_of_mem_Ioo hx]
{"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Deriv", "llama_tokens": 7094}
[GOAL] x : ℝ hx : x ≠ 0 ⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] cases' hx.lt_or_lt with hx hx [GOAL] case inl x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos hx.le, mul_zero, div_zero] [GOAL] case inl x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ HasStrictDerivAt sqrt 0 x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] have : sqrt =ᶠ[𝓝 x] fun _ => 0 := (gt_mem_nhds hx).mono fun x hx => sqrt_eq_zero_of_nonpos hx.le [GOAL] case inl x : ℝ hx✝ : x ≠ 0 hx : x < 0 this : sqrt =ᶠ[𝓝 x] fun x => 0 ⊢ HasStrictDerivAt sqrt 0 x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] exact ⟨(hasStrictDerivAt_const x (0 : ℝ)).congr_of_eventuallyEq this.symm, fun n => contDiffAt_const.congr_of_eventuallyEq this⟩ [GOAL] case inr x : ℝ hx✝ : x ≠ 0 hx : 0 < x ⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] have : ↑2 * sqrt x ^ (2 - 1) ≠ 0 := by simp [(sqrt_pos.2 hx).ne', @two_ne_zero ℝ] [GOAL] x : ℝ hx✝ : x ≠ 0 hx : 0 < x ⊢ 2 * sqrt x ^ (2 - 1) ≠ 0 [PROOFSTEP] simp [(sqrt_pos.2 hx).ne', @two_ne_zero ℝ] [GOAL] case inr x : ℝ hx✝ : x ≠ 0 hx : 0 < x this : 2 * sqrt x ^ (2 - 1) ≠ 0 ⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x ∧ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] constructor [GOAL] case inr.left x : ℝ hx✝ : x ≠ 0 hx : 0 < x this : 2 * sqrt x ^ (2 - 1) ≠ 0 ⊢ HasStrictDerivAt sqrt (1 / (2 * sqrt x)) x [PROOFSTEP] simpa using sqLocalHomeomorph.hasStrictDerivAt_symm hx this (hasStrictDerivAt_pow 2 _) [GOAL] case inr.right x : ℝ hx✝ : x ≠ 0 hx : 0 < x this : 2 * sqrt x ^ (2 - 1) ≠ 0 ⊢ ∀ (n : ℕ∞), ContDiffAt ℝ n sqrt x [PROOFSTEP] exact fun n => sqLocalHomeomorph.contDiffAt_symm_deriv this hx (hasDerivAt_pow 2 (sqrt x)) (contDiffAt_id.pow 2) [GOAL] f : ℝ → ℝ s : Set ℝ f' x : ℝ hf : HasDerivWithinAt f f' s x hx : f x ≠ 0 ⊢ HasDerivWithinAt (fun y => Real.sqrt (f y)) (f' / (2 * Real.sqrt (f x))) s x [PROOFSTEP] simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasDerivAt_sqrt hx).comp_hasDerivWithinAt x hf [GOAL] f : ℝ → ℝ s : Set ℝ f' x : ℝ hf : HasDerivAt f f' x hx : f x ≠ 0 ⊢ HasDerivAt (fun y => Real.sqrt (f y)) (f' / (2 * Real.sqrt (f x))) x [PROOFSTEP] simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasDerivAt_sqrt hx).comp x hf [GOAL] f : ℝ → ℝ s : Set ℝ f' x : ℝ hf : HasStrictDerivAt f f' x hx : f x ≠ 0 ⊢ HasStrictDerivAt (fun t => Real.sqrt (f t)) (f' / (2 * Real.sqrt (f x))) x [PROOFSTEP] simpa only [(· ∘ ·), div_eq_inv_mul, mul_one] using (hasStrictDerivAt_sqrt hx).comp x hf
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Sqrt", "llama_tokens": 1411}
[GOAL] x✝ y x : ℝ ⊢ exp (arsinh x) = x + sqrt (1 + x ^ 2) [PROOFSTEP] apply exp_log [GOAL] case hx x✝ y x : ℝ ⊢ 0 < x + sqrt (1 + x ^ 2) [PROOFSTEP] rw [← neg_lt_iff_pos_add'] [GOAL] case hx x✝ y x : ℝ ⊢ -x < sqrt (1 + x ^ 2) [PROOFSTEP] apply lt_sqrt_of_sq_lt [GOAL] case hx.h x✝ y x : ℝ ⊢ (-x) ^ 2 < 1 + x ^ 2 [PROOFSTEP] simp [GOAL] x y : ℝ ⊢ arsinh 0 = 0 [PROOFSTEP] simp [arsinh] [GOAL] x✝ y x : ℝ ⊢ arsinh (-x) = -arsinh x [PROOFSTEP] rw [← exp_eq_exp, exp_arsinh, exp_neg, exp_arsinh] [GOAL] x✝ y x : ℝ ⊢ -x + sqrt (1 + (-x) ^ 2) = (x + sqrt (1 + x ^ 2))⁻¹ [PROOFSTEP] apply eq_inv_of_mul_eq_one_left [GOAL] case h x✝ y x : ℝ ⊢ (-x + sqrt (1 + (-x) ^ 2)) * (x + sqrt (1 + x ^ 2)) = 1 [PROOFSTEP] rw [neg_sq, neg_add_eq_sub, add_comm x, mul_comm, ← sq_sub_sq, sq_sqrt, add_sub_cancel] [GOAL] case h x✝ y x : ℝ ⊢ 0 ≤ 1 + x ^ 2 [PROOFSTEP] exact add_nonneg zero_le_one (sq_nonneg _) [GOAL] x✝ y x : ℝ ⊢ sinh (arsinh x) = x [PROOFSTEP] rw [sinh_eq, ← arsinh_neg, exp_arsinh, exp_arsinh, neg_sq] [GOAL] x✝ y x : ℝ ⊢ (x + sqrt (1 + x ^ 2) - (-x + sqrt (1 + x ^ 2))) / 2 = x [PROOFSTEP] field_simp [GOAL] x✝ y x : ℝ ⊢ cosh (arsinh x) = sqrt (1 + x ^ 2) [PROOFSTEP] rw [← sqrt_sq (cosh_pos _).le, cosh_sq', sinh_arsinh] [GOAL] x y : ℝ ⊢ 0 ≤ arsinh x ↔ 0 ≤ x [PROOFSTEP] rw [← sinh_le_sinh, sinh_zero, sinh_arsinh] [GOAL] x y : ℝ ⊢ arsinh x ≤ 0 ↔ x ≤ 0 [PROOFSTEP] rw [← sinh_le_sinh, sinh_zero, sinh_arsinh] [GOAL] x✝ y x : ℝ ⊢ HasStrictDerivAt arsinh (sqrt (1 + x ^ 2))⁻¹ x [PROOFSTEP] convert sinhHomeomorph.toLocalHomeomorph.hasStrictDerivAt_symm (mem_univ x) (cosh_pos _).ne' (hasStrictDerivAt_sinh _) using 2 [GOAL] case h.e'_7.h.e'_3 x✝ y x : ℝ ⊢ sqrt (1 + x ^ 2) = cosh (↑(LocalHomeomorph.symm (Homeomorph.toLocalHomeomorph sinhHomeomorph)) x) [PROOFSTEP] exact (cosh_arsinh _).symm
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Arsinh", "llama_tokens": 1034}
[GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g ⊢ ¬IntervalIntegrable g volume a b [PROOFSTEP] intro hgi [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b ⊢ False [PROOFSTEP] obtain ⟨C, hC₀, s, hsl, hsub, hfd, hg⟩ : ∃ (C : ℝ) (_ : 0 ≤ C), ∃ s ∈ l, (∀ x ∈ s, ∀ y ∈ s, [[x, y]] ⊆ [[a, b]]) ∧ (∀ x ∈ s, ∀ y ∈ s, ∀ z ∈ [[x, y]], DifferentiableAt ℝ f z) ∧ ∀ x ∈ s, ∀ y ∈ s, ∀ z ∈ [[x, y]], ‖deriv f z‖ ≤ C * ‖g z‖ := by rcases hfg.exists_nonneg with ⟨C, C₀, hC⟩ have h : ∀ᶠ x : ℝ × ℝ in l.prod l, ∀ y ∈ [[x.1, x.2]], (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] := (tendsto_fst.uIcc tendsto_snd).eventually ((hd.and hC.bound).and hl).smallSets rcases mem_prod_self_iff.1 h with ⟨s, hsl, hs⟩ simp only [prod_subset_iff, mem_setOf_eq] at hs exact ⟨C, C₀, s, hsl, fun x hx y hy z hz => (hs x hx y hy z hz).2, fun x hx y hy z hz => (hs x hx y hy z hz).1.1, fun x hx y hy z hz => (hs x hx y hy z hz).1.2⟩ [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b ⊢ ∃ C x s, s ∈ l ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧ ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ [PROOFSTEP] rcases hfg.exists_nonneg with ⟨C, C₀, hC⟩ [GOAL] case intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ C₀ : 0 ≤ C hC : IsBigOWith C l (deriv f) g ⊢ ∃ C x s, s ∈ l ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧ ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ [PROOFSTEP] have h : ∀ᶠ x : ℝ × ℝ in l.prod l, ∀ y ∈ [[x.1, x.2]], (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] := (tendsto_fst.uIcc tendsto_snd).eventually ((hd.and hC.bound).and hl).smallSets [GOAL] case intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ C₀ : 0 ≤ C hC : IsBigOWith C l (deriv f) g h : ∀ᶠ (x : ℝ × ℝ) in Filter.prod l l, ∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] ⊢ ∃ C x s, s ∈ l ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧ ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ [PROOFSTEP] rcases mem_prod_self_iff.1 h with ⟨s, hsl, hs⟩ [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ C₀ : 0 ≤ C hC : IsBigOWith C l (deriv f) g h : ∀ᶠ (x : ℝ × ℝ) in Filter.prod l l, ∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] s : Set ℝ hsl : s ∈ l hs : s ×ˢ s ⊆ {x | (fun x => ∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]]) x} ⊢ ∃ C x s, s ∈ l ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧ ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ [PROOFSTEP] simp only [prod_subset_iff, mem_setOf_eq] at hs [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ C₀ : 0 ≤ C hC : IsBigOWith C l (deriv f) g h : ∀ᶠ (x : ℝ × ℝ) in Filter.prod l l, ∀ (y : ℝ), y ∈ [[x.fst, x.snd]] → (DifferentiableAt ℝ f y ∧ ‖deriv f y‖ ≤ C * ‖g y‖) ∧ y ∈ [[a, b]] s : Set ℝ hsl : s ∈ l hs : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (y_1 : ℝ), y_1 ∈ [[x, y]] → (DifferentiableAt ℝ f y_1 ∧ ‖deriv f y_1‖ ≤ C * ‖g y_1‖) ∧ y_1 ∈ [[a, b]] ⊢ ∃ C x s, s ∈ l ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]]) ∧ (∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z) ∧ ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ [PROOFSTEP] exact ⟨C, C₀, s, hsl, fun x hx y hy z hz => (hs x hx y hy z hz).2, fun x hx y hy z hz => (hs x hx y hy z hz).1.1, fun x hx y hy z hz => (hs x hx y hy z hz).1.2⟩ [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ ⊢ False [PROOFSTEP] replace hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b [GOAL] case hgi E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g hgi : IntervalIntegrable g volume a b C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ ⊢ IntervalIntegrable (fun x => C * ‖g x‖) volume a b [PROOFSTEP] convert hgi.norm.smul C using 1 [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b ⊢ False [PROOFSTEP] obtain ⟨c, hc, d, hd, hlt⟩ : ∃ c ∈ s, ∃ d ∈ s, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f d‖ := by rcases Filter.nonempty_of_mem hsl with ⟨c, hc⟩ have : ∀ᶠ x in l, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f x‖ := hf.eventually (eventually_gt_atTop _) exact ⟨c, hc, (this.and hsl).exists.imp fun d hd => ⟨hd.2, hd.1⟩⟩ [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b ⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ [PROOFSTEP] rcases Filter.nonempty_of_mem hsl with ⟨c, hc⟩ [GOAL] case intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s ⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ [PROOFSTEP] have : ∀ᶠ x in l, (‖f c‖ + ∫ y in Ι a b, C * ‖g y‖) < ‖f x‖ := hf.eventually (eventually_gt_atTop _) [GOAL] case intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s this : ∀ᶠ (x : ℝ) in l, ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f x‖ ⊢ ∃ c, c ∈ s ∧ ∃ d, d ∈ s ∧ ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ [PROOFSTEP] exact ⟨c, hc, (this.and hsl).exists.imp fun d hd => ⟨hd.2, hd.1⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hsub : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → [[x, y]] ⊆ [[a, b]] hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ ⊢ False [PROOFSTEP] specialize hsub c hc d hd [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hfd : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] ⊢ False [PROOFSTEP] specialize hfd c hc d hd [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z ⊢ False [PROOFSTEP] replace hg : ∀ x ∈ Ι c d, ‖deriv f x‖ ≤ C * ‖g x‖ [GOAL] case hg E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hg : ∀ (x : ℝ), x ∈ s → ∀ (y : ℝ), y ∈ s → ∀ (z : ℝ), z ∈ [[x, y]] → ‖deriv f z‖ ≤ C * ‖g z‖ hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z ⊢ ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ ⊢ False [PROOFSTEP] exact fun z hz => hg c hc d hd z ⟨hz.1.le, hz.2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ ⊢ False [PROOFSTEP] have hg_ae : ∀ᵐ x ∂volume.restrict (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ := (ae_restrict_mem measurableSet_uIoc).mono hg [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ ⊢ False [PROOFSTEP] have hsub' : Ι c d ⊆ Ι a b := uIoc_subset_uIoc_of_uIcc_subset_uIcc hsub [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ hsub' : Ι c d ⊆ Ι a b ⊢ False [PROOFSTEP] have hfi : IntervalIntegrable (deriv f) volume c d := (hgi.mono_set hsub).mono_fun' (aestronglyMeasurable_deriv _ _) hg_ae [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ hsub' : Ι c d ⊆ Ι a b hfi : IntervalIntegrable (deriv f) volume c d ⊢ False [PROOFSTEP] refine' hlt.not_le (sub_le_iff_le_add'.1 _) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : SecondCountableTopology E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b : ℝ l : Filter ℝ inst✝¹ : NeBot l inst✝ : TendstoIxxClass Icc l l hl : [[a, b]] ∈ l hd✝ : ∀ᶠ (x : ℝ) in l, DifferentiableAt ℝ f x hf : Tendsto (fun x => ‖f x‖) l atTop hfg : deriv f =O[l] g C : ℝ hC₀ : 0 ≤ C s : Set ℝ hsl : s ∈ l hgi : IntervalIntegrable (fun x => C * ‖g x‖) volume a b c : ℝ hc : c ∈ s d : ℝ hd : d ∈ s hlt : ‖f c‖ + ∫ (y : ℝ) in Ι a b, C * ‖g y‖ < ‖f d‖ hsub : [[c, d]] ⊆ [[a, b]] hfd : ∀ (z : ℝ), z ∈ [[c, d]] → DifferentiableAt ℝ f z hg : ∀ (x : ℝ), x ∈ Ι c d → ‖deriv f x‖ ≤ C * ‖g x‖ hg_ae : ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ι c d), ‖deriv f x‖ ≤ C * ‖g x‖ hsub' : Ι c d ⊆ Ι a b hfi : IntervalIntegrable (deriv f) volume c d ⊢ ‖f d‖ - ‖f c‖ ≤ ∫ (y : ℝ) in Ι a b, C * ‖g y‖ [PROOFSTEP] calc ‖f d‖ - ‖f c‖ ≤ ‖f d - f c‖ := norm_sub_norm_le _ _ _ = ‖∫ x in c..d, deriv f x‖ := (congr_arg _ (integral_deriv_eq_sub hfd hfi).symm) _ = ‖∫ x in Ι c d, deriv f x‖ := (norm_integral_eq_norm_integral_Ioc _) _ ≤ ∫ x in Ι c d, ‖deriv f x‖ := (norm_integral_le_integral_norm _) _ ≤ ∫ x in Ι c d, C * ‖g x‖ := (set_integral_mono_on hfi.norm.def (hgi.def.mono_set hsub') measurableSet_uIoc hg) _ ≤ ∫ x in Ι a b, C * ‖g x‖ := set_integral_mono_set hgi.def (ae_of_all _ fun x => mul_nonneg hC₀ (norm_nonneg _)) hsub'.eventuallyLE [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g ⊢ ¬IntervalIntegrable g volume a b [PROOFSTEP] obtain ⟨l, hl, hl', hle, hmem⟩ : ∃ l : Filter ℝ, TendstoIxxClass Icc l l ∧ l.NeBot ∧ l ≤ 𝓝 c ∧ [[a, b]] \ { c } ∈ l := by cases' (min_lt_max.2 hne).lt_or_lt c with hlt hlt · refine' ⟨𝓝[<] c, inferInstance, inferInstance, inf_le_left, _⟩ rw [← Iic_diff_right] exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Iic ⟨hlt, hc.2⟩) _ · refine' ⟨𝓝[>] c, inferInstance, inferInstance, inf_le_left, _⟩ rw [← Ici_diff_left] exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Ici ⟨hc.1, hlt⟩) _ [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g ⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l [PROOFSTEP] cases' (min_lt_max.2 hne).lt_or_lt c with hlt hlt [GOAL] case inl E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : min a b < c ⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l [PROOFSTEP] refine' ⟨𝓝[<] c, inferInstance, inferInstance, inf_le_left, _⟩ [GOAL] case inl E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : min a b < c ⊢ [[a, b]] \ {c} ∈ 𝓝[Iio c] c [PROOFSTEP] rw [← Iic_diff_right] [GOAL] case inl E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : min a b < c ⊢ [[a, b]] \ {c} ∈ 𝓝[Iic c \ {c}] c [PROOFSTEP] exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Iic ⟨hlt, hc.2⟩) _ [GOAL] case inr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : c < max a b ⊢ ∃ l, TendstoIxxClass Icc l l ∧ NeBot l ∧ l ≤ 𝓝 c ∧ [[a, b]] \ {c} ∈ l [PROOFSTEP] refine' ⟨𝓝[>] c, inferInstance, inferInstance, inf_le_left, _⟩ [GOAL] case inr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : c < max a b ⊢ [[a, b]] \ {c} ∈ 𝓝[Ioi c] c [PROOFSTEP] rw [← Ici_diff_left] [GOAL] case inr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g hlt : c < max a b ⊢ [[a, b]] \ {c} ∈ 𝓝[Ici c \ {c}] c [PROOFSTEP] exact diff_mem_nhdsWithin_diff (Icc_mem_nhdsWithin_Ici ⟨hc.1, hlt⟩) _ [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g l : Filter ℝ hl : TendstoIxxClass Icc l l hl' : NeBot l hle : l ≤ 𝓝 c hmem : [[a, b]] \ {c} ∈ l ⊢ ¬IntervalIntegrable g volume a b [PROOFSTEP] have : l ≤ 𝓝[[[a, b]] \ { c }] c := le_inf hle (le_principal_iff.2 hmem) [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → E g : ℝ → F a b c : ℝ hne : a ≠ b hc : c ∈ [[a, b]] h_deriv : ∀ᶠ (x : ℝ) in 𝓝[[[a, b]] \ {c}] c, DifferentiableAt ℝ f x h_infty : Tendsto (fun x => ‖f x‖) (𝓝[[[a, b]] \ {c}] c) atTop hg : deriv f =O[𝓝[[[a, b]] \ {c}] c] g l : Filter ℝ hl : TendstoIxxClass Icc l l hl' : NeBot l hle : l ≤ 𝓝 c hmem : [[a, b]] \ {c} ∈ l this : l ≤ 𝓝[[[a, b]] \ {c}] c ⊢ ¬IntervalIntegrable g volume a b [PROOFSTEP] exact not_intervalIntegrable_of_tendsto_norm_atTop_of_deriv_isBigO_filter l (mem_of_superset hmem (diff_subset _ _)) (h_deriv.filter_mono this) (h_infty.mono_left this) (hg.mono this) [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] ⊢ ¬IntervalIntegrable f volume a b [PROOFSTEP] have A : ∀ᶠ x in 𝓝[≠] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x := by filter_upwards [self_mem_nhdsWithin] with x hx simpa using ((hasDerivAt_id x).sub_const c).log (sub_ne_zero.2 hx) [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] ⊢ ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x [PROOFSTEP] filter_upwards [self_mem_nhdsWithin] with x hx [GOAL] case h E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] x : ℝ hx : x ∈ {c}ᶜ ⊢ HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x [PROOFSTEP] simpa using ((hasDerivAt_id x).sub_const c).log (sub_ne_zero.2 hx) [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x ⊢ ¬IntervalIntegrable f volume a b [PROOFSTEP] have B : Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[≠] c) atTop := by refine' tendsto_abs_atBot_atTop.comp (Real.tendsto_log_nhdsWithin_zero.comp _) rw [← sub_self c] exact ((hasDerivAt_id c).sub_const c).tendsto_punctured_nhds one_ne_zero [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x ⊢ Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[{c}ᶜ] c) atTop [PROOFSTEP] refine' tendsto_abs_atBot_atTop.comp (Real.tendsto_log_nhdsWithin_zero.comp _) [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x ⊢ Tendsto (fun x => x - c) (𝓝[{c}ᶜ] c) (𝓝[{0}ᶜ] 0) [PROOFSTEP] rw [← sub_self c] [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x ⊢ Tendsto (fun x => x - c) (𝓝[{c}ᶜ] c) (𝓝[{c - c}ᶜ] (c - c)) [PROOFSTEP] exact ((hasDerivAt_id c).sub_const c).tendsto_punctured_nhds one_ne_zero [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F f : ℝ → F a b c : ℝ hf : (fun x => (x - c)⁻¹) =O[𝓝[{c}ᶜ] c] f hne : a ≠ b hc : c ∈ [[a, b]] A : ∀ᶠ (x : ℝ) in 𝓝[{c}ᶜ] c, HasDerivAt (fun x => Real.log (x - c)) (x - c)⁻¹ x B : Tendsto (fun x => ‖Real.log (x - c)‖) (𝓝[{c}ᶜ] c) atTop ⊢ ¬IntervalIntegrable f volume a b [PROOFSTEP] exact not_intervalIntegrable_of_tendsto_norm_atTop_of_deriv_isBigO_punctured (A.mono fun x hx => hx.differentiableAt) B (hf.congr' (A.mono fun x hx => hx.deriv.symm) EventuallyEq.rfl) hne hc [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ ⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b ↔ a = b ∨ ¬c ∈ [[a, b]] [PROOFSTEP] constructor [GOAL] case mp E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ ⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b → a = b ∨ ¬c ∈ [[a, b]] [PROOFSTEP] refine' fun h => or_iff_not_imp_left.2 fun hne hc => _ [GOAL] case mp E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ h : IntervalIntegrable (fun x => (x - c)⁻¹) volume a b hne : ¬a = b hc : c ∈ [[a, b]] ⊢ False [PROOFSTEP] exact not_intervalIntegrable_of_sub_inv_isBigO_punctured (isBigO_refl _ _) hne hc h [GOAL] case mpr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ ⊢ a = b ∨ ¬c ∈ [[a, b]] → IntervalIntegrable (fun x => (x - c)⁻¹) volume a b [PROOFSTEP] rintro (rfl | h₀) [GOAL] case mpr.inl E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a c : ℝ ⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a a [PROOFSTEP] exact IntervalIntegrable.refl [GOAL] case mpr.inr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ h₀ : ¬c ∈ [[a, b]] ⊢ IntervalIntegrable (fun x => (x - c)⁻¹) volume a b [PROOFSTEP] refine' ((continuous_sub_right c).continuousOn.inv₀ _).intervalIntegrable [GOAL] case mpr.inr E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b c : ℝ h₀ : ¬c ∈ [[a, b]] ⊢ ∀ (x : ℝ), x ∈ [[a, b]] → x - c ≠ 0 [PROOFSTEP] exact fun x hx => sub_ne_zero.2 <| ne_of_mem_of_not_mem hx h₀ [GOAL] E : Type u_1 F : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : SecondCountableTopology E inst✝¹ : CompleteSpace E inst✝ : NormedAddCommGroup F a b : ℝ ⊢ IntervalIntegrable (fun x => x⁻¹) volume a b ↔ a = b ∨ ¬0 ∈ [[a, b]] [PROOFSTEP] simp only [← intervalIntegrable_sub_inv_iff, sub_zero]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.NonIntegrable", "llama_tokens": 19061}
[GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ⊢ ↑(convexHull 𝕜) ↑s ⊆ space K [PROOFSTEP] convert subset_biUnion_of_mem hs [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ⊢ ↑(convexHull 𝕜) ↑s = ↑(convexHull 𝕜) ↑s [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces ⊢ Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∨ ∃ u, u ∈ K.faces ∧ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑u [PROOFSTEP] classical by_contra' h refine' h.2 (s ∩ t) (K.down_closed hs (inter_subset_left _ _) fun hst => h.1 <| disjoint_iff_inf_le.mpr <| (K.inter_subset_convexHull hs ht).trans _) _ · rw [← coe_inter, hst, coe_empty, convexHull_empty] rfl · rw [coe_inter, convexHull_inter_convexHull hs ht] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces ⊢ Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∨ ∃ u, u ∈ K.faces ∧ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑u [PROOFSTEP] by_contra' h [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces h : ¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧ ∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u ⊢ False [PROOFSTEP] refine' h.2 (s ∩ t) (K.down_closed hs (inter_subset_left _ _) fun hst => h.1 <| disjoint_iff_inf_le.mpr <| (K.inter_subset_convexHull hs ht).trans _) _ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces h : ¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧ ∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u hst : s ∩ t = ∅ ⊢ ↑(convexHull 𝕜) (↑s ∩ ↑t) ⊆ ⊥ [PROOFSTEP] rw [← coe_inter, hst, coe_empty, convexHull_empty] [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces h : ¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧ ∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u hst : s ∩ t = ∅ ⊢ ∅ ⊆ ⊥ [PROOFSTEP] rfl [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ht : t ∈ K.faces h : ¬Disjoint (↑(convexHull 𝕜) ↑s) (↑(convexHull 𝕜) ↑t) ∧ ∀ (u : Finset E), u ∈ K.faces → ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t ≠ ↑(convexHull 𝕜) ↑u ⊢ ↑(convexHull 𝕜) ↑s ∩ ↑(convexHull 𝕜) ↑t = ↑(convexHull 𝕜) ↑(s ∩ t) [PROOFSTEP] rw [coe_inter, convexHull_inter_convexHull hs ht] [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E ⊢ vertices K = ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x✝ x : E ⊢ x ∈ vertices K ↔ x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k [PROOFSTEP] refine' ⟨fun h => mem_biUnion h <| mem_coe.2 <| mem_singleton_self x, fun h => _⟩ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x✝ x : E h : x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k ⊢ x ∈ vertices K [PROOFSTEP] obtain ⟨s, hs, hx⟩ := mem_iUnion₂.1 h [GOAL] case h.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s✝ t : Finset E x✝ x : E h : x ∈ ⋃ (k : Finset E) (_ : k ∈ K.faces), ↑k s : Finset E hs : s ∈ K.faces hx : x ∈ ↑s ⊢ x ∈ vertices K [PROOFSTEP] exact K.down_closed hs (Finset.singleton_subset_iff.2 <| mem_coe.1 hx) (singleton_ne_empty _) [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces ⊢ x ∈ ↑(convexHull 𝕜) ↑s ↔ x ∈ s [PROOFSTEP] refine' ⟨fun h => _, fun h => subset_convexHull 𝕜 _ h⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces h : x ∈ ↑(convexHull 𝕜) ↑s ⊢ x ∈ s [PROOFSTEP] classical have h := K.inter_subset_convexHull hx hs ⟨by simp, h⟩ by_contra H rwa [← coe_inter, Finset.disjoint_iff_inter_eq_empty.1 (Finset.disjoint_singleton_right.2 H).symm, coe_empty, convexHull_empty] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces h : x ∈ ↑(convexHull 𝕜) ↑s ⊢ x ∈ s [PROOFSTEP] have h := K.inter_subset_convexHull hx hs ⟨by simp, h⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces h : x ∈ ↑(convexHull 𝕜) ↑s ⊢ x ∈ ↑(convexHull 𝕜) ↑{x} [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces h✝ : x ∈ ↑(convexHull 𝕜) ↑s h : x ∈ ↑(convexHull 𝕜) (↑{x} ∩ ↑s) ⊢ x ∈ s [PROOFSTEP] by_contra H [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hx : x ∈ vertices K hs : s ∈ K.faces h✝ : x ∈ ↑(convexHull 𝕜) ↑s h : x ∈ ↑(convexHull 𝕜) (↑{x} ∩ ↑s) H : ¬x ∈ s ⊢ False [PROOFSTEP] rwa [← coe_inter, Finset.disjoint_iff_inter_eq_empty.1 (Finset.disjoint_singleton_right.2 H).symm, coe_empty, convexHull_empty] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ⊢ ¬s ∈ facets K ↔ ∃ t, t ∈ K.faces ∧ s ⊂ t [PROOFSTEP] refine' ⟨fun hs' : ¬(_ ∧ _) => _, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces hs' : ¬(s ∈ K.faces ∧ ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t) ⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t [PROOFSTEP] push_neg at hs' [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces hs' : s ∈ K.faces → Exists fun ⦃t⦄ => t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t ⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t [PROOFSTEP] obtain ⟨t, ht⟩ := hs' hs [GOAL] case refine'_1.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t✝ : Finset E x : E hs : s ∈ K.faces hs' : s ∈ K.faces → Exists fun ⦃t⦄ => t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t t : Finset E ht : t ∈ K.faces ∧ s ⊆ t ∧ s ≠ t ⊢ ∃ t, t ∈ K.faces ∧ s ⊂ t [PROOFSTEP] exact ⟨t, ht.1, ⟨ht.2.1, fun hts => ht.2.2 (Subset.antisymm ht.2.1 hts)⟩⟩ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t : Finset E x : E hs : s ∈ K.faces ⊢ (∃ t, t ∈ K.faces ∧ s ⊂ t) → ¬s ∈ facets K [PROOFSTEP] rintro ⟨t, ht⟩ ⟨hs, hs'⟩ [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t✝ : Finset E x : E hs✝ : s ∈ K.faces t : Finset E ht : t ∈ K.faces ∧ s ⊂ t hs : s ∈ K.faces hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t ⊢ False [PROOFSTEP] have := hs' ht.1 ht.2.1 [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t✝ : Finset E x : E hs✝ : s ∈ K.faces t : Finset E ht : t ∈ K.faces ∧ s ⊂ t hs : s ∈ K.faces hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t this : s = t ⊢ False [PROOFSTEP] rw [this] at ht [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s t✝ : Finset E x : E hs✝ : s ∈ K.faces t : Finset E ht : t ∈ K.faces ∧ t ⊂ t hs : s ∈ K.faces hs' : ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t this : s = t ⊢ False [PROOFSTEP] exact ht.2.2 (Subset.refl t)
{"mathlib_filename": "Mathlib.Analysis.Convex.SimplicialComplex.Basic", "llama_tokens": 5122}
[GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M✝ inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k✝ l k : ℕ+ M : Type u_7 inst✝ : CommMonoid M a✝ b✝ : Mˣ x✝¹ : a✝ ∈ {ζ | ζ ^ ↑k = 1} x✝ : b✝ ∈ {ζ | ζ ^ ↑k = 1} ⊢ a✝ * b✝ ∈ {ζ | ζ ^ ↑k = 1} [PROOFSTEP] simp_all only [Set.mem_setOf_eq, mul_pow, one_mul] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M✝ inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k✝ l k : ℕ+ M : Type u_7 inst✝ : CommMonoid M x✝¹ : Mˣ x✝ : x✝¹ ∈ { toSubsemigroup := { carrier := {ζ | ζ ^ ↑k = 1}, mul_mem' := (_ : ∀ {a b : Mˣ}, a ∈ {ζ | ζ ^ ↑k = 1} → b ∈ {ζ | ζ ^ ↑k = 1} → (a * b) ^ ↑k = 1) }, one_mem' := (_ : 1 ^ ↑k = 1) }.toSubsemigroup.carrier ⊢ x✝¹⁻¹ ∈ { toSubsemigroup := { carrier := {ζ | ζ ^ ↑k = 1}, mul_mem' := (_ : ∀ {a b : Mˣ}, a ∈ {ζ | ζ ^ ↑k = 1} → b ∈ {ζ | ζ ^ ↑k = 1} → (a * b) ^ ↑k = 1) }, one_mem' := (_ : 1 ^ ↑k = 1) }.toSubsemigroup.carrier [PROOFSTEP] simp_all only [Set.mem_setOf_eq, inv_pow, inv_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k✝ l k : ℕ+ ζ : Mˣ ⊢ ζ ∈ rootsOfUnity k M ↔ ↑ζ ^ ↑k = 1 [PROOFSTEP] rw [mem_rootsOfUnity] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k✝ l k : ℕ+ ζ : Mˣ ⊢ ζ ^ ↑k = 1 ↔ ↑ζ ^ ↑k = 1 [PROOFSTEP] norm_cast [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ+ h : k ∣ l ⊢ rootsOfUnity k M ≤ rootsOfUnity l M [PROOFSTEP] obtain ⟨d, rfl⟩ := h [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k d : ℕ+ ⊢ rootsOfUnity k M ≤ rootsOfUnity (k * d) M [PROOFSTEP] intro ζ h [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k d : ℕ+ ζ : Mˣ h : ζ ∈ rootsOfUnity k M ⊢ ζ ∈ rootsOfUnity (k * d) M [PROOFSTEP] simp_all only [mem_rootsOfUnity, PNat.mul_coe, pow_mul, one_pow] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k✝ l : ℕ+ f : Mˣ →* Nˣ k : ℕ+ ⊢ Subgroup.map f (rootsOfUnity k M) ≤ rootsOfUnity k N [PROOFSTEP] rintro _ ⟨ζ, h, rfl⟩ [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k✝ l : ℕ+ f : Mˣ →* Nˣ k : ℕ+ ζ : Mˣ h : ζ ∈ ↑(rootsOfUnity k M) ⊢ ↑f ζ ∈ rootsOfUnity k N [PROOFSTEP] simp_all only [← map_pow, mem_rootsOfUnity, SetLike.mem_coe, MonoidHom.map_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ+ inst✝ : CommMonoid R ζ : { x // x ∈ rootsOfUnity k R } m : ℕ ⊢ ↑↑(ζ ^ m) = ↑↑ζ ^ m [PROOFSTEP] rw [Subgroup.coe_pow, Units.val_pow_eq_pow_val] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ ξ : { x // x ∈ rootsOfUnity n R } ⊢ ↑σ ↑↑ξ ^ ↑n = 1 [PROOFSTEP] rw [← map_pow, ← Units.val_pow_eq_pow_val, show (ξ : Rˣ) ^ (n : ℕ) = 1 from ξ.2, Units.val_one, map_one σ] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ : { x // x ∈ rootsOfUnity n R } ⊢ unitOfInvertible (↑σ ↑↑ξ) ∈ rootsOfUnity n S [PROOFSTEP] ext [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ : { x // x ∈ rootsOfUnity n R } ⊢ ↑(unitOfInvertible (↑σ ↑↑ξ) ^ ↑n) = ↑1 [PROOFSTEP] rw [Units.val_pow_eq_pow_val] [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ : { x // x ∈ rootsOfUnity n R } ⊢ ↑(unitOfInvertible (↑σ ↑↑ξ)) ^ ↑n = ↑1 [PROOFSTEP] exact h ξ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ⊢ (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1 [PROOFSTEP] ext [GOAL] case a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ⊢ ↑↑((fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1) = ↑↑1 [PROOFSTEP] exact map_one σ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R } ⊢ OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } (ξ₁ * ξ₂) = OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₁ * OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₂ [PROOFSTEP] ext [GOAL] case a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R } ⊢ ↑↑(OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } (ξ₁ * ξ₂)) = ↑↑(OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₁ * OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₂) [PROOFSTEP] rw [Subgroup.coe_mul, Units.val_mul] [GOAL] case a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : RingHomClass F R S σ : F n : ℕ+ h : ∀ (ξ : { x // x ∈ rootsOfUnity n R }), ↑σ ↑↑ξ ^ ↑n = 1 := fun ξ => Eq.mpr (id (Eq.symm (map_pow σ ↑↑ξ ↑n) ▸ Eq.refl (↑σ ↑↑ξ ^ ↑n = 1))) (Eq.mpr (id (Eq.symm (Units.val_pow_eq_pow_val ↑ξ ↑n) ▸ Eq.refl (↑σ (↑↑ξ ^ ↑n) = 1))) (Eq.mpr (id ((let_fun this := ξ.property; this) ▸ Eq.refl (↑σ ↑(↑ξ ^ ↑n) = 1))) (Eq.mpr (id (Units.val_one ▸ Eq.refl (↑σ ↑1 = 1))) (Eq.mpr (id (map_one σ ▸ Eq.refl (↑σ 1 = 1))) (Eq.refl 1))))) ξ₁ ξ₂ : { x // x ∈ rootsOfUnity n R } ⊢ ↑↑(OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } (ξ₁ * ξ₂)) = ↑↑(OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₁) * ↑↑(OneHom.toFun { toFun := fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }, map_one' := (_ : (fun ξ => { val := unitOfInvertible (↑σ ↑↑ξ), property := (_ : unitOfInvertible (↑σ ↑↑ξ) ^ ↑n = 1) }) 1 = 1) } ξ₂) [PROOFSTEP] exact map_mul σ _ _ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommSemiring R inst✝ : CommSemiring S σ : R ≃+* S n : ℕ+ ξ : { x // x ∈ rootsOfUnity n R } ⊢ ↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) (↑(_root_.restrictRootsOfUnity (toRingHom σ) n) ξ) = ξ [PROOFSTEP] ext [GOAL] case a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommSemiring R inst✝ : CommSemiring S σ : R ≃+* S n : ℕ+ ξ : { x // x ∈ rootsOfUnity n R } ⊢ ↑↑(↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) (↑(_root_.restrictRootsOfUnity (toRingHom σ) n) ξ)) = ↑↑ξ [PROOFSTEP] exact σ.symm_apply_apply (ξ : Rˣ) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommSemiring R inst✝ : CommSemiring S σ : R ≃+* S n : ℕ+ ξ : { x // x ∈ rootsOfUnity n S } ⊢ ↑(_root_.restrictRootsOfUnity (toRingHom σ) n) (↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) ξ) = ξ [PROOFSTEP] ext [GOAL] case a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommSemiring R inst✝ : CommSemiring S σ : R ≃+* S n : ℕ+ ξ : { x // x ∈ rootsOfUnity n S } ⊢ ↑↑(↑(_root_.restrictRootsOfUnity (toRingHom σ) n) (↑(_root_.restrictRootsOfUnity (toRingHom (RingEquiv.symm σ)) n) ξ)) = ↑↑ξ [PROOFSTEP] exact σ.apply_symm_apply (ξ : Sˣ) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ζ : Rˣ ⊢ ζ ∈ rootsOfUnity k R ↔ ↑ζ ∈ nthRoots (↑k) 1 [PROOFSTEP] simp only [mem_rootsOfUnity, mem_nthRoots k.pos, Units.ext_iff, Units.val_one, Units.val_pow_eq_pow_val] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ { x // x ∈ rootsOfUnity k R } ≃ { x // x ∈ nthRoots (↑k) 1 } [PROOFSTEP] refine' { toFun := fun x => ⟨(x : Rˣ), mem_rootsOfUnity_iff_mem_nthRoots.mp x.2⟩ invFun := fun x => ⟨⟨x, ↑x ^ (k - 1 : ℕ), _, _⟩, _⟩ left_inv := _ right_inv := _ } [GOAL] case refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x * ↑x ^ (↑k - 1) = 1 case refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x ^ (↑k - 1) * ↑x = 1 case refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R case refine'_4 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Function.LeftInverse (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) } case refine'_5 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Function.RightInverse (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) } [PROOFSTEP] pick_goal 4 [GOAL] case refine'_4 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Function.LeftInverse (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) } [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case refine'_4.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : Rˣ hx : x ∈ rootsOfUnity k R ⊢ (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) ((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) { val := x, property := hx }) = { val := x, property := hx } [PROOFSTEP] ext [GOAL] case refine'_4.mk.a.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : Rˣ hx : x ∈ rootsOfUnity k R ⊢ ↑↑((fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) ((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) { val := x, property := hx })) = ↑↑{ val := x, property := hx } [PROOFSTEP] rfl [GOAL] case refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x * ↑x ^ (↑k - 1) = 1 case refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x ^ (↑k - 1) * ↑x = 1 case refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R case refine'_5 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Function.RightInverse (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) } [PROOFSTEP] pick_goal 4 [GOAL] case refine'_5 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ Function.RightInverse (fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) } [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case refine'_5.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ nthRoots (↑k) 1 ⊢ (fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) ((fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) { val := x, property := hx }) = { val := x, property := hx } [PROOFSTEP] ext [GOAL] case refine'_5.mk.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ nthRoots (↑k) 1 ⊢ ↑((fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ nthRoots (↑k) 1) }) ((fun x => { val := { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200034 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200036 x ^ (↑k - 1) * ↑x = 1) }, property := (_ : { val := ↑x, inv := ?m.1200038 x ^ (↑k - 1), val_inv := (_ : ↑x * ?m.1200039 x ^ (↑k - 1) = 1), inv_val := (_ : ?m.1200041 x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R) }) { val := x, property := hx })) = ↑{ val := x, property := hx } [PROOFSTEP] rfl [GOAL] case refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x * ↑x ^ (↑k - 1) = 1 case refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x ^ (↑k - 1) * ↑x = 1 case refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := ?refine'_1, inv_val := ?refine'_2 } ∈ rootsOfUnity k R [PROOFSTEP] all_goals rcases x with ⟨x, hx⟩; rw [mem_nthRoots k.pos] at hx simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)] [GOAL] case refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x * ↑x ^ (↑k - 1) = 1 [PROOFSTEP] rcases x with ⟨x, hx⟩ [GOAL] case refine'_1.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ nthRoots (↑k) 1 ⊢ ↑{ val := x, property := hx } * ↑{ val := x, property := hx } ^ (↑k - 1) = 1 [PROOFSTEP] rw [mem_nthRoots k.pos] at hx [GOAL] case refine'_1.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx✝ : x ∈ nthRoots (↑k) 1 hx : x ^ ↑k = 1 ⊢ ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1 [PROOFSTEP] simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)] [GOAL] case refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ ↑x ^ (↑k - 1) * ↑x = 1 [PROOFSTEP] rcases x with ⟨x, hx⟩ [GOAL] case refine'_2.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ nthRoots (↑k) 1 ⊢ ↑{ val := x, property := hx } ^ (↑k - 1) * ↑{ val := x, property := hx } = 1 [PROOFSTEP] rw [mem_nthRoots k.pos] at hx [GOAL] case refine'_2.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx✝ : x ∈ nthRoots (↑k) 1 hx : x ^ ↑k = 1 ⊢ ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1 [PROOFSTEP] simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)] [GOAL] case refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : { x // x ∈ nthRoots (↑k) 1 } ⊢ { val := ↑x, inv := ↑x ^ (↑k - 1), val_inv := (_ : ↑x * ↑x ^ (↑k - 1) = 1), inv_val := (_ : ↑x ^ (↑k - 1) * ↑x = 1) } ∈ rootsOfUnity k R [PROOFSTEP] rcases x with ⟨x, hx⟩ [GOAL] case refine'_3.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ nthRoots (↑k) 1 ⊢ { val := ↑{ val := x, property := hx }, inv := ↑{ val := x, property := hx } ^ (↑k - 1), val_inv := (_ : ↑{ val := x, property := hx } * ↑{ val := x, property := hx } ^ (↑k - 1) = 1), inv_val := (_ : ↑{ val := x, property := hx } ^ (↑k - 1) * ↑{ val := x, property := hx } = 1) } ∈ rootsOfUnity k R [PROOFSTEP] rw [mem_nthRoots k.pos] at hx [GOAL] case refine'_3.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx✝ : x ∈ nthRoots (↑k) 1 hx : x ^ ↑k = 1 ⊢ { val := ↑{ val := x, property := hx✝ }, inv := ↑{ val := x, property := hx✝ } ^ (↑k - 1), val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1), inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ∈ rootsOfUnity k R [PROOFSTEP] simp only [Subtype.coe_mk, ← pow_succ, ← pow_succ', hx, tsub_add_cancel_of_le (show 1 ≤ (k : ℕ) from k.one_le)] [GOAL] case refine'_3.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx✝ : x ∈ nthRoots (↑k) 1 hx : x ^ ↑k = 1 ⊢ { val := x, inv := x ^ (↑k - 1), val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1), inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ∈ rootsOfUnity k R [PROOFSTEP] show (_ : Rˣ) ^ (k : ℕ) = 1 [GOAL] case refine'_3.mk M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ+ inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx✝ : x ∈ nthRoots (↑k) 1 hx : x ^ ↑k = 1 ⊢ { val := x, inv := x ^ (↑k - 1), val_inv := (_ : ↑{ val := x, property := hx✝ } * ↑{ val := x, property := hx✝ } ^ (↑k - 1) = 1), inv_val := (_ : ↑{ val := x, property := hx✝ } ^ (↑k - 1) * ↑{ val := x, property := hx✝ } = 1) } ^ ↑k = 1 [PROOFSTEP] simp only [Units.ext_iff, hx, Units.val_mk, Units.val_one, Subtype.coe_mk, Units.val_pow_eq_pow_val] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : RingHomClass F R R σ : F ζ : { x // x ∈ rootsOfUnity k R } ⊢ ∃ m, ↑σ ↑↑ζ = ↑↑ζ ^ m [PROOFSTEP] obtain ⟨m, hm⟩ := MonoidHom.map_cyclic (restrictRootsOfUnity σ k) [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : RingHomClass F R R σ : F ζ : { x // x ∈ rootsOfUnity k R } m : ℤ hm : ∀ (g : { x // x ∈ rootsOfUnity k R }), ↑(restrictRootsOfUnity σ k) g = g ^ m ⊢ ∃ m, ↑σ ↑↑ζ = ↑↑ζ ^ m [PROOFSTEP] rw [← restrictRootsOfUnity_coe_apply, hm, zpow_eq_mod_orderOf, ← Int.toNat_of_nonneg (m.emod_nonneg (Int.coe_nat_ne_zero.mpr (pos_iff_ne_zero.mp (orderOf_pos ζ)))), zpow_ofNat, rootsOfUnity.coe_pow] [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k l : ℕ+ inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : RingHomClass F R R σ : F ζ : { x // x ∈ rootsOfUnity k R } m : ℤ hm : ∀ (g : { x // x ∈ rootsOfUnity k R }), ↑(restrictRootsOfUnity σ k) g = g ^ m ⊢ ∃ m_1, ↑↑ζ ^ Int.toNat (m % ↑(orderOf ζ)) = ↑↑ζ ^ m_1 [PROOFSTEP] exact ⟨(m % orderOf ζ).toNat, rfl⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k✝ l : ℕ+ inst✝² : CommRing R inst✝¹ : IsReduced R p k : ℕ m : ℕ+ hp : Fact (Nat.Prime p) inst✝ : CharP R p ζ : Rˣ ⊢ ζ ∈ rootsOfUnity ({ val := p, property := (_ : 0 < p) } ^ k * m) R ↔ ζ ∈ rootsOfUnity m R [PROOFSTEP] simp only [mem_rootsOfUnity', PNat.mul_coe, PNat.pow_coe, PNat.mk_coe, CharP.pow_prime_pow_mul_eq_one_iff] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M inst✝⁴ : CommMonoid N inst✝³ : DivisionCommMonoid G k✝ l : ℕ+ inst✝² : CommRing R inst✝¹ : IsReduced R p k : ℕ m : ℕ+ hp : Fact (Nat.Prime p) inst✝ : CharP R p ζ : Rˣ ⊢ ζ ^ (p ^ k * ↑m) = 1 ↔ ζ ∈ rootsOfUnity m R [PROOFSTEP] rw [← PNat.mk_coe p hp.1.pos, ← PNat.pow_coe, ← PNat.mul_coe, ← mem_rootsOfUnity, mem_rootsOfUnity_prime_pow_mul_iff] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R h0 : 0 < k ⊢ ζ ∈ primitiveRoots k R ↔ IsPrimitiveRoot ζ k [PROOFSTEP] rw [primitiveRoots, mem_filter, Multiset.mem_toFinset, mem_nthRoots h0, and_iff_right_iff_imp] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R h0 : 0 < k ⊢ IsPrimitiveRoot ζ k → ζ ^ k = 1 [PROOFSTEP] exact IsPrimitiveRoot.pow_eq_one [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ primitiveRoots 0 R = ∅ [PROOFSTEP] rw [primitiveRoots, nthRoots_zero, Multiset.toFinset_zero, Finset.filter_empty] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R h : ζ ∈ primitiveRoots k R hk : k = 0 ⊢ IsPrimitiveRoot ζ k [PROOFSTEP] simp [hk] at h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 ⊢ IsPrimitiveRoot ζ k [PROOFSTEP] refine' ⟨h1, fun l hl => _⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 ⊢ k ∣ l [PROOFSTEP] suffices k.gcd l = k by exact this ▸ k.gcd_dvd_right l [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 this : Nat.gcd k l = k ⊢ k ∣ l [PROOFSTEP] exact this ▸ k.gcd_dvd_right l [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 ⊢ Nat.gcd k l = k [PROOFSTEP] rw [eq_iff_le_not_lt] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 ⊢ Nat.gcd k l ≤ k ∧ ¬Nat.gcd k l < k [PROOFSTEP] refine' ⟨Nat.le_of_dvd hk (k.gcd_dvd_left l), _⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 ⊢ ¬Nat.gcd k l < k [PROOFSTEP] intro h' [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 h' : Nat.gcd k l < k ⊢ False [PROOFSTEP] apply h _ (Nat.gcd_pos_of_pos_left _ hk) h' [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M hk : 0 < k h1 : ζ ^ k = 1 h : ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 l : ℕ hl : ζ ^ l = 1 h' : Nat.gcd k l < k ⊢ ζ ^ Nat.gcd k l = 1 [PROOFSTEP] exact pow_gcd_eq_one _ h1 hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k l : ℕ ⊢ k ∣ l → ζ ^ l = 1 [PROOFSTEP] rintro ⟨i, rfl⟩ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k i : ℕ ⊢ ζ ^ (k * i) = 1 [PROOFSTEP] simp only [pow_mul, h.pow_eq_one, one_pow, PNat.mul_coe] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k ⊢ IsUnit ζ [PROOFSTEP] apply isUnit_of_mul_eq_one ζ (ζ ^ (k - 1)) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k ⊢ ζ * ζ ^ (k - 1) = 1 [PROOFSTEP] rw [← pow_succ, tsub_add_cancel_of_le h0.nat_succ_le, h.pow_eq_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j ⊢ i = j [PROOFSTEP] wlog hij : i ≤ j generalizing i j [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j this : ∀ ⦃i j : ℕ⦄, i < k → j < k → ζ ^ i = ζ ^ j → i ≤ j → i = j hij : ¬i ≤ j ⊢ i = j [PROOFSTEP] exact (this hj hi H.symm (le_of_not_le hij)).symm [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j hij : i ≤ j ⊢ i = j [PROOFSTEP] apply le_antisymm hij [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j hij : i ≤ j ⊢ j ≤ i [PROOFSTEP] rw [← tsub_eq_zero_iff_le] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j hij : i ≤ j ⊢ j - i = 0 [PROOFSTEP] apply Nat.eq_zero_of_dvd_of_lt _ (lt_of_le_of_lt tsub_le_self hj) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j hij : i ≤ j ⊢ k ∣ j - i [PROOFSTEP] apply h.dvd_of_pow_eq_one [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j hij : i ≤ j ⊢ ζ ^ (j - i) = 1 [PROOFSTEP] rw [← ((h.isUnit (lt_of_le_of_lt (Nat.zero_le _) hi)).pow i).mul_left_inj, ← pow_add, tsub_add_cancel_of_le hij, H, one_mul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k ⊢ IsPrimitiveRoot ζ 1 ↔ ζ = 1 [PROOFSTEP] clear h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F ⊢ IsPrimitiveRoot ζ 1 ↔ ζ = 1 [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F ⊢ IsPrimitiveRoot ζ 1 → ζ = 1 [PROOFSTEP] intro h [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ 1 ⊢ ζ = 1 [PROOFSTEP] rw [← pow_one ζ, h.pow_eq_one] [GOAL] case mpr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F ⊢ ζ = 1 → IsPrimitiveRoot ζ 1 [PROOFSTEP] rintro rfl [GOAL] case mpr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F ⊢ IsPrimitiveRoot 1 1 [PROOFSTEP] exact one [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N✝ inst✝³ : DivisionCommMonoid G k l : ℕ ζ✝ : M✝ f : F h : IsPrimitiveRoot ζ✝ k M : Type u_7 B : Type u_8 inst✝² : CommMonoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M N : B ζ : { x // x ∈ N } ⊢ IsPrimitiveRoot (↑ζ) k ↔ IsPrimitiveRoot ζ k [PROOFSTEP] simp_rw [iff_def] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N✝ inst✝³ : DivisionCommMonoid G k l : ℕ ζ✝ : M✝ f : F h : IsPrimitiveRoot ζ✝ k M : Type u_7 B : Type u_8 inst✝² : CommMonoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M N : B ζ : { x // x ∈ N } ⊢ (↑ζ ^ k = 1 ∧ ∀ (l : ℕ), ↑ζ ^ l = 1 → k ∣ l) ↔ ζ ^ k = 1 ∧ ∀ (l : ℕ), ζ ^ l = 1 → k ∣ l [PROOFSTEP] norm_cast [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ✝ : M f : F h : IsPrimitiveRoot ζ✝ k ζ : Mˣ ⊢ IsPrimitiveRoot (↑ζ) k ↔ IsPrimitiveRoot ζ k [PROOFSTEP] simp only [iff_def, Units.ext_iff, Units.val_pow_eq_pow_val, Units.val_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k i : ℕ hi : Nat.coprime i k ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] by_cases h0 : k = 0 [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k i : ℕ hi : Nat.coprime i k h0 : k = 0 ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] subst k [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G l : ℕ ζ : M f : F i : ℕ h : IsPrimitiveRoot ζ 0 hi : Nat.coprime i 0 ⊢ IsPrimitiveRoot (ζ ^ i) 0 [PROOFSTEP] simp_all only [pow_one, Nat.coprime_zero_right] [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] rcases h.isUnit (Nat.pos_of_ne_zero h0) with ⟨ζ, rfl⟩ [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot (↑ζ) k ⊢ IsPrimitiveRoot (↑ζ ^ i) k [PROOFSTEP] rw [← Units.val_pow_eq_pow_val] [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot (↑ζ) k ⊢ IsPrimitiveRoot (↑(ζ ^ i)) k [PROOFSTEP] rw [coe_units_iff] at h ⊢ [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] refine' { pow_eq_one := by rw [← pow_mul', pow_mul, h.pow_eq_one, one_pow] dvd_of_pow_eq_one := _ } [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k ⊢ (ζ ^ i) ^ k = 1 [PROOFSTEP] rw [← pow_mul', pow_mul, h.pow_eq_one, one_pow] [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k ⊢ ∀ (l : ℕ), (ζ ^ i) ^ l = 1 → k ∣ l [PROOFSTEP] intro l hl [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k l : ℕ hl : (ζ ^ i) ^ l = 1 ⊢ k ∣ l [PROOFSTEP] apply h.dvd_of_pow_eq_one [GOAL] case neg.intro.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k l : ℕ hl : (ζ ^ i) ^ l = 1 ⊢ ζ ^ l = 1 [PROOFSTEP] rw [← pow_one ζ, ← zpow_ofNat ζ, ← hi.gcd_eq_one, Nat.gcd_eq_gcd_ab, zpow_add, mul_pow, ← zpow_ofNat, ← zpow_mul, mul_right_comm] [GOAL] case neg.intro.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ f : F i : ℕ hi : Nat.coprime i k h0 : ¬k = 0 ζ : Mˣ h : IsPrimitiveRoot ζ k l : ℕ hl : (ζ ^ i) ^ l = 1 ⊢ ζ ^ (↑i * ↑l * Nat.gcdA i k) * (ζ ^ (↑k * Nat.gcdB i k)) ^ l = 1 [PROOFSTEP] simp only [zpow_mul, hl, h.pow_eq_one, one_zpow, one_pow, one_mul, zpow_ofNat] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ ⊢ IsPrimitiveRoot (ζ ^ i) k ↔ Nat.coprime i k [PROOFSTEP] refine' ⟨_, h.pow_of_coprime i⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ ⊢ IsPrimitiveRoot (ζ ^ i) k → Nat.coprime i k [PROOFSTEP] intro hi [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k ⊢ Nat.coprime i k [PROOFSTEP] obtain ⟨a, ha⟩ := i.gcd_dvd_left k [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k a : ℕ ha : i = Nat.gcd i k * a ⊢ Nat.coprime i k [PROOFSTEP] obtain ⟨b, hb⟩ := i.gcd_dvd_right k [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k a : ℕ ha : i = Nat.gcd i k * a b : ℕ hb : k = Nat.gcd i k * b ⊢ Nat.coprime i k [PROOFSTEP] suffices b = k by -- Porting note: was `rwa [this, ← one_mul k, mul_left_inj' h0.ne', eq_comm] at hb` rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb rwa [Nat.coprime] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k a : ℕ ha : i = Nat.gcd i k * a b : ℕ hb : k = Nat.gcd i k * b this : b = k ⊢ Nat.coprime i k [PROOFSTEP] rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k a : ℕ ha : i = Nat.gcd i k * a b : ℕ hb : Nat.gcd i k = 1 this : b = k ⊢ Nat.coprime i k [PROOFSTEP] rwa [Nat.coprime] [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : IsPrimitiveRoot (ζ ^ i) k a : ℕ ha : i = Nat.gcd i k * a b : ℕ hb : k = Nat.gcd i k * b ⊢ b = k [PROOFSTEP] rw [ha] at hi [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i a : ℕ hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k ha : i = Nat.gcd i k * a b : ℕ hb : k = Nat.gcd i k * b ⊢ b = k [PROOFSTEP] rw [mul_comm] at hb [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i a : ℕ hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k ha : i = Nat.gcd i k * a b : ℕ hb : k = b * Nat.gcd i k ⊢ b = k [PROOFSTEP] apply Nat.dvd_antisymm ⟨i.gcd k, hb⟩ (hi.dvd_of_pow_eq_one b _) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k h0 : 0 < k i a : ℕ hi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k ha : i = Nat.gcd i k * a b : ℕ hb : k = b * Nat.gcd i k ⊢ (ζ ^ (Nat.gcd i k * a)) ^ b = 1 [PROOFSTEP] rw [← pow_mul', ← mul_assoc, ← hb, pow_mul, h.pow_eq_one, one_pow] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h : IsPrimitiveRoot ζ k hk : 0 < k ⊢ IsPrimitiveRoot ζ k ↔ ζ ^ k = 1 ∧ ∀ (l : ℕ), 0 < l → l < k → ζ ^ l ≠ 1 [PROOFSTEP] refine' ⟨fun h => ⟨h.pow_eq_one, fun l hl' hl => _⟩, fun ⟨hζ, hl⟩ => IsPrimitiveRoot.mk_of_lt ζ hk hζ hl⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k hk : 0 < k h : IsPrimitiveRoot ζ k l : ℕ hl' : 0 < l hl : l < k ⊢ ζ ^ l ≠ 1 [PROOFSTEP] rw [h.eq_orderOf] at hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k hk : 0 < k h : IsPrimitiveRoot ζ k l : ℕ hl' : 0 < l hl : l < orderOf ζ ⊢ ζ ^ l ≠ 1 [PROOFSTEP] exact pow_ne_one_of_lt_orderOf' hl'.ne' hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k p : ℕ hp : p ≠ 0 hdiv : p ∣ k ⊢ IsPrimitiveRoot (ζ ^ p) (k / p) [PROOFSTEP] suffices orderOf (ζ ^ p) = k / p by exact this ▸ IsPrimitiveRoot.orderOf (ζ ^ p) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k p : ℕ hp : p ≠ 0 hdiv : p ∣ k this : orderOf (ζ ^ p) = k / p ⊢ IsPrimitiveRoot (ζ ^ p) (k / p) [PROOFSTEP] exact this ▸ IsPrimitiveRoot.orderOf (ζ ^ p) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ h : IsPrimitiveRoot ζ k p : ℕ hp : p ≠ 0 hdiv : p ∣ k ⊢ orderOf (ζ ^ p) = k / p [PROOFSTEP] rw [orderOf_pow' _ hp, ← eq_orderOf h, Nat.gcd_eq_right hdiv] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k n a b : ℕ hn : 0 < n h : IsPrimitiveRoot ζ n hprod : n = a * b ⊢ IsPrimitiveRoot (ζ ^ a) b [PROOFSTEP] subst n [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k a b : ℕ hn : 0 < a * b h : IsPrimitiveRoot ζ (a * b) ⊢ IsPrimitiveRoot (ζ ^ a) b [PROOFSTEP] simp only [iff_def, ← pow_mul, h.pow_eq_one, eq_self_iff_true, true_and_iff] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k a b : ℕ hn : 0 < a * b h : IsPrimitiveRoot ζ (a * b) ⊢ ∀ (l : ℕ), ζ ^ (a * l) = 1 → b ∣ l [PROOFSTEP] intro l hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k a b : ℕ hn : 0 < a * b h : IsPrimitiveRoot ζ (a * b) l : ℕ hl : ζ ^ (a * l) = 1 ⊢ b ∣ l [PROOFSTEP] have ha0 : a ≠ 0 := left_ne_zero_of_mul hn.ne' [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k a b : ℕ hn : 0 < a * b h : IsPrimitiveRoot ζ (a * b) l : ℕ hl : ζ ^ (a * l) = 1 ha0 : a ≠ 0 ⊢ b ∣ l [PROOFSTEP] rw [← mul_dvd_mul_iff_left ha0] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k a b : ℕ hn : 0 < a * b h : IsPrimitiveRoot ζ (a * b) l : ℕ hl : ζ ^ (a * l) = 1 ha0 : a ≠ 0 ⊢ a * b ∣ a * l [PROOFSTEP] exact h.dvd_of_pow_eq_one _ hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot ζ k hf : Injective ↑f ⊢ ↑f ζ ^ k = 1 [PROOFSTEP] rw [← map_pow, h.pow_eq_one, _root_.map_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot ζ k hf : Injective ↑f ⊢ ∀ (l : ℕ), ↑f ζ ^ l = 1 → k ∣ l [PROOFSTEP] rw [h.eq_orderOf] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot ζ k hf : Injective ↑f ⊢ ∀ (l : ℕ), ↑f ζ ^ l = 1 → orderOf ζ ∣ l [PROOFSTEP] intro l hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot ζ k hf : Injective ↑f l : ℕ hl : ↑f ζ ^ l = 1 ⊢ orderOf ζ ∣ l [PROOFSTEP] rw [← map_pow, ← map_one f] at hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot ζ k hf : Injective ↑f l : ℕ hl : ↑f (ζ ^ l) = ↑f 1 ⊢ orderOf ζ ∣ l [PROOFSTEP] exact orderOf_dvd_of_pow_eq_one (hf hl) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f ⊢ ζ ^ k = 1 [PROOFSTEP] apply_fun f [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f ⊢ ↑f (ζ ^ k) = ↑f 1 [PROOFSTEP] rw [map_pow, _root_.map_one, h.pow_eq_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f ⊢ ∀ (l : ℕ), ζ ^ l = 1 → k ∣ l [PROOFSTEP] rw [h.eq_orderOf] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f ⊢ ∀ (l : ℕ), ζ ^ l = 1 → orderOf (↑f ζ) ∣ l [PROOFSTEP] intro l hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f l : ℕ hl : ζ ^ l = 1 ⊢ orderOf (↑f ζ) ∣ l [PROOFSTEP] apply_fun f at hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f l : ℕ hl : ↑f (ζ ^ l) = ↑f 1 ⊢ orderOf (↑f ζ) ∣ l [PROOFSTEP] rw [map_pow, _root_.map_one] at hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l✝ : ℕ ζ : M f : F h✝ : IsPrimitiveRoot ζ k inst✝ : MonoidHomClass F M N h : IsPrimitiveRoot (↑f ζ) k hf : Injective ↑f l : ℕ hl : ↑f ζ ^ l = 1 ⊢ orderOf (↑f ζ) ∣ l [PROOFSTEP] exact orderOf_dvd_of_pow_eq_one hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l✝ : ℕ M₀ : Type u_7 inst✝¹ : CommMonoidWithZero M₀ inst✝ : Nontrivial M₀ l : ℕ hl : 0 ^ l = 1 ⊢ 0 ∣ l [PROOFSTEP] simpa [zero_pow_eq, show ∀ p, ¬p → False ↔ p from @Classical.not_not] using hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k ⊢ ζ ^ ↑k = 1 [PROOFSTEP] rw [zpow_ofNat] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k ⊢ ζ ^ k = 1 [PROOFSTEP] exact h.pow_eq_one [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ ⊢ ζ ^ l = 1 ↔ ↑k ∣ l [PROOFSTEP] by_cases h0 : 0 ≤ l [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : 0 ≤ l ⊢ ζ ^ l = 1 ↔ ↑k ∣ l [PROOFSTEP] lift l to ℕ using h0 [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℕ ⊢ ζ ^ ↑l = 1 ↔ ↑k ∣ ↑l [PROOFSTEP] rw [zpow_ofNat] [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℕ ⊢ ζ ^ l = 1 ↔ ↑k ∣ ↑l [PROOFSTEP] norm_cast [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℕ ⊢ ζ ^ l = 1 ↔ k ∣ l [PROOFSTEP] exact h.pow_eq_one_iff_dvd l [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l ⊢ ζ ^ l = 1 ↔ ↑k ∣ l [PROOFSTEP] have : 0 ≤ -l := by simp only [not_le, neg_nonneg] at h0 ⊢; exact le_of_lt h0 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l ⊢ 0 ≤ -l [PROOFSTEP] simp only [not_le, neg_nonneg] at h0 ⊢ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : l < 0 ⊢ l ≤ 0 [PROOFSTEP] exact le_of_lt h0 [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l this : 0 ≤ -l ⊢ ζ ^ l = 1 ↔ ↑k ∣ l [PROOFSTEP] lift -l to ℕ using this with l' hl' [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l l' : ℕ hl' : ↑l' = -l ⊢ ζ ^ l = 1 ↔ ↑k ∣ l [PROOFSTEP] rw [← dvd_neg, ← hl'] [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l l' : ℕ hl' : ↑l' = -l ⊢ ζ ^ l = 1 ↔ ↑k ∣ ↑l' [PROOFSTEP] norm_cast [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℤ h0 : ¬0 ≤ l l' : ℕ hl' : ↑l' = -l ⊢ ζ ^ l = 1 ↔ k ∣ l' [PROOFSTEP] rw [← h.pow_eq_one_iff_dvd, ← inv_inj, ← zpow_neg, ← hl', zpow_ofNat, inv_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k ⊢ ζ⁻¹ ^ k = 1 [PROOFSTEP] simp only [h.pow_eq_one, inv_one, eq_self_iff_true, inv_pow] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k ⊢ ∀ (l : ℕ), ζ⁻¹ ^ l = 1 → k ∣ l [PROOFSTEP] intro l hl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℕ hl : ζ⁻¹ ^ l = 1 ⊢ k ∣ l [PROOFSTEP] apply h.dvd_of_pow_eq_one l [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l✝ : ℕ ζ : G h : IsPrimitiveRoot ζ k l : ℕ hl : ζ⁻¹ ^ l = 1 ⊢ ζ ^ l = 1 [PROOFSTEP] rw [← inv_inj, ← inv_pow, hl, inv_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G ⊢ IsPrimitiveRoot ζ⁻¹ k ↔ IsPrimitiveRoot ζ k [PROOFSTEP] refine' ⟨_, fun h => inv h⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G ⊢ IsPrimitiveRoot ζ⁻¹ k → IsPrimitiveRoot ζ k [PROOFSTEP] intro h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ⁻¹ k ⊢ IsPrimitiveRoot ζ k [PROOFSTEP] rw [← inv_inv ζ] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ⁻¹ k ⊢ IsPrimitiveRoot ζ⁻¹⁻¹ k [PROOFSTEP] exact inv h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] by_cases h0 : 0 ≤ i [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : 0 ≤ i ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] lift i to ℕ using h0 [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℕ hi : Int.gcd ↑i ↑k = 1 ⊢ IsPrimitiveRoot (ζ ^ ↑i) k [PROOFSTEP] rw [zpow_ofNat] [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℕ hi : Int.gcd ↑i ↑k = 1 ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] exact h.pow_of_coprime i hi [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] have : 0 ≤ -i := by simp only [not_le, neg_nonneg] at h0 ⊢; exact le_of_lt h0 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i ⊢ 0 ≤ -i [PROOFSTEP] simp only [not_le, neg_nonneg] at h0 ⊢ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : i < 0 ⊢ i ≤ 0 [PROOFSTEP] exact le_of_lt h0 [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i this : 0 ≤ -i ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] lift -i to ℕ using this with i' hi' [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i i' : ℕ hi' : ↑i' = -i ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] rw [← inv_iff, ← zpow_neg, ← hi', zpow_ofNat] [GOAL] case neg.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i i' : ℕ hi' : ↑i' = -i ⊢ IsPrimitiveRoot (ζ ^ i') k [PROOFSTEP] apply h.pow_of_coprime [GOAL] case neg.intro.hi M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ hi : Int.gcd i ↑k = 1 h0 : ¬0 ≤ i i' : ℕ hi' : ↑i' = -i ⊢ Nat.coprime i' k [PROOFSTEP] rw [Int.gcd, ← Int.natAbs_neg, ← hi'] at hi [GOAL] case neg.intro.hi M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : DivisionCommMonoid G k l : ℕ ζ : G h : IsPrimitiveRoot ζ k i : ℤ h0 : ¬0 ≤ i i' : ℕ hi : Nat.gcd (Int.natAbs ↑i') (Int.natAbs ↑k) = 1 hi' : ↑i' = -i ⊢ Nat.coprime i' k [PROOFSTEP] exact hi [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ primitiveRoots 1 R = {1} [PROOFSTEP] apply Finset.eq_singleton_iff_unique_mem.2 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ 1 ∈ primitiveRoots 1 R ∧ ∀ (x : R), x ∈ primitiveRoots 1 R → x = 1 [PROOFSTEP] constructor [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ 1 ∈ primitiveRoots 1 R [PROOFSTEP] simp only [IsPrimitiveRoot.one_right_iff, mem_primitiveRoots zero_lt_one] [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R ⊢ ∀ (x : R), x ∈ primitiveRoots 1 R → x = 1 [PROOFSTEP] intro x hx [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x ∈ primitiveRoots 1 R ⊢ x = 1 [PROOFSTEP] rw [mem_primitiveRoots zero_lt_one, IsPrimitiveRoot.one_right_iff] at hx [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R x : R hx : x = 1 ⊢ x = 1 [PROOFSTEP] exact hx [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n ⊢ NeZero ↑↑n [PROOFSTEP] let p := ringChar R [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R ⊢ NeZero ↑↑n [PROOFSTEP] have hfin := multiplicity.finite_nat_iff.2 ⟨CharP.char_ne_one R p, n.pos⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n ⊢ NeZero ↑↑n [PROOFSTEP] obtain ⟨m, hm⟩ := multiplicity.exists_eq_pow_mul_and_not_dvd hfin [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m ⊢ NeZero ↑↑n [PROOFSTEP] by_cases hp : p ∣ n [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n ⊢ NeZero ↑↑n [PROOFSTEP] obtain ⟨k, hk⟩ := Nat.exists_eq_succ_of_ne_zero (multiplicity.pos_of_dvd hfin hp).ne' [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k ⊢ NeZero ↑↑n [PROOFSTEP] haveI : NeZero p := NeZero.of_pos (Nat.pos_of_dvd_of_pos hp n.pos) [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this : NeZero p ⊢ NeZero ↑↑n [PROOFSTEP] haveI hpri : Fact p.Prime := CharP.char_is_prime_of_pos R p [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this : NeZero p hpri : Fact (Nat.Prime p) ⊢ NeZero ↑↑n [PROOFSTEP] have := hζ.pow_eq_one [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝ : NeZero p hpri : Fact (Nat.Prime p) this : ζ ^ ↑n = 1 ⊢ NeZero ↑↑n [PROOFSTEP] rw [hm.1, hk, pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at this [GOAL] case pos.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 ⊢ NeZero ↑↑n [PROOFSTEP] exfalso [GOAL] case pos.intro.h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 ⊢ False [PROOFSTEP] have hpos : 0 < p ^ k * m := by refine' mul_pos (pow_pos hpri.1.pos _) (Nat.pos_of_ne_zero fun h => _) have H := hm.1 rw [h] at H simp at H [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 ⊢ 0 < p ^ k * m [PROOFSTEP] refine' mul_pos (pow_pos hpri.1.pos _) (Nat.pos_of_ne_zero fun h => _) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 h : m = 0 ⊢ False [PROOFSTEP] have H := hm.1 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 h : m = 0 H : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ⊢ False [PROOFSTEP] rw [h] at H [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 h : m = 0 H : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * 0 ⊢ False [PROOFSTEP] simp at H [GOAL] case pos.intro.h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 hpos : 0 < p ^ k * m ⊢ False [PROOFSTEP] refine' hζ.pow_ne_one_of_pos_of_lt hpos _ (frobenius_inj R p this) [GOAL] case pos.intro.h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 hpos : 0 < p ^ k * m ⊢ p ^ k * m < ↑n [PROOFSTEP] rw [hm.1, hk, pow_succ, mul_assoc, mul_comm p] [GOAL] case pos.intro.h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : p ∣ ↑n k : ℕ hk : Part.get (multiplicity p ↑n) hfin = Nat.succ k this✝¹ : NeZero p hpri : Fact (Nat.Prime p) this✝ : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = 1 this : ↑(frobenius R p) (ζ ^ (p ^ k * m)) = ↑(frobenius R p) 1 hpos : 0 < p ^ k * m ⊢ p ^ k * m < p ^ k * m * p [PROOFSTEP] exact lt_mul_of_one_lt_right hpos hpri.1.one_lt [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ ζ : R inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ+ hζ : IsPrimitiveRoot ζ ↑n p : ℕ := ringChar R hfin : multiplicity.Finite p ↑n m : ℕ hm : ↑n = p ^ Part.get (multiplicity p ↑n) hfin * m ∧ ¬p ∣ m hp : ¬p ∣ ↑n ⊢ NeZero ↑↑n [PROOFSTEP] exact NeZero.of_not_dvd R hp [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ ζ = -1 [PROOFSTEP] apply (eq_or_eq_neg_of_sq_eq_sq ζ 1 _).resolve_left [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ ¬ζ = 1 [PROOFSTEP] rw [← pow_one ζ] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ ¬ζ ^ 1 = 1 [PROOFSTEP] apply h.pow_ne_one_of_pos_of_lt [GOAL] case h0 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ 0 < 1 [PROOFSTEP] decide [GOAL] case hl M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ 1 < 2 [PROOFSTEP] decide [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : NoZeroDivisors R ζ : R h : IsPrimitiveRoot ζ 2 ⊢ ζ ^ 2 = 1 ^ 2 [PROOFSTEP] simp only [h.pow_eq_one, one_pow] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k p : ℕ inst✝ : Nontrivial R h : CharP R p hp : p ≠ 2 ⊢ IsPrimitiveRoot (-1) 2 [PROOFSTEP] convert IsPrimitiveRoot.orderOf (-1 : R) [GOAL] case h.e'_4 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k p : ℕ inst✝ : Nontrivial R h : CharP R p hp : p ≠ 2 ⊢ 2 = orderOf (-1) [PROOFSTEP] rw [orderOf_neg_one, if_neg] [GOAL] case h.e'_4.hnc M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k p : ℕ inst✝ : Nontrivial R h : CharP R p hp : p ≠ 2 ⊢ ¬ringChar R = 2 [PROOFSTEP] rwa [ringChar.eq_iff.mpr h] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R hζ : IsPrimitiveRoot ζ k hk : 1 < k ⊢ ∑ i in range k, ζ ^ i = 0 [PROOFSTEP] refine' eq_zero_of_ne_zero_of_mul_left_eq_zero (sub_ne_zero_of_ne (hζ.ne_one hk).symm) _ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R hζ : IsPrimitiveRoot ζ k hk : 1 < k ⊢ (1 - ζ) * ∑ i in range k, ζ ^ i = 0 [PROOFSTEP] rw [mul_neg_geom_sum, hζ.pow_eq_one, sub_self] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R hζ : IsPrimitiveRoot ζ k hk : 1 < k ⊢ ζ ^ Nat.pred k = -∑ i in range (Nat.pred k), ζ ^ i [PROOFSTEP] rw [eq_neg_iff_add_eq_zero, add_comm, ← sum_range_succ, ← Nat.succ_eq_add_one, Nat.succ_pred_eq_of_pos (pos_of_gt hk), hζ.geom_sum_eq_zero hk] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0 [PROOFSTEP] simp only [zpow_zero] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ ↑Additive.ofMul { val := 1, property := (_ : (fun x => x ∈ Subgroup.zpowers ζ) 1) } = 0 [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ ∀ (x y : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } x + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } y [PROOFSTEP] intro i j [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i j : ℤ ⊢ ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j [PROOFSTEP] simp only [zpow_add] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i j : ℤ ⊢ ↑Additive.ofMul { val := ζ ^ i * ζ ^ j, property := (_ : (fun x => x ∈ Subgroup.zpowers ζ) (ζ ^ i * ζ ^ j)) } = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) } + ↑Additive.ofMul { val := ζ ^ j, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ j) } [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ hi : i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) ⊢ i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) } [PROOFSTEP] simp only [AddMonoidHom.mem_ker, CharP.int_cast_eq_zero_iff (ZMod k) k, AddMonoidHom.coe_mk, Int.coe_castAddHom] at hi ⊢ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ hi : ↑k ∣ i ⊢ ↑{ toFun := fun i => ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i = 0 [PROOFSTEP] obtain ⟨i, rfl⟩ := hi [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑{ toFun := fun i => ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (↑k * i) = 0 [PROOFSTEP] simp [zpow_mul, h.pow_eq_one, one_zpow, zpow_ofNat] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ Function.Bijective ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) [PROOFSTEP] constructor [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ Function.Injective ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) [PROOFSTEP] rw [injective_iff_map_eq_zero] [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ ∀ (a : ZMod k), ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) a = 0 → a = 0 [PROOFSTEP] intro i hi [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ZMod k hi : ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) i = 0 ⊢ i = 0 [PROOFSTEP] rw [Subtype.ext_iff] at hi [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ZMod k hi : ↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) i) = ↑0 ⊢ i = 0 [PROOFSTEP] have := (h.zpow_eq_one_iff_dvd _).mp hi [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ZMod k hi : ↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) i) = ↑0 this : ↑k ∣ ↑i ⊢ i = 0 [PROOFSTEP] rw [← (CharP.int_cast_eq_zero_iff (ZMod k) k _).mpr this, eq_comm] [GOAL] case left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ZMod k hi : ↑(↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) i) = ↑0 this : ↑k ∣ ↑i ⊢ ↑↑i = i [PROOFSTEP] exact ZMod.int_cast_rightInverse i [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k ⊢ Function.Surjective ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) [PROOFSTEP] rintro ⟨ξ, i, rfl⟩ [GOAL] case right.mk.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ∃ a, ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) a = { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) } [PROOFSTEP] refine' ⟨Int.castAddHom (ZMod k) i, _⟩ [GOAL] case right.mk.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) (↑(Int.castAddHom (ZMod k)) i) = { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) } [PROOFSTEP] rw [AddMonoidHom.liftOfRightInverse_comp_apply] [GOAL] case right.mk.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h✝ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑↑{ val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) } i = { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) } [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) } [PROOFSTEP] rw [zmodEquivZpowers, AddEquiv.ofBijective_apply] -- Porting note: Original proof didn't have `rw` [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑(↑(AddMonoidHom.liftOfRightInverse (Int.castAddHom (ZMod k)) ZMod.cast (_ : Function.RightInverse ZMod.cast Int.cast)) { val := { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }, property := (_ : ∀ (i : ℤ), i ∈ AddMonoidHom.ker (Int.castAddHom (ZMod k)) → i ∈ AddMonoidHom.ker { toZeroHom := { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) }, map_add' := (_ : ∀ (i j : ℤ), ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } (i + j) = ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } i + ZeroHom.toFun { toFun := fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }, map_zero' := (_ : (fun i => ↑Additive.ofMul { val := (fun x x_1 => x ^ x_1) ζ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = (fun x x_1 => x ^ x_1) ζ i) }) 0 = 0) } j) }) }) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) } [PROOFSTEP] exact AddMonoidHom.liftOfRightInverse_comp_apply _ _ ZMod.int_cast_rightInverse _ _ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℕ ⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) } [PROOFSTEP] have : (i : ZMod k) = (i : ℤ) := by norm_cast [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℕ ⊢ ↑i = ↑↑i [PROOFSTEP] norm_cast [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℕ this : ↑i = ↑↑i ⊢ ↑(zmodEquivZpowers h) ↑i = ↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) } [PROOFSTEP] simp only [this, zmodEquivZpowers_apply_coe_int, zpow_ofNat] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℤ ⊢ ↑(AddEquiv.symm (zmodEquivZpowers h)) (↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }) = ↑i [PROOFSTEP] rw [← h.zmodEquivZpowers.symm_apply_apply i, zmodEquivZpowers_apply_coe_int] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N inst✝¹ : DivisionCommMonoid G k l : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℕ ⊢ ↑(AddEquiv.symm (zmodEquivZpowers h)) (↑Additive.ofMul { val := ζ ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) ζ y = ζ ^ i) }) = ↑i [PROOFSTEP] rw [← h.zmodEquivZpowers.symm_apply_apply i, zmodEquivZpowers_apply_coe_nat] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k ⊢ Subgroup.zpowers ζ = rootsOfUnity k R [PROOFSTEP] apply SetLike.coe_injective [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k ⊢ ↑(Subgroup.zpowers ζ) = ↑(rootsOfUnity k R) [PROOFSTEP] haveI F : Fintype (Subgroup.zpowers ζ) := Fintype.ofEquiv _ h.zmodEquivZpowers.toEquiv [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F✝ : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k F : Fintype { x // x ∈ Subgroup.zpowers ζ } ⊢ ↑(Subgroup.zpowers ζ) = ↑(rootsOfUnity k R) [PROOFSTEP] refine' @Set.eq_of_subset_of_card_le Rˣ (Subgroup.zpowers ζ) (rootsOfUnity k R) F (rootsOfUnity.fintype R k) (Subgroup.zpowers_le_of_mem <| show ζ ∈ rootsOfUnity k R from h.pow_eq_one) _ [GOAL] case a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F✝ : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k F : Fintype { x // x ∈ Subgroup.zpowers ζ } ⊢ Fintype.card ↑↑(rootsOfUnity k R) ≤ Fintype.card ↑↑(Subgroup.zpowers ζ) [PROOFSTEP] calc Fintype.card (rootsOfUnity k R) ≤ k := card_rootsOfUnity R k _ = Fintype.card (ZMod k) := (ZMod.card k).symm _ = Fintype.card (Subgroup.zpowers ζ) := Fintype.card_congr h.zmodEquivZpowers.toEquiv [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k hξ : ξ ∈ rootsOfUnity k R ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ [PROOFSTEP] obtain ⟨n, rfl⟩ : ∃ n : ℤ, ζ ^ n = ξ := by rwa [← h.zpowers_eq] at hξ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k hξ : ξ ∈ rootsOfUnity k R ⊢ ∃ n, ζ ^ n = ξ [PROOFSTEP] rwa [← h.zpowers_eq] at hξ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n [PROOFSTEP] have hk0 : (0 : ℤ) < k := by exact_mod_cast k.pos [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R ⊢ 0 < ↑↑k [PROOFSTEP] exact_mod_cast k.pos [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n [PROOFSTEP] let i := n % k [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n [PROOFSTEP] have hi0 : 0 ≤ i := Int.emod_nonneg _ (ne_of_gt hk0) [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k hi0 : 0 ≤ i ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n [PROOFSTEP] lift i to ℕ using hi0 with i₀ hi₀ [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k i₀ : ℕ hi₀ : ↑i₀ = i ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ζ ^ n [PROOFSTEP] refine' ⟨i₀, _, _⟩ [GOAL] case intro.intro.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k i₀ : ℕ hi₀ : ↑i₀ = i ⊢ i₀ < ↑k [PROOFSTEP] zify [GOAL] case intro.intro.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k i₀ : ℕ hi₀ : ↑i₀ = i ⊢ ↑i₀ < ↑↑k [PROOFSTEP] rw [hi₀] [GOAL] case intro.intro.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k i₀ : ℕ hi₀ : ↑i₀ = i ⊢ i < ↑↑k [PROOFSTEP] exact Int.emod_lt_of_pos _ hk0 [GOAL] case intro.intro.refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k n : ℤ hξ : ζ ^ n ∈ rootsOfUnity k R hk0 : 0 < ↑↑k i : ℤ := n % ↑↑k i₀ : ℕ hi₀ : ↑i₀ = i ⊢ ζ ^ i₀ = ζ ^ n [PROOFSTEP] rw [← zpow_ofNat, hi₀, ← Int.emod_add_ediv n k, zpow_add, zpow_mul, h.zpow_eq_one, one_zpow, mul_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ ξ : R h : IsPrimitiveRoot ζ k hξ : ξ ^ k = 1 h0 : 0 < k ⊢ ∃ i, i < k ∧ ζ ^ i = ξ [PROOFSTEP] lift ζ to Rˣ using h.isUnit h0 [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ξ : R hξ : ξ ^ k = 1 h0 : 0 < k ζ : Rˣ h : IsPrimitiveRoot (↑ζ) k ⊢ ∃ i, i < k ∧ ↑ζ ^ i = ξ [PROOFSTEP] lift ξ to Rˣ using isUnit_ofPowEqOne hξ h0.ne' [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ h0 : 0 < k ζ : Rˣ h : IsPrimitiveRoot (↑ζ) k ξ : Rˣ hξ : ↑ξ ^ k = 1 ⊢ ∃ i, i < k ∧ ↑ζ ^ i = ↑ξ [PROOFSTEP] lift k to ℕ+ using h0 [GOAL] case intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ ξ : Rˣ k : ℕ+ h : IsPrimitiveRoot ↑ζ ↑k hξ : ↑ξ ^ ↑k = 1 ⊢ ∃ i, i < ↑k ∧ ↑ζ ^ i = ↑ξ [PROOFSTEP] simp only [← Units.val_pow_eq_pow_val, ← Units.ext_iff] [GOAL] case intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ ξ : Rˣ k : ℕ+ h : IsPrimitiveRoot ↑ζ ↑k hξ : ↑ξ ^ ↑k = 1 ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ [PROOFSTEP] rw [coe_units_iff] at h [GOAL] case intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ ξ : Rˣ k : ℕ+ h : IsPrimitiveRoot ζ ↑k hξ : ↑ξ ^ ↑k = 1 ⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ [PROOFSTEP] apply h.eq_pow_of_mem_rootsOfUnity [GOAL] case intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ ξ : Rˣ k : ℕ+ h : IsPrimitiveRoot ζ ↑k hξ : ↑ξ ^ ↑k = 1 ⊢ ξ ∈ rootsOfUnity k R [PROOFSTEP] rw [mem_rootsOfUnity, Units.ext_iff, Units.val_pow_eq_pow_val, hξ, Units.val_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k ⊢ IsPrimitiveRoot ξ ↑k ↔ ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k ⊢ IsPrimitiveRoot ξ ↑k → ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ [PROOFSTEP] intro hξ [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k hξ : IsPrimitiveRoot ξ ↑k ⊢ ∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ [PROOFSTEP] obtain ⟨i, hik, rfl⟩ := h.eq_pow_of_mem_rootsOfUnity hξ.pow_eq_one [GOAL] case mp.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k i : ℕ hik : i < ↑k hξ : IsPrimitiveRoot (ζ ^ i) ↑k ⊢ ∃ i_1, i_1 < ↑k ∧ Nat.coprime i_1 ↑k ∧ ζ ^ i_1 = ζ ^ i [PROOFSTEP] rw [h.pow_iff_coprime k.pos] at hξ [GOAL] case mp.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k i : ℕ hik : i < ↑k hξ : Nat.coprime i ↑k ⊢ ∃ i_1, i_1 < ↑k ∧ Nat.coprime i_1 ↑k ∧ ζ ^ i_1 = ζ ^ i [PROOFSTEP] exact ⟨i, hik, hξ, rfl⟩ [GOAL] case mpr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ ξ : Rˣ h : IsPrimitiveRoot ζ ↑k ⊢ (∃ i, i < ↑k ∧ Nat.coprime i ↑k ∧ ζ ^ i = ξ) → IsPrimitiveRoot ξ ↑k [PROOFSTEP] rintro ⟨i, -, hi, rfl⟩ [GOAL] case mpr.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑k i : ℕ hi : Nat.coprime i ↑k ⊢ IsPrimitiveRoot (ζ ^ i) ↑k [PROOFSTEP] exact h.pow_of_coprime i hi [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ ξ : R h : IsPrimitiveRoot ζ k h0 : 0 < k ⊢ IsPrimitiveRoot ξ k ↔ ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ ξ : R h : IsPrimitiveRoot ζ k h0 : 0 < k ⊢ IsPrimitiveRoot ξ k → ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ [PROOFSTEP] intro hξ [GOAL] case mp M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ ξ : R h : IsPrimitiveRoot ζ k h0 : 0 < k hξ : IsPrimitiveRoot ξ k ⊢ ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ [PROOFSTEP] obtain ⟨i, hik, rfl⟩ := h.eq_pow_of_pow_eq_one hξ.pow_eq_one h0 [GOAL] case mp.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ : R h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hik : i < k hξ : IsPrimitiveRoot (ζ ^ i) k ⊢ ∃ i_1, i_1 < k ∧ Nat.coprime i_1 k ∧ ζ ^ i_1 = ζ ^ i [PROOFSTEP] rw [h.pow_iff_coprime h0] at hξ [GOAL] case mp.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ : R h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hik : i < k hξ : Nat.coprime i k ⊢ ∃ i_1, i_1 < k ∧ Nat.coprime i_1 k ∧ ζ ^ i_1 = ζ ^ i [PROOFSTEP] exact ⟨i, hik, hξ, rfl⟩ [GOAL] case mpr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ ξ : R h : IsPrimitiveRoot ζ k h0 : 0 < k ⊢ (∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ) → IsPrimitiveRoot ξ k [PROOFSTEP] rintro ⟨i, -, hi, rfl⟩ [GOAL] case mpr.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R k : ℕ ζ : R h : IsPrimitiveRoot ζ k h0 : 0 < k i : ℕ hi : Nat.coprime i k ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] exact h.pow_of_coprime i hi [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k inst✝ : IsDomain R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] let e := h.zmodEquivZpowers [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k inst✝ : IsDomain R n : ℕ+ h : IsPrimitiveRoot ζ ↑n e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] haveI F : Fintype (Subgroup.zpowers ζ) := Fintype.ofEquiv _ e.toEquiv [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F✝ : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k inst✝ : IsDomain R n : ℕ+ h : IsPrimitiveRoot ζ ↑n e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h F : Fintype { x // x ∈ Subgroup.zpowers ζ } ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] calc Fintype.card (rootsOfUnity n R) = Fintype.card (Subgroup.zpowers ζ) := Fintype.card_congr <| by rw [h.zpowers_eq] _ = Fintype.card (ZMod n) := (Fintype.card_congr e.toEquiv.symm) _ = n := ZMod.card n [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F✝ : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ : Rˣ h✝ : IsPrimitiveRoot ζ k inst✝ : IsDomain R n : ℕ+ h : IsPrimitiveRoot ζ ↑n e : ZMod ↑n ≃+ Additive { x // x ∈ Subgroup.zpowers ζ } := zmodEquivZpowers h F : Fintype { x // x ∈ Subgroup.zpowers ζ } ⊢ { x // x ∈ rootsOfUnity n R } ≃ { x // x ∈ Subgroup.zpowers ζ } [PROOFSTEP] rw [h.zpowers_eq] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] obtain ⟨ζ, hζ⟩ := h.isUnit n.pos [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝¹ : Rˣ h✝ : IsPrimitiveRoot ζ✝¹ k inst✝ : IsDomain R ζ✝ : R n : ℕ+ h : IsPrimitiveRoot ζ✝ ↑n ζ : Rˣ hζ : ↑ζ = ζ✝ ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] rw [← hζ, IsPrimitiveRoot.coe_units_iff] at h [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝¹ : Rˣ h✝ : IsPrimitiveRoot ζ✝¹ k inst✝ : IsDomain R ζ✝ : R n : ℕ+ ζ : Rˣ h : IsPrimitiveRoot ζ ↑n hζ : ↑ζ = ζ✝ ⊢ Fintype.card { x // x ∈ rootsOfUnity n R } = ↑n [PROOFSTEP] exact h.card_rootsOfUnity' [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n ⊢ ↑Multiset.card (nthRoots n 1) = n [PROOFSTEP] cases' Nat.eq_zero_or_pos n with hzero hpos [GOAL] case inl M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hzero : n = 0 ⊢ ↑Multiset.card (nthRoots n 1) = n [PROOFSTEP] simp only [hzero, Multiset.card_zero, nthRoots_zero] [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ ↑Multiset.card (nthRoots n 1) = n [PROOFSTEP] rw [eq_iff_le_not_lt] [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ ↑Multiset.card (nthRoots n 1) ≤ n ∧ ¬↑Multiset.card (nthRoots n 1) < n [PROOFSTEP] use card_nthRoots n 1 [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ ¬↑Multiset.card (nthRoots n 1) < n [PROOFSTEP] rw [not_lt] [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ n ≤ ↑Multiset.card (nthRoots n 1) [PROOFSTEP] have hcard : Fintype.card { x // x ∈ nthRoots n (1 : R) } ≤ Multiset.card (nthRoots n (1 : R)).attach := Multiset.card_le_of_le (Multiset.dedup_le _) [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 hcard : Fintype.card { x // x ∈ nthRoots n 1 } ≤ ↑Multiset.card (Multiset.attach (nthRoots n 1)) ⊢ n ≤ ↑Multiset.card (nthRoots n 1) [PROOFSTEP] rw [Multiset.card_attach] at hcard [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 hcard : Fintype.card { x // x ∈ nthRoots n 1 } ≤ ↑Multiset.card (nthRoots n 1) ⊢ n ≤ ↑Multiset.card (nthRoots n 1) [PROOFSTEP] rw [← PNat.toPNat'_coe hpos] at hcard h ⊢ [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ ↑(Nat.toPNat' n) hpos : n > 0 hcard : Fintype.card { x // x ∈ nthRoots (↑(Nat.toPNat' n)) 1 } ≤ ↑Multiset.card (nthRoots (↑(Nat.toPNat' n)) 1) ⊢ ↑(Nat.toPNat' n) ≤ ↑Multiset.card (nthRoots (↑(Nat.toPNat' n)) 1) [PROOFSTEP] set m := Nat.toPNat' n [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ hpos : n > 0 m : ℕ+ := Nat.toPNat' n h : IsPrimitiveRoot ζ ↑m hcard : Fintype.card { x // x ∈ nthRoots (↑m) 1 } ≤ ↑Multiset.card (nthRoots (↑m) 1) ⊢ ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1) [PROOFSTEP] rw [← Fintype.card_congr (rootsOfUnityEquivNthRoots R m), card_rootsOfUnity h] at hcard [GOAL] case right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ hpos : n > 0 m : ℕ+ := Nat.toPNat' n h : IsPrimitiveRoot ζ ↑m hcard : ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1) ⊢ ↑m ≤ ↑Multiset.card (nthRoots (↑m) 1) [PROOFSTEP] exact hcard [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n ⊢ Multiset.Nodup (nthRoots n 1) [PROOFSTEP] cases' Nat.eq_zero_or_pos n with hzero hpos [GOAL] case inl M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hzero : n = 0 ⊢ Multiset.Nodup (nthRoots n 1) [PROOFSTEP] simp only [hzero, Multiset.nodup_zero, nthRoots_zero] [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ Multiset.Nodup (nthRoots n 1) [PROOFSTEP] apply (Multiset.dedup_eq_self (α := R)).1 [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ Multiset.dedup (nthRoots n 1) = nthRoots n 1 [PROOFSTEP] rw [eq_iff_le_not_lt] [GOAL] case inr M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ Multiset.dedup (nthRoots n 1) ≤ nthRoots n 1 ∧ ¬Multiset.dedup (nthRoots n 1) < nthRoots n 1 [PROOFSTEP] constructor [GOAL] case inr.left M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ Multiset.dedup (nthRoots n 1) ≤ nthRoots n 1 [PROOFSTEP] exact Multiset.dedup_le (nthRoots n (1 : R)) [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ⊢ ¬Multiset.dedup (nthRoots n 1) < nthRoots n 1 [PROOFSTEP] by_contra ha [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : Multiset.dedup (nthRoots n 1) < nthRoots n 1 ⊢ False [PROOFSTEP] replace ha := Multiset.card_lt_of_lt ha [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < ↑Multiset.card (nthRoots n 1) ⊢ False [PROOFSTEP] rw [card_nthRoots h] at ha [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n ⊢ False [PROOFSTEP] have hrw : Multiset.card (nthRoots n (1 : R)).dedup = Fintype.card { x // x ∈ nthRoots n (1 : R) } := by set fs := (⟨(nthRoots n (1 : R)).dedup, Multiset.nodup_dedup _⟩ : Finset R) rw [← Finset.card_mk, Fintype.card_of_subtype fs _] intro x simp only [Multiset.mem_dedup, Finset.mem_mk] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n ⊢ ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 } [PROOFSTEP] set fs := (⟨(nthRoots n (1 : R)).dedup, Multiset.nodup_dedup _⟩ : Finset R) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) } ⊢ ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 } [PROOFSTEP] rw [← Finset.card_mk, Fintype.card_of_subtype fs _] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) } ⊢ ∀ (x : R), x ∈ fs ↔ x ∈ nthRoots n 1 [PROOFSTEP] intro x [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n fs : Finset R := { val := Multiset.dedup (nthRoots n 1), nodup := (_ : Multiset.Nodup (Multiset.dedup (nthRoots n 1))) } x : R ⊢ x ∈ fs ↔ x ∈ nthRoots n 1 [PROOFSTEP] simp only [Multiset.mem_dedup, Finset.mem_mk] [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) < n hrw : ↑Multiset.card (Multiset.dedup (nthRoots n 1)) = Fintype.card { x // x ∈ nthRoots n 1 } ⊢ False [PROOFSTEP] rw [← PNat.toPNat'_coe hpos] at h hrw ha [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ ↑(Nat.toPNat' n) hpos : n > 0 ha : ↑Multiset.card (Multiset.dedup (nthRoots (↑(Nat.toPNat' n)) 1)) < ↑(Nat.toPNat' n) hrw : ↑Multiset.card (Multiset.dedup (nthRoots (↑(Nat.toPNat' n)) 1)) = Fintype.card { x // x ∈ nthRoots (↑(Nat.toPNat' n)) 1 } ⊢ False [PROOFSTEP] set m := Nat.toPNat' n [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ hpos : n > 0 m : ℕ+ := Nat.toPNat' n h : IsPrimitiveRoot ζ ↑m ha : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) < ↑m hrw : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) = Fintype.card { x // x ∈ nthRoots (↑m) 1 } ⊢ False [PROOFSTEP] rw [hrw, ← Fintype.card_congr (rootsOfUnityEquivNthRoots R m), card_rootsOfUnity h] at ha [GOAL] case inr.right M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ hpos : n > 0 m : ℕ+ := Nat.toPNat' n h : IsPrimitiveRoot ζ ↑m ha : ↑m < ↑m hrw : ↑Multiset.card (Multiset.dedup (nthRoots (↑m) 1)) = Fintype.card { x // x ∈ nthRoots (↑m) 1 } ⊢ False [PROOFSTEP] exact Nat.lt_asymm ha ha [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n ⊢ card (nthRootsFinset n R) = n [PROOFSTEP] rw [nthRootsFinset, ← Multiset.toFinset_eq (nthRoots_nodup h), card_mk, h.card_nthRoots] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k ⊢ card (primitiveRoots k R) = φ k [PROOFSTEP] by_cases h0 : k = 0 [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : k = 0 ⊢ card (primitiveRoots k R) = φ k [PROOFSTEP] simp [h0] [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ card (primitiveRoots k R) = φ k [PROOFSTEP] symm [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ φ k = card (primitiveRoots k R) [PROOFSTEP] refine' Finset.card_congr (fun i _ => ζ ^ i) _ _ _ [GOAL] case neg.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (a : ℕ) (ha : a ∈ filter (Nat.coprime k) (range k)), (fun i x => ζ ^ i) a ha ∈ primitiveRoots k R [PROOFSTEP] simp only [true_and_iff, and_imp, mem_filter, mem_range, mem_univ] [GOAL] case neg.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (a : ℕ), a < k → Nat.coprime k a → ζ ^ a ∈ primitiveRoots k R [PROOFSTEP] rintro i - hi [GOAL] case neg.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 i : ℕ hi : Nat.coprime k i ⊢ ζ ^ i ∈ primitiveRoots k R [PROOFSTEP] rw [mem_primitiveRoots (Nat.pos_of_ne_zero h0)] [GOAL] case neg.refine'_1 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 i : ℕ hi : Nat.coprime k i ⊢ IsPrimitiveRoot (ζ ^ i) k [PROOFSTEP] exact h.pow_of_coprime i hi.symm [GOAL] case neg.refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (a b : ℕ) (ha : a ∈ filter (Nat.coprime k) (range k)) (hb : b ∈ filter (Nat.coprime k) (range k)), (fun i x => ζ ^ i) a ha = (fun i x => ζ ^ i) b hb → a = b [PROOFSTEP] simp only [true_and_iff, and_imp, mem_filter, mem_range, mem_univ] [GOAL] case neg.refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (a b : ℕ), a < k → Nat.coprime k a → b < k → Nat.coprime k b → ζ ^ a = ζ ^ b → a = b [PROOFSTEP] rintro i j hi - hj - H [GOAL] case neg.refine'_2 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 i j : ℕ hi : i < k hj : j < k H : ζ ^ i = ζ ^ j ⊢ i = j [PROOFSTEP] exact h.pow_inj hi hj H [GOAL] case neg.refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (b : R), b ∈ primitiveRoots k R → ∃ a ha, (fun i x => ζ ^ i) a ha = b [PROOFSTEP] simp only [exists_prop, true_and_iff, mem_filter, mem_range, mem_univ] [GOAL] case neg.refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ⊢ ∀ (b : R), b ∈ primitiveRoots k R → ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = b [PROOFSTEP] intro ξ hξ [GOAL] case neg.refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ξ : R hξ : ξ ∈ primitiveRoots k R ⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ [PROOFSTEP] rw [mem_primitiveRoots (Nat.pos_of_ne_zero h0), h.isPrimitiveRoot_iff (Nat.pos_of_ne_zero h0)] at hξ [GOAL] case neg.refine'_3 M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ξ : R hξ : ∃ i, i < k ∧ Nat.coprime i k ∧ ζ ^ i = ξ ⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ [PROOFSTEP] rcases hξ with ⟨i, hin, hi, H⟩ [GOAL] case neg.refine'_3.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 ξ : R i : ℕ hin : i < k hi : Nat.coprime i k H : ζ ^ i = ξ ⊢ ∃ a, (a < k ∧ Nat.coprime k a) ∧ ζ ^ a = ξ [PROOFSTEP] exact ⟨i, ⟨hin, hi.symm⟩, H⟩ [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ nthRootsFinset (↑n) R = Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R [PROOFSTEP] symm [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) = nthRootsFinset (↑n) R [PROOFSTEP] apply Finset.eq_of_subset_of_card_le [GOAL] case h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) ⊆ nthRootsFinset (↑n) R [PROOFSTEP] intro x [GOAL] case h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R ⊢ (x ∈ Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) → x ∈ nthRootsFinset (↑n) R [PROOFSTEP] simp only [nthRootsFinset, ← Multiset.toFinset_eq (nthRoots_nodup h), exists_prop, Finset.mem_biUnion, Finset.mem_filter, Finset.mem_range, mem_nthRoots, Finset.mem_mk, Nat.mem_divisors, and_true_iff, Ne.def, PNat.ne_zero, PNat.pos, not_false_iff] [GOAL] case h M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R ⊢ (∃ a, a ∣ ↑n ∧ x ∈ primitiveRoots a R) → x ^ ↑n = 1 [PROOFSTEP] rintro ⟨a, ⟨d, hd⟩, ha⟩ [GOAL] case h.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a : ℕ ha : x ∈ primitiveRoots a R d : ℕ hd : ↑n = a * d ⊢ x ^ ↑n = 1 [PROOFSTEP] have hazero : 0 < a := by contrapose! hd with ha0 simp_all only [nonpos_iff_eq_zero, zero_mul] exact n.ne_zero [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a : ℕ ha : x ∈ primitiveRoots a R d : ℕ hd : ↑n = a * d ⊢ 0 < a [PROOFSTEP] contrapose! hd with ha0 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a : ℕ ha : x ∈ primitiveRoots a R d : ℕ ha0 : a ≤ 0 ⊢ ↑n ≠ a * d [PROOFSTEP] simp_all only [nonpos_iff_eq_zero, zero_mul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a d : ℕ ha : x ∈ primitiveRoots 0 R ha0 : a = 0 ⊢ ↑n ≠ 0 [PROOFSTEP] exact n.ne_zero [GOAL] case h.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a : ℕ ha : x ∈ primitiveRoots a R d : ℕ hd : ↑n = a * d hazero : 0 < a ⊢ x ^ ↑n = 1 [PROOFSTEP] rw [mem_primitiveRoots hazero] at ha [GOAL] case h.intro.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n x : R a : ℕ ha : IsPrimitiveRoot x a d : ℕ hd : ↑n = a * d hazero : 0 < a ⊢ x ^ ↑n = 1 [PROOFSTEP] rw [hd, pow_mul, ha.pow_eq_one, one_pow] [GOAL] case h₂ M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ card (nthRootsFinset (↑n) R) ≤ card (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) [PROOFSTEP] apply le_of_eq [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ card (nthRootsFinset (↑n) R) = card (Finset.biUnion (Nat.divisors ↑n) fun i => primitiveRoots i R) [PROOFSTEP] rw [h.card_nthRootsFinset, Finset.card_biUnion] [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ ↑n = ∑ u in Nat.divisors ↑n, card (primitiveRoots u R) [PROOFSTEP] nth_rw 1 [← Nat.sum_totient n] [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ Finset.sum (Nat.divisors ↑n) φ = ∑ u in Nat.divisors ↑n, card (primitiveRoots u R) [PROOFSTEP] refine' sum_congr rfl _ [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ ∀ (x : ℕ), x ∈ Nat.divisors ↑n → φ x = card (primitiveRoots x R) [PROOFSTEP] simp only [Nat.mem_divisors] [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ ∀ (x : ℕ), x ∣ ↑n ∧ ↑n ≠ 0 → φ x = card (primitiveRoots x R) [PROOFSTEP] rintro k ⟨⟨d, hd⟩, -⟩ [GOAL] case h₂.a.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n k d : ℕ hd : ↑n = k * d ⊢ φ k = card (primitiveRoots k R) [PROOFSTEP] rw [mul_comm] at hd [GOAL] case h₂.a.intro.intro M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k✝ l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k✝ inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n k d : ℕ hd : ↑n = d * k ⊢ φ k = card (primitiveRoots k R) [PROOFSTEP] rw [(h.pow n.pos hd).card_primitiveRoots] [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n ⊢ ∀ (x : ℕ), x ∈ Nat.divisors ↑n → ∀ (y : ℕ), y ∈ Nat.divisors ↑n → x ≠ y → Disjoint (primitiveRoots x R) (primitiveRoots y R) [PROOFSTEP] intro i _ j _ hdiff [GOAL] case h₂.a M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ+ h : IsPrimitiveRoot ζ ↑n i : ℕ a✝¹ : i ∈ Nat.divisors ↑n j : ℕ a✝ : j ∈ Nat.divisors ↑n hdiff : i ≠ j ⊢ Disjoint (primitiveRoots i R) (primitiveRoots j R) [PROOFSTEP] exact disjoint hdiff [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n ⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R [PROOFSTEP] by_cases hn : n = 0 [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hn : n = 0 ⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R [PROOFSTEP] simp [hn] [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁴ : CommMonoid M inst✝³ : CommMonoid N inst✝² : DivisionCommMonoid G k l : ℕ inst✝¹ : CommRing R ζ✝ : Rˣ h✝ : IsPrimitiveRoot ζ✝ k inst✝ : IsDomain R ζ : R n : ℕ h : IsPrimitiveRoot ζ n hn : ¬n = 0 ⊢ nthRootsFinset n R = Finset.biUnion (Nat.divisors n) fun i => primitiveRoots i R [PROOFSTEP] exact nthRoots_one_eq_biUnion_primitiveRoots' (n := ⟨n, Nat.pos_of_ne_zero hn⟩) h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ⊢ orderOf μ' = ↑n [PROOFSTEP] rw [hμ.eq_orderOf, ← hμ.toRootsOfUnity_coe_val, orderOf_units, orderOf_subgroup] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n ⊢ (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1 [PROOFSTEP] dsimp only [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n ⊢ ↑(Exists.choose (_ : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) = 1 [PROOFSTEP] generalize_proofs h1 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m ⊢ ↑(Exists.choose h1) = 1 [PROOFSTEP] have h := h1.choose_spec [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1 ⊢ ↑(Exists.choose h1) = 1 [PROOFSTEP] dsimp only [AlgEquiv.one_apply, AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.coe_toRingHom, AlgEquiv.coe_ringEquiv] at * [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1 ⊢ ↑(Exists.choose h1) = 1 [PROOFSTEP] replace h : μ' = μ' ^ h1.choose := rootsOfUnity.coe_injective (by simpa only [rootsOfUnity.coe_pow] using h) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m h : ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h1 ⊢ (fun x => ↑↑x) μ' = (fun x => ↑↑x) (μ' ^ Exists.choose h1) [PROOFSTEP] simpa only [rootsOfUnity.coe_pow] using h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m h : μ' = μ' ^ Exists.choose h1 ⊢ ↑(Exists.choose h1) = 1 [PROOFSTEP] nth_rw 1 [← pow_one μ'] at h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n h1 : ∃ m, ↑↑1 ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m h : μ' ^ 1 = μ' ^ Exists.choose h1 ⊢ ↑(Exists.choose h1) = 1 [PROOFSTEP] rw [← Nat.cast_one, ZMod.nat_cast_eq_nat_cast_iff, ← ho, ← pow_eq_pow_iff_modEq μ', h] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n ⊢ ∀ (x y : S ≃ₐ[R] S), OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } x * OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } y [PROOFSTEP] intro x y [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S ⊢ OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } x * OneHom.toFun { toFun := fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m)), map_one' := (_ : (fun σ => ↑(Exists.choose (_ : ∃ m, ↑↑σ ↑↑μ' = ↑↑μ' ^ m))) 1 = 1) } y [PROOFSTEP] dsimp only [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S ⊢ ↑(Exists.choose (_ : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) = ↑(Exists.choose (_ : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) * ↑(Exists.choose (_ : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) [PROOFSTEP] generalize_proofs hxy' hx' hy' [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] have hxy := hxy'.choose_spec [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] have hx := hx'.choose_spec [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy' hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] have hy := hy'.choose_spec [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf μ' = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy' hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] dsimp only [AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toRingHom_eq_coe, RingEquiv.coe_toRingHom, AlgEquiv.coe_ringEquiv, AlgEquiv.mul_apply] at * [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hxy : ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hxy' hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] replace hxy : x (((μ' : Sˣ) : S) ^ hy'.choose) = ((μ' : Sˣ) : S) ^ hxy'.choose := hy ▸ hxy [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : ↑x (↑↑μ' ^ Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] rw [x.map_pow] at hxy [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : ↑x ↑↑μ' ^ Exists.choose hy' = ↑↑μ' ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] replace hxy : (((μ' : Sˣ) : S) ^ hx'.choose) ^ hy'.choose = ((μ' : Sˣ) : S) ^ hxy'.choose := hx ▸ hxy [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : (↑↑μ' ^ Exists.choose hx') ^ Exists.choose hy' = ↑↑μ' ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] rw [← pow_mul] at hxy [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : ↑↑μ' ^ (Exists.choose hx' * Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] replace hxy : μ' ^ (hx'.choose * hy'.choose) = μ' ^ hxy'.choose := rootsOfUnity.coe_injective (by simpa only [rootsOfUnity.coe_pow] using hxy) [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : ↑↑μ' ^ (Exists.choose hx' * Exists.choose hy') = ↑↑μ' ^ Exists.choose hxy' ⊢ (fun x => ↑↑x) (μ' ^ (Exists.choose hx' * Exists.choose hy')) = (fun x => ↑↑x) (μ' ^ Exists.choose hxy') [PROOFSTEP] simpa only [rootsOfUnity.coe_pow] using hxy [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S μ' : { x // x ∈ rootsOfUnity n S } := toRootsOfUnity hμ ho : orderOf (toRootsOfUnity hμ) = ↑n x y : S ≃ₐ[R] S hxy' : ∃ m, ↑↑(x * y) ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx' : ∃ m, ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hy' : ∃ m, ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m hx : ↑↑x ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hx' hy : ↑↑y ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose hy' hxy : μ' ^ (Exists.choose hx' * Exists.choose hy') = μ' ^ Exists.choose hxy' ⊢ ↑(Exists.choose hxy') = ↑(Exists.choose hx') * ↑(Exists.choose hy') [PROOFSTEP] rw [← Nat.cast_mul, ZMod.nat_cast_eq_nat_cast_iff, ← ho, ← pow_eq_pow_iff_modEq μ', hxy] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S ⊢ μ ^ ZMod.val ↑(↑(autToPow R hμ) f) = ↑f μ [PROOFSTEP] rw [IsPrimitiveRoot.coe_autToPow_apply] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S ⊢ μ ^ ZMod.val ↑(Exists.choose (_ : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m)) = ↑f μ [PROOFSTEP] generalize_proofs h [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m ⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ [PROOFSTEP] have := h.choose_spec [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ [PROOFSTEP] dsimp only [AlgEquiv.toAlgHom_eq_coe, AlgEquiv.coe_algHom] at this [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ μ ^ ZMod.val ↑(Exists.choose h) = ↑f μ [PROOFSTEP] refine' (_ : ((hμ.toRootsOfUnity : Sˣ) : S) ^ _ = _).trans this.symm [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ ↑↑(toRootsOfUnity hμ) ^ ZMod.val ↑(Exists.choose h) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h [PROOFSTEP] rw [← rootsOfUnity.coe_pow, ← rootsOfUnity.coe_pow] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ ↑↑(toRootsOfUnity hμ ^ ZMod.val ↑(Exists.choose h)) = ↑↑(toRootsOfUnity hμ ^ Exists.choose h) [PROOFSTEP] congr 2 [GOAL] case e_self.e_self M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ toRootsOfUnity hμ ^ ZMod.val ↑(Exists.choose h) = toRootsOfUnity hμ ^ Exists.choose h [PROOFSTEP] rw [pow_eq_pow_iff_modEq, ZMod.val_nat_cast, hμ.eq_orderOf, ← orderOf_subgroup, ← orderOf_units] [GOAL] case e_self.e_self M : Type u_1 N : Type u_2 G : Type u_3 R : Type u_4 S : Type u_5 F : Type u_6 inst✝⁶ : CommMonoid M inst✝⁵ : CommMonoid N inst✝⁴ : DivisionCommMonoid G k l : ℕ inst✝³ : CommRing S inst✝² : IsDomain S μ : S n : ℕ+ hμ : IsPrimitiveRoot μ ↑n inst✝¹ : CommRing R inst✝ : Algebra R S f : S ≃ₐ[R] S h : ∃ m, ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ m this : ↑f ↑↑(toRootsOfUnity hμ) = ↑↑(toRootsOfUnity hμ) ^ Exists.choose h ⊢ Exists.choose h % orderOf μ ≡ Exists.choose h [MOD orderOf ↑↑(toRootsOfUnity hμ)] [PROOFSTEP] exact Nat.mod_modEq _ _
{"mathlib_filename": "Mathlib.RingTheory.RootsOfUnity.Basic", "llama_tokens": 119656}
[GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) s : S ⊢ ∃ x, s * ↑(algebraMap R S) ↑x.snd = ↑(algebraMap R S) x.fst [PROOFSTEP] obtain ⟨⟨x, y, hy⟩, H⟩ := IsLocalization.surj M s [GOAL] case intro.mk.mk R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) s : S x y : R hy : y ∈ M H : s * ↑(algebraMap R S) ↑(x, { val := y, property := hy }).snd = ↑(algebraMap R S) (x, { val := y, property := hy }).fst ⊢ ∃ x, s * ↑(algebraMap R S) ↑x.snd = ↑(algebraMap R S) x.fst [PROOFSTEP] exact ⟨⟨x, y, h₁ hy⟩, H⟩ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y → ∃ c, ↑c * x = ↑c * y [PROOFSTEP] rw [IsLocalization.eq_iff_exists M] [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R ⊢ (∃ c, ↑c * x = ↑c * y) → ∃ c, ↑c * x = ↑c * y [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case mp.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R c : { x // x ∈ M } hc : ↑c * x = ↑c * y ⊢ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] exact ⟨⟨c, h₁ c.2⟩, hc⟩ [GOAL] case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R ⊢ (∃ c, ↑c * x = ↑c * y) → ↑(algebraMap R S) x = ↑(algebraMap R S) y [PROOFSTEP] rintro ⟨c, h⟩ [GOAL] case mpr.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S N : Submonoid R h₁ : M ≤ N h₂ : ∀ (r : R), r ∈ N → IsUnit (↑(algebraMap R S) r) x y : R c : { x // x ∈ N } h : ↑c * x = ↑c * y ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) y [PROOFSTEP] simpa only [map_mul, (h₂ c c.2).mul_right_inj] using congr_arg (algebraMap R S) h [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S z : S ⊢ ↑(algebraMap R S) (sec M z).fst = ↑(algebraMap R S) ↑(sec M z).snd * z [PROOFSTEP] rw [mul_comm, sec_spec] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S z : S x : R y : { x // x ∈ M } h : z * ↑(algebraMap R S) ↑y = ↑(algebraMap R S) x hx : x = 0 ⊢ z = 0 [PROOFSTEP] rw [hx, (algebraMap R S).map_zero] at h [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S z : S x : R y : { x // x ∈ M } h : z * ↑(algebraMap R S) ↑y = 0 hx : x = 0 ⊢ z = 0 [PROOFSTEP] exact (IsUnit.mul_left_eq_zero (IsLocalization.map_units S y)).1 h [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R ⊢ ↑(algebraMap R S) r = 0 ↔ ∃ m, ↑m * r = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R ⊢ ↑(algebraMap R S) r = 0 → ∃ m, ↑m * r = 0 case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R ⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R h : ↑(algebraMap R S) r = 0 ⊢ ∃ m, ↑m * r = 0 [PROOFSTEP] obtain ⟨m, hm⟩ := (IsLocalization.eq_iff_exists M S).mp ((algebraMap R S).map_zero.trans h.symm) [GOAL] case mp.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R h : ↑(algebraMap R S) r = 0 m : { x // x ∈ M } hm : ↑m * 0 = ↑m * r ⊢ ∃ m, ↑m * r = 0 [PROOFSTEP] exact ⟨m, by simpa using hm.symm⟩ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R h : ↑(algebraMap R S) r = 0 m : { x // x ∈ M } hm : ↑m * 0 = ↑m * r ⊢ ↑m * r = 0 [PROOFSTEP] simpa using hm.symm [GOAL] case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R ⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0 [PROOFSTEP] rintro ⟨m, hm⟩ [GOAL] case mpr.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S r : R m : { x // x ∈ M } hm : ↑m * r = 0 ⊢ ↑(algebraMap R S) r = 0 [PROOFSTEP] rw [← (IsLocalization.map_units S m).mul_right_inj, mul_zero, ← RingHom.map_mul, hm, RingHom.map_zero] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } z₁ z₂ : S ⊢ mk' S x y + z₁ = z₂ ↔ ↑(algebraMap R S) x + z₁ * ↑(algebraMap R S) ↑y = z₂ * ↑(algebraMap R S) ↑y [PROOFSTEP] rw [← mk'_spec S x y, ← IsUnit.mul_left_inj (IsLocalization.map_units S y), right_distrib] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : 0 ∈ M ⊢ 0 = 1 [PROOFSTEP] simpa using IsLocalization.map_units S ⟨0, h⟩ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S ⊢ mk' S x y ∈ I ↔ ↑(algebraMap R S) x ∈ I [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S ⊢ mk' S x y ∈ I → ↑(algebraMap R S) x ∈ I [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S ⊢ ↑(algebraMap R S) x ∈ I → mk' S x y ∈ I [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : mk' S x y ∈ I ⊢ ↑(algebraMap R S) x ∈ I [PROOFSTEP] rw [← mk'_spec S x y, mul_comm] [GOAL] case mp R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : mk' S x y ∈ I ⊢ ↑(algebraMap R S) ↑y * mk' S x y ∈ I [PROOFSTEP] exact I.mul_mem_left ((algebraMap R S) y) h [GOAL] case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : ↑(algebraMap R S) x ∈ I ⊢ mk' S x y ∈ I [PROOFSTEP] rw [← mk'_spec S x y] at h [GOAL] case mpr R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I ⊢ mk' S x y ∈ I [PROOFSTEP] obtain ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (map_units S y) [GOAL] case mpr.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I b : S hb : ↑(algebraMap R S) ↑y * b = 1 ⊢ mk' S x y ∈ I [PROOFSTEP] have := I.mul_mem_left b h [GOAL] case mpr.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } I : Ideal S h : mk' S x y * ↑(algebraMap R S) ↑y ∈ I b : S hb : ↑(algebraMap R S) ↑y * b = 1 this : b * (mk' S x y * ↑(algebraMap R S) ↑y) ∈ I ⊢ mk' S x y ∈ I [PROOFSTEP] rwa [mul_comm, mul_assoc, hb, mul_one] at this [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R s : { x // x ∈ M } ⊢ mk' S x s = 0 ↔ ∃ m, ↑m * x = 0 [PROOFSTEP] rw [← (map_units S s).mul_left_inj, mk'_spec, zero_mul, map_eq_zero_iff M] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S s : { x // x ∈ M } ⊢ mk' S 0 s = 0 [PROOFSTEP] rw [eq_comm, IsLocalization.eq_mk'_iff_mul_eq, zero_mul, map_zero] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } hxy : mk' S x y ≠ 0 ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S y : { x // x ∈ M } hxy : mk' S 0 y ≠ 0 ⊢ False [PROOFSTEP] exact hxy (IsLocalization.mk'_zero _) [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x y : { x // x ∈ M } ⊢ mk' S (↑x) y * mk' S (↑y) x = 1 [PROOFSTEP] rw [← mk'_mul, mul_comm] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x y : { x // x ∈ M } ⊢ mk' S (↑y * ↑x) (y * x) = 1 [PROOFSTEP] exact mk'_self _ _ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x y : R m : { x // x ∈ M } ⊢ x • mk' S y m = mk' S (x * y) m [PROOFSTEP] nth_rw 2 [← one_mul m] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x y : R m : { x // x ∈ M } ⊢ x • mk' S y m = mk' S (x * y) (1 * m) [PROOFSTEP] rw [mk'_mul, mk'_one, Algebra.smul_def] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R m : { x // x ∈ M } ⊢ x • mk' S 1 m = mk' S x m [PROOFSTEP] rw [smul_mk', mul_one] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S m : { x // x ∈ M } r : R ⊢ ↑m • mk' S r m = ↑(algebraMap R S) r [PROOFSTEP] rw [smul_mk', mk'_mul_cancel_left] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x₁ x₂ : R y₁ y₂ : { x // x ∈ M } ⊢ (mk' S x₁ y₁ + mk' S x₂ y₂) * ↑(algebraMap R S) ↑(y₁ * y₂) = ↑(algebraMap R S) (x₁ * ↑y₂ + x₂ * ↑y₁) [PROOFSTEP] rw [mul_comm (_ + _), mul_add, mul_mk'_eq_mk'_of_mul, mk'_add_eq_iff_add_mul_eq_mul, mul_comm (_ * _), ← mul_assoc, add_comm, ← map_mul, mul_mk'_eq_mk'_of_mul, add_comm _ (mk' _ _ _), mk'_add_eq_iff_add_mul_eq_mul] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x₁ x₂ : R y₁ y₂ : { x // x ∈ M } ⊢ ↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) (↑y₁ * ↑(y₁ * y₂) * x₂) + ↑(algebraMap R ((fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂))) (↑(y₁ * y₂) * x₁) * ↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) ↑y₂ = ↑(algebraMap R S) (x₂ * ↑y₁ + x₁ * ↑y₂) * ↑(algebraMap R ((fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂))) ↑y₁ * ↑(algebraMap R ((fun x => (fun x => S) (x₂ * ↑y₁ + x₁ * ↑y₂)) (↑(y₁ * y₂) * x₁))) ↑y₂ [PROOFSTEP] simp only [map_add, Submonoid.coe_mul, map_mul] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x₁ x₂ : R y₁ y₂ : { x // x ∈ M } ⊢ ↑(algebraMap R S) ↑y₁ * (↑(algebraMap R S) ↑y₁ * ↑(algebraMap R S) ↑y₂) * ↑(algebraMap R S) x₂ + ↑(algebraMap R S) ↑y₁ * ↑(algebraMap R S) ↑y₂ * ↑(algebraMap R S) x₁ * ↑(algebraMap R S) ↑y₂ = (↑(algebraMap R S) x₂ * ↑(algebraMap R S) ↑y₁ + ↑(algebraMap R S) x₁ * ↑(algebraMap R S) ↑y₂) * ↑(algebraMap R S) ↑y₁ * ↑(algebraMap R S) ↑y₂ [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P h : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) y : { x // x ∈ M } w z₁ z₂ : P ⊢ w * ↑(↑(IsUnit.liftRight (MonoidHom.restrict (↑g) M) h) y)⁻¹ + z₁ = z₂ ↔ w + ↑g ↑y * z₁ = ↑g ↑y * z₂ [PROOFSTEP] rw [mul_comm, ← one_mul z₁, ← Units.inv_mul (IsUnit.liftRight (g.toMonoidHom.restrict M) h y), mul_assoc, ← mul_add, Units.inv_mul_eq_iff_eq_mul, Units.inv_mul_cancel_left, IsUnit.coe_liftRight] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P h : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) y : { x // x ∈ M } w z₁ z₂ : P ⊢ w + ↑(MonoidHom.restrict (↑g) M) y * z₁ = ↑(MonoidHom.restrict (↑g) M) y * z₂ ↔ w + ↑g ↑y * z₁ = ↑g ↑y * z₂ [PROOFSTEP] simp [RingHom.toMonoidHom_eq_coe, MonoidHom.restrict_apply] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) z : S w w' v : (fun x => P) z ⊢ ↑(Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg) z * w + w' = v ↔ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).fst * w + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * w' = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * v [PROOFSTEP] erw [mul_comm, ← mul_assoc, mul_add_inv_left hg, mul_comm] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) z : S w w' v : (fun x => P) z ⊢ ↑↑(RingHom.toMonoidWithZeroHom g) (Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).fst * w + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).snd * w' = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationWithZeroMap M S).toLocalizationMap z).snd * v ↔ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).fst * w + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * w' = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) z).snd * v [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg ⊢ ∀ (x y : S), OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) y [PROOFSTEP] intro x y [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) y [PROOFSTEP] erw [(toLocalizationMap M S).lift_spec, mul_add, mul_comm, eq_comm, lift_spec_mul_add, add_comm, mul_comm, mul_assoc, mul_comm, mul_assoc, lift_spec_mul_add] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst * (↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * (↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst * ↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * (↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑↑(RingHom.toMonoidWithZeroHom g) (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst) [PROOFSTEP] simp_rw [← mul_assoc] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst * ↑↑(RingHom.toMonoidWithZeroHom g) ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑↑(RingHom.toMonoidWithZeroHom g) (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst [PROOFSTEP] show g _ * g _ * g _ + g _ * g _ * g _ = g _ * g _ * g _ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd + ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd = ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑g ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑g (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst [PROOFSTEP] simp_rw [← map_mul g, ← map_add g] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑g ((Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd + ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) = ↑g (↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst) [PROOFSTEP] apply @eq_of_eq _ _ _ S _ _ _ _ _ g hg [GOAL] case h R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑(algebraMap R S) ((Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).fst * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd + ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * (Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).fst * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).snd) = ↑(algebraMap R S) (↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) y).snd * ↑(Submonoid.LocalizationMap.sec (toLocalizationMap M S) x).snd * (Submonoid.LocalizationMap.sec (toLocalizationMap M S) (x + y)).fst) [PROOFSTEP] simp only [sec_spec', toLocalizationMap_sec, map_add, map_mul] [GOAL] case h R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) src✝ : S →*₀ P := Submonoid.LocalizationWithZeroMap.lift (toLocalizationWithZeroMap M S) (RingHom.toMonoidWithZeroHom g) hg x y : S ⊢ ↑(algebraMap R S) ↑(sec M y).snd * y * ↑(algebraMap R S) ↑(sec M x).snd * ↑(algebraMap R S) ↑(sec M (x + y)).snd + ↑(algebraMap R S) ↑(sec M y).snd * (↑(algebraMap R S) ↑(sec M x).snd * x) * ↑(algebraMap R S) ↑(sec M (x + y)).snd = ↑(algebraMap R S) ↑(sec M y).snd * ↑(algebraMap R S) ↑(sec M x).snd * (↑(algebraMap R S) ↑(sec M (x + y)).snd * (x + y)) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : IsLocalization M S g✝ : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g✝ ↑y) inst✝ : Algebra R P f g : S →ₐ[R] P ⊢ RingHom.comp (↑f) (algebraMap R S) = RingHom.comp (↑g) (algebraMap R S) [PROOFSTEP] rw [f.comp_algebraMap, g.comp_algebraMap] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) j k : S → P hj1 : j 1 = 1 hk1 : k 1 = 1 hjm : ∀ (a b : S), j (a * b) = j a * j b hkm : ∀ (a b : S), k (a * b) = k a * k b h : ∀ (a : R), j (↑(algebraMap R S) a) = k (↑(algebraMap R S) a) j' : S →* P := { toOneHom := { toFun := j, map_one' := hj1 }, map_mul' := hjm } k' : S →* P := { toOneHom := { toFun := k, map_one' := hk1 }, map_mul' := hkm } this : j' = k' ⊢ j'.toFun = k'.toFun [PROOFSTEP] rw [this] [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R M : Submonoid R S : Type u_2 inst✝¹⁰ : CommSemiring S inst✝⁹ : Algebra R S P : Type u_3 inst✝⁸ : CommSemiring P inst✝⁷ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝⁶ : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝⁵ : Algebra P Q inst✝⁴ : IsLocalization T Q A : Type u_5 inst✝³ : CommSemiring A U : Submonoid A W : Type u_6 inst✝² : CommSemiring W inst✝¹ : Algebra A W inst✝ : IsLocalization U W l : P →+* A hl : T ≤ Submonoid.comap l U x : S ⊢ ↑(map W l hl) (↑(map Q g hy) x) = ↑(map W (RingHom.comp l g) (_ : ∀ (x : R), x ∈ M → ↑g x ∈ Submonoid.comap l U)) x [PROOFSTEP] rw [← map_comp_map (Q := Q) hy hl] [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R M : Submonoid R S : Type u_2 inst✝¹⁰ : CommSemiring S inst✝⁹ : Algebra R S P : Type u_3 inst✝⁸ : CommSemiring P inst✝⁷ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝⁶ : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝⁵ : Algebra P Q inst✝⁴ : IsLocalization T Q A : Type u_5 inst✝³ : CommSemiring A U : Submonoid A W : Type u_6 inst✝² : CommSemiring W inst✝¹ : Algebra A W inst✝ : IsLocalization U W l : P →+* A hl : T ≤ Submonoid.comap l U x : S ⊢ ↑(map W l hl) (↑(map Q g hy) x) = ↑(RingHom.comp (map W l hl) (map Q g hy)) x [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q x : S z : R ⊢ ↑(map Q g hy) (z • x) = ↑g z • ↑(map Q g hy) x [PROOFSTEP] rw [Algebra.smul_def, Algebra.smul_def, RingHom.map_mul, map_eq] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T ⊢ Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M [PROOFSTEP] rw [← M.map_id, ← H, Submonoid.map_map] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T ⊢ Submonoid.map (MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h)) M = Submonoid.map (MonoidHom.id R) M [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T ⊢ MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h) = MonoidHom.id R [PROOFSTEP] ext [GOAL] case e_f.h R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T x✝ : R ⊢ ↑(MonoidHom.comp (RingEquiv.toMonoidHom (RingEquiv.symm h)) (RingEquiv.toMonoidHom h)) x✝ = ↑(MonoidHom.id R) x✝ [PROOFSTEP] apply h.symm_apply_apply [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T) x : S ⊢ ↑(map S ↑(RingEquiv.symm h) (_ : T ≤ Submonoid.comap (↑(RingEquiv.symm h)) M)) (↑(map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)) x) = x [PROOFSTEP] rw [map_map, map_unique _ (RingHom.id _), RingHom.id_apply] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T) x : S ⊢ ∀ (x : R), ↑(RingHom.id S) (↑(algebraMap R S) x) = ↑(algebraMap R S) (↑(RingHom.comp ↑(RingEquiv.symm h) ↑h) x) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T) x : Q ⊢ ↑(map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T)) (↑(map S ↑(RingEquiv.symm h) (_ : T ≤ Submonoid.comap (↑(RingEquiv.symm h)) M)) x) = x [PROOFSTEP] rw [map_map, map_unique _ (RingHom.id _), RingHom.id_apply] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q h : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom h) M = T H' : Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) T = M src✝ : S →+* Q := map Q ↑h (_ : M ≤ Submonoid.comap (↑h) T) x : Q ⊢ ∀ (x : P), ↑(RingHom.id Q) (↑(algebraMap P Q) x) = ↑(algebraMap P Q) (↑(RingHom.comp ↑h ↑(RingEquiv.symm h)) x) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q j : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom j) M = T x : R ⊢ ↑(ringEquivOfRingEquiv S Q j H) (↑(algebraMap R S) x) = ↑(algebraMap P Q) (↑j x) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) T : Submonoid P Q : Type u_4 inst✝² : CommSemiring Q hy : M ≤ Submonoid.comap g T inst✝¹ : Algebra P Q inst✝ : IsLocalization T Q j : R ≃+* P H : Submonoid.map (RingEquiv.toMonoidHom j) M = T x : R y : { x // x ∈ M } ⊢ ↑(ringEquivOfRingEquiv S Q j H) (mk' S x y) = mk' Q (↑j x) { val := ↑j ↑y, property := (_ : ↑j ↑y ∈ T) } [PROOFSTEP] simp [map_mk'] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) Q : Type u_4 inst✝² : CommSemiring Q inst✝¹ : Algebra R Q inst✝ : IsLocalization M Q x : R y : { x // x ∈ M } ⊢ ↑(algEquiv M S Q) (mk' S x y) = mk' Q x y [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁶ : CommSemiring S inst✝⁵ : Algebra R S P : Type u_3 inst✝⁴ : CommSemiring P inst✝³ : IsLocalization M S g : R →+* P hg : ∀ (y : { x // x ∈ M }), IsUnit (↑g ↑y) Q : Type u_4 inst✝² : CommSemiring Q inst✝¹ : Algebra R Q inst✝ : IsLocalization M Q x : R y : { x // x ∈ M } ⊢ ↑(AlgEquiv.symm (algEquiv M S Q)) (mk' Q x y) = mk' S x y [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P ⊢ IsLocalization M P [PROOFSTEP] constructor [GOAL] case map_units' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P ⊢ ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap R P) ↑y) [PROOFSTEP] intro y [GOAL] case map_units' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : { x // x ∈ M } ⊢ IsUnit (↑(algebraMap R P) ↑y) [PROOFSTEP] convert (IsLocalization.map_units S y).map h.toAlgHom.toRingHom.toMonoidHom [GOAL] case h.e'_3 R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : { x // x ∈ M } ⊢ ↑(algebraMap R P) ↑y = ↑↑↑↑h (↑(algebraMap R S) ↑y) [PROOFSTEP] exact (h.commutes y).symm [GOAL] case surj' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P ⊢ ∀ (z : P), ∃ x, z * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst [PROOFSTEP] intro y [GOAL] case surj' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : P ⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst [PROOFSTEP] obtain ⟨⟨x, s⟩, e⟩ := IsLocalization.surj M (h.symm y) [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : P x : R s : { x // x ∈ M } e : ↑(AlgEquiv.symm h) y * ↑(algebraMap R ((fun x => S) y)) ↑(x, s).snd = ↑(algebraMap R ((fun x => S) y)) (x, s).fst ⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst [PROOFSTEP] apply_fun (show S → P from h) at e [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : P x : R s : { x // x ∈ M } e : (let_fun this := ↑h; this) (↑(AlgEquiv.symm h) y * ↑(algebraMap R ((fun x => S) y)) ↑(x, s).snd) = (let_fun this := ↑h; this) (↑(algebraMap R ((fun x => S) y)) (x, s).fst) ⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst [PROOFSTEP] simp only [h.map_mul, h.apply_symm_apply, h.commutes] at e [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P y : P x : R s : { x // x ∈ M } e : y * ↑(algebraMap R P) ↑s = ↑(algebraMap R P) x ⊢ ∃ x, y * ↑(algebraMap R P) ↑x.snd = ↑(algebraMap R P) x.fst [PROOFSTEP] exact ⟨⟨x, s⟩, e⟩ [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P ⊢ ∀ {x y : R}, ↑(algebraMap R P) x = ↑(algebraMap R P) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] intro x y [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P x y : R ⊢ ↑(algebraMap R P) x = ↑(algebraMap R P) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] rw [← h.symm.toEquiv.injective.eq_iff, ← IsLocalization.eq_iff_exists M S, ← h.symm.commutes, ← h.symm.commutes] [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P inst✝¹ : Algebra R P inst✝ : IsLocalization M S h : S ≃ₐ[R] P x y : R ⊢ ↑(AlgEquiv.symm h).toEquiv (↑(algebraMap R P) x) = ↑(AlgEquiv.symm h).toEquiv (↑(algebraMap R P) y) ↔ ↑(AlgEquiv.symm h) (↑(algebraMap R P) x) = ↑(AlgEquiv.symm h) (↑(algebraMap R P) y) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P ⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S [PROOFSTEP] letI : Algebra P S := ((algebraMap R S).comp h.symm.toRingHom).toAlgebra [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S [PROOFSTEP] constructor [GOAL] case map_units' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ ∀ (y : { x // x ∈ Submonoid.map (RingEquiv.toMonoidHom h) M }), IsUnit (↑(algebraMap P S) ↑y) [PROOFSTEP] rintro ⟨_, ⟨y, hy, rfl⟩⟩ [GOAL] case map_units'.mk.intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : R hy : y ∈ ↑M ⊢ IsUnit (↑(algebraMap P S) ↑{ val := ↑(RingEquiv.toMonoidHom h) y, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) y) }) [PROOFSTEP] convert IsLocalization.map_units S ⟨y, hy⟩ [GOAL] case h.e'_3 R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : R hy : y ∈ ↑M ⊢ ↑(algebraMap P S) ↑{ val := ↑(RingEquiv.toMonoidHom h) y, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) y) } = ↑(algebraMap R S) ↑{ val := y, property := hy } [PROOFSTEP] dsimp only [RingHom.algebraMap_toAlgebra, RingHom.comp_apply] [GOAL] case h.e'_3 R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : R hy : y ∈ ↑M ⊢ ↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) y)) = ↑(algebraMap R S) y [PROOFSTEP] exact congr_arg _ (h.symm_apply_apply _) [GOAL] case surj' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ ∀ (z : S), ∃ x, z * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst [PROOFSTEP] intro y [GOAL] case surj' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S ⊢ ∃ x, y * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst [PROOFSTEP] obtain ⟨⟨x, s⟩, e⟩ := IsLocalization.surj M y [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S x : R s : { x // x ∈ M } e : y * ↑(algebraMap R S) ↑(x, s).snd = ↑(algebraMap R S) (x, s).fst ⊢ ∃ x, y * ↑(algebraMap P S) ↑x.snd = ↑(algebraMap P S) x.fst [PROOFSTEP] refine' ⟨⟨h x, _, _, s.prop, rfl⟩, _⟩ [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S x : R s : { x // x ∈ M } e : y * ↑(algebraMap R S) ↑(x, s).snd = ↑(algebraMap R S) (x, s).fst ⊢ y * ↑(algebraMap P S) ↑(↑h x, { val := ↑(RingEquiv.toMonoidHom h) ↑s, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) ↑s) }).snd = ↑(algebraMap P S) (↑h x, { val := ↑(RingEquiv.toMonoidHom h) ↑s, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(RingEquiv.toMonoidHom h) a = ↑(RingEquiv.toMonoidHom h) ↑s) }).fst [PROOFSTEP] dsimp only [RingHom.algebraMap_toAlgebra, RingHom.comp_apply] at e ⊢ [GOAL] case surj'.intro.mk R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S x : R s : { x // x ∈ M } e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x ⊢ y * ↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) ↑s)) = ↑(algebraMap R S) (↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑h x)) [PROOFSTEP] convert e [GOAL] case h.e'_2.h.e'_6.h.e'_6 R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S x : R s : { x // x ∈ M } e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x ⊢ ↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑(RingEquiv.toMonoidHom h) ↑s) = ↑s [PROOFSTEP] exact h.symm_apply_apply _ [GOAL] case h.e'_3.h.e'_6 R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) y : S x : R s : { x // x ∈ M } e : y * ↑(algebraMap R S) ↑s = ↑(algebraMap R S) x ⊢ ↑(RingEquiv.toRingHom (RingEquiv.symm h)) (↑h x) = x [PROOFSTEP] exact h.symm_apply_apply _ [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ ∀ {x y : P}, ↑(algebraMap P S) x = ↑(algebraMap P S) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] intro x y [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) x y : P ⊢ ↑(algebraMap P S) x = ↑(algebraMap P S) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] rw [RingHom.algebraMap_toAlgebra, RingHom.comp_apply, RingHom.comp_apply, IsLocalization.eq_iff_exists M S] [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) x y : P ⊢ (∃ c, ↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) x = ↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) y) ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] simp_rw [← h.toEquiv.apply_eq_iff_eq] [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) x y : P ⊢ (∃ c, ↑h.toEquiv (↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) x) = ↑h.toEquiv (↑c * ↑(RingEquiv.toRingHom (RingEquiv.symm h)) y)) ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] change (∃ c : M, h (c * h.symm x) = h (c * h.symm y)) ↔ _ [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) x y : P ⊢ (∃ c, ↑h (↑c * ↑(RingEquiv.symm h) x) = ↑h (↑c * ↑(RingEquiv.symm h) y)) ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] simp only [RingEquiv.apply_symm_apply, RingEquiv.map_mul] [GOAL] case eq_iff_exists' R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) x y : P ⊢ (∃ c, ↑h ↑c * x = ↑h ↑c * y) ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] exact ⟨fun ⟨c, e⟩ => ⟨⟨_, _, c.prop, rfl⟩, e⟩, fun ⟨⟨_, c, h, e₁⟩, e₂⟩ => ⟨⟨_, h⟩, e₁.symm ▸ e₂⟩⟩ [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P ⊢ IsLocalization M S ↔ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S [PROOFSTEP] letI : Algebra P S := ((algebraMap R S).comp h.symm.toRingHom).toAlgebra [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ IsLocalization M S ↔ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S [PROOFSTEP] refine' ⟨fun _ => isLocalization_of_base_ringEquiv M S h, _⟩ [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) ⊢ IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S → IsLocalization M S [PROOFSTEP] intro H [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ IsLocalization M S [PROOFSTEP] convert isLocalization_of_base_ringEquiv (Submonoid.map (RingEquiv.toMonoidHom h) M) S h.symm [GOAL] case h.e'_3 R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ M = Submonoid.map (RingEquiv.toMonoidHom (RingEquiv.symm h)) (Submonoid.map (RingEquiv.toMonoidHom h) M) [PROOFSTEP] erw [Submonoid.map_equiv_eq_comap_symm, Submonoid.comap_map_eq_of_injective] [GOAL] case h.e'_3.hf R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ Injective ↑(MulEquiv.toMonoidHom (MulEquiv.symm (RingEquiv.toMulEquiv (RingEquiv.symm h)))) [PROOFSTEP] exact h.toEquiv.injective [GOAL] case h.e'_6 R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ inst✝¹ = RingHom.toAlgebra (RingHom.comp (algebraMap P S) (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.symm h)))) [PROOFSTEP] rw [RingHom.algebraMap_toAlgebra, RingHom.comp_assoc] [GOAL] case h.e'_6 R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ inst✝¹ = RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm h)) (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.symm h))))) [PROOFSTEP] simp only [RingHom.comp_id, RingEquiv.symm_symm, RingEquiv.symm_toRingHom_comp_toRingHom] [GOAL] case h.e'_6 R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ inst✝¹ = RingHom.toAlgebra (algebraMap R S) [PROOFSTEP] apply Algebra.algebra_ext [GOAL] case h.e'_6.h R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S ⊢ ∀ (r : R), ↑(algebraMap R S) r = ↑(algebraMap R S) r [PROOFSTEP] intro r [GOAL] case h.e'_6.h R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P h : R ≃+* P this : Algebra P S := RingHom.toAlgebra (RingHom.comp (algebraMap R S) (RingEquiv.toRingHom (RingEquiv.symm h))) H : IsLocalization (Submonoid.map (RingEquiv.toMonoidHom h) M) S r : R ⊢ ↑(algebraMap R S) r = ↑(algebraMap R S) r [PROOFSTEP] rw [RingHom.algebraMap_toAlgebra] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S ⊢ nonZeroDivisors R ≤ Submonoid.comap (algebraMap R S) (nonZeroDivisors S) [PROOFSTEP] rintro a ha b (e : b * algebraMap R S a = 0) [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R b : S e : b * ↑(algebraMap R S) a = 0 ⊢ b = 0 [PROOFSTEP] obtain ⟨x, s, rfl⟩ := mk'_surjective M b [GOAL] case intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s : { x // x ∈ M } e : mk' S x s * ↑(algebraMap R S) a = 0 ⊢ mk' S x s = 0 [PROOFSTEP] rw [← @mk'_one R _ M, ← mk'_mul, ← (algebraMap R S).map_zero, ← @mk'_one R _ M, IsLocalization.eq] at e [GOAL] case intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s : { x // x ∈ M } e : ∃ c, ↑c * (↑1 * (x * a)) = ↑c * (↑(s * 1) * 0) ⊢ mk' S x s = 0 [PROOFSTEP] obtain ⟨c, e⟩ := e [GOAL] case intro.intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s c : { x // x ∈ M } e : ↑c * (↑1 * (x * a)) = ↑c * (↑(s * 1) * 0) ⊢ mk' S x s = 0 [PROOFSTEP] rw [mul_zero, mul_zero, Submonoid.coe_one, one_mul, ← mul_assoc] at e [GOAL] case intro.intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s c : { x // x ∈ M } e : ↑c * x * a = 0 ⊢ mk' S x s = 0 [PROOFSTEP] rw [mk'_eq_zero_iff] [GOAL] case intro.intro.intro R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s c : { x // x ∈ M } e : ↑c * x * a = 0 ⊢ ∃ m, ↑m * x = 0 [PROOFSTEP] exact ⟨c, ha _ e⟩ [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : Subsingleton R a : Localization M x✝ : R × { x // x ∈ M } ⊢ mk x✝.fst x✝.snd = mk 1 1 [PROOFSTEP] congr [GOAL] case e_x R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : Subsingleton R a : Localization M x✝ : R × { x // x ∈ M } ⊢ x✝.fst = 1 [PROOFSTEP] apply Subsingleton.elim [GOAL] case e_y R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : Subsingleton R a : Localization M x✝ : R × { x // x ∈ M } ⊢ x✝.snd = 1 [PROOFSTEP] apply Subsingleton.elim [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' : { x // x ∈ M } h1 : ↑(r M) (a, b) (a', b') h2 : ↑(r M) (c, d) (c', d') ⊢ ↑(r M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d') [PROOFSTEP] rw [r_eq_r'] at h1 h2 ⊢ [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' : { x // x ∈ M } h1 : ↑(r' M) (a, b) (a', b') h2 : ↑(r' M) (c, d) (c', d') ⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d') [PROOFSTEP] cases' h1 with t₅ ht₅ [GOAL] case intro R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' : { x // x ∈ M } h2 : ↑(r' M) (c, d) (c', d') t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) ⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d') [PROOFSTEP] cases' h2 with t₆ ht₆ [GOAL] case intro.intro R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑(r' M) (↑b * c + ↑d * a, b * d) (↑b' * c' + ↑d' * a', b' * d') [PROOFSTEP] use t₅ * t₆ [GOAL] case h R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑(t₅ * t₆) * (↑(↑b' * c' + ↑d' * a', b' * d').snd * (↑b * c + ↑d * a, b * d).fst) = ↑(t₅ * t₆) * (↑(↑b * c + ↑d * a, b * d).snd * (↑b' * c' + ↑d' * a', b' * d').fst) [PROOFSTEP] dsimp only [GOAL] case h R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑(t₅ * t₆) * (↑(b' * d') * (↑b * c + ↑d * a)) = ↑(t₅ * t₆) * (↑(b * d) * (↑b' * c' + ↑d' * a')) [PROOFSTEP] calc ↑t₅ * ↑t₆ * (↑b' * ↑d' * ((b : R) * c + d * a)) = t₆ * (d' * c) * (t₅ * (b' * b)) + t₅ * (b' * a) * (t₆ * (d' * d)) := by ring _ = t₅ * t₆ * (b * d * (b' * c' + d' * a')) := by rw [ht₆, ht₅]; ring [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑t₅ * ↑t₆ * (↑b' * ↑d' * (↑b * c + ↑d * a)) = ↑t₆ * (↑d' * c) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑b' * a) * (↑t₆ * (↑d' * ↑d)) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑t₆ * (↑d' * c) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑b' * a) * (↑t₆ * (↑d' * ↑d)) = ↑t₅ * ↑t₆ * (↑b * ↑d * (↑b' * c' + ↑d' * a')) [PROOFSTEP] rw [ht₆, ht₅] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P z w : Localization M a a' : R b b' : { x // x ∈ M } c c' : R d d' t₅ : { x // x ∈ M } ht₅ : ↑t₅ * (↑(a', b').snd * (a, b).fst) = ↑t₅ * (↑(a, b).snd * (a', b').fst) t₆ : { x // x ∈ M } ht₆ : ↑t₆ * (↑(c', d').snd * (c, d).fst) = ↑t₆ * (↑(c, d).snd * (c', d').fst) ⊢ ↑t₆ * (↑(c, d).snd * (c', d').fst) * (↑t₅ * (↑b' * ↑b)) + ↑t₅ * (↑(a, b).snd * (a', b').fst) * (↑t₆ * (↑d' * ↑d)) = ↑t₅ * ↑t₆ * (↑b * ↑d * (↑b' * c' + ↑d' * a')) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R d : { x // x ∈ M } ⊢ mk a b + mk c d = mk (↑b * c + ↑d * a) (b * d) [PROOFSTEP] show Localization.add (mk a b) (mk c d) = mk _ _ [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R d : { x // x ∈ M } ⊢ Localization.add (mk a b) (mk c d) = mk (↑b * c + ↑d * a) (b * d) [PROOFSTEP] simp [Localization.add_def] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R ⊢ mk a b + mk c b = mk (a + c) b [PROOFSTEP] rw [add_mk, mk_eq_mk_iff, r_eq_r'] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R ⊢ ↑(r' M) (↑b * c + ↑b * a, b * b) (a + c, b) [PROOFSTEP] refine' (r' M).symm ⟨1, _⟩ [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R ⊢ ↑1 * (↑(↑b * c + ↑b * a, b * b).snd * (a + c, b).fst) = ↑1 * (↑(a + c, b).snd * (↑b * c + ↑b * a, b * b).fst) [PROOFSTEP] simp only [Submonoid.coe_one, Submonoid.coe_mul] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P a : R b : { x // x ∈ M } c : R ⊢ 1 * (↑b * ↑b * (a + c)) = 1 * (↑b * (↑b * c + ↑b * a)) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P ⊢ CommMonoidWithZero (Localization M) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this m n k : Localization M ⊢ ∀ (x y z : R × { x // x ∈ M }), mk x.fst x.snd + mk y.fst y.snd + mk z.fst z.snd = mk x.fst x.snd + (mk y.fst y.snd + mk z.fst z.snd) [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this y : Localization M ⊢ ∀ (y : R × { x // x ∈ M }), 0 + mk y.fst y.snd = mk y.fst y.snd [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this y : Localization M ⊢ ∀ (y : R × { x // x ∈ M }), mk y.fst y.snd + 0 = mk y.fst y.snd [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this x✝ : Localization M x : R × { x // x ∈ M } ⊢ (fun x x_1 => x • x_1) 0 (mk x.fst x.snd) = 0 [PROOFSTEP] simp only [smul_mk, zero_nsmul, mk_zero] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this n : ℕ x✝ : Localization M x : R × { x // x ∈ M } ⊢ (fun x x_1 => x • x_1) (n + 1) (mk x.fst x.snd) = mk x.fst x.snd + (fun x x_1 => x • x_1) n (mk x.fst x.snd) [PROOFSTEP] simp only [smul_mk, succ_nsmul, add_mk_self] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this y z : Localization M ⊢ ∀ (x y : R × { x // x ∈ M }), mk y.fst y.snd + mk x.fst x.snd = mk x.fst x.snd + mk y.fst y.snd [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this m n k : Localization M ⊢ ∀ (x y z : R × { x // x ∈ M }), mk x.fst x.snd * (mk y.fst y.snd + mk z.fst z.snd) = mk x.fst x.snd * mk y.fst y.snd + mk x.fst x.snd * mk z.fst z.snd [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P src✝ : CommMonoidWithZero (Localization M) := let_fun this := inferInstance; this m n k : Localization M ⊢ ∀ (x y z : R × { x // x ∈ M }), (mk x.fst x.snd + mk y.fst y.snd) * mk z.fst z.snd = mk x.fst x.snd * mk z.fst z.snd + mk y.fst y.snd * mk z.fst z.snd [PROOFSTEP] localization_tac [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : IsScalarTower S R R s : S ⊢ s • 0 = 0 [PROOFSTEP] simp only [← Localization.mk_zero 1, Localization.smul_mk, smul_zero] [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : IsScalarTower S R R s : S x y : Localization M r₁ : R x₁ : { x // x ∈ M } r₂ : R x₂ : { x // x ∈ M } ⊢ s • (mk (r₁, x₁).fst (r₁, x₁).snd + mk (r₂, x₂).fst (r₂, x₂).snd) = s • mk (r₁, x₁).fst (r₁, x₁).snd + s • mk (r₂, x₂).fst (r₂, x₂).snd [PROOFSTEP] simp only [Localization.smul_mk, Localization.add_mk, smul_add, mul_comm _ (s • _), mul_comm _ r₁, mul_comm _ r₂, smul_mul_assoc] [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S R inst✝ : IsScalarTower S R R src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M)) s₁ s₂ : S ⊢ ∀ (fst : R) (snd : { x // x ∈ M }), (s₁ + s₂) • mk (fst, snd).fst (fst, snd).snd = s₁ • mk (fst, snd).fst (fst, snd).snd + s₂ • mk (fst, snd).fst (fst, snd).snd [PROOFSTEP] intros [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S R inst✝ : IsScalarTower S R R src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M)) s₁ s₂ : S fst✝ : R snd✝ : { x // x ∈ M } ⊢ (s₁ + s₂) • mk (fst✝, snd✝).fst (fst✝, snd✝).snd = s₁ • mk (fst✝, snd✝).fst (fst✝, snd✝).snd + s₂ • mk (fst✝, snd✝).fst (fst✝, snd✝).snd [PROOFSTEP] simp only [Localization.smul_mk, add_smul, add_mk_self] [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S R inst✝ : IsScalarTower S R R src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M)) ⊢ ∀ (fst : R) (snd : { x // x ∈ M }), 0 • mk (fst, snd).fst (fst, snd).snd = 0 [PROOFSTEP] intros [GOAL] R : Type u_1 inst✝⁶ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁵ : CommSemiring S✝ inst✝⁴ : Algebra R S✝ P : Type u_3 inst✝³ : CommSemiring P S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S R inst✝ : IsScalarTower S R R src✝ : DistribMulAction S (Localization M) := inferInstanceAs (DistribMulAction S (Localization M)) fst✝ : R snd✝ : { x // x ∈ M } ⊢ 0 • mk (fst✝, snd✝).fst (fst✝, snd✝).snd = 0 [PROOFSTEP] simp only [Localization.smul_mk, zero_smul, mk_zero] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R src✝ : Submonoid.LocalizationMap M (Localization M) := monoidOf M ⊢ OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src✝.toMonoidHom) (x * y) = OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) }) 0 = 0 [PROOFSTEP] rw [← mk_zero (1 : M), mk_one_eq_monoidOf_mk] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R src✝ : Submonoid.LocalizationMap M (Localization M) := monoidOf M x y : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src✝.toMonoidHom) (x * y) = OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src✝.toMonoidHom) (x * y) = OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src✝.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src✝.toMonoidHom) (x * y) = OneHom.toFun (↑src✝.toMonoidHom) x * OneHom.toFun (↑src✝.toMonoidHom) y) }) y [PROOFSTEP] simp only [← mk_one_eq_monoidOf_mk, add_mk, Submonoid.coe_one, one_mul, add_comm] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S ⊢ ∀ (fst : R) (snd : { x // x ∈ M }), ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s * mk (fst, snd).fst (fst, snd).snd = mk (fst, snd).fst (fst, snd).snd * ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s [PROOFSTEP] intro r x [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S r : R x : { x // x ∈ M } ⊢ ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s * mk (r, x).fst (r, x).snd = mk (r, x).fst (r, x).snd * ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S r : R x : { x // x ∈ M } ⊢ ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s) * mk r x = mk r x * ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s) [PROOFSTEP] simp only [← mk_one_eq_monoidOf_mk, mk_mul, Localization.smul_mk, one_mul, mul_one, Algebra.commutes] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S ⊢ ∀ (fst : R) (snd : { x // x ∈ M }), s • mk (fst, snd).fst (fst, snd).snd = ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s * mk (fst, snd).fst (fst, snd).snd [PROOFSTEP] intro r x [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S r : R x : { x // x ∈ M } ⊢ s • mk (r, x).fst (r, x).snd = ↑(RingHom.comp (let src := monoidOf M; { toMonoidHom := { toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := ↑(Submonoid.LocalizationMap.toMap (monoidOf M)), map_one' := (_ : OneHom.toFun (↑src.toMonoidHom) 1 = 1) }, map_mul' := (_ : ∀ (x y : R), OneHom.toFun (↑src.toMonoidHom) (x * y) = OneHom.toFun (↑src.toMonoidHom) x * OneHom.toFun (↑src.toMonoidHom) y) }) 0 = 0), map_add' := (_ : ∀ (x y : R), mk (x + y) 1 = mk x 1 + mk y 1) }) (algebraMap S R)) s * mk (r, x).fst (r, x).snd [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S✝ : Type u_2 inst✝⁴ : CommSemiring S✝ inst✝³ : Algebra R S✝ P : Type u_3 inst✝² : CommSemiring P S : Type u_4 inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S r : R x : { x // x ∈ M } ⊢ s • mk r x = ↑(Submonoid.LocalizationMap.toMap (monoidOf M)) (↑(algebraMap S R) s) * mk r x [PROOFSTEP] simp only [← mk_one_eq_monoidOf_mk, mk_mul, Localization.smul_mk, one_mul, Algebra.smul_def] [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P x : R y : { x // x ∈ M } ⊢ mk x y = mk' (Localization M) x y [PROOFSTEP] rw [mk_eq_monoidOf_mk'_apply, mk', toLocalizationMap_eq_monoidOf] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P A : Type u_4 inst✝¹ : CommSemiring A inst✝ : Algebra A R m : A ⊢ mk (↑(algebraMap A R) m) 1 = ↑(algebraMap A (Localization M)) m [PROOFSTEP] rw [mk_eq_mk', mk'_eq_iff_eq_mul, Submonoid.coe_one, map_one, mul_one] [GOAL] R : Type u_1 inst✝⁵ : CommSemiring R M : Submonoid R S : Type u_2 inst✝⁴ : CommSemiring S inst✝³ : Algebra R S P : Type u_3 inst✝² : CommSemiring P A : Type u_4 inst✝¹ : CommSemiring A inst✝ : Algebra A R m : A ⊢ ↑(algebraMap ((fun x => R) m) (Localization M)) (↑(algebraMap A R) m) = ↑(algebraMap A (Localization M)) m [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommSemiring P m : ℕ ⊢ mk (↑m) 1 = ↑m [PROOFSTEP] simpa using @mk_algebraMap R _ M ℕ _ _ m [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } ⊢ ↑(algEquiv M S) (mk x y) = mk' S x y [PROOFSTEP] rw [mk_eq_mk', algEquiv_mk'] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R M : Submonoid R S : Type u_2 inst✝³ : CommSemiring S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommSemiring P inst✝ : IsLocalization M S x : R y : { x // x ∈ M } ⊢ ↑(AlgEquiv.symm (algEquiv M S)) (mk' S x y) = mk x y [PROOFSTEP] rw [mk_eq_mk', algEquiv_symm_mk'] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P z : Localization M a b : R c d : { x // x ∈ M } h : ↑(r M) (a, c) (b, d) ⊢ ↑(r M) (-a, c) (-b, d) [PROOFSTEP] rw [r_eq_r'] at h ⊢ [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P z : Localization M a b : R c d : { x // x ∈ M } h : ↑(r' M) (a, c) (b, d) ⊢ ↑(r' M) (-a, c) (-b, d) [PROOFSTEP] cases' h with t ht [GOAL] case intro R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P z : Localization M a b : R c d t : { x // x ∈ M } ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst) ⊢ ↑(r' M) (-a, c) (-b, d) [PROOFSTEP] use t [GOAL] case h R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P z : Localization M a b : R c d t : { x // x ∈ M } ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst) ⊢ ↑t * (↑(-b, d).snd * (-a, c).fst) = ↑t * (↑(-a, c).snd * (-b, d).fst) [PROOFSTEP] rw [mul_neg, mul_neg, ht] [GOAL] case h R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P z : Localization M a b : R c d t : { x // x ∈ M } ht : ↑t * (↑(b, d).snd * (a, c).fst) = ↑t * (↑(a, c).snd * (b, d).fst) ⊢ -(↑t * (↑(a, c).snd * (b, d).fst)) = ↑t * (↑(-a, c).snd * (-b, d).fst) [PROOFSTEP] ring_nf [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a : R b : { x // x ∈ M } ⊢ -mk a b = mk (-a) b [PROOFSTEP] show Localization.neg (mk a b) = mk (-a) b [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a : R b : { x // x ∈ M } ⊢ Localization.neg (mk a b) = mk (-a) b [PROOFSTEP] rw [Localization.neg_def] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a : R b : { x // x ∈ M } ⊢ liftOn (mk a b) (fun a b => mk (-a) b) (_ : ∀ (a b : R) (c d : { x // x ∈ M }), ↑(r M) (a, c) (b, d) → mk (-a) c = mk (-b) d) = mk (-a) b [PROOFSTEP] apply liftOn_mk [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) x✝ : Localization M x : R × { x // x ∈ M } ⊢ (fun x x_1 => x • x_1) 0 (mk x.fst x.snd) = 0 [PROOFSTEP] simp only [smul_mk, zero_zsmul, mk_zero] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) n : ℕ x✝ : Localization M x : R × { x // x ∈ M } ⊢ (fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) (mk x.fst x.snd) = mk x.fst x.snd + (fun x x_1 => x • x_1) (Int.ofNat n) (mk x.fst x.snd) [PROOFSTEP] simp [smul_mk, add_mk_self, -mk_eq_monoidOf_mk', add_comm (n : ℤ) 1, add_smul] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) n : ℕ x✝ : Localization M x : R × { x // x ∈ M } ⊢ (fun x x_1 => x • x_1) (Int.negSucc n) (mk x.fst x.snd) = -(fun x x_1 => x • x_1) (↑(Nat.succ n)) (mk x.fst x.snd) [PROOFSTEP] dsimp only [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) n : ℕ x✝ : Localization M x : R × { x // x ∈ M } ⊢ Int.negSucc n • mk x.fst x.snd = -(↑(Nat.succ n) • mk x.fst x.snd) [PROOFSTEP] rw [smul_mk, smul_mk, neg_mk, ← neg_smul] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) n : ℕ x✝ : Localization M x : R × { x // x ∈ M } ⊢ mk (Int.negSucc n • x.fst) x.snd = mk (-↑(Nat.succ n) • x.fst) x.snd [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) y : Localization M ⊢ ∀ (y : R × { x // x ∈ M }), -mk y.fst y.snd + mk y.fst y.snd = 0 [PROOFSTEP] intros [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) y : Localization M y✝ : R × { x // x ∈ M } ⊢ -mk y✝.fst y✝.snd + mk y✝.fst y✝.snd = 0 [PROOFSTEP] simp only [add_mk, Localization.mk_mul, neg_mk, ← mk_zero 1] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) y : Localization M y✝ : R × { x // x ∈ M } ⊢ mk (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst) (y✝.snd * y✝.snd) = mk 0 1 [PROOFSTEP] refine' mk_eq_mk_iff.mpr (r_of_eq _) [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) y : Localization M y✝ : R × { x // x ∈ M } ⊢ ↑(0, 1).snd * (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst, y✝.snd * y✝.snd).fst = ↑(↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst, y✝.snd * y✝.snd).snd * (0, 1).fst [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P src✝ : CommSemiring (Localization M) := inferInstanceAs (CommSemiring (Localization M)) y : Localization M y✝ : R × { x // x ∈ M } ⊢ ↑1 * (↑y✝.snd * y✝.fst + ↑y✝.snd * -y✝.fst) = ↑y✝.snd * ↑y✝.snd * 0 [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a c : R b d : { x // x ∈ M } ⊢ mk a b + -mk c d = mk a b + mk (-c) d [PROOFSTEP] rw [neg_mk] [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a c : R b d : { x // x ∈ M } ⊢ mk (↑b * -c + ↑d * a) (b * d) = mk (↑d * a - ↑b * c) (b * d) [PROOFSTEP] congr [GOAL] case e_x R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P a c : R b d : { x // x ∈ M } ⊢ ↑b * -c + ↑d * a = ↑d * a - ↑b * c [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝³ : CommRing R M : Submonoid R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P m : ℤ ⊢ mk (↑m) 1 = ↑m [PROOFSTEP] simpa using @mk_algebraMap R _ M ℤ _ _ m [GOAL] R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R ⊢ ↑(algebraMap R S) x = 0 ↔ x = 0 [PROOFSTEP] rw [← (algebraMap R S).map_zero] [GOAL] R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0 ↔ x = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0 → x = 0 [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R ⊢ x = 0 → ↑(algebraMap R S) x = ↑(algebraMap R S) 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0 ⊢ x = 0 [PROOFSTEP] cases' (eq_iff_exists M S).mp h with c hc [GOAL] case mp.intro R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0 c : { x // x ∈ M } hc : ↑c * x = ↑c * 0 ⊢ x = 0 [PROOFSTEP] rw [mul_zero, mul_comm] at hc [GOAL] case mp.intro R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R h : ↑(algebraMap R S) x = ↑(algebraMap R S) 0 c : { x // x ∈ M } hc : x * ↑c = 0 ⊢ x = 0 [PROOFSTEP] exact hM c.2 x hc [GOAL] case mpr R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S x : R hM : M ≤ nonZeroDivisors R h : x = 0 ⊢ ↑(algebraMap R S) x = ↑(algebraMap R S) 0 [PROOFSTEP] rw [h] [GOAL] R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors R ⊢ Injective ↑(algebraMap R S) [PROOFSTEP] rw [injective_iff_map_eq_zero (algebraMap R S)] [GOAL] R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors R ⊢ ∀ (a : R), ↑(algebraMap R S) a = 0 → a = 0 [PROOFSTEP] intro a ha [GOAL] R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S P : Type u_3 inst✝¹ : CommRing P K : Type u_4 inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors R a : R ha : ↑(algebraMap R S) a = 0 ⊢ a = 0 [PROOFSTEP] rwa [to_map_eq_zero_iff S hM] at ha [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors S hM : M ≤ nonZeroDivisors R x : S hx : x ≠ 0 ⊢ (sec M x).fst ≠ 0 [PROOFSTEP] have hsec := sec_spec M x [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors S hM : M ≤ nonZeroDivisors R x : S hx : x ≠ 0 hsec : x * ↑(algebraMap R S) ↑(sec M x).snd = ↑(algebraMap R S) (sec M x).fst ⊢ (sec M x).fst ≠ 0 [PROOFSTEP] intro hfst [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors S hM : M ≤ nonZeroDivisors R x : S hx : x ≠ 0 hsec : x * ↑(algebraMap R S) ↑(sec M x).snd = ↑(algebraMap R S) (sec M x).fst hfst : (sec M x).fst = 0 ⊢ False [PROOFSTEP] rw [hfst, map_zero, mul_eq_zero, _root_.map_eq_zero_iff] at hsec [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors S hM : M ≤ nonZeroDivisors R x : S hx : x ≠ 0 hsec : x = 0 ∨ ↑(sec M x).snd = 0 hfst : (sec M x).fst = 0 ⊢ False [PROOFSTEP] exact Or.elim hsec hx (sec_snd_ne_zero hM x) [GOAL] case hf R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors S hM : M ≤ nonZeroDivisors R x : S hx : x ≠ 0 hsec : x = 0 ∨ ↑(algebraMap R S) ↑(sec M x).snd = 0 hfst : (sec M x).fst = 0 ⊢ Injective ↑(algebraMap R S) [PROOFSTEP] exact IsLocalization.injective S hM [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q ⊢ Injective ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) [PROOFSTEP] rw [injective_iff_map_eq_zero] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q ⊢ ∀ (a : S), ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) a = 0 → a = 0 [PROOFSTEP] intro z hz [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q z : S hz : ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) z = 0 ⊢ z = 0 [PROOFSTEP] obtain ⟨a, b, rfl⟩ := mk'_surjective M z [GOAL] case intro.intro R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } hz : ↑(map Q g (_ : M ≤ Submonoid.comap g (Submonoid.map g M))) (mk' S a b) = 0 ⊢ mk' S a b = 0 [PROOFSTEP] rw [map_mk', mk'_eq_zero_iff] at hz [GOAL] case intro.intro R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } hz : ∃ m, ↑m * ↑g a = 0 ⊢ mk' S a b = 0 [PROOFSTEP] obtain ⟨⟨m', hm'⟩, hm⟩ := hz [GOAL] case intro.intro.intro.mk R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } m' : P hm' : m' ∈ Submonoid.map g M hm : ↑{ val := m', property := hm' } * ↑g a = 0 ⊢ mk' S a b = 0 [PROOFSTEP] rw [Submonoid.mem_map] at hm' [GOAL] case intro.intro.intro.mk R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } m' : P hm'✝ : m' ∈ Submonoid.map g M hm' : ∃ x, x ∈ M ∧ ↑g x = m' hm : ↑{ val := m', property := hm'✝ } * ↑g a = 0 ⊢ mk' S a b = 0 [PROOFSTEP] obtain ⟨n, hn, hnm⟩ := hm' [GOAL] case intro.intro.intro.mk.intro.intro R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } m' : P hm' : m' ∈ Submonoid.map g M hm : ↑{ val := m', property := hm' } * ↑g a = 0 n : R hn : n ∈ M hnm : ↑g n = m' ⊢ mk' S a b = 0 [PROOFSTEP] rw [Subtype.coe_mk, ← hnm, ← map_mul, ← map_zero g] at hm [GOAL] case intro.intro.intro.mk.intro.intro R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } m' : P hm' : m' ∈ Submonoid.map g M n : R hm : ↑g (n * a) = ↑g 0 hn : n ∈ M hnm : ↑g n = m' ⊢ mk' S a b = 0 [PROOFSTEP] rw [mk'_eq_zero_iff] [GOAL] case intro.intro.intro.mk.intro.intro R : Type u_1 inst✝⁶ : CommRing R M : Submonoid R S : Type u_2 inst✝⁵ : CommRing S inst✝⁴ : Algebra R S P : Type u_3 inst✝³ : CommRing P K : Type u_4 inst✝² : IsLocalization M S Q : Type u_5 inst✝¹ : CommRing Q g : R →+* P inst✝ : Algebra P Q hg : Injective ↑g i : IsLocalization (Submonoid.map g M) Q a : R b : { x // x ∈ M } m' : P hm' : m' ∈ Submonoid.map g M n : R hm : ↑g (n * a) = ↑g 0 hn : n ∈ M hnm : ↑g n = m' ⊢ ∃ m, ↑m * a = 0 [PROOFSTEP] exact ⟨⟨n, hn⟩, hg hm⟩ [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A ⊢ ∀ {a b : S}, a * b = 0 → a = 0 ∨ b = 0 [PROOFSTEP] intro z w h [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 ⊢ z = 0 ∨ w = 0 [PROOFSTEP] cases' surj M z with x hx [GOAL] case intro R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst ⊢ z = 0 ∨ w = 0 [PROOFSTEP] cases' surj M w with y hy [GOAL] case intro.intro R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst ⊢ z = 0 ∨ w = 0 [PROOFSTEP] have : z * w * algebraMap A S y.2 * algebraMap A S x.2 = algebraMap A S x.1 * algebraMap A S y.1 := by rw [mul_assoc z, hy, ← hx]; ring [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst ⊢ z * w * ↑(algebraMap A S) ↑y.snd * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst * ↑(algebraMap A S) y.fst [PROOFSTEP] rw [mul_assoc z, hy, ← hx] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst ⊢ z * ↑(algebraMap A S) y.fst * ↑(algebraMap A S) ↑x.snd = z * ↑(algebraMap A S) ↑x.snd * ↑(algebraMap A S) y.fst [PROOFSTEP] ring [GOAL] case intro.intro R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst this : z * w * ↑(algebraMap A S) ↑y.snd * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst * ↑(algebraMap A S) y.fst ⊢ z = 0 ∨ w = 0 [PROOFSTEP] rw [h, zero_mul, zero_mul, ← (algebraMap A S).map_mul] at this [GOAL] case intro.intro R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst this : 0 = ↑(algebraMap A S) (x.fst * y.fst) ⊢ z = 0 ∨ w = 0 [PROOFSTEP] cases' eq_zero_or_eq_zero_of_mul_eq_zero ((to_map_eq_zero_iff S hM).mp this.symm) with H H [GOAL] case intro.intro.inl R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst this : 0 = ↑(algebraMap A S) (x.fst * y.fst) H : x.fst = 0 ⊢ z = 0 ∨ w = 0 [PROOFSTEP] exact Or.inl (eq_zero_of_fst_eq_zero hx H) [GOAL] case intro.intro.inr R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A z w : S h : z * w = 0 x : A × { x // x ∈ M } hx : z * ↑(algebraMap A S) ↑x.snd = ↑(algebraMap A S) x.fst y : A × { x // x ∈ M } hy : w * ↑(algebraMap A S) ↑y.snd = ↑(algebraMap A S) y.fst this : 0 = ↑(algebraMap A S) (x.fst * y.fst) H : y.fst = 0 ⊢ z = 0 ∨ w = 0 [PROOFSTEP] exact Or.inr (eq_zero_of_fst_eq_zero hy H) [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A ⊢ IsDomain S [PROOFSTEP] apply @NoZeroDivisors.to_isDomain _ _ (id _) (id _) [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A ⊢ Nontrivial S [PROOFSTEP] exact ⟨⟨(algebraMap A S) 0, (algebraMap A S) 1, fun h => zero_ne_one (IsLocalization.injective S hM h)⟩⟩ [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Submonoid R S : Type u_2 inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Type u_3 inst✝⁷ : CommRing P K : Type u_4 inst✝⁶ : IsLocalization M✝ S Q : Type u_5 inst✝⁵ : CommRing Q g : R →+* P inst✝⁴ : Algebra P Q A : Type u_6 inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra A S M : Submonoid A inst✝ : IsLocalization M S hM : M ≤ nonZeroDivisors A ⊢ NoZeroDivisors S [PROOFSTEP] exact noZeroDivisors_of_le_nonZeroDivisors _ hM [GOAL] R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hM : ¬0 ∈ M hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ ⊢ Bijective ↑(algebraMap R Rₘ) [PROOFSTEP] letI := hR.toField [GOAL] R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hM : ¬0 ∈ M hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR ⊢ Bijective ↑(algebraMap R Rₘ) [PROOFSTEP] replace hM := le_nonZeroDivisors_of_noZeroDivisors hM [GOAL] R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR hM : M ≤ nonZeroDivisors R ⊢ Bijective ↑(algebraMap R Rₘ) [PROOFSTEP] refine' ⟨IsLocalization.injective _ hM, fun x => _⟩ [GOAL] R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR hM : M ≤ nonZeroDivisors R x : Rₘ ⊢ ∃ a, ↑(algebraMap R Rₘ) a = x [PROOFSTEP] obtain ⟨r, ⟨m, hm⟩, rfl⟩ := mk'_surjective M x [GOAL] case intro.intro.mk R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR hM : M ≤ nonZeroDivisors R r m : R hm : m ∈ M ⊢ ∃ a, ↑(algebraMap R Rₘ) a = mk' Rₘ r { val := m, property := hm } [PROOFSTEP] obtain ⟨n, hn⟩ := hR.mul_inv_cancel (nonZeroDivisors.ne_zero <| hM hm) [GOAL] case intro.intro.mk.intro R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR hM : M ≤ nonZeroDivisors R r m : R hm : m ∈ M n : R hn : m * n = 1 ⊢ ∃ a, ↑(algebraMap R Rₘ) a = mk' Rₘ r { val := m, property := hm } [PROOFSTEP] exact ⟨r * n, by erw [eq_mk'_iff_mul_eq, ← map_mul, mul_assoc, _root_.mul_comm n, hn, mul_one]⟩ [GOAL] R✝ : Type u_1 inst✝⁷ : CommRing R✝ M✝ : Submonoid R✝ S : Type u_2 inst✝⁶ : CommRing S inst✝⁵ : Algebra R✝ S P : Type u_3 inst✝⁴ : CommRing P R : Type u_4 Rₘ : Type u_5 inst✝³ : CommRing R inst✝² : CommRing Rₘ M : Submonoid R hR : IsField R inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ this : Field R := toField hR hM : M ≤ nonZeroDivisors R r m : R hm : m ∈ M n : R hn : m * n = 1 ⊢ ↑(algebraMap R Rₘ) (r * n) = mk' Rₘ r { val := m, property := hm } [PROOFSTEP] erw [eq_mk'_iff_mul_eq, ← map_mul, mul_assoc, _root_.mul_comm n, hn, mul_one] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Submonoid R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S P : Type u_3 inst✝⁹ : CommRing P Rₘ : Type u_4 Sₘ : Type u_5 inst✝⁸ : CommRing Rₘ inst✝⁷ : CommRing Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : IsLocalization M Rₘ inst✝⁴ : Algebra S Sₘ i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝³ : Algebra Rₘ Sₘ inst✝² : Algebra R Sₘ inst✝¹ : IsScalarTower R Rₘ Sₘ inst✝ : IsScalarTower R S Sₘ y : { x // x ∈ M } ⊢ IsUnit (↑(algebraMap R Sₘ) ↑y) [PROOFSTEP] rw [IsScalarTower.algebraMap_apply _ S] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Submonoid R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S P : Type u_3 inst✝⁹ : CommRing P Rₘ : Type u_4 Sₘ : Type u_5 inst✝⁸ : CommRing Rₘ inst✝⁷ : CommRing Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : IsLocalization M Rₘ inst✝⁴ : Algebra S Sₘ i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝³ : Algebra Rₘ Sₘ inst✝² : Algebra R Sₘ inst✝¹ : IsScalarTower R Rₘ Sₘ inst✝ : IsScalarTower R S Sₘ y : { x // x ∈ M } ⊢ IsUnit (↑(algebraMap S Sₘ) (↑(algebraMap R S) ↑y)) [PROOFSTEP] exact IsLocalization.map_units Sₘ ⟨algebraMap R S y, Algebra.mem_algebraMapSubmonoid_of_mem y⟩ [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Submonoid R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S P : Type u_3 inst✝⁹ : CommRing P Rₘ : Type u_4 Sₘ : Type u_5 inst✝⁸ : CommRing Rₘ inst✝⁷ : CommRing Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : IsLocalization M Rₘ inst✝⁴ : Algebra S Sₘ i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝³ : Algebra Rₘ Sₘ inst✝² : Algebra R Sₘ inst✝¹ : IsScalarTower R Rₘ Sₘ inst✝ : IsScalarTower R S Sₘ x : R y : { x // x ∈ M } ⊢ ↑(algebraMap Rₘ Sₘ) (mk' Rₘ x y) = mk' Sₘ (↑(algebraMap R S) x) { val := ↑(algebraMap R S) ↑y, property := (_ : ↑(algebraMap R S) ↑y ∈ Algebra.algebraMapSubmonoid S M) } [PROOFSTEP] rw [IsLocalization.eq_mk'_iff_mul_eq, Subtype.coe_mk, ← IsScalarTower.algebraMap_apply, ← IsScalarTower.algebraMap_apply, IsScalarTower.algebraMap_apply R Rₘ Sₘ, IsScalarTower.algebraMap_apply R Rₘ Sₘ, ← _root_.map_mul, mul_comm, IsLocalization.mul_mk'_eq_mk'_of_mul] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Submonoid R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S P : Type u_3 inst✝⁹ : CommRing P Rₘ : Type u_4 Sₘ : Type u_5 inst✝⁸ : CommRing Rₘ inst✝⁷ : CommRing Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : IsLocalization M Rₘ inst✝⁴ : Algebra S Sₘ i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝³ : Algebra Rₘ Sₘ inst✝² : Algebra R Sₘ inst✝¹ : IsScalarTower R Rₘ Sₘ inst✝ : IsScalarTower R S Sₘ x : R y : { x // x ∈ M } ⊢ ↑(algebraMap Rₘ Sₘ) (mk' Rₘ (↑y * x) y) = ↑(algebraMap Rₘ Sₘ) (↑(algebraMap R Rₘ) x) [PROOFSTEP] exact congr_arg (algebraMap Rₘ Sₘ) (IsLocalization.mk'_mul_cancel_left x y) [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Submonoid R S : Type u_2 inst✝¹¹ : CommRing S inst✝¹⁰ : Algebra R S P : Type u_3 inst✝⁹ : CommRing P Rₘ : Type u_4 Sₘ : Type u_5 inst✝⁸ : CommRing Rₘ inst✝⁷ : CommRing Sₘ inst✝⁶ : Algebra R Rₘ inst✝⁵ : IsLocalization M Rₘ inst✝⁴ : Algebra S Sₘ i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝³ : Algebra Rₘ Sₘ inst✝² : Algebra R Sₘ inst✝¹ : IsScalarTower R Rₘ Sₘ inst✝ : IsScalarTower R S Sₘ x : R ⊢ ↑(algebraMap Rₘ Sₘ) (↑(algebraMap R Rₘ) x) = ↑(algebraMap S Sₘ) (↑(algebraMap R S) x) [PROOFSTEP] rw [← IsScalarTower.algebraMap_apply R S Sₘ, ← IsScalarTower.algebraMap_apply R Rₘ Sₘ]
{"mathlib_filename": "Mathlib.RingTheory.Localization.Basic", "llama_tokens": 60309}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : SMul 𝕜 α inst✝ : SMul 𝕜 β s✝ : Set E f : E → β g : β → α s : Set β hs : Convex 𝕜 s ⊢ ∀ ⦃x : β⦄, x ∈ s → ∀ ⦃y : β⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → _root_.id (a • x + b • y) ≤ a • _root_.id x + b • _root_.id y [PROOFSTEP] intros [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : SMul 𝕜 α inst✝ : SMul 𝕜 β s✝ : Set E f : E → β g : β → α s : Set β hs : Convex 𝕜 s x✝ : β a✝⁵ : x✝ ∈ s y✝ : β a✝⁴ : y✝ ∈ s a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ _root_.id (a✝³ • x✝ + b✝ • y✝) ≤ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝ [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : SMul 𝕜 α inst✝ : SMul 𝕜 β s✝ : Set E f : E → β g : β → α s : Set β hs : Convex 𝕜 s ⊢ ∀ ⦃x : β⦄, x ∈ s → ∀ ⦃y : β⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • _root_.id x + b • _root_.id y ≤ _root_.id (a • x + b • y) [PROOFSTEP] intros [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : SMul 𝕜 α inst✝ : SMul 𝕜 β s✝ : Set E f : E → β g : β → α s : Set β hs : Convex 𝕜 s x✝ : β a✝⁵ : x✝ ∈ s y✝ : β a✝⁴ : y✝ ∈ s a✝³ b✝ : 𝕜 a✝² : 0 ≤ a✝³ a✝¹ : 0 ≤ b✝ a✝ : a✝³ + b✝ = 1 ⊢ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝ ≤ _root_.id (a✝³ • x✝ + b✝ • y✝) [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : DistribMulAction 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x ≤ r} y : E hy : y ∈ {x | x ∈ s ∧ f x ≤ r} a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • r + b • r [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x ≤ r} y : E hy : y ∈ {x | x ∈ s ∧ f x ≤ r} a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f x ≤ r case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x ≤ r} y : E hy : y ∈ {x | x ∈ s ∧ f x ≤ r} a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f y ≤ r [PROOFSTEP] exact hx.2 [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x ≤ r} y : E hy : y ∈ {x | x ∈ s ∧ f x ≤ r} a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f y ≤ r [PROOFSTEP] exact hy.2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f ⊢ Convex 𝕜 {p | p.fst ∈ s ∧ f p.fst ≤ p.snd} [PROOFSTEP] rintro ⟨x, r⟩ ⟨hx, hr⟩ ⟨y, t⟩ ⟨hy, ht⟩ a b ha hb hab [GOAL] case mk.intro.mk.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f x : E r : β hx : (x, r).fst ∈ s hr : f (x, r).fst ≤ (x, r).snd y : E t : β hy : (y, t).fst ∈ s ht : f (y, t).fst ≤ (y, t).snd a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • (x, r) + b • (y, t) ∈ {p | p.fst ∈ s ∧ f p.fst ≤ p.snd} [PROOFSTEP] refine' ⟨hf.1 hx hy ha hb hab, _⟩ [GOAL] case mk.intro.mk.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f x : E r : β hx : (x, r).fst ∈ s hr : f (x, r).fst ≤ (x, r).snd y : E t : β hy : (y, t).fst ∈ s ht : f (y, t).fst ≤ (y, t).snd a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (a • (x, r) + b • (y, t)).fst ≤ (a • (x, r) + b • (y, t)).snd [PROOFSTEP] calc f (a • x + b • y) ≤ a • f x + b • f y := hf.2 hx hy ha hb hab _ ≤ a • r + b • t := by gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f x : E r : β hx : (x, r).fst ∈ s hr : f (x, r).fst ≤ (x, r).snd y : E t : β hy : (y, t).fst ∈ s ht : f (y, t).fst ≤ (y, t).snd a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • r + b • t [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f c x : E hx : x ∈ (fun z => c + z) ⁻¹' s y : E hy : y ∈ (fun z => c + z) ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (c + (a • x + b • y)) = f (a • (c + x) + b • (c + y)) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm, Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f c : E ⊢ ConvexOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c) [PROOFSTEP] simpa only [add_comm c] using hf.translate_right c [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β ⊢ ConvexOn 𝕜 s f ↔ Convex 𝕜 s ∧ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] refine' and_congr_right' ⟨fun h x hx y hy a b ha hb hab => h hx hy ha.le hb.le hab, fun h x hx y hy a b ha hb hab => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ f (0 • x + b • y) ≤ 0 • f x + b • f y [PROOFSTEP] rw [zero_add] at hab [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 ⊢ f (0 • x + b • y) ≤ 0 • f x + b • f y [PROOFSTEP] subst b [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s ha : 0 ≤ 0 hb : 0 ≤ 1 ⊢ f (0 • x + 1 • y) ≤ 0 • f x + 1 • f y [PROOFSTEP] simp_rw [zero_smul, zero_add, one_smul, le_rfl] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] obtain rfl | hb' := hb.eq_or_lt [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a : 𝕜 ha : 0 ≤ a ha' : 0 < a hb : 0 ≤ 0 hab : a + 0 = 1 ⊢ f (a • x + 0 • y) ≤ a • f x + 0 • f y [PROOFSTEP] rw [add_zero] at hab [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a : 𝕜 ha : 0 ≤ a ha' : 0 < a hb : 0 ≤ 0 hab : a = 1 ⊢ f (a • x + 0 • y) ≤ a • f x + 0 • f y [PROOFSTEP] subst a [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hb : 0 ≤ 0 ha : 0 ≤ 1 ha' : 0 < 1 ⊢ f (1 • x + 0 • y) ≤ 1 • f x + 0 • f y [PROOFSTEP] simp_rw [zero_smul, add_zero, one_smul, le_rfl] [GOAL] case inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ha' : 0 < a hb' : 0 < b ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] exact h hx hy ha' hb' hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β ⊢ ConvexOn 𝕜 s f ↔ Convex 𝕜 s ∧ Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] rw [convexOn_iff_forall_pos] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β ⊢ (Convex 𝕜 s ∧ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) ↔ Convex 𝕜 s ∧ Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] refine' and_congr_right' ⟨fun h x hx y hy _ a b ha hb hab => h hx hy ha hb hab, fun h x hx y hy a b ha hb hab => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] obtain rfl | hxy := eq_or_ne x y [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hy : x ∈ s ⊢ f (a • x + b • x) ≤ a • f x + b • f x [PROOFSTEP] rw [Convex.combo_self hab, Convex.combo_self hab] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hxy : x ≠ y ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] exact h hx hy hxy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β f : E →ₗ[𝕜] β s : Set E hs : Convex 𝕜 s x✝⁸ : E x✝⁷ : x✝⁸ ∈ s x✝⁶ : E x✝⁵ : x✝⁶ ∈ s x✝⁴ x✝³ : 𝕜 x✝² : 0 ≤ x✝⁴ x✝¹ : 0 ≤ x✝³ x✝ : x✝⁴ + x✝³ = 1 ⊢ ↑f (x✝⁴ • x✝⁸ + x✝³ • x✝⁶) ≤ x✝⁴ • ↑f x✝⁸ + x✝³ • ↑f x✝⁶ [PROOFSTEP] rw [f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedAddCommMonoid α inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β f : E →ₗ[𝕜] β s : Set E hs : Convex 𝕜 s x✝⁸ : E x✝⁷ : x✝⁸ ∈ s x✝⁶ : E x✝⁵ : x✝⁶ ∈ s x✝⁴ x✝³ : 𝕜 x✝² : 0 ≤ x✝⁴ x✝¹ : 0 ≤ x✝³ x✝ : x✝⁴ + x✝³ = 1 ⊢ x✝⁴ • ↑f x✝⁸ + x✝³ • ↑f x✝⁶ ≤ ↑f (x✝⁴ • x✝⁸ + x✝³ • x✝⁶) [PROOFSTEP] rw [f.map_add, f.map_smul, f.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x < r} y : E hy : y ∈ {x | x ∈ s ∧ f x < r} hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • r + b • r [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x < r} y : E hy : y ∈ {x | x ∈ s ∧ f x < r} hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f x ≤ r case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x < r} y : E hy : y ∈ {x | x ∈ s ∧ f x < r} hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f y ≤ r [PROOFSTEP] exact hx.2.le [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f r : β x : E hx : x ∈ {x | x ∈ s ∧ f x < r} y : E hy : y ∈ {x | x ∈ s ∧ f x < r} hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f y ≤ r [PROOFSTEP] exact hy.2.le [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y ⊢ ConvexOn 𝕜 s f [PROOFSTEP] refine' convexOn_iff_pairwise_pos.2 ⟨hs, fun x hx y hy hxy a b ha hb hab => _⟩ -- Porting note: without clearing the stray variables, `wlog` gives a bad term. -- See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/wlog.20.2316495 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] clear! α F ι [GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] wlog h : x < y [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y h : ¬x < y ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] rw [add_comm (a • x), add_comm (a • f x)] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y h : ¬x < y ⊢ f (b • y + a • x) ≤ b • f y + a • f x [PROOFSTEP] rw [add_comm] at hab [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : b + a = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) ≤ a • f x + b • f y h : ¬x < y ⊢ f (b • y + a • x) ≤ b • f y + a • f x [PROOFSTEP] refine' this hs hf y hy x hx hxy.symm b a hb ha hab (hxy.lt_or_lt.resolve_left h) [GOAL] 𝕜✝ : Type u_1 E✝ : Type u_2 β✝ : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜✝ inst✝¹⁰ : AddCommMonoid E✝ inst✝⁹ : OrderedAddCommMonoid β✝ inst✝⁸ : Module 𝕜✝ E✝ inst✝⁷ : Module 𝕜✝ β✝ inst✝⁶ : LinearOrder E✝ s✝ : Set E✝ f✝ : E✝ → β✝ 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 h : x < y ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] exact hf hx hy h ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y ⊢ StrictConvexOn 𝕜 s f [PROOFSTEP] refine' ⟨hs, fun x hx y hy hxy a b ha hb hab => _⟩ -- Porting note: without clearing the stray variables, `wlog` gives a bad term. -- See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/wlog.20.2316495 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] clear! α F ι [GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] wlog h : x < y [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y h : ¬x < y ⊢ f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] rw [add_comm (a • x), add_comm (a • f x)] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y h : ¬x < y ⊢ f (b • y + a • x) < b • f y + a • f x [PROOFSTEP] rw [add_comm] at hab [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : b + a = 1 this : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [inst : OrderedSemiring 𝕜] [inst_1 : AddCommMonoid E] [inst_2 : OrderedAddCommMonoid β] [inst_3 : Module 𝕜 E] [inst_4 : Module 𝕜 β] [inst_5 : LinearOrder E] {s : Set E} {f : E → β}, Convex 𝕜 s → (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) → ∀ (x : E), x ∈ s → ∀ (y : E), y ∈ s → x ≠ y → ∀ (a b : 𝕜), 0 < a → 0 < b → a + b = 1 → x < y → f (a • x + b • y) < a • f x + b • f y h : ¬x < y ⊢ f (b • y + a • x) < b • f y + a • f x [PROOFSTEP] refine' this hs hf y hy x hx hxy.symm b a hb ha hab (hxy.lt_or_lt.resolve_left h) [GOAL] 𝕜✝ : Type u_1 E✝ : Type u_2 β✝ : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜✝ inst✝¹⁰ : AddCommMonoid E✝ inst✝⁹ : OrderedAddCommMonoid β✝ inst✝⁸ : Module 𝕜✝ E✝ inst✝⁷ : Module 𝕜✝ β✝ inst✝⁶ : LinearOrder E✝ s✝ : Set E✝ f✝ : E✝ → β✝ 𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : LinearOrder E s : Set E f : E → β hs : Convex 𝕜 s hf : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x < y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 h : x < y ⊢ f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] exact hf hx hy h ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : AddCommMonoid E inst✝⁵ : AddCommMonoid F inst✝⁴ : OrderedAddCommMonoid α inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : SMul 𝕜 β f : F → β s : Set F hf : ConvexOn 𝕜 s f g : E →ₗ[𝕜] F x : E hx : x ∈ ↑g ⁻¹' s y : E hy : y ∈ ↑g ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (↑g (a • x + b • y)) = f (a • ↑g x + b • ↑g y) [PROOFSTEP] rw [g.map_add, g.map_smul, g.map_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : DistribMulAction 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedCancelAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : DistribMulAction 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y + (a • g x + b • g y) = a • (f x + g x) + b • (f y + g y) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f p q : E × β hp : p.fst ∈ s ∧ f p.fst < p.snd hq : q.fst ∈ s ∧ f q.fst ≤ q.snd ⊢ openSegment 𝕜 p q ⊆ {p | p.fst ∈ s ∧ f p.fst < p.snd} [PROOFSTEP] rintro _ ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f p q : E × β hp : p.fst ∈ s ∧ f p.fst < p.snd hq : q.fst ∈ s ∧ f q.fst ≤ q.snd a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • p + b • q ∈ {p | p.fst ∈ s ∧ f p.fst < p.snd} [PROOFSTEP] refine' ⟨hf.1 hp.1 hq.1 ha.le hb.le hab, _⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : OrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f p q : E × β hp : p.fst ∈ s ∧ f p.fst < p.snd hq : q.fst ∈ s ∧ f q.fst ≤ q.snd a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • p + b • q).fst < (a • p + b • q).snd [PROOFSTEP] calc f (a • p.1 + b • q.1) ≤ a • f p.1 + b • f q.1 := hf.2 hp.1 hq.1 ha.le hb.le hab _ < a • p.2 + b • q.2 := add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hp.2 ha) (smul_le_smul_of_nonneg hq.2 hb.le) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g ⊢ ConvexOn 𝕜 s (f ⊔ g) [PROOFSTEP] refine' ⟨hf.left, fun x hx y hy a b ha hb hab => sup_le _ _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • (f ⊔ g) x + b • (f ⊔ g) y [PROOFSTEP] calc f (a • x + b • y) ≤ a • f x + b • f y := hf.right hx hy ha hb hab _ ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) := by gcongr <;> apply le_sup_left [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f x ≤ f x ⊔ g x [PROOFSTEP] apply le_sup_left [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f y ≤ f y ⊔ g y [PROOFSTEP] apply le_sup_left [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ g (a • x + b • y) ≤ a • (f ⊔ g) x + b • (f ⊔ g) y [PROOFSTEP] calc g (a • x + b • y) ≤ a • g x + b • g y := hg.right hx hy ha hb hab _ ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) := by gcongr <;> apply le_sup_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • g x + b • g y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ g x ≤ f x ⊔ g x [PROOFSTEP] apply le_sup_right [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ g y ≤ f y ⊔ g y [PROOFSTEP] apply le_sup_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f x ≤ f x ⊔ g x [PROOFSTEP] apply le_sup_left [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f y ≤ f y ⊔ g y [PROOFSTEP] apply le_sup_left [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • g x + b • g y ≤ a • (f x ⊔ g x) + b • (f y ⊔ g y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ g x ≤ f x ⊔ g x [PROOFSTEP] apply le_sup_right [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f hg : StrictConvexOn 𝕜 s g x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ g y ≤ f y ⊔ g y [PROOFSTEP] apply le_sup_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • max (f x) (f y) + b • max (f x) (f y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f x ≤ max (f x) (f y) [PROOFSTEP] apply le_max_left [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f y ≤ max (f x) (f y) [PROOFSTEP] apply le_max_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ≤ a • max (f x) (f y) + b • max (f x) (f y) [PROOFSTEP] gcongr [GOAL] case h₁.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f x ≤ max (f x) (f y) [PROOFSTEP] apply le_max_left [GOAL] case h₂.h₁ 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : StrictConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f y ≤ max (f x) (f y) [PROOFSTEP] apply le_max_right [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E a b : 𝕜 hx : x ∈ s hy : y ∈ s ha : 0 ≤ a hb : 0 < b hab : a + b = 1 hfx : f x ≤ f (a • x + b • y) ⊢ f (a • x + b • y) ≤ f y [PROOFSTEP] rw [add_comm] at hab hfx ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E a b : 𝕜 hx : x ∈ s hy : y ∈ s ha : 0 ≤ a hb : 0 < b hab : b + a = 1 hfx : f x ≤ f (b • y + a • x) ⊢ f (b • y + a • x) ≤ f y [PROOFSTEP] exact hf.le_left_of_right_le' hy hx hb ha hab hfx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y z : E hx : x ∈ s hy : y ∈ s hz : z ∈ openSegment 𝕜 x y hyz : f y ≤ f z ⊢ f z ≤ f x [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hyz : f y ≤ f (a • x + b • y) ⊢ f (a • x + b • y) ≤ f x [PROOFSTEP] exact hf.le_left_of_right_le' hx hy ha hb.le hab hyz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y z : E hx : x ∈ s hy : y ∈ s hz : z ∈ openSegment 𝕜 x y hxz : f x ≤ f z ⊢ f z ≤ f y [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hxz : f x ≤ f (a • x + b • y) ⊢ f (a • x + b • y) ≤ f y [PROOFSTEP] exact hf.le_right_of_left_le' hx hy ha.le hb hab hxz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E a b : 𝕜 hx : x ∈ s hy : y ∈ s ha : 0 < a hb : 0 < b hab : a + b = 1 hfx : f x < f (a • x + b • y) ⊢ f (a • x + b • y) < f y [PROOFSTEP] rw [add_comm] at hab hfx ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E a b : 𝕜 hx : x ∈ s hy : y ∈ s ha : 0 < a hb : 0 < b hab : b + a = 1 hfx : f x < f (b • y + a • x) ⊢ f (b • y + a • x) < f y [PROOFSTEP] exact hf.lt_left_of_right_lt' hy hx hb ha hab hfx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y z : E hx : x ∈ s hy : y ∈ s hz : z ∈ openSegment 𝕜 x y hyz : f y < f z ⊢ f z < f x [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hyz : f y < f (a • x + b • y) ⊢ f (a • x + b • y) < f x [PROOFSTEP] exact hf.lt_left_of_right_lt' hx hy ha hb hab hyz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y z : E hx : x ∈ s hy : y ∈ s hz : z ∈ openSegment 𝕜 x y hxz : f x < f z ⊢ f z < f y [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f g : E → β hf : ConvexOn 𝕜 s f x y : E hx : x ∈ s hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hxz : f x < f (a • x + b • y) ⊢ f (a • x + b • y) < f y [PROOFSTEP] exact hf.lt_right_of_left_lt' hx hy ha hb hab hxz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ ConvexOn 𝕜 s (-f) ↔ ConcaveOn 𝕜 s f [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ ConvexOn 𝕜 s (-f) → ConcaveOn 𝕜 s f [PROOFSTEP] rintro ⟨hconv, h⟩ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y ⊢ ConcaveOn 𝕜 s f [PROOFSTEP] refine' ⟨hconv, fun x hx y hy a b ha hb hab => _⟩ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ f (a • x + b • y) [PROOFSTEP] simp [neg_apply, neg_le, add_comm] at h [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y) ⊢ a • f x + b • f y ≤ f (a • x + b • y) [PROOFSTEP] exact h hx hy ha hb hab [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ ConcaveOn 𝕜 s f → ConvexOn 𝕜 s (-f) [PROOFSTEP] rintro ⟨hconv, h⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y) ⊢ ConvexOn 𝕜 s (-f) [PROOFSTEP] refine' ⟨hconv, fun x hx y hy a b ha hb hab => _⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (-f) (a • x + b • y) ≤ a • (-f) x + b • (-f) y [PROOFSTEP] rw [← neg_le_neg_iff] [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ -(a • (-f) x + b • (-f) y) ≤ -(-f) (a • x + b • y) [PROOFSTEP] simp_rw [neg_add, Pi.neg_apply, smul_neg, neg_neg] [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • f x + b • f y ≤ f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ≤ f (a • x + b • y) [PROOFSTEP] exact h hx hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ ConcaveOn 𝕜 s (-f) ↔ ConvexOn 𝕜 s f [PROOFSTEP] rw [← neg_convexOn_iff, neg_neg f] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ StrictConvexOn 𝕜 s (-f) ↔ StrictConcaveOn 𝕜 s f [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ StrictConvexOn 𝕜 s (-f) → StrictConcaveOn 𝕜 s f [PROOFSTEP] rintro ⟨hconv, h⟩ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → (-f) (a • x + b • y) < a • (-f) x + b • (-f) y ⊢ StrictConcaveOn 𝕜 s f [PROOFSTEP] refine' ⟨hconv, fun x hx y hy hxy a b ha hb hab => _⟩ [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → (-f) (a • x + b • y) < a • (-f) x + b • (-f) y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y < f (a • x + b • y) [PROOFSTEP] simp [neg_apply, neg_lt, add_comm] at h [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ¬x = y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y) ⊢ a • f x + b • f y < f (a • x + b • y) [PROOFSTEP] exact h hx hy hxy ha hb hab [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ StrictConcaveOn 𝕜 s f → StrictConvexOn 𝕜 s (-f) [PROOFSTEP] rintro ⟨hconv, h⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y) ⊢ StrictConvexOn 𝕜 s (-f) [PROOFSTEP] refine' ⟨hconv, fun x hx y hy hxy a b ha hb hab => _⟩ [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (-f) (a • x + b • y) < a • (-f) x + b • (-f) y [PROOFSTEP] rw [← neg_lt_neg_iff] [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ -(a • (-f) x + b • (-f) y) < -(-f) (a • x + b • y) [PROOFSTEP] simp_rw [neg_add, Pi.neg_apply, smul_neg, neg_neg] [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β hconv : Convex 𝕜 s h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • f x + b • f y < f (a • x + b • y) x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y < f (a • x + b • y) [PROOFSTEP] exact h hx hy hxy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : AddCommMonoid F inst✝² : OrderedAddCommGroup β inst✝¹ : SMul 𝕜 E inst✝ : Module 𝕜 β s : Set E f g : E → β ⊢ StrictConcaveOn 𝕜 s (-f) ↔ StrictConvexOn 𝕜 s f [PROOFSTEP] rw [← neg_strictConvexOn_iff, neg_neg f] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCancelCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f c x : E hx : x ∈ (fun z => c + z) ⁻¹' s y : E hy : y ∈ (fun z => c + z) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (c + (a • x + b • y)) = f (a • (c + x) + b • (c + y)) [PROOFSTEP] rw [smul_add, smul_add, add_add_add_comm, Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCancelCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β hf : StrictConvexOn 𝕜 s f c : E ⊢ StrictConvexOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c) [PROOFSTEP] simpa only [add_comm] using hf.translate_right c [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCancelCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β hf : StrictConcaveOn 𝕜 s f c : E ⊢ StrictConcaveOn 𝕜 ((fun z => c + z) ⁻¹' s) (f ∘ fun z => z + c) [PROOFSTEP] simpa only [add_comm] using hf.translate_right c [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : OrderedAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β c : 𝕜 hc : 0 ≤ c hf : ConvexOn 𝕜 s f x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ c • (a • f x + b • f y) = a • c • f x + b • c • f y [PROOFSTEP] rw [smul_add, smul_comm c, smul_comm c] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : OrderedAddCommMonoid β inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : SMul 𝕜 β f : F → β g : E →ᵃ[𝕜] F s : Set F hf : ConvexOn 𝕜 s f x : E hx : x ∈ ↑g ⁻¹' s y : E hy : y ∈ ↑g ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (↑g (a • x + b • y)) = f (a • ↑g x + b • ↑g y) [PROOFSTEP] rw [Convex.combo_affine_apply hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β ⊢ (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) → ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y [PROOFSTEP] intro h x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y [PROOFSTEP] apply h hx hy (div_nonneg ha hab.le) (div_nonneg hb hab.le) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β ⊢ (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y) → ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] intro h x hx y hy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → f ((a / (a + b)) • x + (b / (a + b)) • y) ≤ (a / (a + b)) • f x + (b / (a + b)) • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y [PROOFSTEP] simpa [hab, zero_lt_one] using h hx hy ha hb [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β ⊢ (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y) → ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y [PROOFSTEP] intro h x hx y hy hxy a b ha hb [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y [PROOFSTEP] have hab := add_pos ha hb [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y [PROOFSTEP] apply h hx hy hxy (div_pos ha hab) (div_pos hb hab) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β ⊢ (∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y) → ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] intro h x hx y hy hxy a b ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : LinearOrderedField 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 β s : Set E f : E → β h : ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → x ≠ y → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → f ((a / (a + b)) • x + (b / (a + b)) • y) < (a / (a + b)) • f x + (b / (a + b)) • f y x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) < a • f x + b • f y [PROOFSTEP] simpa [hab, zero_lt_one] using h hx hy hxy ha hb [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f ⊢ StrictConvexOn 𝕜 univ ↑(symm f) [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' ⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] have hxy' : x' ≠ y' := by rw [← f.injective.ne_iff, ← hx'', ← hy'']; exact hxy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x' ≠ y' [PROOFSTEP] rw [← f.injective.ne_iff, ← hx'', ← hy''] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x ≠ y [PROOFSTEP] exact hxy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ ↑(symm f) (a • x + b • y) < a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ ↑(symm f) (a • ↑f x' + b • ↑f y') < a • x' + b • y' [PROOFSTEP] rw [← f.lt_iff_lt, OrderIso.apply_symm_apply] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ a • ↑f x' + b • ↑f y' < ↑f (a • x' + b • y') [PROOFSTEP] exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) hxy' ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ x' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ y' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f ⊢ ConvexOn 𝕜 univ ↑(symm f) [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ a b ha hb hab => ?_⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' ⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ ↑(symm f) (a • x + b • y) ≤ a • ↑(symm f) x + b • ↑(symm f) y [PROOFSTEP] simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ ↑(symm f) (a • ↑f x' + b • ↑f y') ≤ a • x' + b • y' [PROOFSTEP] rw [← f.le_iff_le, OrderIso.apply_symm_apply] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ a • ↑f x' + b • ↑f y' ≤ ↑f (a • x' + b • y') [PROOFSTEP] exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConcaveOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ y' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f ⊢ StrictConcaveOn 𝕜 univ ↑(symm f) [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ hxy a b ha hb hab => ?_⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y) [PROOFSTEP] obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' ⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y) [PROOFSTEP] obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y) [PROOFSTEP] have hxy' : x' ≠ y' := by rw [← f.injective.ne_iff, ← hx'', ← hy'']; exact hxy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x' ≠ y' [PROOFSTEP] rw [← f.injective.ne_iff, ← hx'', ← hy''] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x ≠ y [PROOFSTEP] exact hxy [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ a • ↑(symm f) x + b • ↑(symm f) y < ↑(symm f) (a • x + b • y) [PROOFSTEP] simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ a • x' + b • y' < ↑(symm f) (a • ↑f x' + b • ↑f y') [PROOFSTEP] rw [← f.lt_iff_lt, OrderIso.apply_symm_apply] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ ↑f (a • x' + b • y') < a • ↑f x' + b • ↑f y' [PROOFSTEP] exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) hxy' ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ x' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' hxy' : x' ≠ y' ⊢ y' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f ⊢ ConcaveOn 𝕜 univ ↑(symm f) [PROOFSTEP] refine ⟨convex_univ, fun x _ y _ a b ha hb hab => ?_⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y) [PROOFSTEP] obtain ⟨x', hx''⟩ := f.surjective.exists.mp ⟨x, rfl⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' ⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y) [PROOFSTEP] obtain ⟨y', hy''⟩ := f.surjective.exists.mp ⟨y, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ a • ↑(symm f) x + b • ↑(symm f) y ≤ ↑(symm f) (a • x + b • y) [PROOFSTEP] simp only [hx'', hy'', OrderIso.symm_apply_apply, gt_iff_lt] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ a • x' + b • y' ≤ ↑(symm f) (a • ↑f x' + b • ↑f y') [PROOFSTEP] rw [← f.le_iff_le, OrderIso.apply_symm_apply] [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ ↑f (a • x' + b • y') ≤ a • ↑f x' + b • ↑f y' [PROOFSTEP] exact hf.2 (by simp : x' ∈ univ) (by simp : y' ∈ univ) ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ x' ∈ univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 α : Type u_4 β : Type u_5 ι : Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : ConvexOn 𝕜 univ ↑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 x' : α hx'' : x = ↑f x' y' : α hy'' : y = ↑f y' ⊢ y' ∈ univ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Analysis.Convex.Function", "llama_tokens": 51921}
[GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E ⊢ sqrt (1 + ‖x‖ ^ 2) ≤ 1 + ‖x‖ [PROOFSTEP] rw [sqrt_le_left (by positivity)] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E ⊢ 0 ≤ 1 + ‖x‖ [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E ⊢ 1 + ‖x‖ ^ 2 ≤ (1 + ‖x‖) ^ 2 [PROOFSTEP] simp [add_sq] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E ⊢ 1 + ‖x‖ ≤ sqrt 2 * sqrt (1 + ‖x‖ ^ 2) [PROOFSTEP] rw [← sqrt_mul zero_le_two] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E ⊢ 1 + ‖x‖ ≤ sqrt (2 * (1 + ‖x‖ ^ 2)) [PROOFSTEP] have := sq_nonneg (‖x‖ - 1) [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E x : E this : 0 ≤ (‖x‖ - 1) ^ 2 ⊢ 1 + ‖x‖ ≤ sqrt (2 * (1 + ‖x‖ ^ 2)) [PROOFSTEP] apply le_sqrt_of_sq_le [GOAL] case h E : Type u_1 inst✝ : NormedAddCommGroup E x : E this : 0 ≤ (‖x‖ - 1) ^ 2 ⊢ (1 + ‖x‖) ^ 2 ≤ 2 * (1 + ‖x‖ ^ 2) [PROOFSTEP] linarith [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ (1 + ‖x‖ ^ 2) ^ (-r / 2) = 2 ^ (r / 2) * ((sqrt 2 * sqrt (1 + ‖x‖ ^ 2)) ^ r)⁻¹ [PROOFSTEP] rw [rpow_div_two_eq_sqrt, rpow_div_two_eq_sqrt, mul_rpow, mul_inv, rpow_neg, mul_inv_cancel_left₀] [GOAL] case h E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ sqrt 2 ^ r ≠ 0 [PROOFSTEP] positivity [GOAL] case hx E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ sqrt (1 + ‖x‖ ^ 2) [PROOFSTEP] positivity [GOAL] case h E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ sqrt 2 [PROOFSTEP] positivity [GOAL] case h₁ E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ sqrt (1 + ‖x‖ ^ 2) [PROOFSTEP] positivity [GOAL] case hx E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ 2 [PROOFSTEP] positivity [GOAL] case hx E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ 1 + ‖x‖ ^ 2 [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 2 ^ (r / 2) * ((sqrt 2 * sqrt (1 + ‖x‖ ^ 2)) ^ r)⁻¹ ≤ 2 ^ (r / 2) * ((1 + ‖x‖) ^ r)⁻¹ [PROOFSTEP] gcongr [GOAL] case h.h.h₁ E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 1 + ‖x‖ ≤ sqrt 2 * sqrt (1 + ‖x‖ ^ 2) [PROOFSTEP] apply one_add_norm_le_sqrt_two_mul_sqrt [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 2 ^ (r / 2) * ((1 + ‖x‖) ^ r)⁻¹ = 2 ^ (r / 2) * (1 + ‖x‖) ^ (-r) [PROOFSTEP] rw [rpow_neg] [GOAL] case hx E : Type u_1 inst✝ : NormedAddCommGroup E r : ℝ x : E hr : 0 < r ⊢ 0 ≤ 1 + ‖x‖ [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 0 < t x : E ⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ ‖x‖ ≤ t ^ (-r⁻¹) - 1 [PROOFSTEP] rw [le_sub_iff_add_le', neg_inv] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 0 < t x : E ⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ 1 + ‖x‖ ≤ t ^ (-r)⁻¹ [PROOFSTEP] exact (Real.le_rpow_inv_iff_of_neg (by positivity) ht (neg_lt_zero.mpr hr)).symm [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 0 < t x : E ⊢ 0 < 1 + ‖x‖ [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 1 < t ⊢ Metric.closedBall 0 (t ^ (-r⁻¹) - 1) = ∅ [PROOFSTEP] rw [Metric.closedBall_eq_empty, sub_neg] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 1 < t ⊢ t ^ (-r⁻¹) < 1 [PROOFSTEP] exact Real.rpow_lt_one_of_one_lt_of_neg ht (by simp only [hr, Right.neg_neg_iff, inv_pos]) [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E r t : ℝ hr : 0 < r ht : 1 < t ⊢ -r⁻¹ < 0 [PROOFSTEP] simp only [hr, Right.neg_neg_iff, inv_pos] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r ⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤ [PROOFSTEP] have hr : 0 < r := lt_of_le_of_lt n.cast_nonneg hnr [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r ⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤ [PROOFSTEP] have h_int : ∀ x : ℝ, x ∈ Ioc (0 : ℝ) 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * n))) := fun x hx ↦ by apply ENNReal.ofReal_le_ofReal rw [← neg_mul, rpow_mul hx.1.le, rpow_nat_cast] refine' pow_le_pow_of_le_left _ (by simp only [sub_le_self_iff, zero_le_one]) n rw [le_sub_iff_add_le', add_zero] refine' Real.one_le_rpow_of_pos_of_le_one_of_nonpos hx.1 hx.2 _ rw [Right.neg_nonpos_iff, inv_nonneg] exact hr.le [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) [PROOFSTEP] apply ENNReal.ofReal_le_ofReal [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ (x ^ (-r⁻¹) - 1) ^ n ≤ x ^ (-(r⁻¹ * ↑n)) [PROOFSTEP] rw [← neg_mul, rpow_mul hx.1.le, rpow_nat_cast] [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ (x ^ (-r⁻¹) - 1) ^ n ≤ (x ^ (-r⁻¹)) ^ n [PROOFSTEP] refine' pow_le_pow_of_le_left _ (by simp only [sub_le_self_iff, zero_le_one]) n [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ x ^ (-r⁻¹) - 1 ≤ x ^ (-r⁻¹) [PROOFSTEP] simp only [sub_le_self_iff, zero_le_one] [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ 0 ≤ x ^ (-r⁻¹) - 1 [PROOFSTEP] rw [le_sub_iff_add_le', add_zero] [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ 1 ≤ x ^ (-r⁻¹) [PROOFSTEP] refine' Real.one_le_rpow_of_pos_of_le_one_of_nonpos hx.1 hx.2 _ [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ -r⁻¹ ≤ 0 [PROOFSTEP] rw [Right.neg_nonpos_iff, inv_nonneg] [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r x : ℝ hx : x ∈ Ioc 0 1 ⊢ 0 ≤ r [PROOFSTEP] exact hr.le [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) ⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) < ⊤ [PROOFSTEP] refine' lt_of_le_of_lt (set_lintegral_mono' measurableSet_Ioc h_int) _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) ⊢ ∫⁻ (x : ℝ) in Ioc 0 1, ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) < ⊤ [PROOFSTEP] refine' IntegrableOn.set_lintegral_lt_top _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) ⊢ IntegrableOn (fun x => x ^ (-(r⁻¹ * ↑n))) (Ioc 0 1) [PROOFSTEP] rw [← intervalIntegrable_iff_integrable_Ioc_of_le zero_le_one] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) ⊢ IntervalIntegrable (fun x => x ^ (-(r⁻¹ * ↑n))) volume 0 1 [PROOFSTEP] apply intervalIntegral.intervalIntegrable_rpow' [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E r : ℝ n : ℕ hnr : ↑n < r hr : 0 < r h_int : ∀ (x : ℝ), x ∈ Ioc 0 1 → ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) ≤ ENNReal.ofReal (x ^ (-(r⁻¹ * ↑n))) ⊢ -1 < -(r⁻¹ * ↑n) [PROOFSTEP] rwa [neg_lt_neg_iff, inv_mul_lt_iff' hr, one_mul] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r ⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤ [PROOFSTEP] have hr : 0 < r := lt_of_le_of_lt (finrank ℝ E).cast_nonneg hnr [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r ⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤ [PROOFSTEP] have h_meas : Measurable fun ω : E => (1 + ‖ω‖) ^ (-r) := -- porting note: was `by measurability`(measurable_norm.const_add _).pow_const _ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) ⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤ [PROOFSTEP] have h_pos : ∀ x : E, 0 ≤ (1 + ‖x‖) ^ (-r) := fun x ↦ by positivity [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) x : E ⊢ 0 ≤ (1 + ‖x‖) ^ (-r) [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) ⊢ ∫⁻ (x : E), ENNReal.ofReal ((1 + ‖x‖) ^ (-r)) < ⊤ [PROOFSTEP] rw [lintegral_eq_lintegral_meas_le volume h_pos h_meas] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) ⊢ ∫⁻ (t : ℝ) in Ioi 0, ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} < ⊤ [PROOFSTEP] have h_int : ∀ t, 0 < t → volume {a : E | t ≤ (1 + ‖a‖) ^ (-r)} = volume (Metric.closedBall (0 : E) (t ^ (-r⁻¹) - 1)) := fun t ht ↦ by congr 1 ext x simp only [mem_setOf_eq, mem_closedBall_zero_iff] exact le_rpow_one_add_norm_iff_norm_le hr (mem_Ioi.mp ht) x [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) t : ℝ ht : 0 < t ⊢ ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) [PROOFSTEP] congr 1 [GOAL] case e_a E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) t : ℝ ht : 0 < t ⊢ {a | t ≤ (1 + ‖a‖) ^ (-r)} = Metric.closedBall 0 (t ^ (-r⁻¹) - 1) [PROOFSTEP] ext x [GOAL] case e_a.h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) t : ℝ ht : 0 < t x : E ⊢ x ∈ {a | t ≤ (1 + ‖a‖) ^ (-r)} ↔ x ∈ Metric.closedBall 0 (t ^ (-r⁻¹) - 1) [PROOFSTEP] simp only [mem_setOf_eq, mem_closedBall_zero_iff] [GOAL] case e_a.h E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) t : ℝ ht : 0 < t x : E ⊢ t ≤ (1 + ‖x‖) ^ (-r) ↔ ‖x‖ ≤ t ^ (-r⁻¹) - 1 [PROOFSTEP] exact le_rpow_one_add_norm_iff_norm_le hr (mem_Ioi.mp ht) x [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) ⊢ ∫⁻ (t : ℝ) in Ioi 0, ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} < ⊤ [PROOFSTEP] rw [set_lintegral_congr_fun measurableSet_Ioi (eventually_of_forall h_int)] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) ⊢ ∫⁻ (x : ℝ) in Ioi 0, ↑↑volume (Metric.closedBall 0 (x ^ (-r⁻¹) - 1)) < ⊤ [PROOFSTEP] set f := fun t : ℝ ↦ volume (Metric.closedBall (0 : E) (t ^ (-r⁻¹) - 1)) [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) ⊢ lintegral (Measure.restrict volume (Ioi 0)) f < ⊤ [PROOFSTEP] set mB := volume (Metric.ball (0 : E) 1) -- the next two inequalities are in fact equalities but we don't need that [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) ⊢ lintegral (Measure.restrict volume (Ioi 0)) f < ⊤ [PROOFSTEP] calc ∫⁻ t in Ioi 0, f t ≤ ∫⁻ t in Ioc 0 1 ∪ Ioi 1, f t := lintegral_mono_set Ioi_subset_Ioc_union_Ioi _ ≤ (∫⁻ t in Ioc 0 1, f t) + ∫⁻ t in Ioi 1, f t := (lintegral_union_le _ _ _) _ < ∞ := ENNReal.add_lt_top.2 ⟨?_, ?_⟩ [GOAL] case calc_1 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) ⊢ ∫⁻ (t : ℝ) in Ioc 0 1, f t < ⊤ [PROOFSTEP] have h_int' : ∀ t ∈ Ioc (0 : ℝ) 1, f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB := fun t ht ↦ by refine' volume.addHaar_closedBall (0 : E) _ rw [sub_nonneg] exact Real.one_le_rpow_of_pos_of_le_one_of_nonpos ht.1 ht.2 (by simp [hr.le]) [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) t : ℝ ht : t ∈ Ioc 0 1 ⊢ f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB [PROOFSTEP] refine' volume.addHaar_closedBall (0 : E) _ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) t : ℝ ht : t ∈ Ioc 0 1 ⊢ 0 ≤ t ^ (-r⁻¹) - 1 [PROOFSTEP] rw [sub_nonneg] [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) t : ℝ ht : t ∈ Ioc 0 1 ⊢ 1 ≤ t ^ (-r⁻¹) [PROOFSTEP] exact Real.one_le_rpow_of_pos_of_le_one_of_nonpos ht.1 ht.2 (by simp [hr.le]) [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) t : ℝ ht : t ∈ Ioc 0 1 ⊢ -r⁻¹ ≤ 0 [PROOFSTEP] simp [hr.le] [GOAL] case calc_1 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) h_int' : ∀ (t : ℝ), t ∈ Ioc 0 1 → f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB ⊢ ∫⁻ (t : ℝ) in Ioc 0 1, f t < ⊤ [PROOFSTEP] rw [set_lintegral_congr_fun measurableSet_Ioc (ae_of_all _ h_int'), lintegral_mul_const' _ _ measure_ball_lt_top.ne] [GOAL] case calc_1 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) h_int' : ∀ (t : ℝ), t ∈ Ioc 0 1 → f t = ENNReal.ofReal ((t ^ (-r⁻¹) - 1) ^ finrank ℝ E) * mB ⊢ (∫⁻ (a : ℝ) in Ioc 0 1, ENNReal.ofReal ((a ^ (-r⁻¹) - 1) ^ finrank ℝ E)) * ↑↑volume (Metric.ball 0 1) < ⊤ [PROOFSTEP] exact ENNReal.mul_lt_top (finite_integral_rpow_sub_one_pow_aux (finrank ℝ E) hnr).ne measure_ball_lt_top.ne [GOAL] case calc_2 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) ⊢ ∫⁻ (t : ℝ) in Ioi 1, f t < ⊤ [PROOFSTEP] have h_int'' : ∀ t ∈ Ioi (1 : ℝ), f t = 0 := fun t ht => by simp only [closedBall_rpow_sub_one_eq_empty_aux E hr ht, measure_empty] -- The integral over the constant zero function is finite: [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) t : ℝ ht : t ∈ Ioi 1 ⊢ f t = 0 [PROOFSTEP] simp only [closedBall_rpow_sub_one_eq_empty_aux E hr ht, measure_empty] -- The integral over the constant zero function is finite: [GOAL] case calc_2 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) h_int'' : ∀ (t : ℝ), t ∈ Ioi 1 → f t = 0 ⊢ ∫⁻ (t : ℝ) in Ioi 1, f t < ⊤ [PROOFSTEP] rw [set_lintegral_congr_fun measurableSet_Ioi (ae_of_all volume <| h_int''), lintegral_const 0, zero_mul] [GOAL] case calc_2 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r h_meas : Measurable fun ω => (1 + ‖ω‖) ^ (-r) h_pos : ∀ (x : E), 0 ≤ (1 + ‖x‖) ^ (-r) h_int : ∀ (t : ℝ), 0 < t → ↑↑volume {a | t ≤ (1 + ‖a‖) ^ (-r)} = ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) f : ℝ → ℝ≥0∞ := fun t => ↑↑volume (Metric.closedBall 0 (t ^ (-r⁻¹) - 1)) mB : ℝ≥0∞ := ↑↑volume (Metric.ball 0 1) h_int'' : ∀ (t : ℝ), t ∈ Ioi 1 → f t = 0 ⊢ 0 < ⊤ [PROOFSTEP] exact WithTop.zero_lt_top [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r ⊢ Integrable fun x => (1 + ‖x‖) ^ (-r) [PROOFSTEP] constructor [GOAL] case left E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r ⊢ AEStronglyMeasurable (fun x => (1 + ‖x‖) ^ (-r)) volume [PROOFSTEP] exact ((measurable_norm.const_add _).pow_const _).aestronglyMeasurable [GOAL] case right E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r ⊢ HasFiniteIntegral fun x => (1 + ‖x‖) ^ (-r) [PROOFSTEP] have : (∫⁻ a : E, ‖(1 + ‖a‖) ^ (-r)‖₊) = ∫⁻ a : E, ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) := lintegral_nnnorm_eq_of_nonneg fun _ => rpow_nonneg_of_nonneg (by positivity) _ [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r x✝ : E ⊢ 0 ≤ 1 + ‖x✝‖ [PROOFSTEP] positivity [GOAL] case right E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r this : ∫⁻ (a : E), ↑‖(1 + ‖a‖) ^ (-r)‖₊ = ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) ⊢ HasFiniteIntegral fun x => (1 + ‖x‖) ^ (-r) [PROOFSTEP] rw [HasFiniteIntegral, this] [GOAL] case right E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r this : ∫⁻ (a : E), ↑‖(1 + ‖a‖) ^ (-r)‖₊ = ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) ⊢ ∫⁻ (a : E), ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) < ⊤ [PROOFSTEP] exact finite_integral_one_add_norm hnr [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r ⊢ Integrable fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2) [PROOFSTEP] have hr : 0 < r := lt_of_le_of_lt (finrank ℝ E).cast_nonneg hnr [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r ⊢ Integrable fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2) [PROOFSTEP] refine ((integrable_one_add_norm hnr).const_mul <| (2 : ℝ) ^ (r / 2)).mono' ?_ (eventually_of_forall fun x => ?_) [GOAL] case refine_1 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r ⊢ AEStronglyMeasurable (fun x => (1 + ‖x‖ ^ 2) ^ (-r / 2)) volume [PROOFSTEP] exact (((measurable_id.norm.pow_const _).const_add _).pow_const _).aestronglyMeasurable [GOAL] case refine_2 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r x : E ⊢ ‖(1 + ‖x‖ ^ 2) ^ (-r / 2)‖ ≤ 2 ^ (r / 2) * (1 + ‖x‖) ^ (-r) [PROOFSTEP] refine (abs_of_pos ?_).trans_le (rpow_neg_one_add_norm_sq_le x hr) [GOAL] case refine_2 E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasureSpace E inst✝¹ : BorelSpace E inst✝ : Measure.IsAddHaarMeasure volume r : ℝ hnr : ↑(finrank ℝ E) < r hr : 0 < r x : E ⊢ 0 < (1 + ‖x‖ ^ 2) ^ (-r / 2) [PROOFSTEP] positivity
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.JapaneseBracket", "llama_tokens": 15060}
[GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 ⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P [PROOFSTEP] by_cases h : P = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : P = 0 ⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P [PROOFSTEP] simp [h, IsEquivalent.refl] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : ¬P = 0 ⊢ (fun x => eval x P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P [PROOFSTEP] simp only [Polynomial.eval_eq_sum_range, sum_range_succ] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : ¬P = 0 ⊢ (fun x => (Finset.sum (range (natDegree P)) fun i => coeff P i * x ^ i) + coeff P (natDegree P) * x ^ natDegree P) ~[atTop] fun x => leadingCoeff P * x ^ natDegree P [PROOFSTEP] exact IsLittleO.add_isEquivalent (IsLittleO.sum fun i hi => IsLittleO.const_mul_left ((IsLittleO.const_mul_right fun hz => h <| leadingCoeff_eq_zero.mp hz) <| isLittleO_pow_pow_atTop_of_lt (mem_range.mp hi)) _) IsEquivalent.refl [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 ⊢ Tendsto (fun x => eval x P) atTop atTop ↔ 0 < degree P ∧ 0 ≤ leadingCoeff P [PROOFSTEP] refine' ⟨fun h => _, fun h => tendsto_atTop_of_leadingCoeff_nonneg P h.1 h.2⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : Tendsto (fun x => eval x P) atTop atTop ⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P [PROOFSTEP] have : Tendsto (fun x => P.leadingCoeff * x ^ P.natDegree) atTop atTop := (isEquivalent_atTop_lead P).tendsto_atTop h [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : Tendsto (fun x => eval x P) atTop atTop this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop atTop ⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P [PROOFSTEP] rw [tendsto_const_mul_pow_atTop_iff, ← pos_iff_ne_zero, natDegree_pos_iff_degree_pos] at this [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : Tendsto (fun x => eval x P) atTop atTop this : 0 < degree P ∧ 0 < leadingCoeff P ⊢ 0 < degree P ∧ 0 ≤ leadingCoeff P [PROOFSTEP] exact ⟨this.1, this.2.le⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 ⊢ Tendsto (fun x => eval x P) atTop atBot ↔ 0 < degree P ∧ leadingCoeff P ≤ 0 [PROOFSTEP] simp only [← tendsto_neg_atTop_iff, ← eval_neg, tendsto_atTop_iff_leadingCoeff_nonneg, degree_neg, leadingCoeff_neg, neg_nonneg] [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : 0 < degree P ⊢ Tendsto (fun x => |eval x P|) atTop atTop [PROOFSTEP] cases' le_total 0 P.leadingCoeff with hP hP [GOAL] case inl 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : 0 < degree P hP : 0 ≤ leadingCoeff P ⊢ Tendsto (fun x => |eval x P|) atTop atTop [PROOFSTEP] exact tendsto_abs_atTop_atTop.comp (P.tendsto_atTop_of_leadingCoeff_nonneg hdeg hP) [GOAL] case inr 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : 0 < degree P hP : leadingCoeff P ≤ 0 ⊢ Tendsto (fun x => |eval x P|) atTop atTop [PROOFSTEP] exact tendsto_abs_atBot_atTop.comp (P.tendsto_atBot_of_leadingCoeff_nonpos hdeg hP) [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 ⊢ (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P|) ↔ degree P ≤ 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => ⟨|P.coeff 0|, eventually_map.mpr (eventually_of_forall (forall_imp (fun _ => le_of_eq) fun x => congr_arg abs <| _root_.trans (congr_arg (eval x) (eq_C_of_degree_le_zero h)) eval_C))⟩⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P| ⊢ degree P ≤ 0 [PROOFSTEP] contrapose! h [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : 0 < degree P ⊢ ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun x => |eval x P| [PROOFSTEP] exact not_isBoundedUnder_of_tendsto_atTop (abs_tendsto_atTop P h) [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 ⊢ Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] have := P.isEquivalent_atTop_lead.tendsto_nhds h [GOAL] case refine'_1 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c) ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] by_cases hP : P.leadingCoeff = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c) hP : leadingCoeff P = 0 ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] simp only [hP, zero_mul, tendsto_const_nhds_iff] at this [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) hP : leadingCoeff P = 0 this : 0 = c ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] refine' ⟨_root_.trans hP this, by simp [leadingCoeff_eq_zero.1 hP]⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) hP : leadingCoeff P = 0 this : 0 = c ⊢ degree P ≤ 0 [PROOFSTEP] simp [leadingCoeff_eq_zero.1 hP] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) this : Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c) hP : ¬leadingCoeff P = 0 ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] rw [tendsto_const_mul_pow_nhds_iff hP, natDegree_eq_zero_iff_degree_le_zero] at this [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : Tendsto (fun x => eval x P) atTop (𝓝 c) this : degree P ≤ 0 ∧ leadingCoeff P = c hP : ¬leadingCoeff P = 0 ⊢ leadingCoeff P = c ∧ degree P ≤ 0 [PROOFSTEP] exact this.symm [GOAL] case refine'_2 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : leadingCoeff P = c ∧ degree P ≤ 0 ⊢ Tendsto (fun x => eval x P) atTop (𝓝 c) [PROOFSTEP] refine' P.isEquivalent_atTop_lead.symm.tendsto_nhds _ [GOAL] case refine'_2 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : leadingCoeff P = c ∧ degree P ≤ 0 ⊢ Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c) [PROOFSTEP] have : P.natDegree = 0 := natDegree_eq_zero_iff_degree_le_zero.2 h.2 [GOAL] case refine'_2 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : leadingCoeff P = c ∧ degree P ≤ 0 this : natDegree P = 0 ⊢ Tendsto (fun x => leadingCoeff P * x ^ natDegree P) atTop (𝓝 c) [PROOFSTEP] simp only [h.1, this, pow_zero, mul_one] [GOAL] case refine'_2 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 c : 𝕜 h : leadingCoeff P = c ∧ degree P ≤ 0 this : natDegree P = 0 ⊢ Tendsto (fun x => c) atTop (𝓝 c) [PROOFSTEP] exact tendsto_const_nhds [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 ⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q)) [PROOFSTEP] by_cases hP : P = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hP : P = 0 ⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q)) [PROOFSTEP] simp [hP, IsEquivalent.refl] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hP : ¬P = 0 ⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q)) [PROOFSTEP] by_cases hQ : Q = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hP : ¬P = 0 hQ : Q = 0 ⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q)) [PROOFSTEP] simp [hQ, IsEquivalent.refl] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hP : ¬P = 0 hQ : ¬Q = 0 ⊢ (fun x => eval x P / eval x Q) ~[atTop] fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q)) [PROOFSTEP] refine' (P.isEquivalent_atTop_lead.symm.div Q.isEquivalent_atTop_lead.symm).symm.trans (EventuallyEq.isEquivalent ((eventually_gt_atTop 0).mono fun x hx => _)) [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hP : ¬P = 0 hQ : ¬Q = 0 x : 𝕜 hx : 0 < x ⊢ (fun x => leadingCoeff P * x ^ natDegree P / (leadingCoeff Q * x ^ natDegree Q)) x = (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) x [PROOFSTEP] simp [← div_mul_div_comm, hP, hQ, zpow_sub₀ hx.ne.symm] [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P < degree Q ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) [PROOFSTEP] by_cases hP : P = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P < degree Q hP : P = 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) [PROOFSTEP] simp [hP, tendsto_const_nhds] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P < degree Q hP : ¬P = 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) [PROOFSTEP] rw [← natDegree_lt_natDegree_iff hP] at hdeg [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree P < natDegree Q hP : ¬P = 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) [PROOFSTEP] refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _ [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree P < natDegree Q hP : ¬P = 0 ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 0) [PROOFSTEP] rw [← mul_zero] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree P < natDegree Q hP : ¬P = 0 ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 (?neg✝ * 0)) case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree P < natDegree Q hP : ¬P = 0 ⊢ 𝕜 [PROOFSTEP] refine' (tendsto_zpow_atTop_zero _).const_mul _ [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree P < natDegree Q hP : ¬P = 0 ⊢ ↑(natDegree P) - ↑(natDegree Q) < 0 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ↔ degree P < degree Q [PROOFSTEP] refine' ⟨fun h => _, div_tendsto_zero_of_degree_lt P Q⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ⊢ degree P < degree Q [PROOFSTEP] by_cases hPQ : P.leadingCoeff / Q.leadingCoeff = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : leadingCoeff P / leadingCoeff Q = 0 ⊢ degree P < degree Q [PROOFSTEP] simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : leadingCoeff P = 0 ∨ leadingCoeff Q = 0 ⊢ degree P < degree Q [PROOFSTEP] cases' hPQ with hP0 hQ0 [GOAL] case pos.inl 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hP0 : leadingCoeff P = 0 ⊢ degree P < degree Q [PROOFSTEP] rw [leadingCoeff_eq_zero.1 hP0, degree_zero] [GOAL] case pos.inl 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hP0 : leadingCoeff P = 0 ⊢ ⊥ < degree Q [PROOFSTEP] exact bot_lt_iff_ne_bot.2 fun hQ' => hQ (degree_eq_bot.1 hQ') [GOAL] case pos.inr 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hQ0 : leadingCoeff Q = 0 ⊢ degree P < degree Q [PROOFSTEP] exact absurd (leadingCoeff_eq_zero.1 hQ0) hQ [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 ⊢ degree P < degree Q [PROOFSTEP] have := (isEquivalent_atTop_div P Q).tendsto_nhds h [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 this : Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 0) ⊢ degree P < degree Q [PROOFSTEP] rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 this : ↑(natDegree P) - ↑(natDegree Q) = 0 ∧ leadingCoeff P / leadingCoeff Q = 0 ∨ ↑(natDegree P) - ↑(natDegree Q) < 0 ∧ 0 = 0 ⊢ degree P < degree Q [PROOFSTEP] cases' this with h h [GOAL] case neg.inl 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 h : ↑(natDegree P) - ↑(natDegree Q) = 0 ∧ leadingCoeff P / leadingCoeff Q = 0 ⊢ degree P < degree Q [PROOFSTEP] exact absurd h.2 hPQ [GOAL] case neg.inr 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 h : ↑(natDegree P) - ↑(natDegree Q) < 0 ∧ 0 = 0 ⊢ degree P < degree Q [PROOFSTEP] rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h [GOAL] case neg.inr 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hQ : Q ≠ 0 h✝ : Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) hPQ : ¬leadingCoeff P / leadingCoeff Q = 0 h : natDegree P < natDegree Q ∧ 0 = 0 ⊢ degree P < degree Q [PROOFSTEP] exact degree_lt_degree h.1 [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P = degree Q ⊢ Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 (leadingCoeff P / leadingCoeff Q)) [PROOFSTEP] refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P = degree Q ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop (𝓝 (leadingCoeff P / leadingCoeff Q)) [PROOFSTEP] rw [show (P.natDegree : ℤ) = Q.natDegree by simp [hdeg, natDegree]] [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P = degree Q ⊢ ↑(natDegree P) = ↑(natDegree Q) [PROOFSTEP] simp [hdeg, natDegree] [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree P = degree Q ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree Q) - ↑(natDegree Q))) atTop (𝓝 (leadingCoeff P / leadingCoeff Q)) [PROOFSTEP] simp [tendsto_const_nhds] [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hpos : 0 < leadingCoeff P / leadingCoeff Q ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop [PROOFSTEP] have hQ : Q ≠ 0 := fun h => by simp only [h, div_zero, leadingCoeff_zero] at hpos exact hpos.false [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hpos : 0 < leadingCoeff P / leadingCoeff Q h : Q = 0 ⊢ False [PROOFSTEP] simp only [h, div_zero, leadingCoeff_zero] at hpos [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P h : Q = 0 hpos : 0 < 0 ⊢ False [PROOFSTEP] exact hpos.false [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hpos : 0 < leadingCoeff P / leadingCoeff Q hQ : Q ≠ 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop [PROOFSTEP] rw [← natDegree_lt_natDegree_iff hQ] at hdeg [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hpos : 0 < leadingCoeff P / leadingCoeff Q hQ : Q ≠ 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atTop [PROOFSTEP] refine' (isEquivalent_atTop_div P Q).symm.tendsto_atTop _ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hpos : 0 < leadingCoeff P / leadingCoeff Q hQ : Q ≠ 0 ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop [PROOFSTEP] apply Tendsto.const_mul_atTop hpos [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hpos : 0 < leadingCoeff P / leadingCoeff Q hQ : Q ≠ 0 ⊢ Tendsto (fun x => x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop [PROOFSTEP] apply tendsto_zpow_atTop_atTop [GOAL] case hn 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hpos : 0 < leadingCoeff P / leadingCoeff Q hQ : Q ≠ 0 ⊢ 0 < ↑(natDegree P) - ↑(natDegree Q) [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hneg : leadingCoeff P / leadingCoeff Q < 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot [PROOFSTEP] have hQ : Q ≠ 0 := fun h => by simp only [h, div_zero, leadingCoeff_zero] at hneg exact hneg.false [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hneg : leadingCoeff P / leadingCoeff Q < 0 h : Q = 0 ⊢ False [PROOFSTEP] simp only [h, div_zero, leadingCoeff_zero] at hneg [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P h : Q = 0 hneg : 0 < 0 ⊢ False [PROOFSTEP] exact hneg.false [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hneg : leadingCoeff P / leadingCoeff Q < 0 hQ : Q ≠ 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot [PROOFSTEP] rw [← natDegree_lt_natDegree_iff hQ] at hdeg [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hneg : leadingCoeff P / leadingCoeff Q < 0 hQ : Q ≠ 0 ⊢ Tendsto (fun x => eval x P / eval x Q) atTop atBot [PROOFSTEP] refine' (isEquivalent_atTop_div P Q).symm.tendsto_atBot _ [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hneg : leadingCoeff P / leadingCoeff Q < 0 hQ : Q ≠ 0 ⊢ Tendsto (fun x => leadingCoeff P / leadingCoeff Q * x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atBot [PROOFSTEP] apply Tendsto.neg_const_mul_atTop hneg [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hneg : leadingCoeff P / leadingCoeff Q < 0 hQ : Q ≠ 0 ⊢ Tendsto (fun x => x ^ (↑(natDegree P) - ↑(natDegree Q))) atTop atTop [PROOFSTEP] apply tendsto_zpow_atTop_atTop [GOAL] case hn 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : natDegree Q < natDegree P hneg : leadingCoeff P / leadingCoeff Q < 0 hQ : Q ≠ 0 ⊢ 0 < ↑(natDegree P) - ↑(natDegree Q) [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hQ : Q ≠ 0 ⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop [PROOFSTEP] by_cases h : 0 ≤ P.leadingCoeff / Q.leadingCoeff [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hQ : Q ≠ 0 h : 0 ≤ leadingCoeff P / leadingCoeff Q ⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop [PROOFSTEP] exact tendsto_abs_atTop_atTop.comp (P.div_tendsto_atTop_of_degree_gt Q hdeg hQ h) [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hQ : Q ≠ 0 h : ¬0 ≤ leadingCoeff P / leadingCoeff Q ⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop [PROOFSTEP] push_neg at h [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 hdeg : degree Q < degree P hQ : Q ≠ 0 h : leadingCoeff P / leadingCoeff Q < 0 ⊢ Tendsto (fun x => |eval x P / eval x Q|) atTop atTop [PROOFSTEP] exact tendsto_abs_atBot_atTop.comp (P.div_tendsto_atBot_of_degree_gt Q hdeg hQ h.le) [GOAL] 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : degree P ≤ degree Q ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] by_cases hp : P = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : degree P ≤ degree Q hp : P = 0 ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] simpa [hp] using isBigO_zero (fun x => eval x Q) atTop [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : degree P ≤ degree Q hp : ¬P = 0 ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] have hq : Q ≠ 0 := ne_zero_of_degree_ge_degree h hp [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : degree P ≤ degree Q hp : ¬P = 0 hq : Q ≠ 0 ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] have hPQ : ∀ᶠ x : 𝕜 in atTop, eval x Q = 0 → eval x P = 0 := Filter.mem_of_superset (Polynomial.eventually_no_roots Q hq) fun x h h' => absurd h' h [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h : degree P ≤ degree Q hp : ¬P = 0 hq : Q ≠ 0 hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0 ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] cases' le_iff_lt_or_eq.mp h with h h [GOAL] case neg.inl 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h✝ : degree P ≤ degree Q hp : ¬P = 0 hq : Q ≠ 0 hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0 h : degree P < degree Q ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] exact isBigO_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h) [GOAL] case neg.inr 𝕜 : Type u_1 inst✝¹ : NormedLinearOrderedField 𝕜 P Q : 𝕜[X] inst✝ : OrderTopology 𝕜 h✝ : degree P ≤ degree Q hp : ¬P = 0 hq : Q ≠ 0 hPQ : ∀ᶠ (x : 𝕜) in atTop, eval x Q = 0 → eval x P = 0 h : degree P = degree Q ⊢ (fun x => eval x P) =O[atTop] fun x => eval x Q [PROOFSTEP] exact isBigO_of_div_tendsto_nhds hPQ _ (div_tendsto_leadingCoeff_div_of_degree_eq P Q h)
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Polynomials", "llama_tokens": 11879}
[GOAL] z✝ y x✝ : ℝ x z : ℂ hz : ‖z‖ ≤ 1 ⊢ ‖exp (x + z) - exp x - z * exp x‖ = ‖exp x * (exp z - 1 - z)‖ [PROOFSTEP] congr [GOAL] case e_a z✝ y x✝ : ℝ x z : ℂ hz : ‖z‖ ≤ 1 ⊢ exp (x + z) - exp x - z * exp x = exp x * (exp z - 1 - z) [PROOFSTEP] rw [exp_add] [GOAL] case e_a z✝ y x✝ : ℝ x z : ℂ hz : ‖z‖ ≤ 1 ⊢ exp x * exp z - exp x - z * exp x = exp x * (exp z - 1 - z) [PROOFSTEP] ring [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r ⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] have hy_eq : y = x + (y - x) := by abel [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r ⊢ y = x + (y - x) [PROOFSTEP] abel [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r ⊢ y = x + (y - x) [PROOFSTEP] abel [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) ⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] have hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ := by rw [pow_two] exact mul_le_mul hyx.le le_rfl (norm_nonneg _) hr_nonneg [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) ⊢ ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ [PROOFSTEP] rw [pow_two] [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) ⊢ ‖y - x‖ * ‖y - x‖ ≤ r * ‖y - x‖ [PROOFSTEP] exact mul_le_mul hyx.le le_rfl (norm_nonneg _) hr_nonneg [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ ⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] have h_sq : ∀ z, ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 := by intro z hz have : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 := exp_bound_sq x z hz rw [← sub_le_iff_le_add', ← norm_smul z] exact (norm_sub_norm_le _ _).trans this [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ ⊢ ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 [PROOFSTEP] intro z hz [GOAL] z✝ y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ z : ℂ hz : ‖z‖ ≤ 1 ⊢ ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 [PROOFSTEP] have : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 := exp_bound_sq x z hz [GOAL] z✝ y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ z : ℂ hz : ‖z‖ ≤ 1 this : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 ⊢ ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 [PROOFSTEP] rw [← sub_le_iff_le_add', ← norm_smul z] [GOAL] z✝ y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ z : ℂ hz : ‖z‖ ≤ 1 this : ‖exp (x + z) - exp x - z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 ⊢ ‖exp (x + z) - exp x‖ - ‖z • exp x‖ ≤ ‖exp x‖ * ‖z‖ ^ 2 [PROOFSTEP] exact (norm_sub_norm_le _ _).trans this [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 ⊢ ‖exp y - exp x‖ ≤ (1 + r) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] calc ‖exp y - exp x‖ = ‖exp (x + (y - x)) - exp x‖ := by nth_rw 1 [hy_eq] _ ≤ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * ‖y - x‖ ^ 2 := (h_sq (y - x) (hyx.le.trans hr_le)) _ ≤ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * (r * ‖y - x‖) := (add_le_add_left (mul_le_mul le_rfl hyx_sq_le (sq_nonneg _) (norm_nonneg _)) _) _ = (1 + r) * ‖exp x‖ * ‖y - x‖ := by ring [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 ⊢ ‖exp y - exp x‖ = ‖exp (x + (y - x)) - exp x‖ [PROOFSTEP] nth_rw 1 [hy_eq] [GOAL] z y✝ x✝ r : ℝ hr_nonneg : 0 ≤ r hr_le : r ≤ 1 x y : ℂ hyx : ‖y - x‖ < r hy_eq : y = x + (y - x) hyx_sq_le : ‖y - x‖ ^ 2 ≤ r * ‖y - x‖ h_sq : ∀ (z : ℂ), ‖z‖ ≤ 1 → ‖exp (x + z) - exp x‖ ≤ ‖z‖ * ‖exp x‖ + ‖exp x‖ * ‖z‖ ^ 2 ⊢ ‖y - x‖ * ‖exp x‖ + ‖exp x‖ * (r * ‖y - x‖) = (1 + r) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] ring [GOAL] z y✝ x✝ : ℝ x y : ℂ ⊢ dist y x < 1 → dist (exp y) (exp x) ≤ 2 * ‖exp x‖ * dist y x [PROOFSTEP] convert locally_lipschitz_exp zero_le_one le_rfl x y using 2 [GOAL] case h'.h.e'_4 z y✝ x✝ : ℝ x y : ℂ a✝ : ‖y - x‖ < 1 ⊢ 2 * ‖exp x‖ * dist y x = (1 + 1) * ‖exp x‖ * ‖y - x‖ [PROOFSTEP] congr [GOAL] case h'.h.e'_4.e_a.e_a z y✝ x✝ : ℝ x y : ℂ a✝ : ‖y - x‖ < 1 ⊢ 2 = 1 + 1 [PROOFSTEP] ring [GOAL] α : Type u_1 x✝ y z : ℝ l : Filter α x : ℝ ⊢ exp (x / 2) = sqrt (exp x) [PROOFSTEP] rw [eq_comm, sqrt_eq_iff_sq_eq, sq, ← exp_add, add_halves] [GOAL] case hx α : Type u_1 x✝ y z : ℝ l : Filter α x : ℝ ⊢ 0 ≤ exp x [PROOFSTEP] exact (exp_pos _).le [GOAL] case hy α : Type u_1 x✝ y z : ℝ l : Filter α x : ℝ ⊢ 0 ≤ exp (x / 2) [PROOFSTEP] exact (exp_pos _).le [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Tendsto exp atTop atTop [PROOFSTEP] have A : Tendsto (fun x : ℝ => x + 1) atTop atTop := tendsto_atTop_add_const_right atTop 1 tendsto_id [GOAL] α : Type u_1 x y z : ℝ l : Filter α A : Tendsto (fun x => x + 1) atTop atTop ⊢ Tendsto exp atTop atTop [PROOFSTEP] have B : ∀ᶠ x in atTop, x + 1 ≤ exp x := eventually_atTop.2 ⟨0, fun x _ => add_one_le_exp x⟩ [GOAL] α : Type u_1 x y z : ℝ l : Filter α A : Tendsto (fun x => x + 1) atTop atTop B : ∀ᶠ (x : ℝ) in atTop, x + 1 ≤ exp x ⊢ Tendsto exp atTop atTop [PROOFSTEP] exact tendsto_atTop_mono' atTop B A [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Tendsto exp (𝓝 0) (𝓝 1) [PROOFSTEP] convert continuous_exp.tendsto 0 [GOAL] case h.e'_5.h.e'_3 α : Type u_1 x y z : ℝ l : Filter α ⊢ 1 = exp 0 [PROOFSTEP] simp [GOAL] α : Type u_1 x y z : ℝ l : Filter α n : ℕ ⊢ Tendsto (fun x => exp x / x ^ n) atTop atTop [PROOFSTEP] refine' (atTop_basis_Ioi.tendsto_iff (atTop_basis' 1)).2 fun C hC₁ => _ [GOAL] α : Type u_1 x y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C ⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] have hC₀ : 0 < C := zero_lt_one.trans_le hC₁ [GOAL] α : Type u_1 x y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C ⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] have : 0 < (exp 1 * C)⁻¹ := inv_pos.2 (mul_pos (exp_pos _) hC₀) [GOAL] α : Type u_1 x y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ ⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] obtain ⟨N, hN⟩ : ∃ N : ℕ, ∀ k ≥ N, (↑k : ℝ) ^ n / exp 1 ^ k < (exp 1 * C)⁻¹ := eventually_atTop.1 ((tendsto_pow_const_div_const_pow_of_one_lt n (one_lt_exp_iff.2 zero_lt_one)).eventually (gt_mem_nhds this)) [GOAL] case intro α : Type u_1 x y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n / exp 1 ^ k < (exp 1 * C)⁻¹ ⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] simp only [← exp_nat_mul, mul_one, div_lt_iff, exp_pos, ← div_eq_inv_mul] at hN [GOAL] case intro α : Type u_1 x y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) ⊢ ∃ ia, True ∧ ∀ (x : ℝ), x ∈ Set.Ioi ia → exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] refine' ⟨N, trivial, fun x hx => _⟩ [GOAL] case intro α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : x ∈ Set.Ioi ↑N ⊢ exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] rw [Set.mem_Ioi] at hx [GOAL] case intro α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x ⊢ exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] have hx₀ : 0 < x := (Nat.cast_nonneg N).trans_lt hx [GOAL] case intro α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x hx₀ : 0 < x ⊢ exp x / x ^ n ∈ Set.Ici C [PROOFSTEP] rw [Set.mem_Ici, le_div_iff (pow_pos hx₀ _), ← le_div_iff' hC₀] [GOAL] case intro α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x hx₀ : 0 < x ⊢ x ^ n ≤ exp x / C [PROOFSTEP] calc x ^ n ≤ ⌈x⌉₊ ^ n := by exact_mod_cast pow_le_pow_of_le_left hx₀.le (Nat.le_ceil _) _ _ ≤ exp ⌈x⌉₊ / (exp 1 * C) := by exact_mod_cast (hN _ (Nat.lt_ceil.2 hx).le).le _ ≤ exp (x + 1) / (exp 1 * C) := (div_le_div_of_le (mul_pos (exp_pos _) hC₀).le (exp_le_exp.2 <| (Nat.ceil_lt_add_one hx₀.le).le)) _ = exp x / C := by rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne'] [GOAL] α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x hx₀ : 0 < x ⊢ x ^ n ≤ ↑(⌈x⌉₊ ^ n) [PROOFSTEP] exact_mod_cast pow_le_pow_of_le_left hx₀.le (Nat.le_ceil _) _ [GOAL] α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x hx₀ : 0 < x ⊢ ↑(⌈x⌉₊ ^ n) ≤ exp ↑⌈x⌉₊ / (exp 1 * C) [PROOFSTEP] exact_mod_cast (hN _ (Nat.lt_ceil.2 hx).le).le [GOAL] α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ C : ℝ hC₁ : 1 ≤ C hC₀ : 0 < C this : 0 < (exp 1 * C)⁻¹ N : ℕ hN : ∀ (k : ℕ), k ≥ N → ↑k ^ n < exp ↑k / (exp 1 * C) x : ℝ hx : ↑N < x hx₀ : 0 < x ⊢ exp (x + 1) / (exp 1 * C) = exp x / C [PROOFSTEP] rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne'] [GOAL] α : Type u_1 x✝ y z : ℝ l : Filter α n : ℕ x : ℝ ⊢ ((fun r => r⁻¹) ∘ fun x => exp x / x ^ n) x = x ^ n * exp (-x) [PROOFSTEP] rw [comp_apply, inv_eq_one_div, div_div_eq_mul_div, one_mul, div_eq_mul_inv, exp_neg] [GOAL] α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 < b ⊢ Tendsto (fun x => (b * exp x + c) / x ^ n) atTop atTop [PROOFSTEP] rcases eq_or_ne n 0 with (rfl | hn) [GOAL] case inl α : Type u_1 x y z : ℝ l : Filter α b c : ℝ hb : 0 < b ⊢ Tendsto (fun x => (b * exp x + c) / x ^ 0) atTop atTop [PROOFSTEP] simp only [pow_zero, div_one] [GOAL] case inl α : Type u_1 x y z : ℝ l : Filter α b c : ℝ hb : 0 < b ⊢ Tendsto (fun x => b * exp x + c) atTop atTop [PROOFSTEP] exact (tendsto_exp_atTop.const_mul_atTop hb).atTop_add tendsto_const_nhds [GOAL] case inr α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 < b hn : n ≠ 0 ⊢ Tendsto (fun x => (b * exp x + c) / x ^ n) atTop atTop [PROOFSTEP] simp only [add_div, mul_div_assoc] [GOAL] case inr α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 < b hn : n ≠ 0 ⊢ Tendsto (fun x => b * (exp x / x ^ n) + c / x ^ n) atTop atTop [PROOFSTEP] exact ((tendsto_exp_div_pow_atTop n).const_mul_atTop hb).atTop_add (tendsto_const_nhds.div_atTop (tendsto_pow_atTop hn)) [GOAL] α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b ⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0) [PROOFSTEP] have H : ∀ d e, 0 < d → Tendsto (fun x : ℝ => x ^ n / (d * exp x + e)) atTop (𝓝 0) := by intro b' c' h convert (tendsto_mul_exp_add_div_pow_atTop b' c' n h).inv_tendsto_atTop using 1 ext x simp [GOAL] α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b ⊢ ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) [PROOFSTEP] intro b' c' h [GOAL] α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b b' c' : ℝ h : 0 < b' ⊢ Tendsto (fun x => x ^ n / (b' * exp x + c')) atTop (𝓝 0) [PROOFSTEP] convert (tendsto_mul_exp_add_div_pow_atTop b' c' n h).inv_tendsto_atTop using 1 [GOAL] case h.e'_3 α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b b' c' : ℝ h : 0 < b' ⊢ (fun x => x ^ n / (b' * exp x + c')) = (fun x => (b' * exp x + c') / x ^ n)⁻¹ [PROOFSTEP] ext x [GOAL] case h.e'_3.h α : Type u_1 x✝ y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b b' c' : ℝ h : 0 < b' x : ℝ ⊢ x ^ n / (b' * exp x + c') = (fun x => (b' * exp x + c') / x ^ n)⁻¹ x [PROOFSTEP] simp [GOAL] α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) ⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0) [PROOFSTEP] cases' lt_or_gt_of_ne hb with h h [GOAL] case inl α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 < b ⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0) [PROOFSTEP] exact H b c h [GOAL] case inr α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 > b ⊢ Tendsto (fun x => x ^ n / (b * exp x + c)) atTop (𝓝 0) [PROOFSTEP] convert (H (-b) (-c) (neg_pos.mpr h)).neg using 1 [GOAL] case h.e'_3 α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 > b ⊢ (fun x => x ^ n / (b * exp x + c)) = fun x => -(x ^ n / (-b * exp x + -c)) [PROOFSTEP] ext x [GOAL] case h.e'_3.h α : Type u_1 x✝ y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 > b x : ℝ ⊢ x ^ n / (b * exp x + c) = -(x ^ n / (-b * exp x + -c)) [PROOFSTEP] field_simp [GOAL] case h.e'_3.h α : Type u_1 x✝ y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 > b x : ℝ ⊢ x ^ n / (b * exp x + c) = -x ^ n / (-(b * exp x) + -c) [PROOFSTEP] rw [← neg_add (b * exp x) c, neg_div_neg_eq] [GOAL] case h.e'_5 α : Type u_1 x y z : ℝ l : Filter α b c : ℝ n : ℕ hb : 0 ≠ b H : ∀ (d e : ℝ), 0 < d → Tendsto (fun x => x ^ n / (d * exp x + e)) atTop (𝓝 0) h : 0 > b ⊢ 𝓝 0 = 𝓝 (-0) [PROOFSTEP] rw [neg_zero] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Tendsto (fun x => { val := exp x, property := (_ : 0 < exp x) }) atTop atTop [PROOFSTEP] simp only [tendsto_Ioi_atTop, Subtype.coe_mk, tendsto_exp_atTop] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Tendsto (fun x => { val := exp x, property := (_ : 0 < exp x) }) atBot atBot [PROOFSTEP] simp [tendsto_exp_atBot_nhdsWithin] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Set.range exp = Set.Ioi 0 [PROOFSTEP] rw [← coe_comp_expOrderIso, range_comp, expOrderIso.range_eq, image_univ, Subtype.range_coe] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Filter.map exp atTop = atTop [PROOFSTEP] rw [← coe_comp_expOrderIso, ← Filter.map_map, OrderIso.map_atTop, map_val_Ioi_atTop] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ comap exp atTop = atTop [PROOFSTEP] rw [← map_exp_atTop, comap_map exp_injective, map_exp_atTop] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ Tendsto (fun x => exp (f x)) l atTop ↔ Tendsto f l atTop [PROOFSTEP] simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_atTop] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : ℝ → α ⊢ Tendsto (fun x => f (exp x)) atTop l ↔ Tendsto f atTop l [PROOFSTEP] simp_rw [← comp_apply (g := exp), ← tendsto_map'_iff, map_exp_atTop] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ Filter.map exp atBot = 𝓝[Set.Ioi 0] 0 [PROOFSTEP] rw [← coe_comp_expOrderIso, ← Filter.map_map, expOrderIso.map_atBot, ← map_coe_Ioi_atBot] [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ comap exp (𝓝[Set.Ioi 0] 0) = atBot [PROOFSTEP] rw [← map_exp_atBot, comap_map exp_injective] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : ℝ → α ⊢ Tendsto (fun x => f (exp x)) atBot l ↔ Tendsto f (𝓝[Set.Ioi 0] 0) l [PROOFSTEP] rw [← map_exp_atBot, tendsto_map'_iff] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : ℝ → α ⊢ Tendsto (fun x => f (exp x)) atBot l ↔ Tendsto (f ∘ exp) atBot l [PROOFSTEP] rfl [GOAL] α : Type u_1 x y z : ℝ l : Filter α ⊢ comap exp (𝓝[Set.range exp] 0) = atBot [PROOFSTEP] simp [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ Tendsto (fun x => exp (f x)) l (𝓝 0) ↔ Tendsto f l atBot [PROOFSTEP] simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_nhds_zero] [GOAL] α : Type u_1 x y z : ℝ l : Filter α n : ℕ ⊢ (fun x => x ^ n) =o[atTop] exp [PROOFSTEP] simpa [isLittleO_iff_tendsto fun x hx => ((exp_pos x).ne' hx).elim] using tendsto_div_pow_mul_exp_add_atTop 1 0 n zero_ne_one [GOAL] α : Type u_1 x y z : ℝ l : Filter α f g : α → ℝ ⊢ (IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => ‖exp (f x)‖ / ‖exp (g x)‖) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (f - g) [PROOFSTEP] simp only [norm_eq_abs, abs_exp, ← exp_sub, isBoundedUnder_le_exp_comp, Pi.sub_def] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f g : α → ℝ ⊢ ((fun x => exp (f x)) =Θ[l] fun x => exp (g x)) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |f x - g x| [PROOFSTEP] simp only [isBoundedUnder_le_abs, ← isBoundedUnder_le_neg, neg_sub, IsTheta, isBigO_exp_comp_exp_comp, Pi.sub_def] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f g : α → ℝ ⊢ ((fun x => exp (f x)) =o[l] fun x => exp (g x)) ↔ Tendsto (fun x => g x - f x) l atTop [PROOFSTEP] simp only [isLittleO_iff_tendsto, exp_ne_zero, ← exp_sub, ← tendsto_neg_atTop_iff, false_imp_iff, imp_true_iff, tendsto_exp_comp_nhds_zero, neg_sub] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ ((fun x => 1) =o[l] fun x => exp (f x)) ↔ Tendsto f l atTop [PROOFSTEP] simp only [← exp_zero, isLittleO_exp_comp_exp_comp, sub_zero] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ ((fun x => 1) =O[l] fun x => exp (f x)) ↔ IsBoundedUnder (fun x x_1 => x ≥ x_1) l f [PROOFSTEP] simp only [← exp_zero, isBigO_exp_comp_exp_comp, Pi.sub_def, zero_sub, isBoundedUnder_le_neg] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ ((fun x => exp (f x)) =O[l] fun x => 1) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] simp only [isBigO_one_iff, norm_eq_abs, abs_exp, isBoundedUnder_le_exp_comp] [GOAL] α : Type u_1 x y z : ℝ l : Filter α f : α → ℝ ⊢ ((fun x => exp (f x)) =Θ[l] fun x => 1) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |f x| [PROOFSTEP] simp only [← exp_zero, isTheta_exp_comp_exp_comp, sub_zero] [GOAL] ⊢ comap exp (comap (↑abs) atTop) = comap re (comap Real.exp atTop) [PROOFSTEP] simp only [comap_comap, (· ∘ ·), abs_exp] [GOAL] ⊢ comap re (comap Real.exp atTop) = comap re atTop [PROOFSTEP] rw [Real.comap_exp_atTop] [GOAL] ⊢ comap exp (𝓝 0) = comap re (comap Real.exp (𝓝 0)) [PROOFSTEP] simp only [comap_comap, ← comap_abs_nhds_zero, (· ∘ ·), abs_exp] [GOAL] ⊢ comap re (comap Real.exp (𝓝 0)) = comap re atBot [PROOFSTEP] rw [Real.comap_exp_nhds_zero] [GOAL] ⊢ comap exp (𝓝[{0}ᶜ] 0) = comap re atBot [PROOFSTEP] have : (exp ⁻¹' {0})ᶜ = Set.univ := eq_univ_of_forall exp_ne_zero [GOAL] this : (exp ⁻¹' {0})ᶜ = Set.univ ⊢ comap exp (𝓝[{0}ᶜ] 0) = comap re atBot [PROOFSTEP] simp [nhdsWithin, comap_exp_nhds_zero, this] [GOAL] α : Type u_1 l : Filter α f : α → ℂ ⊢ Tendsto (fun x => exp (f x)) l (𝓝 0) ↔ Tendsto (fun x => (f x).re) l atBot [PROOFSTEP] simp_rw [← comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_nhds_zero, tendsto_comap_iff] [GOAL] α : Type u_1 l : Filter α f : α → ℂ ⊢ Tendsto (re ∘ f) l atBot ↔ Tendsto (fun x => (f x).re) l atBot [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Exp", "llama_tokens": 11177}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E s : Set E x✝ y✝ x y : E ⊢ [x-[𝕜]y] = (fun p => p.fst • x + p.snd • y) '' {p | 0 ≤ p.fst ∧ 0 ≤ p.snd ∧ p.fst + p.snd = 1} [PROOFSTEP] simp only [segment, image, Prod.exists, mem_setOf_eq, exists_prop, and_assoc] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E s : Set E x✝ y✝ x y : E ⊢ openSegment 𝕜 x y = (fun p => p.fst • x + p.snd • y) '' {p | 0 < p.fst ∧ 0 < p.snd ∧ p.fst + p.snd = 1} [PROOFSTEP] simp only [openSegment, image, Prod.exists, mem_setOf_eq, exists_prop, and_assoc] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : MulActionWithZero 𝕜 E x y : E ⊢ 1 • x + 0 • y = x [PROOFSTEP] rw [zero_smul, one_smul, add_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝¹ y z✝ x z : E x✝ : z ∈ [x-[𝕜]x] a b : 𝕜 w✝¹ : 0 ≤ a w✝ : 0 ≤ b hab : a + b = 1 hz : a • x + b • x = z ⊢ z ∈ {x} [PROOFSTEP] simpa only [(add_smul _ _ _).symm, mem_singleton_iff, hab, one_smul, eq_comm] using hz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E ⊢ insert x (insert y (openSegment 𝕜 x y)) = [x-[𝕜]y] [PROOFSTEP] simp only [subset_antisymm_iff, insert_subset_iff, left_mem_segment, right_mem_segment, openSegment_subset_segment, true_and_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E ⊢ [x-[𝕜]y] ⊆ insert x (insert y (openSegment 𝕜 x y)) [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ insert x (insert y (openSegment 𝕜 x y)) [PROOFSTEP] refine' hb.eq_or_gt.imp _ fun hb' => ha.eq_or_gt.imp _ fun ha' => _ [GOAL] case intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ b = 0 → a • x + b • y = x [PROOFSTEP] rintro rfl [GOAL] case intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E a : 𝕜 ha : 0 ≤ a hb : 0 ≤ 0 hab : a + 0 = 1 ⊢ a • x + 0 • y = x [PROOFSTEP] rw [← add_zero a, hab, one_smul, zero_smul, add_zero] [GOAL] case intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hb' : 0 < b ⊢ a = 0 → a • x + b • y = y [PROOFSTEP] rintro rfl [GOAL] case intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E b : 𝕜 hb : 0 ≤ b hb' : 0 < b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 • x + b • y = y [PROOFSTEP] rw [← zero_add b, hab, one_smul, zero_smul, zero_add] [GOAL] case intro.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x✝ y✝ z x y : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hb' : 0 < b ha' : 0 < a ⊢ a • x + b • y ∈ openSegment 𝕜 x y [PROOFSTEP] exact ⟨a, b, ha', hb', hab, rfl⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x y z : E hx : x ≠ z hy : y ≠ z hz : z ∈ [x-[𝕜]y] ⊢ z ∈ openSegment 𝕜 x y [PROOFSTEP] rw [← insert_endpoints_openSegment] at hz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x y z : E hx : x ≠ z hy : y ≠ z hz : z ∈ insert x (insert y (openSegment 𝕜 x y)) ⊢ z ∈ openSegment 𝕜 x y [PROOFSTEP] exact (hz.resolve_left hx.symm).resolve_left hy.symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E x y z : E hx : x ∈ s hy : y ∈ s ⊢ openSegment 𝕜 x y ⊆ s ↔ [x-[𝕜]y] ⊆ s [PROOFSTEP] simp only [← insert_endpoints_openSegment, insert_subset_iff, *, true_and_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁷ : OrderedRing 𝕜 inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : AddCommGroup G inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 x z : E x✝ : z ∈ openSegment 𝕜 x x a b : 𝕜 w✝¹ : 0 < a w✝ : 0 < b hab : a + b = 1 hz : a • x + b • x = z ⊢ z ∈ {x} [PROOFSTEP] simpa only [← add_smul, mem_singleton_iff, hab, one_smul, eq_comm] using hz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁷ : OrderedRing 𝕜 inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : AddCommGroup G inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 x z : E h : z = x ⊢ z ∈ openSegment 𝕜 x x [PROOFSTEP] obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁷ : OrderedRing 𝕜 inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : AddCommGroup G inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 x z : E h : z = x a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ z ∈ openSegment 𝕜 x x [PROOFSTEP] refine' ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, _⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁷ : OrderedRing 𝕜 inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : AddCommGroup G inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 x z : E h : z = x a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ a • x + (1 - a) • x = z [PROOFSTEP] rw [← add_smul, add_sub_cancel'_right, one_smul, h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E x✝ : z ∈ [x-[𝕜]y] a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a • x + b • y = z ⊢ (fun θ => (a + b - θ) • x + θ • y) b = a • x + b • y [PROOFSTEP] simp only [add_sub_cancel] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E x✝ : z ∈ openSegment 𝕜 x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hz : a • x + b • y = z ⊢ (fun θ => (a + b - θ) • x + θ • y) b = a • x + b • y [PROOFSTEP] simp only [add_sub_cancel] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E ⊢ [x-[𝕜]y] = (fun θ => x + θ • (y - x)) '' Icc 0 1 [PROOFSTEP] convert segment_eq_image 𝕜 x y using 2 [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Icc 0 1 ⊢ x + a✝¹ • (y - x) = (1 - a✝¹) • x + a✝¹ • y [PROOFSTEP] simp only [smul_sub, sub_smul, one_smul] [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Icc 0 1 ⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y [PROOFSTEP] abel [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Icc 0 1 ⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E ⊢ openSegment 𝕜 x y = (fun θ => x + θ • (y - x)) '' Ioo 0 1 [PROOFSTEP] convert openSegment_eq_image 𝕜 x y using 2 [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Ioo 0 1 ⊢ x + a✝¹ • (y - x) = (1 - a✝¹) • x + a✝¹ • y [PROOFSTEP] simp only [smul_sub, sub_smul, one_smul] [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Ioo 0 1 ⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y [PROOFSTEP] abel [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Ioo 0 1 ⊢ x + (a✝¹ • y - a✝¹ • x) = x - a✝¹ • x + a✝¹ • y [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E ⊢ [x-[𝕜]y] = ↑(AffineMap.lineMap x y) '' Icc 0 1 [PROOFSTEP] convert segment_eq_image 𝕜 x y using 2 [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Icc 0 1 ⊢ ↑(AffineMap.lineMap x y) a✝¹ = (1 - a✝¹) • x + a✝¹ • y [PROOFSTEP] exact AffineMap.lineMap_apply_module _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E ⊢ openSegment 𝕜 x y = ↑(AffineMap.lineMap x y) '' Ioo 0 1 [PROOFSTEP] convert openSegment_eq_image 𝕜 x y using 2 [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E a✝¹ : 𝕜 a✝ : a✝¹ ∈ Ioo 0 1 ⊢ ↑(AffineMap.lineMap x y) a✝¹ = (1 - a✝¹) • x + a✝¹ • y [PROOFSTEP] exact AffineMap.lineMap_apply_module _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F f : E →ᵃ[𝕜] F a b : E x : F ⊢ x ∈ ↑f '' [a-[𝕜]b] ↔ x ∈ [↑f a-[𝕜]↑f b] [PROOFSTEP] simp_rw [segment_eq_image_lineMap, mem_image, exists_exists_and_eq_and, AffineMap.apply_lineMap] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F f : E →ᵃ[𝕜] F a b : E x : F ⊢ x ∈ ↑f '' openSegment 𝕜 a b ↔ x ∈ openSegment 𝕜 (↑f a) (↑f b) [PROOFSTEP] simp_rw [openSegment_eq_image_lineMap, mem_image, exists_exists_and_eq_and, AffineMap.apply_lineMap] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F a x b c : E ⊢ a + x ∈ [a + b-[𝕜]a + c] ↔ x ∈ [b-[𝕜]c] [PROOFSTEP] simp_rw [← vadd_eq_add, ← vadd_segment, vadd_mem_vadd_set_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁵ : OrderedRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : AddCommGroup G inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F a x b c : E ⊢ a + x ∈ openSegment 𝕜 (a + b) (a + c) ↔ x ∈ openSegment 𝕜 b c [PROOFSTEP] simp_rw [← vadd_eq_add, ← vadd_openSegment, vadd_mem_vadd_set_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : StrictOrderedCommRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : x ∈ [y-[𝕜]z] ⊢ SameRay 𝕜 (x - y) (z - x) [PROOFSTEP] rw [segment_eq_image'] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : StrictOrderedCommRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : x ∈ (fun θ => y + θ • (z - y)) '' Icc 0 1 ⊢ SameRay 𝕜 (x - y) (z - x) [PROOFSTEP] rcases h with ⟨θ, ⟨hθ₀, hθ₁⟩, rfl⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : StrictOrderedCommRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E θ : 𝕜 hθ₀ : 0 ≤ θ hθ₁ : θ ≤ 1 ⊢ SameRay 𝕜 ((fun θ => y + θ • (z - y)) θ - y) (z - (fun θ => y + θ • (z - y)) θ) [PROOFSTEP] simpa only [add_sub_cancel', ← sub_sub, sub_smul, one_smul] using (SameRay.sameRay_nonneg_smul_left (z - y) hθ₀).nonneg_smul_right (sub_nonneg.2 hθ₁) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ midpoint 𝕜 x y ∈ [x-[𝕜]y] [PROOFSTEP] rw [segment_eq_image_lineMap] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ midpoint 𝕜 x y ∈ ↑(AffineMap.lineMap x y) '' Icc 0 1 [PROOFSTEP] exact ⟨⅟2, ⟨invOf_nonneg.mpr zero_le_two, invOf_le_one one_le_two⟩, rfl⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ x ∈ [x - y-[𝕜]x + y] [PROOFSTEP] convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _ [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ x = midpoint 𝕜 (x - y) (x + y) [PROOFSTEP] rw [midpoint_sub_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ x ∈ [x + y-[𝕜]x - y] [PROOFSTEP] convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _ [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : LinearOrderedRing 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E x✝ y✝ : E inst✝ : Invertible 2 x y : E ⊢ x = midpoint 𝕜 (x + y) (x - y) [PROOFSTEP] rw [midpoint_add_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x ∈ openSegment 𝕜 x y ↔ x = y [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x ∈ openSegment 𝕜 x y → x = y [PROOFSTEP] rintro ⟨a, b, _, hb, hab, hx⟩ [GOAL] case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E a b : 𝕜 w✝ : 0 < a hb : 0 < b hab : a + b = 1 hx : a • x + b • y = x ⊢ x = y [PROOFSTEP] refine' smul_right_injective _ hb.ne' ((add_right_inj (a • x)).1 _) [GOAL] case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E a b : 𝕜 w✝ : 0 < a hb : 0 < b hab : a + b = 1 hx : a • x + b • y = x ⊢ a • x + (fun x x_1 => x • x_1) b x = a • x + (fun x x_1 => x • x_1) b y [PROOFSTEP] rw [hx, ← add_smul, hab, one_smul] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x = y → x ∈ openSegment 𝕜 x y [PROOFSTEP] rintro rfl [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x ∈ openSegment 𝕜 x x [PROOFSTEP] rw [openSegment_same] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x ∈ {x} [PROOFSTEP] exact mem_singleton _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ y ∈ openSegment 𝕜 x y ↔ x = y [PROOFSTEP] rw [openSegment_symm, left_mem_openSegment_iff, eq_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ x ∈ [y-[𝕜]z] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ x ∈ [y-[𝕜]z] → ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x [PROOFSTEP] rintro ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 ≤ b_1 ∧ 0 < a_1 + b_1 ∧ (a_1 / (a_1 + b_1)) • y + (b_1 / (a_1 + b_1)) • z = a • y + b • z [PROOFSTEP] use a, b, ha, hb [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = a • y + b • z [PROOFSTEP] simp [*] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ (∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x) → x ∈ [y-[𝕜]z] [PROOFSTEP] rintro ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ [y-[𝕜]z] [PROOFSTEP] refine' ⟨a / (a + b), b / (a + b), by positivity, by positivity, _, rfl⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ 0 ≤ a / (a + b) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ 0 ≤ b / (a + b) [PROOFSTEP] positivity [GOAL] case mpr.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ x ∈ openSegment 𝕜 y z ↔ ∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ x ∈ openSegment 𝕜 y z → ∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x [PROOFSTEP] rintro ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 < b_1 ∧ (a_1 / (a_1 + b_1)) • y + (b_1 / (a_1 + b_1)) • z = a • y + b • z [PROOFSTEP] use a, b, ha, hb [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (a / (a + b)) • y + (b / (a + b)) • z = a • y + b • z [PROOFSTEP] rw [hab, div_one, div_one] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ (∃ a b, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x) → x ∈ openSegment 𝕜 y z [PROOFSTEP] rintro ⟨a, b, ha, hb, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ openSegment 𝕜 y z [PROOFSTEP] have hab : 0 < a + b := by positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ 0 < a + b [PROOFSTEP] positivity [GOAL] case mpr.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ (a / (a + b)) • y + (b / (a + b)) • z ∈ openSegment 𝕜 y z [PROOFSTEP] refine' ⟨a / (a + b), b / (a + b), by positivity, by positivity, _, rfl⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ 0 < a / (a + b) [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ 0 < b / (a + b) [PROOFSTEP] positivity [GOAL] case mpr.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedSemifield 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E y z : E a b : 𝕜 ha : 0 < a hb : 0 < b hab : 0 < a + b ⊢ a / (a + b) + b / (a + b) = 1 [PROOFSTEP] rw [← add_div, div_self hab.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E ⊢ x ∈ [y-[𝕜]z] ↔ SameRay 𝕜 (x - y) (z - x) [PROOFSTEP] refine' ⟨sameRay_of_mem_segment, fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : SameRay 𝕜 (x - y) (z - x) ⊢ x ∈ [y-[𝕜]z] [PROOFSTEP] rcases h.exists_eq_smul_add with ⟨a, b, ha, hb, hab, hxy, hzx⟩ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : SameRay 𝕜 (x - y) (z - x) a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x - y = a • (x - y + (z - x)) hzx : z - x = b • (x - y + (z - x)) ⊢ x ∈ [y-[𝕜]z] [PROOFSTEP] rw [add_comm, sub_add_sub_cancel] at hxy hzx [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : SameRay 𝕜 (x - y) (z - x) a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x - y = a • (z - y) hzx : z - x = b • (z - y) ⊢ x ∈ [y-[𝕜]z] [PROOFSTEP] rw [← mem_segment_translate _ (-x), neg_add_self] [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : SameRay 𝕜 (x - y) (z - x) a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x - y = a • (z - y) hzx : z - x = b • (z - y) ⊢ 0 ∈ [-x + y-[𝕜]-x + z] [PROOFSTEP] refine' ⟨b, a, hb, ha, add_comm a b ▸ hab, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x y z : E h : SameRay 𝕜 (x - y) (z - x) a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hxy : x - y = a • (z - y) hzx : z - x = b • (z - y) ⊢ b • (-x + y) + a • (-x + z) = 0 [PROOFSTEP] rw [← sub_eq_neg_add, ← neg_sub, hxy, ← sub_eq_neg_add, hzx, smul_neg, smul_comm, neg_add_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z✝ x y z : E hz : z ∈ range ↑(lineMap x y) ⊢ openSegment 𝕜 x y ⊆ insert z (openSegment 𝕜 x z ∪ openSegment 𝕜 z y) [PROOFSTEP] rcases hz with ⟨c, rfl⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c : 𝕜 ⊢ openSegment 𝕜 x y ⊆ insert (↑(lineMap x y) c) (openSegment 𝕜 x (↑(lineMap x y) c) ∪ openSegment 𝕜 (↑(lineMap x y) c) y) [PROOFSTEP] simp only [openSegment_eq_image_lineMap, ← mapsTo'] [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c : 𝕜 ⊢ MapsTo (fun a => ↑(lineMap x y) a) (Ioo 0 1) (insert (↑(lineMap x y) c) ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)) [PROOFSTEP] rintro a ⟨h₀, h₁⟩ [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 ⊢ (fun a => ↑(lineMap x y) a) a ∈ insert (↑(lineMap x y) c) ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1) [PROOFSTEP] rcases lt_trichotomy a c with (hac | rfl | hca) [GOAL] case intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hac : a < c ⊢ (fun a => ↑(lineMap x y) a) a ∈ insert (↑(lineMap x y) c) ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1) [PROOFSTEP] right [GOAL] case intro.intro.inl.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hac : a < c ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1 [PROOFSTEP] left [GOAL] case intro.intro.inl.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hac : a < c ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 [PROOFSTEP] have hc : 0 < c := h₀.trans hac [GOAL] case intro.intro.inl.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hac : a < c hc : 0 < c ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 [PROOFSTEP] refine' ⟨a / c, ⟨div_pos h₀ hc, (div_lt_one hc).2 hac⟩, _⟩ [GOAL] case intro.intro.inl.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hac : a < c hc : 0 < c ⊢ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) (a / c) = (fun a => ↑(lineMap x y) a) a [PROOFSTEP] simp only [← homothety_eq_lineMap, ← homothety_mul_apply, div_mul_cancel _ hc.ne'] [GOAL] case intro.intro.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E a : 𝕜 h₀ : 0 < a h₁ : a < 1 ⊢ (fun a => ↑(lineMap x y) a) a ∈ insert (↑(lineMap x y) a) ((fun a_1 => ↑(lineMap x (↑(lineMap x y) a)) a_1) '' Ioo 0 1 ∪ (fun a_1 => ↑(lineMap (↑(lineMap x y) a) y) a_1) '' Ioo 0 1) [PROOFSTEP] left [GOAL] case intro.intro.inr.inl.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E a : 𝕜 h₀ : 0 < a h₁ : a < 1 ⊢ (fun a => ↑(lineMap x y) a) a = ↑(lineMap x y) a [PROOFSTEP] rfl [GOAL] case intro.intro.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a ⊢ (fun a => ↑(lineMap x y) a) a ∈ insert (↑(lineMap x y) c) ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1) [PROOFSTEP] right [GOAL] case intro.intro.inr.inr.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1 [PROOFSTEP] right [GOAL] case intro.intro.inr.inr.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1 [PROOFSTEP] have hc : 0 < 1 - c := sub_pos.2 (hca.trans h₁) [GOAL] case intro.intro.inr.inr.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a hc : 0 < 1 - c ⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1 [PROOFSTEP] simp only [← lineMap_apply_one_sub y] [GOAL] case intro.intro.inr.inr.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a hc : 0 < 1 - c ⊢ ↑(lineMap y x) (1 - a) ∈ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) '' Ioo 0 1 [PROOFSTEP] refine' ⟨(a - c) / (1 - c), ⟨div_pos (sub_pos.2 hca) hc, (div_lt_one hc).2 <| sub_lt_sub_right h₁ _⟩, _⟩ [GOAL] case intro.intro.inr.inr.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x✝ y✝ z x y : E c a : 𝕜 h₀ : 0 < a h₁ : a < 1 hca : c < a hc : 0 < 1 - c ⊢ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) ((a - c) / (1 - c)) = ↑(lineMap y x) (1 - a) [PROOFSTEP] simp only [← homothety_eq_lineMap, ← homothety_mul_apply, sub_mul, one_mul, div_mul_cancel _ hc.ne', sub_sub_sub_cancel_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y ⊢ [x-[𝕜]y] ⊆ Icc x y [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ Icc x y [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.intro.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ x ≤ a • x + b • y case intro.intro.intro.intro.intro.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ≤ y [PROOFSTEP] calc x = a • x + b • x := (Convex.combo_self hab _).symm _ ≤ a • x + b • y := by gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • x ≤ a • x + b • y [PROOFSTEP] gcongr [GOAL] case intro.intro.intro.intro.intro.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ≤ y [PROOFSTEP] calc a • x + b • y ≤ a • y + b • y := by gcongr _ = y := Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x ≤ y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ≤ a • y + b • y [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y ⊢ openSegment 𝕜 x y ⊆ Ioo x y [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ Ioo x y [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.intro.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ x < a • x + b • y case intro.intro.intro.intro.intro.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y < y [PROOFSTEP] calc x = a • x + b • x := (Convex.combo_self hab _).symm _ < a • x + b • y := by gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • x < a • x + b • y [PROOFSTEP] gcongr [GOAL] case intro.intro.intro.intro.intro.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y < y [PROOFSTEP] calc a • x + b • y < a • y + b • y := by gcongr _ = y := Convex.combo_self hab _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : OrderedCancelAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E x y : E h : x < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y < a • y + b • y [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : LinearOrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E a b : 𝕜 x y : E ⊢ [x-[𝕜]y] ⊆ uIcc x y [PROOFSTEP] cases' le_total x y with h h [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : LinearOrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E a b : 𝕜 x y : E h : x ≤ y ⊢ [x-[𝕜]y] ⊆ uIcc x y [PROOFSTEP] rw [uIcc_of_le h] [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : LinearOrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E a b : 𝕜 x y : E h : x ≤ y ⊢ [x-[𝕜]y] ⊆ Icc x y [PROOFSTEP] exact segment_subset_Icc h [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : LinearOrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E a b : 𝕜 x y : E h : y ≤ x ⊢ [x-[𝕜]y] ⊆ uIcc x y [PROOFSTEP] rw [uIcc_of_ge h, segment_symm] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : LinearOrderedAddCommMonoid E inst✝¹ : Module 𝕜 E inst✝ : OrderedSMul 𝕜 E a b : 𝕜 x y : E h : y ≤ x ⊢ [y-[𝕜]x] ⊆ Icc y x [PROOFSTEP] exact segment_subset_Icc h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 ⊢ Icc x y ⊆ [x-[𝕜]y] [PROOFSTEP] rintro z ⟨hxz, hyz⟩ [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz : x ≤ z hyz : z ≤ y ⊢ z ∈ [x-[𝕜]y] [PROOFSTEP] obtain rfl | h := (hxz.trans hyz).eq_or_lt [GOAL] case intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x z✝ z : 𝕜 hxz : x ≤ z hyz : z ≤ x ⊢ z ∈ [x-[𝕜]x] [PROOFSTEP] rw [segment_same] [GOAL] case intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x z✝ z : 𝕜 hxz : x ≤ z hyz : z ≤ x ⊢ z ∈ {x} [PROOFSTEP] exact hyz.antisymm hxz [GOAL] case intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz : x ≤ z hyz : z ≤ y h : x < y ⊢ z ∈ [x-[𝕜]y] [PROOFSTEP] rw [← sub_nonneg] at hxz hyz [GOAL] case intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz✝ : x ≤ z hxz : 0 ≤ z - x hyz✝ : z ≤ y hyz : 0 ≤ y - z h : x < y ⊢ z ∈ [x-[𝕜]y] [PROOFSTEP] rw [← sub_pos] at h [GOAL] case intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz✝ : x ≤ z hxz : 0 ≤ z - x hyz✝ : z ≤ y hyz : 0 ≤ y - z h✝ : x < y h : 0 < y - x ⊢ z ∈ [x-[𝕜]y] [PROOFSTEP] refine' ⟨(y - z) / (y - x), (z - x) / (y - x), div_nonneg hyz h.le, div_nonneg hxz h.le, _, _⟩ [GOAL] case intro.inr.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz✝ : x ≤ z hxz : 0 ≤ z - x hyz✝ : z ≤ y hyz : 0 ≤ y - z h✝ : x < y h : 0 < y - x ⊢ (y - z) / (y - x) + (z - x) / (y - x) = 1 [PROOFSTEP] rw [← add_div, sub_add_sub_cancel, div_self h.ne'] [GOAL] case intro.inr.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z✝ z : 𝕜 hxz✝ : x ≤ z hxz : 0 ≤ z - x hyz✝ : z ≤ y hyz : 0 ≤ y - z h✝ : x < y h : 0 < y - x ⊢ ((y - z) / (y - x)) • x + ((z - x) / (y - x)) • y = z [PROOFSTEP] rw [smul_eq_mul, smul_eq_mul, ← mul_div_right_comm, ← mul_div_right_comm, ← add_div, div_eq_iff h.ne', add_comm, sub_mul, sub_mul, mul_comm x, sub_add_sub_cancel, mul_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x✝ y✝ z x y : 𝕜 ⊢ [x-[𝕜]y] = Icc (min x y) (max x y) [PROOFSTEP] cases' le_total x y with h h [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x✝ y✝ z x y : 𝕜 h : x ≤ y ⊢ [x-[𝕜]y] = Icc (min x y) (max x y) [PROOFSTEP] rw [segment_eq_Icc h, max_eq_right h, min_eq_left h] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x✝ y✝ z x y : 𝕜 h : y ≤ x ⊢ [x-[𝕜]y] = Icc (min x y) (max x y) [PROOFSTEP] rw [segment_symm, segment_eq_Icc h, max_eq_left h, min_eq_right h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 hxy : x ≠ y ⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y) [PROOFSTEP] cases' hxy.lt_or_lt with h h [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 hxy : x ≠ y h : x < y ⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y) [PROOFSTEP] rw [openSegment_eq_Ioo h, max_eq_right h.le, min_eq_left h.le] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 hxy : x ≠ y h : y < x ⊢ openSegment 𝕜 x y = Ioo (min x y) (max x y) [PROOFSTEP] rw [openSegment_symm, openSegment_eq_Ioo h, max_eq_left h.le, min_eq_right h.le] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x ≤ y ⊢ z ∈ Icc x y ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] rw [← segment_eq_Icc h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x ≤ y ⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] simp_rw [← exists_prop] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x ≤ y ⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b _h _h _h, a * x + b * y = z [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ z ∈ Ioo x y ↔ ∃ a b, 0 < a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] rw [← openSegment_eq_Ioo h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ z ∈ openSegment 𝕜 x y ↔ ∃ a b, 0 < a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] simp_rw [← exists_prop] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ z ∈ openSegment 𝕜 x y ↔ ∃ a b _h _h _h, a * x + b * y = z [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ z ∈ Ioc x y ↔ ∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] refine' ⟨fun hz => _, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y hz : z ∈ Ioc x y ⊢ ∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := (Convex.mem_Icc h.le).1 (Ioc_subset_Icc_self hz) [GOAL] case refine'_1.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a * x + b * y ∈ Ioc x y ⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 < b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y [PROOFSTEP] obtain rfl | hb' := hb.eq_or_lt [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a : 𝕜 ha : 0 ≤ a hb : 0 ≤ 0 hab : a + 0 = 1 hz : a * x + 0 * y ∈ Ioc x y ⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y [PROOFSTEP] rw [add_zero] at hab [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a : 𝕜 ha : 0 ≤ a hb : 0 ≤ 0 hab : a = 1 hz : a * x + 0 * y ∈ Ioc x y ⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y [PROOFSTEP] rw [hab, one_mul, zero_mul, add_zero] at hz [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a : 𝕜 ha : 0 ≤ a hb : 0 ≤ 0 hab : a = 1 hz : x ∈ Ioc x y ⊢ ∃ a_1 b, 0 ≤ a_1 ∧ 0 < b ∧ a_1 + b = 1 ∧ a_1 * x + b * y = a * x + 0 * y [PROOFSTEP] exact (hz.1.ne rfl).elim [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a * x + b * y ∈ Ioc x y hb' : 0 < b ⊢ ∃ a_1 b_1, 0 ≤ a_1 ∧ 0 < b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y [PROOFSTEP] exact ⟨a, b, ha, hb', hab, rfl⟩ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ (∃ a b, 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z) → z ∈ Ioc x y [PROOFSTEP] rintro ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ⊢ a * x + b * y ∈ Ioc x y [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case refine'_2.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y b : 𝕜 hb : 0 < b ha : 0 ≤ 0 hab : 0 + b = 1 ⊢ 0 * x + b * y ∈ Ioc x y [PROOFSTEP] rw [zero_add] at hab [GOAL] case refine'_2.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y b : 𝕜 hb : 0 < b ha : 0 ≤ 0 hab : b = 1 ⊢ 0 * x + b * y ∈ Ioc x y [PROOFSTEP] rwa [hab, one_mul, zero_mul, zero_add, right_mem_Ioc] [GOAL] case refine'_2.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 < b hab : a + b = 1 ha' : 0 < a ⊢ a * x + b * y ∈ Ioc x y [PROOFSTEP] exact Ioo_subset_Ioc_self ((Convex.mem_Ioo h).2 ⟨a, b, ha', hb, hab, rfl⟩) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ z ∈ Ico x y ↔ ∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] refine' ⟨fun hz => _, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y hz : z ∈ Ico x y ⊢ ∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z [PROOFSTEP] obtain ⟨a, b, ha, hb, hab, rfl⟩ := (Convex.mem_Icc h.le).1 (Ico_subset_Icc_self hz) [GOAL] case refine'_1.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a * x + b * y ∈ Ico x y ⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 ≤ b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y [PROOFSTEP] obtain rfl | ha' := ha.eq_or_lt [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : 0 + b = 1 hz : 0 * x + b * y ∈ Ico x y ⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y [PROOFSTEP] rw [zero_add] at hab [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 hz : 0 * x + b * y ∈ Ico x y ⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y [PROOFSTEP] rw [hab, one_mul, zero_mul, zero_add] at hz [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y b : 𝕜 hb : 0 ≤ b ha : 0 ≤ 0 hab : b = 1 hz : y ∈ Ico x y ⊢ ∃ a b_1, 0 < a ∧ 0 ≤ b_1 ∧ a + b_1 = 1 ∧ a * x + b_1 * y = 0 * x + b * y [PROOFSTEP] exact (hz.2.ne rfl).elim [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a * x + b * y ∈ Ico x y ha' : 0 < a ⊢ ∃ a_1 b_1, 0 < a_1 ∧ 0 ≤ b_1 ∧ a_1 + b_1 = 1 ∧ a_1 * x + b_1 * y = a * x + b * y [PROOFSTEP] exact ⟨a, b, ha', hb, hab, rfl⟩ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y z : 𝕜 h : x < y ⊢ (∃ a b, 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z) → z ∈ Ico x y [PROOFSTEP] rintro ⟨a, b, ha, hb, hab, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 < a hb : 0 ≤ b hab : a + b = 1 ⊢ a * x + b * y ∈ Ico x y [PROOFSTEP] obtain rfl | hb' := hb.eq_or_lt [GOAL] case refine'_2.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a : 𝕜 ha : 0 < a hb : 0 ≤ 0 hab : a + 0 = 1 ⊢ a * x + 0 * y ∈ Ico x y [PROOFSTEP] rw [add_zero] at hab [GOAL] case refine'_2.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a : 𝕜 ha : 0 < a hb : 0 ≤ 0 hab : a = 1 ⊢ a * x + 0 * y ∈ Ico x y [PROOFSTEP] rwa [hab, one_mul, zero_mul, add_zero, left_mem_Ico] [GOAL] case refine'_2.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝ : LinearOrderedField 𝕜 x y : 𝕜 h : x < y a b : 𝕜 ha : 0 < a hb : 0 ≤ b hab : a + b = 1 hb' : 0 < b ⊢ a * x + b * y ∈ Ico x y [PROOFSTEP] exact Ioo_subset_Ico_self ((Convex.mem_Ioo h).2 ⟨a, b, ha, hb', hab, rfl⟩) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E × F ⊢ [x-[𝕜]y] ⊆ [x.fst-[𝕜]y.fst] ×ˢ [x.snd-[𝕜]y.snd] [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, hz⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E × F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a • x + b • y = z ⊢ z ∈ [x.fst-[𝕜]y.fst] ×ˢ [x.snd-[𝕜]y.snd] [PROOFSTEP] exact ⟨⟨a, b, ha, hb, hab, congr_arg Prod.fst hz⟩, a, b, ha, hb, hab, congr_arg Prod.snd hz⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y : E × F ⊢ openSegment 𝕜 x y ⊆ openSegment 𝕜 x.fst y.fst ×ˢ openSegment 𝕜 x.snd y.snd [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, hz⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x y z : E × F a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hz : a • x + b • y = z ⊢ z ∈ openSegment 𝕜 x.fst y.fst ×ˢ openSegment 𝕜 x.snd y.snd [PROOFSTEP] exact ⟨⟨a, b, ha, hb, hab, congr_arg Prod.fst hz⟩, a, b, ha, hb, hab, congr_arg Prod.snd hz⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F ⊢ (fun x => (x, y)) '' [x₁-[𝕜]x₂] = [(x₁, y)-[𝕜](x₂, y)] [PROOFSTEP] ext ⟨x', y'⟩ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F ⊢ (x', y') ∈ (fun x => (x, y)) '' [x₁-[𝕜]x₂] ↔ (x', y') ∈ [(x₁, y)-[𝕜](x₂, y)] [PROOFSTEP] simp_rw [Set.mem_image, segment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right, @exists_comm E, exists_eq_left'] [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F ⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = x' ∧ y = y') ↔ ∃ a b h h h, a • x₁ + b • x₂ = x' ∧ a • y + b • y = y' [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x₁ + b • x₂ = x' ∧ y = y' ↔ a • x₁ + b • x₂ = x' ∧ a • y + b • y = y' [PROOFSTEP] rw [Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F ⊢ (fun y => (x, y)) '' [y₁-[𝕜]y₂] = [(x, y₁)-[𝕜](x, y₂)] [PROOFSTEP] ext ⟨x', y'⟩ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F ⊢ (x', y') ∈ (fun y => (x, y)) '' [y₁-[𝕜]y₂] ↔ (x', y') ∈ [(x, y₁)-[𝕜](x, y₂)] [PROOFSTEP] simp_rw [Set.mem_image, segment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right, @exists_comm F, exists_eq_left'] [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F ⊢ (∃ b b_1 h h h, x = x' ∧ b • y₁ + b_1 • y₂ = y') ↔ ∃ a b h h h, a • x + b • x = x' ∧ a • y₁ + b • y₂ = y' [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ x = x' ∧ a • y₁ + b • y₂ = y' ↔ a • x + b • x = x' ∧ a • y₁ + b • y₂ = y' [PROOFSTEP] rw [Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F ⊢ (fun x => (x, y)) '' openSegment 𝕜 x₁ x₂ = openSegment 𝕜 (x₁, y) (x₂, y) [PROOFSTEP] ext ⟨x', y'⟩ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F ⊢ (x', y') ∈ (fun x => (x, y)) '' openSegment 𝕜 x₁ x₂ ↔ (x', y') ∈ openSegment 𝕜 (x₁, y) (x₂, y) [PROOFSTEP] simp_rw [Set.mem_image, openSegment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right, @exists_comm E, exists_eq_left'] [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F ⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = x' ∧ y = y') ↔ ∃ a b h h h, a • x₁ + b • x₂ = x' ∧ a • y + b • y = y' [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x₁ x₂ : E y : F x' : E y' : F a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x₁ + b • x₂ = x' ∧ y = y' ↔ a • x₁ + b • x₂ = x' ∧ a • y + b • y = y' [PROOFSTEP] rw [Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F ⊢ (fun y => (x, y)) '' openSegment 𝕜 y₁ y₂ = openSegment 𝕜 (x, y₁) (x, y₂) [PROOFSTEP] ext ⟨x', y'⟩ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F ⊢ (x', y') ∈ (fun y => (x, y)) '' openSegment 𝕜 y₁ y₂ ↔ (x', y') ∈ openSegment 𝕜 (x, y₁) (x, y₂) [PROOFSTEP] simp_rw [Set.mem_image, openSegment, Set.mem_setOf, Prod.smul_mk, Prod.mk_add_mk, Prod.mk.inj_iff, ← exists_and_right, @exists_comm F, exists_eq_left'] [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F ⊢ (∃ b b_1 h h h, x = x' ∧ b • y₁ + b_1 • y₂ = y') ↔ ∃ a b h h h, a • x + b • x = x' ∧ a • y₁ + b • y₂ = y' [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E y₁ y₂ : F x' : E y' : F a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ x = x' ∧ a • y₁ + b • y₂ = y' ↔ a • x + b • x = x' ∧ a • y₁ + b • y₂ = y' [PROOFSTEP] rw [Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : (i : ι) → AddCommMonoid (π i) inst✝ : (i : ι) → Module 𝕜 (π i) s : Set ι x y : (i : ι) → π i ⊢ [x-[𝕜]y] ⊆ pi s fun i => [x i-[𝕜]y i] [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, hz⟩ i - [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : (i : ι) → AddCommMonoid (π i) inst✝ : (i : ι) → Module 𝕜 (π i) s : Set ι x y z : (i : ι) → π i a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 hz : a • x + b • y = z i : ι ⊢ z i ∈ (fun i => [x i-[𝕜]y i]) i [PROOFSTEP] exact ⟨a, b, ha, hb, hab, congr_fun hz i⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : (i : ι) → AddCommMonoid (π i) inst✝ : (i : ι) → Module 𝕜 (π i) s : Set ι x y : (i : ι) → π i ⊢ openSegment 𝕜 x y ⊆ pi s fun i => openSegment 𝕜 (x i) (y i) [PROOFSTEP] rintro z ⟨a, b, ha, hb, hab, hz⟩ i - [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝² : OrderedSemiring 𝕜 inst✝¹ : (i : ι) → AddCommMonoid (π i) inst✝ : (i : ι) → Module 𝕜 (π i) s : Set ι x y z : (i : ι) → π i a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hz : a • x + b • y = z i : ι ⊢ z i ∈ (fun i => openSegment 𝕜 (x i) (y i)) i [PROOFSTEP] exact ⟨a, b, ha, hb, hab, congr_fun hz i⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y : (i : ι) → π i ⊢ update y i '' [x₁-[𝕜]x₂] = [update y i x₁-[𝕜]update y i x₂] [PROOFSTEP] ext z [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a ⊢ z ∈ update y i '' [x₁-[𝕜]x₂] ↔ z ∈ [update y i x₁-[𝕜]update y i x₂] [PROOFSTEP] simp_rw [Set.mem_image, segment, Set.mem_setOf, ← update_smul, ← update_add, update_eq_iff, ← exists_and_right, @exists_comm (π i), exists_eq_left'] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a ⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔ ∃ a b h h h, a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔ a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x [PROOFSTEP] rw [Convex.combo_self hab] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y : (i : ι) → π i ⊢ update y i '' openSegment 𝕜 x₁ x₂ = openSegment 𝕜 (update y i x₁) (update y i x₂) [PROOFSTEP] ext z [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a ⊢ z ∈ update y i '' openSegment 𝕜 x₁ x₂ ↔ z ∈ openSegment 𝕜 (update y i x₁) (update y i x₂) [PROOFSTEP] simp_rw [Set.mem_image, openSegment, Set.mem_setOf, ← update_smul, ← update_add, update_eq_iff, ← exists_and_right, @exists_comm (π i), exists_eq_left'] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a ⊢ (∃ b b_1 h h h, b • x₁ + b_1 • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔ ∃ a b h h h, a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x [PROOFSTEP] refine' exists₅_congr fun a b ha hb hab => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) s : Set ι inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y z : (a : ι) → π a a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → y x = z x) ↔ a • x₁ + b • x₂ = z i ∧ ∀ (x : ι), x ≠ i → (a • y + b • y) x = z x [PROOFSTEP] rw [Convex.combo_self hab]
{"mathlib_filename": "Mathlib.Analysis.Convex.Segment", "llama_tokens": 37442}
[GOAL] x : ℝ hx : x ≤ 0 ⊢ expNegInvGlue x = 0 [PROOFSTEP] simp [expNegInvGlue, hx] [GOAL] x : ℝ hx : 0 < x ⊢ 0 < expNegInvGlue x [PROOFSTEP] simp [expNegInvGlue, not_le.2 hx, exp_pos] [GOAL] x : ℝ ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] cases le_or_gt x 0 with | inl h => exact ge_of_eq (zero_of_nonpos h) | inr h => exact le_of_lt (pos_of_pos h) [GOAL] x : ℝ x✝ : x ≤ 0 ∨ x > 0 ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] cases le_or_gt x 0 with | inl h => exact ge_of_eq (zero_of_nonpos h) | inr h => exact le_of_lt (pos_of_pos h) [GOAL] case inl x : ℝ h : x ≤ 0 ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] | inl h => exact ge_of_eq (zero_of_nonpos h) [GOAL] case inl x : ℝ h : x ≤ 0 ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] exact ge_of_eq (zero_of_nonpos h) [GOAL] case inr x : ℝ h : x > 0 ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] | inr h => exact le_of_lt (pos_of_pos h) [GOAL] case inr x : ℝ h : x > 0 ⊢ 0 ≤ expNegInvGlue x [PROOFSTEP] exact le_of_lt (pos_of_pos h) [GOAL] p : ℝ[X] ⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (𝓝 0) (𝓝 0) [PROOFSTEP] simp only [expNegInvGlue, mul_ite, mul_zero] [GOAL] p : ℝ[X] ⊢ Tendsto (fun x => if x ≤ 0 then 0 else Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0) (𝓝 0) [PROOFSTEP] refine tendsto_const_nhds.if ?_ [GOAL] p : ℝ[X] ⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | ¬x ≤ 0}) (𝓝 0) [PROOFSTEP] simp only [not_le] [GOAL] p : ℝ[X] ⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | 0 < x}) (𝓝 0) [PROOFSTEP] have : Tendsto (fun x ↦ p.eval x⁻¹ / exp x⁻¹) (𝓝[>] 0) (𝓝 0) := p.tendsto_div_exp_atTop.comp tendsto_inv_zero_atTop [GOAL] p : ℝ[X] this : Tendsto (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹) (𝓝[Ioi 0] 0) (𝓝 0) ⊢ Tendsto (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) (𝓝 0 ⊓ 𝓟 {x | 0 < x}) (𝓝 0) [PROOFSTEP] refine this.congr' <| mem_of_superset self_mem_nhdsWithin fun x hx ↦ ?_ [GOAL] p : ℝ[X] this : Tendsto (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹) (𝓝[Ioi 0] 0) (𝓝 0) x : ℝ hx : x ∈ {x | 0 < x} ⊢ x ∈ {x | (fun x => Polynomial.eval x⁻¹ p / exp x⁻¹ = (fun x => Polynomial.eval x⁻¹ p * exp (-x⁻¹)) x) x} [PROOFSTEP] simp [expNegInvGlue, hx.out.not_le, exp_neg, div_eq_mul_inv] [GOAL] p : ℝ[X] x : ℝ ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x [PROOFSTEP] rcases lt_trichotomy x 0 with hx | rfl | hx [GOAL] case inl p : ℝ[X] x : ℝ hx : x < 0 ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x [PROOFSTEP] rw [zero_of_nonpos hx.le, mul_zero] [GOAL] case inl p : ℝ[X] x : ℝ hx : x < 0 ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0 x [PROOFSTEP] refine (hasDerivAt_const _ 0).congr_of_eventuallyEq ?_ [GOAL] case inl p : ℝ[X] x : ℝ hx : x < 0 ⊢ (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) =ᶠ[𝓝 x] fun x => 0 [PROOFSTEP] filter_upwards [gt_mem_nhds hx] with y hy [GOAL] case h p : ℝ[X] x : ℝ hx : x < 0 y : ℝ hy : y < 0 ⊢ Polynomial.eval y⁻¹ p * expNegInvGlue y = 0 [PROOFSTEP] rw [zero_of_nonpos hy.le, mul_zero] [GOAL] case inr.inl p : ℝ[X] ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (Polynomial.eval 0⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue 0) 0 [PROOFSTEP] rw [expNegInvGlue.zero, mul_zero, hasDerivAt_iff_tendsto_slope] [GOAL] case inr.inl p : ℝ[X] ⊢ Tendsto (slope (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0) (𝓝[{0}ᶜ] 0) (𝓝 0) [PROOFSTEP] refine ((tendsto_polynomial_inv_mul_zero (p * X)).mono_left inf_le_left).congr fun x ↦ ?_ [GOAL] case inr.inl p : ℝ[X] x : ℝ ⊢ Polynomial.eval x⁻¹ (p * X) * expNegInvGlue x = slope (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) 0 x [PROOFSTEP] simp [slope_def_field, div_eq_mul_inv, mul_right_comm] [GOAL] case inr.inr p : ℝ[X] x : ℝ hx : 0 < x ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x [PROOFSTEP] have := ((p.hasDerivAt x⁻¹).mul (hasDerivAt_neg _).exp).comp x (hasDerivAt_inv hx.ne') [GOAL] case inr.inr p : ℝ[X] x : ℝ hx : 0 < x this : HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) ((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x ⊢ HasDerivAt (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) (Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x) x [PROOFSTEP] convert this.congr_of_eventuallyEq _ using 1 [GOAL] case h.e'_7 p : ℝ[X] x : ℝ hx : 0 < x this : HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) ((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x ⊢ Polynomial.eval x⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x = (Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹ [PROOFSTEP] simp [expNegInvGlue, hx.not_le] [GOAL] case h.e'_7 p : ℝ[X] x : ℝ hx : 0 < x this : HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) ((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x ⊢ (x ^ 2)⁻¹ * (Polynomial.eval x⁻¹ p - Polynomial.eval x⁻¹ (↑derivative p)) * exp (-x⁻¹) = -((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + -(Polynomial.eval x⁻¹ p * exp (-x⁻¹))) * (x ^ 2)⁻¹) [PROOFSTEP] ring [GOAL] case inr.inr.convert_2 p : ℝ[X] x : ℝ hx : 0 < x this : HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) ((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x ⊢ (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) =ᶠ[𝓝 x] (fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv [PROOFSTEP] filter_upwards [lt_mem_nhds hx] with y hy [GOAL] case h p : ℝ[X] x : ℝ hx : 0 < x this : HasDerivAt ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) ((Polynomial.eval x⁻¹ (↑derivative p) * exp (-x⁻¹) + Polynomial.eval x⁻¹ p * (exp (-x⁻¹) * -1)) * -(x ^ 2)⁻¹) x y : ℝ hy : 0 < y ⊢ Polynomial.eval y⁻¹ p * expNegInvGlue y = ((fun y => Polynomial.eval y p * exp (-y)) ∘ Inv.inv) y [PROOFSTEP] simp [expNegInvGlue, hy.not_le] [GOAL] n : ℕ∞ p : ℝ[X] ⊢ ContDiff ℝ n fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] apply contDiff_all_iff_nat.2 (fun m => ?_) n [GOAL] n : ℕ∞ p : ℝ[X] m : ℕ ⊢ ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] induction m generalizing p with | zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _ | succ m ihm => refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩ convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2 exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv [GOAL] n : ℕ∞ p : ℝ[X] m : ℕ ⊢ ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] induction m generalizing p with | zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _ | succ m ihm => refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩ convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2 exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv [GOAL] case zero n : ℕ∞ p : ℝ[X] ⊢ ContDiff ℝ ↑Nat.zero fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] | zero => exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _ [GOAL] case zero n : ℕ∞ p : ℝ[X] ⊢ ContDiff ℝ ↑Nat.zero fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] exact contDiff_zero.2 <| continuous_polynomial_eval_inv_mul _ [GOAL] case succ n : ℕ∞ m : ℕ ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x p : ℝ[X] ⊢ ContDiff ℝ ↑(Nat.succ m) fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] | succ m ihm => refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩ convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2 exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv [GOAL] case succ n : ℕ∞ m : ℕ ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x p : ℝ[X] ⊢ ContDiff ℝ ↑(Nat.succ m) fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x [PROOFSTEP] refine contDiff_succ_iff_deriv.2 ⟨differentiable_polynomial_eval_inv_mul _, ?_⟩ [GOAL] case succ n : ℕ∞ m : ℕ ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x p : ℝ[X] ⊢ ContDiff ℝ (↑m) (deriv fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) [PROOFSTEP] convert ihm (X ^ 2 * (p - derivative (R := ℝ) p)) using 2 [GOAL] case h.e'_10.h n : ℕ∞ m : ℕ ihm : ∀ (p : ℝ[X]), ContDiff ℝ ↑m fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x p : ℝ[X] x✝ : ℝ ⊢ deriv (fun x => Polynomial.eval x⁻¹ p * expNegInvGlue x) x✝ = Polynomial.eval x✝⁻¹ (X ^ 2 * (p - ↑derivative p)) * expNegInvGlue x✝ [PROOFSTEP] exact (hasDerivAt_polynomial_eval_inv_mul p _).deriv [GOAL] n : ℕ∞ ⊢ ContDiff ℝ n expNegInvGlue [PROOFSTEP] simpa using contDiff_polynomial_eval_inv_mul 1 [GOAL] x : ℝ h : 1 ≤ x ⊢ expNegInvGlue x = expNegInvGlue x + expNegInvGlue (1 - x) [PROOFSTEP] rw [zero_of_nonpos (sub_nonpos.2 h), add_zero] [GOAL] x : ℝ ⊢ smoothTransition x = 0 ↔ x ≤ 0 [PROOFSTEP] simp only [smoothTransition, _root_.div_eq_zero_iff, (pos_denom x).ne', zero_iff_nonpos, or_false] [GOAL] x : ℝ ⊢ smoothTransition ↑(projIcc 0 1 (_ : 0 ≤ 1) x) = smoothTransition x [PROOFSTEP] refine' congr_fun (IccExtend_eq_self zero_le_one smoothTransition (fun x hx => _) fun x hx => _) x [GOAL] case refine'_1 x✝ x : ℝ hx : x < 0 ⊢ smoothTransition x = smoothTransition 0 [PROOFSTEP] rw [smoothTransition.zero, zero_of_nonpos hx.le] [GOAL] case refine'_2 x✝ x : ℝ hx : 1 < x ⊢ smoothTransition x = smoothTransition 1 [PROOFSTEP] rw [smoothTransition.one, one_of_one_le hx.le]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.SmoothTransition", "llama_tokens": 4963}
[GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ ⊢ HasDerivAt exp (exp x) x [PROOFSTEP] rw [hasDerivAt_iff_isLittleO_nhds_zero] [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ ⊢ (fun h => exp (x + h) - exp x - h • exp x) =o[𝓝 0] fun h => h [PROOFSTEP] have : (1 : ℕ) < 2 := by norm_num [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ ⊢ 1 < 2 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ this : 1 < 2 ⊢ (fun h => exp (x + h) - exp x - h • exp x) =o[𝓝 0] fun h => h [PROOFSTEP] refine' (IsBigO.of_bound ‖exp x‖ _).trans_isLittleO (isLittleO_pow_id this) [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ this : 1 < 2 ⊢ ∀ᶠ (x_1 : ℂ) in 𝓝 0, ‖exp (x + x_1) - exp x - x_1 • exp x‖ ≤ ‖exp x‖ * ‖x_1 ^ 2‖ [PROOFSTEP] filter_upwards [Metric.ball_mem_nhds (0 : ℂ) zero_lt_one] [GOAL] case h 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ this : 1 < 2 ⊢ ∀ (a : ℂ), a ∈ Metric.ball 0 1 → ‖exp (x + a) - exp x - a • exp x‖ ≤ ‖exp x‖ * ‖a ^ 2‖ [PROOFSTEP] simp only [Metric.mem_ball, dist_zero_right, norm_pow] [GOAL] case h 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ x : ℂ this : 1 < 2 ⊢ ∀ (a : ℂ), ‖a‖ < 1 → ‖exp (x + a) - exp x - a • exp x‖ ≤ ‖exp x‖ * ‖a‖ ^ 2 [PROOFSTEP] exact fun z hz => exp_bound_sq x z hz.le [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ⊢ deriv^[n + 1] exp = exp [PROOFSTEP] rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n] [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ ⊢ ∀ {n : ℕ∞}, ContDiff 𝕜 n exp [PROOFSTEP] refine' @(contDiff_all_iff_nat.2 fun n => ?_) [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ⊢ ContDiff 𝕜 (↑n) exp [PROOFSTEP] have : ContDiff ℂ (↑n) exp := by induction' n with n ihn · exact contDiff_zero.2 continuous_exp · rw [contDiff_succ_iff_deriv] use differentiable_exp rwa [deriv_exp] [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ⊢ ContDiff ℂ (↑n) exp [PROOFSTEP] induction' n with n ihn [GOAL] case zero 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ ⊢ ContDiff ℂ (↑Nat.zero) exp [PROOFSTEP] exact contDiff_zero.2 continuous_exp [GOAL] case succ 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ihn : ContDiff ℂ (↑n) exp ⊢ ContDiff ℂ (↑(Nat.succ n)) exp [PROOFSTEP] rw [contDiff_succ_iff_deriv] [GOAL] case succ 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ihn : ContDiff ℂ (↑n) exp ⊢ Differentiable ℂ exp ∧ ContDiff ℂ (↑n) (deriv exp) [PROOFSTEP] use differentiable_exp [GOAL] case right 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ ihn : ContDiff ℂ (↑n) exp ⊢ ContDiff ℂ (↑n) (deriv exp) [PROOFSTEP] rwa [deriv_exp] [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : NormedAlgebra 𝕜 ℂ n : ℕ this : ContDiff ℂ (↑n) exp ⊢ ContDiff 𝕜 (↑n) exp [PROOFSTEP] exact this.restrict_scalars 𝕜 [GOAL] x y z : ℝ n : ℕ ⊢ deriv^[n + 1] exp = exp [PROOFSTEP] rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.ExpDeriv", "llama_tokens": 1730}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S✝ T✝ S T : ConvexCone 𝕜 E h : S.carrier = T.carrier ⊢ S = T [PROOFSTEP] cases S [GOAL] case mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S T✝ T : ConvexCone 𝕜 E carrier✝ : Set E smul_mem'✝ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝ → c • x ∈ carrier✝ add_mem'✝ : ∀ ⦃x : E⦄, x ∈ carrier✝ → ∀ ⦃y : E⦄, y ∈ carrier✝ → x + y ∈ carrier✝ h : { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ }.carrier = T.carrier ⊢ { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ } = T [PROOFSTEP] cases T [GOAL] case mk.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S T : ConvexCone 𝕜 E carrier✝¹ : Set E smul_mem'✝¹ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝¹ → c • x ∈ carrier✝¹ add_mem'✝¹ : ∀ ⦃x : E⦄, x ∈ carrier✝¹ → ∀ ⦃y : E⦄, y ∈ carrier✝¹ → x + y ∈ carrier✝¹ carrier✝ : Set E smul_mem'✝ : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier✝ → c • x ∈ carrier✝ add_mem'✝ : ∀ ⦃x : E⦄, x ∈ carrier✝ → ∀ ⦃y : E⦄, y ∈ carrier✝ → x + y ∈ carrier✝ h : { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹, add_mem' := add_mem'✝¹ }.carrier = { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ }.carrier ⊢ { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹, add_mem' := add_mem'✝¹ } = { carrier := carrier✝, smul_mem' := smul_mem'✝, add_mem' := add_mem'✝ } [PROOFSTEP] congr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S T : ConvexCone 𝕜 E ι : Sort u_5 f : ι → ConvexCone 𝕜 E ⊢ ↑(iInf f) = ⋂ (i : ι), ↑(f i) [PROOFSTEP] simp [iInf] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S T : ConvexCone 𝕜 E ι : Sort u_5 x : E f : ι → ConvexCone 𝕜 E ⊢ (∀ (i : ConvexCone 𝕜 E), i ∈ Set.range f → x ∈ ↑i) ↔ ∀ (i : ι), x ∈ f i [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : AddCommMonoid G inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : Module 𝕜 G f : E →ₗ[𝕜] F S : ConvexCone 𝕜 F c : 𝕜 hc : 0 < c x : E hx : x ∈ ↑f ⁻¹' ↑S ⊢ c • x ∈ ↑f ⁻¹' ↑S [PROOFSTEP] rw [mem_preimage, f.map_smul c] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : AddCommMonoid G inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : Module 𝕜 G f : E →ₗ[𝕜] F S : ConvexCone 𝕜 F c : 𝕜 hc : 0 < c x : E hx : x ∈ ↑f ⁻¹' ↑S ⊢ c • ↑f x ∈ ↑S [PROOFSTEP] exact S.smul_mem hc hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : AddCommMonoid G inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : Module 𝕜 G f : E →ₗ[𝕜] F S : ConvexCone 𝕜 F x : E hx : x ∈ ↑f ⁻¹' ↑S y : E hy : y ∈ ↑f ⁻¹' ↑S ⊢ x + y ∈ ↑f ⁻¹' ↑S [PROOFSTEP] rw [mem_preimage, f.map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommMonoid E inst✝⁴ : AddCommMonoid F inst✝³ : AddCommMonoid G inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : Module 𝕜 G f : E →ₗ[𝕜] F S : ConvexCone 𝕜 F x : E hx : x ∈ ↑f ⁻¹' ↑S y : E hy : y ∈ ↑f ⁻¹' ↑S ⊢ ↑f x + ↑f y ∈ ↑S [PROOFSTEP] exact S.add_mem hx hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : OrderedAddCommGroup E inst✝ : Module 𝕜 E S : ConvexCone 𝕜 E h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S ⊢ ∀ ⦃a b : E⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b [PROOFSTEP] intro x y z xy hz [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : OrderedAddCommGroup E inst✝ : Module 𝕜 E S : ConvexCone 𝕜 E h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S x y : E z : 𝕜 xy : x < y hz : 0 < z ⊢ z • x ≤ z • y [PROOFSTEP] rw [h (z • x) (z • y), ← smul_sub z y x] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : OrderedAddCommGroup E inst✝ : Module 𝕜 E S : ConvexCone 𝕜 E h : ∀ (x y : E), x ≤ y ↔ y - x ∈ S x y : E z : 𝕜 xy : x < y hz : 0 < z ⊢ z • (y - x) ∈ S [PROOFSTEP] exact smul_mem S hz ((h x y).mp xy.le) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E ⊢ Blunt S ↔ ¬Pointed S [PROOFSTEP] rw [pointed_iff_not_blunt, Classical.not_not] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E ⊢ Salient S ↔ ¬Flat S [PROOFSTEP] simp [Salient, Flat] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E hS : Flat S ⊢ Pointed S [PROOFSTEP] obtain ⟨x, hx, _, hxneg⟩ := hS [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E x : E hx : x ∈ S left✝ : x ≠ 0 hxneg : -x ∈ S ⊢ Pointed S [PROOFSTEP] rw [Pointed, ← add_neg_self x] [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E x : E hx : x ∈ S left✝ : x ≠ 0 hxneg : -x ∈ S ⊢ x + -x ∈ S [PROOFSTEP] exact add_mem S hx hxneg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E ⊢ Blunt S → Salient S [PROOFSTEP] rw [salient_iff_not_flat, blunt_iff_not_pointed] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S✝ S : ConvexCone 𝕜 E ⊢ ¬Pointed S → ¬Flat S [PROOFSTEP] exact mt Flat.pointed [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S x : E ⊢ x ≤ x [PROOFSTEP] change x - x ∈ S [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S x : E ⊢ x - x ∈ S [PROOFSTEP] rw [sub_self x] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S x : E ⊢ 0 ∈ S [PROOFSTEP] exact h₁ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S x y z : E xy : x ≤ y zy : y ≤ z ⊢ x ≤ z [PROOFSTEP] simpa using add_mem S zy xy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ ⊢ ∀ (a b : E), a ≤ b → b ≤ a → a = b [PROOFSTEP] intro a b ab ba [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ a b : E ab : a ≤ b ba : b ≤ a ⊢ a = b [PROOFSTEP] by_contra h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ a b : E ab : a ≤ b ba : b ≤ a h : ¬a = b ⊢ False [PROOFSTEP] have h' : b - a ≠ 0 := fun h'' => h (eq_of_sub_eq_zero h'').symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ a b : E ab : a ≤ b ba : b ≤ a h : ¬a = b h' : b - a ≠ 0 ⊢ False [PROOFSTEP] have H := h₂ (b - a) ab h' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ a b : E ab : a ≤ b ba : b ≤ a h : ¬a = b h' : b - a ≠ 0 H : ¬-(b - a) ∈ S ⊢ False [PROOFSTEP] rw [neg_sub b a] at H [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : Preorder E := toPreorder S h₁ a b : E ab : a ≤ b ba : b ≤ a h : ¬a = b h' : b - a ≠ 0 H : ¬a - b ∈ S ⊢ False [PROOFSTEP] exact H ba [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝ : PartialOrder E := toPartialOrder S h₁ h₂ ⊢ AddCommGroup E [PROOFSTEP] infer_instance [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂ src✝ : AddCommGroup E := let_fun this := inferInstance; this ⊢ ∀ (a b : E), a ≤ b → ∀ (c : E), c + a ≤ c + b [PROOFSTEP] intro a b hab c [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂ src✝ : AddCommGroup E := let_fun this := inferInstance; this a b : E hab : a ≤ b c : E ⊢ c + a ≤ c + b [PROOFSTEP] change c + b - (c + a) ∈ S [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂ src✝ : AddCommGroup E := let_fun this := inferInstance; this a b : E hab : a ≤ b c : E ⊢ c + b - (c + a) ∈ S [PROOFSTEP] rw [add_sub_add_left_eq_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E S : ConvexCone 𝕜 E h₁ : Pointed S h₂ : Salient S src✝¹ : PartialOrder E := toPartialOrder S h₁ h₂ src✝ : AddCommGroup E := let_fun this := inferInstance; this a b : E hab : a ≤ b c : E ⊢ b - a ∈ S [PROOFSTEP] exact hab [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝¹ : 𝕜 x✝ : 0 < x✝¹ ⊢ ∀ ⦃x : E⦄, x ∈ 0 → x✝¹ • x ∈ 0 [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝ : E ⊢ x✝ ∈ 0 → ∀ ⦃y : E⦄, y ∈ 0 → x✝ + y ∈ 0 [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E ⊢ Pointed 0 [PROOFSTEP] rw [Pointed, mem_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E ⊢ ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} → c • x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} [PROOFSTEP] rintro c hc _ ⟨x, y, hx, hy, rfl⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E c : 𝕜 hc : 0 < c x y : E hx : x ∈ K₁ hy : y ∈ K₂ ⊢ c • (x + y) ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} [PROOFSTEP] rw [smul_add] [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E c : 𝕜 hc : 0 < c x y : E hx : x ∈ K₁ hy : y ∈ K₂ ⊢ c • x + c • y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} [PROOFSTEP] use c • x, c • y, K₁.smul_mem hc hx, K₂.smul_mem hc hy [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E ⊢ ∀ ⦃x : E⦄, x ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} → ∀ ⦃y : E⦄, y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} → x + y ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} [PROOFSTEP] rintro _ ⟨x₁, x₂, hx₁, hx₂, rfl⟩ y ⟨y₁, y₂, hy₁, hy₂, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E x₁ x₂ : E hx₁ : x₁ ∈ K₁ hx₂ : x₂ ∈ K₂ y₁ y₂ : E hy₁ : y₁ ∈ K₁ hy₂ : y₂ ∈ K₂ ⊢ x₁ + x₂ + (y₁ + y₂) ∈ {z | ∃ x y, x ∈ K₁ ∧ y ∈ K₂ ∧ x + y = z} [PROOFSTEP] use x₁ + y₁, x₂ + y₂, K₁.add_mem hx₁ hy₁, K₂.add_mem hx₂ hy₂ [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E x₁ x₂ : E hx₁ : x₁ ∈ K₁ hx₂ : x₂ ∈ K₂ y₁ y₂ : E hy₁ : y₁ ∈ K₁ hy₂ : y₂ ∈ K₂ ⊢ x₁ + y₁ + (x₂ + y₂) = x₁ + x₂ + (y₁ + y₂) [PROOFSTEP] abel [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E K₁ K₂ : ConvexCone 𝕜 E x₁ x₂ : E hx₁ : x₁ ∈ K₁ hx₂ : x₂ ∈ K₂ y₁ y₂ : E hy₁ : y₁ ∈ K₁ hy₂ : y₂ ∈ K₂ ⊢ x₁ + y₁ + (x₂ + y₂) = x₁ + x₂ + (y₁ + y₂) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝ : ConvexCone 𝕜 E ⊢ 0 + x✝ = x✝ [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝¹ : ConvexCone 𝕜 E x✝ : E ⊢ x✝ ∈ 0 + x✝¹ ↔ x✝ ∈ x✝¹ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝ : ConvexCone 𝕜 E ⊢ x✝ + 0 = x✝ [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝¹ : ConvexCone 𝕜 E x✝ : E ⊢ x✝ ∈ x✝¹ + 0 ↔ x✝ ∈ x✝¹ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s ⊢ ConvexCone 𝕜 E [PROOFSTEP] apply ConvexCone.mk (⋃ (c : 𝕜) (_ : 0 < c), c • s) [GOAL] case smul_mem' 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s ⊢ ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s → c • x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s [PROOFSTEP] simp only [mem_iUnion, mem_smul_set] [GOAL] case add_mem' 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s ⊢ ∀ ⦃x : E⦄, x ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s → ∀ ⦃y : E⦄, y ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s → x + y ∈ ⋃ (c : 𝕜) (_ : 0 < c), c • s [PROOFSTEP] simp only [mem_iUnion, mem_smul_set] [GOAL] case smul_mem' 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s ⊢ ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, (∃ i h y, y ∈ s ∧ i • y = x) → ∃ i h y, y ∈ s ∧ i • y = c • x [PROOFSTEP] rintro c c_pos _ ⟨c', c'_pos, x, hx, rfl⟩ [GOAL] case smul_mem'.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s c : 𝕜 c_pos : 0 < c c' : 𝕜 c'_pos : 0 < c' x : E hx : x ∈ s ⊢ ∃ i h y, y ∈ s ∧ i • y = c • c' • x [PROOFSTEP] exact ⟨c * c', mul_pos c_pos c'_pos, x, hx, (smul_smul _ _ _).symm⟩ [GOAL] case add_mem' 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s ⊢ ∀ ⦃x : E⦄, (∃ i h y, y ∈ s ∧ i • y = x) → ∀ ⦃y : E⦄, (∃ i h y_1, y_1 ∈ s ∧ i • y_1 = y) → ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = x + y [PROOFSTEP] rintro _ ⟨cx, cx_pos, x, hx, rfl⟩ _ ⟨cy, cy_pos, y, hy, rfl⟩ [GOAL] case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s cx : 𝕜 cx_pos : 0 < cx x : E hx : x ∈ s cy : 𝕜 cy_pos : 0 < cy y : E hy : y ∈ s ⊢ ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = cx • x + cy • y [PROOFSTEP] have : 0 < cx + cy := add_pos cx_pos cy_pos [GOAL] case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s cx : 𝕜 cx_pos : 0 < cx x : E hx : x ∈ s cy : 𝕜 cy_pos : 0 < cy y : E hy : y ∈ s this : 0 < cx + cy ⊢ ∃ i h y_1, y_1 ∈ s ∧ i • y_1 = cx • x + cy • y [PROOFSTEP] refine' ⟨_, this, _, convex_iff_div.1 hs hx hy cx_pos.le cy_pos.le this, _⟩ [GOAL] case add_mem'.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s cx : 𝕜 cx_pos : 0 < cx x : E hx : x ∈ s cy : 𝕜 cy_pos : 0 < cy y : E hy : y ∈ s this : 0 < cx + cy ⊢ (cx + cy) • ((cx / (cx + cy)) • x + (cy / (cx + cy)) • y) = cx • x + cy • y [PROOFSTEP] simp only [smul_add, smul_smul, mul_div_assoc', mul_div_cancel_left _ this.ne'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E ⊢ x ∈ toCone s hs ↔ ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x [PROOFSTEP] simp only [toCone, ConvexCone.mem_mk, mem_iUnion, mem_smul_set, eq_comm, exists_prop] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E ⊢ x ∈ toCone s hs ↔ ∃ c, 0 < c ∧ c • x ∈ s [PROOFSTEP] refine' hs.mem_toCone.trans ⟨_, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E ⊢ (∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x) → ∃ c, 0 < c ∧ c • x ∈ s [PROOFSTEP] rintro ⟨c, hc, y, hy, rfl⟩ [GOAL] case refine'_1.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s c : 𝕜 hc : 0 < c y : E hy : y ∈ s ⊢ ∃ c_1, 0 < c_1 ∧ c_1 • c • y ∈ s [PROOFSTEP] exact ⟨c⁻¹, inv_pos.2 hc, by rwa [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s c : 𝕜 hc : 0 < c y : E hy : y ∈ s ⊢ c⁻¹ • c • y ∈ s [PROOFSTEP] rwa [smul_smul, inv_mul_cancel hc.ne', one_smul] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E ⊢ (∃ c, 0 < c ∧ c • x ∈ s) → ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x [PROOFSTEP] rintro ⟨c, hc, hcx⟩ [GOAL] case refine'_2.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E c : 𝕜 hc : 0 < c hcx : c • x ∈ s ⊢ ∃ c, 0 < c ∧ ∃ y, y ∈ s ∧ c • y = x [PROOFSTEP] exact ⟨c⁻¹, inv_pos.2 hc, _, hcx, by rw [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E c : 𝕜 hc : 0 < c hcx : c • x ∈ s ⊢ c⁻¹ • c • x = x [PROOFSTEP] rw [smul_smul, inv_mul_cancel hc.ne', one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x✝ x : E hx : x ∈ s ⊢ 1 • x ∈ s [PROOFSTEP] rwa [one_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E ⊢ IsLeast {t | s ⊆ ↑t} (toCone s hs) [PROOFSTEP] refine' ⟨hs.subset_toCone, fun t ht x hx => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x✝ : E t : ConvexCone 𝕜 E ht : t ∈ {t | s ⊆ ↑t} x : E hx : x ∈ toCone s hs ⊢ x ∈ t [PROOFSTEP] rcases hs.mem_toCone.1 hx with ⟨c, hc, y, hy, rfl⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E t : ConvexCone 𝕜 E ht : t ∈ {t | s ⊆ ↑t} c : 𝕜 hc : 0 < c y : E hy : y ∈ s hx : c • y ∈ toCone s hs ⊢ c • y ∈ t [PROOFSTEP] exact t.smul_mem hc (ht hy) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ IsLeast {t | s ⊆ ↑t} (Convex.toCone (↑(convexHull 𝕜) s) (_ : Convex 𝕜 (↑(convexHull 𝕜) s))) [PROOFSTEP] convert (convex_convexHull 𝕜 s).toCone_isLeast using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E ⊢ {t | s ⊆ ↑t} = {t | ↑(convexHull 𝕜) s ⊆ ↑t} [PROOFSTEP] ext t [GOAL] case h.e'_3.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E t : ConvexCone 𝕜 E ⊢ t ∈ {t | s ⊆ ↑t} ↔ t ∈ {t | ↑(convexHull 𝕜) s ⊆ ↑t} [PROOFSTEP] exact ⟨fun h => convexHull_min h t.convex, (subset_convexHull 𝕜 s).trans⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ ⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x [PROOFSTEP] obtain ⟨y, -, hy⟩ : ∃ y ∈ ⊤, y ∉ f.domain := @SetLike.exists_of_lt (Submodule ℝ E) _ _ _ _ (lt_top_iff_ne_top.2 hdom) [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain ⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x [PROOFSTEP] obtain ⟨c, le_c, c_le⟩ : ∃ c, (∀ x : f.domain, -(x : E) - y ∈ s → f x ≤ c) ∧ ∀ x : f.domain, (x : E) + y ∈ s → c ≤ f x := by set Sp := f '' {x : f.domain | (x : E) + y ∈ s} set Sn := f '' {x : f.domain | -(x : E) - y ∈ s} suffices (upperBounds Sn ∩ lowerBounds Sp).Nonempty by simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this refine' exists_between_of_forall_le (Nonempty.image f _) (Nonempty.image f (dense y)) _ · rcases dense (-y) with ⟨x, hx⟩ rw [← neg_neg x, AddSubgroupClass.coe_neg, ← sub_eq_add_neg] at hx exact ⟨_, hx⟩ rintro a ⟨xn, hxn, rfl⟩ b ⟨xp, hxp, rfl⟩ have := s.add_mem hxp hxn rw [add_assoc, add_sub_cancel'_right, ← sub_eq_add_neg, ← AddSubgroupClass.coe_sub] at this replace := nonneg _ this rwa [f.map_sub, sub_nonneg] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain ⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x [PROOFSTEP] set Sp := f '' {x : f.domain | (x : E) + y ∈ s} [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} ⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x [PROOFSTEP] set Sn := f '' {x : f.domain | -(x : E) - y ∈ s} [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} ⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x [PROOFSTEP] suffices (upperBounds Sn ∩ lowerBounds Sp).Nonempty by simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} this : Set.Nonempty (upperBounds Sn ∩ lowerBounds Sp) ⊢ ∃ c, (∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c) ∧ ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x [PROOFSTEP] simpa only [Set.Nonempty, upperBounds, lowerBounds, ball_image_iff] using this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} ⊢ Set.Nonempty (upperBounds Sn ∩ lowerBounds Sp) [PROOFSTEP] refine' exists_between_of_forall_le (Nonempty.image f _) (Nonempty.image f (dense y)) _ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} ⊢ Set.Nonempty {x | -↑x - y ∈ s} [PROOFSTEP] rcases dense (-y) with ⟨x, hx⟩ [GOAL] case refine'_1.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} x : { x // x ∈ f.domain } hx : ↑x + -y ∈ s ⊢ Set.Nonempty {x | -↑x - y ∈ s} [PROOFSTEP] rw [← neg_neg x, AddSubgroupClass.coe_neg, ← sub_eq_add_neg] at hx [GOAL] case refine'_1.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} x : { x // x ∈ f.domain } hx : -↑(-x) - y ∈ s ⊢ Set.Nonempty {x | -↑x - y ∈ s} [PROOFSTEP] exact ⟨_, hx⟩ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} ⊢ ∀ (x : ℝ), x ∈ Sn → ∀ (y : ℝ), y ∈ Sp → x ≤ y [PROOFSTEP] rintro a ⟨xn, hxn, rfl⟩ b ⟨xp, hxp, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} xn : { x // x ∈ f.domain } hxn : xn ∈ {x | -↑x - y ∈ s} xp : { x // x ∈ f.domain } hxp : xp ∈ {x | ↑x + y ∈ s} ⊢ ↑f xn ≤ ↑f xp [PROOFSTEP] have := s.add_mem hxp hxn [GOAL] case refine'_2.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} xn : { x // x ∈ f.domain } hxn : xn ∈ {x | -↑x - y ∈ s} xp : { x // x ∈ f.domain } hxp : xp ∈ {x | ↑x + y ∈ s} this : ↑xp + y + (-↑xn - y) ∈ s ⊢ ↑f xn ≤ ↑f xp [PROOFSTEP] rw [add_assoc, add_sub_cancel'_right, ← sub_eq_add_neg, ← AddSubgroupClass.coe_sub] at this [GOAL] case refine'_2.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} xn : { x // x ∈ f.domain } hxn : xn ∈ {x | -↑x - y ∈ s} xp : { x // x ∈ f.domain } hxp : xp ∈ {x | ↑x + y ∈ s} this✝ : ↑xp - ↑xn ∈ s this : ↑(xp - xn) ∈ s ⊢ ↑f xn ≤ ↑f xp [PROOFSTEP] replace := nonneg _ this [GOAL] case refine'_2.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain Sp : Set ℝ := ↑f '' {x | ↑x + y ∈ s} Sn : Set ℝ := ↑f '' {x | -↑x - y ∈ s} xn : { x // x ∈ f.domain } hxn : xn ∈ {x | -↑x - y ∈ s} xp : { x // x ∈ f.domain } hxp : xp ∈ {x | ↑x + y ∈ s} this✝ : ↑xp - ↑xn ∈ s this : 0 ≤ ↑f (xp - xn) ⊢ ↑f xn ≤ ↑f xp [PROOFSTEP] rwa [f.map_sub, sub_nonneg] at this [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x ⊢ ∃ g, f < g ∧ ∀ (x : { x // x ∈ g.domain }), ↑x ∈ s → 0 ≤ ↑g x [PROOFSTEP] refine' ⟨f.supSpanSingleton y (-c) hy, _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x ⊢ f < LinearPMap.supSpanSingleton f y (-c) hy [PROOFSTEP] refine' lt_iff_le_not_le.2 ⟨f.left_le_sup _ _, fun H => _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x H : LinearPMap.supSpanSingleton f y (-c) hy ≤ f ⊢ False [PROOFSTEP] replace H := LinearPMap.domain_mono.monotone H [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x H : (LinearPMap.supSpanSingleton f y (-c) hy).domain ≤ f.domain ⊢ False [PROOFSTEP] rw [LinearPMap.domain_supSpanSingleton, sup_le_iff, span_le, singleton_subset_iff] at H [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x H : f.domain ≤ f.domain ∧ y ∈ ↑f.domain ⊢ False [PROOFSTEP] exact hy H.2 [GOAL] case intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x ⊢ ∀ (x : { x // x ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain }), ↑x ∈ s → 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) x [PROOFSTEP] rintro ⟨z, hz⟩ hzs [GOAL] case intro.intro.intro.intro.refine'_2.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x z : E hz : z ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : ↑{ val := z, property := hz } ∈ s ⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := z, property := hz } [PROOFSTEP] rcases mem_sup.1 hz with ⟨x, hx, y', hy', rfl⟩ [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain y' : E hy' : y' ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + y' ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : ↑{ val := x + y', property := hz } ∈ s ⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + y', property := hz } [PROOFSTEP] rcases mem_span_singleton.1 hy' with ⟨r, rfl⟩ [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : ↑{ val := x + r • y, property := hz } ∈ s ⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + r • y, property := hz } [PROOFSTEP] simp only [Subtype.coe_mk] at hzs [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s ⊢ 0 ≤ ↑(LinearPMap.supSpanSingleton f y (-c) hy) { val := x + r • y, property := hz } [PROOFSTEP] erw [LinearPMap.supSpanSingleton_apply_mk _ _ _ _ _ hx, smul_neg, ← sub_eq_add_neg, sub_nonneg] [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] rcases lt_trichotomy r 0 with (hr | hr | hr) [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r < 0 ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] have : -(r⁻¹ • x) - y ∈ s := by rwa [← s.smul_mem_iff (neg_pos.2 hr), smul_sub, smul_neg, neg_smul, neg_neg, smul_smul, mul_inv_cancel hr.ne, one_smul, sub_eq_add_neg, neg_smul, neg_neg] -- Porting note: added type annotation and `by exact` [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r < 0 ⊢ -(r⁻¹ • x) - y ∈ s [PROOFSTEP] rwa [← s.smul_mem_iff (neg_pos.2 hr), smul_sub, smul_neg, neg_smul, neg_neg, smul_smul, mul_inv_cancel hr.ne, one_smul, sub_eq_add_neg, neg_smul, neg_neg] -- Porting note: added type annotation and `by exact` [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r < 0 this : -(r⁻¹ • x) - y ∈ s ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] replace : f (r⁻¹ • ⟨x, hx⟩) ≤ c := le_c (r⁻¹ • ⟨x, hx⟩) (by exact this) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r < 0 this : -(r⁻¹ • x) - y ∈ s ⊢ -↑(r⁻¹ • { val := x, property := hx }) - y ∈ s [PROOFSTEP] exact this [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r < 0 this : ↑f (r⁻¹ • { val := x, property := hx }) ≤ c ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] rwa [← mul_le_mul_left (neg_pos.2 hr), neg_mul, neg_mul, neg_le_neg_iff, f.map_smul, smul_eq_mul, ← mul_assoc, mul_inv_cancel hr.ne, one_mul] at this [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : r = 0 ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] subst r [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + 0 • y ∈ s ⊢ 0 • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] simp only [zero_smul, add_zero] at hzs ⊢ [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x ∈ s ⊢ 0 ≤ ↑f { val := x, property := hx } [PROOFSTEP] apply nonneg [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inl.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain hy' : 0 • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + 0 • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x ∈ s ⊢ ↑{ val := x, property := hx } ∈ s [PROOFSTEP] exact hzs [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : 0 < r ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] have : r⁻¹ • x + y ∈ s := by rwa [← s.smul_mem_iff hr, smul_add, smul_smul, mul_inv_cancel hr.ne', one_smul] -- Porting note: added type annotation and `by exact` [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : 0 < r ⊢ r⁻¹ • x + y ∈ s [PROOFSTEP] rwa [← s.smul_mem_iff hr, smul_add, smul_smul, mul_inv_cancel hr.ne', one_smul] -- Porting note: added type annotation and `by exact` [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : 0 < r this : r⁻¹ • x + y ∈ s ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] replace : c ≤ f (r⁻¹ • ⟨x, hx⟩) := c_le (r⁻¹ • ⟨x, hx⟩) (by exact this) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : 0 < r this : r⁻¹ • x + y ∈ s ⊢ ↑(r⁻¹ • { val := x, property := hx }) + y ∈ s [PROOFSTEP] exact this [GOAL] case intro.intro.intro.intro.refine'_2.mk.intro.intro.intro.intro.intro.inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s hdom : f.domain ≠ ⊤ y : E hy : ¬y ∈ f.domain c : ℝ le_c : ∀ (x : { x // x ∈ f.domain }), -↑x - y ∈ s → ↑f x ≤ c c_le : ∀ (x : { x // x ∈ f.domain }), ↑x + y ∈ s → c ≤ ↑f x x : E hx : x ∈ f.domain r : ℝ hy' : r • y ∈ (LinearPMap.mkSpanSingleton y (-c) (_ : y = 0 → False)).domain hz : x + r • y ∈ (LinearPMap.supSpanSingleton f y (-c) hy).domain hzs : x + r • y ∈ s hr : 0 < r this : c ≤ ↑f (r⁻¹ • { val := x, property := hx }) ⊢ r • c ≤ ↑f { val := x, property := hx } [PROOFSTEP] rwa [← mul_le_mul_left hr, f.map_smul, smul_eq_mul, ← mul_assoc, mul_inv_cancel hr.ne', one_mul] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s ⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x [PROOFSTEP] set S := {p : E →ₗ.[ℝ] ℝ | ∀ x : p.domain, (x : E) ∈ s → 0 ≤ p x} [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x [PROOFSTEP] have hSc : ∀ c, c ⊆ S → IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ S, ∀ z ∈ c, z ≤ ub [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ⊢ ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub [PROOFSTEP] intro c hcs c_chain y hy [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub [PROOFSTEP] clear hp_nonneg hp_dense p [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub [PROOFSTEP] have cne : c.Nonempty := ⟨y, hy⟩ [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub [PROOFSTEP] have hcd : DirectedOn (· ≤ ·) c := c_chain.directedOn [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub [PROOFSTEP] refine' ⟨LinearPMap.sSup c hcd, _, fun _ ↦ LinearPMap.le_sSup hcd⟩ [GOAL] case hSc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c ⊢ LinearPMap.sSup c hcd ∈ S [PROOFSTEP] rintro ⟨x, hx⟩ hxs [GOAL] case hSc.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c x : E hx : x ∈ (LinearPMap.sSup c hcd).domain hxs : ↑{ val := x, property := hx } ∈ s ⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx } [PROOFSTEP] have hdir : DirectedOn (· ≤ ·) (LinearPMap.domain '' c) := directedOn_image.2 (hcd.mono fun h ↦ LinearPMap.domain_mono.monotone h) [GOAL] case hSc.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c x : E hx : x ∈ (LinearPMap.sSup c hcd).domain hxs : ↑{ val := x, property := hx } ∈ s hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c) ⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx } [PROOFSTEP] rcases(mem_sSup_of_directed (cne.image _) hdir).1 hx with ⟨_, ⟨f, hfc, rfl⟩, hfx⟩ [GOAL] case hSc.mk.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f✝ : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c x : E hx : x ∈ (LinearPMap.sSup c hcd).domain hxs : ↑{ val := x, property := hx } ∈ s hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c) f : E →ₗ.[ℝ] ℝ hfc : f ∈ c hfx : x ∈ f.domain ⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx } [PROOFSTEP] have : f ≤ LinearPMap.sSup c hcd := LinearPMap.le_sSup _ hfc [GOAL] case hSc.mk.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f✝ : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c x : E hx : x ∈ (LinearPMap.sSup c hcd).domain hxs : ↑{ val := x, property := hx } ∈ s hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c) f : E →ₗ.[ℝ] ℝ hfc : f ∈ c hfx : x ∈ f.domain this : f ≤ LinearPMap.sSup c hcd ⊢ 0 ≤ ↑(LinearPMap.sSup c hcd) { val := x, property := hx } [PROOFSTEP] convert ← hcs hfc ⟨x, hfx⟩ hxs using 1 [GOAL] case h.e'_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f✝ : E →ₗ.[ℝ] ℝ S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} c : Set (E →ₗ.[ℝ] ℝ) hcs : c ⊆ S c_chain : IsChain (fun x x_1 => x ≤ x_1) c y : E →ₗ.[ℝ] ℝ hy : y ∈ c cne : Set.Nonempty c hcd : DirectedOn (fun x x_1 => x ≤ x_1) c x : E hx : x ∈ (LinearPMap.sSup c hcd).domain hxs : ↑{ val := x, property := hx } ∈ s hdir : DirectedOn (fun x x_1 => x ≤ x_1) (LinearPMap.domain '' c) f : E →ₗ.[ℝ] ℝ hfc : f ∈ c hfx : x ∈ f.domain this : f ≤ LinearPMap.sSup c hcd ⊢ ↑f { val := x, property := hfx } = ↑(LinearPMap.sSup c hcd) { val := x, property := hx } [PROOFSTEP] exact this.2 rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub ⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x [PROOFSTEP] obtain ⟨q, hqs, hpq, hq⟩ := zorn_nonempty_partialOrder₀ S hSc p hp_nonneg [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub q : E →ₗ.[ℝ] ℝ hqs : q ∈ S hpq : p ≤ q hq : ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ S → q ≤ z → z = q ⊢ ∃ q, q ≥ p ∧ q.domain = ⊤ ∧ ∀ (x : { x // x ∈ q.domain }), ↑x ∈ s → 0 ≤ ↑q x [PROOFSTEP] refine' ⟨q, hpq, _, hqs⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub q : E →ₗ.[ℝ] ℝ hqs : q ∈ S hpq : p ≤ q hq : ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ S → q ≤ z → z = q ⊢ q.domain = ⊤ [PROOFSTEP] contrapose! hq [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub q : E →ₗ.[ℝ] ℝ hqs : q ∈ S hpq : p ≤ q hq : q.domain ≠ ⊤ ⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q [PROOFSTEP] have hqd : ∀ y, ∃ x : q.domain, (x : E) + y ∈ s := fun y ↦ let ⟨x, hx⟩ := hp_dense y ⟨ofLe hpq.left x, hx⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub q : E →ₗ.[ℝ] ℝ hqs : q ∈ S hpq : p ≤ q hq : q.domain ≠ ⊤ hqd : ∀ (y : E), ∃ x, ↑x + y ∈ s ⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q [PROOFSTEP] rcases step s q hqs hqd hq with ⟨r, hqr, hr⟩ [GOAL] case intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f p : E →ₗ.[ℝ] ℝ hp_nonneg : ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x hp_dense : ∀ (y : E), ∃ x, ↑x + y ∈ s S : Set (E →ₗ.[ℝ] ℝ) := {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} hSc : ∀ (c : Set (E →ₗ.[ℝ] ℝ)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : E →ₗ.[ℝ] ℝ), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : E →ₗ.[ℝ] ℝ), z ∈ c → z ≤ ub q : E →ₗ.[ℝ] ℝ hqs : q ∈ S hpq : p ≤ q hq : q.domain ≠ ⊤ hqd : ∀ (y : E), ∃ x, ↑x + y ∈ s r : E →ₗ.[ℝ] ℝ hqr : q < r hr : ∀ (x : { x // x ∈ r.domain }), ↑x ∈ s → 0 ≤ ↑r x ⊢ ∃ z, z ∈ {p | ∀ (x : { x // x ∈ p.domain }), ↑x ∈ s → 0 ≤ ↑p x} ∧ q ≤ z ∧ z ≠ q [PROOFSTEP] exact ⟨r, hr, hqr.le, hqr.ne'⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), x ∈ s → 0 ≤ ↑g x [PROOFSTEP] rcases RieszExtension.exists_top s f nonneg dense with ⟨⟨g_dom, g⟩, ⟨-, hfg⟩, rfl : g_dom = ⊤, hgs⟩ [GOAL] case intro.mk.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ hfg : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄, ↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), x ∈ s → 0 ≤ ↑g x [PROOFSTEP] refine' ⟨g.comp (LinearMap.id.codRestrict ⊤ fun _ ↦ trivial), _, _⟩ [GOAL] case intro.mk.intro.intro.intro.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ hfg : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄, ↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x ⊢ ∀ (x : { x // x ∈ f.domain }), ↑(comp g (LinearMap.codRestrict ⊤ LinearMap.id (_ : E → True))) ↑x = ↑f x [PROOFSTEP] exact fun x => (hfg rfl).symm [GOAL] case intro.mk.intro.intro.intro.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : ConvexCone ℝ E f : E →ₗ.[ℝ] ℝ nonneg : ∀ (x : { x // x ∈ f.domain }), ↑x ∈ s → 0 ≤ ↑f x dense : ∀ (y : E), ∃ x, ↑x + y ∈ s g : { x // x ∈ ⊤ } →ₗ[ℝ] ℝ hfg : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ { domain := ⊤, toFun := g }.domain }⦄, ↑x = ↑y → ↑f x = ↑{ domain := ⊤, toFun := g } y hgs : ∀ (x : { x // x ∈ { domain := ⊤, toFun := g }.domain }), ↑x ∈ s → 0 ≤ ↑{ domain := ⊤, toFun := g } x ⊢ ∀ (x : E), x ∈ s → 0 ≤ ↑(comp g (LinearMap.codRestrict ⊤ LinearMap.id (_ : E → True))) x [PROOFSTEP] exact fun x hx => hgs ⟨x, _⟩ hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] let s : ConvexCone ℝ (E × ℝ) := { carrier := {p : E × ℝ | N p.1 ≤ p.2} smul_mem' := fun c hc p hp => calc N (c • p.1) = c * N p.1 := N_hom c hc p.1 _ ≤ c * p.2 := mul_le_mul_of_nonneg_left hp hc.le add_mem' := fun x hx y hy => (N_add _ _).trans (add_le_add hx hy) } [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] set f' := (-f).coprod (LinearMap.id.toPMap ⊤) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] have hf'_nonneg : ∀ x : f'.domain, x.1 ∈ s → 0 ≤ f' x := fun x (hx : N x.1.1 ≤ x.1.2) ↦ by simpa using le_trans (hf ⟨x.1.1, x.2.1⟩) hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) x : { x // x ∈ f'.domain } hx : N (↑x).fst ≤ (↑x).snd ⊢ 0 ≤ ↑f' x [PROOFSTEP] simpa using le_trans (hf ⟨x.1.1, x.2.1⟩) hx [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] have hf'_dense : ∀ y : E × ℝ, ∃ x : f'.domain, ↑x + y ∈ s [GOAL] case hf'_dense 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x ⊢ ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case hf'_dense.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x x : E y : ℝ ⊢ ∃ x_1, ↑x_1 + (x, y) ∈ s [PROOFSTEP] refine' ⟨⟨(0, N x - y), ⟨f.domain.zero_mem, trivial⟩⟩, _⟩ [GOAL] case hf'_dense.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x x : E y : ℝ ⊢ ↑{ val := (0, N x - y), property := (_ : (0, N x - y).fst ∈ ↑(-f).domain ∧ (0, N x - y).snd ∈ ↑(toPMap LinearMap.id ⊤).domain) } + (x, y) ∈ s [PROOFSTEP] simp only [ConvexCone.mem_mk, mem_setOf_eq, Prod.fst_add, Prod.snd_add, zero_add, sub_add_cancel, le_rfl] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] obtain ⟨g, g_eq, g_nonneg⟩ := riesz_extension s f' hf'_nonneg hf'_dense [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_eq : ∀ (x : { x // x ∈ f'.domain }), ↑g ↑x = ↑f' x g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] replace g_eq : ∀ (x : f.domain) (y : ℝ), g (x, y) = y - f x := fun x y ↦ (g_eq ⟨(x, y), ⟨x.2, trivial⟩⟩).trans (sub_eq_neg_add _ _).symm [GOAL] case intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x ⊢ ∃ g, (∀ (x : { x // x ∈ f.domain }), ↑g ↑x = ↑f x) ∧ ∀ (x : E), ↑g x ≤ N x [PROOFSTEP] refine ⟨-g.comp (inl ℝ E ℝ), fun x ↦ ?_, fun x ↦ ?_⟩ [GOAL] case intro.intro.refine_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x x : { x // x ∈ f.domain } ⊢ ↑(-comp g (inl ℝ E ℝ)) ↑x = ↑f x [PROOFSTEP] simp [g_eq x 0] [GOAL] case intro.intro.refine_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x x : E ⊢ ↑(-comp g (inl ℝ E ℝ)) x ≤ N x [PROOFSTEP] calc -g (x, 0) = g (0, N x) - g (x, N x) := by simp [← map_sub, ← map_neg] _ = N x - g (x, N x) := by simpa using g_eq 0 (N x) _ ≤ N x := by simpa using g_nonneg ⟨x, N x⟩ (le_refl (N x)) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x x : E ⊢ -↑g (x, 0) = ↑g (0, N x) - ↑g (x, N x) [PROOFSTEP] simp [← map_sub, ← map_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x x : E ⊢ ↑g (0, N x) - ↑g (x, N x) = N x - ↑g (x, N x) [PROOFSTEP] simpa using g_eq 0 (N x) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E f : E →ₗ.[ℝ] ℝ N : E → ℝ N_hom : ∀ (c : ℝ), 0 < c → ∀ (x : E), N (c • x) = c * N x N_add : ∀ (x y : E), N (x + y) ≤ N x + N y hf : ∀ (x : { x // x ∈ f.domain }), ↑f x ≤ N ↑x s : ConvexCone ℝ (E × ℝ) := { carrier := {p | N p.fst ≤ p.snd}, smul_mem' := (_ : ∀ (c : ℝ), 0 < c → ∀ (p : E × ℝ), p ∈ {p | N p.fst ≤ p.snd} → N (c • p.fst) ≤ c * p.snd), add_mem' := (_ : ∀ (x : E × ℝ), x ∈ {p | N p.fst ≤ p.snd} → ∀ (y : E × ℝ), y ∈ {p | N p.fst ≤ p.snd} → N (x.fst + y.fst) ≤ (x + y).snd) } f' : E × ℝ →ₗ.[ℝ] ℝ := LinearPMap.coprod (-f) (toPMap LinearMap.id ⊤) hf'_nonneg : ∀ (x : { x // x ∈ f'.domain }), ↑x ∈ s → 0 ≤ ↑f' x hf'_dense : ∀ (y : E × ℝ), ∃ x, ↑x + y ∈ s g : E × ℝ →ₗ[ℝ] ℝ g_nonneg : ∀ (x : E × ℝ), x ∈ s → 0 ≤ ↑g x g_eq : ∀ (x : { x // x ∈ f.domain }) (y : ℝ), ↑g (↑x, y) = y - ↑f x x : E ⊢ N x - ↑g (x, N x) ≤ N x [PROOFSTEP] simpa using g_nonneg ⟨x, N x⟩ (le_refl (N x))
{"mathlib_filename": "Mathlib.Analysis.Convex.Cone.Basic", "llama_tokens": 44340}
[GOAL] x : ℂ h : cos x ≠ 0 ⊢ HasStrictDerivAt tan (↑1 / cos x ^ 2) x [PROOFSTEP] convert (hasStrictDerivAt_sin x).div (hasStrictDerivAt_cos x) h using 1 [GOAL] case h.e'_7 x : ℂ h : cos x ≠ 0 ⊢ ↑1 / cos x ^ 2 = (cos x * cos x - sin x * -sin x) / cos x ^ 2 [PROOFSTEP] rw_mod_cast [← sin_sq_add_cos_sq x] [GOAL] case h.e'_7 x : ℂ h : ¬cos x = 0 ⊢ (sin x ^ 2 + cos x ^ 2) / cos x ^ 2 = (cos x * cos x - sin x * -sin x) / cos x ^ 2 [PROOFSTEP] ring [GOAL] x : ℂ hx : cos x = 0 ⊢ Tendsto (fun x => ↑abs (tan x)) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] simp only [tan_eq_sin_div_cos, ← norm_eq_abs, norm_div] [GOAL] x : ℂ hx : cos x = 0 ⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] have A : sin x ≠ 0 := fun h => by simpa [*, sq] using sin_sq_add_cos_sq x [GOAL] x : ℂ hx : cos x = 0 h : sin x = 0 ⊢ False [PROOFSTEP] simpa [*, sq] using sin_sq_add_cos_sq x [GOAL] x : ℂ hx : cos x = 0 A : sin x ≠ 0 ⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] have B : Tendsto cos (𝓝[≠] x) (𝓝[≠] 0) := hx ▸ (hasDerivAt_cos x).tendsto_punctured_nhds (neg_ne_zero.2 A) [GOAL] x : ℂ hx : cos x = 0 A : sin x ≠ 0 B : Tendsto cos (𝓝[{x}ᶜ] x) (𝓝[{0}ᶜ] 0) ⊢ Tendsto (fun x => ‖sin x‖ / ‖cos x‖) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] exact continuous_sin.continuousWithinAt.norm.mul_atTop (norm_pos_iff.2 A) (tendsto_norm_nhdsWithin_zero.comp B).inv_tendsto_zero [GOAL] x : ℂ ⊢ ContinuousAt tan x ↔ cos x ≠ 0 [PROOFSTEP] refine' ⟨fun hc h₀ => _, fun h => (hasDerivAt_tan h).continuousAt⟩ [GOAL] x : ℂ hc : ContinuousAt tan x h₀ : cos x = 0 ⊢ False [PROOFSTEP] exact not_tendsto_nhds_of_tendsto_atTop (tendsto_abs_tan_of_cos_eq_zero h₀) _ (hc.norm.tendsto.mono_left inf_le_left) [GOAL] x : ℂ h : cos x = 0 ⊢ deriv tan x = ↑1 / cos x ^ 2 [PROOFSTEP] have : ¬DifferentiableAt ℂ tan x := mt differentiableAt_tan.1 (Classical.not_not.2 h) [GOAL] x : ℂ h : cos x = 0 this : ¬DifferentiableAt ℂ tan x ⊢ deriv tan x = ↑1 / cos x ^ 2 [PROOFSTEP] simp [deriv_zero_of_not_differentiableAt this, h, sq]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv", "llama_tokens": 1063}
[GOAL] x : ℝ h₁ : x ≠ -1 h₂ : x ≠ 1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] cases' h₁.lt_or_lt with h₁ h₁ [GOAL] case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] have : 1 - x ^ 2 < 0 := by nlinarith [h₁] [GOAL] x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 ⊢ 1 - x ^ 2 < 0 [PROOFSTEP] nlinarith [h₁] [GOAL] case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] rw [sqrt_eq_zero'.2 this.le, div_zero] [GOAL] case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] have : arcsin =ᶠ[𝓝 x] fun _ => -(π / 2) := (gt_mem_nhds h₁).mono fun y hy => arcsin_of_le_neg_one hy.le [GOAL] case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => -(π / 2) ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩ [GOAL] case inr x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : -1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] cases' h₂.lt_or_lt with h₂ h₂ [GOAL] case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] have : 0 < sqrt (1 - x ^ 2) := sqrt_pos.2 (by nlinarith [h₁, h₂]) [GOAL] x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 ⊢ 0 < 1 - x ^ 2 [PROOFSTEP] nlinarith [h₁, h₂] [GOAL] case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < sqrt (1 - x ^ 2) ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] simp only [← cos_arcsin, one_div] at this ⊢ [GOAL] case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < cos (arcsin x) ⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] exact ⟨sinLocalHomeomorph.hasStrictDerivAt_symm ⟨h₁, h₂⟩ this.ne' (hasStrictDerivAt_sin _), sinLocalHomeomorph.contDiffAt_symm_deriv this.ne' ⟨h₁, h₂⟩ (hasDerivAt_sin _) contDiff_sin.contDiffAt⟩ [GOAL] case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] have : 1 - x ^ 2 < 0 := by nlinarith [h₂] [GOAL] x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x ⊢ 1 - x ^ 2 < 0 [PROOFSTEP] nlinarith [h₂] [GOAL] case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] rw [sqrt_eq_zero'.2 this.le, div_zero] [GOAL] case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] have : arcsin =ᶠ[𝓝 x] fun _ => π / 2 := (lt_mem_nhds h₂).mono fun y hy => arcsin_of_one_le hy.le [GOAL] case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => π / 2 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x [PROOFSTEP] exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩ [GOAL] x : ℝ h : x ≠ -1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Ici x) x [PROOFSTEP] rcases eq_or_ne x 1 with (rfl | h') [GOAL] case inl h : 1 ≠ -1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - 1 ^ 2)) (Ici 1) 1 [PROOFSTEP] convert (hasDerivWithinAt_const (1 : ℝ) _ (π / 2)).congr _ _ [GOAL] case h.e'_7 h : 1 ≠ -1 ⊢ 1 / sqrt (1 - 1 ^ 2) = 0 [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_one_le] [GOAL] case inl.convert_3 h : 1 ≠ -1 ⊢ ∀ (x : ℝ), x ∈ Ici 1 → arcsin x = π / 2 [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_one_le] [GOAL] case inl.convert_4 h : 1 ≠ -1 ⊢ arcsin 1 = π / 2 [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_one_le] [GOAL] case inr x : ℝ h : x ≠ -1 h' : x ≠ 1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Ici x) x [PROOFSTEP] exact (hasDerivAt_arcsin h h').hasDerivWithinAt [GOAL] x : ℝ h : x ≠ 1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Iic x) x [PROOFSTEP] rcases em (x = -1) with (rfl | h') [GOAL] case inl h : -1 ≠ 1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - (-1) ^ 2)) (Iic (-1)) (-1) [PROOFSTEP] convert (hasDerivWithinAt_const (-1 : ℝ) _ (-(π / 2))).congr _ _ [GOAL] case h.e'_7 h : -1 ≠ 1 ⊢ 1 / sqrt (1 - (-1) ^ 2) = 0 [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_le_neg_one] [GOAL] case inl.convert_3 h : -1 ≠ 1 ⊢ ∀ (x : ℝ), x ∈ Iic (-1) → arcsin x = -(π / 2) [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_le_neg_one] [GOAL] case inl.convert_4 h : -1 ≠ 1 ⊢ arcsin (-1) = -(π / 2) [PROOFSTEP] simp (config := { contextual := true }) [arcsin_of_le_neg_one] [GOAL] case inr x : ℝ h : x ≠ 1 h' : ¬x = -1 ⊢ HasDerivWithinAt arcsin (1 / sqrt (1 - x ^ 2)) (Iic x) x [PROOFSTEP] exact (hasDerivAt_arcsin h' h).hasDerivWithinAt [GOAL] x : ℝ ⊢ DifferentiableWithinAt ℝ arcsin (Ici x) x ↔ x ≠ -1 [PROOFSTEP] refine' ⟨_, fun h => (hasDerivWithinAt_arcsin_Ici h).differentiableWithinAt⟩ [GOAL] x : ℝ ⊢ DifferentiableWithinAt ℝ arcsin (Ici x) x → x ≠ -1 [PROOFSTEP] rintro h rfl [GOAL] h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1) ⊢ False [PROOFSTEP] have : sin ∘ arcsin =ᶠ[𝓝[≥] (-1 : ℝ)] id := by filter_upwards [Icc_mem_nhdsWithin_Ici ⟨le_rfl, neg_lt_self (zero_lt_one' ℝ)⟩] with x using sin_arcsin' [GOAL] h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1) ⊢ sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id [PROOFSTEP] filter_upwards [Icc_mem_nhdsWithin_Ici ⟨le_rfl, neg_lt_self (zero_lt_one' ℝ)⟩] with x using sin_arcsin' [GOAL] h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1) this : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id ⊢ False [PROOFSTEP] have := h.hasDerivWithinAt.sin.congr_of_eventuallyEq this.symm (by simp) [GOAL] h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1) this : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id ⊢ id (-1) = sin (arcsin (-1)) [PROOFSTEP] simp [GOAL] h : DifferentiableWithinAt ℝ arcsin (Ici (-1)) (-1) this✝ : sin ∘ arcsin =ᶠ[𝓝[Ici (-1)] (-1)] id this : HasDerivWithinAt id (cos (arcsin (-1)) * derivWithin arcsin (Ici (-1)) (-1)) (Ici (-1)) (-1) ⊢ False [PROOFSTEP] simpa using (uniqueDiffOn_Ici _ _ left_mem_Ici).eq_deriv _ this (hasDerivWithinAt_id _ _) [GOAL] x : ℝ ⊢ DifferentiableWithinAt ℝ arcsin (Iic x) x ↔ x ≠ 1 [PROOFSTEP] refine' ⟨fun h => _, fun h => (hasDerivWithinAt_arcsin_Iic h).differentiableWithinAt⟩ [GOAL] x : ℝ h : DifferentiableWithinAt ℝ arcsin (Iic x) x ⊢ x ≠ 1 [PROOFSTEP] rw [← neg_neg x, ← image_neg_Ici] at h [GOAL] x : ℝ h : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x) ⊢ x ≠ 1 [PROOFSTEP] have := (h.comp (-x) differentiableWithinAt_id.neg (mapsTo_image _ _)).neg [GOAL] x : ℝ h : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x) this : DifferentiableWithinAt ℝ (fun y => -(arcsin ∘ Neg.neg) y) (Ici (-x)) (-x) ⊢ x ≠ 1 [PROOFSTEP] simpa [(· ∘ ·), differentiableWithinAt_arcsin_Ici] using this [GOAL] ⊢ deriv arcsin = fun x => 1 / sqrt (1 - x ^ 2) [PROOFSTEP] funext x [GOAL] case h x : ℝ ⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2) [PROOFSTEP] by_cases h : x ≠ -1 ∧ x ≠ 1 [GOAL] case pos x : ℝ h : x ≠ -1 ∧ x ≠ 1 ⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2) [PROOFSTEP] exact (hasDerivAt_arcsin h.1 h.2).deriv [GOAL] case neg x : ℝ h : ¬(x ≠ -1 ∧ x ≠ 1) ⊢ deriv arcsin x = 1 / sqrt (1 - x ^ 2) [PROOFSTEP] rw [deriv_zero_of_not_differentiableAt (mt differentiableAt_arcsin.1 h)] [GOAL] case neg x : ℝ h : ¬(x ≠ -1 ∧ x ≠ 1) ⊢ 0 = 1 / sqrt (1 - x ^ 2) [PROOFSTEP] simp only [not_and_or, Ne.def, Classical.not_not] at h [GOAL] case neg x : ℝ h : x = -1 ∨ x = 1 ⊢ 0 = 1 / sqrt (1 - x ^ 2) [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case neg.inl ⊢ 0 = 1 / sqrt (1 - (-1) ^ 2) [PROOFSTEP] simp [GOAL] case neg.inr ⊢ 0 = 1 / sqrt (1 - 1 ^ 2) [PROOFSTEP] simp [GOAL] x : ℝ ⊢ -deriv (fun y => arcsin y) x = -(1 / sqrt (1 - x ^ 2)) [PROOFSTEP] simp only [deriv_arcsin] [GOAL] x : ℝ n : ℕ∞ ⊢ ContDiffAt ℝ n arccos x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1 [PROOFSTEP] refine' Iff.trans ⟨fun h => _, fun h => _⟩ contDiffAt_arcsin_iff [GOAL] case refine'_1 x : ℝ n : ℕ∞ h : ContDiffAt ℝ n arccos x ⊢ ContDiffAt ℝ n arcsin x [PROOFSTEP] simpa [arccos] using (@contDiffAt_const _ _ _ _ _ _ _ _ _ _ (π / 2)).sub h [GOAL] case refine'_2 x : ℝ n : ℕ∞ h : ContDiffAt ℝ n arcsin x ⊢ ContDiffAt ℝ n arccos x [PROOFSTEP] simpa [arccos] using (@contDiffAt_const _ _ _ _ _ _ _ _ _ _ (π / 2)).sub h
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.InverseDeriv", "llama_tokens": 4774}
[GOAL] ⊢ StrictConvexOn ℝ univ exp [PROOFSTEP] apply strictConvexOn_of_slope_strict_mono_adjacent convex_univ [GOAL] ⊢ ∀ {x y z : ℝ}, x ∈ univ → z ∈ univ → x < y → y < z → (exp y - exp x) / (y - x) < (exp z - exp y) / (z - y) [PROOFSTEP] rintro x y z - - hxy hyz [GOAL] x y z : ℝ hxy : x < y hyz : y < z ⊢ (exp y - exp x) / (y - x) < (exp z - exp y) / (z - y) [PROOFSTEP] trans exp y [GOAL] x y z : ℝ hxy : x < y hyz : y < z ⊢ (exp y - exp x) / (y - x) < exp y [PROOFSTEP] have h1 : 0 < y - x := by linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x ⊢ (exp y - exp x) / (y - x) < exp y [PROOFSTEP] have h2 : x - y < 0 := by linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x ⊢ x - y < 0 [PROOFSTEP] linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ (exp y - exp x) / (y - x) < exp y [PROOFSTEP] rw [div_lt_iff h1] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y - exp x < exp y * (y - x) [PROOFSTEP] calc exp y - exp x = exp y - exp y * exp (x - y) := by rw [← exp_add]; ring_nf _ = exp y * (1 - exp (x - y)) := by ring _ < exp y * -(x - y) := by gcongr; linarith [add_one_lt_exp_of_nonzero h2.ne] _ = exp y * (y - x) := by ring [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y - exp x = exp y - exp y * exp (x - y) [PROOFSTEP] rw [← exp_add] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y - exp x = exp y - exp (y + (x - y)) [PROOFSTEP] ring_nf [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y - exp y * exp (x - y) = exp y * (1 - exp (x - y)) [PROOFSTEP] ring [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y * (1 - exp (x - y)) < exp y * -(x - y) [PROOFSTEP] gcongr [GOAL] case bc x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ 1 - exp (x - y) < -(x - y) [PROOFSTEP] linarith [add_one_lt_exp_of_nonzero h2.ne] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < y - x h2 : x - y < 0 ⊢ exp y * -(x - y) = exp y * (y - x) [PROOFSTEP] ring [GOAL] x y z : ℝ hxy : x < y hyz : y < z ⊢ exp y < (exp z - exp y) / (z - y) [PROOFSTEP] have h1 : 0 < z - y := by linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp y < (exp z - exp y) / (z - y) [PROOFSTEP] rw [lt_div_iff h1] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp y * (z - y) < exp z - exp y [PROOFSTEP] calc exp y * (z - y) < exp y * (exp (z - y) - 1) := by gcongr _ * ?_ linarith [add_one_lt_exp_of_nonzero h1.ne'] _ = exp (z - y) * exp y - exp y := by ring _ ≤ exp z - exp y := by rw [← exp_add]; ring_nf; rfl [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp y * (z - y) < exp y * (exp (z - y) - 1) [PROOFSTEP] gcongr _ * ?_ [GOAL] case bc x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ z - y < exp (z - y) - 1 [PROOFSTEP] linarith [add_one_lt_exp_of_nonzero h1.ne'] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp y * (exp (z - y) - 1) = exp (z - y) * exp y - exp y [PROOFSTEP] ring [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp (z - y) * exp y - exp y ≤ exp z - exp y [PROOFSTEP] rw [← exp_add] [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp (z - y + y) - exp y ≤ exp z - exp y [PROOFSTEP] ring_nf [GOAL] x y z : ℝ hxy : x < y hyz : y < z h1 : 0 < z - y ⊢ exp z - exp y ≤ exp z - exp y [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ n [PROOFSTEP] induction' n with k IH [GOAL] case zero ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.zero [PROOFSTEP] exact convexOn_const (1 : ℝ) (convex_Ici _) [GOAL] case succ k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.succ k [PROOFSTEP] refine' ⟨convex_Ici _, _⟩ [GOAL] case succ k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k ⊢ ∀ ⦃x : ℝ⦄, x ∈ Ici 0 → ∀ ⦃y : ℝ⦄, y ∈ Ici 0 → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (fun x => x ^ Nat.succ k) (a • x + b • y) ≤ a • (fun x => x ^ Nat.succ k) x + b • (fun x => x ^ Nat.succ k) y [PROOFSTEP] rintro a (ha : 0 ≤ a) b (hb : 0 ≤ b) μ ν hμ hν h [GOAL] case succ k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b [PROOFSTEP] have H := IH.2 ha hb hμ hν h [GOAL] case succ k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b ⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b [PROOFSTEP] have : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν := by cases' le_or_lt a b with hab hab · have : a ^ k ≤ b ^ k := by gcongr have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith positivity · have : b ^ k ≤ a ^ k := by gcongr have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith positivity [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] cases' le_or_lt a b with hab hab [GOAL] case inl k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : a ≤ b ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] have : a ^ k ≤ b ^ k := by gcongr [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : a ≤ b ⊢ a ^ k ≤ b ^ k [PROOFSTEP] gcongr [GOAL] case inl k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : a ≤ b this : a ^ k ≤ b ^ k ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : a ≤ b this : a ^ k ≤ b ^ k ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) [PROOFSTEP] nlinarith [GOAL] case inl k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : a ≤ b this✝ : a ^ k ≤ b ^ k this : 0 ≤ (b ^ k - a ^ k) * (b - a) ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] positivity [GOAL] case inr k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : b < a ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] have : b ^ k ≤ a ^ k := by gcongr [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : b < a ⊢ b ^ k ≤ a ^ k [PROOFSTEP] gcongr [GOAL] case inr k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : b < a this : b ^ k ≤ a ^ k ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : b < a this : b ^ k ≤ a ^ k ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) [PROOFSTEP] nlinarith [GOAL] case inr k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b hab : b < a this✝ : b ^ k ≤ a ^ k this : 0 ≤ (b ^ k - a ^ k) * (b - a) ⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] positivity [GOAL] case succ k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b [PROOFSTEP] calc (μ * a + ν * b) ^ k.succ = (μ * a + ν * b) * (μ * a + ν * b) ^ k := pow_succ _ _ _ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) := by gcongr; exact H _ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν := by linarith _ = (μ + ν) * (μ * a ^ k.succ + ν * b ^ k.succ) := by rw [Nat.succ_eq_add_one]; ring _ = μ * a ^ k.succ + ν * b ^ k.succ := by rw [h]; ring [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ * a + ν * b) * (μ * a + ν * b) ^ k ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) [PROOFSTEP] gcongr [GOAL] case h k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ * a + ν * b) ^ k ≤ μ * a ^ k + ν * b ^ k [PROOFSTEP] exact H [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν [PROOFSTEP] linarith [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν = (μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) [PROOFSTEP] rw [Nat.succ_eq_add_one] [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν = (μ + ν) * (μ * a ^ (k + 1) + ν * b ^ (k + 1)) [PROOFSTEP] ring [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ (μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k [PROOFSTEP] rw [h] [GOAL] k : ℕ IH : ConvexOn ℝ (Ici 0) fun x => x ^ k a : ℝ ha : 0 ≤ a b : ℝ hb : 0 ≤ b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 H : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b this : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν ⊢ 1 * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k [PROOFSTEP] ring [GOAL] n : ℕ hn : Even n ⊢ ConvexOn ℝ univ fun x => x ^ n [PROOFSTEP] refine' ⟨convex_univ, _⟩ [GOAL] n : ℕ hn : Even n ⊢ ∀ ⦃x : ℝ⦄, x ∈ univ → ∀ ⦃y : ℝ⦄, y ∈ univ → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (fun x => x ^ n) (a • x + b • y) ≤ a • (fun x => x ^ n) x + b • (fun x => x ^ n) y [PROOFSTEP] rintro a - b - μ ν hμ hν h [GOAL] n : ℕ hn : Even n a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (fun x => x ^ n) (μ • a + ν • b) ≤ μ • (fun x => x ^ n) a + ν • (fun x => x ^ n) b [PROOFSTEP] obtain ⟨k, rfl⟩ := hn.exists_two_nsmul _ -- Porting note: added type ascription to LHS [GOAL] case intro a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) ⊢ (fun x => x ^ (2 • k)) (μ • a + ν • b) ≤ μ • (fun x => x ^ (2 • k)) a + ν • (fun x => x ^ (2 • k)) b [PROOFSTEP] have : (0 : ℝ) ≤ (a - b) ^ 2 * μ * ν := by positivity [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) ⊢ 0 ≤ (a - b) ^ 2 * μ * ν [PROOFSTEP] positivity [GOAL] case intro a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ (fun x => x ^ (2 • k)) (μ • a + ν • b) ≤ μ • (fun x => x ^ (2 • k)) a + ν • (fun x => x ^ (2 • k)) b [PROOFSTEP] calc (μ * a + ν * b) ^ (2 * k) = ((μ * a + ν * b) ^ 2) ^ k := by rw [pow_mul] _ ≤ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k := by gcongr; linarith _ = (μ * a ^ 2 + ν * b ^ 2) ^ k := by rw [h]; ring _ ≤ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k := ?_ _ ≤ μ * a ^ (2 * k) + ν * b ^ (2 * k) := by ring_nf; rfl -- Porting note: `rw [mem_Ici]` was `dsimp` [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ (μ * a + ν * b) ^ (2 * k) = ((μ * a + ν * b) ^ 2) ^ k [PROOFSTEP] rw [pow_mul] [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ ((μ * a + ν * b) ^ 2) ^ k ≤ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k [PROOFSTEP] gcongr [GOAL] case hab a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ (μ * a + ν * b) ^ 2 ≤ (μ + ν) * (μ * a ^ 2 + ν * b ^ 2) [PROOFSTEP] linarith [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ ((μ + ν) * (μ * a ^ 2 + ν * b ^ 2)) ^ k = (μ * a ^ 2 + ν * b ^ 2) ^ k [PROOFSTEP] rw [h] [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ (1 * (μ * a ^ 2 + ν * b ^ 2)) ^ k = (μ * a ^ 2 + ν * b ^ 2) ^ k [PROOFSTEP] ring [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k ≤ μ * a ^ (2 * k) + ν * b ^ (2 * k) [PROOFSTEP] ring_nf [GOAL] a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ μ * a ^ (k * 2) + ν * b ^ (k * 2) ≤ μ * a ^ (k * 2) + ν * b ^ (k * 2) [PROOFSTEP] rfl -- Porting note: `rw [mem_Ici]` was `dsimp` [GOAL] case intro a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ (μ * a ^ 2 + ν * b ^ 2) ^ k ≤ μ * (a ^ 2) ^ k + ν * (b ^ 2) ^ k [PROOFSTEP] refine' (convexOn_pow k).2 _ _ hμ hν h [GOAL] case intro.refine'_1 a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ a ^ 2 ∈ Ici 0 [PROOFSTEP] rw [mem_Ici] [GOAL] case intro.refine'_2 a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ b ^ 2 ∈ Ici 0 [PROOFSTEP] rw [mem_Ici] [GOAL] case intro.refine'_1 a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ 0 ≤ a ^ 2 [PROOFSTEP] positivity [GOAL] case intro.refine'_2 a b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 k : ℕ hn : Even (2 • k) this : 0 ≤ (a - b) ^ 2 * μ * ν ⊢ 0 ≤ b ^ 2 [PROOFSTEP] positivity [GOAL] n : ℕ ⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ ↑n [PROOFSTEP] simp_rw [zpow_ofNat] [GOAL] n : ℕ ⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ n [PROOFSTEP] exact (convexOn_pow n).subset Ioi_subset_Ici_self (convex_Ioi _) [GOAL] n : ℕ ⊢ ConvexOn ℝ (Ioi 0) fun x => x ^ -[n+1] [PROOFSTEP] simp_rw [zpow_negSucc] [GOAL] n : ℕ ⊢ ConvexOn ℝ (Ioi 0) fun x => (x ^ (n + 1))⁻¹ [PROOFSTEP] refine' ⟨convex_Ioi _, _⟩ [GOAL] n : ℕ ⊢ ∀ ⦃x : ℝ⦄, x ∈ Ioi 0 → ∀ ⦃y : ℝ⦄, y ∈ Ioi 0 → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → (fun x => (x ^ (n + 1))⁻¹) (a • x + b • y) ≤ a • (fun x => (x ^ (n + 1))⁻¹) x + b • (fun x => (x ^ (n + 1))⁻¹) y [PROOFSTEP] rintro a (ha : 0 < a) b (hb : 0 < b) μ ν hμ hν h [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (fun x => (x ^ (n + 1))⁻¹) (μ • a + ν • b) ≤ μ • (fun x => (x ^ (n + 1))⁻¹) a + ν • (fun x => (x ^ (n + 1))⁻¹) b [PROOFSTEP] field_simp [ha.ne', hb.ne'] [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 1 / (μ * a + ν * b) ^ (n + 1) ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) / (a ^ (n + 1) * b ^ (n + 1)) [PROOFSTEP] rw [div_le_div_iff] [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1) [PROOFSTEP] calc (1 : ℝ) * (a ^ (n + 1) * b ^ (n + 1)) = ((μ + ν) ^ 2 * (a * b)) ^ (n + 1) := by rw [h]; ring _ ≤ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1) := ?_ _ = (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1) := by rw [mul_pow] _ ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1) := ?_ [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) = ((μ + ν) ^ 2 * (a * b)) ^ (n + 1) [PROOFSTEP] rw [h] [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 1 * (a ^ (n + 1) * b ^ (n + 1)) = (1 ^ 2 * (a * b)) ^ (n + 1) [PROOFSTEP] ring [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1) = (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1) [PROOFSTEP] rw [mul_pow] [GOAL] case calc_1 n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ ((μ + ν) ^ 2 * (a * b)) ^ (n + 1) ≤ ((μ * b + ν * a) * (μ * a + ν * b)) ^ (n + 1) [PROOFSTEP] gcongr(?_ : ℝ) ^ _ [GOAL] case calc_1.hab n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (μ + ν) ^ 2 * (a * b) ≤ (μ * b + ν * a) * (μ * a + ν * b) [PROOFSTEP] have : (0 : ℝ) ≤ μ * ν * (a - b) ^ 2 := by positivity [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 0 ≤ μ * ν * (a - b) ^ 2 [PROOFSTEP] positivity [GOAL] case calc_1.hab n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 this : 0 ≤ μ * ν * (a - b) ^ 2 ⊢ (μ + ν) ^ 2 * (a * b) ≤ (μ * b + ν * a) * (μ * a + ν * b) [PROOFSTEP] linarith [GOAL] case calc_2 n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (μ * b + ν * a) ^ (n + 1) * (μ * a + ν * b) ^ (n + 1) ≤ (μ * b ^ (n + 1) + ν * a ^ (n + 1)) * (μ * a + ν * b) ^ (n + 1) [PROOFSTEP] gcongr [GOAL] case calc_2.h n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ (μ * b + ν * a) ^ (n + 1) ≤ μ * b ^ (n + 1) + ν * a ^ (n + 1) [PROOFSTEP] apply (convexOn_pow (n + 1)).2 hb.le ha.le hμ hν h [GOAL] case b0 n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 0 < (μ * a + ν * b) ^ (n + 1) [PROOFSTEP] have : 0 < μ * a + ν * b := by cases le_or_lt a b <;> nlinarith [GOAL] n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 0 < μ * a + ν * b [PROOFSTEP] cases le_or_lt a b [GOAL] case inl n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 h✝ : a ≤ b ⊢ 0 < μ * a + ν * b [PROOFSTEP] nlinarith [GOAL] case inr n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 h✝ : b < a ⊢ 0 < μ * a + ν * b [PROOFSTEP] nlinarith [GOAL] case b0 n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 this : 0 < μ * a + ν * b ⊢ 0 < (μ * a + ν * b) ^ (n + 1) [PROOFSTEP] positivity [GOAL] case d0 n : ℕ a : ℝ ha : 0 < a b : ℝ hb : 0 < b μ ν : ℝ hμ : 0 ≤ μ hν : 0 ≤ ν h : μ + ν = 1 ⊢ 0 < a ^ (n + 1) * b ^ (n + 1) [PROOFSTEP] positivity [GOAL] ⊢ StrictConcaveOn ℝ (Ioi 0) log [PROOFSTEP] apply strictConcaveOn_of_slope_strict_anti_adjacent (convex_Ioi (0 : ℝ)) [GOAL] ⊢ ∀ {x y z : ℝ}, x ∈ Ioi 0 → z ∈ Ioi 0 → x < y → y < z → (log z - log y) / (z - y) < (log y - log x) / (y - x) [PROOFSTEP] rintro x y z (hx : 0 < x) (hz : 0 < z) hxy hyz [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z ⊢ (log z - log y) / (z - y) < (log y - log x) / (y - x) [PROOFSTEP] have hy : 0 < y := hx.trans hxy [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y ⊢ (log z - log y) / (z - y) < (log y - log x) / (y - x) [PROOFSTEP] trans y⁻¹ [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y ⊢ (log z - log y) / (z - y) < y⁻¹ [PROOFSTEP] have h : 0 < z - y := by linarith [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y ⊢ 0 < z - y [PROOFSTEP] linarith [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y ⊢ (log z - log y) / (z - y) < y⁻¹ [PROOFSTEP] rw [div_lt_iff h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y ⊢ log z - log y < y⁻¹ * (z - y) [PROOFSTEP] have hyz' : 0 < z / y := by positivity [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y ⊢ 0 < z / y [PROOFSTEP] positivity [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y ⊢ log z - log y < y⁻¹ * (z - y) [PROOFSTEP] have hyz'' : z / y ≠ 1 := by contrapose! h rw [div_eq_one_iff_eq hy.ne'] at h simp [h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y ⊢ z / y ≠ 1 [PROOFSTEP] contrapose! h [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y hyz' : 0 < z / y h : z / y = 1 ⊢ z - y ≤ 0 [PROOFSTEP] rw [div_eq_one_iff_eq hy.ne'] at h [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y hyz' : 0 < z / y h : z = y ⊢ z - y ≤ 0 [PROOFSTEP] simp [h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y hyz'' : z / y ≠ 1 ⊢ log z - log y < y⁻¹ * (z - y) [PROOFSTEP] calc log z - log y = log (z / y) := by rw [← log_div hz.ne' hy.ne'] _ < z / y - 1 := (log_lt_sub_one_of_pos hyz' hyz'') _ = y⁻¹ * (z - y) := by field_simp [hy.ne'] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y hyz'' : z / y ≠ 1 ⊢ log z - log y = log (z / y) [PROOFSTEP] rw [← log_div hz.ne' hy.ne'] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y hyz'' : z / y ≠ 1 ⊢ z / y - 1 = y⁻¹ * (z - y) [PROOFSTEP] field_simp [hy.ne'] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y ⊢ y⁻¹ < (log y - log x) / (y - x) [PROOFSTEP] have h : 0 < y - x := by linarith [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y ⊢ 0 < y - x [PROOFSTEP] linarith [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x ⊢ y⁻¹ < (log y - log x) / (y - x) [PROOFSTEP] rw [lt_div_iff h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x ⊢ y⁻¹ * (y - x) < log y - log x [PROOFSTEP] have hxy' : 0 < x / y := by positivity [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x ⊢ 0 < x / y [PROOFSTEP] positivity [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y ⊢ y⁻¹ * (y - x) < log y - log x [PROOFSTEP] have hxy'' : x / y ≠ 1 := by contrapose! h rw [div_eq_one_iff_eq hy.ne'] at h simp [h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y ⊢ x / y ≠ 1 [PROOFSTEP] contrapose! h [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y hxy' : 0 < x / y h : x / y = 1 ⊢ y - x ≤ 0 [PROOFSTEP] rw [div_eq_one_iff_eq hy.ne'] at h [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y hxy' : 0 < x / y h : x = y ⊢ y - x ≤ 0 [PROOFSTEP] simp [h] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y hxy'' : x / y ≠ 1 ⊢ y⁻¹ * (y - x) < log y - log x [PROOFSTEP] calc y⁻¹ * (y - x) = 1 - x / y := by field_simp [hy.ne'] _ < -log (x / y) := by linarith [log_lt_sub_one_of_pos hxy' hxy''] _ = -(log x - log y) := by rw [log_div hx.ne' hy.ne'] _ = log y - log x := by ring [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y hxy'' : x / y ≠ 1 ⊢ y⁻¹ * (y - x) = 1 - x / y [PROOFSTEP] field_simp [hy.ne'] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y hxy'' : x / y ≠ 1 ⊢ 1 - x / y < -log (x / y) [PROOFSTEP] linarith [log_lt_sub_one_of_pos hxy' hxy''] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y hxy'' : x / y ≠ 1 ⊢ -log (x / y) = -(log x - log y) [PROOFSTEP] rw [log_div hx.ne' hy.ne'] [GOAL] x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < y - x hxy' : 0 < x / y hxy'' : x / y ≠ 1 ⊢ -(log x - log y) = log y - log x [PROOFSTEP] ring [GOAL] s : ℝ hs : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p ⊢ 1 + p * s < (1 + s) ^ p [PROOFSTEP] rcases eq_or_lt_of_le hs with (rfl | hs) [GOAL] case inl p : ℝ hp : 1 < p hs : -1 ≤ -1 hs' : -1 ≠ 0 ⊢ 1 + p * -1 < (1 + -1) ^ p [PROOFSTEP] have : p ≠ 0 := by positivity [GOAL] p : ℝ hp : 1 < p hs : -1 ≤ -1 hs' : -1 ≠ 0 ⊢ p ≠ 0 [PROOFSTEP] positivity [GOAL] case inl p : ℝ hp : 1 < p hs : -1 ≤ -1 hs' : -1 ≠ 0 this : p ≠ 0 ⊢ 1 + p * -1 < (1 + -1) ^ p [PROOFSTEP] simpa [zero_rpow this] [GOAL] case inr s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s ⊢ 1 + p * s < (1 + s) ^ p [PROOFSTEP] have hs1 : 0 < 1 + s := by linarith [GOAL] s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s ⊢ 0 < 1 + s [PROOFSTEP] linarith [GOAL] case inr s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s ⊢ 1 + p * s < (1 + s) ^ p [PROOFSTEP] cases' le_or_lt (1 + p * s) 0 with hs2 hs2 [GOAL] case inr.inl s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 1 + p * s ≤ 0 ⊢ 1 + p * s < (1 + s) ^ p [PROOFSTEP] exact hs2.trans_lt (rpow_pos_of_pos hs1 _) [GOAL] case inr.inr s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s ⊢ 1 + p * s < (1 + s) ^ p [PROOFSTEP] rw [rpow_def_of_pos hs1, ← exp_log hs2] [GOAL] case inr.inr s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s ⊢ exp (log (1 + p * s)) < exp (log (1 + s) * p) [PROOFSTEP] apply exp_strictMono [GOAL] case inr.inr.a s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] have hp : 0 < p := by positivity [GOAL] s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s ⊢ 0 < p [PROOFSTEP] positivity [GOAL] case inr.inr.a s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] have hs3 : 1 + s ≠ 1 := by contrapose! hs'; linarith [GOAL] s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p ⊢ 1 + s ≠ 1 [PROOFSTEP] contrapose! hs' [GOAL] s : ℝ hs✝ : -1 ≤ s p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs' : 1 + s = 1 ⊢ s = 0 [PROOFSTEP] linarith [GOAL] case inr.inr.a s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] have hs4 : 1 + p * s ≠ 1 := by contrapose! hs'; nlinarith [GOAL] s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 ⊢ 1 + p * s ≠ 1 [PROOFSTEP] contrapose! hs' [GOAL] s : ℝ hs✝ : -1 ≤ s p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs' : 1 + p * s = 1 ⊢ s = 0 [PROOFSTEP] nlinarith [GOAL] case inr.inr.a s : ℝ hs✝ : -1 ≤ s hs' : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] cases' lt_or_gt_of_ne hs' with hs' hs' [GOAL] case inr.inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] rw [← div_lt_iff hp, ← div_lt_div_right_of_neg hs'] -- Porting note: previously we could write `zero_lt_one` inline, -- but now Lean doesn't guess we are talking about `1` fast enough. [GOAL] case inr.inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 ⊢ log (1 + s) / s < log (1 + p * s) / p / s [PROOFSTEP] haveI : (1 : ℝ) ∈ Ioi 0 := zero_lt_one [GOAL] case inr.inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 this : 1 ∈ Ioi 0 ⊢ log (1 + s) / s < log (1 + p * s) / p / s [PROOFSTEP] convert strictConcaveOn_log_Ioi.secant_strict_mono this hs2 hs1 hs4 hs3 _ using 1 [GOAL] case h.e'_3 s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 this : 1 ∈ Ioi 0 ⊢ log (1 + s) / s = (log (1 + s) - log 1) / (1 + s - 1) [PROOFSTEP] field_simp [log_one] [GOAL] case h.e'_4 s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 this : 1 ∈ Ioi 0 ⊢ log (1 + p * s) / p / s = (log (1 + p * s) - log 1) / (1 + p * s - 1) [PROOFSTEP] field_simp [log_one] [GOAL] case inr.inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 this : 1 ∈ Ioi 0 ⊢ 1 + p * s < 1 + s [PROOFSTEP] nlinarith [GOAL] case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 ⊢ log (1 + p * s) < log (1 + s) * p [PROOFSTEP] rw [← div_lt_iff hp, ← div_lt_div_right hs'] -- Porting note: previously we could write `zero_lt_one` inline, -- but now Lean doesn't guess we are talking about `1` fast enough. [GOAL] case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 ⊢ log (1 + p * s) / p / s < log (1 + s) / s [PROOFSTEP] haveI : (1 : ℝ) ∈ Ioi 0 := zero_lt_one [GOAL] case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 this : 1 ∈ Ioi 0 ⊢ log (1 + p * s) / p / s < log (1 + s) / s [PROOFSTEP] convert strictConcaveOn_log_Ioi.secant_strict_mono this hs1 hs2 hs3 hs4 _ using 1 [GOAL] case h.e'_3 s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 this : 1 ∈ Ioi 0 ⊢ log (1 + p * s) / p / s = (log (1 + p * s) - log 1) / (1 + p * s - 1) [PROOFSTEP] field_simp [log_one, hp.ne'] [GOAL] case h.e'_4 s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 this : 1 ∈ Ioi 0 ⊢ log (1 + s) / s = (log (1 + s) - log 1) / (1 + s - 1) [PROOFSTEP] field_simp [log_one] [GOAL] case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp✝ : 1 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hp : 0 < p hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 this : 1 ∈ Ioi 0 ⊢ 1 + s < 1 + p * s [PROOFSTEP] nlinarith [GOAL] s : ℝ hs : -1 ≤ s p : ℝ hp : 1 ≤ p ⊢ 1 + p * s ≤ (1 + s) ^ p [PROOFSTEP] rcases eq_or_lt_of_le hp with (rfl | hp) [GOAL] case inl s : ℝ hs : -1 ≤ s hp : 1 ≤ 1 ⊢ 1 + 1 * s ≤ (1 + s) ^ 1 [PROOFSTEP] simp [GOAL] case inr s : ℝ hs : -1 ≤ s p : ℝ hp✝ : 1 ≤ p hp : 1 < p ⊢ 1 + p * s ≤ (1 + s) ^ p [PROOFSTEP] by_cases hs' : s = 0 [GOAL] case pos s : ℝ hs : -1 ≤ s p : ℝ hp✝ : 1 ≤ p hp : 1 < p hs' : s = 0 ⊢ 1 + p * s ≤ (1 + s) ^ p [PROOFSTEP] simp [hs'] [GOAL] case neg s : ℝ hs : -1 ≤ s p : ℝ hp✝ : 1 ≤ p hp : 1 < p hs' : ¬s = 0 ⊢ 1 + p * s ≤ (1 + s) ^ p [PROOFSTEP] exact (one_add_mul_self_lt_rpow_one_add hs hs' hp).le [GOAL] p : ℝ hp : 1 < p ⊢ StrictConvexOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] apply strictConvexOn_of_slope_strict_mono_adjacent (convex_Ici (0 : ℝ)) [GOAL] p : ℝ hp : 1 < p ⊢ ∀ {x y z : ℝ}, x ∈ Ici 0 → z ∈ Ici 0 → x < y → y < z → (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] rintro x y z (hx : 0 ≤ x) (hz : 0 ≤ z) hxy hyz [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hy : 0 < y := by linarith [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z ⊢ 0 < y [PROOFSTEP] linarith [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hy' : 0 < y ^ p := rpow_pos_of_pos hy _ [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have H1 : y ^ (p - 1 + 1) = y ^ (p - 1) * y := rpow_add_one hy.ne' _ [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ (p - 1 + 1) = y ^ (p - 1) * y ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] ring_nf at H1 [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] trans p * y ^ (p - 1) [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have h3 : 0 < y - x := by linarith only [hxy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y ⊢ 0 < y - x [PROOFSTEP] linarith only [hxy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have hyx'' : x / y < 1 := by rwa [div_lt_one hy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x ⊢ x / y < 1 [PROOFSTEP] rwa [div_lt_one hy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have hyx''' : x / y - 1 < 0 := by linarith only [hyx''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 ⊢ x / y - 1 < 0 [PROOFSTEP] linarith only [hyx''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have hyx'''' : 0 ≤ x / y := by positivity [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 ⊢ 0 ≤ x / y [PROOFSTEP] positivity [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have hyx''''' : -1 ≤ x / y - 1 := by linarith only [hyx''''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y ⊢ -1 ≤ x / y - 1 [PROOFSTEP] linarith only [hyx''''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] have : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) := by linarith [one_add_mul_self_lt_rpow_one_add hyx''''' hyx'''.ne hp] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 ⊢ 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) [PROOFSTEP] linarith [one_add_mul_self_lt_rpow_one_add hyx''''' hyx'''.ne hp] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1) [PROOFSTEP] rw [div_lt_iff h3, ← div_lt_div_right hy'] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ (y ^ p - x ^ p) / y ^ p < p * y ^ (p - 1) * (y - x) / y ^ p [PROOFSTEP] convert this using 1 [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ (y ^ p - x ^ p) / y ^ p = 1 - (1 + (x / y - 1)) ^ p [PROOFSTEP] have H : (x / y) ^ p = x ^ p / y ^ p := div_rpow hx hy.le _ [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) H : (x / y) ^ p = x ^ p / y ^ p ⊢ (y ^ p - x ^ p) / y ^ p = 1 - (1 + (x / y - 1)) ^ p [PROOFSTEP] ring_nf at H ⊢ [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) H : (x * y⁻¹) ^ p = x ^ p * (y ^ p)⁻¹ ⊢ -(x ^ p * (y ^ p)⁻¹) + y ^ p * (y ^ p)⁻¹ = 1 - (x * y⁻¹) ^ p [PROOFSTEP] field_simp [hy.ne', hy'.ne'] at H ⊢ [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) H : (x / y) ^ p * y ^ p = x ^ p ⊢ -x ^ p + y ^ p = (1 - (x / y) ^ p) * y ^ p [PROOFSTEP] linear_combination H [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ p * y ^ (p - 1) * (y - x) / y ^ p = -p * (x / y - 1) [PROOFSTEP] ring_nf at H1 ⊢ [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ p * y ^ (-1 + p) * y * (y ^ p)⁻¹ - p * y ^ (-1 + p) * x * (y ^ p)⁻¹ = p - p * x * y⁻¹ [PROOFSTEP] field_simp [hy.ne', hy'.ne'] [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y h3 : 0 < y - x hyx'' : x / y < 1 hyx''' : x / y - 1 < 0 hyx'''' : 0 ≤ x / y hyx''''' : -1 ≤ x / y - 1 this : 1 - (1 + (x / y - 1)) ^ p < -p * (x / y - 1) ⊢ (p * y ^ (-1 + p) * y - p * y ^ (-1 + p) * x) * y = (p * y - p * x) * y ^ p [PROOFSTEP] linear_combination p * (-y + x) * H1 [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hyz' : 0 < z - y := by linarith only [hyz] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y ⊢ 0 < z - y [PROOFSTEP] linarith only [hyz] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hyz'' : 1 < z / y := by rwa [one_lt_div hy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y ⊢ 1 < z / y [PROOFSTEP] rwa [one_lt_div hy] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hyz''' : 0 < z / y - 1 := by linarith only [hyz''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y ⊢ 0 < z / y - 1 [PROOFSTEP] linarith only [hyz''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have hyz'''' : -1 ≤ z / y - 1 := by linarith only [hyz''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 ⊢ -1 ≤ z / y - 1 [PROOFSTEP] linarith only [hyz''] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] have : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 := by linarith [one_add_mul_self_lt_rpow_one_add hyz'''' hyz'''.ne' hp] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 ⊢ p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 [PROOFSTEP] linarith [one_add_mul_self_lt_rpow_one_add hyz'''' hyz'''.ne' hp] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ p * y ^ (p - 1) < (z ^ p - y ^ p) / (z - y) [PROOFSTEP] rw [lt_div_iff hyz', ← div_lt_div_right hy'] [GOAL] p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ p * y ^ (p - 1) * (z - y) / y ^ p < (z ^ p - y ^ p) / y ^ p [PROOFSTEP] convert this using 1 [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ p * y ^ (p - 1) * (z - y) / y ^ p = p * (z / y - 1) [PROOFSTEP] ring_nf at H1 ⊢ [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ -(p * y ^ (-1 + p) * y * (y ^ p)⁻¹) + p * y ^ (-1 + p) * z * (y ^ p)⁻¹ = -p + p * z * y⁻¹ [PROOFSTEP] field_simp [hy.ne', hy'.ne'] at H1 ⊢ [GOAL] case h.e'_3 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ (-(p * y ^ (-1 + p) * y * y ^ p) + p * y ^ (-1 + p) * z * y ^ p) * y = (-(p * y) + p * z) * (y ^ p * y ^ p) [PROOFSTEP] linear_combination p * (y - z) * y ^ p * H1 [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 ⊢ (z ^ p - y ^ p) / y ^ p = (1 + (z / y - 1)) ^ p - 1 [PROOFSTEP] have H : (z / y) ^ p = z ^ p / y ^ p := div_rpow hz hy.le _ [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 H : (z / y) ^ p = z ^ p / y ^ p ⊢ (z ^ p - y ^ p) / y ^ p = (1 + (z / y - 1)) ^ p - 1 [PROOFSTEP] ring_nf at H ⊢ [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 H : (z * y⁻¹) ^ p = z ^ p * (y ^ p)⁻¹ ⊢ z ^ p * (y ^ p)⁻¹ - y ^ p * (y ^ p)⁻¹ = -1 + (z * y⁻¹) ^ p [PROOFSTEP] field_simp [hy.ne', hy'.ne'] at H ⊢ [GOAL] case h.e'_4 p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p H1 : y ^ p = y ^ (-1 + p) * y hyz' : 0 < z - y hyz'' : 1 < z / y hyz''' : 0 < z / y - 1 hyz'''' : -1 ≤ z / y - 1 this : p * (z / y - 1) < (1 + (z / y - 1)) ^ p - 1 H : (z / y) ^ p * y ^ p = z ^ p ⊢ z ^ p - y ^ p = (-1 + (z / y) ^ p) * y ^ p [PROOFSTEP] linear_combination -H [GOAL] p : ℝ hp : 1 ≤ p ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] rcases eq_or_lt_of_le hp with (rfl | hp) [GOAL] case inl hp : 1 ≤ 1 ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ 1 [PROOFSTEP] simpa using convexOn_id (convex_Ici _) [GOAL] case inr p : ℝ hp✝ : 1 ≤ p hp : 1 < p ⊢ ConvexOn ℝ (Ici 0) fun x => x ^ p [PROOFSTEP] exact (strictConvexOn_rpow hp).convexOn [GOAL] ⊢ StrictConcaveOn ℝ (Iio 0) log [PROOFSTEP] refine' ⟨convex_Iio _, _⟩ [GOAL] ⊢ ∀ ⦃x : ℝ⦄, x ∈ Iio 0 → ∀ ⦃y : ℝ⦄, y ∈ Iio 0 → x ≠ y → ∀ ⦃a b : ℝ⦄, 0 < a → 0 < b → a + b = 1 → a • log x + b • log y < log (a • x + b • y) [PROOFSTEP] rintro x (hx : x < 0) y (hy : y < 0) hxy a b ha hb hab [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • log x + b • log y < log (a • x + b • y) [PROOFSTEP] have hx' : 0 < -x := by linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 < -x [PROOFSTEP] linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x ⊢ a • log x + b • log y < log (a • x + b • y) [PROOFSTEP] have hy' : 0 < -y := by linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x ⊢ 0 < -y [PROOFSTEP] linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y ⊢ a • log x + b • log y < log (a • x + b • y) [PROOFSTEP] have hxy' : -x ≠ -y := by contrapose! hxy; linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y ⊢ -x ≠ -y [PROOFSTEP] contrapose! hxy [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy : -x = -y ⊢ x = y [PROOFSTEP] linarith [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ a • log x + b • log y < log (a • x + b • y) [PROOFSTEP] calc a • log x + b • log y = a • log (-x) + b • log (-y) := by simp_rw [log_neg_eq_log] _ < log (a • -x + b • -y) := (strictConcaveOn_log_Ioi.2 hx' hy' hxy' ha hb hab) _ = log (-(a • x + b • y)) := by congr 1; simp only [Algebra.id.smul_eq_mul]; ring _ = _ := by rw [log_neg_eq_log] [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ a • log x + b • log y = a • log (-x) + b • log (-y) [PROOFSTEP] simp_rw [log_neg_eq_log] [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ log (a • -x + b • -y) = log (-(a • x + b • y)) [PROOFSTEP] congr 1 [GOAL] case e_x x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ a • -x + b • -y = -(a • x + b • y) [PROOFSTEP] simp only [Algebra.id.smul_eq_mul] [GOAL] case e_x x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ a * -x + b * -y = -(a * x + b * y) [PROOFSTEP] ring [GOAL] x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy' : -x ≠ -y ⊢ log (-(a • x + b • y)) = log (a • x + b • y) [PROOFSTEP] rw [log_neg_eq_log]
{"mathlib_filename": "Mathlib.Analysis.Convex.SpecificFunctions.Basic", "llama_tokens": 32142}
[GOAL] ⊢ range arcsin = Icc (-(π / 2)) (π / 2) [PROOFSTEP] rw [arcsin, range_comp Subtype.val] [GOAL] ⊢ Subtype.val '' range (IccExtend arcsin.proof_2 ↑(OrderIso.symm sinOrderIso)) = Icc (-(π / 2)) (π / 2) [PROOFSTEP] simp [Icc] [GOAL] x : ℝ ⊢ arcsin ↑(projIcc (-1) 1 (_ : -1 ≤ 1) x) = arcsin x [PROOFSTEP] rw [arcsin, Function.comp_apply, IccExtend_val, Function.comp_apply, IccExtend, Function.comp_apply] [GOAL] x : ℝ hx : x ∈ Icc (-1) 1 ⊢ sin (arcsin x) = x [PROOFSTEP] simpa [arcsin, IccExtend_of_mem _ _ hx, -OrderIso.apply_symm_apply] using Subtype.ext_iff.1 (sinOrderIso.apply_symm_apply ⟨x, hx⟩) [GOAL] x : ℝ hx : x ∈ Icc (-(π / 2)) (π / 2) ⊢ sin (arcsin (sin x)) = sin x [PROOFSTEP] rw [sin_arcsin (neg_one_le_sin _) (sin_le_one _)] [GOAL] x y : ℝ h₁ : sin x = y h₂ : x ∈ Icc (-(π / 2)) (π / 2) ⊢ arcsin y = x [PROOFSTEP] subst y [GOAL] x : ℝ h₂ : x ∈ Icc (-(π / 2)) (π / 2) ⊢ arcsin (sin x) = x [PROOFSTEP] exact injOn_sin (arcsin_mem_Icc _) h₂ (sin_arcsin' (sin_mem_Icc x)) [GOAL] x : ℝ hx : 1 ≤ x ⊢ arcsin x = π / 2 [PROOFSTEP] rw [← arcsin_projIcc, projIcc_of_right_le _ hx, Subtype.coe_mk, arcsin_one] [GOAL] ⊢ sin (-(π / 2)) = -1 [PROOFSTEP] rw [sin_neg, sin_pi_div_two] [GOAL] x : ℝ hx : x ≤ -1 ⊢ arcsin x = -(π / 2) [PROOFSTEP] rw [← arcsin_projIcc, projIcc_of_le_left _ hx, Subtype.coe_mk, arcsin_neg_one] [GOAL] x : ℝ ⊢ arcsin (-x) = -arcsin x [PROOFSTEP] cases' le_total x (-1) with hx₁ hx₁ [GOAL] case inl x : ℝ hx₁ : x ≤ -1 ⊢ arcsin (-x) = -arcsin x [PROOFSTEP] rw [arcsin_of_le_neg_one hx₁, neg_neg, arcsin_of_one_le (le_neg.2 hx₁)] [GOAL] case inr x : ℝ hx₁ : -1 ≤ x ⊢ arcsin (-x) = -arcsin x [PROOFSTEP] cases' le_total 1 x with hx₂ hx₂ [GOAL] case inr.inl x : ℝ hx₁ : -1 ≤ x hx₂ : 1 ≤ x ⊢ arcsin (-x) = -arcsin x [PROOFSTEP] rw [arcsin_of_one_le hx₂, arcsin_of_le_neg_one (neg_le_neg hx₂)] [GOAL] case inr.inr x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ arcsin (-x) = -arcsin x [PROOFSTEP] refine' arcsin_eq_of_sin_eq _ _ [GOAL] case inr.inr.refine'_1 x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ sin (-arcsin x) = -x [PROOFSTEP] rw [sin_neg, sin_arcsin hx₁ hx₂] [GOAL] case inr.inr.refine'_2 x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ -arcsin x ∈ Icc (-(π / 2)) (π / 2) [PROOFSTEP] exact ⟨neg_le_neg (arcsin_le_pi_div_two _), neg_le.2 (neg_pi_div_two_le_arcsin _)⟩ [GOAL] x y : ℝ hx : x ∈ Icc (-1) 1 hy : y ∈ Icc (-(π / 2)) (π / 2) ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] rw [← arcsin_sin' hy, strictMonoOn_arcsin.le_iff_le hx (sin_mem_Icc _), arcsin_sin' hy] [GOAL] x y : ℝ hy : y ∈ Ico (-(π / 2)) (π / 2) ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] cases' le_total x (-1) with hx₁ hx₁ [GOAL] case inl x y : ℝ hy : y ∈ Ico (-(π / 2)) (π / 2) hx₁ : x ≤ -1 ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] simp [arcsin_of_le_neg_one hx₁, hy.1, hx₁.trans (neg_one_le_sin _)] [GOAL] case inr x y : ℝ hy : y ∈ Ico (-(π / 2)) (π / 2) hx₁ : -1 ≤ x ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] cases' lt_or_le 1 x with hx₂ hx₂ [GOAL] case inr.inl x y : ℝ hy : y ∈ Ico (-(π / 2)) (π / 2) hx₁ : -1 ≤ x hx₂ : 1 < x ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] simp [arcsin_of_one_le hx₂.le, hy.2.not_le, (sin_le_one y).trans_lt hx₂] [GOAL] case inr.inr x y : ℝ hy : y ∈ Ico (-(π / 2)) (π / 2) hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ arcsin x ≤ y ↔ x ≤ sin y [PROOFSTEP] exact arcsin_le_iff_le_sin ⟨hx₁, hx₂⟩ (mem_Icc_of_Ico hy) [GOAL] x y : ℝ hx : x ∈ Icc (-(π / 2)) (π / 2) hy : y ∈ Icc (-1) 1 ⊢ x ≤ arcsin y ↔ sin x ≤ y [PROOFSTEP] rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin ⟨neg_le_neg hy.2, neg_le.2 hy.1⟩ ⟨neg_le_neg hx.2, neg_le.2 hx.1⟩, sin_neg, neg_le_neg_iff] [GOAL] x y : ℝ hx : x ∈ Ioc (-(π / 2)) (π / 2) ⊢ x ≤ arcsin y ↔ sin x ≤ y [PROOFSTEP] rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin' ⟨neg_le_neg hx.2, neg_lt.2 hx.1⟩, sin_neg, neg_le_neg_iff] [GOAL] x y : ℝ hy : y ∈ Ioo (-(π / 2)) (π / 2) ⊢ arcsin x = y ↔ x = sin y [PROOFSTEP] simp only [le_antisymm_iff, arcsin_le_iff_le_sin' (mem_Ico_of_Ioo hy), le_arcsin_iff_sin_le' (mem_Ioc_of_Ioo hy)] [GOAL] x : ℝ ⊢ sin 0 ≤ x ↔ 0 ≤ x [PROOFSTEP] rw [sin_zero] [GOAL] x : ℝ ⊢ arcsin x = 0 ↔ x = 0 [PROOFSTEP] simp [le_antisymm_iff] [GOAL] x : ℝ ⊢ x < sin (π / 2) ↔ x < 1 [PROOFSTEP] rw [sin_pi_div_two] [GOAL] x : ℝ ⊢ sin (-(π / 2)) < x ↔ -1 < x [PROOFSTEP] rw [sin_neg, sin_pi_div_two] [GOAL] x : ℝ ⊢ π / 4 ≤ arcsin x ↔ sqrt 2 / 2 ≤ x [PROOFSTEP] rw [← sin_pi_div_four, le_arcsin_iff_sin_le'] [GOAL] x : ℝ ⊢ π / 4 ∈ Ioc (-(π / 2)) (π / 2) [PROOFSTEP] have := pi_pos [GOAL] x : ℝ this : 0 < π ⊢ π / 4 ∈ Ioc (-(π / 2)) (π / 2) [PROOFSTEP] constructor [GOAL] case left x : ℝ this : 0 < π ⊢ -(π / 2) < π / 4 [PROOFSTEP] linarith [GOAL] case right x : ℝ this : 0 < π ⊢ π / 4 ≤ π / 2 [PROOFSTEP] linarith [GOAL] x : ℝ h : x ∈ Ioo (-(π / 2)) (π / 2) ⊢ sin x ∈ Ioo (-1) 1 [PROOFSTEP] rwa [mem_Ioo, ← arcsin_lt_pi_div_two, ← neg_pi_div_two_lt_arcsin, arcsin_sin h.1.le h.2.le] [GOAL] x : ℝ ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₁ : -1 ≤ x [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [not_le] at hx₁ [GOAL] case neg x : ℝ hx₁ : x < -1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [arcsin_of_le_neg_one hx₁.le, cos_neg, cos_pi_div_two, sqrt_eq_zero_of_nonpos] [GOAL] case neg x : ℝ hx₁ : x < -1 ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₂ : x ≤ 1 [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [not_le] at hx₂ [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : 1 < x ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [arcsin_of_one_le hx₂.le, cos_pi_div_two, sqrt_eq_zero_of_nonpos] [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : 1 < x ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] have : sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1 := sin_sq_add_cos_sq (arcsin x) [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 this : sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1 ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [← eq_sub_iff_add_eq', ← sqrt_inj (sq_nonneg _) (sub_nonneg.2 (sin_sq_le_one (arcsin x))), sq, sqrt_mul_self (cos_arcsin_nonneg _)] at this [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 this : cos (arcsin x) = sqrt (1 - sin (arcsin x) ^ 2) ⊢ cos (arcsin x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [this, sin_arcsin hx₁ hx₂] [GOAL] x : ℝ ⊢ tan (arcsin x) = x / sqrt (1 - x ^ 2) [PROOFSTEP] rw [tan_eq_sin_div_cos, cos_arcsin] [GOAL] x : ℝ ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₁ : -1 ≤ x [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] have h : sqrt (1 - x ^ 2) = 0 := sqrt_eq_zero_of_nonpos (by nlinarith) [GOAL] x : ℝ hx₁ : ¬-1 ≤ x ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case neg x : ℝ hx₁ : ¬-1 ≤ x h : sqrt (1 - x ^ 2) = 0 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] rw [h] [GOAL] case neg x : ℝ hx₁ : ¬-1 ≤ x h : sqrt (1 - x ^ 2) = 0 ⊢ sin (arcsin x) / 0 = x / 0 [PROOFSTEP] simp [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₂ : x ≤ 1 [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] have h : sqrt (1 - x ^ 2) = 0 := sqrt_eq_zero_of_nonpos (by nlinarith) [GOAL] x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 h : sqrt (1 - x ^ 2) = 0 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] rw [h] [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 h : sqrt (1 - x ^ 2) = 0 ⊢ sin (arcsin x) / 0 = x / 0 [PROOFSTEP] simp [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ sin (arcsin x) / sqrt (1 - x ^ 2) = x / sqrt (1 - x ^ 2) [PROOFSTEP] rw [sin_arcsin hx₁ hx₂] [GOAL] x : ℝ ⊢ arcsin x = π / 2 - arccos x [PROOFSTEP] simp [arccos] [GOAL] x : ℝ ⊢ arccos x ≤ π [PROOFSTEP] unfold arccos [GOAL] x : ℝ ⊢ π / 2 - arcsin x ≤ π [PROOFSTEP] linarith [neg_pi_div_two_le_arcsin x] [GOAL] x : ℝ ⊢ 0 ≤ arccos x [PROOFSTEP] unfold arccos [GOAL] x : ℝ ⊢ 0 ≤ π / 2 - arcsin x [PROOFSTEP] linarith [arcsin_le_pi_div_two x] [GOAL] x : ℝ ⊢ 0 < arccos x ↔ x < 1 [PROOFSTEP] simp [arccos] [GOAL] x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ cos (arccos x) = x [PROOFSTEP] rw [arccos, cos_pi_div_two_sub, sin_arcsin hx₁ hx₂] [GOAL] x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ arccos (cos x) = x [PROOFSTEP] rw [arccos, ← sin_pi_div_two_sub, arcsin_sin] [GOAL] x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ π / 2 - (π / 2 - x) = x [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] case hx₁ x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ -(π / 2) ≤ π / 2 - x [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] case hx₂ x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ π / 2 - x ≤ π / 2 [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] case hx₁ x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ x ≤ π [PROOFSTEP] linarith [GOAL] case hx₂ x : ℝ hx₁ : 0 ≤ x hx₂ : x ≤ π ⊢ 0 ≤ x [PROOFSTEP] linarith [GOAL] ⊢ arccos 0 = π / 2 [PROOFSTEP] simp [arccos] [GOAL] ⊢ arccos 1 = 0 [PROOFSTEP] simp [arccos] [GOAL] ⊢ arccos (-1) = π [PROOFSTEP] simp [arccos, add_halves] [GOAL] x : ℝ ⊢ arccos x = 0 ↔ 1 ≤ x [PROOFSTEP] simp [arccos, sub_eq_zero] [GOAL] x : ℝ ⊢ arccos x = π / 2 ↔ x = 0 [PROOFSTEP] simp [arccos] [GOAL] x : ℝ ⊢ arccos x = π ↔ x ≤ -1 [PROOFSTEP] rw [arccos, sub_eq_iff_eq_add, ← sub_eq_iff_eq_add', div_two_sub_self, neg_pi_div_two_eq_arcsin] [GOAL] x : ℝ ⊢ arccos (-x) = π - arccos x [PROOFSTEP] rw [← add_halves π, arccos, arcsin_neg, arccos, add_sub_assoc, sub_sub_self, sub_neg_eq_add] [GOAL] x : ℝ hx : 1 ≤ x ⊢ arccos x = 0 [PROOFSTEP] rw [arccos, arcsin_of_one_le hx, sub_self] [GOAL] x : ℝ hx : x ≤ -1 ⊢ arccos x = π [PROOFSTEP] rw [arccos, arcsin_of_le_neg_one hx, sub_neg_eq_add, add_halves'] [GOAL] x : ℝ ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₁ : -1 ≤ x [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ sin (arccos x) = sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : ¬-1 ≤ x ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [not_le] at hx₁ [GOAL] case neg x : ℝ hx₁ : x < -1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [arccos_of_le_neg_one hx₁.le, sin_pi, sqrt_eq_zero_of_nonpos] [GOAL] case neg x : ℝ hx₁ : x < -1 ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case pos x : ℝ hx₁ : -1 ≤ x ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] by_cases hx₂ : x ≤ 1 [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2) case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] swap [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : ¬x ≤ 1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [not_le] at hx₂ [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : 1 < x ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [arccos_of_one_le hx₂.le, sin_zero, sqrt_eq_zero_of_nonpos] [GOAL] case neg x : ℝ hx₁ : -1 ≤ x hx₂ : 1 < x ⊢ 1 - x ^ 2 ≤ 0 [PROOFSTEP] nlinarith [GOAL] case pos x : ℝ hx₁ : -1 ≤ x hx₂ : x ≤ 1 ⊢ sin (arccos x) = sqrt (1 - x ^ 2) [PROOFSTEP] rw [arccos_eq_pi_div_two_sub_arcsin, sin_pi_div_two_sub, cos_arcsin] [GOAL] x : ℝ ⊢ arccos x ≤ π / 2 ↔ 0 ≤ x [PROOFSTEP] simp [arccos] [GOAL] x : ℝ ⊢ arccos x < π / 2 ↔ 0 < x [PROOFSTEP] simp [arccos] [GOAL] x : ℝ ⊢ arccos x ≤ π / 4 ↔ sqrt 2 / 2 ≤ x [PROOFSTEP] rw [arccos, ← pi_div_four_le_arcsin] [GOAL] x : ℝ ⊢ π / 2 - arcsin x ≤ π / 4 ↔ π / 4 ≤ arcsin x [PROOFSTEP] constructor [GOAL] case mp x : ℝ ⊢ π / 2 - arcsin x ≤ π / 4 → π / 4 ≤ arcsin x [PROOFSTEP] intro [GOAL] case mp x : ℝ a✝ : π / 2 - arcsin x ≤ π / 4 ⊢ π / 4 ≤ arcsin x [PROOFSTEP] linarith [GOAL] case mpr x : ℝ ⊢ π / 4 ≤ arcsin x → π / 2 - arcsin x ≤ π / 4 [PROOFSTEP] intro [GOAL] case mpr x : ℝ a✝ : π / 4 ≤ arcsin x ⊢ π / 2 - arcsin x ≤ π / 4 [PROOFSTEP] linarith [GOAL] x : ℝ ⊢ tan (arccos x) = sqrt (1 - x ^ 2) / x [PROOFSTEP] rw [arccos, tan_pi_div_two_sub, tan_arcsin, inv_div] [GOAL] x : ℝ h : 0 ≤ x ⊢ 0 ≤ 2 [PROOFSTEP] norm_num [GOAL] x : ℝ h : 0 ≤ x ⊢ arcsin x = arccos (sqrt (1 - x ^ 2)) [PROOFSTEP] rw [eq_comm, ← cos_arcsin] [GOAL] x : ℝ h : 0 ≤ x ⊢ arccos (cos (arcsin x)) = arcsin x [PROOFSTEP] exact arccos_cos (arcsin_nonneg.2 h) ((arcsin_le_pi_div_two _).trans (div_le_self pi_pos.le one_le_two))
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse", "llama_tokens": 7822}
[GOAL] x : ℝ h₁ : -π < x h₂ : x ≤ π ⊢ arg ↑(↑expMapCircle x) = x [PROOFSTEP] rw [expMapCircle_apply, exp_mul_I, arg_cos_add_sin_mul_I ⟨h₁, h₂⟩] [GOAL] x y : ℝ ⊢ ↑expMapCircle x = ↑expMapCircle y ↔ ∃ m, x = y + ↑m * (2 * π) [PROOFSTEP] rw [Subtype.ext_iff, expMapCircle_apply, expMapCircle_apply, exp_eq_exp_iff_exists_int] [GOAL] x y : ℝ ⊢ (∃ n, ↑x * I = ↑y * I + ↑n * (2 * ↑π * I)) ↔ ∃ m, x = y + ↑m * (2 * π) [PROOFSTEP] refine' exists_congr fun n => _ [GOAL] x y : ℝ n : ℤ ⊢ ↑x * I = ↑y * I + ↑n * (2 * ↑π * I) ↔ x = y + ↑n * (2 * π) [PROOFSTEP] rw [← mul_assoc, ← add_mul, mul_left_inj' I_ne_zero] [GOAL] x y : ℝ n : ℤ ⊢ ↑x = ↑y + ↑n * (2 * ↑π) ↔ x = y + ↑n * (2 * π) [PROOFSTEP] norm_cast [GOAL] z : ℝ ⊢ z + 2 * π = z + ↑1 * (2 * π) [PROOFSTEP] rw [Int.cast_one, one_mul] [GOAL] θ : Angle ⊢ ↑(expMapCircle θ) = ↑(cos θ) + ↑(sin θ) * I [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ ↑(expMapCircle ↑x✝) = ↑(cos ↑x✝) + ↑(sin ↑x✝) * I [PROOFSTEP] simp [Complex.exp_mul_I] [GOAL] ⊢ expMapCircle 0 = 1 [PROOFSTEP] rw [← Real.Angle.coe_zero, Real.Angle.expMapCircle_coe, _root_.expMapCircle_zero] [GOAL] θ : Angle ⊢ expMapCircle (-θ) = (expMapCircle θ)⁻¹ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ expMapCircle (-↑x✝) = (expMapCircle ↑x✝)⁻¹ [PROOFSTEP] simp_rw [← Real.Angle.coe_neg, Real.Angle.expMapCircle_coe, _root_.expMapCircle_neg] [GOAL] θ₁ θ₂ : Angle ⊢ expMapCircle (θ₁ + θ₂) = expMapCircle θ₁ * expMapCircle θ₂ [PROOFSTEP] induction θ₁ using Real.Angle.induction_on [GOAL] case h θ₂ : Angle x✝ : ℝ ⊢ expMapCircle (↑x✝ + θ₂) = expMapCircle ↑x✝ * expMapCircle θ₂ [PROOFSTEP] induction θ₂ using Real.Angle.induction_on [GOAL] case h.h x✝¹ x✝ : ℝ ⊢ expMapCircle (↑x✝¹ + ↑x✝) = expMapCircle ↑x✝¹ * expMapCircle ↑x✝ [PROOFSTEP] exact _root_.expMapCircle_add _ _ [GOAL] θ : Angle ⊢ ↑(arg ↑(expMapCircle θ)) = θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ ↑(arg ↑(expMapCircle ↑x✝)) = ↑x✝ [PROOFSTEP] rw [Real.Angle.expMapCircle_coe, expMapCircle_apply, exp_mul_I, ← ofReal_cos, ← ofReal_sin, ← Real.Angle.cos_coe, ← Real.Angle.sin_coe, arg_cos_add_sin_mul_I_coe_angle]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Circle", "llama_tokens": 1218}
[GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : A n : ℕ ⊢ ↑(aeval x) (T R n) = eval x (T A n) [PROOFSTEP] rw [aeval_def, eval₂_eq_eval_map, map_T] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : A n : ℕ ⊢ ↑(aeval x) (U R n) = eval x (U A n) [PROOFSTEP] rw [aeval_def, eval₂_eq_eval_map, map_U] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : R n : ℕ ⊢ ↑(algebraMap R A) (eval x (T R n)) = eval (↑(algebraMap R A) x) (T A n) [PROOFSTEP] rw [← aeval_algebraMap_apply_eq_algebraMap_eval, aeval_T] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : R n : ℕ ⊢ ↑(algebraMap R A) (eval x (U R n)) = eval (↑(algebraMap R A) x) (U A n) [PROOFSTEP] rw [← aeval_algebraMap_apply_eq_algebraMap_eval, aeval_U] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ ⊢ eval (cos θ) (T ℂ 0) = cos (↑0 * θ) [PROOFSTEP] simp only [T_zero, eval_one, Nat.cast_zero, zero_mul, cos_zero] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ ⊢ eval (cos θ) (T ℂ 1) = cos (↑1 * θ) [PROOFSTEP] simp only [eval_X, one_mul, T_one, Nat.cast_one] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ ⊢ eval (cos θ) (T ℂ (n + 2)) = cos (↑(n + 2) * θ) [PROOFSTEP] have : (2 : ℂ[X]) = (2 : ℕ) := by norm_num [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ ⊢ 2 = ↑2 [PROOFSTEP] norm_num [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ this : 2 = ↑2 ⊢ eval (cos θ) (T ℂ (n + 2)) = cos (↑(n + 2) * θ) [PROOFSTEP] simp only [this, eval_X, eval_one, T_add_two, eval_sub, eval_mul, eval_nat_cast] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ this : 2 = ↑2 ⊢ ↑2 * cos θ * eval (cos θ) (T ℂ (n + 1)) - eval (cos θ) (T ℂ n) = cos (↑(n + 2) * θ) [PROOFSTEP] simp only [Nat.cast_ofNat, Nat.cast_add] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ this : 2 = ↑2 ⊢ 2 * cos θ * eval (cos θ) (T ℂ (n + 1)) - eval (cos θ) (T ℂ n) = cos ((↑n + 2) * θ) [PROOFSTEP] rw [T_complex_cos (n + 1), T_complex_cos n] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ this : 2 = ↑2 ⊢ 2 * cos θ * cos (↑(n + 1) * θ) - cos (↑n * θ) = cos ((↑n + 2) * θ) [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one, add_mul, cos_add, one_mul, mul_assoc, sin_two_mul, cos_two_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ this : 2 = ↑2 ⊢ 2 * (cos θ * (cos (↑n * θ) * cos θ - sin (↑n * θ) * sin θ)) - cos (↑n * θ) = cos (↑n * θ) * (2 * cos θ ^ 2 - 1) - sin (↑n * θ) * (2 * (sin θ * cos θ)) [PROOFSTEP] ring [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ n : ℕ ⊢ eval (cos θ) (U ℂ n) * sin θ = sin ((↑n + 1) * θ) [PROOFSTEP] induction' n with d hd [GOAL] case zero R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ ⊢ eval (cos θ) (U ℂ Nat.zero) * sin θ = sin ((↑Nat.zero + 1) * θ) [PROOFSTEP] simp [U_zero, eval_one, zero_add, one_mul, Nat.zero_eq, CharP.cast_eq_zero] [GOAL] case succ R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ eval (cos θ) (U ℂ (Nat.succ d)) * sin θ = sin ((↑(Nat.succ d) + 1) * θ) [PROOFSTEP] rw [U_eq_X_mul_U_add_T] [GOAL] case succ R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ eval (cos θ) (X * U ℂ d + T ℂ (d + 1)) * sin θ = sin ((↑(Nat.succ d) + 1) * θ) [PROOFSTEP] simp only [eval_add, eval_mul, eval_X, T_complex_cos, add_mul, mul_assoc, hd, one_mul] -- Porting note: added `trans` to prevent `rw` from going on a wild goose chase applying `rfl` [GOAL] case succ R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] trans cos θ * sin (↑(d.succ) * θ) + cos (↑(d.succ) * θ) * sin θ [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ = cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] swap [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ = sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] conv_rhs => rw [sin_add, mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) | sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] rw [sin_add, mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) | sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] rw [sin_add, mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) | sin (↑(Nat.succ d) * θ + θ) [PROOFSTEP] rw [sin_add, mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑d * θ + θ) + cos (↑(d + 1) * θ) * sin θ = cos θ * sin (↑(Nat.succ d) * θ) + cos (↑(Nat.succ d) * θ) * sin θ [PROOFSTEP] push_cast [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℂ d : ℕ hd : eval (cos θ) (U ℂ d) * sin θ = sin ((↑d + 1) * θ) ⊢ cos θ * sin (↑d * θ + θ) + cos ((↑d + 1) * θ) * sin θ = cos θ * sin ((↑d + 1) * θ) + cos ((↑d + 1) * θ) * sin θ [PROOFSTEP] simp only [add_mul, one_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℝ n : ℕ ⊢ eval (cos θ) (T ℝ n) = cos (↑n * θ) [PROOFSTEP] exact_mod_cast T_complex_cos θ n [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A θ : ℝ n : ℕ ⊢ eval (cos θ) (U ℝ n) * sin θ = sin ((↑n + 1) * θ) [PROOFSTEP] exact_mod_cast U_complex_cos θ n
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev", "llama_tokens": 3975}
[GOAL] θ : ℂ ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2 [PROOFSTEP] have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf [GOAL] θ : ℂ ⊢ (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 [PROOFSTEP] rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] [GOAL] θ : ℂ ⊢ exp (θ * I - -θ * I) = -1 ↔ exp (2 * θ * I) = -1 [PROOFSTEP] congr 3 [GOAL] θ : ℂ ⊢ exp (θ * I - -θ * I) = -1 ↔ exp (2 * θ * I) = -1 [PROOFSTEP] ring_nf [GOAL] θ : ℂ h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2 [PROOFSTEP] rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] [GOAL] θ : ℂ h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 ⊢ (∃ n, 2 * I * θ = ↑π * I + ↑n * (2 * ↑π * I)) ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2 [PROOFSTEP] refine' exists_congr fun x => _ [GOAL] θ : ℂ h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 x : ℤ ⊢ 2 * I * θ = ↑π * I + ↑x * (2 * ↑π * I) ↔ θ = (2 * ↑x + 1) * ↑π / 2 [PROOFSTEP] refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) [GOAL] θ : ℂ h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 x : ℤ ⊢ ↑π * I + ↑x * (2 * ↑π * I) = 2 * I * ((2 * ↑x + 1) * ↑π / 2) [PROOFSTEP] field_simp [GOAL] θ : ℂ h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 x : ℤ ⊢ (↑π * I + ↑x * (2 * ↑π * I)) * 2 = 2 * I * ((2 * ↑x + 1) * ↑π) [PROOFSTEP] ring [GOAL] θ : ℂ ⊢ cos θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ (2 * ↑k + 1) * ↑π / 2 [PROOFSTEP] rw [← not_exists, not_iff_not, cos_eq_zero_iff] [GOAL] θ : ℂ ⊢ sin θ = 0 ↔ ∃ k, θ = ↑k * ↑π [PROOFSTEP] rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] [GOAL] θ : ℂ ⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) ↔ ∃ k, θ = ↑k * ↑π [PROOFSTEP] constructor [GOAL] case mp θ : ℂ ⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) → ∃ k, θ = ↑k * ↑π [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mp.intro θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ ∃ k, θ = ↑k * ↑π [PROOFSTEP] use k + 1 [GOAL] case h θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ θ = ↑(k + 1) * ↑π [PROOFSTEP] field_simp [eq_add_of_sub_eq hk] [GOAL] case h θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ (2 * ↑k + 1) * ↑π + ↑π = (↑k + 1) * ↑π * 2 [PROOFSTEP] ring [GOAL] case mpr θ : ℂ ⊢ (∃ k, θ = ↑k * ↑π) → ∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 [PROOFSTEP] rintro ⟨k, rfl⟩ [GOAL] case mpr.intro k : ℤ ⊢ ∃ k_1, ↑k * ↑π - ↑π / 2 = (2 * ↑k_1 + 1) * ↑π / 2 [PROOFSTEP] use k - 1 [GOAL] case h k : ℤ ⊢ ↑k * ↑π - ↑π / 2 = (2 * ↑(k - 1) + 1) * ↑π / 2 [PROOFSTEP] field_simp [GOAL] case h k : ℤ ⊢ ↑k * ↑π * 2 - ↑π = (2 * (↑k - 1) + 1) * ↑π [PROOFSTEP] ring [GOAL] θ : ℂ ⊢ sin θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π [PROOFSTEP] rw [← not_exists, not_iff_not, sin_eq_zero_iff] [GOAL] θ : ℂ ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2 [PROOFSTEP] have h := (sin_two_mul θ).symm [GOAL] θ : ℂ h : 2 * sin θ * cos θ = sin (2 * θ) ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2 [PROOFSTEP] rw [mul_assoc] at h [GOAL] θ : ℂ h : 2 * (sin θ * cos θ) = sin (2 * θ) ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2 [PROOFSTEP] rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm] [GOAL] θ : ℂ h : 2 * (sin θ * cos θ) = sin (2 * θ) ⊢ sin (θ * 2) / 2 = 0 / 2 ↔ ∃ k, θ = ↑k * ↑π / 2 [PROOFSTEP] simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff [GOAL] θ : ℂ ⊢ tan θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π / 2 [PROOFSTEP] rw [← not_exists, not_iff_not, tan_eq_zero_iff] [GOAL] n : ℤ ⊢ ∃ k, ↑n * ↑π / 2 = ↑k * ↑π / 2 [PROOFSTEP] use n [GOAL] x y : ℂ ⊢ cos x - cos y = 0 ↔ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0 [PROOFSTEP] rw [cos_sub_cos] [GOAL] x y : ℂ ⊢ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0 ↔ sin ((x + y) / 2) = 0 ∨ sin ((x - y) / 2) = 0 [PROOFSTEP] simp [(by norm_num : (2 : ℂ) ≠ 0)] [GOAL] x y : ℂ ⊢ 2 ≠ 0 [PROOFSTEP] norm_num [GOAL] x y : ℂ ⊢ sin ((x - y) / 2) = 0 ∨ sin ((x + y) / 2) = 0 ↔ (∃ k, y = 2 * ↑k * ↑π + x) ∨ ∃ k, y = 2 * ↑k * ↑π - x [PROOFSTEP] apply or_congr [GOAL] case h₁ x y : ℂ ⊢ sin ((x - y) / 2) = 0 ↔ ∃ k, y = 2 * ↑k * ↑π + x [PROOFSTEP] field_simp [sin_eq_zero_iff, (by norm_num : -(2 : ℂ) ≠ 0), eq_sub_iff_add_eq', sub_eq_iff_eq_add, mul_comm (2 : ℂ), mul_right_comm _ (2 : ℂ)] [GOAL] x y : ℂ ⊢ -2 ≠ 0 [PROOFSTEP] norm_num [GOAL] case h₂ x y : ℂ ⊢ sin ((x + y) / 2) = 0 ↔ ∃ k, y = 2 * ↑k * ↑π - x [PROOFSTEP] field_simp [sin_eq_zero_iff, (by norm_num : -(2 : ℂ) ≠ 0), eq_sub_iff_add_eq', sub_eq_iff_eq_add, mul_comm (2 : ℂ), mul_right_comm _ (2 : ℂ)] [GOAL] x y : ℂ ⊢ -2 ≠ 0 [PROOFSTEP] norm_num [GOAL] case h₁ x y : ℂ ⊢ (∃ k, x = ↑k * ↑π * 2 + y) ↔ ∃ k, y = ↑k * ↑π * 2 + x [PROOFSTEP] constructor [GOAL] case h₁.mp x y : ℂ ⊢ (∃ k, x = ↑k * ↑π * 2 + y) → ∃ k, y = ↑k * ↑π * 2 + x [PROOFSTEP] rintro ⟨k, rfl⟩ [GOAL] case h₁.mp.intro y : ℂ k : ℤ ⊢ ∃ k_1, y = ↑k_1 * ↑π * 2 + (↑k * ↑π * 2 + y) [PROOFSTEP] use-k [GOAL] case h y : ℂ k : ℤ ⊢ y = ↑(-k) * ↑π * 2 + (↑k * ↑π * 2 + y) [PROOFSTEP] simp [GOAL] case h₁.mpr x y : ℂ ⊢ (∃ k, y = ↑k * ↑π * 2 + x) → ∃ k, x = ↑k * ↑π * 2 + y [PROOFSTEP] rintro ⟨k, rfl⟩ [GOAL] case h₁.mpr.intro x : ℂ k : ℤ ⊢ ∃ k_1, x = ↑k_1 * ↑π * 2 + (↑k * ↑π * 2 + x) [PROOFSTEP] use-k [GOAL] case h x : ℂ k : ℤ ⊢ x = ↑(-k) * ↑π * 2 + (↑k * ↑π * 2 + x) [PROOFSTEP] simp [GOAL] x y : ℂ ⊢ sin x = sin y ↔ ∃ k, y = 2 * ↑k * ↑π + x ∨ y = (2 * ↑k + 1) * ↑π - x [PROOFSTEP] simp only [← Complex.cos_sub_pi_div_two, cos_eq_cos_iff, sub_eq_iff_eq_add] [GOAL] x y : ℂ ⊢ (∃ k, y = 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 ∨ y = 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2) ↔ ∃ k, y = 2 * ↑k * ↑π + x ∨ y = (2 * ↑k + 1) * ↑π - x [PROOFSTEP] refine' exists_congr fun k => or_congr _ _ [GOAL] case refine'_1 x y : ℂ k : ℤ ⊢ y = 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 ↔ y = 2 * ↑k * ↑π + x [PROOFSTEP] refine' Eq.congr rfl _ [GOAL] case refine'_2 x y : ℂ k : ℤ ⊢ y = 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2 ↔ y = (2 * ↑k + 1) * ↑π - x [PROOFSTEP] refine' Eq.congr rfl _ [GOAL] case refine'_1 x y : ℂ k : ℤ ⊢ 2 * ↑k * ↑π + (x - ↑π / 2) + ↑π / 2 = 2 * ↑k * ↑π + x [PROOFSTEP] field_simp [GOAL] case refine'_2 x y : ℂ k : ℤ ⊢ 2 * ↑k * ↑π - (x - ↑π / 2) + ↑π / 2 = (2 * ↑k + 1) * ↑π - x [PROOFSTEP] field_simp [GOAL] case refine'_1 x y : ℂ k : ℤ ⊢ 2 * ↑k * ↑π * 2 + (x * 2 - ↑π) + ↑π = (2 * ↑k * ↑π + x) * 2 [PROOFSTEP] ring [GOAL] case refine'_2 x y : ℂ k : ℤ ⊢ 2 * ↑k * ↑π * 2 - (x * 2 - ↑π) + ↑π = ((2 * ↑k + 1) * ↑π - x) * 2 [PROOFSTEP] ring [GOAL] x y : ℂ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * ↑π / 2 ⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) [PROOFSTEP] rcases h with (⟨h1, h2⟩ | ⟨⟨k, rfl⟩, ⟨l, rfl⟩⟩) [GOAL] case inl.intro x y : ℂ h1 : ∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2 h2 : ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2 ⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) [PROOFSTEP] rw [tan, sin_add, cos_add, ← div_div_div_cancel_right (sin x * cos y + cos x * sin y) (mul_ne_zero (cos_ne_zero_iff.mpr h1) (cos_ne_zero_iff.mpr h2)), add_div, sub_div] [GOAL] case inl.intro x y : ℂ h1 : ∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2 h2 : ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑π / 2 ⊢ (sin x * cos y / (cos x * cos y) + cos x * sin y / (cos x * cos y)) / (cos x * cos y / (cos x * cos y) - sin x * sin y / (cos x * cos y)) = (tan x + tan y) / (1 - tan x * tan y) [PROOFSTEP] simp only [← div_mul_div_comm, tan, mul_one, one_mul, div_self (cos_ne_zero_iff.mpr h1), div_self (cos_ne_zero_iff.mpr h2)] [GOAL] case inr.intro.intro.intro k l : ℤ ⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) = (tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) / (1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2)) [PROOFSTEP] haveI t := tan_int_mul_pi_div_two [GOAL] case inr.intro.intro.intro k l : ℤ t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0 ⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) = (tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) / (1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2)) [PROOFSTEP] obtain ⟨hx, hy, hxy⟩ := t (2 * k + 1), t (2 * l + 1), t (2 * k + 1 + (2 * l + 1)) [GOAL] case inr.intro.intro.intro k l : ℤ t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0 hx : tan (↑(2 * k + 1) * ↑π / 2) = 0 hy : tan (↑(2 * l + 1) * ↑π / 2) = 0 hxy : tan (↑(2 * k + 1 + (2 * l + 1)) * ↑π / 2) = 0 ⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) = (tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) / (1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2)) [PROOFSTEP] simp only [Int.cast_add, Int.cast_two, Int.cast_mul, Int.cast_one, hx, hy] at hx hy hxy [GOAL] case inr.intro.intro.intro k l : ℤ t : ∀ (n : ℤ), tan (↑n * ↑π / 2) = 0 hx : tan ((2 * ↑k + 1) * ↑π / 2) = 0 hy : tan ((2 * ↑l + 1) * ↑π / 2) = 0 hxy : tan ((2 * ↑k + 1 + (2 * ↑l + 1)) * ↑π / 2) = 0 ⊢ tan ((2 * ↑k + 1) * ↑π / 2 + (2 * ↑l + 1) * ↑π / 2) = (tan ((2 * ↑k + 1) * ↑π / 2) + tan ((2 * ↑l + 1) * ↑π / 2)) / (1 - tan ((2 * ↑k + 1) * ↑π / 2) * tan ((2 * ↑l + 1) * ↑π / 2)) [PROOFSTEP] rw [hx, hy, add_zero, zero_div, mul_div_assoc, mul_div_assoc, ← add_mul (2 * (k : ℂ) + 1) (2 * l + 1) (π / 2), ← mul_div_assoc, hxy] [GOAL] z : ℂ ⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2) [PROOFSTEP] by_cases h : ∀ k : ℤ, z ≠ (2 * k + 1) * π / 2 [GOAL] case pos z : ℂ h : ∀ (k : ℤ), z ≠ (2 * ↑k + 1) * ↑π / 2 ⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2) [PROOFSTEP] rw [two_mul, two_mul, sq, tan_add (Or.inl ⟨h, h⟩)] [GOAL] case neg z : ℂ h : ¬∀ (k : ℤ), z ≠ (2 * ↑k + 1) * ↑π / 2 ⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2) [PROOFSTEP] rw [not_forall_not] at h [GOAL] case neg z : ℂ h : ∃ x, z = (2 * ↑x + 1) * ↑π / 2 ⊢ tan (2 * z) = 2 * tan z / (1 - tan z ^ 2) [PROOFSTEP] rw [two_mul, two_mul, sq, tan_add (Or.inr ⟨h, h⟩)] [GOAL] x y : ℂ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), y * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, y * I = (2 * ↑l + 1) * ↑π / 2 ⊢ tan (x + y * I) = (tan x + tanh y * I) / (1 - tan x * tanh y * I) [PROOFSTEP] rw [tan_add h, tan_mul_I, mul_assoc] [GOAL] z : ℂ h : ((∀ (k : ℤ), ↑z.re ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑z.im * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨ (∃ k, ↑z.re = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑z.im * I = (2 * ↑l + 1) * ↑π / 2 ⊢ tan z = (tan ↑z.re + tanh ↑z.im * I) / (1 - tan ↑z.re * tanh ↑z.im * I) [PROOFSTEP] convert tan_add_mul_I h [GOAL] case h.e'_2.h.e'_1 z : ℂ h : ((∀ (k : ℤ), ↑z.re ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑z.im * I ≠ (2 * ↑l + 1) * ↑π / 2) ∨ (∃ k, ↑z.re = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑z.im * I = (2 * ↑l + 1) * ↑π / 2 ⊢ z = ↑z.re + ↑z.im * I [PROOFSTEP] exact (re_add_im z).symm [GOAL] z w : ℂ ⊢ cos z = w ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0 [PROOFSTEP] rw [← sub_eq_zero] [GOAL] z w : ℂ ⊢ cos z - w = 0 ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0 [PROOFSTEP] field_simp [cos, exp_neg, exp_ne_zero] [GOAL] z w : ℂ ⊢ exp (z * I) * exp (z * I) + 1 - exp (z * I) * 2 * w = 0 ↔ exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 = 0 [PROOFSTEP] refine' Eq.congr _ rfl [GOAL] z w : ℂ ⊢ exp (z * I) * exp (z * I) + 1 - exp (z * I) * 2 * w = exp (z * I) ^ 2 - 2 * w * exp (z * I) + 1 [PROOFSTEP] ring [GOAL] ⊢ Function.Surjective cos [PROOFSTEP] intro x [GOAL] x : ℂ ⊢ ∃ a, cos a = x [PROOFSTEP] obtain ⟨w, w₀, hw⟩ : ∃ (w : _) (_ : w ≠ 0), 1 * w * w + -2 * x * w + 1 = 0 := by rcases exists_quadratic_eq_zero one_ne_zero ⟨_, (cpow_nat_inv_pow _ two_ne_zero).symm.trans <| pow_two _⟩ with ⟨w, hw⟩ refine' ⟨w, _, hw⟩ rintro rfl simp only [zero_add, one_ne_zero, mul_zero] at hw [GOAL] x : ℂ ⊢ ∃ w x_1, 1 * w * w + -2 * x * w + 1 = 0 [PROOFSTEP] rcases exists_quadratic_eq_zero one_ne_zero ⟨_, (cpow_nat_inv_pow _ two_ne_zero).symm.trans <| pow_two _⟩ with ⟨w, hw⟩ [GOAL] case intro x w : ℂ hw : 1 * w * w + ?m.63171 * w + ?m.63172 = 0 ⊢ ∃ w x_1, 1 * w * w + -2 * x * w + 1 = 0 [PROOFSTEP] refine' ⟨w, _, hw⟩ [GOAL] case intro x w : ℂ hw : 1 * w * w + -2 * x * w + 1 = 0 ⊢ w ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case intro x : ℂ hw : 1 * 0 * 0 + -2 * x * 0 + 1 = 0 ⊢ False [PROOFSTEP] simp only [zero_add, one_ne_zero, mul_zero] at hw [GOAL] case intro.intro x w : ℂ w₀ : w ≠ 0 hw : 1 * w * w + -2 * x * w + 1 = 0 ⊢ ∃ a, cos a = x [PROOFSTEP] refine' ⟨log w / I, cos_eq_iff_quadratic.2 _⟩ [GOAL] case intro.intro x w : ℂ w₀ : w ≠ 0 hw : 1 * w * w + -2 * x * w + 1 = 0 ⊢ exp (log w / I * I) ^ 2 - 2 * x * exp (log w / I * I) + 1 = 0 [PROOFSTEP] rw [div_mul_cancel _ I_ne_zero, exp_log w₀] [GOAL] case intro.intro x w : ℂ w₀ : w ≠ 0 hw : 1 * w * w + -2 * x * w + 1 = 0 ⊢ w ^ 2 - 2 * x * w + 1 = 0 [PROOFSTEP] convert hw using 1 [GOAL] case h.e'_2 x w : ℂ w₀ : w ≠ 0 hw : 1 * w * w + -2 * x * w + 1 = 0 ⊢ w ^ 2 - 2 * x * w + 1 = 1 * w * w + -2 * x * w + 1 [PROOFSTEP] ring [GOAL] ⊢ Function.Surjective sin [PROOFSTEP] intro x [GOAL] x : ℂ ⊢ ∃ a, sin a = x [PROOFSTEP] rcases cos_surjective x with ⟨z, rfl⟩ [GOAL] case intro z : ℂ ⊢ ∃ a, sin a = cos z [PROOFSTEP] exact ⟨z + π / 2, sin_add_pi_div_two z⟩ [GOAL] θ : ℝ ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * π / 2 [PROOFSTEP] exact_mod_cast @Complex.cos_eq_zero_iff θ [GOAL] θ : ℝ ⊢ cos θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ (2 * ↑k + 1) * π / 2 [PROOFSTEP] rw [← not_exists, not_iff_not, cos_eq_zero_iff] [GOAL] x y : ℝ ⊢ cos x = cos y ↔ ∃ k, y = 2 * ↑k * π + x ∨ y = 2 * ↑k * π - x [PROOFSTEP] exact_mod_cast @Complex.cos_eq_cos_iff x y [GOAL] x y : ℝ ⊢ sin x = sin y ↔ ∃ k, y = 2 * ↑k * π + x ∨ y = (2 * ↑k + 1) * π - x [PROOFSTEP] exact_mod_cast @Complex.sin_eq_sin_iff x y [GOAL] x : ℝ hx : 0 < x hx' : x < 1 ⊢ x < sin (π / 2 * x) [PROOFSTEP] simpa [mul_comm x] using strictConcaveOn_sin_Icc.2 ⟨le_rfl, pi_pos.le⟩ ⟨pi_div_two_pos.le, half_le_self pi_pos.le⟩ pi_div_two_pos.ne (sub_pos.2 hx') hx [GOAL] x : ℝ hx : 0 ≤ x hx' : x ≤ 1 ⊢ x ≤ sin (π / 2 * x) [PROOFSTEP] simpa [mul_comm x] using strictConcaveOn_sin_Icc.concaveOn.2 ⟨le_rfl, pi_pos.le⟩ ⟨pi_div_two_pos.le, half_le_self pi_pos.le⟩ (sub_nonneg.2 hx') hx [GOAL] x : ℝ hx : 0 < x hx' : x < π / 2 ⊢ 2 / π * x < sin x [PROOFSTEP] rw [← inv_div] [GOAL] x : ℝ hx : 0 < x hx' : x < π / 2 ⊢ (π / 2)⁻¹ * x < sin x [PROOFSTEP] simpa [-inv_div, mul_inv_cancel_left₀ pi_div_two_pos.ne'] using @lt_sin_mul ((π / 2)⁻¹ * x) (mul_pos (inv_pos.2 pi_div_two_pos) hx) (by rwa [← div_eq_inv_mul, div_lt_one pi_div_two_pos]) [GOAL] x : ℝ hx : 0 < x hx' : x < π / 2 ⊢ (π / 2)⁻¹ * x < 1 [PROOFSTEP] rwa [← div_eq_inv_mul, div_lt_one pi_div_two_pos] [GOAL] x : ℝ hx : 0 ≤ x hx' : x ≤ π / 2 ⊢ 2 / π * x ≤ sin x [PROOFSTEP] rw [← inv_div] [GOAL] x : ℝ hx : 0 ≤ x hx' : x ≤ π / 2 ⊢ (π / 2)⁻¹ * x ≤ sin x [PROOFSTEP] simpa [-inv_div, mul_inv_cancel_left₀ pi_div_two_pos.ne'] using @le_sin_mul ((π / 2)⁻¹ * x) (mul_nonneg (inv_nonneg.2 pi_div_two_pos.le) hx) (by rwa [← div_eq_inv_mul, div_le_one pi_div_two_pos]) [GOAL] x : ℝ hx : 0 ≤ x hx' : x ≤ π / 2 ⊢ (π / 2)⁻¹ * x ≤ 1 [PROOFSTEP] rwa [← div_eq_inv_mul, div_le_one pi_div_two_pos]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex", "llama_tokens": 9345}
[GOAL] z : ℂ ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) (cos z) [PROOFSTEP] rw [Complex.cos, Complex.exp_eq_exp_ℂ] [GOAL] z : ℂ ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) [PROOFSTEP] have := ((expSeries_div_hasSum_exp ℂ (z * Complex.I)).add (expSeries_div_hasSum_exp ℂ (-z * Complex.I))).div_const 2 [GOAL] z : ℂ this : HasSum (fun i => ((z * I) ^ i / ↑i ! + (-z * I) ^ i / ↑i !) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) [PROOFSTEP] replace := (Nat.divModEquiv 2).symm.hasSum_iff.mpr this [GOAL] z : ℂ this : HasSum ((fun i => ((z * I) ^ i / ↑i ! + (-z * I) ^ i / ↑i !) / 2) ∘ ↑(Nat.divModEquiv 2).symm) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) [PROOFSTEP] dsimp [Function.comp] at this [GOAL] z : ℂ this : HasSum (fun x => ((z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)! + (-z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) [PROOFSTEP] simp_rw [← mul_comm 2 _] at this [GOAL] z : ℂ this : HasSum (fun x => ((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! + (-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n) / ↑(2 * n)!) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) [PROOFSTEP] refine' this.prod_fiberwise fun k => _ [GOAL] z : ℂ this : HasSum (fun x => ((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! + (-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) k : ℕ ⊢ HasSum (fun c => ((z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)! + (-z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)!) / 2) ((z * I) ^ (2 * k) / ↑(2 * k)!) [PROOFSTEP] dsimp only [GOAL] z : ℂ this : HasSum (fun x => ((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! + (-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) k : ℕ ⊢ HasSum (fun c => ((z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)! + (-z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)!) / 2) ((z * I) ^ (2 * k) / ↑(2 * k)!) [PROOFSTEP] convert hasSum_fintype (_ : Fin 2 → ℂ) using 1 [GOAL] case h.e'_6 z : ℂ this : HasSum (fun x => ((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! + (-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) k : ℕ ⊢ (z * I) ^ (2 * k) / ↑(2 * k)! = Finset.sum Finset.univ fun b => ((z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)! + (-z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)!) / 2 [PROOFSTEP] rw [Fin.sum_univ_two] [GOAL] case h.e'_6 z : ℂ this : HasSum (fun x => ((z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! + (-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) / 2) ((_root_.exp ℂ (z * I) + _root_.exp ℂ (-z * I)) / 2) k : ℕ ⊢ (z * I) ^ (2 * k) / ↑(2 * k)! = ((z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)! + (-z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)!) / 2 + ((z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)! + (-z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)!) / 2 [PROOFSTEP] simp_rw [Fin.val_zero, Fin.val_one, add_zero, pow_succ', pow_mul, mul_pow, neg_sq, ← two_mul, neg_mul, mul_neg, neg_div, add_right_neg, zero_div, add_zero, mul_div_cancel_left _ (two_ne_zero : (2 : ℂ) ≠ 0)] [GOAL] z : ℂ ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) (sin z) [PROOFSTEP] rw [Complex.sin, Complex.exp_eq_exp_ℂ] [GOAL] z : ℂ ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) [PROOFSTEP] have := (((expSeries_div_hasSum_exp ℂ (-z * Complex.I)).sub (expSeries_div_hasSum_exp ℂ (z * Complex.I))).mul_right Complex.I).div_const 2 [GOAL] z : ℂ this : HasSum (fun i => ((-z * I) ^ i / ↑i ! - (z * I) ^ i / ↑i !) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) [PROOFSTEP] replace := (Nat.divModEquiv 2).symm.hasSum_iff.mpr this [GOAL] z : ℂ this : HasSum ((fun i => ((-z * I) ^ i / ↑i ! - (z * I) ^ i / ↑i !) * I / 2) ∘ ↑(Nat.divModEquiv 2).symm) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) [PROOFSTEP] dsimp [Function.comp] at this [GOAL] z : ℂ this : HasSum (fun x => ((-z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)! - (z * I) ^ (x.fst * 2 + ↑x.snd) / ↑(x.fst * 2 + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) [PROOFSTEP] simp_rw [← mul_comm 2 _] at this [GOAL] z : ℂ this : HasSum (fun x => ((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! - (z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) ⊢ HasSum (fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) [PROOFSTEP] refine' this.prod_fiberwise fun k => _ [GOAL] z : ℂ this : HasSum (fun x => ((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! - (z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) k : ℕ ⊢ HasSum (fun c => ((-z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)! - (z * I) ^ (2 * (k, c).fst + ↑(k, c).snd) / ↑(2 * (k, c).fst + ↑(k, c).snd)!) * I / 2) ((z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I) [PROOFSTEP] dsimp only [GOAL] z : ℂ this : HasSum (fun x => ((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! - (z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) k : ℕ ⊢ HasSum (fun c => ((-z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)! - (z * I) ^ (2 * k + ↑c) / ↑(2 * k + ↑c)!) * I / 2) ((z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I) [PROOFSTEP] convert hasSum_fintype (_ : Fin 2 → ℂ) using 1 [GOAL] case h.e'_6 z : ℂ this : HasSum (fun x => ((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! - (z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) k : ℕ ⊢ (z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I = Finset.sum Finset.univ fun b => ((-z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)! - (z * I) ^ (2 * k + ↑b) / ↑(2 * k + ↑b)!) * I / 2 [PROOFSTEP] rw [Fin.sum_univ_two] [GOAL] case h.e'_6 z : ℂ this : HasSum (fun x => ((-z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)! - (z * I) ^ (2 * x.fst + ↑x.snd) / ↑(2 * x.fst + ↑x.snd)!) * I / 2) ((_root_.exp ℂ (-z * I) - _root_.exp ℂ (z * I)) * I / 2) k : ℕ ⊢ (z * I) ^ (2 * k + 1) / ↑(2 * k + 1)! / I = ((-z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)! - (z * I) ^ (2 * k + ↑0) / ↑(2 * k + ↑0)!) * I / 2 + ((-z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)! - (z * I) ^ (2 * k + ↑1) / ↑(2 * k + ↑1)!) * I / 2 [PROOFSTEP] simp_rw [Fin.val_zero, Fin.val_one, add_zero, pow_succ', pow_mul, mul_pow, neg_sq, sub_self, zero_mul, zero_div, zero_add, neg_mul, mul_neg, neg_div, ← neg_add', ← two_mul, neg_mul, neg_div, mul_assoc, mul_div_cancel_left _ (two_ne_zero : (2 : ℂ) ≠ 0), Complex.div_I] [GOAL] z : ℂ ⊢ HasSum (fun n => (-1) ^ n * z ^ (2 * n) / ↑(2 * n)!) (cos z) [PROOFSTEP] convert Complex.hasSum_cos' z using 1 [GOAL] case h.e'_5 z : ℂ ⊢ (fun n => (-1) ^ n * z ^ (2 * n) / ↑(2 * n)!) = fun n => (z * I) ^ (2 * n) / ↑(2 * n)! [PROOFSTEP] simp_rw [mul_pow, pow_mul, Complex.I_sq, mul_comm] [GOAL] z : ℂ ⊢ HasSum (fun n => (-1) ^ n * z ^ (2 * n + 1) / ↑(2 * n + 1)!) (sin z) [PROOFSTEP] convert Complex.hasSum_sin' z using 1 [GOAL] case h.e'_5 z : ℂ ⊢ (fun n => (-1) ^ n * z ^ (2 * n + 1) / ↑(2 * n + 1)!) = fun n => (z * I) ^ (2 * n + 1) / ↑(2 * n + 1)! / I [PROOFSTEP] simp_rw [mul_pow, pow_succ', pow_mul, Complex.I_sq, ← mul_assoc, mul_div_assoc, div_right_comm, div_self Complex.I_ne_zero, mul_comm _ ((-1 : ℂ) ^ _), mul_one_div, mul_div_assoc, mul_assoc] [GOAL] r : ℝ ⊢ HasSum (fun n => (-1) ^ n * r ^ (2 * n) / ↑(2 * n)!) (cos r) [PROOFSTEP] exact_mod_cast Complex.hasSum_cos r [GOAL] r : ℝ ⊢ HasSum (fun n => (-1) ^ n * r ^ (2 * n + 1) / ↑(2 * n + 1)!) (sin r) [PROOFSTEP] exact_mod_cast Complex.hasSum_sin r
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Series", "llama_tokens": 5172}
[GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ f g : Valuation R Γ₀ h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ g : Valuation R Γ₀ toFun✝ : R → Γ₀ map_zero'✝ : toFun✝ 0 = 0 map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1 map_mul'✝ : ∀ (x y : R), ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) = ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x * ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y map_add_le_max'✝ : ∀ (x y : R), ZeroHom.toFun (↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }) (x + y) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }) x) (ZeroHom.toFun (↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }) y) h : (fun f => f.toFun) { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, map_add_le_max' := map_add_le_max'✝ } = (fun f => f.toFun) g ⊢ { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, map_add_le_max' := map_add_le_max'✝ } = g [PROOFSTEP] congr [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ ⊢ v.toFun = ↑v [PROOFSTEP] rfl [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ ⊢ ↑v.toMonoidWithZeroHom = ↑v [PROOFSTEP] rfl [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ⊢ ∀ (x y : R), ↑v (x + y) ≤ ↑v x ∨ ↑v (x + y) ≤ ↑v y [PROOFSTEP] intro x y [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x✝ y✝ z x y : R ⊢ ↑v (x + y) ≤ ↑v x ∨ ↑v (x + y) ≤ ↑v y [PROOFSTEP] rw [← le_max_iff, ← ge_iff_le] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x✝ y✝ z x y : R ⊢ max (↑v x) (↑v y) ≥ ↑v (x + y) [PROOFSTEP] apply map_add [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s : Finset ι f : ι → R g : Γ₀ hf : ∀ (i : ι), i ∈ s → ↑v (f i) ≤ g ⊢ ↑v (∑ i in s, f i) ≤ g [PROOFSTEP] refine' Finset.induction_on s (fun _ => v.map_zero ▸ zero_le') (fun a s has ih hf => _) hf [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g hf : ∀ (i : ι), i ∈ insert a s → ↑v (f i) ≤ g ⊢ ↑v (∑ i in insert a s, f i) ≤ g [PROOFSTEP] rw [Finset.forall_mem_insert] at hf [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g hf : ↑v (f a) ≤ g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) ≤ g ⊢ ↑v (∑ i in insert a s, f i) ≤ g [PROOFSTEP] rw [Finset.sum_insert has] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) ≤ g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) ≤ g) → ↑v (∑ i in s, f i) ≤ g hf : ↑v (f a) ≤ g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) ≤ g ⊢ ↑v (f a + ∑ x in s, f x) ≤ g [PROOFSTEP] exact v.map_add_le hf.1 (ih hf.2) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s : Finset ι f : ι → R g : Γ₀ hg : g ≠ 0 hf : ∀ (i : ι), i ∈ s → ↑v (f i) < g ⊢ ↑v (∑ i in s, f i) < g [PROOFSTEP] refine' Finset.induction_on s (fun _ => v.map_zero ▸ (zero_lt_iff.2 hg)) (fun a s has ih hf => _) hf [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hg : g ≠ 0 hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g hf : ∀ (i : ι), i ∈ insert a s → ↑v (f i) < g ⊢ ↑v (∑ i in insert a s, f i) < g [PROOFSTEP] rw [Finset.forall_mem_insert] at hf [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hg : g ≠ 0 hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g hf : ↑v (f a) < g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) < g ⊢ ↑v (∑ i in insert a s, f i) < g [PROOFSTEP] rw [Finset.sum_insert has] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ x y z : R ι : Type u_7 s✝ : Finset ι f : ι → R g : Γ₀ hg : g ≠ 0 hf✝ : ∀ (i : ι), i ∈ s✝ → ↑v (f i) < g a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → ↑v (f i) < g) → ↑v (∑ i in s, f i) < g hf : ↑v (f a) < g ∧ ∀ (x : ι), x ∈ s → ↑v (f x) < g ⊢ ↑v (f a + ∑ x in s, f x) < g [PROOFSTEP] exact v.map_add_lt hf.1 (ih hf.2) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁵ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁴ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝³ : Ring R inst✝² : LinearOrderedCommMonoidWithZero Γ₀ inst✝¹ : LinearOrderedCommMonoidWithZero Γ'₀ v✝ : Valuation R Γ₀ x✝ y✝ z : R S : Type u_7 inst✝ : Ring S f : S →+* R v : Valuation R Γ₀ src✝ : S →*₀ Γ₀ := MonoidWithZeroHom.comp v.toMonoidWithZeroHom (RingHom.toMonoidWithZeroHom f) x y : S ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) }, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1), map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) (x + y) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) }, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1), map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) x) (ZeroHom.toFun (↑{ toZeroHom := { toFun := ↑v ∘ ↑f, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0) }, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = 1), map_mul' := (_ : ∀ (x y : S), ZeroHom.toFun (↑src✝) (x * y) = ZeroHom.toFun (↑src✝) x * ZeroHom.toFun (↑src✝) y) }) y) [PROOFSTEP] simp only [comp_apply, map_add, f.map_add] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R ⊢ ↑v (x - y) = ↑v (x + -y) [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R ⊢ max (↑v x) (↑v (-y)) = max (↑v x) (↑v y) [PROOFSTEP] rw [map_neg] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R g : (fun x => Γ₀) x hx : ↑v x ≤ g hy : ↑v y ≤ g ⊢ ↑v (x - y) ≤ g [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R g : (fun x => Γ₀) x hx : ↑v x ≤ g hy : ↑v y ≤ g ⊢ ↑v (x + -y) ≤ g [PROOFSTEP] exact v.map_add_le hx (le_trans (le_of_eq (v.map_neg y)) hy) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y ⊢ ↑v (x + y) = max (↑v x) (↑v y) [PROOFSTEP] suffices : ¬v (x + y) < max (v x) (v y) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y this : ¬↑v (x + y) < max (↑v x) (↑v y) ⊢ ↑v (x + y) = max (↑v x) (↑v y) case this K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y ⊢ ¬↑v (x + y) < max (↑v x) (↑v y) [PROOFSTEP] exact or_iff_not_imp_right.1 (le_iff_eq_or_lt.1 (v.map_add x y)) this [GOAL] case this K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y ⊢ ¬↑v (x + y) < max (↑v x) (↑v y) [PROOFSTEP] intro h' [GOAL] case this K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < max (↑v x) (↑v y) ⊢ False [PROOFSTEP] wlog vyx : v y < v x generalizing x y [GOAL] case this.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < max (↑v x) (↑v y) this : ∀ {x y : R}, ↑v x ≠ ↑v y → ↑v (x + y) < max (↑v x) (↑v y) → ↑v y < ↑v x → False vyx : ¬↑v y < ↑v x ⊢ False [PROOFSTEP] refine' this h.symm _ (h.lt_or_lt.resolve_right vyx) [GOAL] case this.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < max (↑v x) (↑v y) this : ∀ {x y : R}, ↑v x ≠ ↑v y → ↑v (x + y) < max (↑v x) (↑v y) → ↑v y < ↑v x → False vyx : ¬↑v y < ↑v x ⊢ ↑v (y + x) < max (↑v y) (↑v x) [PROOFSTEP] rwa [add_comm, max_comm] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < max (↑v x) (↑v y) vyx : ↑v y < ↑v x ⊢ False [PROOFSTEP] rw [max_eq_left_of_lt vyx] at h' [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < ↑v x vyx : ↑v y < ↑v x ⊢ False [PROOFSTEP] apply lt_irrefl (v x) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < ↑v x vyx : ↑v y < ↑v x ⊢ ↑v x < ↑v x [PROOFSTEP] calc v x = v (x + y - y) := by simp _ ≤ max (v <| x + y) (v y) := (map_sub _ _ _) _ < v x := max_lt h' vyx [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x✝ y✝ z x y : R h : ↑v x ≠ ↑v y h' : ↑v (x + y) < ↑v x vyx : ↑v y < ↑v x ⊢ ↑v x = ↑v (x + y - y) [PROOFSTEP] simp [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v y < ↑v x ⊢ ↑v (x + y) = ↑v x [PROOFSTEP] rw [add_comm] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v y < ↑v x ⊢ ↑v (y + x) = ↑v x [PROOFSTEP] exact map_add_eq_of_lt_right _ h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v (y - x) < ↑v x ⊢ ↑v y = ↑v x [PROOFSTEP] have := Valuation.map_add_of_distinct_val v (ne_of_gt h).symm [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v (y - x) < ↑v x this : ↑v (y - x + x) = max (↑v (y - x)) (↑v x) ⊢ ↑v y = ↑v x [PROOFSTEP] rw [max_eq_right (le_of_lt h)] at this [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v (y - x) < ↑v x this : ↑v (y - x + x) = ↑v x ⊢ ↑v y = ↑v x [PROOFSTEP] simpa using this [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x < 1 ⊢ ↑v (1 + x) = 1 [PROOFSTEP] rw [← v.map_one] at h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x < ↑v 1 ⊢ ↑v (1 + x) = 1 [PROOFSTEP] simpa only [v.map_one] using v.map_add_eq_of_lt_left h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v x < 1 ⊢ ↑v (1 - x) = 1 [PROOFSTEP] rw [← v.map_one, ← v.map_neg] at h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v (-x) < ↑v 1 ⊢ ↑v (1 - x) = 1 [PROOFSTEP] rw [sub_eq_add_neg 1 x] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x y z : R h : ↑v (-x) < ↑v 1 ⊢ ↑v (1 + -x) = 1 [PROOFSTEP] simpa only [v.map_one, v.map_neg] using v.map_add_eq_of_lt_left h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v✝ : Valuation R Γ₀ x✝ y z : R v : Valuation K Γ₀ x : K h : x ≠ 0 ⊢ 1 < ↑v x ↔ ↑v x⁻¹ < 1 [PROOFSTEP] simpa using (inv_lt_inv₀ (v.ne_zero_iff.2 h) one_ne_zero).symm [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v✝ : Valuation R Γ₀ x y z : R v : Valuation R Γ₀ γ : Γ₀ˣ ⊢ 0 ∈ { carrier := {x | ↑v x < ↑γ}, add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) }.carrier [PROOFSTEP] simp [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : Ring R inst✝ : LinearOrderedCommGroupWithZero Γ₀ v✝ : Valuation R Γ₀ x y z : R v : Valuation R Γ₀ γ : Γ₀ˣ x✝ : R x_in : x✝ ∈ { toAddSubsemigroup := { carrier := {x | ↑v x < ↑γ}, add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) }, zero_mem' := (_ : ↑v 0 < ↑γ) }.toAddSubsemigroup.carrier ⊢ -x✝ ∈ { toAddSubsemigroup := { carrier := {x | ↑v x < ↑γ}, add_mem' := (_ : ∀ {x y : R}, x ∈ {x | ↑v x < ↑γ} → y ∈ {x | ↑v x < ↑γ} → ↑v (x + y) < ↑γ) }, zero_mem' := (_ : ↑v 0 < ↑γ) }.toAddSubsemigroup.carrier [PROOFSTEP] rwa [Set.mem_setOf, map_neg] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ v' : Valuation R Γ₀ h : v = v' ⊢ IsEquiv v v' [PROOFSTEP] subst h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ ⊢ IsEquiv v v [PROOFSTEP] rfl [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ v' : Valuation R Γ₀ f : Γ₀ →*₀ Γ'₀ hf : Monotone ↑f inf : Injective ↑f h : IsEquiv v v' H : StrictMono ↑f := Monotone.strictMono_of_injective hf inf r s : R ⊢ ↑f (↑v r) ≤ ↑f (↑v s) ↔ ↑v r ≤ ↑v s [PROOFSTEP] rw [H.le_iff_le] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ v' : Valuation R Γ₀ f : Γ₀ →*₀ Γ'₀ hf : Monotone ↑f inf : Injective ↑f h : IsEquiv v v' H : StrictMono ↑f := Monotone.strictMono_of_injective hf inf r s : R ⊢ ↑v' r ≤ ↑v' s ↔ ↑f (↑v' r) ≤ ↑f (↑v' s) [PROOFSTEP] rw [H.le_iff_le] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ h : IsEquiv v₁ v₂ r s : R ⊢ ↑v₁ r = ↑v₁ s ↔ ↑v₂ r = ↑v₂ s [PROOFSTEP] simpa only [le_antisymm_iff] using and_congr (h r s) (h s r) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ h : IsEquiv v₁ v₂ r : R ⊢ ↑v₁ r ≠ 0 ↔ ↑v₂ r ≠ 0 [PROOFSTEP] have : v₁ r ≠ v₁ 0 ↔ v₂ r ≠ v₂ 0 := not_congr h.val_eq [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : Ring R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v v₁ : Valuation R Γ₀ v₂ : Valuation R Γ'₀ v₃ : Valuation R Γ''₀ h : IsEquiv v₁ v₂ r : R this : ↑v₁ r ≠ ↑v₁ 0 ↔ ↑v₂ r ≠ ↑v₂ 0 ⊢ ↑v₁ r ≠ 0 ↔ ↑v₂ r ≠ 0 [PROOFSTEP] rwa [v₁.map_zero, v₂.map_zero] at this [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 ⊢ IsEquiv v v' [PROOFSTEP] intro x y [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K ⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : y = 0 ⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y [PROOFSTEP] simp [hy, zero_iff] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v x ≤ ↑v y ↔ ↑v' x ≤ ↑v' y [PROOFSTEP] rw [show y = 1 * y by rw [one_mul]] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ y = 1 * y [PROOFSTEP] rw [one_mul] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v x ≤ ↑v (1 * y) ↔ ↑v' x ≤ ↑v' (1 * y) [PROOFSTEP] rw [← inv_mul_cancel_right₀ hy x] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹ * y) ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹ * y) ≤ ↑v' (1 * y) [PROOFSTEP] iterate 2 rw [v.map_mul _ y, v'.map_mul _ y] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹ * y) ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹ * y) ≤ ↑v' (1 * y) [PROOFSTEP] rw [v.map_mul _ y, v'.map_mul _ y] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹) * ↑v y ≤ ↑v (1 * y) ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ ↑v' (1 * y) [PROOFSTEP] rw [v.map_mul _ y, v'.map_mul _ y] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹) * ↑v y ≤ ↑v 1 * ↑v y ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ ↑v' 1 * ↑v' y [PROOFSTEP] rw [v.map_one, v'.map_one] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y ↔ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y [PROOFSTEP] constructor [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y → ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y [PROOFSTEP] intro H [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 ⊢ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y → ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y [PROOFSTEP] intro H [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y ⊢ ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y [PROOFSTEP] apply mul_le_mul_right' [GOAL] case neg.mp.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y ⊢ ↑v' (x * y⁻¹) ≤ 1 [PROOFSTEP] replace hy := v.ne_zero_iff.mpr hy [GOAL] case neg.mp.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K H : ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y hy : ↑v y ≠ 0 ⊢ ↑v' (x * y⁻¹) ≤ 1 [PROOFSTEP] replace H := le_of_le_mul_right hy H [GOAL] case neg.mp.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ↑v y ≠ 0 H : ↑v (x * y⁻¹) ≤ 1 ⊢ ↑v' (x * y⁻¹) ≤ 1 [PROOFSTEP] rwa [h] at H [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y ⊢ ↑v (x * y⁻¹) * ↑v y ≤ 1 * ↑v y [PROOFSTEP] apply mul_le_mul_right' [GOAL] case neg.mpr.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ¬y = 0 H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y ⊢ ↑v (x * y⁻¹) ≤ 1 [PROOFSTEP] replace hy := v'.ne_zero_iff.mpr hy [GOAL] case neg.mpr.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K H : ↑v' (x * y⁻¹) * ↑v' y ≤ 1 * ↑v' y hy : ↑v' y ≠ 0 ⊢ ↑v (x * y⁻¹) ≤ 1 [PROOFSTEP] replace H := le_of_le_mul_right hy H [GOAL] case neg.mpr.bc K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 x y : K hy : ↑v' y ≠ 0 H : ↑v' (x * y⁻¹) ≤ 1 ⊢ ↑v (x * y⁻¹) ≤ 1 [PROOFSTEP] rwa [h] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : IsEquiv v v' x : K ⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1 [PROOFSTEP] simpa using h x 1 [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] intro h x [GOAL] case mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : IsEquiv v v' x : K ⊢ ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] simpa using @IsEquiv.val_eq _ _ _ _ _ _ v v' h x 1 [GOAL] case mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v' [PROOFSTEP] intro h [GOAL] case mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ IsEquiv v v' [PROOFSTEP] apply isEquiv_of_val_le_one [GOAL] case mpr.h K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 [PROOFSTEP] intro x [GOAL] case mpr.h K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1 [PROOFSTEP] constructor [GOAL] case mpr.h.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 → ↑v' x ≤ 1 [PROOFSTEP] intro hx [GOAL] case mpr.h.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] cases' lt_or_eq_of_le hx with hx' hx' [GOAL] case mpr.h.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] have : v (1 + x) = 1 := by rw [← v.map_one] apply map_add_eq_of_lt_left simpa [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v (1 + x) = 1 [PROOFSTEP] rw [← v.map_one] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v (1 + x) = ↑v 1 [PROOFSTEP] apply map_add_eq_of_lt_left [GOAL] case h K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v x < ↑v 1 [PROOFSTEP] simpa [GOAL] case mpr.h.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v (1 + x) = 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] rw [h] at this [GOAL] case mpr.h.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] rw [show x = -1 + (1 + x) by simp] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ x = -1 + (1 + x) [PROOFSTEP] simp [GOAL] case mpr.h.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' (-1 + (1 + x)) ≤ 1 [PROOFSTEP] refine' le_trans (v'.map_add _ _) _ [GOAL] case mpr.h.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1 [PROOFSTEP] simp [this] [GOAL] case mpr.h.mp.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x = 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] rw [h] at hx' [GOAL] case mpr.h.mp.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v' x = 1 ⊢ ↑v' x ≤ 1 [PROOFSTEP] exact le_of_eq hx' [GOAL] case mpr.h.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v' x ≤ 1 → ↑v x ≤ 1 [PROOFSTEP] intro hx [GOAL] case mpr.h.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] cases' lt_or_eq_of_le hx with hx' hx' [GOAL] case mpr.h.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] have : v' (1 + x) = 1 := by rw [← v'.map_one] apply map_add_eq_of_lt_left simpa [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 ⊢ ↑v' (1 + x) = 1 [PROOFSTEP] rw [← v'.map_one] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 ⊢ ↑v' (1 + x) = ↑v' 1 [PROOFSTEP] apply map_add_eq_of_lt_left [GOAL] case h K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 ⊢ ↑v' x < ↑v' 1 [PROOFSTEP] simpa [GOAL] case mpr.h.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] rw [← h] at this [GOAL] case mpr.h.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 this : ↑v (1 + x) = 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] rw [show x = -1 + (1 + x) by simp] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 this : ↑v (1 + x) = 1 ⊢ x = -1 + (1 + x) [PROOFSTEP] simp [GOAL] case mpr.h.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 this : ↑v (1 + x) = 1 ⊢ ↑v (-1 + (1 + x)) ≤ 1 [PROOFSTEP] refine' le_trans (v.map_add _ _) _ [GOAL] case mpr.h.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x < 1 this : ↑v (1 + x) = 1 ⊢ max (↑v (-1)) (↑v (1 + x)) ≤ 1 [PROOFSTEP] simp [this] [GOAL] case mpr.h.mpr.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v' x = 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] rw [← h] at hx' [GOAL] case mpr.h.mpr.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v' x ≤ 1 hx' : ↑v x = 1 ⊢ ↑v x ≤ 1 [PROOFSTEP] exact le_of_eq hx' [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' → ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 [PROOFSTEP] intro h x [GOAL] case mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : IsEquiv v v' x : K ⊢ ↑v x < 1 ↔ ↑v' x < 1 [PROOFSTEP] simp only [lt_iff_le_and_ne, and_congr ((isEquiv_iff_val_le_one _ _).1 h) ((isEquiv_iff_val_eq_one _ _).1 h).not] [GOAL] case mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) → IsEquiv v v' [PROOFSTEP] rw [isEquiv_iff_val_eq_one] [GOAL] case mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] intro h x [GOAL] case mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K ⊢ ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : x = 0 ⊢ ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] rw [(zero_iff _).2 hx, (zero_iff _).2 hx] [GOAL] case pos K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : x = 0 ⊢ 0 = 1 ↔ 0 = 1 [PROOFSTEP] simp only [zero_ne_one] [GOAL] case neg K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 ⊢ ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] constructor [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 ⊢ ↑v x = 1 → ↑v' x = 1 [PROOFSTEP] intro hh [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 ⊢ ↑v' x = 1 [PROOFSTEP] by_contra h_1 [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 ⊢ False [PROOFSTEP] cases ne_iff_lt_or_gt.1 h_1 with | inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2 | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2)) [GOAL] case neg.mp K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 x✝ : ↑v' x < 1 ∨ ↑v' x > 1 ⊢ False [PROOFSTEP] cases ne_iff_lt_or_gt.1 h_1 with | inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2 | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2)) [GOAL] case neg.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 h_2 : ↑v' x < 1 ⊢ False [PROOFSTEP] | inl h_2 => simpa [hh, lt_self_iff_false] using h.2 h_2 [GOAL] case neg.mp.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 h_2 : ↑v' x < 1 ⊢ False [PROOFSTEP] simpa [hh, lt_self_iff_false] using h.2 h_2 [GOAL] case neg.mp.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 h_2 : ↑v' x > 1 ⊢ False [PROOFSTEP] | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2)) [GOAL] case neg.mp.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x = 1 h_1 : ¬↑v' x = 1 h_2 : ↑v' x > 1 ⊢ False [PROOFSTEP] rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh [GOAL] case neg.mp.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v x⁻¹ = 1 h_1 : ¬↑v' x = 1 h_2 : ↑v' x > 1 ⊢ False [PROOFSTEP] exact hh.not_lt (h.2 ((one_lt_val_iff v' hx).1 h_2)) [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 ⊢ ↑v' x = 1 → ↑v x = 1 [PROOFSTEP] intro hh [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 ⊢ ↑v x = 1 [PROOFSTEP] by_contra h_1 [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 ⊢ False [PROOFSTEP] cases ne_iff_lt_or_gt.1 h_1 with | inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2 | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2)) [GOAL] case neg.mpr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 x✝ : ↑v x < 1 ∨ ↑v x > 1 ⊢ False [PROOFSTEP] cases ne_iff_lt_or_gt.1 h_1 with | inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2 | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2)) [GOAL] case neg.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 h_2 : ↑v x < 1 ⊢ False [PROOFSTEP] | inl h_2 => simpa [hh, lt_self_iff_false] using h.1 h_2 [GOAL] case neg.mpr.inl K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 h_2 : ↑v x < 1 ⊢ False [PROOFSTEP] simpa [hh, lt_self_iff_false] using h.1 h_2 [GOAL] case neg.mpr.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 h_2 : ↑v x > 1 ⊢ False [PROOFSTEP] | inr h_2 => rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2)) [GOAL] case neg.mpr.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x = 1 h_1 : ¬↑v x = 1 h_2 : ↑v x > 1 ⊢ False [PROOFSTEP] rw [← inv_one, ← inv_eq_iff_eq_inv, ← map_inv₀] at hh [GOAL] case neg.mpr.inr K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 x : K hx : ¬x = 0 hh : ↑v' x⁻¹ = 1 h_1 : ¬↑v x = 1 h_2 : ↑v x > 1 ⊢ False [PROOFSTEP] exact hh.not_lt (h.1 ((one_lt_val_iff v hx).1 h_2)) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1 [PROOFSTEP] rw [isEquiv_iff_val_lt_one] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1) ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1 [PROOFSTEP] exact (Equiv.subRight 1).surjective.forall [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ List.TFAE [IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1, ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1] [PROOFSTEP] tfae_have 1 ↔ 2 [GOAL] case tfae_1_iff_2 K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 [PROOFSTEP] apply isEquiv_iff_val_le_one [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 ⊢ List.TFAE [IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1, ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1] [PROOFSTEP] tfae_have 1 ↔ 3 [GOAL] case tfae_1_iff_3 K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 [PROOFSTEP] apply isEquiv_iff_val_eq_one [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ List.TFAE [IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1, ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1] [PROOFSTEP] tfae_have 1 ↔ 4 [GOAL] case tfae_1_iff_4 K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 [PROOFSTEP] apply isEquiv_iff_val_lt_one [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 ⊢ List.TFAE [IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1, ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1] [PROOFSTEP] tfae_have 1 ↔ 5 [GOAL] case tfae_1_iff_5 K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1 [PROOFSTEP] apply isEquiv_iff_val_sub_one_lt_one [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ tfae_1_iff_2 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1 tfae_1_iff_3 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 tfae_1_iff_4 : IsEquiv v v' ↔ ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1 tfae_1_iff_5 : IsEquiv v v' ↔ ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1 ⊢ List.TFAE [IsEquiv v v', ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1, ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1, ∀ {x : K}, ↑v x < 1 ↔ ↑v' x < 1, ∀ {x : K}, ↑v (x - 1) < 1 ↔ ↑v' (x - 1) < 1] [PROOFSTEP] tfae_finish [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁶ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝⁴ : CommRing R inst✝³ : LinearOrderedCommMonoidWithZero Γ₀ inst✝² : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ inst✝¹ : Nontrivial Γ₀ inst✝ : NoZeroDivisors Γ₀ h : supp v = ⊤ ⊢ ↑v 1 = 0 [PROOFSTEP] rw [← mem_supp_iff, h] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁶ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝⁴ : CommRing R inst✝³ : LinearOrderedCommMonoidWithZero Γ₀ inst✝² : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ inst✝¹ : Nontrivial Γ₀ inst✝ : NoZeroDivisors Γ₀ h : supp v = ⊤ ⊢ 1 ∈ ⊤ [PROOFSTEP] exact Submodule.mem_top [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁶ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝⁴ : CommRing R inst✝³ : LinearOrderedCommMonoidWithZero Γ₀ inst✝² : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ inst✝¹ : Nontrivial Γ₀ inst✝ : NoZeroDivisors Γ₀ x y : R hxy : x * y ∈ supp v ⊢ x ∈ supp v ∨ y ∈ supp v [PROOFSTEP] simp only [mem_supp_iff] at hxy ⊢ [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁶ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝⁴ : CommRing R inst✝³ : LinearOrderedCommMonoidWithZero Γ₀ inst✝² : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ inst✝¹ : Nontrivial Γ₀ inst✝ : NoZeroDivisors Γ₀ x y : R hxy : ↑v (x * y) = 0 ⊢ ↑v x = 0 ∨ ↑v y = 0 [PROOFSTEP] rw [v.map_mul x y] at hxy [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁶ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁵ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝⁴ : CommRing R inst✝³ : LinearOrderedCommMonoidWithZero Γ₀ inst✝² : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ inst✝¹ : Nontrivial Γ₀ inst✝ : NoZeroDivisors Γ₀ x y : R hxy : ↑v x * ↑v y = 0 ⊢ ↑v x = 0 ∨ ↑v y = 0 [PROOFSTEP] exact eq_zero_or_eq_zero_of_mul_eq_zero hxy [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v ⊢ ↑v (a + s) = ↑v a [PROOFSTEP] have aux : ∀ a s, v s = 0 → v (a + s) ≤ v a := by intro a' s' h' refine' le_trans (v.map_add a' s') (max_le le_rfl _) simp [h'] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v ⊢ ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a [PROOFSTEP] intro a' s' h' [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v a' s' : R h' : ↑v s' = 0 ⊢ ↑v (a' + s') ≤ ↑v a' [PROOFSTEP] refine' le_trans (v.map_add a' s') (max_le le_rfl _) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v a' s' : R h' : ↑v s' = 0 ⊢ ↑v s' ≤ ↑v a' [PROOFSTEP] simp [h'] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a ⊢ ↑v (a + s) = ↑v a [PROOFSTEP] apply le_antisymm (aux a s h) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a ⊢ ↑v a ≤ ↑v (a + s) [PROOFSTEP] calc v a = v (a + s + -s) := by simp _ ≤ v (a + s) := aux (a + s) (-s) (by rwa [← Ideal.neg_mem_iff] at h ) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a ⊢ ↑v a = ↑v (a + s + -s) [PROOFSTEP] simp [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁴ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝³ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝² : CommRing R inst✝¹ : LinearOrderedCommMonoidWithZero Γ₀ inst✝ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ a s : R h : s ∈ supp v aux : ∀ (a s : R), ↑v s = 0 → ↑v (a + s) ≤ ↑v a ⊢ ↑v (-s) = 0 [PROOFSTEP] rwa [← Ideal.neg_mem_iff] at h [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝⁵ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 Γ''₀ : Type u_6 inst✝⁴ : LinearOrderedCommMonoidWithZero Γ''₀ inst✝³ : CommRing R inst✝² : LinearOrderedCommMonoidWithZero Γ₀ inst✝¹ : LinearOrderedCommMonoidWithZero Γ'₀ v : Valuation R Γ₀ S : Type u_7 inst✝ : CommRing S f : S →+* R x : S ⊢ x ∈ supp (comap f v) ↔ x ∈ Ideal.comap f (supp v) [PROOFSTEP] rw [mem_supp_iff, Ideal.mem_comap, mem_supp_iff, comap_apply] [GOAL] K : Type u_1 F : Type u_2 R✝ : Type u_3 inst✝² : DivisionRing K Γ₀✝ : Type u_4 Γ'₀ : Type u_5 R : Type ?u.4327439 Γ₀ : Type ?u.4327442 inst✝¹ : Ring R inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀ f g : AddValuation R Γ₀ ⊢ (fun v => v.toFun) f = (fun v => v.toFun) g → f = g [PROOFSTEP] cases f [GOAL] case mk K : Type u_1 F : Type u_2 R✝ : Type u_3 inst✝² : DivisionRing K Γ₀✝ : Type u_4 Γ'₀ : Type u_5 R : Type ?u.4327439 Γ₀ : Type ?u.4327442 inst✝¹ : Ring R inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀ g : AddValuation R Γ₀ toMonoidWithZeroHom✝ : R →*₀ Multiplicative Γ₀ᵒᵈ map_add_le_max'✝ : ∀ (x y : R), ZeroHom.toFun (↑toMonoidWithZeroHom✝) (x + y) ≤ max (ZeroHom.toFun (↑toMonoidWithZeroHom✝) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝) y) ⊢ (fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } = (fun v => v.toFun) g → { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk K : Type u_1 F : Type u_2 R✝ : Type u_3 inst✝² : DivisionRing K Γ₀✝ : Type u_4 Γ'₀ : Type u_5 R : Type ?u.4327439 Γ₀ : Type ?u.4327442 inst✝¹ : Ring R inst✝ : LinearOrderedAddCommMonoidWithTop Γ₀ toMonoidWithZeroHom✝¹ : R →*₀ Multiplicative Γ₀ᵒᵈ map_add_le_max'✝¹ : ∀ (x y : R), ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) (x + y) ≤ max (ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝¹) y) toMonoidWithZeroHom✝ : R →*₀ Multiplicative Γ₀ᵒᵈ map_add_le_max'✝ : ∀ (x y : R), ZeroHom.toFun (↑toMonoidWithZeroHom✝) (x + y) ≤ max (ZeroHom.toFun (↑toMonoidWithZeroHom✝) x) (ZeroHom.toFun (↑toMonoidWithZeroHom✝) y) ⊢ (fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝¹, map_add_le_max' := map_add_le_max'✝¹ } = (fun v => v.toFun) { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } → { toMonoidWithZeroHom := toMonoidWithZeroHom✝¹, map_add_le_max' := map_add_le_max'✝¹ } = { toMonoidWithZeroHom := toMonoidWithZeroHom✝, map_add_le_max' := map_add_le_max'✝ } [PROOFSTEP] simp (config := { contextual := true }) [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 inst✝² : Ring R inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀ inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀ v : AddValuation R Γ₀ x y z : R ⊢ ∀ (x y : R), ↑v x ≤ ↑v (x + y) ∨ ↑v y ≤ ↑v (x + y) [PROOFSTEP] intro x y [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 inst✝² : Ring R inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀ inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀ v : AddValuation R Γ₀ x✝ y✝ z x y : R ⊢ ↑v x ≤ ↑v (x + y) ∨ ↑v y ≤ ↑v (x + y) [PROOFSTEP] rw [← @min_le_iff _ _ (v x) (v y) (v (x + y)), ← ge_iff_le] [GOAL] K : Type u_1 F : Type u_2 R : Type u_3 inst✝³ : DivisionRing K Γ₀ : Type u_4 Γ'₀ : Type u_5 inst✝² : Ring R inst✝¹ : LinearOrderedAddCommMonoidWithTop Γ₀ inst✝ : LinearOrderedAddCommMonoidWithTop Γ'₀ v : AddValuation R Γ₀ x✝ y✝ z x y : R ⊢ ↑v (x + y) ≥ min (↑v x) (↑v y) [PROOFSTEP] apply map_add
{"mathlib_filename": "Mathlib.RingTheory.Valuation.Basic", "llama_tokens": 40810}
[GOAL] n ν : ℕ x : ↑I ⊢ ↑(bernstein n ν) x = ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν) [PROOFSTEP] dsimp [bernstein, Polynomial.toContinuousMapOn, Polynomial.toContinuousMap, bernsteinPolynomial] [GOAL] n ν : ℕ x : ↑I ⊢ Polynomial.eval (↑x) (↑(Nat.choose n ν) * Polynomial.X ^ ν * (1 - Polynomial.X) ^ (n - ν)) = ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν) [PROOFSTEP] simp [GOAL] n ν : ℕ x : ↑I ⊢ 0 ≤ ↑(bernstein n ν) x [PROOFSTEP] simp only [bernstein_apply] [GOAL] n ν : ℕ x : ↑I ⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν) [PROOFSTEP] have h₁ : (0 : ℝ) ≤ x := by unit_interval [GOAL] n ν : ℕ x : ↑I ⊢ 0 ≤ ↑x [PROOFSTEP] unit_interval [GOAL] n ν : ℕ x : ↑I h₁ : 0 ≤ ↑x ⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν) [PROOFSTEP] have h₂ : (0 : ℝ) ≤ 1 - x := by unit_interval [GOAL] n ν : ℕ x : ↑I h₁ : 0 ≤ ↑x ⊢ 0 ≤ 1 - ↑x [PROOFSTEP] unit_interval [GOAL] n ν : ℕ x : ↑I h₁ : 0 ≤ ↑x h₂ : 0 ≤ 1 - ↑x ⊢ 0 ≤ ↑(Nat.choose n ν) * ↑x ^ ν * (1 - ↑x) ^ (n - ν) [PROOFSTEP] positivity [GOAL] n : ℕ k : Fin (n + 1) ⊢ ↑↑k / ↑n ∈ I [PROOFSTEP] cases' n with n [GOAL] case zero k : Fin (Nat.zero + 1) ⊢ ↑↑k / ↑Nat.zero ∈ I [PROOFSTEP] norm_num [GOAL] case succ n : ℕ k : Fin (Nat.succ n + 1) ⊢ ↑↑k / ↑(Nat.succ n) ∈ I [PROOFSTEP] have h₁ : 0 < (n.succ : ℝ) := by exact_mod_cast Nat.succ_pos _ [GOAL] n : ℕ k : Fin (Nat.succ n + 1) ⊢ 0 < ↑(Nat.succ n) [PROOFSTEP] exact_mod_cast Nat.succ_pos _ [GOAL] case succ n : ℕ k : Fin (Nat.succ n + 1) h₁ : 0 < ↑(Nat.succ n) ⊢ ↑↑k / ↑(Nat.succ n) ∈ I [PROOFSTEP] have h₂ : ↑k ≤ n.succ := by exact_mod_cast Fin.le_last k [GOAL] n : ℕ k : Fin (Nat.succ n + 1) h₁ : 0 < ↑(Nat.succ n) ⊢ ↑k ≤ Nat.succ n [PROOFSTEP] exact_mod_cast Fin.le_last k [GOAL] case succ n : ℕ k : Fin (Nat.succ n + 1) h₁ : 0 < ↑(Nat.succ n) h₂ : ↑k ≤ Nat.succ n ⊢ ↑↑k / ↑(Nat.succ n) ∈ I [PROOFSTEP] rw [Set.mem_Icc, le_div_iff h₁, div_le_iff h₁] [GOAL] case succ n : ℕ k : Fin (Nat.succ n + 1) h₁ : 0 < ↑(Nat.succ n) h₂ : ↑k ≤ Nat.succ n ⊢ 0 * ↑(Nat.succ n) ≤ ↑↑k ∧ ↑↑k ≤ 1 * ↑(Nat.succ n) [PROOFSTEP] norm_cast [GOAL] case succ n : ℕ k : Fin (Nat.succ n + 1) h₁ : 0 < ↑(Nat.succ n) h₂ : ↑k ≤ Nat.succ n ⊢ 0 * Nat.succ n ≤ ↑k ∧ ↑k ≤ 1 * Nat.succ n [PROOFSTEP] simp [h₂] [GOAL] n : ℕ x : ↑I ⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1 [PROOFSTEP] have := bernsteinPolynomial.sum ℝ n [GOAL] n : ℕ x : ↑I this : ∑ ν in Finset.range (n + 1), bernsteinPolynomial ℝ n ν = 1 ⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1 [PROOFSTEP] apply_fun fun p => Polynomial.aeval (x : ℝ) p at this [GOAL] n : ℕ x : ↑I this : ↑(Polynomial.aeval ↑x) (∑ ν in Finset.range (n + 1), bernsteinPolynomial ℝ n ν) = ↑(Polynomial.aeval ↑x) 1 ⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1 [PROOFSTEP] simp [AlgHom.map_sum, Finset.sum_range] at this [GOAL] n : ℕ x : ↑I this : ∑ x_1 : Fin (n + 1), Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = 1 ⊢ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = 1 [PROOFSTEP] exact this [GOAL] n : ℕ h : 0 < ↑n x : ↑I ⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n [PROOFSTEP] have h' : (n : ℝ) ≠ 0 := ne_of_gt h [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 ⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n [PROOFSTEP] have h'' := GroupWithZero.mul_right_injective h' [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ ∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x = ↑x * (1 - ↑x) / ↑n [PROOFSTEP] apply h'' [GOAL] case a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ (fun y => y * ↑n) (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) = (fun y => y * ↑n) (↑x * (1 - ↑x) / ↑n) [PROOFSTEP] apply h'' [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ (fun y => y * ↑n) ((fun y => y * ↑n) (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x)) = (fun y => y * ↑n) ((fun y => y * ↑n) (↑x * (1 - ↑x) / ↑n)) [PROOFSTEP] dsimp [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n = ↑x * (1 - ↑x) / ↑n * ↑n * ↑n [PROOFSTEP] conv_lhs => simp only [Finset.sum_mul, z] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n [PROOFSTEP] simp only [Finset.sum_mul, z] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n [PROOFSTEP] simp only [Finset.sum_mul, z] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | (∑ k : Fin (n + 1), (↑x - ↑(k/ₙ)) ^ 2 * ↑(bernstein n ↑k) x) * ↑n * ↑n [PROOFSTEP] simp only [Finset.sum_mul, z] [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) / ↑n * ↑n * ↑n [PROOFSTEP] conv_rhs => rw [div_mul_cancel _ h'] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | ↑x * (1 - ↑x) / ↑n * ↑n * ↑n [PROOFSTEP] rw [div_mul_cancel _ h'] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | ↑x * (1 - ↑x) / ↑n * ↑n * ↑n [PROOFSTEP] rw [div_mul_cancel _ h'] [GOAL] n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n | ↑x * (1 - ↑x) / ↑n * ↑n * ↑n [PROOFSTEP] rw [div_mul_cancel _ h'] [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n [PROOFSTEP] have := bernsteinPolynomial.variance ℝ n [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ ν in Finset.range (n + 1), (n • Polynomial.X - ↑ν) ^ 2 * bernsteinPolynomial ℝ n ν = n • Polynomial.X * (1 - Polynomial.X) ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n [PROOFSTEP] apply_fun fun p => Polynomial.aeval (x : ℝ) p at this [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ↑(Polynomial.aeval ↑x) (∑ ν in Finset.range (n + 1), (n • Polynomial.X - ↑ν) ^ 2 * bernsteinPolynomial ℝ n ν) = ↑(Polynomial.aeval ↑x) (n • Polynomial.X * (1 - Polynomial.X)) ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n [PROOFSTEP] simp [AlgHom.map_sum, Finset.sum_range, ← Polynomial.nat_cast_mul] at this [GOAL] case a.a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ↑x * (1 - ↑x) * ↑n [PROOFSTEP] convert this using 1 [GOAL] case h.e'_2 n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) ⊢ ∑ x_1 : Fin (n + 1), (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n = ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) [PROOFSTEP] congr 1 [GOAL] case h.e'_2.e_f n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) ⊢ (fun x_1 => (↑x - ↑↑x_1 / ↑n) ^ 2 * ↑(bernstein n ↑x_1) x * ↑n * ↑n) = fun x_1 => (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) [PROOFSTEP] funext k [GOAL] case h.e'_2.e_f.h n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) k : Fin (n + 1) ⊢ (↑x - ↑↑k / ↑n) ^ 2 * ↑(bernstein n ↑k) x * ↑n * ↑n = (↑n * ↑x - ↑↑k) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑k) [PROOFSTEP] rw [mul_comm _ (n : ℝ), mul_comm _ (n : ℝ), ← mul_assoc, ← mul_assoc] [GOAL] case h.e'_2.e_f.h n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) k : Fin (n + 1) ⊢ ↑n * ↑n * (↑x - ↑↑k / ↑n) ^ 2 * ↑(bernstein n ↑k) x = (↑n * ↑x - ↑↑k) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑k) [PROOFSTEP] congr 1 [GOAL] case h.e'_2.e_f.h.e_a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) k : Fin (n + 1) ⊢ ↑n * ↑n * (↑x - ↑↑k / ↑n) ^ 2 = (↑n * ↑x - ↑↑k) ^ 2 [PROOFSTEP] field_simp [h] [GOAL] case h.e'_2.e_f.h.e_a n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) k : Fin (n + 1) ⊢ ↑n * ↑n * (↑x * ↑n - ↑↑k) ^ 2 = (↑n * ↑x - ↑↑k) ^ 2 * ↑n ^ 2 [PROOFSTEP] ring [GOAL] case h.e'_3 n : ℕ h : 0 < ↑n x : ↑I h' : ↑n ≠ 0 h'' : Function.Injective fun y => y * ↑n this : ∑ x_1 : Fin (n + 1), (↑n * ↑x - ↑↑x_1) ^ 2 * Polynomial.eval (↑x) (bernsteinPolynomial ℝ n ↑x_1) = ↑n * ↑x * (1 - ↑x) ⊢ ↑x * (1 - ↑x) * ↑n = ↑n * ↑x * (1 - ↑x) [PROOFSTEP] ring [GOAL] n : ℕ f : C(↑I, ℝ) x : ↑I ⊢ ↑(bernsteinApproximation n f) x = ∑ k : Fin (n + 1), ↑f k/ₙ * ↑(bernstein n ↑k) x [PROOFSTEP] simp [bernsteinApproximation] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε n : ℕ x : ↑I k : Fin (n + 1) m : k ∈ S f ε h n x ⊢ |↑f k/ₙ - ↑f x| < ε / 2 [PROOFSTEP] apply f.dist_lt_of_dist_lt_modulus (ε / 2) (half_pos h) -- Porting note: `simp` fails to apply `Set.mem_toFinset` on its own [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε n : ℕ x : ↑I k : Fin (n + 1) m : k ∈ S f ε h n x ⊢ dist k/ₙ x < ContinuousMap.modulus f (ε / 2) (_ : 0 < ε / 2) [PROOFSTEP] simpa [S, (Set.mem_toFinset)] using m [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε n : ℕ x : ↑I k : Fin (n + 1) m : k ∈ (S f ε h n x)ᶜ ⊢ 1 ≤ δ f ε h ^ (-2) * (↑x - ↑k/ₙ) ^ 2 [PROOFSTEP] simp only [Finset.mem_compl, not_lt, (Set.mem_toFinset), Set.mem_setOf_eq, S] at m [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε n : ℕ x : ↑I k : Fin (n + 1) m : δ f ε h ≤ dist k/ₙ x ⊢ 1 ≤ δ f ε h ^ (-2) * (↑x - ↑k/ₙ) ^ 2 [PROOFSTEP] rw [zpow_neg, ← div_eq_inv_mul, zpow_two, ← pow_two, one_le_div (pow_pos δ_pos 2), sq_le_sq, abs_of_pos δ_pos] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε n : ℕ x : ↑I k : Fin (n + 1) m : δ f ε h ≤ dist k/ₙ x ⊢ δ f ε h ≤ |↑x - ↑k/ₙ| [PROOFSTEP] rwa [dist_comm] at m [GOAL] f : C(↑I, ℝ) ⊢ Tendsto (fun n => bernsteinApproximation n f) atTop (𝓝 f) [PROOFSTEP] simp only [Metric.nhds_basis_ball.tendsto_right_iff, Metric.mem_ball, dist_eq_norm] [GOAL] f : C(↑I, ℝ) ⊢ ∀ (i : ℝ), 0 < i → ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < i [PROOFSTEP] intro ε h [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε ⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε [PROOFSTEP] let δ := δ f ε h [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h ⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε [PROOFSTEP] have nhds_zero := tendsto_const_div_atTop_nhds_0_nat (2 * ‖f‖ * δ ^ (-2 : ℤ)) [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) ⊢ ∀ᶠ (x : ℕ) in atTop, ‖bernsteinApproximation x f - f‖ < ε [PROOFSTEP] filter_upwards [nhds_zero.eventually (gt_mem_nhds (half_pos h)), eventually_gt_atTop 0] with n nh npos' [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n ⊢ ‖bernsteinApproximation n f - f‖ < ε [PROOFSTEP] have npos : 0 < (n : ℝ) := by positivity [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n ⊢ 0 < ↑n [PROOFSTEP] positivity [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n ⊢ ‖bernsteinApproximation n f - f‖ < ε [PROOFSTEP] have w₂ : 0 ≤ δ ^ (-2 : ℤ) := zpow_neg_two_nonneg _ -- TODO: need a positivity extension for `zpow` -- As `[0,1]` is compact, it suffices to check the inequality pointwise. [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) ⊢ ‖bernsteinApproximation n f - f‖ < ε [PROOFSTEP] rw [ContinuousMap.norm_lt_iff _ h] [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) ⊢ ∀ (x : ↑I), ‖↑(bernsteinApproximation n f - f) x‖ < ε [PROOFSTEP] intro x [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I ⊢ ‖↑(bernsteinApproximation n f - f) x‖ < ε [PROOFSTEP] let S := S f ε h n x [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ‖↑(bernsteinApproximation n f - f) x‖ < ε [PROOFSTEP] calc |(bernsteinApproximation n f - f) x| = |bernsteinApproximation n f x - f x| := rfl _ = |bernsteinApproximation n f x - f x * 1| := by rw [mul_one] _ = |bernsteinApproximation n f x - f x * ∑ k : Fin (n + 1), bernstein n k x| := by rw [bernstein.probability] _ = |∑ k : Fin (n + 1), (f k/ₙ - f x) * bernstein n k x| := by simp [bernsteinApproximation, Finset.mul_sum, sub_mul] _ ≤ ∑ k : Fin (n + 1), |(f k/ₙ - f x) * bernstein n k x| := (Finset.abs_sum_le_sum_abs _ _) _ = ∑ k : Fin (n + 1), |f k/ₙ - f x| * bernstein n k x := by simp_rw [abs_mul, abs_eq_self.mpr bernstein_nonneg] _ = (∑ k in S, |f k/ₙ - f x| * bernstein n k x) + ∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x := (S.sum_add_sum_compl _).symm _ < ε / 2 + ε / 2 := (add_lt_add_of_le_of_lt ?_ ?_) _ = ε := add_halves ε [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ |↑(bernsteinApproximation n f) x - ↑f x| = |↑(bernsteinApproximation n f) x - ↑f x * 1| [PROOFSTEP] rw [mul_one] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ |↑(bernsteinApproximation n f) x - ↑f x * 1| = |↑(bernsteinApproximation n f) x - ↑f x * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x| [PROOFSTEP] rw [bernstein.probability] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ |↑(bernsteinApproximation n f) x - ↑f x * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x| = |∑ k : Fin (n + 1), (↑f k/ₙ - ↑f x) * ↑(bernstein n ↑k) x| [PROOFSTEP] simp [bernsteinApproximation, Finset.mul_sum, sub_mul] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k : Fin (n + 1), |(↑f k/ₙ - ↑f x) * ↑(bernstein n ↑k) x| = ∑ k : Fin (n + 1), |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x [PROOFSTEP] simp_rw [abs_mul, abs_eq_self.mpr bernstein_nonneg] [GOAL] case h.calc_1 f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in S, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ε / 2 [PROOFSTEP] calc ∑ k in S, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in S, ε / 2 * bernstein n k x := by gcongr with _ m exact le_of_lt (lt_of_mem_S m) _ = ε / 2 * ∑ k in S, bernstein n k x := by rw [Finset.mul_sum] -- In this step we increase the sum over `S` back to a sum over all of `Fin (n+1)`, -- so that we can use `bernstein.probability`. _ ≤ ε / 2 * ∑ k : Fin (n + 1), bernstein n k x := by gcongr exact Finset.sum_le_univ_sum_of_nonneg fun k => bernstein_nonneg _ = ε / 2 := by rw [bernstein.probability, mul_one] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in S, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ∑ k in S, ε / 2 * ↑(bernstein n ↑k) x [PROOFSTEP] gcongr with _ m [GOAL] case h.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ S ⊢ |↑f i✝/ₙ - ↑f x| ≤ ε / 2 [PROOFSTEP] exact le_of_lt (lt_of_mem_S m) [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in S, ε / 2 * ↑(bernstein n ↑k) x = ε / 2 * ∑ k in S, ↑(bernstein n ↑k) x [PROOFSTEP] rw [Finset.mul_sum] -- In this step we increase the sum over `S` back to a sum over all of `Fin (n+1)`, -- so that we can use `bernstein.probability`. [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ε / 2 * ∑ k in S, ↑(bernstein n ↑k) x ≤ ε / 2 * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x [PROOFSTEP] gcongr [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in S, ↑(bernstein n ↑k) x ≤ ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x [PROOFSTEP] exact Finset.sum_le_univ_sum_of_nonneg fun k => bernstein_nonneg [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ε / 2 * ∑ k : Fin (n + 1), ↑(bernstein n ↑k) x = ε / 2 [PROOFSTEP] rw [bernstein.probability, mul_one] [GOAL] case h.calc_2 f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in Sᶜ, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x < ε / 2 [PROOFSTEP] calc ∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in Sᶜ, 2 * ‖f‖ * bernstein n k x := by gcongr apply f.dist_le_two_norm _ = 2 * ‖f‖ * ∑ k in Sᶜ, bernstein n k x := by rw [Finset.mul_sum] _ ≤ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by gcongr with _ m conv_lhs => rw [← one_mul (bernstein _ _ _)] gcongr exact le_of_mem_S_compl m _ ≤ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2 : ℤ) * ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by gcongr refine Finset.sum_le_univ_sum_of_nonneg <| fun k => ?_ positivity _ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * ∑ k : Fin (n + 1), ((x : ℝ) - k/ₙ) ^ 2 * bernstein n k x := by conv_rhs => rw [mul_assoc, Finset.mul_sum] simp only [← mul_assoc] -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound _ = 2 * ‖f‖ * δ ^ (-2 : ℤ) * x * (1 - x) / n := by rw [variance npos]; ring _ ≤ 2 * ‖f‖ * δ ^ (-2 : ℤ) * 1 * 1 / n := by gcongr <;> unit_interval _ < ε / 2 := by simp only [mul_one]; exact nh [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in Sᶜ, |↑f k/ₙ - ↑f x| * ↑(bernstein n ↑k) x ≤ ∑ k in Sᶜ, 2 * ‖f‖ * ↑(bernstein n ↑k) x [PROOFSTEP] gcongr [GOAL] case h.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) a✝ : i✝ ∈ Sᶜ ⊢ |↑f i✝/ₙ - ↑f x| ≤ 2 * ‖f‖ [PROOFSTEP] apply f.dist_le_two_norm [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in Sᶜ, 2 * ‖f‖ * ↑(bernstein n ↑k) x = 2 * ‖f‖ * ∑ k in Sᶜ, ↑(bernstein n ↑k) x [PROOFSTEP] rw [Finset.mul_sum] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * ∑ k in Sᶜ, ↑(bernstein n ↑k) x ≤ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] gcongr with _ m [GOAL] case h.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ ⊢ ↑(bernstein n ↑i✝) x ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2 * ↑(bernstein n ↑i✝) x [PROOFSTEP] conv_lhs => rw [← one_mul (bernstein _ _ _)] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ | ↑(bernstein n ↑i✝) x [PROOFSTEP] rw [← one_mul (bernstein _ _ _)] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ | ↑(bernstein n ↑i✝) x [PROOFSTEP] rw [← one_mul (bernstein _ _ _)] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ | ↑(bernstein n ↑i✝) x [PROOFSTEP] rw [← one_mul (bernstein _ _ _)] [GOAL] case h.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ ⊢ 1 * ↑(bernstein n ↑i✝) x ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2 * ↑(bernstein n ↑i✝) x [PROOFSTEP] gcongr [GOAL] case h.h.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x i✝ : Fin (n + 1) m : i✝ ∈ Sᶜ ⊢ 1 ≤ δ ^ (-2) * (↑x - ↑i✝/ₙ) ^ 2 [PROOFSTEP] exact le_of_mem_S_compl m [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x ≤ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] gcongr [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ∑ k in Sᶜ, δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x ≤ ∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] refine Finset.sum_le_univ_sum_of_nonneg <| fun k => ?_ [GOAL] case h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x k : Fin (n + 1) ⊢ 0 ≤ δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] positivity [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * ∑ k : Fin (n + 1), δ ^ (-2) * (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x = 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] conv_rhs => rw [mul_assoc, Finset.mul_sum] simp only [← mul_assoc] -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x | 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] rw [mul_assoc, Finset.mul_sum] simp only [← mul_assoc] -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x | 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] rw [mul_assoc, Finset.mul_sum] simp only [← mul_assoc] -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x | 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x [PROOFSTEP] rw [mul_assoc, Finset.mul_sum] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x | 2 * ‖f‖ * ∑ x_1 : Fin (n + 1), δ ^ (-2) * ((↑x - ↑x_1/ₙ) ^ 2 * ↑(bernstein n ↑x_1) x) [PROOFSTEP] simp only [← mul_assoc] -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * δ ^ (-2) * ∑ k : Fin (n + 1), (↑x - ↑k/ₙ) ^ 2 * ↑(bernstein n ↑k) x = 2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n [PROOFSTEP] rw [variance npos] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * δ ^ (-2) * (↑x * (1 - ↑x) / ↑n) = 2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n [PROOFSTEP] ring [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * δ ^ (-2) * ↑x * (1 - ↑x) / ↑n ≤ 2 * ‖f‖ * δ ^ (-2) * 1 * 1 / ↑n [PROOFSTEP] gcongr [GOAL] case h.c0 f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 0 ≤ 1 - ↑x [PROOFSTEP] unit_interval [GOAL] case h.h₁.h f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ ↑x ≤ 1 [PROOFSTEP] unit_interval [GOAL] case h.h₂ f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 1 - ↑x ≤ 1 [PROOFSTEP] unit_interval [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * δ ^ (-2) * 1 * 1 / ↑n < ε / 2 [PROOFSTEP] simp only [mul_one] [GOAL] f : C(↑I, ℝ) ε : ℝ h : 0 < ε δ : ℝ := bernsteinApproximation.δ f ε h nhds_zero : Tendsto (fun n => 2 * ‖f‖ * δ ^ (-2) / ↑n) atTop (𝓝 0) n : ℕ nh : 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 npos' : 0 < n npos : 0 < ↑n w₂ : 0 ≤ δ ^ (-2) x : ↑I S : Finset (Fin (n + 1)) := bernsteinApproximation.S f ε h n x ⊢ 2 * ‖f‖ * bernsteinApproximation.δ f ε h ^ (-2) / ↑n < ε / 2 [PROOFSTEP] exact nh
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Bernstein", "llama_tokens": 20478}
[GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ⊢ centerMass ∅ w z = 0 [PROOFSTEP] simp only [centerMass, sum_empty, smul_zero] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hne : i ≠ j ⊢ centerMass {i, j} w z = (w i / (w i + w j)) • z i + (w j / (w i + w j)) • z j [PROOFSTEP] simp only [centerMass, sum_pair hne, smul_add, (mul_smul _ _ _).symm, div_eq_inv_mul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ha : ¬i ∈ t hw : ∑ j in t, w j ≠ 0 ⊢ centerMass (insert i t) w z = (w i / (w i + ∑ j in t, w j)) • z i + ((∑ j in t, w j) / (w i + ∑ j in t, w j)) • centerMass t w z [PROOFSTEP] simp only [centerMass, sum_insert ha, smul_add, (mul_smul _ _ _).symm, ← div_eq_inv_mul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ha : ¬i ∈ t hw : ∑ j in t, w j ≠ 0 ⊢ (w i / (w i + ∑ i in t, w i)) • z i + (w i + ∑ i in t, w i)⁻¹ • ∑ i in t, w i • z i = (w i / (w i + ∑ i in t, w i)) • z i + ((∑ i in t, w i) / (w i + ∑ i in t, w i) * (∑ i in t, w i)⁻¹) • ∑ i in t, w i • z i [PROOFSTEP] congr 2 [GOAL] case e_a.e_a R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ha : ¬i ∈ t hw : ∑ j in t, w j ≠ 0 ⊢ (w i + ∑ i in t, w i)⁻¹ = (∑ i in t, w i) / (w i + ∑ i in t, w i) * (∑ i in t, w i)⁻¹ [PROOFSTEP] rw [div_mul_eq_mul_div, mul_inv_cancel hw, one_div] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hw : w i ≠ 0 ⊢ centerMass {i} w z = z i [PROOFSTEP] rw [centerMass, sum_singleton, sum_singleton, ← mul_smul, inv_mul_cancel hw, one_smul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hw : ∑ i in t, w i = 1 ⊢ centerMass t w z = ∑ i in t, w i • z i [PROOFSTEP] simp only [Finset.centerMass, hw, inv_one, one_smul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ⊢ (centerMass t w fun i => c • z i) = c • centerMass t w z [PROOFSTEP] simp only [Finset.centerMass, Finset.smul_sum, (mul_smul _ _ _).symm, mul_comm c, mul_assoc] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s : Finset ι t : Finset ι' ws : ι → R zs : ι → E wt : ι' → R zt : ι' → E hws : ∑ i in s, ws i = 1 hwt : ∑ i in t, wt i = 1 a b : R hab : a + b = 1 ⊢ a • centerMass s ws zs + b • centerMass t wt zt = centerMass (disjSum s t) (Sum.elim (fun i => a * ws i) fun j => b * wt j) (Sum.elim zs zt) [PROOFSTEP] rw [s.centerMass_eq_of_sum_1 _ hws, t.centerMass_eq_of_sum_1 _ hwt, smul_sum, smul_sum, ← Finset.sum_sum_elim, Finset.centerMass_eq_of_sum_1] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s : Finset ι t : Finset ι' ws : ι → R zs : ι → E wt : ι' → R zt : ι' → E hws : ∑ i in s, ws i = 1 hwt : ∑ i in t, wt i = 1 a b : R hab : a + b = 1 ⊢ ∑ x in disjSum s t, Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) x = ∑ i in disjSum s t, Sum.elim (fun i => a * ws i) (fun j => b * wt j) i • Sum.elim zs zt i [PROOFSTEP] congr with ⟨⟩ [GOAL] case e_f.h.inl R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s : Finset ι t : Finset ι' ws : ι → R zs : ι → E wt : ι' → R zt : ι' → E hws : ∑ i in s, ws i = 1 hwt : ∑ i in t, wt i = 1 a b : R hab : a + b = 1 val✝ : ι ⊢ Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) (Sum.inl val✝) = Sum.elim (fun i => a * ws i) (fun j => b * wt j) (Sum.inl val✝) • Sum.elim zs zt (Sum.inl val✝) [PROOFSTEP] simp only [Sum.elim_inl, Sum.elim_inr, mul_smul] [GOAL] case e_f.h.inr R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s : Finset ι t : Finset ι' ws : ι → R zs : ι → E wt : ι' → R zt : ι' → E hws : ∑ i in s, ws i = 1 hwt : ∑ i in t, wt i = 1 a b : R hab : a + b = 1 val✝ : ι' ⊢ Sum.elim (fun x => a • ws x • zs x) (fun x => b • wt x • zt x) (Sum.inr val✝) = Sum.elim (fun i => a * ws i) (fun j => b * wt j) (Sum.inr val✝) • Sum.elim zs zt (Sum.inr val✝) [PROOFSTEP] simp only [Sum.elim_inl, Sum.elim_inr, mul_smul] [GOAL] case hw R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s : Finset ι t : Finset ι' ws : ι → R zs : ι → E wt : ι' → R zt : ι' → E hws : ∑ i in s, ws i = 1 hwt : ∑ i in t, wt i = 1 a b : R hab : a + b = 1 ⊢ ∑ i in disjSum s t, Sum.elim (fun i => a * ws i) (fun j => b * wt j) i = 1 [PROOFSTEP] rw [sum_sum_elim, ← mul_sum, ← mul_sum, hws, hwt, mul_one, mul_one, hab] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z✝ : ι → E s : Finset ι w₁ w₂ : ι → R z : ι → E hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 a b : R hab : a + b = 1 ⊢ a • centerMass s w₁ z + b • centerMass s w₂ z = centerMass s (fun i => a * w₁ i + b * w₂ i) z [PROOFSTEP] have hw : (∑ i in s, (a * w₁ i + b * w₂ i)) = 1 := by simp only [mul_sum.symm, sum_add_distrib, mul_one, *] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z✝ : ι → E s : Finset ι w₁ w₂ : ι → R z : ι → E hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 a b : R hab : a + b = 1 ⊢ ∑ i in s, (a * w₁ i + b * w₂ i) = 1 [PROOFSTEP] simp only [mul_sum.symm, sum_add_distrib, mul_one, *] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z✝ : ι → E s : Finset ι w₁ w₂ : ι → R z : ι → E hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 a b : R hab : a + b = 1 hw : ∑ i in s, (a * w₁ i + b * w₂ i) = 1 ⊢ a • centerMass s w₁ z + b • centerMass s w₂ z = centerMass s (fun i => a * w₁ i + b * w₂ i) z [PROOFSTEP] simp only [Finset.centerMass_eq_of_sum_1, Finset.centerMass_eq_of_sum_1 _ _ hw, smul_sum, sum_add_distrib, add_smul, mul_smul, *] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ centerMass t (fun j => if i = j then 1 else 0) z = z i [PROOFSTEP] rw [Finset.centerMass_eq_of_sum_1] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = z i case hw R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1 [PROOFSTEP] trans ∑ j in t, if i = j then z i else 0 [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = ∑ j in t, if i = j then z i else 0 [PROOFSTEP] congr with i [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i✝ ∈ t i : ι ⊢ (if i✝ = i then 1 else 0) • z i = if i✝ = i then z i✝ else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i✝ ∈ t i : ι h : i✝ = i ⊢ 1 • z i = z i✝ case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i✝ ∈ t i : ι h : ¬i✝ = i ⊢ 0 • z i = 0 [PROOFSTEP] exacts [h ▸ one_smul _ _, zero_smul _ _] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ (∑ j in t, if i = j then z i else 0) = z i [PROOFSTEP] rw [sum_ite_eq, if_pos hi] [GOAL] case hw R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hi : i ∈ t ⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1 [PROOFSTEP] rw [sum_ite_eq, if_pos hi] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E t' : Finset ι ht : t ⊆ t' h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0 ⊢ centerMass t w z = centerMass t' w z [PROOFSTEP] rw [centerMass, sum_subset ht h, smul_sum, centerMass, smul_sum] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E t' : Finset ι ht : t ⊆ t' h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0 ⊢ ∑ x in t, (∑ x in t', w x)⁻¹ • w x • z x = ∑ x in t', (∑ i in t', w i)⁻¹ • w x • z x [PROOFSTEP] apply sum_subset ht [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E t' : Finset ι ht : t ⊆ t' h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0 ⊢ ∀ (x : ι), x ∈ t' → ¬x ∈ t → (∑ x in t', w x)⁻¹ • w x • z x = 0 [PROOFSTEP] intro i hit' hit [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E t' : Finset ι ht : t ⊆ t' h : ∀ (i : ι), i ∈ t' → ¬i ∈ t → w i = 0 i : ι hit' : i ∈ t' hit : ¬i ∈ t ⊢ (∑ x in t', w x)⁻¹ • w i • z i = 0 [PROOFSTEP] rw [h i hit' hit, zero_smul, smul_zero] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E i : ι hit : i ∈ t hit' : ¬i ∈ filter (fun i => w i ≠ 0) t ⊢ w i = 0 [PROOFSTEP] simpa only [hit, mem_filter, true_and_iff, Ne.def, Classical.not_not] using hit' [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : 0 < ∑ i in s, w i ⊢ s ≠ ∅ [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ ∅ → 0 ≤ w i hw₁ : 0 < ∑ i in ∅, w i ⊢ False [PROOFSTEP] simp at hw₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : 0 < ∑ i in s, w i ⊢ centerMass s w f ≤ sup' s (_ : Finset.Nonempty s) f [PROOFSTEP] rw [centerMass, inv_smul_le_iff hw₁, sum_smul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : 0 < ∑ i in s, w i ⊢ ∑ i in s, w i • f i ≤ ∑ i in s, w i • sup' s (_ : Finset.Nonempty s) f [PROOFSTEP] exact sum_le_sum fun i hi => smul_le_smul_of_nonneg (le_sup' _ hi) <| hw₀ i hi [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : 0 < ∑ i in s, w i ⊢ s ≠ ∅ [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E f : ι → α w : ι → R hw₀ : ∀ (i : ι), i ∈ ∅ → 0 ≤ w i hw₁ : 0 < ∑ i in ∅, w i ⊢ False [PROOFSTEP] simp at hw₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hs : Convex R s ⊢ (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s [PROOFSTEP] induction' t using Finset.induction with i t hi ht [GOAL] case empty R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hs : Convex R s ⊢ (∀ (i : ι), i ∈ ∅ → 0 ≤ w i) → 0 < ∑ i in ∅, w i → (∀ (i : ι), i ∈ ∅ → z i ∈ s) → centerMass ∅ w z ∈ s [PROOFSTEP] simp [lt_irrefl] [GOAL] case insert R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s ⊢ (∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1) → 0 < ∑ i in insert i t, w i → (∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s) → centerMass (insert i t) w z ∈ s [PROOFSTEP] intro h₀ hpos hmem [GOAL] case insert R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < ∑ i in insert i t, w i hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] have zi : z i ∈ s := hmem _ (mem_insert_self _ _) [GOAL] case insert R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < ∑ i in insert i t, w i hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] have hs₀ : ∀ j ∈ t, 0 ≤ w j := fun j hj => h₀ j <| mem_insert_of_mem hj [GOAL] case insert R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < ∑ i in insert i t, w i hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] rw [sum_insert hi] at hpos [GOAL] case insert R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] by_cases hsum_t : ∑ j in t, w j = 0 [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] have ws : ∀ j ∈ t, w j = 0 := (sum_eq_zero_iff_of_nonneg hs₀).1 hsum_t [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] have wz : ∑ j in t, w j • z j = 0 := sum_eq_zero fun i hi => by simp [ws i hi] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝¹ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i✝ : ι t : Finset ι hi✝ : ¬i✝ ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i : ι), i ∈ insert i✝ t → 0 ≤ w i hpos : 0 < w i✝ + ∑ x in t, w x hmem : ∀ (i : ι), i ∈ insert i✝ t → z i ∈ s zi : z i✝ ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 i : ι hi : i ∈ t ⊢ w i • z i = 0 [PROOFSTEP] simp [ws i hi] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 wz : ∑ j in t, w j • z j = 0 ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] simp only [centerMass, sum_insert hi, wz, hsum_t, add_zero] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 wz : ∑ j in t, w j • z j = 0 ⊢ (w i)⁻¹ • w i • z i ∈ s [PROOFSTEP] simp only [hsum_t, add_zero] at hpos [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 wz : ∑ j in t, w j • z j = 0 hpos : 0 < w i ⊢ (w i)⁻¹ • w i • z i ∈ s [PROOFSTEP] rw [← mul_smul, inv_mul_cancel (ne_of_gt hpos), one_smul] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ∑ j in t, w j = 0 ws : ∀ (j : ι), j ∈ t → w j = 0 wz : ∑ j in t, w j • z j = 0 hpos : 0 < w i ⊢ z i ∈ s [PROOFSTEP] exact zi [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 ⊢ centerMass (insert i t) w z ∈ s [PROOFSTEP] rw [Finset.centerMass_insert _ _ _ hi hsum_t] [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 ⊢ (w i / (w i + ∑ j in t, w j)) • z i + ((∑ j in t, w j) / (w i + ∑ j in t, w j)) • centerMass t (fun j => w j) z ∈ s [PROOFSTEP] refine' convex_iff_div.1 hs zi (ht hs₀ _ _) _ (sum_nonneg hs₀) hpos [GOAL] case neg.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 ⊢ 0 < ∑ i in t, w i [PROOFSTEP] exact lt_of_le_of_ne (sum_nonneg hs₀) (Ne.symm hsum_t) [GOAL] case neg.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 ⊢ ∀ (i : ι), i ∈ t → z i ∈ s [PROOFSTEP] intro j hj [GOAL] case neg.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j✝ : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 j : ι hj : j ∈ t ⊢ z j ∈ s [PROOFSTEP] exact hmem j (mem_insert_of_mem hj) [GOAL] case neg.refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t✝ : Finset ι w : ι → R z : ι → E hs : Convex R s i : ι t : Finset ι hi : ¬i ∈ t ht : (∀ (i : ι), i ∈ t → 0 ≤ w i) → 0 < ∑ i in t, w i → (∀ (i : ι), i ∈ t → z i ∈ s) → centerMass t w z ∈ s h₀ : ∀ (i_1 : ι), i_1 ∈ insert i t → 0 ≤ w i_1 hpos : 0 < w i + ∑ x in t, w x hmem : ∀ (i_1 : ι), i_1 ∈ insert i t → z i_1 ∈ s zi : z i ∈ s hs₀ : ∀ (j : ι), j ∈ t → 0 ≤ w j hsum_t : ¬∑ j in t, w j = 0 ⊢ 0 ≤ w i [PROOFSTEP] exact h₀ _ (mem_insert_self _ _) [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E hs : Convex R s h₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i h₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ ∑ i in t, w i • z i ∈ s [PROOFSTEP] simpa only [h₁, centerMass, inv_one, one_smul] using hs.centerMass_mem h₀ (h₁.symm ▸ zero_lt_one) hz [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s ⊢ ∑ᶠ (i : ι), w i • z i ∈ s [PROOFSTEP] have hfin_w : (support (w ∘ PLift.down)).Finite := by by_contra H rw [finsum, dif_neg H] at h₁ exact zero_ne_one h₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s ⊢ Set.Finite (support (w ∘ PLift.down)) [PROOFSTEP] by_contra H [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s H : ¬Set.Finite (support (w ∘ PLift.down)) ⊢ False [PROOFSTEP] rw [finsum, dif_neg H] at h₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : 0 = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s H : ¬Set.Finite (support (w ∘ PLift.down)) ⊢ False [PROOFSTEP] exact zero_ne_one h₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s hfin_w : Set.Finite (support (w ∘ PLift.down)) ⊢ ∑ᶠ (i : ι), w i • z i ∈ s [PROOFSTEP] have hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ hfin_w.toFinset := (support_smul_subset_left _ _).trans hfin_w.coe_toFinset.ge [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s hfin_w : Set.Finite (support (w ∘ PLift.down)) hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w) ⊢ ∑ᶠ (i : ι), w i • z i ∈ s [PROOFSTEP] rw [finsum_eq_sum_pLift_of_support_subset hsub] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s hfin_w : Set.Finite (support (w ∘ PLift.down)) hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w) ⊢ ∑ i in Finite.toFinset hfin_w, w i.down • z i.down ∈ s [PROOFSTEP] refine' hs.sum_mem (fun _ _ => h₀ _) _ fun i hi => hz _ _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s hfin_w : Set.Finite (support (w ∘ PLift.down)) hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w) ⊢ ∑ i in Finite.toFinset hfin_w, w i.down = 1 [PROOFSTEP] rwa [finsum, dif_pos hfin_w] at h₁ [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E ι : Sort u_7 w : ι → R z : ι → E s : Set E hs : Convex R s h₀ : ∀ (i : ι), 0 ≤ w i h₁ : ∑ᶠ (i : ι), w i = 1 hz : ∀ (i : ι), w i ≠ 0 → z i ∈ s hfin_w : Set.Finite (support (w ∘ PLift.down)) hsub : support ((fun i => w i • z i) ∘ PLift.down) ⊆ ↑(Finite.toFinset hfin_w) i : PLift ι hi : i ∈ Finite.toFinset hfin_w ⊢ w i.down ≠ 0 [PROOFSTEP] rwa [hfin_w.mem_toFinset] at hi [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ⊢ Convex R s ↔ ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s [PROOFSTEP] refine' ⟨fun hs t w hw₀ hw₁ hts => hs.sum_mem hw₀ hw₁ hts, _⟩ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E ⊢ (∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s) → Convex R s [PROOFSTEP] intro h x hx y hy a b ha hb hab [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • x + b • y ∈ s [PROOFSTEP] by_cases h_cases : x = y [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : x = y ⊢ a • x + b • y ∈ s [PROOFSTEP] rw [h_cases, ← add_smul, hab, one_smul] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : x = y ⊢ y ∈ s [PROOFSTEP] exact hy [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ a • x + b • y ∈ s [PROOFSTEP] convert h { x, y } (fun z => if z = y then b else a) _ _ _ -- Porting note: Original proof had 2 `simp_intro i hi` [GOAL] case h.e'_4 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ a • x + b • y = ∑ x in {x, y}, (if x = y then b else a) • x [PROOFSTEP] simp only [sum_pair h_cases, if_neg h_cases, if_pos trivial] [GOAL] case neg.convert_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ ∀ (i : E), i ∈ {x, y} → 0 ≤ (fun z => if z = y then b else a) i [PROOFSTEP] intro i _ [GOAL] case neg.convert_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E a✝ : i ∈ {x, y} ⊢ 0 ≤ (fun z => if z = y then b else a) i [PROOFSTEP] simp only [GOAL] case neg.convert_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E a✝ : i ∈ {x, y} ⊢ 0 ≤ if i = y then b else a [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E a✝ : i ∈ {x, y} h✝ : i = y ⊢ 0 ≤ b [PROOFSTEP] assumption [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E a✝ : i ∈ {x, y} h✝ : ¬i = y ⊢ 0 ≤ a [PROOFSTEP] assumption [GOAL] case neg.convert_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ ∑ i in {x, y}, (fun z => if z = y then b else a) i = 1 [PROOFSTEP] simp only [sum_pair h_cases, if_neg h_cases, if_pos trivial, hab] [GOAL] case neg.convert_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ ∀ (x_1 : E), x_1 ∈ {x, y} → x_1 ∈ s [PROOFSTEP] intro i hi [GOAL] case neg.convert_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E hi : i ∈ {x, y} ⊢ i ∈ s [PROOFSTEP] simp only [Finset.mem_singleton, Finset.mem_insert] at hi [GOAL] case neg.convert_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E hi : i = x ∨ i = y ⊢ i ∈ s [PROOFSTEP] cases hi [GOAL] case neg.convert_3.inl R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E h✝ : i = x ⊢ i ∈ s [PROOFSTEP] subst i [GOAL] case neg.convert_3.inr R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y i : E h✝ : i = y ⊢ i ∈ s [PROOFSTEP] subst i [GOAL] case neg.convert_3.inl R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ x ∈ s [PROOFSTEP] assumption [GOAL] case neg.convert_3.inr R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E h : ∀ (t : Finset E) (w : E → R), (∀ (i : E), i ∈ t → 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ (x : E), x ∈ t → x ∈ s) → ∑ x in t, w x • x ∈ s x : E hx : x ∈ s y : E hy : y ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 h_cases : ¬x = y ⊢ y ∈ s [PROOFSTEP] assumption [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E ι : Type u_7 t : Finset ι p : ι → E w : ι → R hw₂ : ∑ i in t, w i = 1 ⊢ ↑(affineCombination R t p) w = centerMass t w p [PROOFSTEP] rw [affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one _ w _ hw₂ (0 : E), Finset.weightedVSubOfPoint_apply, vadd_eq_add, add_zero, t.centerMass_eq_of_sum_1 _ hw₂] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E ι : Type u_7 t : Finset ι p : ι → E w : ι → R hw₂ : ∑ i in t, w i = 1 ⊢ ∑ i in t, w i • (p i -ᵥ 0) = ∑ i in t, w i • p i [PROOFSTEP] simp_rw [vsub_eq_sub, sub_zero] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι v : ι → E w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 ⊢ ↑(affineCombination R s v) w ∈ ↑(convexHull R) (Set.range v) [PROOFSTEP] rw [affineCombination_eq_centerMass hw₁] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι v : ι → E w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 ⊢ centerMass s (fun i => w i) v ∈ ↑(convexHull R) (Set.range v) [PROOFSTEP] apply s.centerMass_mem_convexHull hw₀ [GOAL] case hws R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι v : ι → E w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 ⊢ 0 < ∑ i in s, w i [PROOFSTEP] simp [hw₁] [GOAL] case hz R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι v : ι → E w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 ⊢ ∀ (i : ι), i ∈ s → v i ∈ Set.range v [PROOFSTEP] simp [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s ⊢ centroid R s id ∈ ↑(convexHull R) ↑s [PROOFSTEP] rw [s.centroid_eq_centerMass hs] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s ⊢ centerMass s (centroidWeights R s) id ∈ ↑(convexHull R) ↑s [PROOFSTEP] apply s.centerMass_id_mem_convexHull [GOAL] case hw₀ R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s ⊢ ∀ (i : E), i ∈ s → 0 ≤ centroidWeights R s i [PROOFSTEP] simp only [inv_nonneg, imp_true_iff, Nat.cast_nonneg, Finset.centroidWeights_apply] [GOAL] case hws R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s ⊢ 0 < ∑ i in s, centroidWeights R s i [PROOFSTEP] have hs_card : (s.card : R) ≠ 0 := by simp [Finset.nonempty_iff_ne_empty.mp hs] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s ⊢ ↑(card s) ≠ 0 [PROOFSTEP] simp [Finset.nonempty_iff_ne_empty.mp hs] [GOAL] case hws R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E hs : Finset.Nonempty s hs_card : ↑(card s) ≠ 0 ⊢ 0 < ∑ i in s, centroidWeights R s i [PROOFSTEP] simp only [hs_card, Finset.sum_const, nsmul_eq_mul, mul_inv_cancel, Ne.def, not_false_iff, Finset.centroidWeights_apply, zero_lt_one] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z v : ι → E ⊢ ↑(convexHull R) (Set.range v) = {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] refine' Subset.antisymm (convexHull_min _ _) _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z v : ι → E ⊢ Set.range v ⊆ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] intro x hx [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z v : ι → E x : E hx : x ∈ Set.range v ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] obtain ⟨i, hi⟩ := Set.mem_range.mp hx [GOAL] case refine'_1.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z v : ι → E x : E hx : x ∈ Set.range v i : ι hi : v i = x ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] refine' ⟨{ i }, Function.const ι (1 : R), by simp, by simp, by simp [hi]⟩ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z v : ι → E x : E hx : x ∈ Set.range v i : ι hi : v i = x ⊢ ∀ (i_1 : ι), i_1 ∈ {i} → 0 ≤ const ι 1 i_1 [PROOFSTEP] simp [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z v : ι → E x : E hx : x ∈ Set.range v i : ι hi : v i = x ⊢ Finset.sum {i} (const ι 1) = 1 [PROOFSTEP] simp [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z v : ι → E x : E hx : x ∈ Set.range v i : ι hi : v i = x ⊢ ↑(affineCombination R {i} v) (const ι 1) = x [PROOFSTEP] simp [hi] [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z v : ι → E ⊢ Convex R {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] rintro x ⟨s, w, hw₀, hw₁, rfl⟩ y ⟨s', w', hw₀', hw₁', rfl⟩ a b ha hb hab [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] let W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 ⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] have hW₁ : (s ∪ s').sum W = 1 := by rw [sum_add_distrib, ← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s'), sum_ite_of_true _ _ fun i hi => hi, sum_ite_of_true _ _ fun i hi => hi, ← mul_sum, ← mul_sum, hw₁, hw₁', ← add_mul, hab, mul_one] <;> intro i _ hi' <;> simp [hi'] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 ⊢ Finset.sum (s ∪ s') W = 1 [PROOFSTEP] rw [sum_add_distrib, ← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s'), sum_ite_of_true _ _ fun i hi => hi, sum_ite_of_true _ _ fun i hi => hi, ← mul_sum, ← mul_sum, hw₁, hw₁', ← add_mul, hab, mul_one] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 ⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s' → (if x ∈ s' then b * w' x else 0) = 0 [PROOFSTEP] intro i _ hi' [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 ⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s → (if x ∈ s then a * w x else 0) = 0 [PROOFSTEP] intro i _ hi' [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 i : ι a✝ : i ∈ s ∪ s' hi' : ¬i ∈ s' ⊢ (if i ∈ s' then b * w' i else 0) = 0 [PROOFSTEP] simp [hi'] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 i : ι a✝ : i ∈ s ∪ s' hi' : ¬i ∈ s ⊢ (if i ∈ s then a * w i else 0) = 0 [PROOFSTEP] simp [hi'] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} [PROOFSTEP] refine' ⟨s ∪ s', W, _, hW₁, _⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ∀ (i : ι), i ∈ s ∪ s' → 0 ≤ W i [PROOFSTEP] rintro i - [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι ⊢ 0 ≤ W i [PROOFSTEP] by_cases hi : i ∈ s [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : i ∈ s ⊢ 0 ≤ W i [PROOFSTEP] by_cases hi' : i ∈ s' [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : ¬i ∈ s ⊢ 0 ≤ W i [PROOFSTEP] by_cases hi' : i ∈ s' [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : i ∈ s hi' : i ∈ s' ⊢ 0 ≤ W i [PROOFSTEP] simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)] [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : i ∈ s hi' : ¬i ∈ s' ⊢ 0 ≤ W i [PROOFSTEP] simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : ¬i ∈ s hi' : i ∈ s' ⊢ 0 ≤ W i [PROOFSTEP] simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)] [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι hi : ¬i ∈ s hi' : ¬i ∈ s' ⊢ 0 ≤ W i [PROOFSTEP] simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ↑(affineCombination R (s ∪ s') v) W = a • ↑(affineCombination R s v) w + b • ↑(affineCombination R s' v) w' [PROOFSTEP] simp_rw [affineCombination_eq_linear_combination (s ∪ s') v _ hW₁, affineCombination_eq_linear_combination s v w hw₁, affineCombination_eq_linear_combination s' v w' hw₁', add_smul, sum_add_distrib] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ∑ x in s ∪ s', (if x ∈ s then a * w x else 0) • v x + ∑ x in s ∪ s', (if x ∈ s' then b * w' x else 0) • v x = a • ∑ i in s, w i • v i + b • ∑ i in s', w' i • v i [PROOFSTEP] rw [← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s')] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ∑ x in s, (if x ∈ s then a * w x else 0) • v x + ∑ x in s', (if x ∈ s' then b * w' x else 0) • v x = a • ∑ i in s, w i • v i + b • ∑ i in s', w' i • v i [PROOFSTEP] simp only [ite_smul, sum_ite_of_true _ _ fun _ hi => hi, mul_smul, ← smul_sum] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s' → (if x ∈ s' then b * w' x else 0) • v x = 0 [PROOFSTEP] intro i _ hi' [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι a✝ : i ∈ s ∪ s' hi' : ¬i ∈ s' ⊢ (if i ∈ s' then b * w' i else 0) • v i = 0 [PROOFSTEP] simp [hi'] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 ⊢ ∀ (x : ι), x ∈ s ∪ s' → ¬x ∈ s → (if x ∈ s then a * w x else 0) • v x = 0 [PROOFSTEP] intro i _ hi' [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ (i : ι), i ∈ s' → 0 ≤ w' i hw₁' : Finset.sum s' w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 hW₁ : Finset.sum (s ∪ s') W = 1 i : ι a✝ : i ∈ s ∪ s' hi' : ¬i ∈ s ⊢ (if i ∈ s then a * w i else 0) • v i = 0 [PROOFSTEP] simp [hi'] [GOAL] case refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z v : ι → E ⊢ {x | ∃ s w x_1 x_2, ↑(affineCombination R s v) w = x} ⊆ ↑(convexHull R) (Set.range v) [PROOFSTEP] rintro x ⟨s, w, hw₀, hw₁, rfl⟩ [GOAL] case refine'_3.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z v : ι → E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 ⊢ ↑(affineCombination R s v) w ∈ ↑(convexHull R) (Set.range v) [PROOFSTEP] exact affineCombination_mem_convexHull hw₀ hw₁ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ ↑(convexHull R) s = {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] refine' Subset.antisymm (convexHull_min _ _) _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ s ⊆ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] intro x hx [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E x : E hx : x ∈ s ⊢ x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] use PUnit, { PUnit.unit }, fun _ => 1, fun _ => x, fun _ _ => zero_le_one, Finset.sum_singleton, fun _ _ => hx [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E x : E hx : x ∈ s ⊢ (centerMass {PUnit.unit} (fun x => 1) fun x_1 => x) = x [PROOFSTEP] simp only [Finset.centerMass, Finset.sum_singleton, inv_one, one_smul] [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ Convex R {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] rintro x ⟨ι, sx, wx, zx, hwx₀, hwx₁, hzx, rfl⟩ y ⟨ι', sy, wy, zy, hwy₀, hwy₁, hzy, rfl⟩ a b ha hb hab [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • centerMass sx wx zx + b • centerMass sy wy zy ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] rw [Finset.centerMass_segment' _ _ _ _ _ _ hwx₁ hwy₁ _ _ hab] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ centerMass (disjSum sx sy) (Sum.elim (fun i => a * wx i) fun j => b * wy j) (Sum.elim zx zy) ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} [PROOFSTEP] refine' ⟨_, _, _, _, _, _, _, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∀ (i : ι ⊕ ι'), i ∈ disjSum sx sy → 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i [PROOFSTEP] rintro i hi [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι ⊕ ι' hi : i ∈ disjSum sx sy ⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i [PROOFSTEP] rw [Finset.mem_disjSum] at hi [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι ⊕ ι' hi : (∃ a, a ∈ sx ∧ Sum.inl a = i) ∨ ∃ b, b ∈ sy ∧ Sum.inr b = i ⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) i [PROOFSTEP] rcases hi with (⟨j, hj, rfl⟩ | ⟨j, hj, rfl⟩) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inl.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι hj : j ∈ sx ⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) (Sum.inl j) [PROOFSTEP] simp only [Sum.elim_inl, Sum.elim_inr] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inr.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι' hj : j ∈ sy ⊢ 0 ≤ Sum.elim (fun i => a * wx i) (fun j => b * wy j) (Sum.inr j) [PROOFSTEP] simp only [Sum.elim_inl, Sum.elim_inr] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inl.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι hj : j ∈ sx ⊢ 0 ≤ a * wx j [PROOFSTEP] apply_rules [mul_nonneg, hwx₀, hwy₀] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.inr.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι' hj : j ∈ sy ⊢ 0 ≤ b * wy j [PROOFSTEP] apply_rules [mul_nonneg, hwx₀, hwy₀] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∑ i in disjSum sx sy, Sum.elim (fun i => a * wx i) (fun j => b * wy j) i = 1 [PROOFSTEP] simp [Finset.sum_sum_elim, Finset.mul_sum.symm, *] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∀ (i : ι ⊕ ι'), i ∈ disjSum sx sy → Sum.elim zx zy i ∈ s [PROOFSTEP] intro i hi [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι ⊕ ι' hi : i ∈ disjSum sx sy ⊢ Sum.elim zx zy i ∈ s [PROOFSTEP] rw [Finset.mem_disjSum] at hi [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : ι ⊕ ι' hi : (∃ a, a ∈ sx ∧ Sum.inl a = i) ∨ ∃ b, b ∈ sy ∧ Sum.inr b = i ⊢ Sum.elim zx zy i ∈ s [PROOFSTEP] rcases hi with (⟨j, hj, rfl⟩ | ⟨j, hj, rfl⟩) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.inl.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι hj : j ∈ sx ⊢ Sum.elim zx zy (Sum.inl j) ∈ s [PROOFSTEP] apply_rules [hzx, hzy] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.inr.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι'✝ : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j✝ : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E s : Set E ι : Type sx : Finset ι wx : ι → R zx : ι → E hwx₀ : ∀ (i : ι), i ∈ sx → 0 ≤ wx i hwx₁ : ∑ i in sx, wx i = 1 hzx : ∀ (i : ι), i ∈ sx → zx i ∈ s ι' : Type sy : Finset ι' wy : ι' → R zy : ι' → E hwy₀ : ∀ (i : ι'), i ∈ sy → 0 ≤ wy i hwy₁ : ∑ i in sy, wy i = 1 hzy : ∀ (i : ι'), i ∈ sy → zy i ∈ s a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 j : ι' hj : j ∈ sy ⊢ Sum.elim zx zy (Sum.inr j) ∈ s [PROOFSTEP] apply_rules [hzx, hzy] [GOAL] case refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} ⊆ ↑(convexHull R) s [PROOFSTEP] rintro _ ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩ [GOAL] case refine'_3.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ centerMass t w z ∈ ↑(convexHull R) s [PROOFSTEP] exact t.centerMass_mem_convexHull hw₀ (hw₁.symm ▸ zero_lt_one) hz [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E ⊢ ↑(convexHull R) ↑s = {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] refine' Set.Subset.antisymm (convexHull_min _ _) _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E ⊢ ↑s ⊆ {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] intro x hx [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ ↑s ⊢ x ∈ {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] rw [Finset.mem_coe] at hx [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s ⊢ x ∈ {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] refine' ⟨_, _, _, Finset.centerMass_ite_eq _ _ _ hx⟩ [GOAL] case refine'_1.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s ⊢ ∀ (y : E), y ∈ s → 0 ≤ if x = y then 1 else 0 [PROOFSTEP] intros [GOAL] case refine'_1.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s y✝ : E a✝ : y✝ ∈ s ⊢ 0 ≤ if x = y✝ then 1 else 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s y✝ : E a✝ : y✝ ∈ s h✝ : x = y✝ ⊢ 0 ≤ 1 case neg R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s y✝ : E a✝ : y✝ ∈ s h✝ : ¬x = y✝ ⊢ 0 ≤ 0 [PROOFSTEP] exacts [zero_le_one, le_refl 0] [GOAL] case refine'_1.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E hx : x ∈ s ⊢ (∑ y in s, if x = y then 1 else 0) = 1 [PROOFSTEP] rw [Finset.sum_ite_eq, if_pos hx] [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E ⊢ Convex R {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] rintro x ⟨wx, hwx₀, hwx₁, rfl⟩ y ⟨wy, hwy₀, hwy₁, rfl⟩ a b ha hb hab [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E wx : E → R hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y hwx₁ : ∑ y in s, wx y = 1 wy : E → R hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y hwy₁ : ∑ y in s, wy y = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • centerMass s wx id + b • centerMass s wy id ∈ {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] rw [Finset.centerMass_segment _ _ _ _ hwx₁ hwy₁ _ _ hab] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E wx : E → R hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y hwx₁ : ∑ y in s, wx y = 1 wy : E → R hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y hwy₁ : ∑ y in s, wy y = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ centerMass s (fun i => a * wx i + b * wy i) id ∈ {x | ∃ w x_1 x_2, centerMass s w id = x} [PROOFSTEP] refine' ⟨_, _, _, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E wx : E → R hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y hwx₁ : ∑ y in s, wx y = 1 wy : E → R hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y hwy₁ : ∑ y in s, wy y = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∀ (y : E), y ∈ s → 0 ≤ a * wx y + b * wy y [PROOFSTEP] rintro i hi [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E wx : E → R hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y hwx₁ : ∑ y in s, wx y = 1 wy : E → R hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y hwy₁ : ∑ y in s, wy y = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 i : E hi : i ∈ s ⊢ 0 ≤ a * wx i + b * wy i [PROOFSTEP] apply_rules [add_nonneg, mul_nonneg, hwx₀, hwy₀] [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E wx : E → R hwx₀ : ∀ (y : E), y ∈ s → 0 ≤ wx y hwx₁ : ∑ y in s, wx y = 1 wy : E → R hwy₀ : ∀ (y : E), y ∈ s → 0 ≤ wy y hwy₁ : ∑ y in s, wy y = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∑ y in s, (a * wx y + b * wy y) = 1 [PROOFSTEP] simp only [Finset.sum_add_distrib, Finset.mul_sum.symm, mul_one, *] [GOAL] case refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E ⊢ {x | ∃ w x_1 x_2, centerMass s w id = x} ⊆ ↑(convexHull R) ↑s [PROOFSTEP] rintro _ ⟨w, hw₀, hw₁, rfl⟩ [GOAL] case refine'_3.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset E w : E → R hw₀ : ∀ (y : E), y ∈ s → 0 ≤ w y hw₁ : ∑ y in s, w y = 1 ⊢ centerMass s w id ∈ ↑(convexHull R) ↑s [PROOFSTEP] exact s.centerMass_mem_convexHull (fun x hx => hw₀ _ hx) (hw₁.symm ▸ zero_lt_one) fun x hx => hx [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Finset E x : E ⊢ x ∈ ↑(convexHull R) ↑s ↔ ∃ w x_1 x_2, centerMass s w id = x [PROOFSTEP] rw [Finset.convexHull_eq, Set.mem_setOf_eq] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E hs : Set.Finite s ⊢ ↑(convexHull R) s = {x | ∃ w x_1 x_2, centerMass (Finite.toFinset hs) w id = x} [PROOFSTEP] simpa only [Set.Finite.coe_toFinset, Set.Finite.mem_toFinset, exists_prop] using hs.toFinset.convexHull_eq [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ ↑(convexHull R) s = ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t [PROOFSTEP] refine' Subset.antisymm _ _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ ↑(convexHull R) s ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t [PROOFSTEP] rw [_root_.convexHull_eq] [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} ⊆ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t [PROOFSTEP] rintro x ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩ [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ centerMass t w z ∈ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t [PROOFSTEP] simp only [mem_iUnion] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ ∃ i i_1, centerMass t w z ∈ ↑(convexHull R) ↑i [PROOFSTEP] refine' ⟨t.image z, _, _⟩ [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ ↑(Finset.image z t) ⊆ s [PROOFSTEP] rw [coe_image, Set.image_subset_iff] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ ↑t ⊆ z ⁻¹' s [PROOFSTEP] exact hz [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ centerMass t w z ∈ ↑(convexHull R) ↑(Finset.image z t) [PROOFSTEP] apply t.centerMass_mem_convexHull hw₀ [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2.hws R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ 0 < ∑ i in t, w i [PROOFSTEP] simp only [hw₁, zero_lt_one] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.refine'_2.hz R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z✝ : ι✝ → E s : Set E ι : Type t : Finset ι w : ι → R z : ι → E hw₀ : ∀ (i : ι), i ∈ t → 0 ≤ w i hw₁ : ∑ i in t, w i = 1 hz : ∀ (i : ι), i ∈ t → z i ∈ s ⊢ ∀ (i : ι), i ∈ t → z i ∈ ↑(Finset.image z t) [PROOFSTEP] exact fun i hi => Finset.mem_coe.2 (Finset.mem_image_of_mem _ hi) [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E s : Set E ⊢ ⋃ (t : Finset E) (_ : ↑t ⊆ s), ↑(convexHull R) ↑t ⊆ ↑(convexHull R) s [PROOFSTEP] exact iUnion_subset fun i => iUnion_subset convexHull_mono [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E t : Set F x : E y : F hx : x ∈ ↑(convexHull R) s hy : y ∈ ↑(convexHull R) t ⊢ (x, y) ∈ ↑(convexHull R) (s ×ˢ t) [PROOFSTEP] rw [_root_.convexHull_eq] at hx hy ⊢ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E t : Set F x : E y : F hx : x ∈ {x | ∃ ι t w z x_1 x_2 x_3, centerMass t w z = x} hy : y ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} ⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} [PROOFSTEP] obtain ⟨ι, a, w, S, hw, hw', hS, hSp⟩ := hx [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F hy : y ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x ⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} [PROOFSTEP] obtain ⟨κ, b, v, T, hv, hv', hT, hTp⟩ := hy [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y ⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} [PROOFSTEP] have h_sum : ∑ i : ι × κ in a ×ˢ b, w i.fst * v i.snd = 1 := by rw [Finset.sum_product, ← hw'] congr ext i have : ∑ y : κ in b, w i * v y = ∑ y : κ in b, v y * w i := by congr ext simp [mul_comm] rw [this, ← Finset.sum_mul, hv'] simp [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y ⊢ ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 [PROOFSTEP] rw [Finset.sum_product, ← hw'] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y ⊢ ∑ x in a, ∑ y in b, w (x, y).fst * v (x, y).snd = ∑ i in a, w i [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y ⊢ (fun x => ∑ y in b, w (x, y).fst * v (x, y).snd) = fun i => w i [PROOFSTEP] ext i [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι ⊢ ∑ y in b, w (i, y).fst * v (i, y).snd = w i [PROOFSTEP] have : ∑ y : κ in b, w i * v y = ∑ y : κ in b, v y * w i := by congr ext simp [mul_comm] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι ⊢ ∑ y in b, w i * v y = ∑ y in b, v y * w i [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι ⊢ (fun y => w i * v y) = fun y => v y * w i [PROOFSTEP] ext [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι x✝ : κ ⊢ w i * v x✝ = v x✝ * w i [PROOFSTEP] simp [mul_comm] [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι this : ∑ y in b, w i * v y = ∑ y in b, v y * w i ⊢ ∑ y in b, w (i, y).fst * v (i, y).snd = w i [PROOFSTEP] rw [this, ← Finset.sum_mul, hv'] [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y i : ι this : ∑ y in b, w i * v y = ∑ y in b, v y * w i ⊢ 1 * w i = w i [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (x, y) ∈ {x | ∃ ι t_1 w z x_1 x_2 x_3, centerMass t_1 w z = x} [PROOFSTEP] refine' ⟨ι × κ, a ×ˢ b, fun p => w p.1 * v p.2, fun p => (S p.1, T p.2), fun p hp => _, h_sum, fun p hp => _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 p : ι × κ hp : p ∈ a ×ˢ b ⊢ 0 ≤ (fun p => w p.fst * v p.snd) p [PROOFSTEP] rw [mem_product] at hp [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 p : ι × κ hp : p.fst ∈ a ∧ p.snd ∈ b ⊢ 0 ≤ (fun p => w p.fst * v p.snd) p [PROOFSTEP] exact mul_nonneg (hw p.1 hp.1) (hv p.2 hp.2) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 p : ι × κ hp : p ∈ a ×ˢ b ⊢ (fun p => (S p.fst, T p.snd)) p ∈ s ×ˢ t [PROOFSTEP] rw [mem_product] at hp [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 p : ι × κ hp : p.fst ∈ a ∧ p.snd ∈ b ⊢ (fun p => (S p.fst, T p.snd)) p ∈ s ×ˢ t [PROOFSTEP] exact ⟨hS p.1 hp.1, hT p.2 hp.2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)) = (x, y) [PROOFSTEP] ext [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)).fst = (x, y).fst [PROOFSTEP] rw [← hSp, Finset.centerMass_eq_of_sum_1 _ _ hw', Finset.centerMass_eq_of_sum_1 _ _ h_sum] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (∑ i in a ×ˢ b, (w i.fst * v i.snd) • (S i.fst, T i.snd)).fst = (∑ i in a, w i • S i, y).fst [PROOFSTEP] simp_rw [Prod.fst_sum, Prod.smul_mk] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ ∑ x in a ×ˢ b, (w x.fst * v x.snd) • S x.fst = ∑ i in a, w i • S i [PROOFSTEP] rw [Finset.sum_product] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ ∑ x in a, ∑ y in b, (w (x, y).fst * v (x, y).snd) • S (x, y).fst = ∑ i in a, w i • S i [PROOFSTEP] congr [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (fun x => ∑ y in b, (w (x, y).fst * v (x, y).snd) • S (x, y).fst) = fun i => w i • S i [PROOFSTEP] ext i [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 i : ι ⊢ ∑ y in b, (w (i, y).fst * v (i, y).snd) • S (i, y).fst = w i • S i [PROOFSTEP] have : (∑ j : κ in b, (w i * v j) • S i) = ∑ j : κ in b, v j • w i • S i := by congr ext rw [mul_smul, smul_comm] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 i : ι ⊢ ∑ j in b, (w i * v j) • S i = ∑ j in b, v j • w i • S i [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 i : ι ⊢ (fun j => (w i * v j) • S i) = fun j => v j • w i • S i [PROOFSTEP] ext [GOAL] case e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 i : ι x✝ : κ ⊢ (w i * v x✝) • S i = v x✝ • w i • S i [PROOFSTEP] rw [mul_smul, smul_comm] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₁.e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i✝ j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 i : ι this : ∑ j in b, (w i * v j) • S i = ∑ j in b, v j • w i • S i ⊢ ∑ y in b, (w (i, y).fst * v (i, y).snd) • S (i, y).fst = w i • S i [PROOFSTEP] rw [this, ← Finset.sum_smul, hv', one_smul] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (centerMass (a ×ˢ b) (fun p => w p.fst * v p.snd) fun p => (S p.fst, T p.snd)).snd = (x, y).snd [PROOFSTEP] rw [← hTp, Finset.centerMass_eq_of_sum_1 _ _ hv', Finset.centerMass_eq_of_sum_1 _ _ h_sum] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (∑ i in a ×ˢ b, (w i.fst * v i.snd) • (S i.fst, T i.snd)).snd = (x, ∑ i in b, v i • T i).snd [PROOFSTEP] simp_rw [Prod.snd_sum, Prod.smul_mk] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ ∑ x in a ×ˢ b, (w x.fst * v x.snd) • T x.snd = ∑ i in b, v i • T i [PROOFSTEP] rw [Finset.sum_product, Finset.sum_comm] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂ R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ ∑ y in b, ∑ x in a, (w (x, y).fst * v (x, y).snd) • T (x, y).snd = ∑ i in b, v i • T i [PROOFSTEP] congr [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 ⊢ (fun y => ∑ x in a, (w (x, y).fst * v (x, y).snd) • T (x, y).snd) = fun i => v i • T i [PROOFSTEP] ext j [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j✝ : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 j : κ ⊢ ∑ x in a, (w (x, j).fst * v (x, j).snd) • T (x, j).snd = v j • T j [PROOFSTEP] simp_rw [mul_smul] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.h₂.e_f.h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j✝ : ι✝ c : R t✝ : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E t : Set F x : E y : F ι : Type a : Finset ι w : ι → R S : ι → E hw : ∀ (i : ι), i ∈ a → 0 ≤ w i hw' : ∑ i in a, w i = 1 hS : ∀ (i : ι), i ∈ a → S i ∈ s hSp : centerMass a w S = x κ : Type b : Finset κ v : κ → R T : κ → F hv : ∀ (i : κ), i ∈ b → 0 ≤ v i hv' : ∑ i in b, v i = 1 hT : ∀ (i : κ), i ∈ b → T i ∈ t hTp : centerMass b v T = y h_sum : ∑ i in a ×ˢ b, w i.fst * v i.snd = 1 j : κ ⊢ ∑ x in a, w x • v j • T j = v j • T j [PROOFSTEP] rw [← Finset.sum_smul, hw', one_smul] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s t : Set E ⊢ ↑(convexHull R) (s + t) = ↑(convexHull R) s + ↑(convexHull R) t [PROOFSTEP] simp_rw [← image2_add, ← image_prod, IsLinearMap.isLinearMap_add.convexHull_image, convexHull_prod] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁷ : LinearOrderedField R inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t✝ : Finset ι w : ι → R z : ι → E s t : Set E ⊢ ↑(convexHull R) (s - t) = ↑(convexHull R) s - ↑(convexHull R) t [PROOFSTEP] simp_rw [sub_eq_add_neg, convexHull_add, convexHull_neg] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R ⊢ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0) = stdSimplex R ι [PROOFSTEP] refine' Subset.antisymm (convexHull_min _ (convex_stdSimplex R ι)) _ [GOAL] case refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R ⊢ (Set.range fun i j => if i = j then 1 else 0) ⊆ stdSimplex R ι [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case refine'_1.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i✝ j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R i : ι ⊢ (fun i j => if i = j then 1 else 0) i ∈ stdSimplex R ι [PROOFSTEP] exact ite_eq_mem_stdSimplex R i [GOAL] case refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R ⊢ stdSimplex R ι ⊆ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0) [PROOFSTEP] rintro w ⟨hw₀, hw₁⟩ [GOAL] case refine'_2.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E inst✝ : Fintype ι f w : ι → R hw₀ : ∀ (x : ι), 0 ≤ w x hw₁ : ∑ x : ι, w x = 1 ⊢ w ∈ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0) [PROOFSTEP] rw [pi_eq_sum_univ w, ← Finset.univ.centerMass_eq_of_sum_1 _ hw₁] [GOAL] case refine'_2.intro R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E inst✝ : Fintype ι f w : ι → R hw₀ : ∀ (x : ι), 0 ≤ w x hw₁ : ∑ x : ι, w x = 1 ⊢ (centerMass Finset.univ (fun i => w i) fun i j => if i = j then 1 else 0) ∈ ↑(convexHull R) (Set.range fun i j => if i = j then 1 else 0) [PROOFSTEP] exact Finset.univ.centerMass_mem_convexHull (fun i _ => hw₀ i) (hw₁.symm ▸ zero_lt_one) fun i _ => mem_range_self i [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R s : Set E hs : Set.Finite s ⊢ ↑(convexHull R) s = ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) '' stdSimplex R ↑s [PROOFSTEP] rw [← @convexHull_basis_eq_stdSimplex _ _ _ hs.fintype, ← LinearMap.convexHull_image, ← Set.range_comp] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R s : Set E hs : Set.Finite s ⊢ ↑(convexHull R) s = ↑(convexHull R) (range (↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) ∘ fun i j => if i = j then 1 else 0)) [PROOFSTEP] simp_rw [Function.comp] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R s : Set E hs : Set.Finite s ⊢ ↑(convexHull R) s = ↑(convexHull R) (range fun x => ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x = j then 1 else 0) [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R s : Set E hs : Set.Finite s ⊢ s = range fun x => ↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x = j then 1 else 0 [PROOFSTEP] convert Subtype.range_coe.symm [GOAL] case h.e'_3.h.e'_3.h R : Type u_1 E : Type u_2 F : Type u_3 ι : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w : ι → R z : ι → E inst✝ : Fintype ι f : ι → R s : Set E hs : Set.Finite s x✝ : ↑s ⊢ (↑(∑ x : ↑s, LinearMap.smulRight (LinearMap.proj x) ↑x) fun j => if x✝ = j then 1 else 0) = ↑x✝ [PROOFSTEP] simp [LinearMap.sum_apply, ite_smul _ (1 : R), Finset.filter_eq, @Finset.mem_univ _ hs.fintype _] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E ⊢ ↑(convexHull R) (Set.range ↑b) = {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} [PROOFSTEP] rw [convexHull_range_eq_exists_affineCombination] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E ⊢ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} = {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} [PROOFSTEP] ext x [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} ↔ x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} [PROOFSTEP] refine' ⟨_, fun hx => _⟩ [GOAL] case h.refine'_1 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} → x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} [PROOFSTEP] rintro ⟨s, w, hw₀, hw₁, rfl⟩ i [GOAL] case h.refine'_1.intro.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 i : ι ⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w) [PROOFSTEP] by_cases hi : i ∈ s [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 i : ι hi : i ∈ s ⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w) [PROOFSTEP] rw [b.coord_apply_combination_of_mem hi hw₁] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 i : ι hi : i ∈ s ⊢ 0 ≤ w i [PROOFSTEP] exact hw₀ i hi [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₀ : ∀ (i : ι), i ∈ s → 0 ≤ w i hw₁ : Finset.sum s w = 1 i : ι hi : ¬i ∈ s ⊢ 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w) [PROOFSTEP] rw [b.coord_apply_combination_of_not_mem hi hw₁] [GOAL] case h.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} [PROOFSTEP] have hx' : x ∈ affineSpan R (range b) := by rw [b.tot] exact AffineSubspace.mem_top R E x [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} ⊢ x ∈ affineSpan R (Set.range ↑b) [PROOFSTEP] rw [b.tot] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} ⊢ x ∈ ⊤ [PROOFSTEP] exact AffineSubspace.mem_top R E x [GOAL] case h.refine'_2 R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s : Set E i j : ι✝ c : R t : Finset ι✝ w : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E x : E hx : x ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} hx' : x ∈ affineSpan R (Set.range ↑b) ⊢ x ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} [PROOFSTEP] obtain ⟨s, w, hw₁, rfl⟩ := (mem_affineSpan_iff_eq_affineCombination R E).mp hx' [GOAL] case h.refine'_2.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₁ : ∑ i in s, w i = 1 hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b) ⊢ ↑(affineCombination R s ↑b) w ∈ {x | ∃ s w x_1 x_2, ↑(affineCombination R s ↑b) w = x} [PROOFSTEP] refine' ⟨s, w, _, hw₁, rfl⟩ [GOAL] case h.refine'_2.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₁ : ∑ i in s, w i = 1 hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b) ⊢ ∀ (i : ι), i ∈ s → 0 ≤ w i [PROOFSTEP] intro i hi [GOAL] case h.refine'_2.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₁ : ∑ i in s, w i = 1 hx : ↑(affineCombination R s ↑b) w ∈ {x | ∀ (i : ι), 0 ≤ ↑(coord b i) x} hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b) i : ι hi : i ∈ s ⊢ 0 ≤ w i [PROOFSTEP] specialize hx i [GOAL] case h.refine'_2.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₁ : ∑ i in s, w i = 1 hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b) i : ι hi : i ∈ s hx : 0 ≤ ↑(coord b i) (↑(affineCombination R s ↑b) w) ⊢ 0 ≤ w i [PROOFSTEP] rw [b.coord_apply_combination_of_mem hi hw₁] at hx [GOAL] case h.refine'_2.intro.intro.intro R : Type u_1 E : Type u_2 F : Type u_3 ι✝ : Type u_4 ι' : Type u_5 α : Type u_6 inst✝⁸ : LinearOrderedField R inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : LinearOrderedAddCommGroup α inst✝⁴ : Module R E inst✝³ : Module R F inst✝² : Module R α inst✝¹ : OrderedSMul R α s✝ : Set E i✝ j : ι✝ c : R t : Finset ι✝ w✝ : ι✝ → R z : ι✝ → E inst✝ : Fintype ι✝ f : ι✝ → R ι : Type u_7 b : AffineBasis ι R E s : Finset ι w : ι → R hw₁ : ∑ i in s, w i = 1 hx' : ↑(affineCombination R s ↑b) w ∈ affineSpan R (Set.range ↑b) i : ι hi : i ∈ s hx : 0 ≤ w i ⊢ 0 ≤ w i [PROOFSTEP] exact hx
{"mathlib_filename": "Mathlib.Analysis.Convex.Combination", "llama_tokens": 93746}
[GOAL] x : ℝ h : cos x ≠ 0 ⊢ HasStrictDerivAt tan (↑1 / cos x ^ 2) x [PROOFSTEP] exact_mod_cast (Complex.hasStrictDerivAt_tan (by exact_mod_cast h)).real_of_complex [GOAL] x : ℝ h : cos x ≠ 0 ⊢ Complex.cos ↑x ≠ 0 [PROOFSTEP] exact_mod_cast h [GOAL] x : ℝ h : cos x ≠ 0 ⊢ HasDerivAt tan (↑1 / cos x ^ 2) x [PROOFSTEP] exact_mod_cast (Complex.hasDerivAt_tan (by exact_mod_cast h)).real_of_complex [GOAL] x : ℝ h : cos x ≠ 0 ⊢ Complex.cos ↑x ≠ 0 [PROOFSTEP] exact_mod_cast h [GOAL] x : ℝ hx : cos x = 0 ⊢ Tendsto (fun x => |tan x|) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] have hx : Complex.cos x = 0 := by exact_mod_cast hx [GOAL] x : ℝ hx : cos x = 0 ⊢ Complex.cos ↑x = 0 [PROOFSTEP] exact_mod_cast hx [GOAL] x : ℝ hx✝ : cos x = 0 hx : Complex.cos ↑x = 0 ⊢ Tendsto (fun x => |tan x|) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] simp only [← Complex.abs_ofReal, Complex.ofReal_tan] [GOAL] x : ℝ hx✝ : cos x = 0 hx : Complex.cos ↑x = 0 ⊢ Tendsto (fun x => ↑Complex.abs (Complex.tan ↑x)) (𝓝[{x}ᶜ] x) atTop [PROOFSTEP] refine' (Complex.tendsto_abs_tan_of_cos_eq_zero hx).comp _ [GOAL] x : ℝ hx✝ : cos x = 0 hx : Complex.cos ↑x = 0 ⊢ Tendsto (fun x => ↑x) (𝓝[{x}ᶜ] x) (𝓝[{↑x}ᶜ] ↑x) [PROOFSTEP] refine' Tendsto.inf Complex.continuous_ofReal.continuousAt _ [GOAL] x : ℝ hx✝ : cos x = 0 hx : Complex.cos ↑x = 0 ⊢ Tendsto (fun x => ↑x) (𝓟 {x}ᶜ) (𝓟 {↑x}ᶜ) [PROOFSTEP] exact tendsto_principal_principal.2 fun y => mt Complex.ofReal_inj.1 [GOAL] x : ℝ ⊢ ContinuousAt tan x ↔ cos x ≠ 0 [PROOFSTEP] refine' ⟨fun hc h₀ => _, fun h => (hasDerivAt_tan h).continuousAt⟩ [GOAL] x : ℝ hc : ContinuousAt tan x h₀ : cos x = 0 ⊢ False [PROOFSTEP] exact not_tendsto_nhds_of_tendsto_atTop (tendsto_abs_tan_of_cos_eq_zero h₀) _ (hc.norm.tendsto.mono_left inf_le_left) [GOAL] x : ℝ h : cos x = 0 ⊢ deriv tan x = ↑1 / cos x ^ 2 [PROOFSTEP] have : ¬DifferentiableAt ℝ tan x := mt differentiableAt_tan.1 (Classical.not_not.2 h) [GOAL] x : ℝ h : cos x = 0 this : ¬DifferentiableAt ℝ tan x ⊢ deriv tan x = ↑1 / cos x ^ 2 [PROOFSTEP] simp [deriv_zero_of_not_differentiableAt this, h, sq] [GOAL] n : ℕ∞ x : ℝ h : cos x ≠ 0 ⊢ Complex.cos ↑x ≠ 0 [PROOFSTEP] exact_mod_cast h [GOAL] x : ℝ ⊢ HasStrictDerivAt arctan (↑1 / (↑1 + x ^ 2)) x [PROOFSTEP] have A : cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne' [GOAL] x : ℝ A : cos (arctan x) ≠ 0 ⊢ HasStrictDerivAt arctan (↑1 / (↑1 + x ^ 2)) x [PROOFSTEP] simpa [cos_sq_arctan] using tanLocalHomeomorph.hasStrictDerivAt_symm trivial (by simpa) (hasStrictDerivAt_tan A) [GOAL] x : ℝ A : cos (arctan x) ≠ 0 ⊢ ↑1 / cos (↑(LocalHomeomorph.symm tanLocalHomeomorph) x) ^ 2 ≠ 0 [PROOFSTEP] simpa [GOAL] n : ℕ∞ x : ℝ this : cos (arctan x) ≠ 0 ⊢ ↑1 / cos (↑(LocalHomeomorph.symm tanLocalHomeomorph) x) ^ 2 ≠ 0 [PROOFSTEP] simpa
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv", "llama_tokens": 1433}
[GOAL] ⊢ ∀ ⦃x : ℂ⦄, x ∈ {z | z.im ∈ Ioo (-π) π} → exp x ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} [PROOFSTEP] rintro ⟨x, y⟩ ⟨h₁ : -π < y, h₂ : y < π⟩ [GOAL] case mk.intro x y : ℝ h₁ : -π < y h₂ : y < π ⊢ exp { re := x, im := y } ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} [PROOFSTEP] refine' (not_or_of_imp fun hz => _).symm [GOAL] case mk.intro x y : ℝ h₁ : -π < y h₂ : y < π hz : (exp { re := x, im := y }).im = 0 ⊢ exp { re := x, im := y } ∈ {z | 0 < z.re} [PROOFSTEP] obtain rfl : y = 0 := by rw [exp_im] at hz simpa [(Real.exp_pos _).ne', Real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz [GOAL] x y : ℝ h₁ : -π < y h₂ : y < π hz : (exp { re := x, im := y }).im = 0 ⊢ y = 0 [PROOFSTEP] rw [exp_im] at hz [GOAL] x y : ℝ h₁ : -π < y h₂ : y < π hz : Real.exp { re := x, im := y }.re * Real.sin { re := x, im := y }.im = 0 ⊢ y = 0 [PROOFSTEP] simpa [(Real.exp_pos _).ne', Real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz [GOAL] case mk.intro x : ℝ h₁ : -π < 0 h₂ : 0 < π hz : (exp { re := x, im := 0 }).im = 0 ⊢ exp { re := x, im := 0 } ∈ {z | 0 < z.re} [PROOFSTEP] rw [mem_setOf_eq, ← ofReal_def, exp_ofReal_re] [GOAL] case mk.intro x : ℝ h₁ : -π < 0 h₂ : 0 < π hz : (exp { re := x, im := 0 }).im = 0 ⊢ 0 < Real.exp x [PROOFSTEP] exact Real.exp_pos x [GOAL] z : ℂ h : z ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} ⊢ log z ∈ {z | z.im ∈ Ioo (-π) π} [PROOFSTEP] simp only [mem_setOf, log_im, mem_Ioo, neg_pi_lt_arg, arg_lt_pi_iff, true_and] [GOAL] z : ℂ h : z ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} ⊢ 0 ≤ z.re ∨ z.im ≠ 0 [PROOFSTEP] exact h.imp_left le_of_lt [GOAL] x : ℂ hx : x ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] hx : 0 ∈ {z | 0 < z.re} ∪ {z | z.im ≠ 0} ⊢ False [PROOFSTEP] simp [lt_irrefl] at hx [GOAL] x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] h : 0 < 0.re ∨ 0.im ≠ 0 ⊢ False [PROOFSTEP] simp [lt_irrefl] at h [GOAL] x : ℂ h : 0 < x.re ∨ x.im ≠ 0 h0 : x ≠ 0 ⊢ HasStrictDerivAt (↑expLocalHomeomorph) x (↑(LocalHomeomorph.symm expLocalHomeomorph) x) [PROOFSTEP] simpa [exp_log h0] using hasStrictDerivAt_exp (log x) [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ h₁ : HasStrictDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasStrictDerivAt (fun t => log (f t)) (f' / f x) x [PROOFSTEP] rw [div_eq_inv_mul] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ h₁ : HasStrictDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasStrictDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x [PROOFSTEP] exact (hasStrictDerivAt_log h₂).comp x h₁ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → ℂ x : ℝ f' : ℂ h₁ : HasStrictDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasStrictDerivAt (fun t => log (f t)) (f' / f x) x [PROOFSTEP] simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).comp_hasStrictDerivAt x h₁ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ h₁ : HasDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivAt (fun t => log (f t)) (f' / f x) x [PROOFSTEP] rw [div_eq_inv_mul] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ h₁ : HasDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x [PROOFSTEP] exact (hasStrictDerivAt_log h₂).hasDerivAt.comp x h₁ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → ℂ x : ℝ f' : ℂ h₁ : HasDerivAt f f' x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivAt (fun t => log (f t)) (f' / f x) x [PROOFSTEP] simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).hasFDerivAt.comp_hasDerivAt x h₁ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ s : Set ℂ h₁ : HasDerivWithinAt f f' s x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivWithinAt (fun t => log (f t)) (f' / f x) s x [PROOFSTEP] rw [div_eq_inv_mul] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → ℂ f' x : ℂ s : Set ℂ h₁ : HasDerivWithinAt f f' s x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivWithinAt (fun t => log (f t)) ((f x)⁻¹ * f') s x [PROOFSTEP] exact (hasStrictDerivAt_log h₂).hasDerivAt.comp_hasDerivWithinAt x h₁ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → ℂ s : Set ℝ x : ℝ f' : ℂ h₁ : HasDerivWithinAt f f' s x h₂ : 0 < (f x).re ∨ (f x).im ≠ 0 ⊢ HasDerivWithinAt (fun t => log (f t)) (f' / f x) s x [PROOFSTEP] simpa only [div_eq_inv_mul] using (hasStrictFDerivAt_log_real h₂).hasFDerivAt.comp_hasDerivWithinAt x h₁
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv", "llama_tokens": 2727}
[GOAL] x : ℂ ⊢ (log x).re = Real.log (↑abs x) [PROOFSTEP] simp [log] [GOAL] x : ℂ ⊢ (log x).im = arg x [PROOFSTEP] simp [log] [GOAL] x : ℂ ⊢ -π < (log x).im [PROOFSTEP] simp only [log_im, neg_pi_lt_arg] [GOAL] x : ℂ ⊢ (log x).im ≤ π [PROOFSTEP] simp only [log_im, arg_le_pi] [GOAL] x : ℂ hx : x ≠ 0 ⊢ exp (log x) = x [PROOFSTEP] rw [log, exp_add_mul_I, ← ofReal_sin, sin_arg, ← ofReal_cos, cos_arg hx, ← ofReal_exp, Real.exp_log (abs.pos hx), mul_add, ofReal_div, ofReal_div, mul_div_cancel' _ (ofReal_ne_zero.2 <| abs.ne_zero hx), ← mul_assoc, mul_div_cancel' _ (ofReal_ne_zero.2 <| abs.ne_zero hx), re_add_im] [GOAL] x : ℂ ⊢ x ∈ Set.range exp → x ∈ {0}ᶜ [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case intro x : ℂ ⊢ exp x ∈ {0}ᶜ [PROOFSTEP] exact exp_ne_zero x [GOAL] x : ℂ hx₁ : -π < x.im hx₂ : x.im ≤ π ⊢ log (exp x) = x [PROOFSTEP] rw [log, abs_exp, Real.log_exp, exp_eq_exp_re_mul_sin_add_cos, ← ofReal_exp, arg_mul_cos_add_sin_mul_I (Real.exp_pos _) ⟨hx₁, hx₂⟩, re_add_im] [GOAL] x y : ℂ hx₁ : -π < x.im hx₂ : x.im ≤ π hy₁ : -π < y.im hy₂ : y.im ≤ π hxy : exp x = exp y ⊢ x = y [PROOFSTEP] rw [← log_exp hx₁ hx₂, ← log_exp hy₁ hy₂, hxy] [GOAL] x : ℝ hx : 0 ≤ x ⊢ (↑(Real.log x)).re = (log ↑x).re [PROOFSTEP] rw [log_re, ofReal_re, abs_of_nonneg hx] [GOAL] x : ℝ hx : 0 ≤ x ⊢ (↑(Real.log x)).im = (log ↑x).im [PROOFSTEP] rw [ofReal_im, log_im, arg_ofReal_of_nonneg hx] [GOAL] x : ℝ ⊢ (log ↑x).re = Real.log x [PROOFSTEP] simp [log_re] [GOAL] r : ℝ hr : 0 < r x : ℂ hx : x ≠ 0 ⊢ log (↑r * x) = ↑(Real.log r) + log x [PROOFSTEP] replace hx := Complex.abs.ne_zero_iff.mpr hx [GOAL] r : ℝ hr : 0 < r x : ℂ hx : ↑abs x ≠ 0 ⊢ log (↑r * x) = ↑(Real.log r) + log x [PROOFSTEP] simp_rw [log, map_mul, abs_ofReal, arg_real_mul _ hr, abs_of_pos hr, Real.log_mul hr.ne' hx, ofReal_add, add_assoc] [GOAL] r : ℝ hr : 0 < r x : ℂ hx : x ≠ 0 ⊢ log (x * ↑r) = ↑(Real.log r) + log x [PROOFSTEP] rw [mul_comm, log_ofReal_mul hr hx, add_comm] [GOAL] ⊢ log 0 = 0 [PROOFSTEP] simp [log] [GOAL] ⊢ log 1 = 0 [PROOFSTEP] simp [log] [GOAL] ⊢ log (-1) = ↑π * I [PROOFSTEP] simp [log] [GOAL] ⊢ log I = ↑π / 2 * I [PROOFSTEP] simp [log] [GOAL] ⊢ log (-I) = -(↑π / 2) * I [PROOFSTEP] simp [log] [GOAL] x : ℂ ⊢ log (↑(starRingEnd ℂ) x) = if arg x = π then log x else ↑(starRingEnd ℂ) (log x) [PROOFSTEP] simp_rw [log, abs_conj, arg_conj, map_add, map_mul, conj_ofReal] [GOAL] x : ℂ ⊢ ↑(Real.log (↑abs x)) + ↑(if arg x = π then π else -arg x) * I = if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + ↑(arg x) * ↑(starRingEnd ℂ) I [PROOFSTEP] split_ifs with hx [GOAL] case pos x : ℂ hx : arg x = π ⊢ ↑(Real.log (↑abs x)) + ↑π * I = ↑(Real.log (↑abs x)) + ↑(arg x) * I [PROOFSTEP] rw [hx] [GOAL] case neg x : ℂ hx : ¬arg x = π ⊢ ↑(Real.log (↑abs x)) + ↑(-arg x) * I = ↑(Real.log (↑abs x)) + ↑(arg x) * ↑(starRingEnd ℂ) I [PROOFSTEP] simp_rw [ofReal_neg, conj_I, mul_neg, neg_mul] [GOAL] x : ℂ h : arg x ≠ π ⊢ log (↑(starRingEnd ℂ) x) = ↑(starRingEnd ℂ) (log x) [PROOFSTEP] rw [log_conj_eq_ite, if_neg h] [GOAL] x : ℂ ⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos x : ℂ hx : x = 0 ⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x [PROOFSTEP] simp [hx] [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ log x⁻¹ = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x [PROOFSTEP] rw [inv_def, log_mul_ofReal, Real.log_inv, ofReal_neg, ← sub_eq_neg_add, log_conj_eq_ite] [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ (if arg x = π then log x else ↑(starRingEnd ℂ) (log x)) - ↑(Real.log (↑normSq x)) = if arg x = π then -↑(starRingEnd ℂ) (log x) else -log x [PROOFSTEP] simp_rw [log, map_add, map_mul, conj_ofReal, conj_I, normSq_eq_abs, Real.log_pow, Nat.cast_two, ofReal_mul, neg_add, mul_neg, neg_neg] [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) - ↑2 * ↑(Real.log (↑abs x)) = if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I) [PROOFSTEP] norm_num [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) - 2 * ↑(Real.log (↑abs x)) = if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I) [PROOFSTEP] rw [two_mul] -- Porting note: added to simplify `↑2` [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ (if arg x = π then ↑(Real.log (↑abs x)) + ↑(arg x) * I else ↑(Real.log (↑abs x)) + -(↑(arg x) * I)) - (↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) = if arg x = π then -↑(Real.log (↑abs x)) + ↑(arg x) * I else -↑(Real.log (↑abs x)) + -(↑(arg x) * I) [PROOFSTEP] split_ifs [GOAL] case pos x : ℂ hx : ¬x = 0 h✝ : arg x = π ⊢ ↑(Real.log (↑abs x)) + ↑(arg x) * I - (↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) = -↑(Real.log (↑abs x)) + ↑(arg x) * I [PROOFSTEP] rw [add_sub_right_comm, sub_add_cancel'] [GOAL] case neg x : ℂ hx : ¬x = 0 h✝ : ¬arg x = π ⊢ ↑(Real.log (↑abs x)) + -(↑(arg x) * I) - (↑(Real.log (↑abs x)) + ↑(Real.log (↑abs x))) = -↑(Real.log (↑abs x)) + -(↑(arg x) * I) [PROOFSTEP] rw [add_sub_right_comm, sub_add_cancel'] [GOAL] case neg.hr x : ℂ hx : ¬x = 0 ⊢ 0 < (↑normSq x)⁻¹ [PROOFSTEP] rwa [inv_pos, Complex.normSq_pos] [GOAL] case neg.hx x : ℂ hx : ¬x = 0 ⊢ ↑(starRingEnd ℂ) x ≠ 0 [PROOFSTEP] rwa [map_ne_zero] [GOAL] x : ℂ hx : arg x ≠ π ⊢ log x⁻¹ = -log x [PROOFSTEP] rw [log_inv_eq_ite, if_neg hx] [GOAL] ⊢ 2 * ↑π * I ≠ 0 [PROOFSTEP] norm_num [GOAL] ⊢ ¬(π = 0 ∨ I = 0) [PROOFSTEP] simp [Real.pi_ne_zero, I_ne_zero] [GOAL] x : ℂ ⊢ exp x = 1 ↔ ∃ n, x = ↑n * (2 * ↑π * I) [PROOFSTEP] constructor [GOAL] case mp x : ℂ ⊢ exp x = 1 → ∃ n, x = ↑n * (2 * ↑π * I) [PROOFSTEP] intro h [GOAL] case mp x : ℂ h : exp x = 1 ⊢ ∃ n, x = ↑n * (2 * ↑π * I) [PROOFSTEP] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos x.im (-π) with ⟨n, hn, -⟩ [GOAL] case mp.intro.intro x : ℂ h : exp x = 1 n : ℤ hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) ⊢ ∃ n, x = ↑n * (2 * ↑π * I) [PROOFSTEP] use-n [GOAL] case h x : ℂ h : exp x = 1 n : ℤ hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) ⊢ x = ↑(-n) * (2 * ↑π * I) [PROOFSTEP] rw [Int.cast_neg, neg_mul, eq_neg_iff_add_eq_zero] [GOAL] case h x : ℂ h : exp x = 1 n : ℤ hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) ⊢ x + ↑n * (2 * ↑π * I) = 0 [PROOFSTEP] have : (x + n * (2 * π * I)).im ∈ Set.Ioc (-π) π := by simpa [two_mul, mul_add] using hn [GOAL] x : ℂ h : exp x = 1 n : ℤ hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) ⊢ (x + ↑n * (2 * ↑π * I)).im ∈ Set.Ioc (-π) π [PROOFSTEP] simpa [two_mul, mul_add] using hn [GOAL] case h x : ℂ h : exp x = 1 n : ℤ hn : x.im + n • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) this : (x + ↑n * (2 * ↑π * I)).im ∈ Set.Ioc (-π) π ⊢ x + ↑n * (2 * ↑π * I) = 0 [PROOFSTEP] rw [← log_exp this.1 this.2, exp_periodic.int_mul n, h, log_one] [GOAL] case mpr x : ℂ ⊢ (∃ n, x = ↑n * (2 * ↑π * I)) → exp x = 1 [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case mpr.intro n : ℤ ⊢ exp (↑n * (2 * ↑π * I)) = 1 [PROOFSTEP] exact (exp_periodic.int_mul n).eq.trans exp_zero [GOAL] x y : ℂ ⊢ exp x = exp y ↔ exp (x - y) = 1 [PROOFSTEP] rw [exp_sub, div_eq_one_iff_eq (exp_ne_zero _)] [GOAL] x y : ℂ ⊢ exp x = exp y ↔ ∃ n, x = y + ↑n * (2 * ↑π * I) [PROOFSTEP] simp only [exp_eq_exp_iff_exp_sub_eq_one, exp_eq_one_iff, sub_eq_iff_eq_add'] [GOAL] s : Set ℂ ⊢ Set.Countable (exp ⁻¹' s) ↔ Set.Countable s [PROOFSTEP] refine' ⟨fun hs => _, fun hs => _⟩ [GOAL] case refine'_1 s : Set ℂ hs : Set.Countable (exp ⁻¹' s) ⊢ Set.Countable s [PROOFSTEP] refine' ((hs.image exp).insert 0).mono _ [GOAL] case refine'_1 s : Set ℂ hs : Set.Countable (exp ⁻¹' s) ⊢ s ⊆ insert 0 (exp '' (exp ⁻¹' s)) [PROOFSTEP] rw [Set.image_preimage_eq_inter_range, range_exp, ← Set.diff_eq, ← Set.union_singleton, Set.diff_union_self] [GOAL] case refine'_1 s : Set ℂ hs : Set.Countable (exp ⁻¹' s) ⊢ s ⊆ s ∪ {0} [PROOFSTEP] exact Set.subset_union_left _ _ [GOAL] case refine'_2 s : Set ℂ hs : Set.Countable s ⊢ Set.Countable (exp ⁻¹' s) [PROOFSTEP] rw [← Set.biUnion_preimage_singleton] [GOAL] case refine'_2 s : Set ℂ hs : Set.Countable s ⊢ Set.Countable (⋃ (y : ℂ) (_ : y ∈ s), exp ⁻¹' {y}) [PROOFSTEP] refine' hs.biUnion fun z hz => _ [GOAL] case refine'_2 s : Set ℂ hs : Set.Countable s z : ℂ hz : z ∈ s ⊢ Set.Countable (exp ⁻¹' {z}) [PROOFSTEP] rcases em (∃ w, exp w = z) with (⟨w, rfl⟩ | hne) [GOAL] case refine'_2.inl.intro s : Set ℂ hs : Set.Countable s w : ℂ hz : exp w ∈ s ⊢ Set.Countable (exp ⁻¹' {exp w}) [PROOFSTEP] simp only [Set.preimage, Set.mem_singleton_iff, exp_eq_exp_iff_exists_int, Set.setOf_exists] [GOAL] case refine'_2.inl.intro s : Set ℂ hs : Set.Countable s w : ℂ hz : exp w ∈ s ⊢ Set.Countable (⋃ (i : ℤ), {x | x = w + ↑i * (2 * ↑π * I)}) [PROOFSTEP] exact Set.countable_iUnion fun m => Set.countable_singleton _ [GOAL] case refine'_2.inr s : Set ℂ hs : Set.Countable s z : ℂ hz : z ∈ s hne : ¬∃ w, exp w = z ⊢ Set.Countable (exp ⁻¹' {z}) [PROOFSTEP] push_neg at hne [GOAL] case refine'_2.inr s : Set ℂ hs : Set.Countable s z : ℂ hz : z ∈ s hne : ∀ (w : ℂ), exp w ≠ z ⊢ Set.Countable (exp ⁻¹' {z}) [PROOFSTEP] simp [Set.preimage, hne] [GOAL] z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto log (𝓝[{z | z.im < 0}] z) (𝓝 (↑(Real.log (↑abs z)) - ↑π * I)) [PROOFSTEP] convert (continuous_ofReal.continuousAt.comp_continuousWithinAt (continuous_abs.continuousWithinAt.log _)).tendsto.add (((continuous_ofReal.tendsto _).comp <| tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero hre him).mul tendsto_const_nhds) using 1 [GOAL] case h.e'_5 z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ 𝓝 (↑(Real.log (↑abs z)) - ↑π * I) = 𝓝 ((ofReal' ∘ fun x => Real.log (↑abs x)) z + ↑(-π) * I) [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] case convert_1 z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ↑abs z ≠ 0 [PROOFSTEP] lift z to ℝ using him [GOAL] case convert_1.intro z : ℝ hre : (↑z).re < 0 ⊢ ↑abs ↑z ≠ 0 [PROOFSTEP] simpa using hre.ne [GOAL] z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ContinuousWithinAt log {z | 0 ≤ z.im} z [PROOFSTEP] convert (continuous_ofReal.continuousAt.comp_continuousWithinAt (continuous_abs.continuousWithinAt.log _)).tendsto.add ((continuous_ofReal.continuousAt.comp_continuousWithinAt <| continuousWithinAt_arg_of_re_neg_of_im_zero hre him).mul tendsto_const_nhds) using 1 [GOAL] case convert_1 z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ↑abs z ≠ 0 [PROOFSTEP] lift z to ℝ using him [GOAL] case convert_1.intro z : ℝ hre : (↑z).re < 0 ⊢ ↑abs ↑z ≠ 0 [PROOFSTEP] simpa using hre.ne [GOAL] z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto log (𝓝[{z | 0 ≤ z.im}] z) (𝓝 (↑(Real.log (↑abs z)) + ↑π * I)) [PROOFSTEP] simpa only [log, arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_log_of_re_neg_of_im_zero hre him).tendsto [GOAL] ⊢ map exp (comap re atBot) = 𝓝[{0}ᶜ] 0 [PROOFSTEP] rw [← comap_exp_nhds_zero, map_comap, range_exp, nhdsWithin] [GOAL] ⊢ map exp (comap re atTop) = comap (↑abs) atTop [PROOFSTEP] rw [← comap_exp_comap_abs_atTop, map_comap, range_exp, inf_eq_left, le_principal_iff] [GOAL] ⊢ {0}ᶜ ∈ comap (↑abs) atTop [PROOFSTEP] exact eventually_ne_of_tendsto_norm_atTop tendsto_comap 0 [GOAL] α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt log x [PROOFSTEP] refine' ContinuousAt.add _ _ [GOAL] case refine'_1 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt (fun x => ↑(Real.log (↑Complex.abs x))) x [PROOFSTEP] refine' continuous_ofReal.continuousAt.comp _ [GOAL] case refine'_1 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt (fun x => Real.log (↑Complex.abs x)) x [PROOFSTEP] refine' (Real.continuousAt_log _).comp Complex.continuous_abs.continuousAt [GOAL] case refine'_1 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ↑Complex.abs x ≠ 0 [PROOFSTEP] rw [Complex.abs.ne_zero_iff] [GOAL] case refine'_1 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case refine'_1 α : Type u_1 h : 0 < 0.re ∨ 0.im ≠ 0 ⊢ False [PROOFSTEP] simp at h [GOAL] case refine'_2 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt (fun x => ↑(arg x) * I) x [PROOFSTEP] have h_cont_mul : Continuous fun x : ℂ => x * I := continuous_id'.mul continuous_const [GOAL] case refine'_2 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 h_cont_mul : Continuous fun x => x * I ⊢ ContinuousAt (fun x => ↑(arg x) * I) x [PROOFSTEP] refine' h_cont_mul.continuousAt.comp (continuous_ofReal.continuousAt.comp _) [GOAL] case refine'_2 α : Type u_1 x : ℂ h : 0 < x.re ∨ x.im ≠ 0 h_cont_mul : Continuous fun x => x * I ⊢ ContinuousAt (fun x => arg x) x [PROOFSTEP] exact continuousAt_arg h
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Log", "llama_tokens": 6741}
[GOAL] x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 ⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) [PROOFSTEP] simpa only [← Complex.ofReal_inj, Complex.ofReal_sub, Complex.ofReal_add, Complex.ofReal_div, Complex.ofReal_mul, Complex.ofReal_tan] using @Complex.tan_add (x : ℂ) (y : ℂ) (by convert h <;> norm_cast) [GOAL] x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 ⊢ ((∀ (k : ℤ), ↑x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑y ≠ (2 * ↑l + 1) * ↑π / 2) ∨ (∃ k, ↑x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑y = (2 * ↑l + 1) * ↑π / 2 [PROOFSTEP] convert h [GOAL] case h.e'_1.h.e'_1.h.h.a x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 a✝ : ℤ ⊢ ↑x = (2 * ↑a✝ + 1) * ↑π / 2 ↔ x = (2 * ↑a✝ + 1) * π / 2 [PROOFSTEP] norm_cast [GOAL] case h.e'_1.h.e'_2.h.h.a x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 a✝ : ℤ ⊢ ↑y = (2 * ↑a✝ + 1) * ↑π / 2 ↔ y = (2 * ↑a✝ + 1) * π / 2 [PROOFSTEP] norm_cast [GOAL] case h.e'_2.h.e'_1.h.e'_2.h.a x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 x✝ : ℤ ⊢ ↑x = (2 * ↑x✝ + 1) * ↑π / 2 ↔ x = (2 * ↑x✝ + 1) * π / 2 [PROOFSTEP] norm_cast [GOAL] case h.e'_2.h.e'_2.h.e'_2.h.a x y : ℝ h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨ (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2 x✝ : ℤ ⊢ ↑y = (2 * ↑x✝ + 1) * ↑π / 2 ↔ y = (2 * ↑x✝ + 1) * π / 2 [PROOFSTEP] norm_cast [GOAL] x : ℝ ⊢ tan (2 * x) = ↑2 * tan x / (↑1 - tan x ^ 2) [PROOFSTEP] have := @Complex.tan_two_mul x [GOAL] x : ℝ this : Complex.tan (2 * ↑x) = 2 * Complex.tan ↑x / (1 - Complex.tan ↑x ^ 2) ⊢ tan (2 * x) = ↑2 * tan x / (↑1 - tan x ^ 2) [PROOFSTEP] norm_cast at * [GOAL] θ : ℝ ⊢ tan θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * π / 2 [PROOFSTEP] rw [← Complex.ofReal_ne_zero, Complex.ofReal_tan, Complex.tan_ne_zero_iff] [GOAL] θ : ℝ ⊢ (∀ (k : ℤ), ↑θ ≠ ↑k * ↑π / 2) ↔ ∀ (k : ℤ), θ ≠ ↑k * π / 2 [PROOFSTEP] norm_cast [GOAL] θ : ℝ ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * π / 2 [PROOFSTEP] rw [← not_iff_not, not_exists, ← Ne, tan_ne_zero_iff] [GOAL] n : ℤ ⊢ ∃ k, ↑n * π / 2 = ↑k * π / 2 [PROOFSTEP] use n [GOAL] ⊢ ContinuousOn tan {x | cos x ≠ 0} [PROOFSTEP] suffices ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} by have h_eq : (fun x => sin x / cos x) = tan := by ext1 x; rw [tan_eq_sin_div_cos] rwa [h_eq] at this [GOAL] this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} ⊢ ContinuousOn tan {x | cos x ≠ 0} [PROOFSTEP] have h_eq : (fun x => sin x / cos x) = tan := by ext1 x; rw [tan_eq_sin_div_cos] [GOAL] this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} ⊢ (fun x => sin x / cos x) = tan [PROOFSTEP] ext1 x [GOAL] case h this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} x : ℝ ⊢ sin x / cos x = tan x [PROOFSTEP] rw [tan_eq_sin_div_cos] [GOAL] this : ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} h_eq : (fun x => sin x / cos x) = tan ⊢ ContinuousOn tan {x | cos x ≠ 0} [PROOFSTEP] rwa [h_eq] at this [GOAL] ⊢ ContinuousOn (fun x => sin x / cos x) {x | cos x ≠ 0} [PROOFSTEP] exact continuousOn_sin.div continuousOn_cos fun x => id [GOAL] ⊢ ContinuousOn tan (Ioo (-(π / 2)) (π / 2)) [PROOFSTEP] refine' ContinuousOn.mono continuousOn_tan fun x => _ [GOAL] x : ℝ ⊢ x ∈ Ioo (-(π / 2)) (π / 2) → x ∈ {x | cos x ≠ 0} [PROOFSTEP] simp only [and_imp, mem_Ioo, mem_setOf_eq, Ne.def] [GOAL] x : ℝ ⊢ -(π / 2) < x → x < π / 2 → ¬cos x = 0 [PROOFSTEP] rw [cos_eq_zero_iff] [GOAL] x : ℝ ⊢ -(π / 2) < x → x < π / 2 → ¬∃ k, x = (2 * ↑k + 1) * π / 2 [PROOFSTEP] rintro hx_gt hx_lt ⟨r, hxr_eq⟩ [GOAL] case intro x : ℝ hx_gt : -(π / 2) < x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 ⊢ False [PROOFSTEP] cases' le_or_lt 0 r with h h [GOAL] case intro.inl x : ℝ hx_gt : -(π / 2) < x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : 0 ≤ r ⊢ False [PROOFSTEP] rw [lt_iff_not_ge] at hx_lt [GOAL] case intro.inl x : ℝ hx_gt : -(π / 2) < x hx_lt : ¬x ≥ π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : 0 ≤ r ⊢ False [PROOFSTEP] refine' hx_lt _ [GOAL] case intro.inl x : ℝ hx_gt : -(π / 2) < x hx_lt : ¬x ≥ π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : 0 ≤ r ⊢ x ≥ π / 2 [PROOFSTEP] rw [hxr_eq, ← one_mul (π / 2), mul_div_assoc, ge_iff_le, mul_le_mul_right (half_pos pi_pos)] [GOAL] case intro.inl x : ℝ hx_gt : -(π / 2) < x hx_lt : ¬x ≥ π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : 0 ≤ r ⊢ 1 ≤ 2 * ↑r + 1 [PROOFSTEP] simp [h] [GOAL] case intro.inr x : ℝ hx_gt : -(π / 2) < x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 ⊢ False [PROOFSTEP] rw [lt_iff_not_ge] at hx_gt [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 ⊢ False [PROOFSTEP] refine' hx_gt _ [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 ⊢ -(π / 2) ≥ x [PROOFSTEP] rw [hxr_eq, ← one_mul (π / 2), mul_div_assoc, ge_iff_le, neg_mul_eq_neg_mul, mul_le_mul_right (half_pos pi_pos)] [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 ⊢ 2 * ↑r + 1 ≤ -1 [PROOFSTEP] have hr_le : r ≤ -1 := by rwa [Int.lt_iff_add_one_le, ← le_neg_iff_add_nonpos_right] at h [GOAL] x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 ⊢ r ≤ -1 [PROOFSTEP] rwa [Int.lt_iff_add_one_le, ← le_neg_iff_add_nonpos_right] at h [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 hr_le : r ≤ -1 ⊢ 2 * ↑r + 1 ≤ -1 [PROOFSTEP] rw [← le_sub_iff_add_le, mul_comm, ← le_div_iff] [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 hr_le : r ≤ -1 ⊢ ↑r ≤ (-1 - 1) / 2 [PROOFSTEP] norm_num [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 hr_le : r ≤ -1 ⊢ ↑r ≤ -1 [PROOFSTEP] rw [← Int.cast_one, ← Int.cast_neg] [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 hr_le : r ≤ -1 ⊢ ↑r ≤ ↑(-1) [PROOFSTEP] norm_cast [GOAL] case intro.inr x : ℝ hx_gt : ¬-(π / 2) ≥ x hx_lt : x < π / 2 r : ℤ hxr_eq : x = (2 * ↑r + 1) * π / 2 h : r < 0 hr_le : r ≤ -1 ⊢ 0 < 2 [PROOFSTEP] exact zero_lt_two [GOAL] this : -(π / 2) < π / 2 ⊢ Tendsto (fun x => tan ↑x) atBot atBot [PROOFSTEP] rw [tendsto_comp_coe_Ioo_atBot this] [GOAL] this : -(π / 2) < π / 2 ⊢ Tendsto tan (𝓝[Ioi (-(π / 2))] (-(π / 2))) atBot [PROOFSTEP] exact tendsto_tan_neg_pi_div_two [GOAL] this : -(π / 2) < π / 2 ⊢ Tendsto (fun x => tan ↑x) atTop atTop [PROOFSTEP] rw [tendsto_comp_coe_Ioo_atTop this] [GOAL] this : -(π / 2) < π / 2 ⊢ Tendsto tan (𝓝[Iio (π / 2)] (π / 2)) atTop [PROOFSTEP] exact tendsto_tan_pi_div_two [GOAL] x : ℝ ⊢ cos (arctan x) ^ 2 = ↑1 / (↑1 + x ^ 2) [PROOFSTEP] rw_mod_cast [one_div, ← inv_one_add_tan_sq (cos_arctan_pos x).ne', tan_arctan] [GOAL] x : ℝ ⊢ sin (arctan x) = x / sqrt (↑1 + x ^ 2) [PROOFSTEP] rw_mod_cast [← tan_div_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan] [GOAL] x : ℝ ⊢ cos (arctan x) = ↑1 / sqrt (↑1 + x ^ 2) [PROOFSTEP] rw_mod_cast [one_div, ← inv_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan] [GOAL] x : ℝ h : x ∈ Ioo (-1) 1 ⊢ arcsin x = arctan (x / sqrt (↑1 - x ^ 2)) [PROOFSTEP] rw_mod_cast [arctan_eq_arcsin, div_pow, sq_sqrt, one_add_div, div_div, ← sqrt_mul, mul_div_cancel', sub_add_cancel, sqrt_one, div_one] [GOAL] case hb x : ℝ h : x ∈ Ioo (↑(Int.negSucc 0)) 1 ⊢ 1 - x ^ 2 ≠ 0 [PROOFSTEP] simp at h [GOAL] case hx x : ℝ h : x ∈ Ioo (↑(Int.negSucc 0)) 1 ⊢ 0 ≤ 1 - x ^ 2 [PROOFSTEP] simp at h [GOAL] x : ℝ h : x ∈ Ioo (↑(Int.negSucc 0)) 1 ⊢ 1 - x ^ 2 ≠ 0 [PROOFSTEP] simp at h [GOAL] x : ℝ h : x ∈ Ioo (↑(Int.negSucc 0)) 1 ⊢ 0 ≤ 1 - x ^ 2 [PROOFSTEP] simp at h [GOAL] case hb x : ℝ h : -1 < x ∧ x < 1 ⊢ 1 - x ^ 2 ≠ 0 [PROOFSTEP] nlinarith [h.1, h.2] [GOAL] case hx x : ℝ h : -1 < x ∧ x < 1 ⊢ 0 ≤ 1 - x ^ 2 [PROOFSTEP] nlinarith [h.1, h.2] [GOAL] x : ℝ h : -1 < x ∧ x < 1 ⊢ 1 - x ^ 2 ≠ 0 [PROOFSTEP] nlinarith [h.1, h.2] [GOAL] x : ℝ h : -1 < x ∧ x < 1 ⊢ 0 ≤ 1 - x ^ 2 [PROOFSTEP] nlinarith [h.1, h.2] [GOAL] ⊢ arctan 0 = 0 [PROOFSTEP] simp [arctan_eq_arcsin] [GOAL] x y : ℝ h : tan x = y hx : x ∈ Ioo (-(π / 2)) (π / 2) ⊢ tan (arctan y) = tan x [PROOFSTEP] rw [tan_arctan, h] [GOAL] ⊢ π / 4 ∈ Ioo (-(π / 2)) (π / 2) [PROOFSTEP] constructor [GOAL] case left ⊢ -(π / 2) < π / 4 [PROOFSTEP] linarith [pi_pos] [GOAL] case right ⊢ π / 4 < π / 2 [PROOFSTEP] linarith [pi_pos] [GOAL] x : ℝ ⊢ arctan (-x) = -arctan x [PROOFSTEP] simp [arctan_eq_arcsin, neg_div] [GOAL] x : ℝ h : 0 ≤ x ⊢ arctan x = arccos (sqrt (↑1 + x ^ 2))⁻¹ [PROOFSTEP] rw [arctan_eq_arcsin, arccos_eq_arcsin] [GOAL] x : ℝ h : 0 ≤ x ⊢ arcsin (x / sqrt (↑1 + x ^ 2)) = arcsin (sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2)) x : ℝ h : 0 ≤ x ⊢ 0 ≤ (sqrt (↑1 + x ^ 2))⁻¹ [PROOFSTEP] swap [GOAL] x : ℝ h : 0 ≤ x ⊢ 0 ≤ (sqrt (↑1 + x ^ 2))⁻¹ [PROOFSTEP] exact inv_nonneg.2 (sqrt_nonneg _) [GOAL] x : ℝ h : 0 ≤ x ⊢ arcsin (x / sqrt (↑1 + x ^ 2)) = arcsin (sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2)) [PROOFSTEP] congr 1 [GOAL] case e_a x : ℝ h : 0 ≤ x ⊢ x / sqrt (↑1 + x ^ 2) = sqrt (1 - (sqrt (↑1 + x ^ 2))⁻¹ ^ 2) [PROOFSTEP] rw_mod_cast [← sqrt_inv, sq_sqrt, ← one_div, one_sub_div, add_sub_cancel', sqrt_div, sqrt_sq h] [GOAL] case e_a.hx x : ℝ h : 0 ≤ x ⊢ 0 ≤ x ^ 2 case e_a x : ℝ h : 0 ≤ x ⊢ 1 + x ^ 2 ≠ 0 case e_a x : ℝ h : 0 ≤ x ⊢ 0 ≤ (1 + x ^ 2)⁻¹ [PROOFSTEP] all_goals positivity [GOAL] case e_a.hx x : ℝ h : 0 ≤ x ⊢ 0 ≤ x ^ 2 [PROOFSTEP] positivity [GOAL] case e_a x : ℝ h : 0 ≤ x ⊢ 1 + x ^ 2 ≠ 0 [PROOFSTEP] positivity [GOAL] case e_a x : ℝ h : 0 ≤ x ⊢ 0 ≤ (1 + x ^ 2)⁻¹ [PROOFSTEP] positivity [GOAL] x : ℝ h : 0 < x ⊢ arccos x = arctan (sqrt (↑1 - x ^ 2) / x) [PROOFSTEP] rw [arccos, eq_comm] [GOAL] x : ℝ h : 0 < x ⊢ arctan (sqrt (↑1 - x ^ 2) / x) = π / 2 - arcsin x [PROOFSTEP] refine' arctan_eq_of_tan_eq _ ⟨_, _⟩ [GOAL] case refine'_1 x : ℝ h : 0 < x ⊢ tan (π / 2 - arcsin x) = sqrt (↑1 - x ^ 2) / x [PROOFSTEP] rw_mod_cast [tan_pi_div_two_sub, tan_arcsin, inv_div] [GOAL] case refine'_2 x : ℝ h : 0 < x ⊢ -(π / 2) < π / 2 - arcsin x [PROOFSTEP] linarith only [arcsin_le_pi_div_two x, pi_pos] [GOAL] case refine'_3 x : ℝ h : 0 < x ⊢ π / 2 - arcsin x < π / 2 [PROOFSTEP] linarith only [arcsin_pos.2 h]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Arctan", "llama_tokens": 6686}
[GOAL] ⊢ ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π [PROOFSTEP] rintro ⟨x, y⟩ hxy [GOAL] case mk x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y) ∈ Ioi 0 ×ˢ Ioo (-π) π [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, mem_Ioi, sqrt_pos, mem_Ioo, Complex.neg_pi_lt_arg, true_and_iff, Complex.arg_lt_pi_iff] [GOAL] case mk x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ 0 < x ^ 2 + y ^ 2 ∧ (0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0) [PROOFSTEP] constructor [GOAL] case mk.left x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ 0 < x ^ 2 + y ^ 2 [PROOFSTEP] cases' hxy with hxy hxy [GOAL] case mk.left.inl x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ⊢ 0 < x ^ 2 + y ^ 2 [PROOFSTEP] dsimp at hxy [GOAL] case mk.left.inl x y : ℝ hxy : 0 < x ⊢ 0 < x ^ 2 + y ^ 2 [PROOFSTEP] linarith [sq_pos_of_ne_zero _ hxy.ne', sq_nonneg y] [GOAL] case mk.left.inr x y : ℝ hxy : (x, y) ∈ {q | q.snd ≠ 0} ⊢ 0 < x ^ 2 + y ^ 2 [PROOFSTEP] linarith [sq_nonneg x, sq_pos_of_ne_zero _ hxy] [GOAL] case mk.right x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0 [PROOFSTEP] cases' hxy with hxy hxy [GOAL] case mk.right.inl x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0 [PROOFSTEP] exact Or.inl (le_of_lt hxy) [GOAL] case mk.right.inr x y : ℝ hxy : (x, y) ∈ {q | q.snd ≠ 0} ⊢ 0 ≤ (↑Complex.equivRealProd.symm (x, y)).re ∨ (↑Complex.equivRealProd.symm (x, y)).im ≠ 0 [PROOFSTEP] exact Or.inr hxy [GOAL] ⊢ ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} [PROOFSTEP] rintro ⟨r, θ⟩ ⟨hr, hθ⟩ [GOAL] case mk.intro r θ : ℝ hr : (r, θ).fst ∈ Ioi 0 hθ : (r, θ).snd ∈ Ioo (-π) π ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} [PROOFSTEP] dsimp at hr hθ [GOAL] case mk.intro r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} [PROOFSTEP] rcases eq_or_ne θ 0 with (rfl | h'θ) [GOAL] case mk.intro.inl r : ℝ hr : r ∈ Ioi 0 hθ : 0 ∈ Ioo (-π) π ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, 0) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} [PROOFSTEP] simpa using hr [GOAL] case mk.intro.inr r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π h'θ : θ ≠ 0 ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} [PROOFSTEP] right [GOAL] case mk.intro.inr.h r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π h'θ : θ ≠ 0 ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | q.snd ≠ 0} [PROOFSTEP] simp at hr [GOAL] case mk.intro.inr.h r θ : ℝ hθ : θ ∈ Ioo (-π) π h'θ : θ ≠ 0 hr : 0 < r ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ) ∈ {q | q.snd ≠ 0} [PROOFSTEP] simpa only [ne_of_gt hr, Ne.def, mem_setOf_eq, mul_eq_zero, false_or_iff, sin_eq_zero_iff_of_lt_of_lt hθ.1 hθ.2] using h'θ [GOAL] ⊢ ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x [PROOFSTEP] rintro ⟨x, y⟩ _ [GOAL] case mk x y : ℝ a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) = (x, y) [PROOFSTEP] have A : sqrt (x ^ 2 + y ^ 2) = Complex.abs (x + y * Complex.I) := by simp [Complex.abs_def, Complex.normSq, pow_two, MonoidWithZeroHom.coe_mk, Complex.add_re, Complex.ofReal_re, Complex.mul_re, Complex.I_re, mul_zero, Complex.ofReal_im, Complex.I_im, sub_self, add_zero, Complex.add_im, Complex.mul_im, mul_one, zero_add] [GOAL] x y : ℝ a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I) [PROOFSTEP] simp [Complex.abs_def, Complex.normSq, pow_two, MonoidWithZeroHom.coe_mk, Complex.add_re, Complex.ofReal_re, Complex.mul_re, Complex.I_re, mul_zero, Complex.ofReal_im, Complex.I_im, sub_self, add_zero, Complex.add_im, Complex.mul_im, mul_one, zero_add] [GOAL] case mk x y : ℝ a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I) ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) = (x, y) [PROOFSTEP] have Z := Complex.abs_mul_cos_add_sin_mul_I (x + y * Complex.I) [GOAL] case mk x y : ℝ a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I) Z : ↑(↑Complex.abs (↑x + ↑y * Complex.I)) * (Complex.cos ↑(Complex.arg (↑x + ↑y * Complex.I)) + Complex.sin ↑(Complex.arg (↑x + ↑y * Complex.I)) * Complex.I) = ↑x + ↑y * Complex.I ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) = (x, y) [PROOFSTEP] simp only [← Complex.ofReal_cos, ← Complex.ofReal_sin, mul_add, ← Complex.ofReal_mul, ← mul_assoc] at Z [GOAL] case mk x y : ℝ a✝ : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} A : sqrt (x ^ 2 + y ^ 2) = ↑Complex.abs (↑x + ↑y * Complex.I) Z : ↑(↑Complex.abs (↑x + ↑y * Complex.I) * cos (Complex.arg (↑x + ↑y * Complex.I))) + ↑(↑Complex.abs (↑x + ↑y * Complex.I) * sin (Complex.arg (↑x + ↑y * Complex.I))) * Complex.I = ↑x + ↑y * Complex.I ⊢ (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) (x, y)) = (x, y) [PROOFSTEP] simpa [A, -Complex.ofReal_cos, -Complex.ofReal_sin] using Complex.ext_iff.1 Z [GOAL] ⊢ ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x [PROOFSTEP] rintro ⟨r, θ⟩ ⟨hr, hθ⟩ [GOAL] case mk.intro r θ : ℝ hr : (r, θ).fst ∈ Ioi 0 hθ : (r, θ).snd ∈ Ioo (-π) π ⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ)) = (r, θ) [PROOFSTEP] dsimp at hr hθ [GOAL] case mk.intro r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) (r, θ)) = (r, θ) [PROOFSTEP] simp only [Prod.mk.inj_iff] [GOAL] case mk.intro r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = r ∧ Complex.arg (↑Complex.equivRealProd.symm (r * cos θ, r * sin θ)) = θ [PROOFSTEP] constructor [GOAL] case mk.intro.left r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = r [PROOFSTEP] conv_rhs => rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ] [GOAL] r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π | r [PROOFSTEP] rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ] [GOAL] r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π | r [PROOFSTEP] rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ] [GOAL] r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π | r [PROOFSTEP] rw [← sqrt_sq (le_of_lt hr), ← one_mul (r ^ 2), ← sin_sq_add_cos_sq θ] [GOAL] case mk.intro.left r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ sqrt ((r * cos θ) ^ 2 + (r * sin θ) ^ 2) = sqrt ((sin θ ^ 2 + cos θ ^ 2) * r ^ 2) [PROOFSTEP] congr 1 [GOAL] case mk.intro.left.e_x r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ (r * cos θ) ^ 2 + (r * sin θ) ^ 2 = (sin θ ^ 2 + cos θ ^ 2) * r ^ 2 [PROOFSTEP] ring [GOAL] case mk.intro.right r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ Complex.arg (↑Complex.equivRealProd.symm (r * cos θ, r * sin θ)) = θ [PROOFSTEP] convert Complex.arg_mul_cos_add_sin_mul_I hr ⟨hθ.1, hθ.2.le⟩ [GOAL] case h.e'_2.h.e'_1 r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ ↑Complex.equivRealProd.symm (r * cos θ, r * sin θ) = ↑r * (Complex.cos ↑θ + Complex.sin ↑θ * Complex.I) [PROOFSTEP] simp only [Complex.equivRealProd_symm_apply, Complex.ofReal_mul, Complex.ofReal_cos, Complex.ofReal_sin] [GOAL] case h.e'_2.h.e'_1 r θ : ℝ hr : r ∈ Ioi 0 hθ : θ ∈ Ioo (-π) π ⊢ ↑r * Complex.cos ↑θ + ↑r * Complex.sin ↑θ * Complex.I = ↑r * (Complex.cos ↑θ + Complex.sin ↑θ * Complex.I) [PROOFSTEP] ring [GOAL] ⊢ ContinuousOn ↑{ toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)), invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}, target := Ioi 0 ×ˢ Ioo (-π) π, map_source' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π), map_target' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}), left_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x), right_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x) } { toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)), invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}, target := Ioi 0 ×ˢ Ioo (-π) π, map_source' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π), map_target' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}), left_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x), right_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x) }.source [PROOFSTEP] apply ((continuous_fst.pow 2).add (continuous_snd.pow 2)).sqrt.continuousOn.prod [GOAL] ⊢ ContinuousOn (fun x => Complex.arg (↑Complex.equivRealProd.symm x)) { toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)), invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}, target := Ioi 0 ×ˢ Ioo (-π) π, map_source' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π), map_target' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}), left_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x), right_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x) }.source [PROOFSTEP] have A : MapsTo Complex.equivRealProd.symm ({q : ℝ × ℝ | 0 < q.1} ∪ {q : ℝ × ℝ | q.2 ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} := by rintro ⟨x, y⟩ hxy; simpa only using hxy [GOAL] ⊢ MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} [PROOFSTEP] rintro ⟨x, y⟩ hxy [GOAL] case mk x y : ℝ hxy : (x, y) ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} ⊢ ↑Complex.equivRealProd.symm (x, y) ∈ {z | 0 < z.re ∨ z.im ≠ 0} [PROOFSTEP] simpa only using hxy [GOAL] A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} ⊢ ContinuousOn (fun x => Complex.arg (↑Complex.equivRealProd.symm x)) { toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)), invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}, target := Ioi 0 ×ˢ Ioo (-π) π, map_source' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π), map_target' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}), left_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x), right_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x) }.source [PROOFSTEP] refine' ContinuousOn.comp (f := Complex.equivRealProd.symm) (g := Complex.arg) (fun z hz => _) _ A [GOAL] case refine'_1 A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} z : ℂ hz : z ∈ {z | 0 < z.re ∨ z.im ≠ 0} ⊢ ContinuousWithinAt Complex.arg {z | 0 < z.re ∨ z.im ≠ 0} z [PROOFSTEP] exact (Complex.continuousAt_arg hz).continuousWithinAt [GOAL] case refine'_2 A : MapsTo (↑Complex.equivRealProd.symm) ({q | 0 < q.fst} ∪ {q | q.snd ≠ 0}) {z | 0 < z.re ∨ z.im ≠ 0} ⊢ ContinuousOn ↑Complex.equivRealProd.symm { toFun := fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q)), invFun := fun p => (p.fst * cos p.snd, p.fst * sin p.snd), source := {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}, target := Ioi 0 ×ˢ Ioo (-π) π, map_source' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x ∈ Ioi 0 ×ˢ Ioo (-π) π), map_target' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0}), left_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ {q | 0 < q.fst} ∪ {q | q.snd ≠ 0} → (fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) ((fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) x) = x), right_inv' := (_ : ∀ ⦃x : ℝ × ℝ⦄, x ∈ Ioi 0 ×ˢ Ioo (-π) π → (fun q => (sqrt (q.fst ^ 2 + q.snd ^ 2), Complex.arg (↑Complex.equivRealProd.symm q))) ((fun p => (p.fst * cos p.snd, p.fst * sin p.snd)) x) = x) }.source [PROOFSTEP] exact Complex.equivRealProdClm.symm.continuous.continuousOn [GOAL] p : ℝ × ℝ ⊢ HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]]))) p [PROOFSTEP] rw [Matrix.toLin_finTwoProd_toContinuousLinearMap] [GOAL] p : ℝ × ℝ ⊢ HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (ContinuousLinearMap.prod (cos p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (-p.fst * sin p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ) (sin p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.fst * cos p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ)) p [PROOFSTEP] convert HasFDerivAt.prod (𝕜 := ℝ) (hasFDerivAt_fst.mul ((hasDerivAt_cos p.2).comp_hasFDerivAt p hasFDerivAt_snd)) (hasFDerivAt_fst.mul ((hasDerivAt_sin p.2).comp_hasFDerivAt p hasFDerivAt_snd)) using 2 [GOAL] case h.e'_10.h.e'_15.h.h.h p : ℝ × ℝ e_4✝ : instTopologicalSpaceProd = UniformSpace.toTopologicalSpace e_5✝ : Prod.instAddCommMonoid = AddCommGroup.toAddCommMonoid e_8✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = AddCommGroup.toAddCommMonoid he✝¹ : Prod.instModule = NormedSpace.toModule he✝ : NormedSpace.toModule = NormedSpace.toModule ⊢ cos p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (-p.fst * sin p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ = p.fst • -sin p.snd • ContinuousLinearMap.snd ℝ ℝ ℝ + (cos ∘ Prod.snd) p • ContinuousLinearMap.fst ℝ ℝ ℝ [PROOFSTEP] simp [smul_smul, add_comm, neg_mul, neg_smul, smul_neg] [GOAL] case h.e'_10.h.e'_16.h.h.h p : ℝ × ℝ e_4✝ : instTopologicalSpaceProd = UniformSpace.toTopologicalSpace e_5✝ : Prod.instAddCommMonoid = AddCommGroup.toAddCommMonoid e_11✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = AddCommGroup.toAddCommMonoid he✝¹ : Prod.instModule = NormedSpace.toModule he✝ : NormedSpace.toModule = NormedSpace.toModule ⊢ sin p.snd • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.fst * cos p.snd) • ContinuousLinearMap.snd ℝ ℝ ℝ = p.fst • cos p.snd • ContinuousLinearMap.snd ℝ ℝ ℝ + (sin ∘ Prod.snd) p • ContinuousLinearMap.fst ℝ ℝ ℝ [PROOFSTEP] simp [smul_smul, add_comm, neg_mul, neg_smul, smul_neg] [GOAL] ⊢ polarCoord.source =ᵐ[volume] univ [PROOFSTEP] have A : polarCoord.sourceᶜ ⊆ LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) := by intro x hx simp only [polarCoord_source, compl_union, mem_inter_iff, mem_compl_iff, mem_setOf_eq, not_lt, Classical.not_not] at hx exact hx.2 [GOAL] ⊢ polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) [PROOFSTEP] intro x hx [GOAL] x : ℝ × ℝ hx : x ∈ polarCoord.sourceᶜ ⊢ x ∈ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) [PROOFSTEP] simp only [polarCoord_source, compl_union, mem_inter_iff, mem_compl_iff, mem_setOf_eq, not_lt, Classical.not_not] at hx [GOAL] x : ℝ × ℝ hx : x.fst ≤ 0 ∧ x.snd = 0 ⊢ x ∈ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) [PROOFSTEP] exact hx.2 [GOAL] A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) ⊢ polarCoord.source =ᵐ[volume] univ [PROOFSTEP] have B : volume (LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) : Set (ℝ × ℝ)) = 0 := by apply Measure.addHaar_submodule rw [Ne.def, LinearMap.ker_eq_top] intro h have : (LinearMap.snd ℝ ℝ ℝ) (0, 1) = (0 : ℝ × ℝ →ₗ[ℝ] ℝ) (0, 1) := by rw [h] simp at this [GOAL] A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) ⊢ ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0 [PROOFSTEP] apply Measure.addHaar_submodule [GOAL] case hs A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) ⊢ LinearMap.ker (LinearMap.snd ℝ ℝ ℝ) ≠ ⊤ [PROOFSTEP] rw [Ne.def, LinearMap.ker_eq_top] [GOAL] case hs A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) ⊢ ¬LinearMap.snd ℝ ℝ ℝ = 0 [PROOFSTEP] intro h [GOAL] case hs A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) h : LinearMap.snd ℝ ℝ ℝ = 0 ⊢ False [PROOFSTEP] have : (LinearMap.snd ℝ ℝ ℝ) (0, 1) = (0 : ℝ × ℝ →ₗ[ℝ] ℝ) (0, 1) := by rw [h] [GOAL] A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) h : LinearMap.snd ℝ ℝ ℝ = 0 ⊢ ↑(LinearMap.snd ℝ ℝ ℝ) (0, 1) = ↑0 (0, 1) [PROOFSTEP] rw [h] [GOAL] case hs A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) h : LinearMap.snd ℝ ℝ ℝ = 0 this : ↑(LinearMap.snd ℝ ℝ ℝ) (0, 1) = ↑0 (0, 1) ⊢ False [PROOFSTEP] simp at this [GOAL] A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) B : ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0 ⊢ polarCoord.source =ᵐ[volume] univ [PROOFSTEP] simp only [ae_eq_univ] [GOAL] A : polarCoord.sourceᶜ ⊆ ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) B : ↑↑volume ↑(LinearMap.ker (LinearMap.snd ℝ ℝ ℝ)) = 0 ⊢ ↑↑volume polarCoord.sourceᶜ = 0 [PROOFSTEP] exact le_antisymm ((measure_mono A).trans (le_of_eq B)) bot_le [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E ⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p [PROOFSTEP] set B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => LinearMap.toContinuousLinearMap (Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ) !![cos p.2, -p.1 * sin p.2; sin p.2, p.1 * cos p.2]) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) ⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p [PROOFSTEP] have A : ∀ p ∈ polarCoord.symm.source, HasFDerivAt polarCoord.symm (B p) p := fun p _ => hasFDerivAt_polarCoord_symm p [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p ⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p [PROOFSTEP] have B_det : ∀ p, (B p).det = p.1 := by intro p conv_rhs => rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2] simp only [neg_mul, LinearMap.det_toContinuousLinearMap, LinearMap.det_toLin, Matrix.det_fin_two_of, sub_neg_eq_add] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p ⊢ ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst [PROOFSTEP] intro p [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ ⊢ ContinuousLinearMap.det (B p) = p.fst [PROOFSTEP] conv_rhs => rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ | p.fst [PROOFSTEP] rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ | p.fst [PROOFSTEP] rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ | p.fst [PROOFSTEP] rw [← one_mul p.1, ← cos_sq_add_sin_sq p.2] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ ⊢ ContinuousLinearMap.det (B p) = (cos p.snd ^ 2 + sin p.snd ^ 2) * p.fst [PROOFSTEP] simp only [neg_mul, LinearMap.det_toContinuousLinearMap, LinearMap.det_toLin, Matrix.det_fin_two_of, sub_neg_eq_add] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p p : ℝ × ℝ ⊢ cos p.snd * (p.fst * cos p.snd) + p.fst * sin p.snd * sin p.snd = (cos p.snd ^ 2 + sin p.snd ^ 2) * p.fst [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p [PROOFSTEP] symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (p : ℝ × ℝ), f p = ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) [PROOFSTEP] calc ∫ p, f p = ∫ p in polarCoord.source, f p := by rw [← integral_univ] apply set_integral_congr_set_ae exact polarCoord_source_ae_eq_univ.symm _ = ∫ p in polarCoord.target, abs (B p).det • f (polarCoord.symm p) := by apply integral_target_eq_integral_abs_det_fderiv_smul volume A _ = ∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) := by apply set_integral_congr polarCoord.open_target.measurableSet fun x hx => ?_ rw [B_det, abs_of_pos] exact hx.1 [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (p : ℝ × ℝ), f p = ∫ (p : ℝ × ℝ) in polarCoord.source, f p [PROOFSTEP] rw [← integral_univ] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (x : ℝ × ℝ) in univ, f x = ∫ (p : ℝ × ℝ) in polarCoord.source, f p [PROOFSTEP] apply set_integral_congr_set_ae [GOAL] case hst E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ univ =ᵐ[volume] polarCoord.source [PROOFSTEP] exact polarCoord_source_ae_eq_univ.symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (p : ℝ × ℝ) in polarCoord.source, f p = ∫ (p : ℝ × ℝ) in polarCoord.target, |ContinuousLinearMap.det (B p)| • f (↑(LocalHomeomorph.symm polarCoord) p) [PROOFSTEP] apply integral_target_eq_integral_abs_det_fderiv_smul volume A [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst ⊢ ∫ (p : ℝ × ℝ) in polarCoord.target, |ContinuousLinearMap.det (B p)| • f (↑(LocalHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ) in polarCoord.target, p.fst • f (↑(LocalHomeomorph.symm polarCoord) p) [PROOFSTEP] apply set_integral_congr polarCoord.open_target.measurableSet fun x hx => ?_ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst x : ℝ × ℝ hx : x ∈ polarCoord.target ⊢ |ContinuousLinearMap.det (B x)| • f (↑(LocalHomeomorph.symm polarCoord) x) = x.fst • f (↑(LocalHomeomorph.symm polarCoord) x) [PROOFSTEP] rw [B_det, abs_of_pos] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℝ × ℝ → E B : ℝ × ℝ → ℝ × ℝ →L[ℝ] ℝ × ℝ := fun p => ↑LinearMap.toContinuousLinearMap (↑(Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ)) (↑Matrix.of ![![cos p.snd, -p.fst * sin p.snd], ![sin p.snd, p.fst * cos p.snd]])) A : ∀ (p : ℝ × ℝ), p ∈ (LocalHomeomorph.symm polarCoord).toLocalEquiv.source → HasFDerivAt (↑(LocalHomeomorph.symm polarCoord)) (B p) p B_det : ∀ (p : ℝ × ℝ), ContinuousLinearMap.det (B p) = p.fst x : ℝ × ℝ hx : x ∈ polarCoord.target ⊢ 0 < x.fst [PROOFSTEP] exact hx.1
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.PolarCoord", "llama_tokens": 17567}
[GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝³ : NontriviallyNormedField 𝕂 inst✝² : NormedRing 𝔸 inst✝¹ : NormedAlgebra 𝕂 𝔸 inst✝ : CompleteSpace 𝔸 h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ HasStrictFDerivAt (exp 𝕂) 1 0 [PROOFSTEP] convert (hasFPowerSeriesAt_exp_zero_of_radius_pos h).hasStrictFDerivAt [GOAL] case h.e'_10 𝕂 : Type u_1 𝔸 : Type u_2 inst✝³ : NontriviallyNormedField 𝕂 inst✝² : NormedRing 𝔸 inst✝¹ : NormedAlgebra 𝕂 𝔸 inst✝ : CompleteSpace 𝔸 h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ 1 = ↑(continuousMultilinearCurryFin1 𝕂 𝔸 𝔸) (expSeries 𝕂 𝔸 1) [PROOFSTEP] ext x [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝔸 : Type u_2 inst✝³ : NontriviallyNormedField 𝕂 inst✝² : NormedRing 𝔸 inst✝¹ : NormedAlgebra 𝕂 𝔸 inst✝ : CompleteSpace 𝔸 h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) x : 𝔸 ⊢ ↑1 x = ↑(↑(continuousMultilinearCurryFin1 𝕂 𝔸 𝔸) (expSeries 𝕂 𝔸 1)) x [PROOFSTEP] change x = expSeries 𝕂 𝔸 1 fun _ => x [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝔸 : Type u_2 inst✝³ : NontriviallyNormedField 𝕂 inst✝² : NormedRing 𝔸 inst✝¹ : NormedAlgebra 𝕂 𝔸 inst✝ : CompleteSpace 𝔸 h : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) x : 𝔸 ⊢ x = ↑(expSeries 𝕂 𝔸 1) fun x_1 => x [PROOFSTEP] simp [expSeries_apply_eq] [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x [PROOFSTEP] have hpos : 0 < (expSeries 𝕂 𝔸).radius := (zero_le _).trans_lt hx [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ HasFDerivAt (exp 𝕂) (exp 𝕂 x • 1) x [PROOFSTEP] rw [hasFDerivAt_iff_isLittleO_nhds_zero] [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ (fun h => exp 𝕂 (x + h) - exp 𝕂 x - ↑(exp 𝕂 x • 1) h) =o[𝓝 0] fun h => h [PROOFSTEP] suffices (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ContinuousLinearMap.id 𝕂 𝔸 h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ContinuousLinearMap.id 𝕂 𝔸 h by refine' (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _) rw [← hasFDerivAt_iff_isLittleO_nhds_zero] exact hasFDerivAt_exp_zero_of_radius_pos hpos [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h ⊢ (fun h => exp 𝕂 (x + h) - exp 𝕂 x - ↑(exp 𝕂 x • 1) h) =o[𝓝 0] fun h => h [PROOFSTEP] refine' (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _) [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h ⊢ (fun x => exp 𝕂 (0 + x) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) x) =o[𝓝 0] fun h => h [PROOFSTEP] rw [← hasFDerivAt_iff_isLittleO_nhds_zero] [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h ⊢ HasFDerivAt (exp 𝕂) (ContinuousLinearMap.id 𝕂 𝔸) 0 [PROOFSTEP] exact hasFDerivAt_exp_zero_of_radius_pos hpos [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h [PROOFSTEP] have : ∀ᶠ h in 𝓝 (0 : 𝔸), h ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius := EMetric.ball_mem_nhds _ hpos [GOAL] 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ (fun h => exp 𝕂 x * (exp 𝕂 (0 + h) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 (x + h) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) h [PROOFSTEP] filter_upwards [this] with _ hh [GOAL] case h 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) a✝ : 𝔸 hh : a✝ ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ exp 𝕂 x * (exp 𝕂 (0 + a✝) - exp 𝕂 0 - ↑(ContinuousLinearMap.id 𝕂 𝔸) a✝) = exp 𝕂 (x + a✝) - exp 𝕂 x - exp 𝕂 x • ↑(ContinuousLinearMap.id 𝕂 𝔸) a✝ [PROOFSTEP] rw [exp_add_of_mem_ball hx hh, exp_zero, zero_add, ContinuousLinearMap.id_apply, smul_eq_mul] [GOAL] case h 𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕂 inst✝³ : NormedCommRing 𝔸 inst✝² : NormedAlgebra 𝕂 𝔸 inst✝¹ : CompleteSpace 𝔸 inst✝ : CharZero 𝕂 x : 𝔸 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : ∀ᶠ (h : 𝔸) in 𝓝 0, h ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) a✝ : 𝔸 hh : a✝ ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ exp 𝕂 x * (exp 𝕂 a✝ - 1 - a✝) = exp 𝕂 x * exp 𝕂 a✝ - exp 𝕂 x - exp 𝕂 x * a✝ [PROOFSTEP] ring [GOAL] 𝕂 : Type u_1 inst✝² : NontriviallyNormedField 𝕂 inst✝¹ : CompleteSpace 𝕂 inst✝ : CharZero 𝕂 x : 𝕂 hx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝕂)) ⊢ HasStrictDerivAt (exp 𝕂) (exp 𝕂 x) x [PROOFSTEP] simpa using (hasStrictFDerivAt_exp_of_mem_ball hx).hasStrictDerivAt [GOAL] ⊢ exp = _root_.exp ℂ [PROOFSTEP] refine' funext fun x => _ [GOAL] x : ℂ ⊢ exp x = _root_.exp ℂ x [PROOFSTEP] rw [Complex.exp, exp_eq_tsum_div] [GOAL] x : ℂ ⊢ CauSeq.lim (exp' x) = (fun x => ∑' (n : ℕ), x ^ n / ↑n !) x [PROOFSTEP] have : CauSeq.IsComplete ℂ norm := Complex.instIsComplete [GOAL] x : ℂ this : CauSeq.IsComplete ℂ norm ⊢ CauSeq.lim (exp' x) = (fun x => ∑' (n : ℕ), x ^ n / ↑n !) x [PROOFSTEP] exact tendsto_nhds_unique x.exp'.tendsto_limit (expSeries_div_summable ℝ x).hasSum.tendsto_sum_nat [GOAL] ⊢ exp = _root_.exp ℝ [PROOFSTEP] ext x [GOAL] case h x : ℝ ⊢ exp x = _root_.exp ℝ x [PROOFSTEP] exact_mod_cast congr_fun Complex.exp_eq_exp_ℂ x [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t [PROOFSTEP] have hpos : 0 < (expSeries 𝕂 𝔸).radius := (zero_le _).trans_lt htx [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t [PROOFSTEP] rw [hasFDerivAt_iff_isLittleO_nhds_zero] [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ (fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h) =o[𝓝 0] fun h => h [PROOFSTEP] suffices (fun (h : 𝕊) => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 ((0 : 𝕊) • x) - ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - (exp 𝕂 (t • x) • (1 : 𝕊 →L[𝕂] 𝕊).smulRight x) h by apply (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _) rw [← @hasFDerivAt_iff_isLittleO_nhds_zero _ _ _ _ _ _ _ _ (fun u => exp 𝕂 (u • x)) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) 0] have : HasFDerivAt (exp 𝕂) (1 : 𝔸 →L[𝕂] 𝔸) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x 0) := by rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul] exact hasFDerivAt_exp_zero_of_radius_pos hpos exact this.comp 0 ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x).hasFDerivAt [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h ⊢ (fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h) =o[𝓝 0] fun h => h [PROOFSTEP] apply (IsLittleO.const_mul_left _ _).congr' this (EventuallyEq.refl _ _) [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h ⊢ (fun x_1 => exp 𝕂 ((0 + x_1) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) x_1) =o[𝓝 0] fun h => h [PROOFSTEP] rw [← @hasFDerivAt_iff_isLittleO_nhds_zero _ _ _ _ _ _ _ _ (fun u => exp 𝕂 (u • x)) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x) 0] [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight 1 x) 0 [PROOFSTEP] have : HasFDerivAt (exp 𝕂) (1 : 𝔸 →L[𝕂] 𝔸) ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x 0) := by rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul] exact hasFDerivAt_exp_zero_of_radius_pos hpos [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h ⊢ HasFDerivAt (exp 𝕂) 1 (↑(ContinuousLinearMap.smulRight 1 x) 0) [PROOFSTEP] rw [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, zero_smul] [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h ⊢ HasFDerivAt (exp 𝕂) 1 0 [PROOFSTEP] exact hasFDerivAt_exp_zero_of_radius_pos hpos [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this✝ : (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h this : HasFDerivAt (exp 𝕂) 1 (↑(ContinuousLinearMap.smulRight 1 x) 0) ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight 1 x) 0 [PROOFSTEP] exact this.comp 0 ((1 : 𝕊 →L[𝕂] 𝕊).smulRight x).hasFDerivAt [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h [PROOFSTEP] have : Tendsto (fun h : 𝕊 => h • x) (𝓝 0) (𝓝 0) := by rw [← zero_smul 𝕊 x] exact tendsto_id.smul_const x [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ Tendsto (fun h => h • x) (𝓝 0) (𝓝 0) [PROOFSTEP] rw [← zero_smul 𝕊 x] [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) ⊢ Tendsto (fun h => h • x) (𝓝 0) (𝓝 (0 • x)) [PROOFSTEP] exact tendsto_id.smul_const x [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0) ⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h [PROOFSTEP] have : ∀ᶠ h in 𝓝 (0 : 𝕊), h • x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius := this.eventually (EMetric.ball_mem_nhds _ hpos) [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this✝ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0) this : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ (fun h => exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h)) =ᶠ[𝓝 0] fun h => exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h [PROOFSTEP] filter_upwards [this] with h hh [GOAL] case h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this✝ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0) this : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) h : 𝕊 hh : h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h) = exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h [PROOFSTEP] have : Commute (t • x) (h • x) := ((Commute.refl x).smul_left t).smul_right h [GOAL] case h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) hpos : 0 < FormalMultilinearSeries.radius (expSeries 𝕂 𝔸) this✝¹ : Tendsto (fun h => h • x) (𝓝 0) (𝓝 0) this✝ : ∀ᶠ (h : 𝕊) in 𝓝 0, h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) h : 𝕊 hh : h • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) this : Commute (t • x) (h • x) ⊢ exp 𝕂 (t • x) * (exp 𝕂 ((0 + h) • x) - exp 𝕂 (0 • x) - ↑(ContinuousLinearMap.smulRight 1 x) h) = exp 𝕂 ((t + h) • x) - exp 𝕂 (t • x) - ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) h [PROOFSTEP] rw [add_smul t h, exp_add_of_commute_of_mem_ball this htx hh, zero_add, zero_smul, exp_zero, ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, ContinuousLinearMap.smul_apply, ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, smul_eq_mul, mul_sub_left_distrib, mul_sub_left_distrib, mul_one] [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t [PROOFSTEP] convert hasFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1 [GOAL] case h.e'_10 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) = exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x [PROOFSTEP] ext t' [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) t' : 𝕊 ⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' = ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t' [PROOFSTEP] show Commute (t' • x) (exp 𝕂 (t • x)) [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) t' : 𝕊 ⊢ Commute (t' • x) (exp 𝕂 (t • x)) [PROOFSTEP] exact (((Commute.refl x).smul_left t').smul_right t).exp_right 𝕂 [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t [PROOFSTEP] let ⟨_, _⟩ := analyticAt_exp_of_mem_ball (t • x) htx [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸 h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x) ⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x)) (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t [PROOFSTEP] convert hasStrictFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1 [GOAL] case h.e'_10 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸 h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x) ⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) = exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x [PROOFSTEP] ext t' [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸 h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x) t' : 𝕊 ⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' = ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t' [PROOFSTEP] show Commute (t' • x) (exp 𝕂 (t • x)) [GOAL] case h.e'_10.h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) w✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸 h✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x) t' : 𝕊 ⊢ Commute (t' • x) (exp 𝕂 (t • x)) [PROOFSTEP] exact (((Commute.refl x).smul_left t').smul_right t).exp_right 𝕂 [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕂 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasStrictDerivAt (fun u => exp 𝕂 (u • x)) (exp 𝕂 (t • x) * x) t [PROOFSTEP] simpa using (hasStrictFDerivAt_exp_smul_const_of_mem_ball 𝕂 x t htx).hasStrictDerivAt [GOAL] 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕂 htx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸)) ⊢ HasStrictDerivAt (fun u => exp 𝕂 (u • x)) (x * exp 𝕂 (t • x)) t [PROOFSTEP] simpa using (hasStrictFDerivAt_exp_smul_const_of_mem_ball' 𝕂 x t htx).hasStrictDerivAt
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Exponential", "llama_tokens": 17961}
[GOAL] x y : ℝ ⊢ MonotoneOn (fun x => log x * x) {x | 1 ≤ x} [PROOFSTEP] simp only [MonotoneOn, mem_setOf_eq] [GOAL] x y : ℝ ⊢ ∀ ⦃a : ℝ⦄, 1 ≤ a → ∀ ⦃b : ℝ⦄, 1 ≤ b → a ≤ b → log a * a ≤ log b * b [PROOFSTEP] intro x hex y hey hxy [GOAL] x✝ y✝ x : ℝ hex : 1 ≤ x y : ℝ hey : 1 ≤ y hxy : x ≤ y ⊢ log x * x ≤ log y * y [PROOFSTEP] have x_pos : 0 < x := lt_of_lt_of_le zero_lt_one hex [GOAL] x✝ y✝ x : ℝ hex : 1 ≤ x y : ℝ hey : 1 ≤ y hxy : x ≤ y x_pos : 0 < x ⊢ log x * x ≤ log y * y [PROOFSTEP] have y_pos : 0 < y := lt_of_lt_of_le zero_lt_one hey [GOAL] x✝ y✝ x : ℝ hex : 1 ≤ x y : ℝ hey : 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y ⊢ log x * x ≤ log y * y [PROOFSTEP] refine' mul_le_mul ((log_le_log x_pos y_pos).mpr hxy) hxy (le_of_lt x_pos) _ [GOAL] x✝ y✝ x : ℝ hex : 1 ≤ x y : ℝ hey : 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y ⊢ 0 ≤ log y [PROOFSTEP] rwa [le_log_iff_exp_le y_pos, Real.exp_zero] [GOAL] x y : ℝ ⊢ AntitoneOn (fun x => log x / x) {x | exp 1 ≤ x} [PROOFSTEP] simp only [AntitoneOn, mem_setOf_eq] [GOAL] x y : ℝ ⊢ ∀ ⦃a : ℝ⦄, exp 1 ≤ a → ∀ ⦃b : ℝ⦄, exp 1 ≤ b → a ≤ b → log b / b ≤ log a / a [PROOFSTEP] intro x hex y hey hxy [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y ⊢ log y / y ≤ log x / x [PROOFSTEP] have x_pos : 0 < x := (exp_pos 1).trans_le hex [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x ⊢ log y / y ≤ log x / x [PROOFSTEP] have y_pos : 0 < y := (exp_pos 1).trans_le hey [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y ⊢ log y / y ≤ log x / x [PROOFSTEP] have hlogx : 1 ≤ log x := by rwa [le_log_iff_exp_le x_pos] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y ⊢ 1 ≤ log x [PROOFSTEP] rwa [le_log_iff_exp_le x_pos] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x ⊢ log y / y ≤ log x / x [PROOFSTEP] have hyx : 0 ≤ y / x - 1 := by rwa [le_sub_iff_add_le, le_div_iff x_pos, zero_add, one_mul] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x ⊢ 0 ≤ y / x - 1 [PROOFSTEP] rwa [le_sub_iff_add_le, le_div_iff x_pos, zero_add, one_mul] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x hyx : 0 ≤ y / x - 1 ⊢ log y / y ≤ log x / x [PROOFSTEP] rw [div_le_iff y_pos, ← sub_le_sub_iff_right (log x)] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x hyx : 0 ≤ y / x - 1 ⊢ log y - log x ≤ log x / x * y - log x [PROOFSTEP] calc log y - log x = log (y / x) := by rw [log_div y_pos.ne' x_pos.ne'] _ ≤ y / x - 1 := (log_le_sub_one_of_pos (div_pos y_pos x_pos)) _ ≤ log x * (y / x - 1) := (le_mul_of_one_le_left hyx hlogx) _ = log x / x * y - log x := by ring [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x hyx : 0 ≤ y / x - 1 ⊢ log y - log x = log (y / x) [PROOFSTEP] rw [log_div y_pos.ne' x_pos.ne'] [GOAL] x✝ y✝ x : ℝ hex : exp 1 ≤ x y : ℝ hey : exp 1 ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y hlogx : 1 ≤ log x hyx : 0 ≤ y / x - 1 ⊢ log x * (y / x - 1) = log x / x * y - log x [PROOFSTEP] ring [GOAL] x y a : ℝ ha : 0 < a ⊢ AntitoneOn (fun x => log x / x ^ a) {x | exp (1 / a) ≤ x} [PROOFSTEP] simp only [AntitoneOn, mem_setOf_eq] [GOAL] x y a : ℝ ha : 0 < a ⊢ ∀ ⦃a_1 : ℝ⦄, exp (1 / a) ≤ a_1 → ∀ ⦃b : ℝ⦄, exp (1 / a) ≤ b → a_1 ≤ b → log b / b ^ a ≤ log a_1 / a_1 ^ a [PROOFSTEP] intro x hex y _ hxy [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y ⊢ log y / y ^ a ≤ log x / x ^ a [PROOFSTEP] have x_pos : 0 < x := lt_of_lt_of_le (exp_pos (1 / a)) hex [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x ⊢ log y / y ^ a ≤ log x / x ^ a [PROOFSTEP] have y_pos : 0 < y := by linarith [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x ⊢ 0 < y [PROOFSTEP] linarith [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y ⊢ log y / y ^ a ≤ log x / x ^ a [PROOFSTEP] have x_nonneg : 0 ≤ x := le_trans (le_of_lt (exp_pos (1 / a))) hex [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x ⊢ log y / y ^ a ≤ log x / x ^ a [PROOFSTEP] have y_nonneg : 0 ≤ y := by linarith [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x ⊢ 0 ≤ y [PROOFSTEP] linarith [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ log y / y ^ a ≤ log x / x ^ a [PROOFSTEP] nth_rw 1 [← rpow_one y] [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ log (y ^ 1) / y ^ a ≤ log x / x ^ a [PROOFSTEP] nth_rw 1 [← rpow_one x] [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ log (y ^ 1) / y ^ a ≤ log (x ^ 1) / x ^ a [PROOFSTEP] rw [← div_self (ne_of_lt ha).symm, div_eq_mul_one_div a a, rpow_mul y_nonneg, rpow_mul x_nonneg, log_rpow (rpow_pos_of_pos y_pos a), log_rpow (rpow_pos_of_pos x_pos a), mul_div_assoc, mul_div_assoc, mul_le_mul_left (one_div_pos.mpr ha)] [GOAL] x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ log (y ^ a) / y ^ a ≤ log (x ^ a) / x ^ a [PROOFSTEP] refine' log_div_self_antitoneOn _ _ _ [GOAL] case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ x ^ a ∈ {x | exp 1 ≤ x} [PROOFSTEP] simp only [Set.mem_setOf_eq] [GOAL] case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 ≤ x ^ a [PROOFSTEP] convert rpow_le_rpow _ hex (le_of_lt ha) using 1 [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 = exp (1 / a) ^ a case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] rw [← exp_mul] [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 = exp (1 / a * a) case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] simp only [Real.exp_eq_exp] [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 1 = 1 / a * a case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] field_simp [(ne_of_lt ha).symm] [GOAL] case refine'_1 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] exact le_of_lt (exp_pos (1 / a)) [GOAL] case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ y ^ a ∈ {x | exp 1 ≤ x} [PROOFSTEP] simp only [Set.mem_setOf_eq] [GOAL] case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 ≤ y ^ a [PROOFSTEP] convert rpow_le_rpow _ (_root_.trans hex hxy) (le_of_lt ha) using 1 [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 = exp (1 / a) ^ a case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] rw [← exp_mul] [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ exp 1 = exp (1 / a * a) case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] simp only [Real.exp_eq_exp] [GOAL] case h.e'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 1 = 1 / a * a case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] field_simp [(ne_of_lt ha).symm] [GOAL] case refine'_2 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ 0 ≤ exp (1 / a) [PROOFSTEP] exact le_of_lt (exp_pos (1 / a)) [GOAL] case refine'_3 x✝¹ y✝ a : ℝ ha : 0 < a x : ℝ hex : exp (1 / a) ≤ x y : ℝ x✝ : exp (1 / a) ≤ y hxy : x ≤ y x_pos : 0 < x y_pos : 0 < y x_nonneg : 0 ≤ x y_nonneg : 0 ≤ y ⊢ x ^ a ≤ y ^ a [PROOFSTEP] exact rpow_le_rpow x_nonneg hxy (le_of_lt ha) [GOAL] x y : ℝ ⊢ AntitoneOn (fun x => log x / sqrt x) {x | exp 2 ≤ x} [PROOFSTEP] simp_rw [sqrt_eq_rpow] [GOAL] x y : ℝ ⊢ AntitoneOn (fun x => log x / x ^ (1 / 2)) {x | exp 2 ≤ x} [PROOFSTEP] convert @log_div_self_rpow_antitoneOn (1 / 2) (by norm_num) [GOAL] x y : ℝ ⊢ 0 < 1 / 2 [PROOFSTEP] norm_num [GOAL] case h.e'_6.h.e'_2.h.h.e'_3.h.e'_1 x y x✝ : ℝ ⊢ 2 = 1 / (1 / 2) [PROOFSTEP] norm_num
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Monotone", "llama_tokens": 6697}
[GOAL] ⊢ stirlingSeq 0 = 0 [PROOFSTEP] rw [stirlingSeq, cast_zero, mul_zero, Real.sqrt_zero, zero_mul, div_zero] [GOAL] ⊢ stirlingSeq 1 = exp 1 / Real.sqrt 2 [PROOFSTEP] rw [stirlingSeq, pow_one, factorial_one, cast_one, mul_one, mul_one_div, one_div_div] [GOAL] n : ℕ ⊢ Real.log (stirlingSeq (succ n)) = Real.log ↑(succ n)! - 1 / 2 * Real.log (2 * ↑(succ n)) - ↑(succ n) * Real.log (↑(succ n) / exp 1) [PROOFSTEP] rw [stirlingSeq, log_div, log_mul, sqrt_eq_rpow, log_rpow, Real.log_pow, tsub_tsub] [GOAL] case hx n : ℕ ⊢ 0 < 2 * ↑(succ n) [PROOFSTEP] positivity [GOAL] case hx n : ℕ ⊢ Real.sqrt (2 * ↑(succ n)) ≠ 0 [PROOFSTEP] positivity [GOAL] case hy n : ℕ ⊢ (↑(succ n) / exp 1) ^ succ n ≠ 0 [PROOFSTEP] positivity [GOAL] case hx n : ℕ ⊢ ↑(succ n)! ≠ 0 [PROOFSTEP] positivity [GOAL] case hy n : ℕ ⊢ Real.sqrt (2 * ↑(succ n)) * (↑(succ n) / exp 1) ^ succ n ≠ 0 [PROOFSTEP] positivity [GOAL] m : ℕ ⊢ HasSum (fun k => 1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ succ k) (Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m)))) [PROOFSTEP] change HasSum ((fun b : ℕ => (1 : ℝ) / ((2 : ℝ) * b + (1 : ℝ)) * (((1 : ℝ) / (2 * m.succ + 1)) ^ 2) ^ b) ∘ succ) _ [GOAL] m : ℕ ⊢ HasSum ((fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b) ∘ succ) (Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m)))) [PROOFSTEP] refine' (hasSum_nat_add_iff (a := _ - _) -- Porting note: must give implicit arguments (f := (fun b : ℕ => ↑1 / (↑2 * b + ↑1) * (((1 : ℝ) / (2 * m.succ + 1)) ^ 2) ^ b)) 1).mpr _ [GOAL] m : ℕ ⊢ HasSum (fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b) (Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) + ∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i) [PROOFSTEP] convert (hasSum_log_one_add_inv <| cast_pos.mpr (succ_pos m)).mul_left ((m.succ : ℝ) + 1 / 2) using 1 [GOAL] case h.e'_5 m : ℕ ⊢ (fun b => 1 / (2 * ↑b + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ b) = fun i => (↑(succ m) + 1 / 2) * (2 * (1 / (2 * ↑i + 1)) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * i + 1)) [PROOFSTEP] ext k [GOAL] case h.e'_5.h m k : ℕ ⊢ 1 / (2 * ↑k + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ k = (↑(succ m) + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * k + 1)) [PROOFSTEP] rw [← pow_mul, pow_add] [GOAL] case h.e'_5.h m k : ℕ ⊢ 1 / (2 * ↑k + 1) * (1 / (2 * ↑(succ m) + 1)) ^ (2 * k) = (↑(succ m) + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * ↑(succ m) + 1)) ^ (2 * k) * (1 / (2 * ↑(succ m) + 1)) ^ 1)) [PROOFSTEP] push_cast [GOAL] case h.e'_5.h m k : ℕ ⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) = (↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1)) [PROOFSTEP] have : 2 * (k : ℝ) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * k) [GOAL] m k : ℕ ⊢ 2 * ↑k + 1 ≠ 0 [PROOFSTEP] norm_cast [GOAL] m k : ℕ ⊢ ¬2 * k + 1 = 0 [PROOFSTEP] exact succ_ne_zero (2 * k) [GOAL] case h.e'_5.h m k : ℕ this : 2 * ↑k + 1 ≠ 0 ⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) = (↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1)) [PROOFSTEP] have : 2 * ((m : ℝ) + 1) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * m.succ) [GOAL] m k : ℕ this : 2 * ↑k + 1 ≠ 0 ⊢ 2 * (↑m + 1) + 1 ≠ 0 [PROOFSTEP] norm_cast [GOAL] m k : ℕ this : 2 * ↑k + 1 ≠ 0 ⊢ ¬2 * (m + 1) + 1 = 0 [PROOFSTEP] exact succ_ne_zero (2 * m.succ) [GOAL] case h.e'_5.h m k : ℕ this✝ : 2 * ↑k + 1 ≠ 0 this : 2 * (↑m + 1) + 1 ≠ 0 ⊢ 1 / (2 * ↑k + 1) * (1 / (2 * (↑m + 1) + 1)) ^ (2 * k) = (↑m + 1 + 1 / 2) * (2 * (1 / (2 * ↑k + 1)) * ((1 / (2 * (↑m + 1) + 1)) ^ (2 * k) * (1 / (2 * (↑m + 1) + 1)) ^ 1)) [PROOFSTEP] field_simp [GOAL] case h.e'_5.h m k : ℕ this✝ : 2 * ↑k + 1 ≠ 0 this : 2 * (↑m + 1) + 1 ≠ 0 ⊢ (2 * ↑k + 1) * ((2 * (↑m + 1) + 1) ^ (2 * k) * (2 * (↑m + 1) + 1)) = ((↑m + 1) * 2 + 1) * ((2 * ↑k + 1) * (2 * (↑m + 1) + 1) ^ (2 * k)) [PROOFSTEP] ring [GOAL] case h.e'_6 m : ℕ ⊢ Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) + ∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i = (↑(succ m) + 1 / 2) * Real.log (1 + (↑(succ m))⁻¹) [PROOFSTEP] have h : ∀ (x : ℝ) (_ : x ≠ 0), 1 + x⁻¹ = (x + 1) / x := by intro x hx; rw [_root_.add_div, div_self hx, inv_eq_one_div] [GOAL] m : ℕ ⊢ ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x [PROOFSTEP] intro x hx [GOAL] m : ℕ x : ℝ hx : x ≠ 0 ⊢ 1 + x⁻¹ = (x + 1) / x [PROOFSTEP] rw [_root_.add_div, div_self hx, inv_eq_one_div] [GOAL] case h.e'_6 m : ℕ h : ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x ⊢ Real.log (stirlingSeq (succ m)) - Real.log (stirlingSeq (succ (succ m))) + ∑ i in range 1, 1 / (2 * ↑i + 1) * ((1 / (2 * ↑(succ m) + 1)) ^ 2) ^ i = (↑(succ m) + 1 / 2) * Real.log (1 + (↑(succ m))⁻¹) [PROOFSTEP] simp (disch := norm_cast <;> apply_rules [mul_ne_zero, succ_ne_zero, factorial_ne_zero, exp_ne_zero]) only [log_stirlingSeq_formula, log_div, log_mul, log_exp, factorial_succ, cast_mul, cast_succ, cast_zero, range_one, sum_singleton, h] [GOAL] case h.e'_6 m : ℕ h : ∀ (x : ℝ), x ≠ 0 → 1 + x⁻¹ = (x + 1) / x ⊢ Real.log (↑m + 1) + Real.log ↑m ! - 1 / 2 * (Real.log 2 + Real.log (↑m + 1)) - (↑m + 1) * (Real.log (↑m + 1) - 1) - (Real.log (↑m + 1 + 1) + (Real.log (↑m + 1) + Real.log ↑m !) - 1 / 2 * (Real.log 2 + Real.log (↑m + 1 + 1)) - (↑m + 1 + 1) * (Real.log (↑m + 1 + 1) - 1)) + 1 / (2 * 0 + 1) * ((1 / (2 * (↑m + 1) + 1)) ^ 2) ^ 0 = (↑m + 1 + 1 / 2) * (Real.log (↑m + 1 + 1) - Real.log (↑m + 1)) [PROOFSTEP] ring [GOAL] n m : ℕ ⊢ 0 ≤ 1 / (2 * ↑(succ m) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ m [PROOFSTEP] positivity [GOAL] n : ℕ ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) [PROOFSTEP] have h_nonneg : ↑0 ≤ ((1 : ℝ) / (2 * n.succ + 1)) ^ 2 := sq_nonneg _ [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) [PROOFSTEP] have g : HasSum (fun k : ℕ => (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ) (((1 : ℝ) / (2 * n.succ + 1)) ^ 2 / (↑1 - ((1 : ℝ) / (2 * n.succ + 1)) ^ 2)) := by have := (hasSum_geometric_of_lt_1 h_nonneg ?_).mul_left (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) · simp_rw [← _root_.pow_succ] at this exact this rw [one_div, inv_pow] exact inv_lt_one (one_lt_pow ((lt_add_iff_pos_left 1).mpr <| by positivity) two_ne_zero) [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 ⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) [PROOFSTEP] have := (hasSum_geometric_of_lt_1 h_nonneg ?_).mul_left (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) [GOAL] case refine_2 n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 this : HasSum (fun i => (1 / (2 * ↑(succ n) + 1)) ^ 2 * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ i) ((1 / (2 * ↑(succ n) + 1)) ^ 2 * (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)⁻¹) ⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) [PROOFSTEP] simp_rw [← _root_.pow_succ] at this [GOAL] case refine_2 n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 this : HasSum (fun i => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ (i + 1)) ((1 / (2 * ↑(succ n) + 1)) ^ 2 * (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)⁻¹) ⊢ HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) [PROOFSTEP] exact this [GOAL] case refine_1 n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 ⊢ (1 / (2 * ↑(succ n) + 1)) ^ 2 < 1 [PROOFSTEP] rw [one_div, inv_pow] [GOAL] case refine_1 n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 ⊢ ((2 * ↑(succ n) + 1) ^ 2)⁻¹ < 1 [PROOFSTEP] exact inv_lt_one (one_lt_pow ((lt_add_iff_pos_left 1).mpr <| by positivity) two_ne_zero) [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 ⊢ 0 < 2 * ↑(succ n) [PROOFSTEP] positivity [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) [PROOFSTEP] have hab : ∀ k : ℕ, (1 : ℝ) / (↑2 * k.succ + ↑1) * (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ ≤ (((1 : ℝ) / (2 * n.succ + 1)) ^ 2) ^ k.succ := by refine' fun k => mul_le_of_le_one_left (pow_nonneg h_nonneg k.succ) _ rw [one_div] exact inv_le_one (le_add_of_nonneg_left <| by positivity) [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) ⊢ ∀ (k : ℕ), 1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k ≤ ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k [PROOFSTEP] refine' fun k => mul_le_of_le_one_left (pow_nonneg h_nonneg k.succ) _ [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) k : ℕ ⊢ 1 / (2 * ↑(succ k) + 1) ≤ 1 [PROOFSTEP] rw [one_div] [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) k : ℕ ⊢ (2 * ↑(succ k) + 1)⁻¹ ≤ 1 [PROOFSTEP] exact inv_le_one (le_add_of_nonneg_left <| by positivity) [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) k : ℕ ⊢ 0 ≤ 2 * ↑(succ k) [PROOFSTEP] positivity [GOAL] n : ℕ h_nonneg : 0 ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 g : HasSum (fun k => ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k) ((1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2)) hab : ∀ (k : ℕ), 1 / (2 * ↑(succ k) + 1) * ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k ≤ ((1 / (2 * ↑(succ n) + 1)) ^ 2) ^ succ k ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) [PROOFSTEP] exact hasSum_le hab (log_stirlingSeq_diff_hasSum n) g [GOAL] n : ℕ ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2) [PROOFSTEP] have h₁ : ↑0 < ↑4 * ((n : ℝ) + 1) ^ 2 := by positivity [GOAL] n : ℕ ⊢ 0 < 4 * (↑n + 1) ^ 2 [PROOFSTEP] positivity [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2) [PROOFSTEP] have h₃ : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 := by positivity [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 ⊢ 0 < (2 * (↑n + 1) + 1) ^ 2 [PROOFSTEP] positivity [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2) [PROOFSTEP] have h₂ : ↑0 < ↑1 - (1 / (2 * ((n : ℝ) + 1) + 1)) ^ 2 := by rw [← mul_lt_mul_right h₃] have H : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 - 1 := by nlinarith [@cast_nonneg ℝ _ n] convert H using 1 <;> field_simp [h₃.ne'] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 ⊢ 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 [PROOFSTEP] rw [← mul_lt_mul_right h₃] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 ⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 < (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2 [PROOFSTEP] have H : ↑0 < (2 * ((n : ℝ) + 1) + 1) ^ 2 - 1 := by nlinarith [@cast_nonneg ℝ _ n] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 ⊢ 0 < (2 * (↑n + 1) + 1) ^ 2 - 1 [PROOFSTEP] nlinarith [@cast_nonneg ℝ _ n] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1 ⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 < (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2 [PROOFSTEP] convert H using 1 [GOAL] case h.e'_3 n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1 ⊢ 0 * (2 * (↑n + 1) + 1) ^ 2 = 0 [PROOFSTEP] field_simp [h₃.ne'] [GOAL] case h.e'_4 n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 H : 0 < (2 * (↑n + 1) + 1) ^ 2 - 1 ⊢ (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) * (2 * (↑n + 1) + 1) ^ 2 = (2 * (↑n + 1) + 1) ^ 2 - 1 [PROOFSTEP] field_simp [h₃.ne'] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ Real.log (stirlingSeq (succ n)) - Real.log (stirlingSeq (succ (succ n))) ≤ 1 / (4 * ↑(succ n) ^ 2) [PROOFSTEP] refine' (log_stirlingSeq_diff_le_geo_sum n).trans _ [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ (1 / (2 * ↑(succ n) + 1)) ^ 2 / (1 - (1 / (2 * ↑(succ n) + 1)) ^ 2) ≤ 1 / (4 * ↑(succ n) ^ 2) [PROOFSTEP] push_cast [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ (1 / (2 * (↑n + 1) + 1)) ^ 2 / (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) ≤ 1 / (4 * (↑n + 1) ^ 2) [PROOFSTEP] rw [div_le_div_iff h₂ h₁] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ (1 / (2 * (↑n + 1) + 1)) ^ 2 * (4 * (↑n + 1) ^ 2) ≤ 1 * (1 - (1 / (2 * (↑n + 1) + 1)) ^ 2) [PROOFSTEP] field_simp [h₃.ne'] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ 4 * (↑n + 1) ^ 2 / (2 * (↑n + 1) + 1) ^ 2 ≤ ((2 * (↑n + 1) + 1) ^ 2 - 1) / (2 * (↑n + 1) + 1) ^ 2 [PROOFSTEP] rw [div_le_div_right h₃] [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ 4 * (↑n + 1) ^ 2 ≤ (2 * (↑n + 1) + 1) ^ 2 - 1 [PROOFSTEP] ring_nf [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ 4 + ↑n * 8 + ↑n ^ 2 * 4 ≤ 8 + ↑n * 12 + ↑n ^ 2 * 4 [PROOFSTEP] norm_cast [GOAL] n : ℕ h₁ : 0 < 4 * (↑n + 1) ^ 2 h₃ : 0 < (2 * (↑n + 1) + 1) ^ 2 h₂ : 0 < 1 - (1 / (2 * (↑n + 1) + 1)) ^ 2 ⊢ 4 + n * 8 + n ^ 2 * 4 ≤ 8 + n * 12 + n ^ 2 * 4 [PROOFSTEP] linarith [GOAL] ⊢ ∃ c, ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ c [PROOFSTEP] let d := ∑' k : ℕ, ↑1 / (k.succ : ℝ) ^ 2 [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 ⊢ ∃ c, ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ c [PROOFSTEP] use(1 / 4 * d : ℝ) [GOAL] case h d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 ⊢ ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d [PROOFSTEP] let log_stirlingSeq' : ℕ → ℝ := fun k => log (stirlingSeq k.succ) [GOAL] case h d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) ⊢ ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d [PROOFSTEP] intro n [GOAL] case h d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ ⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d [PROOFSTEP] have h₁ : ∀ k, log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ ↑1 / ↑4 * (↑1 / (k.succ : ℝ) ^ 2) := by intro k; convert log_stirlingSeq_sub_log_stirlingSeq_succ k using 1; field_simp [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ ⊢ ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) [PROOFSTEP] intro k [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n k : ℕ ⊢ log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) [PROOFSTEP] convert log_stirlingSeq_sub_log_stirlingSeq_succ k using 1 [GOAL] case h.e'_4 d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n k : ℕ ⊢ 1 / 4 * (1 / ↑(succ k) ^ 2) = 1 / (4 * ↑(succ k) ^ 2) [PROOFSTEP] field_simp [GOAL] case h d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) ⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d [PROOFSTEP] have h₂ : (∑ k : ℕ in range n, ↑1 / (k.succ : ℝ) ^ 2) ≤ d := by have := (summable_nat_add_iff 1).mpr <| Real.summable_one_div_nat_pow.mpr one_lt_two simp only [rpow_nat_cast] at this exact sum_le_tsum (range n) (fun k _ => by positivity) this [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) ⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d [PROOFSTEP] have := (summable_nat_add_iff 1).mpr <| Real.summable_one_div_nat_pow.mpr one_lt_two [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) this : Summable fun n => 1 / ↑(n + 1) ^ 2 ⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d [PROOFSTEP] simp only [rpow_nat_cast] at this [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) this : Summable fun n => 1 / ↑(n + 1) ^ 2 ⊢ ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d [PROOFSTEP] exact sum_le_tsum (range n) (fun k _ => by positivity) this [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) this : Summable fun n => 1 / ↑(n + 1) ^ 2 k : ℕ x✝ : ¬k ∈ range n ⊢ 0 ≤ 1 / ↑(succ k) ^ 2 [PROOFSTEP] positivity [GOAL] case h d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d ⊢ Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ 1 / 4 * d [PROOFSTEP] calc log (stirlingSeq 1) - log (stirlingSeq n.succ) = log_stirlingSeq' 0 - log_stirlingSeq' n := rfl _ = ∑ k in range n, (log_stirlingSeq' k - log_stirlingSeq' (k + 1)) := by rw [← sum_range_sub' log_stirlingSeq' n] _ ≤ ∑ k in range n, ↑1 / ↑4 * (↑1 / ↑(k.succ) ^ 2) := (sum_le_sum fun k _ => h₁ k) _ = ↑1 / ↑4 * ∑ k in range n, ↑1 / ↑(k.succ) ^ 2 := by rw [mul_sum] _ ≤ 1 / 4 * d := mul_le_mul_of_nonneg_left h₂ <| by positivity [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d ⊢ log_stirlingSeq' 0 - log_stirlingSeq' n = ∑ k in range n, (log_stirlingSeq' k - log_stirlingSeq' (k + 1)) [PROOFSTEP] rw [← sum_range_sub' log_stirlingSeq' n] [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d ⊢ ∑ k in range n, 1 / 4 * (1 / ↑(succ k) ^ 2) = 1 / 4 * ∑ k in range n, 1 / ↑(succ k) ^ 2 [PROOFSTEP] rw [mul_sum] [GOAL] d : ℝ := ∑' (k : ℕ), 1 / ↑(succ k) ^ 2 log_stirlingSeq' : ℕ → ℝ := fun k => Real.log (stirlingSeq (succ k)) n : ℕ h₁ : ∀ (k : ℕ), log_stirlingSeq' k - log_stirlingSeq' (k + 1) ≤ 1 / 4 * (1 / ↑(succ k) ^ 2) h₂ : ∑ k in range n, 1 / ↑(succ k) ^ 2 ≤ d ⊢ 0 ≤ 1 / 4 [PROOFSTEP] positivity [GOAL] ⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n)) [PROOFSTEP] obtain ⟨d, h⟩ := log_stirlingSeq_bounded_aux [GOAL] case intro d : ℝ h : ∀ (n : ℕ), Real.log (stirlingSeq 1) - Real.log (stirlingSeq (succ n)) ≤ d ⊢ ∃ c, ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n)) [PROOFSTEP] exact ⟨log (stirlingSeq 1) - d, fun n => sub_le_comm.mp (h n)⟩ [GOAL] n : ℕ ⊢ 0 < stirlingSeq (succ n) [PROOFSTEP] unfold stirlingSeq [GOAL] n : ℕ ⊢ 0 < ↑(succ n)! / (Real.sqrt (2 * ↑(succ n)) * (↑(succ n) / exp 1) ^ succ n) [PROOFSTEP] positivity [GOAL] ⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n) [PROOFSTEP] cases' log_stirlingSeq_bounded_by_constant with c h [GOAL] case intro c : ℝ h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n)) ⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n) [PROOFSTEP] refine' ⟨exp c, exp_pos _, fun n => _⟩ [GOAL] case intro c : ℝ h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n)) n : ℕ ⊢ exp c ≤ stirlingSeq (succ n) [PROOFSTEP] rw [← le_log_iff_exp_le (stirlingSeq'_pos n)] [GOAL] case intro c : ℝ h : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n)) n : ℕ ⊢ c ≤ Real.log (stirlingSeq (succ n)) [PROOFSTEP] exact h n [GOAL] ⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a) [PROOFSTEP] obtain ⟨x, x_pos, hx⟩ := stirlingSeq'_bounded_by_pos_constant [GOAL] case intro.intro x : ℝ x_pos : 0 < x hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n) ⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a) [PROOFSTEP] have hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) := by simpa [lowerBounds] using hx [GOAL] x : ℝ x_pos : 0 < x hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n) ⊢ x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) [PROOFSTEP] simpa [lowerBounds] using hx [GOAL] case intro.intro x : ℝ x_pos : 0 < x hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n) hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) ⊢ ∃ a, 0 < a ∧ Tendsto stirlingSeq atTop (𝓝 a) [PROOFSTEP] refine' ⟨_, lt_of_lt_of_le x_pos (le_csInf (Set.range_nonempty _) hx'), _⟩ [GOAL] case intro.intro x : ℝ x_pos : 0 < x hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n) hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) ⊢ Tendsto stirlingSeq atTop (𝓝 (sInf (Set.range (stirlingSeq ∘ succ)))) [PROOFSTEP] rw [← Filter.tendsto_add_atTop_iff_nat 1] [GOAL] case intro.intro x : ℝ x_pos : 0 < x hx : ∀ (n : ℕ), x ≤ stirlingSeq (succ n) hx' : x ∈ lowerBounds (Set.range (stirlingSeq ∘ succ)) ⊢ Tendsto (fun n => stirlingSeq (n + 1)) atTop (𝓝 (sInf (Set.range (stirlingSeq ∘ succ)))) [PROOFSTEP] exact tendsto_atTop_ciInf stirlingSeq'_antitone ⟨x, hx'⟩ [GOAL] ⊢ Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2)) [PROOFSTEP] conv => congr ·skip ·skip rw [one_div, ← add_zero (2 : ℝ)] [GOAL] | Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2)) [PROOFSTEP] congr ·skip ·skip rw [one_div, ← add_zero (2 : ℝ)] [GOAL] | Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2)) [PROOFSTEP] congr ·skip ·skip rw [one_div, ← add_zero (2 : ℝ)] [GOAL] | Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (1 / 2)) [PROOFSTEP] congr [GOAL] case f | fun n => ↑n / (2 * ↑n + 1) case l₁ | atTop case l₂ | 𝓝 (1 / 2) [PROOFSTEP] ·skip [GOAL] case f | fun n => ↑n / (2 * ↑n + 1) [PROOFSTEP] skip [GOAL] case f | fun n => ↑n / (2 * ↑n + 1) [PROOFSTEP] skip [GOAL] case f | fun n => ↑n / (2 * ↑n + 1) [PROOFSTEP] skip [GOAL] case l₁ | atTop case l₂ | 𝓝 (1 / 2) [PROOFSTEP] ·skip [GOAL] case l₁ | atTop [PROOFSTEP] skip [GOAL] case l₁ | atTop [PROOFSTEP] skip [GOAL] case l₁ | atTop [PROOFSTEP] skip [GOAL] case l₂ | 𝓝 (1 / 2) [PROOFSTEP] rw [one_div, ← add_zero (2 : ℝ)] [GOAL] ⊢ Tendsto (fun n => ↑n / (2 * ↑n + 1)) atTop (𝓝 (2 + 0)⁻¹) [PROOFSTEP] refine' (((tendsto_const_div_atTop_nhds_0_nat 1).const_add (2 : ℝ)).inv₀ ((add_zero (2 : ℝ)).symm ▸ two_ne_zero)).congr' (eventually_atTop.mpr ⟨1, fun n hn => _⟩) [GOAL] n : ℕ hn : n ≥ 1 ⊢ (2 + 1 / ↑n)⁻¹ = (fun n => ↑n / (2 * ↑n + 1)) n [PROOFSTEP] rw [add_div' (1 : ℝ) 2 n (cast_ne_zero.mpr (one_le_iff_ne_zero.mp hn)), inv_div] [GOAL] n : ℕ hn : n ≠ 0 ⊢ stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1)) = Wallis.W n [PROOFSTEP] have : 4 = 2 * 2 := by rfl [GOAL] n : ℕ hn : n ≠ 0 ⊢ 4 = 2 * 2 [PROOFSTEP] rfl [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1)) = Wallis.W n [PROOFSTEP] rw [stirlingSeq, this, pow_mul, stirlingSeq, Wallis.W_eq_factorial_ratio] [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ ((↑n ! / (Real.sqrt (2 * ↑n) * (↑n / exp 1) ^ n)) ^ 2) ^ 2 / (↑(2 * n)! / (Real.sqrt (2 * ↑(2 * n)) * (↑(2 * n) / exp 1) ^ (2 * n))) ^ 2 * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] simp_rw [div_pow, mul_pow] [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ (↑n ! ^ 2) ^ 2 / ((Real.sqrt (2 * ↑n) ^ 2) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (Real.sqrt (2 * ↑(2 * n)) ^ 2 * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] rw [sq_sqrt, sq_sqrt] [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ 0 ≤ 2 * ↑(2 * n) n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ 0 ≤ 2 * ↑n [PROOFSTEP] any_goals positivity [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] positivity [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ 0 ≤ 2 * ↑(2 * n) [PROOFSTEP] positivity [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ 0 ≤ 2 * ↑n [PROOFSTEP] positivity [GOAL] n : ℕ hn : n ≠ 0 this : 4 = 2 * 2 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] have : (n : ℝ) ≠ 0 := cast_ne_zero.mpr hn [GOAL] n : ℕ hn : n ≠ 0 this✝ : 4 = 2 * 2 this : ↑n ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] have : exp 1 ≠ 0 := exp_ne_zero 1 [GOAL] n : ℕ hn : n ≠ 0 this✝¹ : 4 = 2 * 2 this✝ : ↑n ≠ 0 this : exp 1 ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] have : ((2 * n)! : ℝ) ≠ 0 := cast_ne_zero.mpr (factorial_ne_zero (2 * n)) [GOAL] n : ℕ hn : n ≠ 0 this✝² : 4 = 2 * 2 this✝¹ : ↑n ≠ 0 this✝ : exp 1 ≠ 0 this : ↑(2 * n)! ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] have : 2 * (n : ℝ) + 1 ≠ 0 := by norm_cast; exact succ_ne_zero (2 * n) [GOAL] n : ℕ hn : n ≠ 0 this✝² : 4 = 2 * 2 this✝¹ : ↑n ≠ 0 this✝ : exp 1 ≠ 0 this : ↑(2 * n)! ≠ 0 ⊢ 2 * ↑n + 1 ≠ 0 [PROOFSTEP] norm_cast [GOAL] n : ℕ hn : n ≠ 0 this✝² : 4 = 2 * 2 this✝¹ : ↑n ≠ 0 this✝ : exp 1 ≠ 0 this : ↑(2 * n)! ≠ 0 ⊢ ¬2 * n + 1 = 0 [PROOFSTEP] exact succ_ne_zero (2 * n) [GOAL] n : ℕ hn : n ≠ 0 this✝³ : 4 = 2 * 2 this✝² : ↑n ≠ 0 this✝¹ : exp 1 ≠ 0 this✝ : ↑(2 * n)! ≠ 0 this : 2 * ↑n + 1 ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 / ((2 * ↑n) ^ 2 * ((↑n ^ n / exp 1 ^ n) ^ 2) ^ 2) / (↑(2 * n)! ^ 2 / (2 * ↑(2 * n) * (↑(2 * n) ^ (2 * n) / exp 1 ^ (2 * n)) ^ 2)) * (↑n / (2 * ↑n + 1)) = ↑(2 ^ (4 * n)) * ↑(n ! ^ 4) / (↑((2 * n)! ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] field_simp [GOAL] n : ℕ hn : n ≠ 0 this✝³ : 4 = 2 * 2 this✝² : ↑n ≠ 0 this✝¹ : exp 1 ≠ 0 this✝ : ↑(2 * n)! ≠ 0 this : 2 * ↑n + 1 ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2 * (2 * (2 * ↑n) * ((2 * ↑n) ^ (2 * n)) ^ 2) * ↑n * (↑(2 * n)! ^ 2 * (2 * ↑n + 1)) = 2 ^ (4 * n) * ↑n ! ^ 4 * ((2 * ↑n) ^ 2 * ((↑n ^ n) ^ 2) ^ 2 * (↑(2 * n)! ^ 2 * (exp 1 ^ (2 * n)) ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] simp only [mul_pow, mul_comm 2 n, mul_comm 4 n, pow_mul] [GOAL] n : ℕ hn : n ≠ 0 this✝³ : 4 = 2 * 2 this✝² : ↑n ≠ 0 this✝¹ : exp 1 ≠ 0 this✝ : ↑(2 * n)! ≠ 0 this : 2 * ↑n + 1 ≠ 0 ⊢ (↑n ! ^ 2) ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2 * (2 * (2 * ↑n) * (((2 ^ n) ^ 2) ^ 2 * ((↑n ^ n) ^ 2) ^ 2)) * ↑n * (↑(n * 2)! ^ 2 * (2 * ↑n + 1)) = (2 ^ n) ^ 4 * ↑n ! ^ 4 * (2 ^ 2 * ↑n ^ 2 * ((↑n ^ n) ^ 2) ^ 2 * (↑(n * 2)! ^ 2 * ((exp 1 ^ n) ^ 2) ^ 2) * (2 * ↑n + 1)) [PROOFSTEP] ring [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) ⊢ Tendsto Wallis.W atTop (𝓝 (a ^ 2 / 2)) [PROOFSTEP] refine' Tendsto.congr' (eventually_atTop.mpr ⟨1, fun n hn => stirlingSeq_pow_four_div_stirlingSeq_pow_two_eq n (one_le_iff_ne_zero.mp hn)⟩) _ [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) ⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop (𝓝 (a ^ 2 / 2)) [PROOFSTEP] have h : a ^ 2 / ↑2 = a ^ 4 / a ^ 2 * (1 / 2) := by rw [mul_one_div, ← mul_one_div (a ^ 4) (a ^ 2), one_div, ← pow_sub_of_lt a] norm_num [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) ⊢ a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2) [PROOFSTEP] rw [mul_one_div, ← mul_one_div (a ^ 4) (a ^ 2), one_div, ← pow_sub_of_lt a] [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) ⊢ 2 < 4 [PROOFSTEP] norm_num [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) h : a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2) ⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop (𝓝 (a ^ 2 / 2)) [PROOFSTEP] rw [h] [GOAL] a : ℝ hane : a ≠ 0 ha : Tendsto stirlingSeq atTop (𝓝 a) h : a ^ 2 / 2 = a ^ 4 / a ^ 2 * (1 / 2) ⊢ Tendsto (fun n => stirlingSeq n ^ 4 / stirlingSeq (2 * n) ^ 2 * (↑n / (2 * ↑n + 1))) atTop (𝓝 (a ^ 4 / a ^ 2 * (1 / 2))) [PROOFSTEP] exact ((ha.pow 4).div ((ha.comp (tendsto_id.const_mul_atTop' two_pos)).pow 2) (pow_ne_zero 2 hane)).mul tendsto_self_div_two_mul_self_add_one [GOAL] ⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π)) [PROOFSTEP] obtain ⟨a, hapos, halimit⟩ := stirlingSeq_has_pos_limit_a [GOAL] case intro.intro a : ℝ hapos : 0 < a halimit : Tendsto stirlingSeq atTop (𝓝 a) ⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π)) [PROOFSTEP] have hπ : π / 2 = a ^ 2 / 2 := tendsto_nhds_unique Wallis.tendsto_W_nhds_pi_div_two (second_wallis_limit a hapos.ne' halimit) [GOAL] case intro.intro a : ℝ hapos : 0 < a halimit : Tendsto stirlingSeq atTop (𝓝 a) hπ : π / ↑2 = a ^ 2 / 2 ⊢ Tendsto (fun n => stirlingSeq n) atTop (𝓝 (Real.sqrt π)) [PROOFSTEP] rwa [(div_left_inj' (two_ne_zero' ℝ)).mp hπ, sqrt_sq hapos.le]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Stirling", "llama_tokens": 18516}
[GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : V ⊢ affineSegment R x y = segment R x y [PROOFSTEP] rw [segment_eq_image_lineMap, affineSegment] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P ⊢ affineSegment R x y = affineSegment R y x [PROOFSTEP] refine' Set.ext fun z => _ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P ⊢ z ∈ affineSegment R x y ↔ z ∈ affineSegment R y x [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P ⊢ z ∈ affineSegment R x y → z ∈ affineSegment R y x [PROOFSTEP] rintro ⟨t, ht, hxy⟩ [GOAL] case mp.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap x y) t = z ⊢ z ∈ affineSegment R y x [PROOFSTEP] refine' ⟨1 - t, _, _⟩ [GOAL] case mp.intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap x y) t = z ⊢ 1 - t ∈ Set.Icc 0 1 [PROOFSTEP] rwa [Set.sub_mem_Icc_iff_right, sub_self, sub_zero] [GOAL] case mp.intro.intro.refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap x y) t = z ⊢ ↑(lineMap y x) (1 - t) = z [PROOFSTEP] rwa [lineMap_apply_one_sub] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P ⊢ z ∈ affineSegment R y x → z ∈ affineSegment R x y [PROOFSTEP] rintro ⟨t, ht, hxy⟩ [GOAL] case mpr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap y x) t = z ⊢ z ∈ affineSegment R x y [PROOFSTEP] refine' ⟨1 - t, _, _⟩ [GOAL] case mpr.intro.intro.refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap y x) t = z ⊢ 1 - t ∈ Set.Icc 0 1 [PROOFSTEP] rwa [Set.sub_mem_Icc_iff_right, sub_self, sub_zero] [GOAL] case mpr.intro.intro.refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P t : R ht : t ∈ Set.Icc 0 1 hxy : ↑(lineMap y x) t = z ⊢ ↑(lineMap x y) (1 - t) = z [PROOFSTEP] rwa [lineMap_apply_one_sub] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : P ⊢ affineSegment R x x = {x} [PROOFSTEP] rw [affineSegment] -- Note: when adding "simp made no progress" in lean4#2336, -- had to change `lineMap_same` to `lineMap_same _`. Not sure why? -- porting note: added `_ _` and `Function.const` [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : P ⊢ ↑(lineMap x x) '' Set.Icc 0 1 = {x} [PROOFSTEP] simp_rw [lineMap_same _, AffineMap.coe_const _ _, Function.const, (Set.nonempty_Icc.mpr zero_le_one).image_const] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' f : P →ᵃ[R] P' x y : P ⊢ ↑f '' affineSegment R x y = affineSegment R (↑f x) (↑f y) [PROOFSTEP] rw [affineSegment, affineSegment, Set.image_image, ← comp_lineMap] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' f : P →ᵃ[R] P' x y : P ⊢ (fun x_1 => ↑f (↑(lineMap x y) x_1)) '' Set.Icc 0 1 = ↑(comp f (lineMap x y)) '' Set.Icc 0 1 [PROOFSTEP] rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P v : V ⊢ v +ᵥ z ∈ affineSegment R (v +ᵥ x) (v +ᵥ y) ↔ z ∈ affineSegment R x y [PROOFSTEP] rw [← affineSegment_const_vadd_image, (AddAction.injective v).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : V p : P ⊢ z +ᵥ p ∈ affineSegment R (x +ᵥ p) (y +ᵥ p) ↔ z ∈ affineSegment R x y [PROOFSTEP] rw [← affineSegment_vadd_const_image, (vadd_right_injective p).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p : P ⊢ p -ᵥ z ∈ affineSegment R (p -ᵥ x) (p -ᵥ y) ↔ z ∈ affineSegment R x y [PROOFSTEP] rw [← affineSegment_const_vsub_image, (vsub_right_injective p).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p : P ⊢ z -ᵥ p ∈ affineSegment R (x -ᵥ p) (y -ᵥ p) ↔ z ∈ affineSegment R x y [PROOFSTEP] rw [← affineSegment_vsub_const_image, (vsub_left_injective p).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Wbtw R x y z f : P →ᵃ[R] P' ⊢ Wbtw R (↑f x) (↑f y) (↑f z) [PROOFSTEP] rw [Wbtw, ← affineSegment_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Wbtw R x y z f : P →ᵃ[R] P' ⊢ ↑f y ∈ ↑f '' affineSegment R x z [PROOFSTEP] exact Set.mem_image_of_mem _ h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P →ᵃ[R] P' hf : Injective ↑f ⊢ Wbtw R (↑f x) (↑f y) (↑f z) ↔ Wbtw R x y z [PROOFSTEP] refine' ⟨fun h => _, fun h => h.map _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P →ᵃ[R] P' hf : Injective ↑f h : Wbtw R (↑f x) (↑f y) (↑f z) ⊢ Wbtw R x y z [PROOFSTEP] rwa [Wbtw, ← affineSegment_image, hf.mem_set_image] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P →ᵃ[R] P' hf : Injective ↑f ⊢ Sbtw R (↑f x) (↑f y) (↑f z) ↔ Sbtw R x y z [PROOFSTEP] simp_rw [Sbtw, hf.wbtw_map_iff, hf.ne_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P ≃ᵃ[R] P' ⊢ Wbtw R (↑f x) (↑f y) (↑f z) ↔ Wbtw R x y z [PROOFSTEP] refine' Function.Injective.wbtw_map_iff (_ : Function.Injective f.toAffineMap) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P ≃ᵃ[R] P' ⊢ Function.Injective ↑↑f [PROOFSTEP] exact f.injective [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P ≃ᵃ[R] P' ⊢ Sbtw R (↑f x) (↑f y) (↑f z) ↔ Sbtw R x y z [PROOFSTEP] refine' Function.Injective.sbtw_map_iff (_ : Function.Injective f.toAffineMap) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P f : P ≃ᵃ[R] P' ⊢ Function.Injective ↑↑f [PROOFSTEP] exact f.injective [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P v : V ⊢ Sbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) ↔ Sbtw R x y z [PROOFSTEP] rw [Sbtw, Sbtw, wbtw_const_vadd_iff, (AddAction.injective v).ne_iff, (AddAction.injective v).ne_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : V p : P ⊢ Sbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) ↔ Sbtw R x y z [PROOFSTEP] rw [Sbtw, Sbtw, wbtw_vadd_const_iff, (vadd_right_injective p).ne_iff, (vadd_right_injective p).ne_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p : P ⊢ Sbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) ↔ Sbtw R x y z [PROOFSTEP] rw [Sbtw, Sbtw, wbtw_const_vsub_iff, (vsub_right_injective p).ne_iff, (vsub_right_injective p).ne_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p : P ⊢ Sbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) ↔ Sbtw R x y z [PROOFSTEP] rw [Sbtw, Sbtw, wbtw_vsub_const_iff, (vsub_left_injective p).ne_iff, (vsub_left_injective p).ne_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Sbtw R x y z ⊢ y ∈ ↑(lineMap x z) '' Set.Ioo 0 1 [PROOFSTEP] rcases h with ⟨⟨t, ht, rfl⟩, hyx, hyz⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P t : R ht : t ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ⊢ ↑(lineMap x z) t ∈ ↑(lineMap x z) '' Set.Ioo 0 1 [PROOFSTEP] rcases Set.eq_endpoints_or_mem_Ioo_of_mem_Icc ht with (rfl | rfl | ho) [GOAL] case intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P ht : 0 ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) 0 ≠ x hyz : ↑(lineMap x z) 0 ≠ z ⊢ ↑(lineMap x z) 0 ∈ ↑(lineMap x z) '' Set.Ioo 0 1 [PROOFSTEP] exfalso [GOAL] case intro.intro.intro.intro.inl.h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P ht : 0 ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) 0 ≠ x hyz : ↑(lineMap x z) 0 ≠ z ⊢ False [PROOFSTEP] exact hyx (lineMap_apply_zero _ _) [GOAL] case intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P ht : 1 ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) 1 ≠ x hyz : ↑(lineMap x z) 1 ≠ z ⊢ ↑(lineMap x z) 1 ∈ ↑(lineMap x z) '' Set.Ioo 0 1 [PROOFSTEP] exfalso [GOAL] case intro.intro.intro.intro.inr.inl.h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P ht : 1 ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) 1 ≠ x hyz : ↑(lineMap x z) 1 ≠ z ⊢ False [PROOFSTEP] exact hyz (lineMap_apply_one _ _) [GOAL] case intro.intro.intro.intro.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P t : R ht : t ∈ Set.Icc 0 1 hyx : ↑(lineMap x z) t ≠ x hyz : ↑(lineMap x z) t ≠ z ho : t ∈ Set.Ioo 0 1 ⊢ ↑(lineMap x z) t ∈ ↑(lineMap x z) '' Set.Ioo 0 1 [PROOFSTEP] exact ⟨t, ho, rfl⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Wbtw R x y z ⊢ y ∈ affineSpan R {x, z} [PROOFSTEP] rcases h with ⟨r, ⟨-, rfl⟩⟩ [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x z : P r : R ⊢ ↑(lineMap x z) r ∈ affineSpan R {x, z} [PROOFSTEP] exact lineMap_mem_affineSpan_pair _ _ _ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P ⊢ Wbtw R x y z ↔ Wbtw R z y x [PROOFSTEP] rw [Wbtw, Wbtw, affineSegment_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P ⊢ Sbtw R x y z ↔ Sbtw R z y x [PROOFSTEP] rw [Sbtw, Sbtw, wbtw_comm, ← and_assoc, ← and_assoc, and_right_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P ⊢ Wbtw R x y x ↔ y = x [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : Wbtw R x y x ⊢ y = x [PROOFSTEP] have ⟨_, _, h₂⟩ := h [GOAL] case refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : Wbtw R x y x w✝ : R left✝ : w✝ ∈ Set.Icc 0 1 h₂ : ↑(lineMap x x) w✝ = y ⊢ y = x [PROOFSTEP] rw [h₂.symm, lineMap_same_apply] [GOAL] case refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : y = x ⊢ Wbtw R x y x [PROOFSTEP] rw [h] [GOAL] case refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : y = x ⊢ Wbtw R x x x [PROOFSTEP] exact wbtw_self_left R x x [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Wbtw R x y z hne : y ≠ x ⊢ x ≠ z [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P hne : y ≠ x h : Wbtw R x y x ⊢ False [PROOFSTEP] rw [wbtw_self_iff] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P hne : y ≠ x h : y = x ⊢ False [PROOFSTEP] exact hne h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z : P h : Wbtw R x y z hne : y ≠ z ⊢ x ≠ z [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : Wbtw R x y x hne : y ≠ x ⊢ False [PROOFSTEP] rw [wbtw_self_iff] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y : P h : y = x hne : y ≠ x ⊢ False [PROOFSTEP] exact hne h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Sbtw R x y z ↔ y ∈ ↑(lineMap x z) '' Set.Ioo 0 1 ∧ x ≠ z [PROOFSTEP] refine' ⟨fun h => ⟨h.mem_image_Ioo, h.left_ne_right⟩, fun h => _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P h : y ∈ ↑(lineMap x z) '' Set.Ioo 0 1 ∧ x ≠ z ⊢ Sbtw R x y z [PROOFSTEP] rcases h with ⟨⟨t, ht, rfl⟩, hxz⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P hxz : x ≠ z t : R ht : t ∈ Set.Ioo 0 1 ⊢ Sbtw R x (↑(lineMap x z) t) z [PROOFSTEP] refine' ⟨⟨t, Set.mem_Icc_of_Ioo ht, rfl⟩, _⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P hxz : x ≠ z t : R ht : t ∈ Set.Ioo 0 1 ⊢ ↑(lineMap x z) t ≠ x ∧ ↑(lineMap x z) t ≠ z [PROOFSTEP] rw [lineMap_apply, ← @vsub_ne_zero V, ← @vsub_ne_zero V _ _ _ _ z, vadd_vsub_assoc, vsub_self, vadd_vsub_assoc, ← neg_vsub_eq_vsub_rev z x, ← @neg_one_smul R, ← add_smul, ← sub_eq_add_neg] [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P hxz : x ≠ z t : R ht : t ∈ Set.Ioo 0 1 ⊢ t • (z -ᵥ x) + 0 ≠ 0 ∧ (t - 1) • (z -ᵥ x) ≠ 0 [PROOFSTEP] simp [smul_ne_zero, sub_eq_zero, ht.1.ne.symm, ht.2.ne, hxz.symm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Wbtw R x y z ∧ Wbtw R y x z ↔ x = y [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Wbtw R x y z ∧ Wbtw R y x z → x = y [PROOFSTEP] rintro ⟨hxyz, hyxz⟩ [GOAL] case mp.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P hxyz : Wbtw R x y z hyxz : Wbtw R y x z ⊢ x = y [PROOFSTEP] rcases hxyz with ⟨ty, hty, rfl⟩ [GOAL] case mp.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 hyxz : Wbtw R (↑(lineMap x z) ty) x z ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rcases hyxz with ⟨tx, htx, hx⟩ [GOAL] case mp.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 hx : ↑(lineMap (↑(lineMap x z) ty) z) tx = x ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rw [lineMap_apply, lineMap_apply, ← add_vadd] at hx [GOAL] case mp.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 hx : tx • (z -ᵥ (ty • (z -ᵥ x) +ᵥ x)) + ty • (z -ᵥ x) +ᵥ x = x ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rw [← @vsub_eq_zero_iff_eq V, vadd_vsub, vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ← sub_smul, ← add_smul, smul_eq_zero] at hx [GOAL] case mp.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 hx : tx - tx * ty + ty = 0 ∨ z -ᵥ x = 0 ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rcases hx with (h | h) [GOAL] case mp.intro.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : tx - tx * ty + ty = 0 ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] nth_rw 1 [← mul_one tx] at h [GOAL] case mp.intro.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : tx * 1 - tx * ty + ty = 0 ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rw [← mul_sub, add_eq_zero_iff_neg_eq] at h [GOAL] case mp.intro.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : -(tx * (1 - ty)) = ty ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] have h' : ty = 0 := by refine' le_antisymm _ hty.1 rw [← h, Left.neg_nonpos_iff] exact mul_nonneg htx.1 (sub_nonneg.2 hty.2) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : -(tx * (1 - ty)) = ty ⊢ ty = 0 [PROOFSTEP] refine' le_antisymm _ hty.1 [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : -(tx * (1 - ty)) = ty ⊢ ty ≤ 0 [PROOFSTEP] rw [← h, Left.neg_nonpos_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : -(tx * (1 - ty)) = ty ⊢ 0 ≤ tx * (1 - ty) [PROOFSTEP] exact mul_nonneg htx.1 (sub_nonneg.2 hty.2) [GOAL] case mp.intro.intro.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : -(tx * (1 - ty)) = ty h' : ty = 0 ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] simp [h'] [GOAL] case mp.intro.intro.intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : z -ᵥ x = 0 ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case mp.intro.intro.intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ty : R hty : ty ∈ Set.Icc 0 1 tx : R htx : tx ∈ Set.Icc 0 1 h : z = x ⊢ x = ↑(lineMap x z) ty [PROOFSTEP] rw [h, lineMap_same_apply] [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ x = y → Wbtw R x y z ∧ Wbtw R y x z [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x z : P ⊢ Wbtw R x x z ∧ Wbtw R x x z [PROOFSTEP] exact ⟨wbtw_self_left _ _ _, wbtw_self_left _ _ _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Wbtw R x y z ∧ Wbtw R x z y ↔ y = z [PROOFSTEP] rw [wbtw_comm, wbtw_comm (z := y), eq_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Wbtw R z y x ∧ Wbtw R y z x ↔ z = y [PROOFSTEP] exact wbtw_swap_left_iff R x [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P ⊢ Wbtw R x y z ∧ Wbtw R z x y ↔ x = y [PROOFSTEP] rw [wbtw_comm, wbtw_swap_right_iff, eq_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P h : Wbtw R x y z ⊢ Wbtw R y x z ↔ x = y [PROOFSTEP] rw [← wbtw_swap_left_iff R z, and_iff_right h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P h : Wbtw R x y z ⊢ Wbtw R x z y ↔ y = z [PROOFSTEP] rw [← wbtw_swap_right_iff R x, and_iff_right h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y z : P h : Wbtw R x y z ⊢ Wbtw R z x y ↔ x = y [PROOFSTEP] rw [← wbtw_rotate_iff R x, and_iff_right h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R ⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1 [PROOFSTEP] by_cases hxy : x = y [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R hxy : x = y ⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1 [PROOFSTEP] rw [hxy, lineMap_same_apply] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R hxy : x = y ⊢ Wbtw R y y y ↔ y = y ∨ r ∈ Set.Icc 0 1 [PROOFSTEP] simp [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R hxy : ¬x = y ⊢ Wbtw R x (↑(lineMap x y) r) y ↔ x = y ∨ r ∈ Set.Icc 0 1 [PROOFSTEP] rw [or_iff_right hxy, Wbtw, affineSegment, (lineMap_injective R hxy).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R ⊢ Sbtw R x (↑(lineMap x y) r) y ↔ x ≠ y ∧ r ∈ Set.Ioo 0 1 [PROOFSTEP] rw [sbtw_iff_mem_image_Ioo_and_ne, and_comm, and_congr_right] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R ⊢ x ≠ y → (↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1) [PROOFSTEP] intro hxy [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V x y : P r : R hxy : x ≠ y ⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioo 0 1 ↔ r ∈ Set.Ioo 0 1 [PROOFSTEP] rw [(lineMap_injective R hxy).mem_set_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ Wbtw R 0 x 1 ↔ x ∈ Set.Icc 0 1 [PROOFSTEP] rw [Wbtw, affineSegment, Set.mem_image] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ (∃ x_1, x_1 ∈ Set.Icc 0 1 ∧ ↑(lineMap 0 1) x_1 = x) ↔ x ∈ Set.Icc 0 1 [PROOFSTEP] simp_rw [lineMap_apply_ring] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ (∃ x_1, x_1 ∈ Set.Icc 0 1 ∧ (1 - x_1) * 0 + x_1 * 1 = x) ↔ x ∈ Set.Icc 0 1 [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ Wbtw R 1 x 0 ↔ x ∈ Set.Icc 0 1 [PROOFSTEP] rw [wbtw_comm, wbtw_zero_one_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ Sbtw R 0 x 1 ↔ x ∈ Set.Ioo 0 1 [PROOFSTEP] rw [Sbtw, wbtw_zero_one_iff, Set.mem_Icc, Set.mem_Ioo] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ (0 ≤ x ∧ x ≤ 1) ∧ x ≠ 0 ∧ x ≠ 1 ↔ 0 < x ∧ x < 1 [PROOFSTEP] exact ⟨fun h => ⟨h.1.1.lt_of_ne (Ne.symm h.2.1), h.1.2.lt_of_ne h.2.2⟩, fun h => ⟨⟨h.1.le, h.2.le⟩, h.1.ne', h.2.ne⟩⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x : R ⊢ Sbtw R 1 x 0 ↔ x ∈ Set.Ioo 0 1 [PROOFSTEP] rw [sbtw_comm, sbtw_zero_one_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w x y z : P h₁ : Wbtw R w y z h₂ : Wbtw R w x y ⊢ Wbtw R w x z [PROOFSTEP] rcases h₁ with ⟨t₁, ht₁, rfl⟩ [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w x z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 h₂ : Wbtw R w x (↑(lineMap w z) t₁) ⊢ Wbtw R w x z [PROOFSTEP] rcases h₂ with ⟨t₂, ht₂, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ Wbtw R w (↑(lineMap w (↑(lineMap w z) t₁)) t₂) z [PROOFSTEP] refine' ⟨t₂ * t₁, ⟨mul_nonneg ht₂.1 ht₁.1, mul_le_one ht₂.2 ht₁.1 ht₁.2⟩, _⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ ↑(lineMap w z) (t₂ * t₁) = ↑(lineMap w (↑(lineMap w z) t₁)) t₂ [PROOFSTEP] rw [lineMap_apply, lineMap_apply, lineMap_vsub_left, smul_smul] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w x y z : P h₁ : Wbtw R w x z h₂ : Wbtw R x y z ⊢ Wbtw R w y z [PROOFSTEP] rw [wbtw_comm] at * [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁶ : OrderedRing R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' w x y z : P h₁ : Wbtw R z x w h₂ : Wbtw R z y x ⊢ Wbtw R z y w [PROOFSTEP] exact h₁.trans_left h₂ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R w y z h₂ : Sbtw R w x y ⊢ Sbtw R w x z [PROOFSTEP] refine' ⟨h₁.trans_left h₂.wbtw, h₂.ne_left, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R w y z h₂ : Sbtw R w x y ⊢ x ≠ z [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y : P h₂ : Sbtw R w x y h₁ : Wbtw R w y x ⊢ False [PROOFSTEP] exact h₂.right_ne ((wbtw_swap_right_iff R w).1 ⟨h₁, h₂.wbtw⟩) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R w x z h₂ : Sbtw R x y z ⊢ Sbtw R w y z [PROOFSTEP] rw [wbtw_comm] at * [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R z x w h₂ : Sbtw R x y z ⊢ Sbtw R w y z [PROOFSTEP] rw [sbtw_comm] at * [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R z x w h₂ : Sbtw R z y x ⊢ Sbtw R z y w [PROOFSTEP] exact h₁.trans_sbtw_left h₂ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R w y z h₂ : Wbtw R w x y h : y ≠ z ⊢ x ≠ z [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y : P h₂ : Wbtw R w x y h₁ : Wbtw R w y x h : y ≠ x ⊢ False [PROOFSTEP] exact h (h₁.swap_right_iff.1 h₂) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x y z : P h₁ : Wbtw R w x z h₂ : Wbtw R x y z h : w ≠ x ⊢ w ≠ y [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : OrderedRing R inst✝⁶ : AddCommGroup V inst✝⁵ : Module R V inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup V' inst✝² : Module R V' inst✝¹ : AddTorsor V' P' inst✝ : NoZeroSMulDivisors R V w x z : P h₁ : Wbtw R w x z h : w ≠ x h₂ : Wbtw R x w z ⊢ False [PROOFSTEP] exact h (h₁.swap_left_iff.1 h₂) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 h : ↑(Finset.affineCombination R s p) w ∈ affineSpan R {↑(Finset.affineCombination R s p) w₁, ↑(Finset.affineCombination R s p) w₂} i : ι his : i ∈ s hs : Sbtw R (w₁ i) (w i) (w₂ i) ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] rw [affineCombination_mem_affineSpan_pair ha hw hw₁ hw₂] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 h : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i i : ι his : i ∈ s hs : Sbtw R (w₁ i) (w i) (w₂ i) ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] rcases h with ⟨r, hr⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s hs : Sbtw R (w₁ i) (w i) (w₂ i) r : R hr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] rw [hr i his, sbtw_mul_sub_add_iff] at hs [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] change ∀ i ∈ s, w i = (r • (w₂ - w₁) + w₁) i at hr [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] rw [s.affineCombination_congr hr fun _ _ => rfl] [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] dsimp only [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i ⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i) (↑(Finset.affineCombination R s p) w₂) [PROOFSTEP] rw [← s.weightedVSub_vadd_affineCombination, s.weightedVSub_const_smul, ← s.affineCombination_vsub, ← lineMap_apply, sbtw_lineMap_iff, and_iff_left hs.2, ← @vsub_ne_zero V, s.affineCombination_vsub] [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i ⊢ ↑(Finset.weightedVSub s p) (w₁ - w₂) ≠ 0 [PROOFSTEP] intro hz [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0 ⊢ False [PROOFSTEP] have hw₁w₂ : (∑ i in s, (w₁ - w₂) i) = 0 := by simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0 ⊢ ∑ i in s, (w₁ - w₂) i = 0 [PROOFSTEP] simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self] [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0 hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0 ⊢ False [PROOFSTEP] refine' hs.1 _ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0 hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0 ⊢ w₁ i = w₂ i [PROOFSTEP] have ha' := ha s (w₁ - w₂) hw₁w₂ hz i his [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁸ : OrderedRing R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : AddTorsor V P inst✝⁴ : AddCommGroup V' inst✝³ : Module R V' inst✝² : AddTorsor V' P' inst✝¹ : NoZeroDivisors R inst✝ : NoZeroSMulDivisors R V ι : Type u_6 p : ι → P ha : AffineIndependent R p w w₁ w₂ : ι → R s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i : ι his : i ∈ s r : R hs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1 hr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i hz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0 hw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0 ha' : (w₁ - w₂) i = 0 ⊢ w₁ i = w₂ i [PROOFSTEP] rwa [Pi.sub_apply, sub_eq_zero] at ha' [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ SameRay R (y -ᵥ x) (z -ᵥ y) [PROOFSTEP] rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ⊢ SameRay R (↑(lineMap x z) t -ᵥ x) (z -ᵥ ↑(lineMap x z) t) [PROOFSTEP] simp_rw [lineMap_apply] [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] rcases ht0.lt_or_eq with (ht0' | rfl) [GOAL] case intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) case intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 ⊢ SameRay R (0 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (0 • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] swap [GOAL] case intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ht0 : 0 ≤ 0 ht1 : 0 ≤ 1 ⊢ SameRay R (0 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (0 • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] rcases ht1.lt_or_eq with (ht1' | rfl) [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ht1' : t < 1 ⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) case intro.intro.intro.inl.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 ht0' : 0 < 1 ⊢ SameRay R (1 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (1 • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] swap [GOAL] case intro.intro.intro.inl.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ht0 : 0 ≤ 1 ht1 : 1 ≤ 1 ht0' : 0 < 1 ⊢ SameRay R (1 • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (1 • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ht1' : t < 1 ⊢ SameRay R (t • (z -ᵥ x) +ᵥ x -ᵥ x) (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] refine' Or.inr (Or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩) [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ht1' : t < 1 ⊢ (1 - t) • (t • (z -ᵥ x) +ᵥ x -ᵥ x) = t • (z -ᵥ (t • (z -ᵥ x) +ᵥ x)) [PROOFSTEP] simp [vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ← sub_smul] [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t ht1 : t ≤ 1 ht0' : 0 < t ht1' : t < 1 ⊢ ((1 - t) * t) • (z -ᵥ x) = (t - t * t) • (z -ᵥ x) [PROOFSTEP] ring_nf [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ SameRay R (y -ᵥ x) (z -ᵥ x) [PROOFSTEP] rcases h with ⟨t, ⟨ht0, _⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ht0 : 0 ≤ t right✝ : t ≤ 1 ⊢ SameRay R (↑(lineMap x z) t -ᵥ x) (z -ᵥ x) [PROOFSTEP] simpa [lineMap_apply] using SameRay.sameRay_nonneg_smul_left (z -ᵥ x) ht0 [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ SameRay R (z -ᵥ x) (z -ᵥ y) [PROOFSTEP] rcases h with ⟨t, ⟨_, ht1⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : StrictOrderedCommRing R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R left✝ : 0 ≤ t ht1 : t ≤ 1 ⊢ SameRay R (z -ᵥ x) (z -ᵥ ↑(lineMap x z) t) [PROOFSTEP] simpa [lineMap_apply, vsub_vadd_eq_vsub_sub, sub_smul] using SameRay.sameRay_nonneg_smul_right (z -ᵥ x) (sub_nonneg.2 ht1) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] letI : DecidableRel ((· < ·) : R → R → Prop) := LinearOrderedRing.decidableLT [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have h₁₃ : i₁ ≠ i₃ := by rintro rfl simp at h₂ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT ⊢ i₁ ≠ i₃ [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₁) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₁) ⊢ False [PROOFSTEP] simp at h₂ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have h₂₃ : i₂ ≠ i₃ := by rintro rfl simp at h₁ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ ⊢ i₂ ≠ i₃ [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₂) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₂) h₁₃ : i₁ ≠ i₂ ⊢ False [PROOFSTEP] simp at h₁ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have h3 : ∀ i : Fin 3, i = i₁ ∨ i = i₂ ∨ i = i₃ := by clear h₁ h₂ h₁' h₂' intro i fin_cases i <;> fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ [PROOFSTEP] clear h₁ h₂ h₁' h₂' [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ [PROOFSTEP] intro i [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ i : Fin 3 ⊢ i = i₁ ∨ i = i₂ ∨ i = i₃ [PROOFSTEP] fin_cases i [GOAL] case head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ { val := 0, isLt := (_ : 0 < 3) } = i₁ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₁ [GOAL] case tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₁ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₁ [GOAL] case tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₁ ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₁ [GOAL] case head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₂ ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₂ ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₂ ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₂ [GOAL] case head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = i₃ [PROOFSTEP] fin_cases i₃ [GOAL] case head.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 0, isLt := (_ : 0 < 3) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 1, isLt := (_ : (fun a => a < 3) 1) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have hu : (Finset.univ : Finset (Fin 3)) = { i₁, i₂, i₃ } := by clear h₁ h₂ h₁' h₂' fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ ⊢ Finset.univ = {i₁, i₂, i₃} [PROOFSTEP] clear h₁ h₂ h₁' h₂' [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ ⊢ Finset.univ = {i₁, i₂, i₃} [PROOFSTEP] fin_cases i₁ [GOAL] case head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₂ ∨ i = i₃ ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₂ ∨ i = i₃ ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₂ ∨ i = i₃ ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₃ : Fin 3 p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = i₃ ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P p₁ p₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₂ h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h3 : ∀ (i : Fin 3), i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∨ i = { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have hp : p ∈ affineSpan R (Set.range t.points) := by have hle : line[R, t.points i₁, p₁] ≤ affineSpan R (Set.range t.points) := by refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _ have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) := by refine' affineSpan_mono R _ simp [Set.insert_subset_iff] rw [AffineSubspace.le_def'] at hle exact hle _ h₁.wbtw.mem_affineSpan rw [AffineSubspace.le_def'] at hle exact hle _ h₁' [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ p ∈ affineSpan R (Set.range t.points) [PROOFSTEP] have hle : line[R, t.points i₁, p₁] ≤ affineSpan R (Set.range t.points) := by refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _ have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) := by refine' affineSpan_mono R _ simp [Set.insert_subset_iff] rw [AffineSubspace.le_def'] at hle exact hle _ h₁.wbtw.mem_affineSpan [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ affineSpan R {Affine.Simplex.points t i₁, p₁} ≤ affineSpan R (Set.range t.points) [PROOFSTEP] refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan R (Set.mem_range_self _)) _ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ p₁ ∈ affineSpan R (Set.range t.points) [PROOFSTEP] have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) := by refine' affineSpan_mono R _ simp [Set.insert_subset_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ≤ affineSpan R (Set.range t.points) [PROOFSTEP] refine' affineSpan_mono R _ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ⊆ Set.range t.points [PROOFSTEP] simp [Set.insert_subset_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hle : affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} ≤ affineSpan R (Set.range t.points) ⊢ p₁ ∈ affineSpan R (Set.range t.points) [PROOFSTEP] rw [AffineSubspace.le_def'] at hle [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hle : ∀ (p : P), p ∈ affineSpan R {Affine.Simplex.points t i₂, Affine.Simplex.points t i₃} → p ∈ affineSpan R (Set.range t.points) ⊢ p₁ ∈ affineSpan R (Set.range t.points) [PROOFSTEP] exact hle _ h₁.wbtw.mem_affineSpan [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hle : affineSpan R {Affine.Simplex.points t i₁, p₁} ≤ affineSpan R (Set.range t.points) ⊢ p ∈ affineSpan R (Set.range t.points) [PROOFSTEP] rw [AffineSubspace.le_def'] at hle [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hle : ∀ (p : P), p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} → p ∈ affineSpan R (Set.range t.points) ⊢ p ∈ affineSpan R (Set.range t.points) [PROOFSTEP] exact hle _ h₁' [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have h₁i := h₁.mem_image_Ioo [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₁i : p₁ ∈ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1 ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] have h₂i := h₂.mem_image_Ioo [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₁i : p₁ ∈ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1 h₂i : p₂ ∈ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) '' Set.Ioo 0 1 ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] rw [Set.mem_image] at h₁i h₂i [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (Affine.Simplex.points t i₂) p₁ (Affine.Simplex.points t i₃) h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, p₁} h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₁i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) x = p₁ h₂i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) x = p₂ ⊢ Sbtw R (Affine.Simplex.points t i₁) p p₁ [PROOFSTEP] rcases h₁i with ⟨r₁, ⟨hr₁0, hr₁1⟩, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₂ p : P h₂ : Sbtw R (Affine.Simplex.points t i₁) p₂ (Affine.Simplex.points t i₃) h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, p₂} this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₂i : ∃ x, x ∈ Set.Ioo 0 1 ∧ ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) x = p₂ r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁} ⊢ Sbtw R (Affine.Simplex.points t i₁) p (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) [PROOFSTEP] rcases h₂i with ⟨r₂, ⟨hr₂0, hr₂1⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p : P this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) h₁' : p ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁} r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) h₂' : p ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} ⊢ Sbtw R (Affine.Simplex.points t i₁) p (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) [PROOFSTEP] rcases eq_affineCombination_of_mem_affineSpan_of_fintype hp with ⟨w, hw, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} ⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) [PROOFSTEP] have h₁s := sign_eq_of_affineCombination_mem_affineSpan_single_lineMap t.Independent hw (Finset.mem_univ _) (Finset.mem_univ _) (Finset.mem_univ _) h₁₂ h₁₃ h₂₃ hr₁0 hr₁1 h₁' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) ⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) [PROOFSTEP] have h₂s := sign_eq_of_affineCombination_mem_affineSpan_single_lineMap t.Independent hw (Finset.mem_univ _) (Finset.mem_univ _) (Finset.mem_univ _) h₁₂.symm h₂₃ h₁₃ hr₂0 hr₂1 h₂' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₁, ↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) ⊢ Sbtw R (Affine.Simplex.points t i₁) (↑(Finset.affineCombination R Finset.univ t.points) w) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) [PROOFSTEP] rw [← Finset.univ.affineCombination_affineCombinationSingleWeights R t.points (Finset.mem_univ i₁), ← Finset.univ.affineCombination_affineCombinationLineMapWeights t.points (Finset.mem_univ _) (Finset.mem_univ _)] at h₁' ⊢ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) ⊢ Sbtw R (↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁)) (↑(Finset.affineCombination R Finset.univ t.points) w) (↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)) [PROOFSTEP] refine' Sbtw.affineCombination_of_mem_affineSpan_pair t.Independent hw (Finset.univ.sum_affineCombinationSingleWeights R (Finset.mem_univ _)) (Finset.univ.sum_affineCombinationLineMapWeights (Finset.mem_univ _) (Finset.mem_univ _) _) h₁' (Finset.mem_univ i₁) _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) ⊢ Sbtw R (Finset.affineCombinationSingleWeights R i₁ i₁) (w i₁) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁ i₁) [PROOFSTEP] rw [Finset.affineCombinationSingleWeights_apply_self, Finset.affineCombinationLineMapWeights_apply_of_ne h₁₂ h₁₃, sbtw_one_zero_iff] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] have hs : ∀ i : Fin 3, SignType.sign (w i) = SignType.sign (w i₃) := by intro i rcases h3 i with (rfl | rfl | rfl) · exact h₂s · exact h₁s · rfl [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) ⊢ ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) [PROOFSTEP] intro i [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) i : Fin 3 ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃) [PROOFSTEP] rcases h3 i with (rfl | rfl | rfl) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₂ i₃ : Fin 3 this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₂₃ : i₂ ≠ i₃ r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) i : Fin 3 h₁₂ : i ≠ i₂ h₁₃ : i ≠ i₃ h3 : ∀ (i_1 : Fin 3), i_1 = i ∨ i_1 = i₂ ∨ i_1 = i₃ hu : Finset.univ = {i, i₂, i₃} h₂ : Sbtw R (Affine.Simplex.points t i) (↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₂} h₂s : ↑SignType.sign (w i) = ↑SignType.sign (w i₃) ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃) [PROOFSTEP] exact h₂s [GOAL] case inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₃ : Fin 3 this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) i : Fin 3 h₁₂ : i₁ ≠ i h₂₃ : i ≠ i₃ h3 : ∀ (i_1 : Fin 3), i_1 = i₁ ∨ i_1 = i ∨ i_1 = i₃ hu : Finset.univ = {i₁, i, i₃} h₁ : Sbtw R (Affine.Simplex.points t i) (↑(lineMap (Affine.Simplex.points t i) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i) = ↑SignType.sign (w i₃) ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i₃) [PROOFSTEP] exact h₁s [GOAL] case inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) i : Fin 3 h₁₃ : i₁ ≠ i h₂₃ : i₂ ≠ i h3 : ∀ (i_1 : Fin 3), i_1 = i₁ ∨ i_1 = i₂ ∨ i_1 = i hu : Finset.univ = {i₁, i₂, i} h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i)) r₁) (Affine.Simplex.points t i) h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i)) r₂) (Affine.Simplex.points t i) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i) ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w i) [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] have hss : SignType.sign (∑ i, w i) = 1 := by simp [hw] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) ⊢ ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1 [PROOFSTEP] simp [hw] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1 ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] have hs' := sign_sum Finset.univ_nonempty (SignType.sign (w i₃)) fun i _ => hs i [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (∑ i : Fin (2 + 1), w i) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] rw [hs'] at hss [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), ↑SignType.sign (w i) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] simp_rw [hss, sign_eq_one_iff] at hs [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ w i₁ ∈ Set.Ioo 0 1 [PROOFSTEP] refine' ⟨hs i₁, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i : Fin (2 + 1), w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ w i₁ < 1 [PROOFSTEP] rw [hu] at hw [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i in {i₁, i₂, i₃}, w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ w i₁ < 1 [PROOFSTEP] rw [Finset.sum_insert, Finset.sum_insert, Finset.sum_singleton] at hw [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : w i₁ + (w i₂ + w i₃) = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ w i₁ < 1 [PROOFSTEP] by_contra hle [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : w i₁ + (w i₂ + w i₃) = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i hle : ¬w i₁ < 1 ⊢ False [PROOFSTEP] rw [not_lt] at hle [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : w i₁ + (w i₂ + w i₃) = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i hle : 1 ≤ w i₁ ⊢ False [PROOFSTEP] exact (hle.trans_lt (lt_add_of_pos_right _ (Left.add_pos (hs i₂) (hs i₃)))).ne' hw [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : w i₁ + ∑ x in {i₂, i₃}, w x = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ ¬i₂ ∈ {i₃} [PROOFSTEP] simpa using h₂₃ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ this : DecidableRel fun x x_1 => x < x_1 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} r₁ : R hr₁0 : 0 < r₁ hr₁1 : r₁ < 1 h₁ : Sbtw R (Affine.Simplex.points t i₂) (↑(lineMap (Affine.Simplex.points t i₂) (Affine.Simplex.points t i₃)) r₁) (Affine.Simplex.points t i₃) r₂ : R hr₂0 : 0 < r₂ hr₂1 : r₂ < 1 h₂ : Sbtw R (Affine.Simplex.points t i₁) (↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂) (Affine.Simplex.points t i₃) w : Fin (2 + 1) → R hw : ∑ i in {i₁, i₂, i₃}, w i = 1 hp : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R (Set.range t.points) h₁' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationSingleWeights R i₁), ↑(Finset.affineCombination R Finset.univ t.points) (Finset.affineCombinationLineMapWeights i₂ i₃ r₁)} h₂' : ↑(Finset.affineCombination R Finset.univ t.points) w ∈ affineSpan R {Affine.Simplex.points t i₂, ↑(lineMap (Affine.Simplex.points t i₁) (Affine.Simplex.points t i₃)) r₂} h₁s : ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) h₂s : ↑SignType.sign (w i₁) = ↑SignType.sign (w i₃) hss : ↑SignType.sign (w i₃) = 1 hs' : ↑SignType.sign (∑ i : Fin 3, w i) = ↑SignType.sign (w i₃) hs : ∀ (i : Fin 3), 0 < w i ⊢ ¬i₁ ∈ {i₂, i₃} [PROOFSTEP] simpa [not_or] using ⟨h₁₂, h₁₃⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P ⊢ Wbtw R x y z ↔ x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1 [PROOFSTEP] rcases h with ⟨r, ⟨hr0, hr1⟩, rfl⟩ [GOAL] case refine'_1.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P r : R hr0 : 0 ≤ r hr1 : r ≤ 1 ⊢ x = ↑(lineMap x z) r ∨ z ∈ ↑(lineMap x (↑(lineMap x z) r)) '' Set.Ici 1 [PROOFSTEP] rcases hr0.lt_or_eq with (hr0' | rfl) [GOAL] case refine'_1.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P r : R hr0 : 0 ≤ r hr1 : r ≤ 1 hr0' : 0 < r ⊢ x = ↑(lineMap x z) r ∨ z ∈ ↑(lineMap x (↑(lineMap x z) r)) '' Set.Ici 1 [PROOFSTEP] rw [Set.mem_image] [GOAL] case refine'_1.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P r : R hr0 : 0 ≤ r hr1 : r ≤ 1 hr0' : 0 < r ⊢ x = ↑(lineMap x z) r ∨ ∃ x_1, x_1 ∈ Set.Ici 1 ∧ ↑(lineMap x (↑(lineMap x z) r)) x_1 = z [PROOFSTEP] refine' Or.inr ⟨r⁻¹, one_le_inv hr0' hr1, _⟩ [GOAL] case refine'_1.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P r : R hr0 : 0 ≤ r hr1 : r ≤ 1 hr0' : 0 < r ⊢ ↑(lineMap x (↑(lineMap x z) r)) r⁻¹ = z [PROOFSTEP] simp only [lineMap_apply, smul_smul, vadd_vsub] [GOAL] case refine'_1.intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P r : R hr0 : 0 ≤ r hr1 : r ≤ 1 hr0' : 0 < r ⊢ (r⁻¹ * r) • (z -ᵥ x) +ᵥ x = z [PROOFSTEP] rw [inv_mul_cancel hr0'.ne', one_smul, vsub_vadd] [GOAL] case refine'_1.intro.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P hr0 : 0 ≤ 0 hr1 : 0 ≤ 1 ⊢ x = ↑(lineMap x z) 0 ∨ z ∈ ↑(lineMap x (↑(lineMap x z) 0)) '' Set.Ici 1 [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : x = y ∨ z ∈ ↑(lineMap x y) '' Set.Ici 1 ⊢ Wbtw R x y z [PROOFSTEP] rcases h with (rfl | ⟨r, ⟨hr, rfl⟩⟩) [GOAL] case refine'_2.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P ⊢ Wbtw R x x z [PROOFSTEP] exact wbtw_self_left _ _ _ [GOAL] case refine'_2.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : r ∈ Set.Ici 1 ⊢ Wbtw R x y (↑(lineMap x y) r) [PROOFSTEP] rw [Set.mem_Ici] at hr [GOAL] case refine'_2.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : 1 ≤ r ⊢ Wbtw R x y (↑(lineMap x y) r) [PROOFSTEP] refine' ⟨r⁻¹, ⟨inv_nonneg.2 (zero_le_one.trans hr), inv_le_one hr⟩, _⟩ [GOAL] case refine'_2.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : 1 ≤ r ⊢ ↑(lineMap x (↑(lineMap x y) r)) r⁻¹ = y [PROOFSTEP] simp only [lineMap_apply, smul_smul, vadd_vsub] [GOAL] case refine'_2.inr.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : 1 ≤ r ⊢ (r⁻¹ * r) • (y -ᵥ x) +ᵥ x = y [PROOFSTEP] rw [inv_mul_cancel (one_pos.trans_le hr).ne', one_smul, vsub_vadd] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z hne : x ≠ y ⊢ z ∈ affineSpan R {x, y} [PROOFSTEP] rcases h.right_mem_image_Ici_of_left_ne hne with ⟨r, ⟨-, rfl⟩⟩ [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R h : Wbtw R x y (↑(lineMap x y) r) ⊢ ↑(lineMap x y) r ∈ affineSpan R {x, y} [PROOFSTEP] exact lineMap_mem_affineSpan_pair _ _ _ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P ⊢ Sbtw R x y z ↔ x ≠ y ∧ z ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] refine' ⟨fun h => ⟨h.left_ne, _⟩, fun h => _⟩ [GOAL] case refine'_1 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Sbtw R x y z ⊢ z ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] obtain ⟨r, ⟨hr, rfl⟩⟩ := h.wbtw.right_mem_image_Ici_of_left_ne h.left_ne [GOAL] case refine'_1.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : r ∈ Set.Ici 1 h : Sbtw R x y (↑(lineMap x y) r) ⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] rw [Set.mem_Ici] at hr [GOAL] case refine'_1.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : 1 ≤ r h : Sbtw R x y (↑(lineMap x y) r) ⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] rcases hr.lt_or_eq with (hrlt | rfl) [GOAL] case refine'_1.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P r : R hr : 1 ≤ r h : Sbtw R x y (↑(lineMap x y) r) hrlt : 1 < r ⊢ ↑(lineMap x y) r ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] exact Set.mem_image_of_mem _ hrlt [GOAL] case refine'_1.intro.intro.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hr : 1 ≤ 1 h : Sbtw R x y (↑(lineMap x y) 1) ⊢ ↑(lineMap x y) 1 ∈ ↑(lineMap x y) '' Set.Ioi 1 [PROOFSTEP] exfalso [GOAL] case refine'_1.intro.intro.inr.h R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hr : 1 ≤ 1 h : Sbtw R x y (↑(lineMap x y) 1) ⊢ False [PROOFSTEP] simp at h [GOAL] case refine'_2 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : x ≠ y ∧ z ∈ ↑(lineMap x y) '' Set.Ioi 1 ⊢ Sbtw R x y z [PROOFSTEP] rcases h with ⟨hne, r, hr, rfl⟩ [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : r ∈ Set.Ioi 1 ⊢ Sbtw R x y (↑(lineMap x y) r) [PROOFSTEP] rw [Set.mem_Ioi] at hr [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : 1 < r ⊢ Sbtw R x y (↑(lineMap x y) r) [PROOFSTEP] refine' ⟨wbtw_iff_left_eq_or_right_mem_image_Ici.2 (Or.inr (Set.mem_image_of_mem _ (Set.mem_of_mem_of_subset hr Set.Ioi_subset_Ici_self))), hne.symm, _⟩ [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : 1 < r ⊢ y ≠ ↑(lineMap x y) r [PROOFSTEP] rw [lineMap_apply, ← @vsub_ne_zero V, vsub_vadd_eq_vsub_sub] [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : 1 < r ⊢ y -ᵥ x - r • (y -ᵥ x) ≠ 0 [PROOFSTEP] nth_rw 1 [← one_smul R (y -ᵥ x)] [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : 1 < r ⊢ 1 • (y -ᵥ x) - r • (y -ᵥ x) ≠ 0 [PROOFSTEP] rw [← sub_smul, smul_ne_zero_iff, vsub_ne_zero, sub_ne_zero] [GOAL] case refine'_2.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P hne : x ≠ y r : R hr : 1 < r ⊢ 1 ≠ r ∧ y ≠ x [PROOFSTEP] exact ⟨hr.ne, hne.symm⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P ⊢ Wbtw R x y z ↔ z = y ∨ x ∈ ↑(lineMap z y) '' Set.Ici 1 [PROOFSTEP] rw [wbtw_comm, wbtw_iff_left_eq_or_right_mem_image_Ici] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P ⊢ Sbtw R x y z ↔ z ≠ y ∧ x ∈ ↑(lineMap z y) '' Set.Ioi 1 [PROOFSTEP] rw [sbtw_comm, sbtw_iff_left_ne_and_right_mem_image_Ioi] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₁ ≤ r₂ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) [PROOFSTEP] refine' ⟨r₁ / r₂, ⟨div_nonneg hr₁ (hr₁.trans hr₂), div_le_one_of_le hr₂ (hr₁.trans hr₂)⟩, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₁ ≤ r₂ ⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x [PROOFSTEP] by_cases h : r₁ = 0 [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₁ ≤ r₂ h : r₁ = 0 ⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x [PROOFSTEP] simp [h] [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₁ ≤ r₂ h : ¬r₁ = 0 ⊢ ↑(lineMap x (r₂ • v +ᵥ x)) (r₁ / r₂) = r₁ • v +ᵥ x [PROOFSTEP] simp [lineMap_apply, smul_smul, ((hr₁.lt_of_ne' h).trans_le hr₂).ne.symm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : 0 ≤ r₂ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] rcases le_total r₁ r₂ with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : 0 ≤ r₂ h : r₁ ≤ r₂ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] exact Or.inl (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₁ h) [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : 0 ≤ r₂ h : r₂ ≤ r₁ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] exact Or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₂ h) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ r₁ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) [PROOFSTEP] convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x (-v) (Left.nonneg_neg_iff.2 hr₁) (neg_le_neg_iff.2 hr₂) using 1 [GOAL] case h.e'_9 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ r₁ ⊢ r₁ • v +ᵥ x = -r₁ • -v +ᵥ x [PROOFSTEP] rw [neg_smul_neg] [GOAL] case h.e'_10 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ r₁ ⊢ r₂ • v +ᵥ x = -r₂ • -v +ᵥ x [PROOFSTEP] rw [neg_smul_neg] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ 0 ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] rcases le_total r₁ r₂ with (h | h) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ 0 h : r₁ ≤ r₂ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] exact Or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₂ h) [GOAL] case inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : r₂ ≤ 0 h : r₂ ≤ r₁ ⊢ Wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ Wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) [PROOFSTEP] exact Or.inl (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₁ h) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : 0 ≤ r₂ ⊢ Wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x) [PROOFSTEP] convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le (r₁ • v +ᵥ x) v (Left.nonneg_neg_iff.2 hr₁) (neg_le_sub_iff_le_add.2 ((le_add_iff_nonneg_left r₁).2 hr₂)) using 1 [GOAL] case h.e'_9 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : 0 ≤ r₂ ⊢ x = -r₁ • v +ᵥ (r₁ • v +ᵥ x) [PROOFSTEP] simp [sub_smul, ← add_vadd] [GOAL] case h.e'_10 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : r₁ ≤ 0 hr₂ : 0 ≤ r₂ ⊢ r₂ • v +ᵥ x = (r₂ - r₁) • v +ᵥ (r₁ • v +ᵥ x) [PROOFSTEP] simp [sub_smul, ← add_vadd] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₂ ≤ 0 ⊢ Wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x) [PROOFSTEP] rw [wbtw_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V r₁ r₂ : R hr₁ : 0 ≤ r₁ hr₂ : r₂ ≤ 0 ⊢ Wbtw R (r₂ • v +ᵥ x) x (r₁ • v +ᵥ x) [PROOFSTEP] exact wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg x v hr₂ hr₁ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w x y z : P h₁ : Wbtw R w y z h₂ : Wbtw R w x y ⊢ Wbtw R x y z [PROOFSTEP] rcases h₁ with ⟨t₁, ht₁, rfl⟩ [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w x z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 h₂ : Wbtw R w x (↑(lineMap w z) t₁) ⊢ Wbtw R x (↑(lineMap w z) t₁) z [PROOFSTEP] rcases h₂ with ⟨t₂, ht₂, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ Wbtw R (↑(lineMap w (↑(lineMap w z) t₁)) t₂) (↑(lineMap w z) t₁) z [PROOFSTEP] refine' ⟨(t₁ - t₂ * t₁) / (1 - t₂ * t₁), ⟨div_nonneg (sub_nonneg.2 (mul_le_of_le_one_left ht₁.1 ht₂.2)) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2)), div_le_one_of_le (sub_le_sub_right ht₁.2 _) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2))⟩, _⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ ↑(lineMap (↑(lineMap w (↑(lineMap w z) t₁)) t₂) z) ((t₁ - t₂ * t₁) / (1 - t₂ * t₁)) = ↑(lineMap w z) t₁ [PROOFSTEP] simp only [lineMap_apply, smul_smul, ← add_vadd, vsub_vadd_eq_vsub_sub, smul_sub, ← sub_smul, ← add_smul, vadd_vsub, vadd_right_cancel_iff, div_mul_eq_mul_div, div_sub_div_same] [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ ((t₁ - t₂ * t₁ - (t₁ - t₂ * t₁) * (t₂ * t₁)) / (1 - t₂ * t₁) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] nth_rw 1 [← mul_one (t₁ - t₂ * t₁)] [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ (((t₁ - t₂ * t₁) * 1 - (t₁ - t₂ * t₁) * (t₂ * t₁)) / (1 - t₂ * t₁) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] rw [← mul_sub, mul_div_assoc] [GOAL] case intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] by_cases h : 1 - t₂ * t₁ = 0 [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : 1 - t₂ * t₁ = 0 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] rw [sub_eq_zero, eq_comm] at h [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : t₂ * t₁ = 1 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] rw [h] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : t₂ * t₁ = 1 ⊢ ((t₁ - 1) * ((1 - 1) / (1 - 1)) + 1) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] suffices t₁ = 1 by simp [this] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : t₂ * t₁ = 1 this : t₁ = 1 ⊢ ((t₁ - 1) * ((1 - 1) / (1 - 1)) + 1) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] simp [this] [GOAL] case pos R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : t₂ * t₁ = 1 ⊢ t₁ = 1 [PROOFSTEP] exact eq_of_le_of_not_lt ht₁.2 fun ht₁lt => (mul_lt_one_of_nonneg_of_lt_one_right ht₂.2 ht₁.1 ht₁lt).ne h [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : ¬1 - t₂ * t₁ = 0 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] rw [div_self h] [GOAL] case neg R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : ¬1 - t₂ * t₁ = 0 ⊢ ((t₁ - t₂ * t₁) * 1 + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) [PROOFSTEP] ring_nf [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w x y z : P h₁ : Wbtw R w x z h₂ : Wbtw R x y z ⊢ Wbtw R w x y [PROOFSTEP] rw [wbtw_comm] at * [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w x y z : P h₁ : Wbtw R z x w h₂ : Wbtw R z y x ⊢ Wbtw R y x w [PROOFSTEP] exact h₁.trans_left_right h₂ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ Collinear R {x, y, z} [PROOFSTEP] rw [collinear_iff_exists_forall_eq_smul_vadd] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ ∃ p₀ v, ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] refine' ⟨x, z -ᵥ x, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z ⊢ ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • (z -ᵥ x) +ᵥ x [PROOFSTEP] intro p hp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z p : P hp : p ∈ {x, y, z} ⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x [PROOFSTEP] simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at hp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Wbtw R x y z p : P hp : p = x ∨ p = y ∨ p = z ⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x [PROOFSTEP] rcases hp with (rfl | rfl | rfl) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P y z p : P h : Wbtw R p y z ⊢ ∃ r, p = r • (z -ᵥ p) +ᵥ p [PROOFSTEP] refine' ⟨0, _⟩ [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P y z p : P h : Wbtw R p y z ⊢ p = 0 • (z -ᵥ p) +ᵥ p [PROOFSTEP] simp [GOAL] case inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z p : P h : Wbtw R x p z ⊢ ∃ r, p = r • (z -ᵥ x) +ᵥ x [PROOFSTEP] rcases h with ⟨t, -, rfl⟩ [GOAL] case inr.inl.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P t : R ⊢ ∃ r, ↑(lineMap x z) t = r • (z -ᵥ x) +ᵥ x [PROOFSTEP] exact ⟨t, rfl⟩ [GOAL] case inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y p : P h : Wbtw R x y p ⊢ ∃ r, p = r • (p -ᵥ x) +ᵥ x [PROOFSTEP] refine' ⟨1, _⟩ [GOAL] case inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y p : P h : Wbtw R x y p ⊢ p = 1 • (p -ᵥ x) +ᵥ x [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : Collinear R {x, y, z} ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] rw [collinear_iff_of_mem (Set.mem_insert _ _)] at h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : ∃ v, ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] rcases h with ⟨v, h⟩ [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P v : V h : ∀ (p : P), p ∈ {x, y, z} → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] simp_rw [Set.mem_insert_iff, Set.mem_singleton_iff] at h [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P v : V h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] have hy := h y (Or.inr (Or.inl rfl)) [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P v : V h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x hy : ∃ r, y = r • v +ᵥ x ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] have hz := h z (Or.inr (Or.inr rfl)) [GOAL] case intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P v : V h : ∀ (p : P), p = x ∨ p = y ∨ p = z → ∃ r, p = r • v +ᵥ x hy : ∃ r, y = r • v +ᵥ x hz : ∃ r, z = r • v +ᵥ x ⊢ Wbtw R x y z ∨ Wbtw R y z x ∨ Wbtw R z x y [PROOFSTEP] rcases hy with ⟨ty, rfl⟩ [GOAL] case intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x z : P v : V hz : ∃ r, z = r • v +ᵥ x ty : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = z → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x (ty • v +ᵥ x) z ∨ Wbtw R (ty • v +ᵥ x) z x ∨ Wbtw R z x (ty • v +ᵥ x) [PROOFSTEP] rcases hz with ⟨tz, rfl⟩ [GOAL] case intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rcases lt_trichotomy ty 0 with (hy0 | rfl | hy0) [GOAL] case intro.intro.intro.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : ty < 0 ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rcases lt_trichotomy tz 0 with (hz0 | rfl | hz0) [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : ty < 0 hz0 : tz < 0 ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rw [wbtw_comm (z := x)] [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : ty < 0 hz0 : tz < 0 ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rw [← or_assoc] [GOAL] case intro.intro.intro.inl.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : ty < 0 hz0 : tz < 0 ⊢ (Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x)) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] exact Or.inl (wbtw_or_wbtw_smul_vadd_of_nonpos _ _ hy0.le hz0.le) [GOAL] case intro.intro.intro.inl.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty : R hy0 : ty < 0 h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = 0 • v +ᵥ x → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x (ty • v +ᵥ x) (0 • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (0 • v +ᵥ x) x ∨ Wbtw R (0 • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inl.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : ty < 0 hz0 : 0 < tz ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] exact Or.inr (Or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos _ _ hz0.le hy0.le)) [GOAL] case intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V tz : R h : ∀ (p : P), p = x ∨ p = 0 • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x (0 • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (0 • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (0 • v +ᵥ x) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : 0 < ty ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rcases lt_trichotomy tz 0 with (hz0 | rfl | hz0) [GOAL] case intro.intro.intro.inr.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : 0 < ty hz0 : tz < 0 ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] refine' Or.inr (Or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg _ _ hz0.le hy0.le)) [GOAL] case intro.intro.intro.inr.inr.inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty : R hy0 : 0 < ty h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = 0 • v +ᵥ x → ∃ r, p = r • v +ᵥ x ⊢ Wbtw R x (ty • v +ᵥ x) (0 • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (0 • v +ᵥ x) x ∨ Wbtw R (0 • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] simp [GOAL] case intro.intro.intro.inr.inr.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : 0 < ty hz0 : 0 < tz ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R (ty • v +ᵥ x) (tz • v +ᵥ x) x ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rw [wbtw_comm (z := x)] [GOAL] case intro.intro.intro.inr.inr.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : 0 < ty hz0 : 0 < tz ⊢ Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] rw [← or_assoc] [GOAL] case intro.intro.intro.inr.inr.inr.inr R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x : P v : V ty tz : R h : ∀ (p : P), p = x ∨ p = ty • v +ᵥ x ∨ p = tz • v +ᵥ x → ∃ r, p = r • v +ᵥ x hy0 : 0 < ty hz0 : 0 < tz ⊢ (Wbtw R x (ty • v +ᵥ x) (tz • v +ᵥ x) ∨ Wbtw R x (tz • v +ᵥ x) (ty • v +ᵥ x)) ∨ Wbtw R (tz • v +ᵥ x) x (ty • v +ᵥ x) [PROOFSTEP] exact Or.inl (wbtw_or_wbtw_smul_vadd_of_nonneg _ _ hy0.le hz0.le) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P ⊢ Wbtw R x y z ↔ SameRay R (y -ᵥ x) (z -ᵥ y) [PROOFSTEP] refine' ⟨Wbtw.sameRay_vsub, fun h => _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : SameRay R (y -ᵥ x) (z -ᵥ y) ⊢ Wbtw R x y z [PROOFSTEP] rcases h with (h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩) [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : y -ᵥ x = 0 ⊢ Wbtw R x y z [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : y = x ⊢ Wbtw R x y z [PROOFSTEP] simp [h] [GOAL] case inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : z -ᵥ y = 0 ⊢ Wbtw R x y z [PROOFSTEP] rw [vsub_eq_zero_iff_eq] at h [GOAL] case inr.inl R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P h : z = y ⊢ Wbtw R x y z [PROOFSTEP] simp [h] [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) ⊢ Wbtw R x y z [PROOFSTEP] refine' ⟨r₂ / (r₁ + r₂), ⟨div_nonneg hr₂.le (add_nonneg hr₁.le hr₂.le), div_le_one_of_le (le_add_of_nonneg_left hr₁.le) (add_nonneg hr₁.le hr₂.le)⟩, _⟩ [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) ⊢ ↑(lineMap x z) (r₂ / (r₁ + r₂)) = y [PROOFSTEP] have h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y := by simp [h, hr₂.ne'] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) ⊢ z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y [PROOFSTEP] simp [h, hr₂.ne'] [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y ⊢ ↑(lineMap x z) (r₂ / (r₁ + r₂)) = y [PROOFSTEP] rw [eq_comm] [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y ⊢ y = ↑(lineMap x z) (r₂ / (r₁ + r₂)) [PROOFSTEP] simp only [lineMap_apply, h', vadd_vsub_assoc, smul_smul, ← add_smul, eq_vadd_iff_vsub_eq, smul_add] [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y ⊢ y -ᵥ x = (r₂ / (r₁ + r₂) * (r₂⁻¹ * r₁) + r₂ / (r₁ + r₂)) • (y -ᵥ x) [PROOFSTEP] convert (one_smul R (y -ᵥ x)).symm [GOAL] case h.e'_3.h.e'_5 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y ⊢ r₂ / (r₁ + r₂) * (r₂⁻¹ * r₁) + r₂ / (r₁ + r₂) = 1 [PROOFSTEP] field_simp [(add_pos hr₁ hr₂).ne', hr₂.ne'] [GOAL] case h.e'_3.h.e'_5 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y ⊢ r₂ * r₁ * (r₁ + r₂) + r₂ * ((r₁ + r₂) * r₂) = (r₁ + r₂) * r₂ * (r₁ + r₂) [PROOFSTEP] ring [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ Wbtw R y x (↑(pointReflection R x) y) [PROOFSTEP] refine' ⟨2⁻¹, ⟨by norm_num, by norm_num⟩, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ 0 ≤ 2⁻¹ [PROOFSTEP] norm_num [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ 2⁻¹ ≤ 1 [PROOFSTEP] norm_num [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ ↑(lineMap y (↑(pointReflection R x) y)) 2⁻¹ = x [PROOFSTEP] rw [lineMap_apply, pointReflection_apply, vadd_vsub_assoc, ← two_smul R (x -ᵥ y)] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ 2⁻¹ • 2 • (x -ᵥ y) +ᵥ y = x [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h : x ≠ y ⊢ Sbtw R y x (↑(pointReflection R x) y) [PROOFSTEP] refine' ⟨wbtw_pointReflection _ _ _, h, _⟩ [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h : x ≠ y ⊢ x ≠ ↑(pointReflection R x) y [PROOFSTEP] nth_rw 1 [← pointReflection_self R x] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h : x ≠ y ⊢ ↑(pointReflection R x) x ≠ ↑(pointReflection R x) y [PROOFSTEP] exact (pointReflection_involutive R x).injective.ne h [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ Wbtw R x (midpoint R x y) y [PROOFSTEP] convert wbtw_pointReflection R (midpoint R x y) x [GOAL] case h.e'_10 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ y = ↑(pointReflection R (midpoint R x y)) x [PROOFSTEP] rw [pointReflection_midpoint_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h : x ≠ y ⊢ Sbtw R x (midpoint R x y) y [PROOFSTEP] have h : midpoint R x y ≠ x := by simp [h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h : x ≠ y ⊢ midpoint R x y ≠ x [PROOFSTEP] simp [h] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h✝ : x ≠ y h : midpoint R x y ≠ x ⊢ Sbtw R x (midpoint R x y) y [PROOFSTEP] convert sbtw_pointReflection_of_ne R h [GOAL] case h.e'_10 R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P h✝ : x ≠ y h : midpoint R x y ≠ x ⊢ y = ↑(pointReflection R (midpoint R x y)) x [PROOFSTEP] rw [pointReflection_midpoint_left]
{"mathlib_filename": "Mathlib.Analysis.Convex.Between", "llama_tokens": 164742}
[GOAL] b x y : ℝ ⊢ logb b 0 = 0 [PROOFSTEP] simp [logb] [GOAL] b x y : ℝ ⊢ logb b 1 = 0 [PROOFSTEP] simp [logb] [GOAL] b x✝ y x : ℝ ⊢ logb b |x| = logb b x [PROOFSTEP] rw [logb, logb, log_abs] [GOAL] b x✝ y x : ℝ ⊢ logb b (-x) = logb b x [PROOFSTEP] rw [← logb_abs x, ← logb_abs (-x), abs_neg] [GOAL] b x y : ℝ hx : x ≠ 0 hy : y ≠ 0 ⊢ logb b (x * y) = logb b x + logb b y [PROOFSTEP] simp_rw [logb, log_mul hx hy, add_div] [GOAL] b x y : ℝ hx : x ≠ 0 hy : y ≠ 0 ⊢ logb b (x / y) = logb b x - logb b y [PROOFSTEP] simp_rw [logb, log_div hx hy, sub_div] [GOAL] b x✝ y x : ℝ ⊢ logb b x⁻¹ = -logb b x [PROOFSTEP] simp [logb, neg_div] [GOAL] b✝ x y a b : ℝ ⊢ (logb a b)⁻¹ = logb b a [PROOFSTEP] simp_rw [logb, inv_div] [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ [PROOFSTEP] simp_rw [inv_logb] [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ logb c (a * b) = logb c a + logb c b [PROOFSTEP] exact logb_mul h₁ h₂ [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ [PROOFSTEP] simp_rw [inv_logb] [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ logb c (a / b) = logb c a - logb c b [PROOFSTEP] exact logb_div h₁ h₂ [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ [PROOFSTEP] rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] [GOAL] b✝ x y a b : ℝ h₁ : a ≠ 0 h₂ : b ≠ 0 c : ℝ ⊢ logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ [PROOFSTEP] rw [← inv_logb_div_base h₁ h₂ c, inv_inv] [GOAL] b✝ x y a b c : ℝ h₁ : b ≠ 0 h₂ : b ≠ 1 h₃ : b ≠ -1 ⊢ logb a b * logb b c = logb a c [PROOFSTEP] unfold logb [GOAL] b✝ x y a b c : ℝ h₁ : b ≠ 0 h₂ : b ≠ 1 h₃ : b ≠ -1 ⊢ log b / log a * (log c / log b) = log c / log a [PROOFSTEP] rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ log b ≠ 0 [PROOFSTEP] have b_ne_zero : b ≠ 0 [GOAL] case b_ne_zero b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ b ≠ 0 b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 ⊢ log b ≠ 0 [PROOFSTEP] linarith [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 ⊢ log b ≠ 0 [PROOFSTEP] have b_ne_minus_one : b ≠ -1 [GOAL] case b_ne_minus_one b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 ⊢ b ≠ -1 b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 b_ne_minus_one : b ≠ -1 ⊢ log b ≠ 0 [PROOFSTEP] linarith [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 b_ne_zero : b ≠ 0 b_ne_minus_one : b ≠ -1 ⊢ log b ≠ 0 [PROOFSTEP] simp [b_ne_one, b_ne_zero, b_ne_minus_one] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ logb b (b ^ x) = x [PROOFSTEP] rw [logb, div_eq_iff, log_rpow b_pos] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ log b ≠ 0 [PROOFSTEP] exact log_b_ne_zero b_pos b_ne_one [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ b ^ logb b x = |x| [PROOFSTEP] apply log_injOn_pos [GOAL] case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ b ^ logb b x ∈ Ioi 0 case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ |x| ∈ Ioi 0 case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x| [PROOFSTEP] simp only [Set.mem_Ioi] [GOAL] case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ 0 < b ^ logb b x case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ |x| ∈ Ioi 0 case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x| [PROOFSTEP] apply rpow_pos_of_pos b_pos [GOAL] case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ |x| ∈ Ioi 0 case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x| [PROOFSTEP] simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] [GOAL] case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log (b ^ logb b x) = log |x| [PROOFSTEP] rw [log_rpow b_pos, logb, log_abs] [GOAL] case a b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x ≠ 0 ⊢ log x / log b * log b = log x [PROOFSTEP] field_simp [log_b_ne_zero b_pos b_ne_one] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : 0 < x ⊢ b ^ logb b x = x [PROOFSTEP] rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : 0 < x ⊢ |x| = x [PROOFSTEP] exact abs_of_pos hx [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x < 0 ⊢ b ^ logb b x = -x [PROOFSTEP] rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x < 0 ⊢ |x| = -x [PROOFSTEP] exact abs_of_neg hx [GOAL] b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ SurjOn (logb b) (Iio 0) univ [PROOFSTEP] intro x _ [GOAL] b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ x ∈ logb b '' Iio 0 [PROOFSTEP] use-b ^ x [GOAL] case h b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ -b ^ x ∈ Iio 0 ∧ logb b (-b ^ x) = x [PROOFSTEP] constructor [GOAL] case h.left b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ -b ^ x ∈ Iio 0 [PROOFSTEP] simp only [Right.neg_neg_iff, Set.mem_Iio] [GOAL] case h.left b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ 0 < b ^ x [PROOFSTEP] apply rpow_pos_of_pos b_pos [GOAL] case h.right b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ logb b (-b ^ x) = x [PROOFSTEP] rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] [GOAL] b x y : ℝ hb : 1 < b ⊢ 0 < b [PROOFSTEP] linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file [GOAL] b x y : ℝ hb : 1 < b ⊢ b ≠ 1 [PROOFSTEP] linarith [GOAL] b x y : ℝ hb : 1 < b h : 0 < x h₁ : 0 < y ⊢ logb b x ≤ logb b y ↔ x ≤ y [PROOFSTEP] rw [logb, logb, div_le_div_right (log_pos hb), log_le_log h h₁] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x hxy : x < y ⊢ logb b x < logb b y [PROOFSTEP] rw [logb, logb, div_lt_div_right (log_pos hb)] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x hxy : x < y ⊢ log x < log y [PROOFSTEP] exact log_lt_log hx hxy [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x hy : 0 < y ⊢ logb b x < logb b y ↔ x < y [PROOFSTEP] rw [logb, logb, div_lt_div_right (log_pos hb)] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x hy : 0 < y ⊢ log x < log y ↔ x < y [PROOFSTEP] exact log_lt_log_iff hx hy [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x ≤ y ↔ x ≤ b ^ y [PROOFSTEP] rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x < y ↔ x < b ^ y [PROOFSTEP] rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] [GOAL] b x y : ℝ hb : 1 < b hy : 0 < y ⊢ x ≤ logb b y ↔ b ^ x ≤ y [PROOFSTEP] rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] [GOAL] b x y : ℝ hb : 1 < b hy : 0 < y ⊢ x < logb b y ↔ b ^ x < y [PROOFSTEP] rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ 0 < logb b x ↔ 1 < x [PROOFSTEP] rw [← @logb_one b] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b 1 < logb b x ↔ 1 < x [PROOFSTEP] rw [logb_lt_logb_iff hb zero_lt_one hx] [GOAL] b x y : ℝ hb : 1 < b hx : 1 < x ⊢ 0 < logb b x [PROOFSTEP] rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] [GOAL] b x y : ℝ hb : 1 < b hx : 1 < x ⊢ 1 < x [PROOFSTEP] exact hx [GOAL] b x y : ℝ hb : 1 < b h : 0 < x ⊢ logb b x < 0 ↔ x < 1 [PROOFSTEP] rw [← logb_one] [GOAL] b x y : ℝ hb : 1 < b h : 0 < x ⊢ logb b x < logb ?m.14910 1 ↔ x < 1 b x y : ℝ hb : 1 < b h : 0 < x ⊢ ℝ [PROOFSTEP] exact logb_lt_logb_iff hb h zero_lt_one [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ 0 ≤ logb b x ↔ 1 ≤ x [PROOFSTEP] rw [← not_lt, logb_neg_iff hb hx, not_lt] [GOAL] b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] rw [← not_lt, logb_pos_iff hb hx, not_lt] [GOAL] b x y : ℝ hb : 1 < b hx : 0 ≤ x ⊢ logb b x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hx) [GOAL] case inl b y : ℝ hb : 1 < b hx : 0 ≤ 0 ⊢ logb b 0 ≤ 0 ↔ 0 ≤ 1 [PROOFSTEP] simp [le_refl, zero_le_one] [GOAL] case inr b x y : ℝ hb : 1 < b hx✝ : 0 ≤ x hx : 0 < x ⊢ logb b x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] exact logb_nonpos_iff hb hx [GOAL] b x y : ℝ hb : 1 < b ⊢ StrictAntiOn (logb b) (Iio 0) [PROOFSTEP] rintro x (hx : x < 0) y (hy : y < 0) hxy [GOAL] b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b y < logb b x [PROOFSTEP] rw [← logb_abs y, ← logb_abs x] [GOAL] b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b |y| < logb b |x| [PROOFSTEP] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ [GOAL] b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ |y| < |x| [PROOFSTEP] rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ b ≠ 1 [PROOFSTEP] linarith [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 h : 0 < x h₁ : 0 < y ⊢ logb b x ≤ logb b y ↔ y ≤ x [PROOFSTEP] rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log h₁ h] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hxy : x < y ⊢ logb b y < logb b x [PROOFSTEP] rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hxy : x < y ⊢ log x < log y [PROOFSTEP] exact log_lt_log hx hxy [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hy : 0 < y ⊢ logb b x < logb b y ↔ y < x [PROOFSTEP] rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hy : 0 < y ⊢ log y < log x ↔ y < x [PROOFSTEP] exact log_lt_log_iff hy hx [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x ≤ y ↔ b ^ y ≤ x [PROOFSTEP] rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x < y ↔ b ^ y < x [PROOFSTEP] rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hy : 0 < y ⊢ x ≤ logb b y ↔ y ≤ b ^ x [PROOFSTEP] rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hy : 0 < y ⊢ x < logb b y ↔ y < b ^ x [PROOFSTEP] rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ 0 < logb b x ↔ x < 1 [PROOFSTEP] rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x < 1 ⊢ 0 < logb b x [PROOFSTEP] rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x < 1 ⊢ x < 1 [PROOFSTEP] exact hx' [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 h : 0 < x ⊢ logb b x < 0 ↔ 1 < x [PROOFSTEP] rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ 0 ≤ logb b x ↔ x ≤ 1 [PROOFSTEP] rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x ≤ 1 ⊢ 0 ≤ logb b x [PROOFSTEP] rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x ≤ 1 ⊢ x ≤ 1 [PROOFSTEP] exact hx' [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x ≤ 0 ↔ 1 ≤ x [PROOFSTEP] rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ StrictMonoOn (logb b) (Iio 0) [PROOFSTEP] rintro x (hx : x < 0) y (hy : y < 0) hxy [GOAL] b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b x < logb b y [PROOFSTEP] rw [← logb_abs y, ← logb_abs x] [GOAL] b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b |x| < logb b |y| [PROOFSTEP] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ [GOAL] b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ |y| < |x| [PROOFSTEP] rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ Tendsto (logb b) atTop atBot [PROOFSTEP] rw [tendsto_atTop_atBot] [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ ∀ (b_1 : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ b_1 [PROOFSTEP] intro e [GOAL] b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ e [PROOFSTEP] use 1 ⊔ b ^ e [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∀ (a : ℝ), 1 ⊔ b ^ e ≤ a → logb b a ≤ e [PROOFSTEP] intro a [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ⊢ 1 ⊔ b ^ e ≤ a → logb b a ≤ e [PROOFSTEP] simp only [and_imp, sup_le_iff] [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ⊢ 1 ≤ a → b ^ e ≤ a → logb b a ≤ e [PROOFSTEP] intro ha [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ b ^ e ≤ a → logb b a ≤ e [PROOFSTEP] rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ b ^ e ≤ a → b ^ e ≤ a case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ 0 < a [PROOFSTEP] tauto [GOAL] case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ 0 < a [PROOFSTEP] exact lt_of_lt_of_le zero_lt_one ha [GOAL] b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr : 0 ≤ r ⊢ ⌊logb (↑b) r⌋ = Int.log b r [PROOFSTEP] obtain rfl | hr := hr.eq_or_lt [GOAL] case inl b✝ x y : ℝ b : ℕ hb : 1 < b hr : 0 ≤ 0 ⊢ ⌊logb (↑b) 0⌋ = Int.log b 0 [PROOFSTEP] rw [logb_zero, Int.log_zero_right, Int.floor_zero] [GOAL] case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r ⊢ ⌊logb (↑b) r⌋ = Int.log b r [PROOFSTEP] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb [GOAL] case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌊logb (↑b) r⌋ = Int.log b r [PROOFSTEP] apply le_antisymm [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌊logb (↑b) r⌋ ≤ Int.log b r [PROOFSTEP] rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ r [PROOFSTEP] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ ↑b ^ logb (↑b) r [PROOFSTEP] exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ Int.log b r ≤ ⌊logb (↑b) r⌋ [PROOFSTEP] rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ Int.log b r ≤ r [PROOFSTEP] exact Int.zpow_log_le_self hb hr [GOAL] b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr : 0 ≤ r ⊢ ⌈logb (↑b) r⌉ = Int.clog b r [PROOFSTEP] obtain rfl | hr := hr.eq_or_lt [GOAL] case inl b✝ x y : ℝ b : ℕ hb : 1 < b hr : 0 ≤ 0 ⊢ ⌈logb (↑b) 0⌉ = Int.clog b 0 [PROOFSTEP] rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] [GOAL] case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r ⊢ ⌈logb (↑b) r⌉ = Int.clog b r [PROOFSTEP] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb [GOAL] case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌈logb (↑b) r⌉ = Int.clog b r [PROOFSTEP] apply le_antisymm [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌈logb (↑b) r⌉ ≤ Int.clog b r [PROOFSTEP] rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ r ≤ ↑b ^ Int.clog b r [PROOFSTEP] refine' Int.self_le_zpow_clog hb r [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ Int.clog b r ≤ ⌈logb (↑b) r⌉ [PROOFSTEP] rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ r ≤ ↑b ^ ↑⌈logb (↑b) r⌉ [PROOFSTEP] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ [GOAL] case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ logb (↑b) r ≤ ↑b ^ ↑⌈logb (↑b) r⌉ [PROOFSTEP] exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) [GOAL] b x y : ℝ ⊢ logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] simp_rw [logb, div_eq_zero_iff, log_eq_zero] [GOAL] b x y : ℝ ⊢ (x = 0 ∨ x = 1 ∨ x = -1) ∨ b = 0 ∨ b = 1 ∨ b = -1 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] tauto [GOAL] b x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf : ∀ (x : α), x ∈ s → f x ≠ 0 ⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) [PROOFSTEP] classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] [GOAL] b x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf : ∀ (x : α), x ∈ s → f x ≠ 0 ⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) [PROOFSTEP] induction' s using Finset.induction_on with a s ha ih [GOAL] case empty b x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s → f x ≠ 0 hf : ∀ (x : α), x ∈ ∅ → f x ≠ 0 ⊢ logb b (∏ i in ∅, f i) = ∑ i in ∅, logb b (f i) [PROOFSTEP] simp [GOAL] case insert b x y : ℝ α : Type u_1 s✝ : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0 a : α s : Finset α ha : ¬a ∈ s ih : (∀ (x : α), x ∈ s → f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) hf : ∀ (x : α), x ∈ insert a s → f x ≠ 0 ⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i) [PROOFSTEP] simp only [Finset.mem_insert, forall_eq_or_imp] at hf [GOAL] case insert b x y : ℝ α : Type u_1 s✝ : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0 a : α s : Finset α ha : ¬a ∈ s ih : (∀ (x : α), x ∈ s → f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) hf : f a ≠ 0 ∧ ∀ (a : α), a ∈ s → f a ≠ 0 ⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i) [PROOFSTEP] simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Base", "llama_tokens": 11375}
[GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul : ∀ (a : 𝕜) (x : E), f (a • x) = ‖a‖ * f x ⊢ f 0 = 0 [PROOFSTEP] rw [← zero_smul 𝕜 (0 : E), smul, norm_zero, zero_mul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul : ∀ (a : 𝕜) (x : E), f (a • x) = ‖a‖ * f x x : E ⊢ f (-x) = f x [PROOFSTEP] rw [← neg_one_smul 𝕜, smul, norm_neg, ← smul, one_smul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E ⊢ f (r • x) = ‖r‖ * f x [PROOFSTEP] refine' le_antisymm (smul_le r x) _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E ⊢ ‖r‖ * f x ≤ f (r • x) [PROOFSTEP] by_cases h : r = 0 [GOAL] case pos R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E h : r = 0 ⊢ ‖r‖ * f x ≤ f (r • x) [PROOFSTEP] simp [h, map_zero] [GOAL] case neg R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E h : ¬r = 0 ⊢ ‖r‖ * f x ≤ f (r • x) [PROOFSTEP] rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))] [GOAL] case neg R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E h : ¬r = 0 ⊢ ‖r‖⁻¹ * (‖r‖ * f x) ≤ ‖r‖⁻¹ * f (r • x) [PROOFSTEP] rw [inv_mul_cancel_left₀ (norm_ne_zero_iff.mpr h)] [GOAL] case neg R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y smul_le : ∀ (r : 𝕜) (x : E), f (r • x) ≤ ‖r‖ * f x r : 𝕜 x : E h : ¬r = 0 ⊢ f x ≤ ‖r‖⁻¹ * f (r • x) [PROOFSTEP] specialize smul_le r⁻¹ (r • x) [GOAL] case neg R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y r : 𝕜 x : E h : ¬r = 0 smul_le : f (r⁻¹ • r • x) ≤ ‖r⁻¹‖ * f (r • x) ⊢ f x ≤ ‖r‖⁻¹ * f (r • x) [PROOFSTEP] rw [norm_inv] at smul_le [GOAL] case neg R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y r : 𝕜 x : E h : ¬r = 0 smul_le : f (r⁻¹ • r • x) ≤ ‖r‖⁻¹ * f (r • x) ⊢ f x ≤ ‖r‖⁻¹ * f (r • x) [PROOFSTEP] convert smul_le [GOAL] case h.e'_3.h.e'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E f : E → ℝ map_zero : f 0 = 0 add_le : ∀ (x y : E), f (x + y) ≤ f x + f y r : 𝕜 x : E h : ¬r = 0 smul_le : f (r⁻¹ • r • x) ≤ ‖r‖⁻¹ * f (r • x) ⊢ x = r⁻¹ • r • x [PROOFSTEP] simp [h] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddGroup E inst✝ : SMul 𝕜 E f g : Seminorm 𝕜 E h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨⟨_⟩⟩ [GOAL] case mk.mk R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddGroup E inst✝ : SMul 𝕜 E g : Seminorm 𝕜 E toFun✝ : E → ℝ map_zero'✝ : toFun✝ 0 = 0 add_le'✝ : ∀ (r s : E), toFun✝ (r + s) ≤ toFun✝ r + toFun✝ s neg'✝ : ∀ (r : E), toFun✝ (-r) = toFun✝ r smul'✝ : ∀ (a : 𝕜) (x : E), AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } x h : (fun f => f.toFun) { toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ }, smul' := smul'✝ } = (fun f => f.toFun) g ⊢ { toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ }, smul' := smul'✝ } = g [PROOFSTEP] rcases g with ⟨⟨_⟩⟩ [GOAL] case mk.mk.mk.mk R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddGroup E inst✝ : SMul 𝕜 E toFun✝¹ : E → ℝ map_zero'✝¹ : toFun✝¹ 0 = 0 add_le'✝¹ : ∀ (r s : E), toFun✝¹ (r + s) ≤ toFun✝¹ r + toFun✝¹ s neg'✝¹ : ∀ (r : E), toFun✝¹ (-r) = toFun✝¹ r smul'✝¹ : ∀ (a : 𝕜) (x : E), AddGroupSeminorm.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ } x toFun✝ : E → ℝ map_zero'✝ : toFun✝ 0 = 0 add_le'✝ : ∀ (r s : E), toFun✝ (r + s) ≤ toFun✝ r + toFun✝ s neg'✝ : ∀ (r : E), toFun✝ (-r) = toFun✝ r smul'✝ : ∀ (a : 𝕜) (x : E), AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ } x h : (fun f => f.toFun) { toAddGroupSeminorm := { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ }, smul' := smul'✝¹ } = (fun f => f.toFun) { toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ }, smul' := smul'✝ } ⊢ { toAddGroupSeminorm := { toFun := toFun✝¹, map_zero' := map_zero'✝¹, add_le' := add_le'✝¹, neg' := neg'✝¹ }, smul' := smul'✝¹ } = { toAddGroupSeminorm := { toFun := toFun✝, map_zero' := map_zero'✝, add_le' := add_le'✝, neg' := neg'✝ }, smul' := smul'✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : SeminormedRing 𝕜 inst✝⁴ : AddGroup E inst✝³ : SMul 𝕜 E p✝ : Seminorm 𝕜 E c : 𝕜 x y : E r✝ : ℝ inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ r : R p : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := r • p.toAddGroupSeminorm x✝¹ : 𝕜 x✝ : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => r • ↑p x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (x✝¹ • x✝) = ‖x✝¹‖ * AddGroupSeminorm.toFun { toFun := fun x => r • ↑p x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x✝ [PROOFSTEP] simp only [← smul_one_smul ℝ≥0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : SeminormedRing 𝕜 inst✝⁴ : AddGroup E inst✝³ : SMul 𝕜 E p✝ : Seminorm 𝕜 E c : 𝕜 x y : E r✝ : ℝ inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ r : R p : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := r • p.toAddGroupSeminorm x✝¹ : 𝕜 x✝ : E ⊢ ↑(r • 1) * ↑p (x✝¹ • x✝) = ‖x✝¹‖ * (↑(r • 1) * ↑p x✝) [PROOFSTEP] rw [map_smul_eq_mul, mul_left_comm] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E c : 𝕜 x✝ y : E r : ℝ p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm + q.toAddGroupSeminorm a : 𝕜 x : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => ↑p x + ↑q x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := fun x => ↑p x + ↑q x, map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x [PROOFSTEP] simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ x✝¹ : Seminorm 𝕜 E x✝ : ℕ ⊢ ↑(x✝ • x✝¹) = x✝ • ↑x✝¹ [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Monoid R inst✝² : MulAction R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ ⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(c • x) = c • ↑x [PROOFSTEP] intros [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Monoid R inst✝² : MulAction R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ c✝ : R x✝ : Seminorm 𝕜 E ⊢ ↑(c✝ • x✝) = c✝ • ↑x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Monoid R inst✝² : DistribMulAction R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ ⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(coeFnAddMonoidHom 𝕜 E) (c • x) = c • ↑(coeFnAddMonoidHom 𝕜 E) x [PROOFSTEP] intros [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Monoid R inst✝² : DistribMulAction R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ c✝ : R x✝ : Seminorm 𝕜 E ⊢ ↑(coeFnAddMonoidHom 𝕜 E) (c✝ • x✝) = c✝ • ↑(coeFnAddMonoidHom 𝕜 E) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Semiring R inst✝² : Module R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ ⊢ ∀ (c : R) (x : Seminorm 𝕜 E), ↑(coeFnAddMonoidHom 𝕜 E) (c • x) = c • ↑(coeFnAddMonoidHom 𝕜 E) x [PROOFSTEP] intros [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddGroup E inst✝⁴ : SMul 𝕜 E p : Seminorm 𝕜 E c : 𝕜 x y : E r : ℝ inst✝³ : Semiring R inst✝² : Module R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ c✝ : R x✝ : Seminorm 𝕜 E ⊢ ↑(coeFnAddMonoidHom 𝕜 E) (c✝ • x✝) = c✝ • ↑(coeFnAddMonoidHom 𝕜 E) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : SeminormedRing 𝕜 inst✝⁴ : AddGroup E inst✝³ : SMul 𝕜 E p✝ : Seminorm 𝕜 E c : 𝕜 x✝ y✝ : E r✝ : ℝ inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ r : R p q : Seminorm 𝕜 E x y : ℝ ⊢ r • max x y = max (r • x) (r • y) [PROOFSTEP] simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝ≥0 r (_ : ℝ)] using mul_max_of_nonneg x y (r • (1 : ℝ≥0) : ℝ≥0).coe_nonneg [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ src✝ : AddGroupSeminorm E := AddGroupSeminorm.comp p.toAddGroupSeminorm (LinearMap.toAddMonoidHom f) x✝¹ : 𝕜 x✝ : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => ↑p (↑f x), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (x✝¹ • x✝) = ‖x✝¹‖ * AddGroupSeminorm.toFun { toFun := fun x => ↑p (↑f x), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x✝ [PROOFSTEP] simp only [map_smulₛₗ] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ src✝ : AddGroupSeminorm E := AddGroupSeminorm.comp p.toAddGroupSeminorm (LinearMap.toAddMonoidHom f) x✝¹ : 𝕜 x✝ : E ⊢ ↑p (↑σ₁₂ x✝¹ • ↑f x✝) = ‖x✝¹‖ * ↑p (↑f x✝) [PROOFSTEP] rw [map_smul_eq_mul, RingHomIsometric.is_iso] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p q : Seminorm 𝕜 E a b : ℝ≥0 hpq : p ≤ q hab : a ≤ b ⊢ a • p ≤ b • q [PROOFSTEP] simp_rw [le_def] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p q : Seminorm 𝕜 E a b : ℝ≥0 hpq : p ≤ q hab : a ≤ b ⊢ ∀ (x : E), ↑(a • p) x ≤ ↑(b • q) x [PROOFSTEP] intro x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p q : Seminorm 𝕜 E a b : ℝ≥0 hpq : p ≤ q hab : a ≤ b x : E ⊢ ↑(a • p) x ≤ ↑(b • q) x [PROOFSTEP] exact mul_le_mul hab (hpq x) (map_nonneg p x) (NNReal.coe_nonneg b) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E ⊢ ↑(Finset.sup s p) x = ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) [PROOFSTEP] induction' s using Finset.cons_induction_on with a s ha ih [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E x : E ⊢ ↑(Finset.sup ∅ p) x = ↑(Finset.sup ∅ fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) [PROOFSTEP] rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply] [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E x : E ⊢ 0 = ↑0 [PROOFSTEP] norm_cast [GOAL] case h₂ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E x : E a : ι s : Finset ι ha : ¬a ∈ s ih : ↑(Finset.sup s p) x = ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) ⊢ ↑(Finset.sup (Finset.cons a s ha) p) x = ↑(Finset.sup (Finset.cons a s ha) fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) [PROOFSTEP] rw [Finset.sup_cons, Finset.sup_cons, coe_sup, sup_eq_max, Pi.sup_apply, sup_eq_max, NNReal.coe_max, coe_mk, ih] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι hs : Finset.Nonempty s x : E ⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x [PROOFSTEP] rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, map_nonneg _ _⟩ : ℝ≥0)) with ⟨i, hi, hix⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι hs : Finset.Nonempty s x : E i : ι hi : i ∈ s hix : (Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) = { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) } ⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x [PROOFSTEP] rw [finset_sup_apply] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι hs : Finset.Nonempty s x : E i : ι hi : i ∈ s hix : (Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) = { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) } ⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) = ↑(p i) x [PROOFSTEP] exact ⟨i, hi, congr_arg _ hix⟩ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E ⊢ ↑(Finset.sup s p) x = 0 ∨ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x [PROOFSTEP] rcases Finset.eq_empty_or_nonempty s with (rfl | hs) [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E x : E ⊢ ↑(Finset.sup ∅ p) x = 0 ∨ ∃ i, i ∈ ∅ ∧ ↑(Finset.sup ∅ p) x = ↑(p i) x [PROOFSTEP] left [GOAL] case inl.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E x : E ⊢ ↑(Finset.sup ∅ p) x = 0 [PROOFSTEP] rfl [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E hs : Finset.Nonempty s ⊢ ↑(Finset.sup s p) x = 0 ∨ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x [PROOFSTEP] right [GOAL] case inr.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E hs : Finset.Nonempty s ⊢ ∃ i, i ∈ s ∧ ↑(Finset.sup s p) x = ↑(p i) x [PROOFSTEP] exact exists_apply_eq_finset_sup p hs x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι C : ℝ≥0 ⊢ Finset.sup s (C • p) = C • Finset.sup s p [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι C : ℝ≥0 x : E ⊢ ↑(Finset.sup s (C • p)) x = ↑(C • Finset.sup s p) x [PROOFSTEP] rw [smul_apply, finset_sup_apply, finset_sup_apply] [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι C : ℝ≥0 x : E ⊢ ↑(Finset.sup s fun i => { val := ↑((C • p) i) x, property := (_ : 0 ≤ ↑((C • p) i) x) }) = C • ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) [PROOFSTEP] symm [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι C : ℝ≥0 x : E ⊢ C • ↑(Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) = ↑(Finset.sup s fun i => { val := ↑((C • p) i) x, property := (_ : 0 ≤ ↑((C • p) i) x) }) [PROOFSTEP] exact congr_arg ((↑) : ℝ≥0 → ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, map_nonneg _ _⟩)) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι ⊢ Finset.sup s p ≤ ∑ i in s, p i [PROOFSTEP] classical refine' Finset.sup_le_iff.mpr _ intro i hi rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] exact bot_le [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι ⊢ Finset.sup s p ≤ ∑ i in s, p i [PROOFSTEP] refine' Finset.sup_le_iff.mpr _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι ⊢ ∀ (b : ι), b ∈ s → p b ≤ ∑ i in s, p i [PROOFSTEP] intro i hi [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι i : ι hi : i ∈ s ⊢ p i ≤ ∑ i in s, p i [PROOFSTEP] rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι i : ι hi : i ∈ s ⊢ 0 ≤ ∑ x in s \ {i}, p x [PROOFSTEP] exact bot_le [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ ha : 0 ≤ a h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ a ⊢ ↑(Finset.sup s p) x ≤ a [PROOFSTEP] lift a to ℝ≥0 using ha [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ≥0 h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ ↑a ⊢ ↑(Finset.sup s p) x ≤ ↑a [PROOFSTEP] rw [finset_sup_apply, NNReal.coe_le_coe] [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ≥0 h : ∀ (i : ι), i ∈ s → ↑(p i) x ≤ ↑a ⊢ (Finset.sup s fun i => { val := ↑(p i) x, property := (_ : 0 ≤ ↑(p i) x) }) ≤ a [PROOFSTEP] exact Finset.sup_le h [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ ha : 0 < a h : ∀ (i : ι), i ∈ s → ↑(p i) x < a ⊢ ↑(Finset.sup s p) x < a [PROOFSTEP] lift a to ℝ≥0 using ha.le [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ≥0 ha : 0 < ↑a h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a ⊢ ↑(Finset.sup s p) x < ↑a [PROOFSTEP] rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff] [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ≥0 ha : 0 < ↑a h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a ⊢ ∀ (b : ι), b ∈ s → { val := ↑(p b) x, property := (_ : 0 ≤ ↑(p b) x) } < a [PROOFSTEP] exact h [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝¹⁸ : SeminormedRing 𝕜 inst✝¹⁷ : SeminormedRing 𝕜₂ inst✝¹⁶ : SeminormedRing 𝕜₃ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝¹⁵ : RingHomIsometric σ₁₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ inst✝¹⁴ : RingHomIsometric σ₂₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹³ : RingHomIsometric σ₁₃ inst✝¹² : AddCommGroup E inst✝¹¹ : AddCommGroup E₂ inst✝¹⁰ : AddCommGroup E₃ inst✝⁹ : AddCommGroup F inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜₂ E₂ inst✝⁵ : Module 𝕜₃ E₃ inst✝⁴ : Module 𝕜 F inst✝³ : Module 𝕜 G inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ p : ι → Seminorm 𝕜 E s : Finset ι x : E a : ℝ≥0 ha : 0 < ↑a h : ∀ (i : ι), i ∈ s → ↑(p i) x < ↑a ⊢ ⊥ < a [PROOFSTEP] exact NNReal.coe_pos.mpr ha [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : SeminormedCommRing 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : AddCommGroup E inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜₂ E₂ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ c : 𝕜₂ x✝ : E ⊢ ↑(comp p (c • f)) x✝ = ↑(‖c‖₊ • comp p f) x✝ [PROOFSTEP] rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm, smul_eq_mul, comp_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E ⊢ 0 ∈ lowerBounds (range fun u => ↑p u + ↑q (x - u)) [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ x : E ⊢ 0 ≤ (fun u => ↑p u + ↑q (x✝ - u)) x [PROOFSTEP] dsimp [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ x : E ⊢ 0 ≤ ↑p x + ↑q (x✝ - x) [PROOFSTEP] positivity [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm ⊢ ∀ (a : 𝕜) (x : E), AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x [PROOFSTEP] intro a x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm a : 𝕜 x : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x [PROOFSTEP] obtain rfl | ha := eq_or_ne a 0 [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm x : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (0 • x) = ‖0‖ * AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x [PROOFSTEP] rw [norm_zero, zero_mul, zero_smul] [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm x : E ⊢ AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } 0 = 0 [PROOFSTEP] refine' ciInf_eq_of_forall_ge_of_forall_gt_exists_lt (fun i => add_nonneg (map_nonneg _ _) (map_nonneg _ _)) fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝¹ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm x✝ : E x : ℝ hx : 0 < x ⊢ ↑p 0 + ↑q (0 - 0) < x [PROOFSTEP] rwa [map_zero, sub_zero, map_zero, add_zero] [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm a : 𝕜 x : E ha : a ≠ 0 ⊢ AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := fun x => ⨅ (u : E), ↑p u + ↑q (x - u), map_zero' := (_ : AddGroupSeminorm.toFun src✝ 0 = 0), add_le' := (_ : ∀ (r s : E), AddGroupSeminorm.toFun src✝ (r + s) ≤ AddGroupSeminorm.toFun src✝ r + AddGroupSeminorm.toFun src✝ s), neg' := (_ : ∀ (r : E), AddGroupSeminorm.toFun src✝ (-r) = AddGroupSeminorm.toFun src✝ r) } x [PROOFSTEP] simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ← map_smul_eq_mul q, smul_sub] [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm a : 𝕜 x : E ha : a ≠ 0 ⊢ ⨅ (u : E), ↑p u + ↑q (a • x - u) = ⨅ (i : E), ↑p (a • i) + ↑q (a • x - a • i) [PROOFSTEP] refine' Function.Surjective.iInf_congr ((a⁻¹ • ·) : E → E) (fun u => ⟨a • u, inv_smul_smul₀ ha u⟩) fun u => _ [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E p q : Seminorm 𝕜 E src✝ : AddGroupSeminorm E := p.toAddGroupSeminorm ⊓ q.toAddGroupSeminorm a : 𝕜 x : E ha : a ≠ 0 u : E ⊢ ↑p (a • (fun x => a⁻¹ • x) u) + ↑q (a • x - a • (fun x => a⁻¹ • x) u) = ↑p u + ↑q (a • x - u) [PROOFSTEP] rw [smul_inv_smul₀ ha] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup p q : Seminorm 𝕜 E x : E ⊢ ↑p x + ↑q (x - x) ≤ (fun f => ↑f) p x [PROOFSTEP] simp only [sub_self, map_zero, add_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup p q : Seminorm 𝕜 E x : E ⊢ ↑p x ≤ ↑p x [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup p q : Seminorm 𝕜 E x : E ⊢ ↑p 0 + ↑q (x - 0) ≤ (fun f => ↑f) q x [PROOFSTEP] simp only [sub_self, map_zero, zero_add, sub_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E src✝ : SemilatticeSup (Seminorm 𝕜 E) := instSemilatticeSup p q : Seminorm 𝕜 E x : E ⊢ ↑q x ≤ ↑q x [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x : E inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ r : R p q : Seminorm 𝕜 E ⊢ r • (p ⊓ q) = r • p ⊓ r • q [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x : E inst✝² : SMul R ℝ inst✝¹ : SMul R ℝ≥0 inst✝ : IsScalarTower R ℝ≥0 ℝ r : R p q : Seminorm 𝕜 E x✝ : E ⊢ ↑(r • (p ⊓ q)) x✝ = ↑(r • p ⊓ r • q) x✝ [PROOFSTEP] simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝ≥0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) ⊢ iSup (fun p => ↑↑p) 0 = 0 [PROOFSTEP] rw [iSup_apply, ← @Real.ciSup_const_zero s] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) ⊢ ⨆ (i : ↑s), ↑↑i 0 = ⨆ (x : ↑s), 0 [PROOFSTEP] congr! [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x✝ : ↑s ⊢ ↑↑x✝ 0 = 0 [PROOFSTEP] rename_i _ _ _ i [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) i : ↑s ⊢ ↑↑i 0 = 0 [PROOFSTEP] exact map_zero i.1 [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x y : E ⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y [PROOFSTEP] rcases h with ⟨q, hq⟩ [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) ⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y [PROOFSTEP] obtain rfl | h := s.eq_empty_or_nonempty [GOAL] case intro.inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' ∅) ⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y [PROOFSTEP] simp [Real.ciSup_empty] [GOAL] case intro.inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s ⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y [PROOFSTEP] haveI : Nonempty ↑s := h.coe_sort [GOAL] case intro.inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s ⊢ iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y [PROOFSTEP] simp only [iSup_apply] [GOAL] case intro.inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s ⊢ ⨆ (i : ↑s), ↑↑i (x + y) ≤ (⨆ (i : ↑s), ↑↑i x) + ⨆ (i : ↑s), ↑↑i y [PROOFSTEP] refine' ciSup_le fun i => ((i : Seminorm 𝕜 E).add_le' x y).trans <| add_le_add (le_ciSup (f := fun i => (Subtype.val i : Seminorm 𝕜 E).toFun x) ⟨q x, _⟩ i) (le_ciSup (f := fun i => (Subtype.val i : Seminorm 𝕜 E).toFun y) ⟨q y, _⟩ i) [GOAL] case intro.inr.refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s i : ↑s ⊢ q x ∈ upperBounds (range fun i => AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm x) [PROOFSTEP] rw [mem_upperBounds, forall_range_iff] [GOAL] case intro.inr.refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s i : ↑s ⊢ q y ∈ upperBounds (range fun i => AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm y) [PROOFSTEP] rw [mem_upperBounds, forall_range_iff] [GOAL] case intro.inr.refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s i : ↑s ⊢ ∀ (i : { x // x ∈ s }), AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm x ≤ q x [PROOFSTEP] exact fun j => hq (mem_image_of_mem _ j.2) _ [GOAL] case intro.inr.refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) x y : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) h : Set.Nonempty s this : Nonempty ↑s i : ↑s ⊢ ∀ (i : { x // x ∈ s }), AddGroupSeminorm.toFun (↑i).toAddGroupSeminorm y ≤ q y [PROOFSTEP] exact fun j => hq (mem_image_of_mem _ j.2) _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x : E ⊢ iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x [PROOFSTEP] simp only [iSup_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x : E ⊢ ⨆ (i : ↑s), ↑↑i (-x) = ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] congr! 2 [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝¹ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x : E x✝ : ↑s ⊢ ↑↑x✝ (-x) = ↑↑x✝ x [PROOFSTEP] rename_i _ _ _ i [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) x : E i : ↑s ⊢ ↑↑i (-x) = ↑↑i x [PROOFSTEP] exact i.1.neg' _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) a : 𝕜 x : E ⊢ AddGroupSeminorm.toFun { toFun := ⨆ (p : ↑s), ↑↑p, map_zero' := (_ : iSup (fun p => ↑↑p) 0 = 0), add_le' := (_ : ∀ (x y : E), iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y), neg' := (_ : ∀ (x : E), iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x) } (a • x) = ‖a‖ * AddGroupSeminorm.toFun { toFun := ⨆ (p : ↑s), ↑↑p, map_zero' := (_ : iSup (fun p => ↑↑p) 0 = 0), add_le' := (_ : ∀ (x y : E), iSup (fun p => ↑↑p) (x + y) ≤ iSup (fun p => ↑↑p) x + iSup (fun p => ↑↑p) y), neg' := (_ : ∀ (x : E), iSup (fun p => ↑↑p) (-x) = iSup (fun p => ↑↑p) x) } x [PROOFSTEP] simp only [iSup_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) a : 𝕜 x : E ⊢ ⨆ (i : ↑s), ↑↑i (a • x) = ‖a‖ * ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] rw [← smul_eq_mul, Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm 𝕜 E) x] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) a : 𝕜 x : E ⊢ ⨆ (i : ↑s), ↑↑i (a • x) = ⨆ (i : ↑s), ‖a‖ • ↑↑i x [PROOFSTEP] congr! [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝¹ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) a : 𝕜 x : E x✝ : ↑s ⊢ ↑↑x✝ (a • x) = ‖a‖ • ↑↑x✝ x [PROOFSTEP] rename_i _ _ _ i [GOAL] case h.e'_4.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) h : BddAbove (FunLike.coe '' s) a : 𝕜 x : E i : ↑s ⊢ ↑↑i (a • x) = ‖a‖ • ↑↑i x [PROOFSTEP] exact i.1.smul' a x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) H : BddAbove (FunLike.coe '' s) p : Seminorm 𝕜 E hp : p ∈ s x : E ⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x [PROOFSTEP] dsimp [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) H : BddAbove (FunLike.coe '' s) p : Seminorm 𝕜 E hp : p ∈ s x : E ⊢ ↑p x ≤ ↑(sSup s) x [PROOFSTEP] rw [Seminorm.coe_sSup_eq' H, iSup_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) H : BddAbove (FunLike.coe '' s) p : Seminorm 𝕜 E hp : p ∈ s x : E ⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] rcases H with ⟨q, hq⟩ [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) p : Seminorm 𝕜 E hp : p ∈ s x : E q : E → ℝ hq : q ∈ upperBounds (FunLike.coe '' s) ⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x : E p : ι → Seminorm 𝕜 E ⊢ BddAbove (range p) ↔ ∀ (x : E), BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x : E p : ι → Seminorm 𝕜 E ⊢ (∀ (a : E), BddAbove (range fun i => (FunLike.coe ∘ p) i a)) ↔ ∀ (x : E), BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι✝ : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x : E ι : Type u_13 p : ι → Seminorm 𝕜 E hp : BddAbove (range p) ⊢ ↑(⨆ (i : ι), p i) = ⨆ (i : ι), ↑(p i) [PROOFSTEP] rw [← sSup_range, Seminorm.coe_sSup_eq hp] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι✝ : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x : E ι : Type u_13 p : ι → Seminorm 𝕜 E hp : BddAbove (range p) ⊢ ⨆ (p_1 : ↑(range p)), ↑↑p_1 = ⨆ (i : ι), ↑(p i) [PROOFSTEP] exact iSup_range' (fun p : Seminorm 𝕜 E => (p : E → ℝ)) p [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hp : BddAbove s x : E ⊢ ↑(sSup s) x = ⨆ (p : ↑s), ↑↑p x [PROOFSTEP] rw [Seminorm.coe_sSup_eq hp, iSup_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι✝ : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E ι : Type u_13 p : ι → Seminorm 𝕜 E hp : BddAbove (range p) x : E ⊢ ↑(⨆ (i : ι), p i) x = ⨆ (i : ι), ↑(p i) x [PROOFSTEP] rw [Seminorm.coe_iSup_eq hp, iSup_apply] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E ⊢ sSup ∅ = ⊥ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x x✝ : E ⊢ ↑(sSup ∅) x✝ = ↑⊥ x✝ [PROOFSTEP] rw [Seminorm.sSup_apply bddAbove_empty, Real.ciSup_empty] [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x x✝ : E ⊢ 0 = ↑⊥ x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E x : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s ⊢ IsLUB s (sSup s) [PROOFSTEP] refine' ⟨fun p hp x => _, fun p hp x => _⟩ [GOAL] case refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ s x : E ⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x [PROOFSTEP] haveI : Nonempty ↑s := hs₂.coe_sort [GOAL] case refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ upperBounds s x : E ⊢ (fun f => ↑f) (sSup s) x ≤ (fun f => ↑f) p x [PROOFSTEP] haveI : Nonempty ↑s := hs₂.coe_sort [GOAL] case refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ s x : E this : Nonempty ↑s ⊢ (fun f => ↑f) p x ≤ (fun f => ↑f) (sSup s) x [PROOFSTEP] dsimp [GOAL] case refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ upperBounds s x : E this : Nonempty ↑s ⊢ (fun f => ↑f) (sSup s) x ≤ (fun f => ↑f) p x [PROOFSTEP] dsimp [GOAL] case refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ s x : E this : Nonempty ↑s ⊢ ↑p x ≤ ↑(sSup s) x [PROOFSTEP] rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] [GOAL] case refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ upperBounds s x : E this : Nonempty ↑s ⊢ ↑(sSup s) x ≤ ↑p x [PROOFSTEP] rw [Seminorm.coe_sSup_eq hs₁, iSup_apply] [GOAL] case refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ s x : E this : Nonempty ↑s ⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] rcases hs₁ with ⟨q, hq⟩ [GOAL] case refine'_1.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q✝ : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ s x : E this : Nonempty ↑s q : Seminorm 𝕜 E hq : q ∈ upperBounds s ⊢ ↑p x ≤ ⨆ (i : ↑s), ↑↑i x [PROOFSTEP] exact le_ciSup ⟨q x, forall_range_iff.mpr fun i : s => hq i.2 x⟩ ⟨p, hp⟩ [GOAL] case refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ q : Seminorm 𝕜 E x✝ : E s : Set (Seminorm 𝕜 E) hs₁ : BddAbove s hs₂ : Set.Nonempty s p : Seminorm 𝕜 E hp : p ∈ upperBounds s x : E this : Nonempty ↑s ⊢ ⨆ (i : ↑s), ↑↑i x ≤ ↑p x [PROOFSTEP] exact ciSup_le fun q => hp q.2 x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x y : E r : ℝ hr : 0 < r ⊢ x ∈ ball p x r [PROOFSTEP] simp [hr] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x y : E r : ℝ hr : 0 ≤ r ⊢ x ∈ closedBall p x r [PROOFSTEP] simp [hr] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x y : E r : ℝ ⊢ y ∈ ball p 0 r ↔ ↑p y < r [PROOFSTEP] rw [mem_ball, sub_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x y : E r : ℝ ⊢ y ∈ closedBall p 0 r ↔ ↑p y ≤ r [PROOFSTEP] rw [mem_closedBall, sub_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x✝ y : E r✝ : ℝ x : E r : ℝ ⊢ closedBall p x r = ⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ [PROOFSTEP] ext y [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x✝ y✝ : E r✝ : ℝ x : E r : ℝ y : E ⊢ y ∈ closedBall p x r ↔ y ∈ ⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ [PROOFSTEP] simp_rw [mem_closedBall, mem_iInter₂, mem_ball, ← forall_lt_iff_le'] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x✝ y : E r : ℝ x : E hr : 0 < r ⊢ ball 0 x r = univ [PROOFSTEP] rw [Set.eq_univ_iff_forall, ball] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p : Seminorm 𝕜 E x✝ y : E r : ℝ x : E hr : 0 < r ⊢ ∀ (x_1 : E), x_1 ∈ {y | ↑0 (y - x) < r} [PROOFSTEP] simp [hr] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x✝ y : E r✝ : ℝ p : Seminorm 𝕜 E c : ℝ≥0 hc : 0 < c r : ℝ x : E ⊢ ball (c • p) x r = ball p x (r / ↑c) [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x✝¹ y : E r✝ : ℝ p : Seminorm 𝕜 E c : ℝ≥0 hc : 0 < c r : ℝ x x✝ : E ⊢ x✝ ∈ ball (c • p) x r ↔ x✝ ∈ ball p x (r / ↑c) [PROOFSTEP] rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, lt_div_iff (NNReal.coe_pos.mpr hc)] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x✝ y : E r✝ : ℝ p : Seminorm 𝕜 E c : ℝ≥0 hc : 0 < c r : ℝ x : E ⊢ closedBall (c • p) x r = closedBall p x (r / ↑c) [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x✝¹ y : E r✝ : ℝ p : Seminorm 𝕜 E c : ℝ≥0 hc : 0 < c r : ℝ x x✝ : E ⊢ x✝ ∈ closedBall (c • p) x r ↔ x✝ ∈ closedBall p x (r / ↑c) [PROOFSTEP] rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm, le_div_iff (NNReal.coe_pos.mpr hc)] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p q : Seminorm 𝕜 E e : E r : ℝ ⊢ ball (p ⊔ q) e r = ball p e r ∩ ball q e r [PROOFSTEP] simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p q : Seminorm 𝕜 E e : E r : ℝ ⊢ closedBall (p ⊔ q) e r = closedBall p e r ∩ closedBall q e r [PROOFSTEP] simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι H : Finset.Nonempty s e : E r : ℝ ⊢ ball (Finset.sup' s H p) e r = Finset.inf' s H fun i => ball (p i) e r [PROOFSTEP] induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih [GOAL] case h₀ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι e : E r : ℝ a : ι ⊢ ball (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => ball (p i) e r [PROOFSTEP] classical simp [GOAL] case h₀ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι e : E r : ℝ a : ι ⊢ ball (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => ball (p i) e r [PROOFSTEP] simp [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s✝ : Finset ι e : E r : ℝ a : ι s : Finset ι ha : ¬a ∈ s hs : Finset.Nonempty s ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r ⊢ ball (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r = Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => ball (p i) e r [PROOFSTEP] rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s✝ : Finset ι e : E r : ℝ a : ι s : Finset ι ha : ¬a ∈ s hs : Finset.Nonempty s ih : ball (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => ball (p i) e r ⊢ ball (p a) e r ∩ ball (Finset.sup' s hs p) e r = ball (p a) e r ⊓ Finset.inf' s hs fun i => ball (p i) e r [PROOFSTEP] simp only [inf_eq_inter, ih] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι H : Finset.Nonempty s e : E r : ℝ ⊢ closedBall (Finset.sup' s H p) e r = Finset.inf' s H fun i => closedBall (p i) e r [PROOFSTEP] induction' H using Finset.Nonempty.cons_induction with a a s ha hs ih [GOAL] case h₀ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι e : E r : ℝ a : ι ⊢ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r [PROOFSTEP] classical simp [GOAL] case h₀ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s : Finset ι e : E r : ℝ a : ι ⊢ closedBall (Finset.sup' {a} (_ : Finset.Nonempty {a}) p) e r = Finset.inf' {a} (_ : Finset.Nonempty {a}) fun i => closedBall (p i) e r [PROOFSTEP] simp [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s✝ : Finset ι e : E r : ℝ a : ι s : Finset ι ha : ¬a ∈ s hs : Finset.Nonempty s ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r ⊢ closedBall (Finset.sup' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) p) e r = Finset.inf' (Finset.cons a s ha) (_ : Finset.Nonempty (Finset.cons a s ha)) fun i => closedBall (p i) e r [PROOFSTEP] rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup] -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can? [GOAL] case h₁ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r✝ : ℝ p : ι → Seminorm 𝕜 E s✝ : Finset ι e : E r : ℝ a : ι s : Finset ι ha : ¬a ∈ s hs : Finset.Nonempty s ih : closedBall (Finset.sup' s hs p) e r = Finset.inf' s hs fun i => closedBall (p i) e r ⊢ closedBall (p a) e r ∩ closedBall (Finset.sup' s hs p) e r = closedBall (p a) e r ⊓ Finset.inf' s hs fun i => closedBall (p i) e r [PROOFSTEP] simp only [inf_eq_inter, ih] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ : E ⊢ ball p x₁ r₁ + ball p x₂ r₂ ⊆ ball p (x₁ + x₂) (r₁ + r₂) [PROOFSTEP] rintro x ⟨y₁, y₂, hy₁, hy₂, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ y₁ y₂ : E hy₁ : y₁ ∈ ball p x₁ r₁ hy₂ : y₂ ∈ ball p x₂ r₂ ⊢ (fun x x_1 => x + x_1) y₁ y₂ ∈ ball p (x₁ + x₂) (r₁ + r₂) [PROOFSTEP] rw [mem_ball, add_sub_add_comm] [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ y₁ y₂ : E hy₁ : y₁ ∈ ball p x₁ r₁ hy₂ : y₂ ∈ ball p x₂ r₂ ⊢ ↑p (y₁ - x₁ + (y₂ - x₂)) < r₁ + r₂ [PROOFSTEP] exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hy₂) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ : E ⊢ closedBall p x₁ r₁ + closedBall p x₂ r₂ ⊆ closedBall p (x₁ + x₂) (r₁ + r₂) [PROOFSTEP] rintro x ⟨y₁, y₂, hy₁, hy₂, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ y₁ y₂ : E hy₁ : y₁ ∈ closedBall p x₁ r₁ hy₂ : y₂ ∈ closedBall p x₂ r₂ ⊢ (fun x x_1 => x + x_1) y₁ y₂ ∈ closedBall p (x₁ + x₂) (r₁ + r₂) [PROOFSTEP] rw [mem_closedBall, add_sub_add_comm] [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y : E r : ℝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x₁ x₂ y₁ y₂ : E hy₁ : y₁ ∈ closedBall p x₁ r₁ hy₂ : y₂ ∈ closedBall p x₂ r₂ ⊢ ↑p (y₁ - x₁ + (y₂ - x₂)) ≤ r₁ + r₂ [PROOFSTEP] exact (map_add_le_add p _ _).trans (add_le_add hy₁ hy₂) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : SMul 𝕜 E p✝ : Seminorm 𝕜 E x y✝ : E r✝ : ℝ p : Seminorm 𝕜 E x₁ x₂ y : E r : ℝ ⊢ x₁ - x₂ ∈ ball p y r ↔ x₁ ∈ ball p (x₂ + y) r [PROOFSTEP] simp_rw [mem_ball, sub_sub] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ x : E r : ℝ ⊢ ball (comp p f) x r = ↑f ⁻¹' ball p (↑f x) r [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ x : E r : ℝ x✝ : E ⊢ x✝ ∈ ball (comp p f) x r ↔ x✝ ∈ ↑f ⁻¹' ball p (↑f x) r [PROOFSTEP] simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ x : E r : ℝ ⊢ closedBall (comp p f) x r = ↑f ⁻¹' closedBall p (↑f x) r [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜₂ E₂ f : E →ₛₗ[σ₁₂] E₂ x : E r : ℝ x✝ : E ⊢ x✝ ∈ closedBall (comp p f) x r ↔ x✝ ∈ ↑f ⁻¹' closedBall p (↑f x) r [PROOFSTEP] simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ ↑p ⁻¹' Metric.ball 0 r = {x | ↑p x < r} [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ x : E ⊢ x ∈ ↑p ⁻¹' Metric.ball 0 r ↔ x ∈ {x | ↑p x < r} [PROOFSTEP] simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ ↑p ⁻¹' Metric.closedBall 0 r = {x | ↑p x ≤ r} [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ x : E ⊢ x ∈ ↑p ⁻¹' Metric.closedBall 0 r ↔ x ∈ {x | ↑p x ≤ r} [PROOFSTEP] simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff, Real.norm_of_nonneg (map_nonneg p _)] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ ball p 0 r = ↑p ⁻¹' Metric.ball 0 r [PROOFSTEP] rw [ball_zero_eq, preimage_metric_ball] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ closedBall p 0 r = ↑p ⁻¹' Metric.closedBall 0 r [PROOFSTEP] rw [closedBall_zero_eq, preimage_metric_closedBall] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ Balanced 𝕜 (ball p 0 r) [PROOFSTEP] rintro a ha x ⟨y, hy, hx⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a • x) y = x ⊢ x ∈ ball p 0 r [PROOFSTEP] rw [mem_ball_zero, ← hx, map_smul_eq_mul] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a • x) y = x ⊢ ‖a‖ * ↑p y < r [PROOFSTEP] calc _ ≤ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ < r := by rwa [mem_ball_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ ball p 0 r hx : (fun x => a • x) y = x ⊢ ↑p y < r [PROOFSTEP] rwa [mem_ball_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ ⊢ Balanced 𝕜 (closedBall p 0 r) [PROOFSTEP] rintro a ha x ⟨y, hy, hx⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a • x) y = x ⊢ x ∈ closedBall p 0 r [PROOFSTEP] rw [mem_closedBall_zero, ← hx, map_smul_eq_mul] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a • x) y = x ⊢ ‖a‖ * ↑p y ≤ r [PROOFSTEP] calc _ ≤ p y := mul_le_of_le_one_left (map_nonneg p _) ha _ ≤ r := by rwa [mem_closedBall_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E r : ℝ a : 𝕜 ha : ‖a‖ ≤ 1 x y : E hy : y ∈ closedBall p 0 r hx : (fun x => a • x) y = x ⊢ ↑p y ≤ r [PROOFSTEP] rwa [mem_closedBall_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 < r ⊢ ball (Finset.sup s p) x r = ⋂ (i : ι) (_ : i ∈ s), ball (p i) x r [PROOFSTEP] lift r to NNReal using hr.le [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ≥0 hr : 0 < ↑r ⊢ ball (Finset.sup s p) x ↑r = ⋂ (i : ι) (_ : i ∈ s), ball (p i) x ↑r [PROOFSTEP] simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff (show ⊥ < r from hr), ← NNReal.coe_lt_coe, coe_mk] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 ≤ r ⊢ closedBall (Finset.sup s p) x r = ⋂ (i : ι) (_ : i ∈ s), closedBall (p i) x r [PROOFSTEP] lift r to NNReal using hr [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ≥0 ⊢ closedBall (Finset.sup s p) x ↑r = ⋂ (i : ι) (_ : i ∈ s), closedBall (p i) x ↑r [PROOFSTEP] simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ← NNReal.coe_le_coe, coe_mk] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 < r ⊢ ball (Finset.sup s p) x r = Finset.inf s fun i => ball (p i) x r [PROOFSTEP] rw [Finset.inf_eq_iInf] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 < r ⊢ ball (Finset.sup s p) x r = ⨅ (a : ι) (_ : a ∈ s), ball (p a) x r [PROOFSTEP] exact ball_finset_sup_eq_iInter _ _ _ hr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 ≤ r ⊢ closedBall (Finset.sup s p) x r = Finset.inf s fun i => closedBall (p i) x r [PROOFSTEP] rw [Finset.inf_eq_iInf] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ : Seminorm 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι x : E r : ℝ hr : 0 ≤ r ⊢ closedBall (Finset.sup s p) x r = ⨅ (a : ι) (_ : a ∈ s), closedBall (p a) x r [PROOFSTEP] exact closedBall_finset_sup_eq_iInter _ _ _ hr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ ⊢ Metric.ball 0 r₁ • ball p 0 r₂ ⊆ ball p 0 (r₁ * r₂) [PROOFSTEP] rw [Set.subset_def] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ ⊢ ∀ (x : E), x ∈ Metric.ball 0 r₁ • ball p 0 r₂ → x ∈ ball p 0 (r₁ * r₂) [PROOFSTEP] intro x hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E hx : x ∈ Metric.ball 0 r₁ • ball p 0 r₂ ⊢ x ∈ ball p 0 (r₁ * r₂) [PROOFSTEP] rw [Set.mem_smul] at hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E hx : ∃ x_1 y, x_1 ∈ Metric.ball 0 r₁ ∧ y ∈ ball p 0 r₂ ∧ x_1 • y = x ⊢ x ∈ ball p 0 (r₁ * r₂) [PROOFSTEP] rcases hx with ⟨a, y, ha, hy, hx⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.ball 0 r₁ hy : y ∈ ball p 0 r₂ hx : a • y = x ⊢ x ∈ ball p 0 (r₁ * r₂) [PROOFSTEP] rw [← hx, mem_ball_zero, map_smul_eq_mul] [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.ball 0 r₁ hy : y ∈ ball p 0 r₂ hx : a • y = x ⊢ ‖a‖ * ↑p y < r₁ * r₂ [PROOFSTEP] gcongr [GOAL] case intro.intro.intro.intro.a R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.ball 0 r₁ hy : y ∈ ball p 0 r₂ hx : a • y = x ⊢ ‖a‖ < r₁ [PROOFSTEP] exact mem_ball_zero_iff.mp ha [GOAL] case intro.intro.intro.intro.a R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.ball 0 r₁ hy : y ∈ ball p 0 r₂ hx : a • y = x ⊢ ↑p y < r₂ [PROOFSTEP] exact p.mem_ball_zero.mp hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ ⊢ Metric.closedBall 0 r₁ • closedBall p 0 r₂ ⊆ closedBall p 0 (r₁ * r₂) [PROOFSTEP] rw [Set.subset_def] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ ⊢ ∀ (x : E), x ∈ Metric.closedBall 0 r₁ • closedBall p 0 r₂ → x ∈ closedBall p 0 (r₁ * r₂) [PROOFSTEP] intro x hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E hx : x ∈ Metric.closedBall 0 r₁ • closedBall p 0 r₂ ⊢ x ∈ closedBall p 0 (r₁ * r₂) [PROOFSTEP] rw [Set.mem_smul] at hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E hx : ∃ x_1 y, x_1 ∈ Metric.closedBall 0 r₁ ∧ y ∈ closedBall p 0 r₂ ∧ x_1 • y = x ⊢ x ∈ closedBall p 0 (r₁ * r₂) [PROOFSTEP] rcases hx with ⟨a, y, ha, hy, hx⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.closedBall 0 r₁ hy : y ∈ closedBall p 0 r₂ hx : a • y = x ⊢ x ∈ closedBall p 0 (r₁ * r₂) [PROOFSTEP] rw [← hx, mem_closedBall_zero, map_smul_eq_mul] [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : a ∈ Metric.closedBall 0 r₁ hy : y ∈ closedBall p 0 r₂ hx : a • y = x ⊢ ‖a‖ * ↑p y ≤ r₁ * r₂ [PROOFSTEP] rw [mem_closedBall_zero_iff] at ha [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : ‖a‖ ≤ r₁ hy : y ∈ closedBall p 0 r₂ hx : a • y = x ⊢ ‖a‖ * ↑p y ≤ r₁ * r₂ [PROOFSTEP] gcongr [GOAL] case intro.intro.intro.intro.b0 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : ‖a‖ ≤ r₁ hy : y ∈ closedBall p 0 r₂ hx : a • y = x ⊢ 0 ≤ r₁ [PROOFSTEP] exact (norm_nonneg a).trans ha [GOAL] case intro.intro.intro.intro.h₂ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r₁ r₂ : ℝ x : E a : 𝕜 y : E ha : ‖a‖ ≤ r₁ hy : y ∈ closedBall p 0 r₂ hx : a • y = x ⊢ ↑p y ≤ r₂ [PROOFSTEP] exact p.mem_closedBall_zero.mp hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r ≤ 0 ⊢ ball p x r = ∅ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r ≤ 0 x✝ : E ⊢ x✝ ∈ ball p x r ↔ x✝ ∈ ∅ [PROOFSTEP] rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false_iff, not_lt] [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r ≤ 0 x✝ : E ⊢ r ≤ ↑p (x✝ - x) [PROOFSTEP] exact hr.trans (map_nonneg p _) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r < 0 ⊢ closedBall p x r = ∅ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r < 0 x✝ : E ⊢ x✝ ∈ closedBall p x r ↔ x✝ ∈ ∅ [PROOFSTEP] rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false_iff, not_le] [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E x : E r : ℝ hr : r < 0 x✝ : E ⊢ r < ↑p (x✝ - x) [PROOFSTEP] exact hr.trans_le (map_nonneg _ _) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p : Seminorm 𝕜 E x : E r : ℝ hx : x ∈ ball p 0 r ⊢ -x ∈ ball p 0 r [PROOFSTEP] simpa only [mem_ball_zero, map_neg_eq_map] using hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r : ℝ x : E ⊢ -ball p x r = ball p (-x) r [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : SeminormedRing 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : SeminormedRing 𝕜₂ inst✝² : AddCommGroup E₂ inst✝¹ : Module 𝕜₂ E₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ p✝ p : Seminorm 𝕜 E r : ℝ x x✝ : E ⊢ x✝ ∈ -ball p x r ↔ x✝ ∈ ball p (-x) r [PROOFSTEP] rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r ⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : IsEmpty ι ⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r [PROOFSTEP] rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty] [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : IsEmpty ι ⊢ closedBall ⊥ e r = univ [PROOFSTEP] exact closedBall_bot _ hr [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ι ⊢ closedBall (⨆ (i : ι), p i) e r = ⋂ (i : ι), closedBall (p i) e r [PROOFSTEP] ext x [GOAL] case inr.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ι x : E ⊢ x ∈ closedBall (⨆ (i : ι), p i) e r ↔ x ∈ ⋂ (i : ι), closedBall (p i) e r [PROOFSTEP] have := Seminorm.bddAbove_range_iff.mp hp (x - e) [GOAL] case inr.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : ι → Seminorm 𝕜 E hp : BddAbove (range p) e : E r : ℝ hr : 0 < r h✝ : Nonempty ι x : E this : BddAbove (range fun i => ↑(p i) (x - e)) ⊢ x ∈ closedBall (⨆ (i : ι), p i) e r ↔ x ∈ ⋂ (i : ι), closedBall (p i) e r [PROOFSTEP] simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ ⊢ ball p 0 (‖k‖ * r) ⊆ k • ball p 0 r [PROOFSTEP] rcases eq_or_ne k 0 with (rfl | hk) [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E r : ℝ ⊢ ball p 0 (‖0‖ * r) ⊆ 0 • ball p 0 r [PROOFSTEP] rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl] [GOAL] case inl R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E r : ℝ ⊢ ∅ ⊆ 0 • ball p 0 r [PROOFSTEP] exact empty_subset _ [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 ⊢ ball p 0 (‖k‖ * r) ⊆ k • ball p 0 r [PROOFSTEP] intro x [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 x : E ⊢ x ∈ ball p 0 (‖k‖ * r) → x ∈ k • ball p 0 r [PROOFSTEP] rw [Set.mem_smul_set, Seminorm.mem_ball_zero] [GOAL] case inr R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 x : E ⊢ ↑p x < ‖k‖ * r → ∃ y, y ∈ ball p 0 r ∧ k • y = x [PROOFSTEP] refine' fun hx => ⟨k⁻¹ • x, _, _⟩ [GOAL] case inr.refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 x : E hx : ↑p x < ‖k‖ * r ⊢ k⁻¹ • x ∈ ball p 0 r [PROOFSTEP] rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ← mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv ‖k‖ ‖k‖, div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul] [GOAL] case inr.refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 x : E hx : ↑p x < ‖k‖ * r ⊢ k • k⁻¹ • x = x [PROOFSTEP] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 ⊢ k • ball p 0 r = ball p 0 (‖k‖ * r) [PROOFSTEP] ext [GOAL] case h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : k ≠ 0 x✝ : E ⊢ x✝ ∈ k • ball p 0 r ↔ x✝ ∈ ball p 0 (‖k‖ * r) [PROOFSTEP] rw [mem_smul_set_iff_inv_smul_mem₀ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul, norm_inv, ← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hk), mul_comm] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ ⊢ k • closedBall p 0 r ⊆ closedBall p 0 (‖k‖ * r) [PROOFSTEP] rintro x ⟨y, hy, h⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ x y : E hy : y ∈ closedBall p 0 r h : (fun x => k • x) y = x ⊢ x ∈ closedBall p 0 (‖k‖ * r) [PROOFSTEP] rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ x y : E hy : y ∈ closedBall p 0 r h : (fun x => k • x) y = x ⊢ ‖k‖ * ↑p y ≤ ‖k‖ * r [PROOFSTEP] rw [Seminorm.mem_closedBall_zero] at hy [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ x y : E hy : ↑p y ≤ r h : (fun x => k • x) y = x ⊢ ‖k‖ * ↑p y ≤ ‖k‖ * r [PROOFSTEP] gcongr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ ⊢ k • closedBall p 0 r = closedBall p 0 (‖k‖ * r) [PROOFSTEP] refine' subset_antisymm smul_closedBall_subset _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ ⊢ closedBall p 0 (‖k‖ * r) ⊆ k • closedBall p 0 r [PROOFSTEP] intro x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ x : E ⊢ x ∈ closedBall p 0 (‖k‖ * r) → x ∈ k • closedBall p 0 r [PROOFSTEP] rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ x : E ⊢ ↑p x ≤ ‖k‖ * r → ∃ y, y ∈ closedBall p 0 r ∧ k • y = x [PROOFSTEP] refine' fun hx => ⟨k⁻¹ • x, _, _⟩ [GOAL] case refine'_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ x : E hx : ↑p x ≤ ‖k‖ * r ⊢ k⁻¹ • x ∈ closedBall p 0 r [PROOFSTEP] rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc, ← div_eq_mul_inv ‖k‖ ‖k‖, div_self (ne_of_gt hk), one_mul] [GOAL] case refine'_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E k : 𝕜 r : ℝ hk : 0 < ‖k‖ x : E hx : ↑p x ≤ ‖k‖ * r ⊢ k • k⁻¹ • x = x [PROOFSTEP] rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ ⊢ Absorbs 𝕜 (ball p 0 r₁) (ball p 0 r₂) [PROOFSTEP] rcases exists_pos_lt_mul hr₁ r₂ with ⟨r, hr₀, hr⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ r : ℝ hr₀ : 0 < r hr : r₂ < r * r₁ ⊢ Absorbs 𝕜 (ball p 0 r₁) (ball p 0 r₂) [PROOFSTEP] refine' ⟨r, hr₀, fun a ha x hx => _⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a✝ : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ r : ℝ hr₀ : 0 < r hr : r₂ < r * r₁ a : 𝕜 ha : r ≤ ‖a‖ x : E hx : x ∈ ball p 0 r₂ ⊢ x ∈ a • ball p 0 r₁ [PROOFSTEP] rw [smul_ball_zero (norm_pos_iff.1 <| hr₀.trans_le ha), p.mem_ball_zero] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a✝ : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ r : ℝ hr₀ : 0 < r hr : r₂ < r * r₁ a : 𝕜 ha : r ≤ ‖a‖ x : E hx : x ∈ ball p 0 r₂ ⊢ ↑p x < ‖a‖ * r₁ [PROOFSTEP] rw [p.mem_ball_zero] at hx [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a✝ : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ r : ℝ hr₀ : 0 < r hr : r₂ < r * r₁ a : 𝕜 ha : r ≤ ‖a‖ x : E hx : ↑p x < r₂ ⊢ ↑p x < ‖a‖ * r₁ [PROOFSTEP] exact hx.trans (hr.trans_le <| by gcongr) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a✝ : 𝕜 r✝ : ℝ x✝ : E p : Seminorm 𝕜 E r₁ r₂ : ℝ hr₁ : 0 < r₁ r : ℝ hr₀ : 0 < r hr : r₂ < r * r₁ a : 𝕜 ha : r ≤ ‖a‖ x : E hx : ↑p x < r₂ ⊢ r * r₁ ≤ ‖a‖ * r₁ [PROOFSTEP] gcongr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r ⊢ Absorbent 𝕜 (ball p x r) [PROOFSTEP] refine' (p.absorbent_ball_zero <| sub_pos.2 hpr).subset fun y hy => _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r y : E hy : y ∈ ball p 0 (r - ↑p x) ⊢ y ∈ ball p x r [PROOFSTEP] rw [p.mem_ball_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r y : E hy : ↑p y < r - ↑p x ⊢ y ∈ ball p x r [PROOFSTEP] exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r ⊢ Absorbent 𝕜 (closedBall p x r) [PROOFSTEP] refine' (p.absorbent_closedBall_zero <| sub_pos.2 hpr).subset fun y hy => _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r y : E hy : y ∈ closedBall p 0 (r - ↑p x) ⊢ y ∈ closedBall p x r [PROOFSTEP] rw [p.mem_closedBall_zero] at hy [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E A B : Set E a : 𝕜 r : ℝ x : E hpr : ↑p x < r y : E hy : ↑p y ≤ r - ↑p x ⊢ y ∈ closedBall p x r [PROOFSTEP] exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p✝ : Seminorm 𝕜 E A B : Set E a✝ : 𝕜 r✝ : ℝ x : E p : Seminorm 𝕜 E y : E r : ℝ a : 𝕜 ha : a ≠ 0 x✝ : E ⊢ x✝ ∈ (fun x x_1 => x • x_1) a ⁻¹' ball p y r ↔ x✝ ∈ ball p (a⁻¹ • y) (r / ‖a‖) [PROOFSTEP] rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, ← map_smul_eq_mul p, smul_sub, smul_inv_smul₀ ha] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : SMul ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E ⊢ ConvexOn ℝ univ ↑p [PROOFSTEP] refine' ⟨convex_univ, fun x _ y _ a b ha hb _ => _⟩ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : SMul ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E x✝² : x ∈ univ y : E x✝¹ : y ∈ univ a b : ℝ ha : 0 ≤ a hb : 0 ≤ b x✝ : a + b = 1 ⊢ ↑p (a • x + b • y) ≤ a • ↑p x + b • ↑p y [PROOFSTEP] calc p (a • x + b • y) ≤ p (a • x) + p (b • y) := map_add_le_add p _ _ _ = ‖a • (1 : 𝕜)‖ * p x + ‖b • (1 : 𝕜)‖ * p y := by rw [← map_smul_eq_mul p, ← map_smul_eq_mul p, smul_one_smul, smul_one_smul] _ = a * p x + b * p y := by rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : SMul ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E x✝² : x ∈ univ y : E x✝¹ : y ∈ univ a b : ℝ ha : 0 ≤ a hb : 0 ≤ b x✝ : a + b = 1 ⊢ ↑p (a • x) + ↑p (b • y) = ‖a • 1‖ * ↑p x + ‖b • 1‖ * ↑p y [PROOFSTEP] rw [← map_smul_eq_mul p, ← map_smul_eq_mul p, smul_one_smul, smul_one_smul] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : SMul ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E x✝² : x ∈ univ y : E x✝¹ : y ∈ univ a b : ℝ ha : 0 ≤ a hb : 0 ≤ b x✝ : a + b = 1 ⊢ ‖a • 1‖ * ↑p x + ‖b • 1‖ * ↑p y = a * ↑p x + b * ↑p y [PROOFSTEP] rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha, Real.norm_of_nonneg hb] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ ⊢ Convex ℝ (ball p x r) [PROOFSTEP] convert (p.convexOn.translate_left (-x)).convex_lt r [GOAL] case h.e'_6 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ ⊢ ball p x r = {x_1 | x_1 ∈ (fun z => -x + z) ⁻¹' univ ∧ (↑p ∘ fun z => z + -x) x_1 < r} [PROOFSTEP] ext y [GOAL] case h.e'_6.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ y : E ⊢ y ∈ ball p x r ↔ y ∈ {x_1 | x_1 ∈ (fun z => -x + z) ⁻¹' univ ∧ (↑p ∘ fun z => z + -x) x_1 < r} [PROOFSTEP] rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg] [GOAL] case h.e'_6.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ y : E ⊢ ↑p (y + -x) < r ↔ y ∈ {x_1 | (↑p ∘ fun z => z + -x) x_1 < r} [PROOFSTEP] rfl [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ ⊢ Convex ℝ (closedBall p x r) [PROOFSTEP] rw [closedBall_eq_biInter_ball] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ ⊢ Convex ℝ (⋂ (ρ : ℝ) (_ : ρ > r), ball p x ρ) [PROOFSTEP] exact convex_iInter₂ fun _ _ => convex_ball _ _ _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 𝕜' : Type u_13 inst✝⁷ : NormedField 𝕜 inst✝⁶ : SeminormedRing 𝕜' inst✝⁵ : NormedAlgebra 𝕜 𝕜' inst✝⁴ : NormOneClass 𝕜' inst✝³ : AddCommGroup E inst✝² : Module 𝕜' E inst✝¹ : SMul 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜' E p : Seminorm 𝕜' E a : 𝕜 x : E ⊢ AddGroupSeminorm.toFun p.toAddGroupSeminorm (a • x) = ‖a‖ * AddGroupSeminorm.toFun p.toAddGroupSeminorm x [PROOFSTEP] rw [← smul_one_smul 𝕜' a x, p.smul', norm_smul, norm_one, mul_one] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : SeminormedRing 𝕝 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Module 𝕝 E inst✝ : TopologicalSpace E p : Seminorm 𝕝 E hp : ∀ (r : ℝ), r > 0 → closedBall p 0 r ∈ 𝓝 0 ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : SeminormedRing 𝕝 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Module 𝕝 E inst✝ : TopologicalSpace E p : Seminorm 𝕝 E hp : ∀ (r : ℝ), r > 0 → ↑p ⁻¹' Metric.closedBall 0 r ∈ 𝓝 0 ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] let r' := max 1 r [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] have hr' : 0 < r' := lt_max_of_lt_left one_pos [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] have hp' : p.closedBall 0 r' ∈ (𝓝 0 : Filter E) := mem_of_superset hp (closedBall_mono <| le_max_right _ _) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ⊢ ContinuousAt (↑p) 0 [PROOFSTEP] refine' continuousAt_zero_of_forall' _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ⊢ ∀ (r : ℝ), r > 0 → closedBall p 0 r ∈ 𝓝 0 [PROOFSTEP] intro ε hε [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 ⊢ closedBall p 0 ε ∈ 𝓝 0 [PROOFSTEP] rcases exists_norm_lt 𝕜 (div_pos hε hr') with ⟨k, hk0, hkε⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' ⊢ closedBall p 0 ε ∈ 𝓝 0 [PROOFSTEP] have hk0' := norm_pos_iff.mp hk0 [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' hk0' : k ≠ 0 ⊢ closedBall p 0 ε ∈ 𝓝 0 [PROOFSTEP] have := (set_smul_mem_nhds_zero_iff hk0').mpr hp' [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' hk0' : k ≠ 0 this : k • closedBall p 0 r' ∈ 𝓝 0 ⊢ closedBall p 0 ε ∈ 𝓝 0 [PROOFSTEP] refine' Filter.mem_of_superset this (smul_set_subset_iff.mpr fun x hx => _) [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' hk0' : k ≠ 0 this : k • closedBall p 0 r' ∈ 𝓝 0 x : E hx : x ∈ closedBall p 0 r' ⊢ k • x ∈ closedBall p 0 ε [PROOFSTEP] rw [mem_closedBall_zero, map_smul_eq_mul, ← div_mul_cancel ε hr'.ne.symm] [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' hk0' : k ≠ 0 this : k • closedBall p 0 r' ∈ 𝓝 0 x : E hx : x ∈ closedBall p 0 r' ⊢ ‖k‖ * ↑p x ≤ ε / r' * r' [PROOFSTEP] gcongr [GOAL] case intro.intro.h₂ R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousConstSMul 𝕜 E p : Seminorm 𝕜 E r : ℝ hp : closedBall p 0 r ∈ 𝓝 0 r' : ℝ := max 1 r hr' : 0 < r' hp' : closedBall p 0 r' ∈ 𝓝 0 ε : ℝ hε : ε > 0 k : 𝕜 hk0 : 0 < ‖k‖ hkε : ‖k‖ < ε / r' hk0' : k ≠ 0 this : k • closedBall p 0 r' ∈ 𝓝 0 x : E hx : x ∈ closedBall p 0 r' ⊢ ↑p x ≤ r' [PROOFSTEP] exact p.mem_closedBall_zero.mp hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : UniformSpace E inst✝ : UniformAddGroup E p : Seminorm 𝕝 E hp : ContinuousAt (↑p) 0 ⊢ UniformContinuous ↑p [PROOFSTEP] have hp : Filter.Tendsto p (𝓝 0) (𝓝 0) := map_zero p ▸ hp [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : UniformSpace E inst✝ : UniformAddGroup E p : Seminorm 𝕝 E hp✝ : ContinuousAt (↑p) 0 hp : Tendsto (↑p) (𝓝 0) (𝓝 0) ⊢ UniformContinuous ↑p [PROOFSTEP] rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped, Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : UniformSpace E inst✝ : UniformAddGroup E p : Seminorm 𝕝 E hp✝ : ContinuousAt (↑p) 0 hp : Tendsto (↑p) (𝓝 0) (𝓝 0) ⊢ Tendsto ((fun p => dist p.fst p.snd) ∘ fun x => (↑p x.fst, ↑p x.snd)) (comap (fun x => x.fst - x.snd) (𝓝 0)) (𝓝 0) [PROOFSTEP] exact tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap) (fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _ [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p : Seminorm 𝕝 E hp : ContinuousAt (↑p) 0 ⊢ Continuous ↑p [PROOFSTEP] letI := TopologicalAddGroup.toUniformSpace E [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p : Seminorm 𝕝 E hp : ContinuousAt (↑p) 0 this : UniformSpace E := TopologicalAddGroup.toUniformSpace E ⊢ Continuous ↑p [PROOFSTEP] haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p : Seminorm 𝕝 E hp : ContinuousAt (↑p) 0 this✝ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this : UniformAddGroup E ⊢ Continuous ↑p [PROOFSTEP] exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p q : Seminorm 𝕝 E hq : Continuous ↑q hpq : p ≤ q ⊢ Continuous ↑p [PROOFSTEP] refine Seminorm.continuous_of_forall (fun r hr ↦ Filter.mem_of_superset (IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq)) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p q : Seminorm 𝕝 E hq : Continuous ↑q hpq : p ≤ q r : ℝ hr : r > 0 ⊢ IsOpen (ball q 0 r) [PROOFSTEP] rw [ball_zero_eq] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : SeminormedRing 𝕝 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : Module 𝕝 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E p q : Seminorm 𝕝 E hq : Continuous ↑q hpq : p ≤ q r : ℝ hr : r > 0 ⊢ IsOpen {y | ↑q y < r} [PROOFSTEP] exact isOpen_lt hq continuous_const [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : SeminormedRing 𝕝 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Module 𝕝 E inst✝ : TopologicalSpace E p : Seminorm 𝕝 E hp : Continuous ↑p r : ℝ hr : 0 < r this : Tendsto (↑p) (𝓝 0) (𝓝 0) ⊢ ball p 0 r ∈ 𝓝 0 [PROOFSTEP] simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 ⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] have xεpos : 0 < (p x) / ε := div_pos ((Ne.symm hx).le_iff_lt.1 (map_nonneg p x)) εpos [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε ⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] rcases exists_mem_Ico_zpow xεpos hc with ⟨n, hn⟩ [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) ⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] have cpos : 0 < ‖c‖ := lt_trans (zero_lt_one : (0 : ℝ) < 1) hc [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ ⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] have cnpos : 0 < ‖c ^ (n + 1)‖ := by rw [norm_zpow]; exact lt_trans xεpos hn.2 [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ ⊢ 0 < ‖c ^ (n + 1)‖ [PROOFSTEP] rw [norm_zpow] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ ⊢ 0 < ‖c‖ ^ (n + 1) [PROOFSTEP] exact lt_trans xεpos hn.2 [GOAL] case intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ∃ n, c ^ n ≠ 0 ∧ ↑p (c ^ n • x) < ε ∧ ε / ‖c‖ ≤ ↑p (c ^ n • x) ∧ ‖c ^ n‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] refine ⟨-(n + 1), ?_, ?_, ?_, ?_⟩ [GOAL] case intro.refine_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ c ^ (-(n + 1)) ≠ 0 [PROOFSTEP] show c ^ (-(n + 1)) ≠ 0 [GOAL] case intro.refine_1 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ c ^ (-(n + 1)) ≠ 0 [PROOFSTEP] exact zpow_ne_zero _ (norm_pos_iff.1 cpos) [GOAL] case intro.refine_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ↑p (c ^ (-(n + 1)) • x) < ε [PROOFSTEP] show p ((c ^ (-(n + 1))) • x) < ε [GOAL] case intro.refine_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ↑p (c ^ (-(n + 1)) • x) < ε [PROOFSTEP] rw [map_smul_eq_mul, zpow_neg, norm_inv, ← div_eq_inv_mul, div_lt_iff cnpos, mul_comm, norm_zpow] [GOAL] case intro.refine_2 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ↑p x < ‖c‖ ^ (n + 1) * ε [PROOFSTEP] exact (div_lt_iff εpos).1 (hn.2) [GOAL] case intro.refine_3 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ε / ‖c‖ ≤ ↑p (c ^ (-(n + 1)) • x) [PROOFSTEP] show ε / ‖c‖ ≤ p (c ^ (-(n + 1)) • x) [GOAL] case intro.refine_3 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ε / ‖c‖ ≤ ↑p (c ^ (-(n + 1)) • x) [PROOFSTEP] rw [zpow_neg, div_le_iff cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_add₀ (ne_of_gt cpos), zpow_one, mul_inv_rev, mul_comm, ← mul_assoc, ← mul_assoc, mul_inv_cancel (ne_of_gt cpos), one_mul, ← div_eq_inv_mul, le_div_iff (zpow_pos_of_pos cpos _), mul_comm] [GOAL] case intro.refine_3 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ‖c‖ ^ n * ε ≤ ↑p x [PROOFSTEP] exact (le_div_iff εpos).1 hn.1 [GOAL] case intro.refine_4 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] show ‖(c ^ (-(n + 1)))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * p x [GOAL] case intro.refine_4 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] have : ε⁻¹ * ‖c‖ * p x = ε⁻¹ * p x * ‖c‖ := by ring [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ ⊢ ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖ [PROOFSTEP] ring [GOAL] case intro.refine_4 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ this : ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖ ⊢ ‖c ^ (-(n + 1))‖⁻¹ ≤ ε⁻¹ * ‖c‖ * ↑p x [PROOFSTEP] rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_add₀ (ne_of_gt cpos), zpow_one, this, ← div_eq_inv_mul] [GOAL] case intro.refine_4 R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E c : 𝕜 hc : 1 < ‖c‖ ε : ℝ εpos : 0 < ε x : E hx : ↑p x ≠ 0 xεpos : 0 < ↑p x / ε n : ℤ hn : ↑p x / ε ∈ Ico (‖c‖ ^ n) (‖c‖ ^ (n + 1)) cpos : 0 < ‖c‖ cnpos : 0 < ‖c ^ (n + 1)‖ this : ε⁻¹ * ‖c‖ * ↑p x = ε⁻¹ * ↑p x * ‖c‖ ⊢ ‖c‖ ^ n * ‖c‖ ≤ ↑p x / ε * ‖c‖ [PROOFSTEP] exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E ε C : ℝ ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), ε / ‖c‖ ≤ ↑p x → ↑p x < ε → ↑q x ≤ C * ↑p x x : E hx : ↑p x ≠ 0 ⊢ ↑q x ≤ C * ↑p x [PROOFSTEP] rcases p.rescale_to_shell hc ε_pos hx with ⟨δ, hδ, δxle, leδx, -⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q : Seminorm 𝕜 E ε C : ℝ ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), ε / ‖c‖ ≤ ↑p x → ↑p x < ε → ↑q x ≤ C * ↑p x x : E hx : ↑p x ≠ 0 δ : 𝕜 hδ : δ ≠ 0 δxle : ↑p (δ • x) < ε leδx : ε / ‖c‖ ≤ ↑p (δ • x) ⊢ ↑q x ≤ C * ↑p x [PROOFSTEP] simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hδ)] using hf (δ • x) leδx δxle [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E hx : ∃ j, j ∈ s ∧ ↑(p j) x ≠ 0 ⊢ ↑q x ≤ ↑(C • Finset.sup s p) x [PROOFSTEP] rcases hx with ⟨j, hj, hjx⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E j : ι hj : j ∈ s hjx : ↑(p j) x ≠ 0 ⊢ ↑q x ≤ ↑(C • Finset.sup s p) x [PROOFSTEP] have : (s.sup p) x ≠ 0 := ne_of_gt ((hjx.symm.lt_of_le $ map_nonneg _ _).trans_le (le_finset_sup_apply hj)) [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E j : ι hj : j ∈ s hjx : ↑(p j) x ≠ 0 this : ↑(Finset.sup s p) x ≠ 0 ⊢ ↑q x ≤ ↑(C • Finset.sup s p) x [PROOFSTEP] refine (s.sup p).bound_of_shell_smul q ε_pos hc (fun y hle hlt ↦ ?_) this [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E j : ι hj : j ∈ s hjx : ↑(p j) x ≠ 0 this : ↑(Finset.sup s p) x ≠ 0 y : E hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y hlt : ↑(Finset.sup s p) y < ε ⊢ ↑q y ≤ ↑(C • Finset.sup s p) y [PROOFSTEP] rcases exists_apply_eq_finset_sup p ⟨j, hj⟩ y with ⟨i, hi, hiy⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E j : ι hj : j ∈ s hjx : ↑(p j) x ≠ 0 this : ↑(Finset.sup s p) x ≠ 0 y : E hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y hlt : ↑(Finset.sup s p) y < ε i : ι hi : i ∈ s hiy : ↑(Finset.sup s p) y = ↑(p i) y ⊢ ↑q y ≤ ↑(C • Finset.sup s p) y [PROOFSTEP] rw [smul_apply, hiy] [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Finset ι q : Seminorm 𝕜 E ε : ℝ C : ℝ≥0 ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), (∀ (i : ι), i ∈ s → ↑(p i) x < ε) → ∀ (j : ι), j ∈ s → ε / ‖c‖ ≤ ↑(p j) x → ↑q x ≤ ↑(C • p j) x x : E j : ι hj : j ∈ s hjx : ↑(p j) x ≠ 0 this : ↑(Finset.sup s p) x ≠ 0 y : E hle : ε / ‖c‖ ≤ ↑(Finset.sup s p) y hlt : ↑(Finset.sup s p) y < ε i : ι hi : i ∈ s hiy : ↑(Finset.sup s p) y = ↑(p i) y ⊢ ↑q y ≤ C • ↑(p i) y [PROOFSTEP] exact hf y (fun k hk ↦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy ▸ hle) [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) ⊢ BddAbove (range p) [PROOFSTEP] rw [Seminorm.bddAbove_range_iff] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) ⊢ ∀ (x : E), BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] intro x [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] rcases hs x with ⟨r, hr, hrx⟩ [GOAL] case intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] rcases exists_lt_norm 𝕜 r with ⟨k, hk⟩ [GOAL] case intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] have hk0 : k ≠ 0 := norm_pos_iff.mp (hr.trans hk) [GOAL] case intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] have : k⁻¹ • x ∈ s := by rw [← mem_smul_set_iff_inv_smul_mem₀ hk0] exact hrx k hk.le [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 ⊢ k⁻¹ • x ∈ s [PROOFSTEP] rw [← mem_smul_set_iff_inv_smul_mem₀ hk0] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 ⊢ x ∈ k • s [PROOFSTEP] exact hrx k hk.le [GOAL] case intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 this : k⁻¹ • x ∈ s ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] rcases h (k⁻¹ • x) this with ⟨M, hM⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 this : k⁻¹ • x ∈ s M : ℝ hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x)) ⊢ BddAbove (range fun i => ↑(p i) x) [PROOFSTEP] refine ⟨‖k‖ * M, forall_range_iff.mpr fun i ↦ ?_⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 this : k⁻¹ • x ∈ s M : ℝ hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x)) i : ι ⊢ ↑(p i) x ≤ ‖k‖ * M [PROOFSTEP] have := (forall_range_iff.mp hM) i [GOAL] case intro.intro.intro.intro R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → Seminorm 𝕜 E s : Set E hs : Absorbent 𝕜 s h : ∀ (x : E), x ∈ s → BddAbove (range fun i => ↑(p i) x) x : E r : ℝ hr : 0 < r hrx : ∀ (a : 𝕜), r ≤ ‖a‖ → x ∈ a • s k : 𝕜 hk : r < ‖k‖ hk0 : k ≠ 0 this✝ : k⁻¹ • x ∈ s M : ℝ hM : M ∈ upperBounds (range fun i => ↑(p i) (k⁻¹ • x)) i : ι this : ↑(p i) (k⁻¹ • x) ≤ M ⊢ ↑(p i) x ≤ ‖k‖ * M [PROOFSTEP] rwa [map_smul_eq_mul, norm_inv, inv_mul_le_iff (hr.trans hk)] at this [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ ⊢ Seminorm.ball (normSeminorm 𝕜 E) = Metric.ball [PROOFSTEP] ext x r y [GOAL] case h.h.h R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r✝ : ℝ x : E r : ℝ y : E ⊢ y ∈ Seminorm.ball (normSeminorm 𝕜 E) x r ↔ y ∈ Metric.ball x r [PROOFSTEP] simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E hr : 0 < r ⊢ Absorbent 𝕜 (Metric.ball 0 r) [PROOFSTEP] rw [← ball_normSeminorm 𝕜] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E hr : 0 < r ⊢ Absorbent 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r) [PROOFSTEP] exact (normSeminorm _ _).absorbent_ball_zero hr [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E hx : ‖x‖ < r ⊢ Absorbent 𝕜 (Metric.ball x r) [PROOFSTEP] rw [← ball_normSeminorm 𝕜] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E hx : ‖x‖ < r ⊢ Absorbent 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) x r) [PROOFSTEP] exact (normSeminorm _ _).absorbent_ball hx [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E ⊢ Balanced 𝕜 (Metric.ball 0 r) [PROOFSTEP] rw [← ball_normSeminorm 𝕜] [GOAL] R : Type u_1 R' : Type u_2 𝕜 : Type u_3 𝕜₂ : Type u_4 𝕜₃ : Type u_5 𝕝 : Type u_6 E : Type u_7 E₂ : Type u_8 E₃ : Type u_9 F : Type u_10 G : Type u_11 ι : Type u_12 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ x : E ⊢ Balanced 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r) [PROOFSTEP] exact (normSeminorm _ _).balanced_ball_zero r
{"mathlib_filename": "Mathlib.Analysis.Seminorm", "llama_tokens": 104359}
[GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E f✝ : 𝕜 → E a✝ b✝ : 𝕜 s : Set 𝕜 F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E →L[𝕜] F g : 𝕜 → E a b : 𝕜 H : a = b → DifferentiableAt 𝕜 g a ⊢ dslope (↑f ∘ g) a b = ↑f (dslope g a b) [PROOFSTEP] rcases eq_or_ne b a with (rfl | hne) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E f✝ : 𝕜 → E a b✝ : 𝕜 s : Set 𝕜 F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E →L[𝕜] F g : 𝕜 → E b : 𝕜 H : b = b → DifferentiableAt 𝕜 g b ⊢ dslope (↑f ∘ g) b b = ↑f (dslope g b b) [PROOFSTEP] simp only [dslope_same] [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E f✝ : 𝕜 → E a b✝ : 𝕜 s : Set 𝕜 F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E →L[𝕜] F g : 𝕜 → E b : 𝕜 H : b = b → DifferentiableAt 𝕜 g b ⊢ deriv (↑f ∘ g) b = ↑f (deriv g b) [PROOFSTEP] exact (f.hasFDerivAt.comp_hasDerivAt b (H rfl).hasDerivAt).deriv [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E f✝ : 𝕜 → E a✝ b✝ : 𝕜 s : Set 𝕜 F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E →L[𝕜] F g : 𝕜 → E a b : 𝕜 H : a = b → DifferentiableAt 𝕜 g a hne : b ≠ a ⊢ dslope (↑f ∘ g) a b = ↑f (dslope g a b) [PROOFSTEP] simpa only [dslope_of_ne _ hne] using f.toLinearMap.slope_comp g a b [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f✝ : 𝕜 → E a✝ b✝ : 𝕜 s : Set 𝕜 f : 𝕜 → E a b : 𝕜 ⊢ (b - a) • dslope f a b = f b - f a [PROOFSTEP] rcases eq_or_ne b a with (rfl | hne) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f✝ : 𝕜 → E a b✝ : 𝕜 s : Set 𝕜 f : 𝕜 → E b : 𝕜 ⊢ (b - b) • dslope f b b = f b - f b [PROOFSTEP] simp [dslope_of_ne, *] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f✝ : 𝕜 → E a✝ b✝ : 𝕜 s : Set 𝕜 f : 𝕜 → E a b : 𝕜 hne : b ≠ a ⊢ (b - a) • dslope f a b = f b - f a [PROOFSTEP] simp [dslope_of_ne, *] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f✝ : 𝕜 → E a b : 𝕜 s : Set 𝕜 f : 𝕜 → E h : b ≠ a ⊢ dslope (fun x => (x - a) • f x) a b = f b [PROOFSTEP] rw [dslope_of_ne _ h, slope_sub_smul _ h.symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 ⊢ ContinuousAt (dslope f a) a ↔ DifferentiableAt 𝕜 f a [PROOFSTEP] simp only [dslope, continuousAt_update_same, ← hasDerivAt_deriv_iff, hasDerivAt_iff_tendsto_slope] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : ContinuousWithinAt (dslope f a) s b ⊢ ContinuousWithinAt f s b [PROOFSTEP] have : ContinuousWithinAt (fun x => (x - a) • dslope f a x + f a) s b := ((continuousWithinAt_id.sub continuousWithinAt_const).smul h).add continuousWithinAt_const [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : ContinuousWithinAt (dslope f a) s b this : ContinuousWithinAt (fun x => (x - a) • dslope f a x + f a) s b ⊢ ContinuousWithinAt f s b [PROOFSTEP] simpa only [sub_smul_dslope, sub_add_cancel] using this [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a ⊢ ContinuousWithinAt (dslope f a) s b ↔ ContinuousWithinAt f s b [PROOFSTEP] refine' ⟨ContinuousWithinAt.of_dslope, fun hc => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a hc : ContinuousWithinAt f s b ⊢ ContinuousWithinAt (dslope f a) s b [PROOFSTEP] simp only [dslope, continuousWithinAt_update_of_ne h] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a hc : ContinuousWithinAt f s b ⊢ ContinuousWithinAt (slope f a) s b [PROOFSTEP] exact ((continuousWithinAt_id.sub continuousWithinAt_const).inv₀ (sub_ne_zero.2 h)).smul (hc.sub continuousWithinAt_const) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a ⊢ ContinuousAt (dslope f a) b ↔ ContinuousAt f b [PROOFSTEP] simp only [← continuousWithinAt_univ, continuousWithinAt_dslope_of_ne h] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 a ⊢ ContinuousOn (dslope f a) s ↔ ContinuousOn f s ∧ DifferentiableAt 𝕜 f a [PROOFSTEP] refine' ⟨fun hc => ⟨hc.of_dslope, continuousAt_dslope_same.1 <| hc.continuousAt h⟩, _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 a ⊢ ContinuousOn f s ∧ DifferentiableAt 𝕜 f a → ContinuousOn (dslope f a) s [PROOFSTEP] rintro ⟨hc, hd⟩ x hx [GOAL] case intro 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 a hc : ContinuousOn f s hd : DifferentiableAt 𝕜 f a x : 𝕜 hx : x ∈ s ⊢ ContinuousWithinAt (dslope f a) s x [PROOFSTEP] rcases eq_or_ne x a with (rfl | hne) [GOAL] case intro.inl 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E b : 𝕜 s : Set 𝕜 hc : ContinuousOn f s x : 𝕜 hx : x ∈ s h : s ∈ 𝓝 x hd : DifferentiableAt 𝕜 f x ⊢ ContinuousWithinAt (dslope f x) s x case intro.inr 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 a hc : ContinuousOn f s hd : DifferentiableAt 𝕜 f a x : 𝕜 hx : x ∈ s hne : x ≠ a ⊢ ContinuousWithinAt (dslope f a) s x [PROOFSTEP] exacts [(continuousAt_dslope_same.2 hd).continuousWithinAt, (continuousWithinAt_dslope_of_ne hne).2 (hc x hx)] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : DifferentiableWithinAt 𝕜 (dslope f a) s b ⊢ DifferentiableWithinAt 𝕜 f s b [PROOFSTEP] simpa only [id, sub_smul_dslope f a, sub_add_cancel] using ((differentiableWithinAt_id.sub_const a).smul h).add_const (f a) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a ⊢ DifferentiableWithinAt 𝕜 (dslope f a) s b ↔ DifferentiableWithinAt 𝕜 f s b [PROOFSTEP] refine' ⟨DifferentiableWithinAt.of_dslope, fun hd => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a hd : DifferentiableWithinAt 𝕜 f s b ⊢ DifferentiableWithinAt 𝕜 (dslope f a) s b [PROOFSTEP] refine' (((differentiableWithinAt_id.sub_const a).inv (sub_ne_zero.2 h)).smul (hd.sub_const (f a))).congr_of_eventuallyEq _ (dslope_of_ne _ h) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a hd : DifferentiableWithinAt 𝕜 f s b ⊢ dslope f a =ᶠ[𝓝[s] b] fun y => (id y - a)⁻¹ • (f y - f a) [PROOFSTEP] refine' (eqOn_dslope_slope _ _).eventuallyEq_of_mem _ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a hd : DifferentiableWithinAt 𝕜 f s b ⊢ {a}ᶜ ∈ 𝓝[s] b [PROOFSTEP] exact mem_nhdsWithin_of_mem_nhds (isOpen_ne.mem_nhds h) [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E a b : 𝕜 s : Set 𝕜 h : b ≠ a ⊢ DifferentiableAt 𝕜 (dslope f a) b ↔ DifferentiableAt 𝕜 f b [PROOFSTEP] simp only [← differentiableWithinAt_univ, differentiableWithinAt_dslope_of_ne h]
{"mathlib_filename": "Mathlib.Analysis.Calculus.Dslope", "llama_tokens": 4419}
[GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace 𝕜 V inst✝¹ : NormedAddCommGroup W inst✝ : NormedSpace 𝕜 W n : ℕ∞ f : V →A[𝕜] W ⊢ ContDiff 𝕜 n ↑f [PROOFSTEP] rw [f.decomp] [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace 𝕜 V inst✝¹ : NormedAddCommGroup W inst✝ : NormedSpace 𝕜 W n : ℕ∞ f : V →A[𝕜] W ⊢ ContDiff 𝕜 n (↑(contLinear f) + Function.const V (↑f 0)) [PROOFSTEP] apply f.contLinear.contDiff.add [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace 𝕜 V inst✝¹ : NormedAddCommGroup W inst✝ : NormedSpace 𝕜 W n : ℕ∞ f : V →A[𝕜] W ⊢ ContDiff 𝕜 n fun x => Function.const V (↑f 0) x [PROOFSTEP] simp only [GOAL] 𝕜 : Type u_1 V : Type u_2 W : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace 𝕜 V inst✝¹ : NormedAddCommGroup W inst✝ : NormedSpace 𝕜 W n : ℕ∞ f : V →A[𝕜] W ⊢ ContDiff 𝕜 n fun x => Function.const V (↑f 0) x [PROOFSTEP] exact contDiff_const
{"mathlib_filename": "Mathlib.Analysis.Calculus.AffineMap", "llama_tokens": 574}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f g : E → F s t : Set E x✝ : E inst✝ : NormedSpace ℝ E x : E r : ℝ h : DiffContOnCl 𝕜 f (ball x r) ⊢ ContinuousOn f (closedBall x r) [PROOFSTEP] rcases eq_or_ne r 0 with (rfl | hr) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f g : E → F s t : Set E x✝ : E inst✝ : NormedSpace ℝ E x : E h : DiffContOnCl 𝕜 f (ball x 0) ⊢ ContinuousOn f (closedBall x 0) [PROOFSTEP] rw [closedBall_zero] [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f g : E → F s t : Set E x✝ : E inst✝ : NormedSpace ℝ E x : E h : DiffContOnCl 𝕜 f (ball x 0) ⊢ ContinuousOn f {x} [PROOFSTEP] exact continuousOn_singleton f x [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f g : E → F s t : Set E x✝ : E inst✝ : NormedSpace ℝ E x : E r : ℝ h : DiffContOnCl 𝕜 f (ball x r) hr : r ≠ 0 ⊢ ContinuousOn f (closedBall x r) [PROOFSTEP] rw [← closure_ball x hr] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜 F inst✝² : NormedAddCommGroup G inst✝¹ : NormedSpace 𝕜 G f g : E → F s t : Set E x✝ : E inst✝ : NormedSpace ℝ E x : E r : ℝ h : DiffContOnCl 𝕜 f (ball x r) hr : r ≠ 0 ⊢ ContinuousOn f (closure (ball x r)) [PROOFSTEP] exact h.continuousOn
{"mathlib_filename": "Mathlib.Analysis.Calculus.DiffContOnCl", "llama_tokens": 1106}
[GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] rcases hab.eq_or_lt with (rfl | hab') [GOAL] case inl a : ℝ f f' : ℝ → ℝ m : ℝ hma : f' a < m hab : a ≤ a hf : ∀ (x : ℝ), x ∈ Icc a a → HasDerivWithinAt f (f' x) (Icc a a) x hmb : m < f' a ⊢ m ∈ f' '' Ioo a a [PROOFSTEP] exact (lt_asymm hma hmb).elim [GOAL] case inr a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] set g : ℝ → ℝ := fun x => f x - m * x [GOAL] case inr a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] have hg : ∀ x ∈ Icc a b, HasDerivWithinAt g (f' x - m) (Icc a b) x := by intro x hx simpa using (hf x hx).sub ((hasDerivWithinAt_id x _).const_mul m) [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x ⊢ ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x [PROOFSTEP] intro x hx [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x x : ℝ hx : x ∈ Icc a b ⊢ HasDerivWithinAt g (f' x - m) (Icc a b) x [PROOFSTEP] simpa using (hf x hx).sub ((hasDerivWithinAt_id x _).const_mul m) [GOAL] case inr a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] obtain ⟨c, cmem, hc⟩ : ∃ c ∈ Icc a b, IsMinOn g (Icc a b) c [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x ⊢ ∃ c, c ∈ Icc a b ∧ IsMinOn g (Icc a b) c case inr.intro.intro a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] exact isCompact_Icc.exists_forall_le (nonempty_Icc.2 <| hab) fun x hx => (hg x hx).continuousWithinAt [GOAL] case inr.intro.intro a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] have cmem' : c ∈ Ioo a b := by rcases cmem.1.eq_or_lt with (rfl | hac) -- Show that `c` can't be equal to `a` · refine' absurd (sub_nonneg.1 <| nonneg_of_mul_nonneg_right _ (sub_pos.2 hab')) (not_le_of_lt hma) have : b - a ∈ posTangentConeAt (Icc a b) a := mem_posTangentConeAt_of_segment_subset (segment_eq_Icc hab ▸ Subset.refl _) simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using hc.localize.hasFDerivWithinAt_nonneg (hg a (left_mem_Icc.2 hab)) this rcases cmem.2.eq_or_gt with (rfl | hcb) -- Show that `c` can't be equal to `b` · refine' absurd (sub_nonpos.1 <| nonpos_of_mul_nonneg_right _ (sub_lt_zero.2 hab')) (not_le_of_lt hmb) have : a - b ∈ posTangentConeAt (Icc a b) b := mem_posTangentConeAt_of_segment_subset (by rw [segment_symm, segment_eq_Icc hab]) simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using hc.localize.hasFDerivWithinAt_nonneg (hg b (right_mem_Icc.2 hab)) this exact ⟨hac, hcb⟩ [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c ⊢ c ∈ Ioo a b [PROOFSTEP] rcases cmem.1.eq_or_lt with (rfl | hac) -- Show that `c` can't be equal to `a` [GOAL] case inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : a ∈ Icc a b hc : IsMinOn g (Icc a b) a ⊢ a ∈ Ioo a b [PROOFSTEP] refine' absurd (sub_nonneg.1 <| nonneg_of_mul_nonneg_right _ (sub_pos.2 hab')) (not_le_of_lt hma) [GOAL] case inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : a ∈ Icc a b hc : IsMinOn g (Icc a b) a ⊢ 0 ≤ (b - a) * (f' a - m) [PROOFSTEP] have : b - a ∈ posTangentConeAt (Icc a b) a := mem_posTangentConeAt_of_segment_subset (segment_eq_Icc hab ▸ Subset.refl _) [GOAL] case inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : a ∈ Icc a b hc : IsMinOn g (Icc a b) a this : b - a ∈ posTangentConeAt (Icc a b) a ⊢ 0 ≤ (b - a) * (f' a - m) [PROOFSTEP] simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using hc.localize.hasFDerivWithinAt_nonneg (hg a (left_mem_Icc.2 hab)) this [GOAL] case inr a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c hac : a < c ⊢ c ∈ Ioo a b [PROOFSTEP] rcases cmem.2.eq_or_gt with (rfl | hcb) -- Show that `c` can't be equal to `b` [GOAL] case inr.inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : b ∈ Icc a b hc : IsMinOn g (Icc a b) b hac : a < b ⊢ b ∈ Ioo a b [PROOFSTEP] refine' absurd (sub_nonpos.1 <| nonpos_of_mul_nonneg_right _ (sub_lt_zero.2 hab')) (not_le_of_lt hmb) [GOAL] case inr.inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : b ∈ Icc a b hc : IsMinOn g (Icc a b) b hac : a < b ⊢ 0 ≤ (a - b) * (f' b - m) [PROOFSTEP] have : a - b ∈ posTangentConeAt (Icc a b) b := mem_posTangentConeAt_of_segment_subset (by rw [segment_symm, segment_eq_Icc hab]) [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : b ∈ Icc a b hc : IsMinOn g (Icc a b) b hac : a < b ⊢ segment ℝ b a ⊆ Icc a b [PROOFSTEP] rw [segment_symm, segment_eq_Icc hab] [GOAL] case inr.inl a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x cmem : b ∈ Icc a b hc : IsMinOn g (Icc a b) b hac : a < b this : a - b ∈ posTangentConeAt (Icc a b) b ⊢ 0 ≤ (a - b) * (f' b - m) [PROOFSTEP] simpa only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply] using hc.localize.hasFDerivWithinAt_nonneg (hg b (right_mem_Icc.2 hab)) this [GOAL] case inr.inr a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c hac : a < c hcb : c < b ⊢ c ∈ Ioo a b [PROOFSTEP] exact ⟨hac, hcb⟩ [GOAL] case inr.intro.intro a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b ⊢ m ∈ f' '' Ioo a b [PROOFSTEP] use c, cmem' [GOAL] case right a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b ⊢ f' c = m [PROOFSTEP] rw [← sub_eq_zero] [GOAL] case right a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b ⊢ f' c - m = 0 [PROOFSTEP] have : Icc a b ∈ 𝓝 c := by rwa [← mem_interior_iff_mem_nhds, interior_Icc] [GOAL] a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b ⊢ Icc a b ∈ 𝓝 c [PROOFSTEP] rwa [← mem_interior_iff_mem_nhds, interior_Icc] [GOAL] case right a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b this : Icc a b ∈ 𝓝 c ⊢ f' c - m = 0 [PROOFSTEP] exact (hc.isLocalMin this).hasDerivAt_eq_zero ((hg c cmem).hasDerivAt this) [GOAL] a b : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x ⊢ OrdConnected (f' '' s) [PROOFSTEP] apply ordConnected_of_Ioo [GOAL] case hs a b : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x ⊢ ∀ (x : ℝ), x ∈ f' '' s → ∀ (y : ℝ), y ∈ f' '' s → x < y → Ioo x y ⊆ f' '' s [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ - m ⟨hma, hmb⟩ [GOAL] case hs.intro.intro.intro.intro.intro a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b ⊢ m ∈ f' '' s [PROOFSTEP] cases' le_total a b with hab hab [GOAL] case hs.intro.intro.intro.intro.intro.inl a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : a ≤ b ⊢ m ∈ f' '' s [PROOFSTEP] have : Icc a b ⊆ s := hs.out ha hb [GOAL] case hs.intro.intro.intro.intro.intro.inl a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : a ≤ b this : Icc a b ⊆ s ⊢ m ∈ f' '' s [PROOFSTEP] rcases exists_hasDerivWithinAt_eq_of_gt_of_lt hab (fun x hx => (hf x <| this hx).mono this) hma hmb with ⟨c, cmem, hc⟩ [GOAL] case hs.intro.intro.intro.intro.intro.inl.intro.intro a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : a ≤ b this : Icc a b ⊆ s c : ℝ cmem : c ∈ Ioo a b hc : (fun x => f' x) c = m ⊢ m ∈ f' '' s [PROOFSTEP] exact ⟨c, this <| Ioo_subset_Icc_self cmem, hc⟩ [GOAL] case hs.intro.intro.intro.intro.intro.inr a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : b ≤ a ⊢ m ∈ f' '' s [PROOFSTEP] have : Icc b a ⊆ s := hs.out hb ha [GOAL] case hs.intro.intro.intro.intro.intro.inr a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : b ≤ a this : Icc b a ⊆ s ⊢ m ∈ f' '' s [PROOFSTEP] rcases exists_hasDerivWithinAt_eq_of_lt_of_gt hab (fun x hx => (hf x <| this hx).mono this) hmb hma with ⟨c, cmem, hc⟩ [GOAL] case hs.intro.intro.intro.intro.intro.inr.intro.intro a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : OrdConnected s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : b ≤ a this : Icc b a ⊆ s c : ℝ cmem : c ∈ Ioo b a hc : (fun x => f' x) c = m ⊢ m ∈ f' '' s [PROOFSTEP] exact ⟨c, this <| Ioo_subset_Icc_self cmem, hc⟩ [GOAL] a b : ℝ f f' : ℝ → ℝ s : Set ℝ hs : Convex ℝ s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x m : ℝ hf' : ∀ (x : ℝ), x ∈ s → f' x ≠ m ⊢ (∀ (x : ℝ), x ∈ s → f' x < m) ∨ ∀ (x : ℝ), x ∈ s → m < f' x [PROOFSTEP] contrapose! hf' [GOAL] a b : ℝ f f' : ℝ → ℝ s : Set ℝ hs : Convex ℝ s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x m : ℝ hf' : (∃ x, x ∈ s ∧ m ≤ f' x) ∧ ∃ x, x ∈ s ∧ f' x ≤ m ⊢ ∃ x, x ∈ s ∧ f' x = m [PROOFSTEP] rcases hf' with ⟨⟨b, hb, hmb⟩, ⟨a, ha, hma⟩⟩ [GOAL] case intro.intro.intro.intro.intro a✝ b✝ : ℝ f f' : ℝ → ℝ s : Set ℝ hs : Convex ℝ s hf : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x m b : ℝ hb : b ∈ s hmb : m ≤ f' b a : ℝ ha : a ∈ s hma : f' a ≤ m ⊢ ∃ x, x ∈ s ∧ f' x = m [PROOFSTEP] exact (hs.ordConnected.image_hasDerivWithinAt hf).out (mem_image_of_mem f' ha) (mem_image_of_mem f' hb) ⟨hma, hmb⟩
{"mathlib_filename": "Mathlib.Analysis.Calculus.Darboux", "llama_tokens": 8317}
[GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_3 s : Set E f g : E → β inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : SMul 𝕜 E inst✝² : AddCommMonoid E inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β hf : ConvexOn 𝕜 s f hfg : EqOn f g s x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ g (a • x + b • y) ≤ a • g x + b • g y [PROOFSTEP] simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha hb hab)] using hf.2 hx hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_3 s : Set E f g : E → β inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : SMul 𝕜 E inst✝² : AddCommMonoid E inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β hf : ConcaveOn 𝕜 s f hfg : EqOn f g s x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • g x + b • g y ≤ g (a • x + b • y) [PROOFSTEP] simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha hb hab)] using hf.2 hx hy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_3 s : Set E f g : E → β inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : SMul 𝕜 E inst✝² : AddCommMonoid E inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β hf : StrictConvexOn 𝕜 s f hfg : EqOn f g s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ g (a • x + b • y) < a • g x + b • g y [PROOFSTEP] simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha.le hb.le hab)] using hf.2 hx hy hxy ha hb hab [GOAL] 𝕜 : Type u_1 E : Type u_2 β : Type u_3 s : Set E f g : E → β inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : SMul 𝕜 E inst✝² : AddCommMonoid E inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β hf : StrictConcaveOn 𝕜 s f hfg : EqOn f g s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • g x + b • g y < g (a • x + b • y) [PROOFSTEP] simpa only [← hfg hx, ← hfg hy, ← hfg (hf.1 hx hy ha.le hb.le hab)] using hf.2 hx hy hxy ha hb hab [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] let f : ℝ → ℝ → ℝ → ℝ := fun c u x => exp (-c * x) * x ^ (c * (u - 1)) [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have e : IsConjugateExponent (1 / a) (1 / b) := Real.isConjugateExponent_one_div ha hb hab [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have hab' : b = 1 - a := by linarith [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) ⊢ b = 1 - a [PROOFSTEP] linarith [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have hst : 0 < a * s + b * t := add_pos (mul_pos ha hs) (mul_pos hb ht) -- some properties of f: [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have posf : ∀ c u x : ℝ, x ∈ Ioi (0 : ℝ) → 0 ≤ f c u x := fun c u x hx => mul_nonneg (exp_pos _).le (rpow_pos_of_pos hx _).le [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have posf' : ∀ c u : ℝ, ∀ᵐ x : ℝ ∂volume.restrict (Ioi 0), 0 ≤ f c u x := fun c u => (ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ (posf c u)) [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have fpow : ∀ {c x : ℝ} (_ : 0 < c) (u : ℝ) (_ : 0 < x), exp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) := by intro c x hc u hx dsimp only rw [mul_rpow (exp_pos _).le ((rpow_nonneg_of_nonneg hx.le) _), ← exp_mul, ← rpow_mul hx.le] congr 2 <;> · field_simp [hc.ne']; ring -- show `f c u` is in `ℒp` for `p = 1/c`: [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x ⊢ ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) [PROOFSTEP] intro c x hc u hx [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) [PROOFSTEP] dsimp only [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ rexp (-x) * x ^ (u - 1) = (rexp (-c * x) * x ^ (c * (u - 1))) ^ (1 / c) [PROOFSTEP] rw [mul_rpow (exp_pos _).le ((rpow_nonneg_of_nonneg hx.le) _), ← exp_mul, ← rpow_mul hx.le] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ rexp (-x) * x ^ (u - 1) = rexp (-c * x * (1 / c)) * x ^ (c * (u - 1) * (1 / c)) [PROOFSTEP] congr 2 [GOAL] case e_a.e_x s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ -x = -c * x * (1 / c) [PROOFSTEP] field_simp [hc.ne'] [GOAL] case e_a.e_x s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ x * c = c * x [PROOFSTEP] ring -- show `f c u` is in `ℒp` for `p = 1/c`: [GOAL] case e_a.e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ u - 1 = c * (u - 1) * (1 / c) [PROOFSTEP] field_simp [hc.ne'] [GOAL] case e_a.e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x c x : ℝ hc : 0 < c u : ℝ hx : 0 < x ⊢ (u - 1) * c = c * (u - 1) [PROOFSTEP] ring -- show `f c u` is in `ℒp` for `p = 1/c`: [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] have f_mem_Lp : ∀ {c u : ℝ} (hc : 0 < c) (hu : 0 < u), Memℒp (f c u) (ENNReal.ofReal (1 / c)) (volume.restrict (Ioi 0)) := by intro c u hc hu have A : ENNReal.ofReal (1 / c) ≠ 0 := by rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos] have B : ENNReal.ofReal (1 / c) ≠ ∞ := ENNReal.ofReal_ne_top rw [← memℒp_norm_rpow_iff _ A B, ENNReal.toReal_ofReal (one_div_nonneg.mpr hc.le), ENNReal.div_self A B, memℒp_one_iff_integrable] · apply Integrable.congr (GammaIntegral_convergent hu) refine' eventuallyEq_of_mem (self_mem_ae_restrict measurableSet_Ioi) fun x hx => _ dsimp only rw [fpow hc u hx] congr 1 exact (norm_of_nonneg (posf _ _ x hx)).symm · refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi refine' (Continuous.continuousOn _).mul (ContinuousAt.continuousOn fun x hx => _) · exact continuous_exp.comp (continuous_const.mul continuous_id') · exact continuousAt_rpow_const _ _ (Or.inl (mem_Ioi.mp hx).ne') -- now apply Hölder: [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) ⊢ ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) [PROOFSTEP] intro c u hc hu [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u ⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c)) [PROOFSTEP] have A : ENNReal.ofReal (1 / c) ≠ 0 := by rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u ⊢ ENNReal.ofReal (1 / c) ≠ 0 [PROOFSTEP] rwa [Ne.def, ENNReal.ofReal_eq_zero, not_le, one_div_pos] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 ⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c)) [PROOFSTEP] have B : ENNReal.ofReal (1 / c) ≠ ∞ := ENNReal.ofReal_ne_top [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ Memℒp (f c u) (ENNReal.ofReal (1 / c)) [PROOFSTEP] rw [← memℒp_norm_rpow_iff _ A B, ENNReal.toReal_ofReal (one_div_nonneg.mpr hc.le), ENNReal.div_self A B, memℒp_one_iff_integrable] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ Integrable fun x => ‖f c u x‖ ^ (1 / c) [PROOFSTEP] apply Integrable.congr (GammaIntegral_convergent hu) [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ (fun x => rexp (-x) * x ^ (u - 1)) =ᵐ[Measure.restrict volume (Ioi 0)] fun x => ‖f c u x‖ ^ (1 / c) [PROOFSTEP] refine' eventuallyEq_of_mem (self_mem_ae_restrict measurableSet_Ioi) fun x hx => _ [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ x : ℝ hx : x ∈ Ioi 0 ⊢ rexp (-x) * x ^ (u - 1) = ‖f c u x‖ ^ (1 / c) [PROOFSTEP] dsimp only [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ x : ℝ hx : x ∈ Ioi 0 ⊢ rexp (-x) * x ^ (u - 1) = ‖rexp (-c * x) * x ^ (c * (u - 1))‖ ^ (1 / c) [PROOFSTEP] rw [fpow hc u hx] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ x : ℝ hx : x ∈ Ioi 0 ⊢ f c u x ^ (1 / c) = ‖rexp (-c * x) * x ^ (c * (u - 1))‖ ^ (1 / c) [PROOFSTEP] congr 1 [GOAL] case e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ x : ℝ hx : x ∈ Ioi 0 ⊢ f c u x = ‖rexp (-c * x) * x ^ (c * (u - 1))‖ [PROOFSTEP] exact (norm_of_nonneg (posf _ _ x hx)).symm [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ AEStronglyMeasurable (f c u) (Measure.restrict volume (Ioi 0)) [PROOFSTEP] refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ ContinuousOn (f c u) (Ioi 0) [PROOFSTEP] refine' (Continuous.continuousOn _).mul (ContinuousAt.continuousOn fun x hx => _) [GOAL] case refine'_1 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ ⊢ Continuous fun x => rexp (-c * x) [PROOFSTEP] exact continuous_exp.comp (continuous_const.mul continuous_id') [GOAL] case refine'_2 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) c u : ℝ hc : 0 < c hu : 0 < u A : ENNReal.ofReal (1 / c) ≠ 0 B : ENNReal.ofReal (1 / c) ≠ ⊤ x : ℝ hx : x ∈ Ioi 0 ⊢ ContinuousAt (fun x => x ^ (c * (u - 1))) x [PROOFSTEP] exact continuousAt_rpow_const _ _ (Or.inl (mem_Ioi.mp hx).ne') -- now apply Hölder: [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ Gamma (a * s + b * t) ≤ Gamma s ^ a * Gamma t ^ b [PROOFSTEP] rw [Gamma_eq_integral hs, Gamma_eq_integral ht, Gamma_eq_integral hst] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (a * s + b * t - 1) ≤ (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b [PROOFSTEP] convert MeasureTheory.integral_mul_le_Lp_mul_Lq_of_nonneg e (posf' a s) (posf' b t) (f_mem_Lp ha hs) (f_mem_Lp hb ht) using 1 [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (a * s + b * t - 1) = ∫ (a_1 : ℝ) in Ioi 0, f a s a_1 * f b t a_1 [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun x hx => _ [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 ⊢ rexp (-x) * x ^ (a * s + b * t - 1) = f a s x * f b t x [PROOFSTEP] dsimp only [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 ⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1))) [PROOFSTEP] have A : exp (-x) = exp (-a * x) * exp (-b * x) := by rw [← exp_add, ← add_mul, ← neg_add, hab, neg_one_mul] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 ⊢ rexp (-x) = rexp (-a * x) * rexp (-b * x) [PROOFSTEP] rw [← exp_add, ← add_mul, ← neg_add, hab, neg_one_mul] [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) ⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1))) [PROOFSTEP] have B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1)) := by rw [← rpow_add hx, hab']; congr 1; ring [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) ⊢ x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1)) [PROOFSTEP] rw [← rpow_add hx, hab'] [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) ⊢ x ^ (a * s + (1 - a) * t - 1) = x ^ (a * (s - 1) + (1 - a) * (t - 1)) [PROOFSTEP] congr 1 [GOAL] case e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) ⊢ a * s + (1 - a) * t - 1 = a * (s - 1) + (1 - a) * (t - 1) [PROOFSTEP] ring [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1)) ⊢ rexp (-x) * x ^ (a * s + b * t - 1) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1))) [PROOFSTEP] rw [A, B] [GOAL] case h.e'_3 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 A : rexp (-x) = rexp (-a * x) * rexp (-b * x) B : x ^ (a * s + b * t - 1) = x ^ (a * (s - 1)) * x ^ (b * (t - 1)) ⊢ rexp (-a * x) * rexp (-b * x) * (x ^ (a * (s - 1)) * x ^ (b * (t - 1))) = rexp (-a * x) * x ^ (a * (s - 1)) * (rexp (-b * x) * x ^ (b * (t - 1))) [PROOFSTEP] ring [GOAL] case h.e'_4 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b = (∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a)) ^ (1 / (1 / a)) * (∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b)) ^ (1 / (1 / b)) [PROOFSTEP] rw [one_div_one_div, one_div_one_div] [GOAL] case h.e'_4 s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1)) ^ a * (∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1)) ^ b = (∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a)) ^ a * (∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b)) ^ b [PROOFSTEP] congr 2 [GOAL] case h.e'_4.e_a.e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (s - 1) = ∫ (a_1 : ℝ) in Ioi 0, f a s a_1 ^ (1 / a) [PROOFSTEP] exact set_integral_congr measurableSet_Ioi fun x hx => fpow (by assumption) _ hx [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 ⊢ 0 < a [PROOFSTEP] assumption [GOAL] case h.e'_4.e_a.e_a s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) ⊢ ∫ (x : ℝ) in Ioi 0, rexp (-x) * x ^ (t - 1) = ∫ (a : ℝ) in Ioi 0, f b t a ^ (1 / b) [PROOFSTEP] exact set_integral_congr measurableSet_Ioi fun x hx => fpow (by assumption) _ hx [GOAL] s t a b : ℝ hs : 0 < s ht : 0 < t ha : 0 < a hb : 0 < b hab : a + b = 1 f : ℝ → ℝ → ℝ → ℝ := fun c u x => rexp (-c * x) * x ^ (c * (u - 1)) e : IsConjugateExponent (1 / a) (1 / b) hab' : b = 1 - a hst : 0 < a * s + b * t posf : ∀ (c u x : ℝ), x ∈ Ioi 0 → 0 ≤ f c u x posf' : ∀ (c u : ℝ), ∀ᵐ (x : ℝ) ∂Measure.restrict volume (Ioi 0), 0 ≤ f c u x fpow : ∀ {c x : ℝ}, 0 < c → ∀ (u : ℝ), 0 < x → rexp (-x) * x ^ (u - 1) = f c u x ^ (1 / c) f_mem_Lp : ∀ {c u : ℝ}, 0 < c → 0 < u → Memℒp (f c u) (ENNReal.ofReal (1 / c)) x : ℝ hx : x ∈ Ioi 0 ⊢ 0 < b [PROOFSTEP] assumption [GOAL] ⊢ ConvexOn ℝ (Ioi 0) (log ∘ Gamma) [PROOFSTEP] refine' convexOn_iff_forall_pos.mpr ⟨convex_Ioi _, fun x hx y hy a b ha hb hab => _⟩ [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ (log ∘ Gamma) (a • x + b • y) ≤ a • (log ∘ Gamma) x + b • (log ∘ Gamma) y [PROOFSTEP] have : b = 1 - a := by linarith [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ b = 1 - a [PROOFSTEP] linarith [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 this : b = 1 - a ⊢ (log ∘ Gamma) (a • x + b • y) ≤ a • (log ∘ Gamma) x + b • (log ∘ Gamma) y [PROOFSTEP] subst this [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a : ℝ ha : 0 < a hb : 0 < 1 - a hab : a + (1 - a) = 1 ⊢ (log ∘ Gamma) (a • x + (1 - a) • y) ≤ a • (log ∘ Gamma) x + (1 - a) • (log ∘ Gamma) y [PROOFSTEP] simp_rw [Function.comp_apply, smul_eq_mul] [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a : ℝ ha : 0 < a hb : 0 < 1 - a hab : a + (1 - a) = 1 ⊢ log (Gamma (a * x + (1 - a) * y)) ≤ a * log (Gamma x) + (1 - a) * log (Gamma y) [PROOFSTEP] rw [← log_rpow (Gamma_pos_of_pos hy), ← log_rpow (Gamma_pos_of_pos hx), ← log_mul (rpow_pos_of_pos (Gamma_pos_of_pos hx) _).ne' (rpow_pos_of_pos (Gamma_pos_of_pos hy) _).ne', log_le_log (Gamma_pos_of_pos (add_pos (mul_pos ha hx) (mul_pos hb hy))) (mul_pos (rpow_pos_of_pos (Gamma_pos_of_pos hx) _) (rpow_pos_of_pos (Gamma_pos_of_pos hy) _))] [GOAL] x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : y ∈ Ioi 0 a : ℝ ha : 0 < a hb : 0 < 1 - a hab : a + (1 - a) = 1 ⊢ Gamma (a * x + (1 - a) * y) ≤ Gamma x ^ a * Gamma y ^ (1 - a) [PROOFSTEP] exact Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma hx hy ha hb hab [GOAL] ⊢ ConvexOn ℝ (Ioi 0) Gamma [PROOFSTEP] refine' ((convexOn_exp.subset (subset_univ _) _).comp convexOn_log_Gamma (exp_monotone.monotoneOn _)).congr fun x hx => exp_log (Gamma_pos_of_pos hx) [GOAL] ⊢ Convex ℝ (log ∘ Gamma '' Ioi 0) [PROOFSTEP] rw [convex_iff_isPreconnected] [GOAL] ⊢ IsPreconnected (log ∘ Gamma '' Ioi 0) [PROOFSTEP] refine' isPreconnected_Ioi.image _ fun x hx => ContinuousAt.continuousWithinAt _ [GOAL] x : ℝ hx : x ∈ Ioi 0 ⊢ ContinuousAt (log ∘ Gamma) x [PROOFSTEP] refine' (differentiableAt_Gamma fun m => _).continuousAt.log (Gamma_pos_of_pos hx).ne' [GOAL] x : ℝ hx : x ∈ Ioi 0 m : ℕ ⊢ x ≠ -↑m [PROOFSTEP] exact (neg_lt_iff_pos_add.mpr (add_pos_of_pos_of_nonneg (mem_Ioi.mp hx) (Nat.cast_nonneg m))).ne' [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 ⊢ f ↑n = f 1 + log ↑(n - 1)! [PROOFSTEP] refine' Nat.le_induction (by simp) (fun m hm IH => _) n (Nat.one_le_iff_ne_zero.2 hn) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 ⊢ f ↑1 = f 1 + log ↑(1 - 1)! [PROOFSTEP] simp [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! ⊢ f ↑(m + 1) = f 1 + log ↑(m + 1 - 1)! [PROOFSTEP] have A : 0 < (m : ℝ) := Nat.cast_pos.2 hm [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m ⊢ f ↑(m + 1) = f 1 + log ↑(m + 1 - 1)! [PROOFSTEP] simp only [hf_feq A, Nat.cast_add, Nat.cast_one, Nat.add_succ_sub_one, add_zero] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m ⊢ f ↑m + log ↑m = f 1 + log ↑m ! [PROOFSTEP] rw [IH, add_assoc, ← log_mul (Nat.cast_ne_zero.mpr (Nat.factorial_ne_zero _)) A.ne', ← Nat.cast_mul] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m ⊢ f 1 + log ↑((m - 1)! * m) = f 1 + log ↑m ! [PROOFSTEP] conv_rhs => rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m | f 1 + log ↑m ! [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m | f 1 + log ↑m ! [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m | f 1 + log ↑m ! [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos hm, Nat.factorial_succ, mul_comm] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m ⊢ f 1 + log ↑((m - 1)! * m) = f 1 + log ↑((Nat.pred m)! * (Nat.pred m + 1)) [PROOFSTEP] congr [GOAL] case e_a.e_x.e_a.e_a f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 m : ℕ hm : 1 ≤ m IH : f ↑m = f 1 + log ↑(m - 1)! A : 0 < ↑m ⊢ m = Nat.pred m + 1 [PROOFSTEP] exact (Nat.succ_pred_eq_of_pos hm).symm [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ ⊢ f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) [PROOFSTEP] induction' n with n hn [GOAL] case zero f : ℝ → ℝ x : ℝ n : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x ⊢ f (x + ↑Nat.zero) = f x + ∑ m in Finset.range Nat.zero, log (x + ↑m) [PROOFSTEP] simp [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) ⊢ f (x + ↑(Nat.succ n)) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m) [PROOFSTEP] have : x + n.succ = x + n + 1 := by push_cast ; ring [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) ⊢ x + ↑(Nat.succ n) = x + ↑n + 1 [PROOFSTEP] push_cast [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) ⊢ x + (↑n + 1) = x + ↑n + 1 [PROOFSTEP] ring [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ f (x + ↑(Nat.succ n)) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m) [PROOFSTEP] rw [this, hf_feq, hn] [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) = f x + ∑ m in Finset.range (Nat.succ n), log (x + ↑m) case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ 0 < x + ↑n [PROOFSTEP] rw [Finset.range_succ, Finset.sum_insert Finset.not_mem_range_self] [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) = f x + (log (x + ↑n) + ∑ x_1 in Finset.range n, log (x + ↑x_1)) case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ 0 < x + ↑n [PROOFSTEP] abel [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ f x + ∑ m in Finset.range n, log (x + ↑m) + log (x + ↑n) = f x + (log (x + ↑n) + ∑ x_1 in Finset.range n, log (x + ↑x_1)) case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ 0 < x + ↑n [PROOFSTEP] abel [GOAL] case succ f : ℝ → ℝ x : ℝ n✝ : ℕ hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x n : ℕ hn : f (x + ↑n) = f x + ∑ m in Finset.range n, log (x + ↑m) this : x + ↑(Nat.succ n) = x + ↑n + 1 ⊢ 0 < x + ↑n [PROOFSTEP] linarith [(Nat.cast_nonneg n : 0 ≤ (n : ℝ))] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 ⊢ f (↑n + x) ≤ f ↑n + x * log ↑n [PROOFSTEP] have hn' : 0 < (n : ℝ) := Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n ⊢ f (↑n + x) ≤ f ↑n + x * log ↑n [PROOFSTEP] have : f n + x * log n = (1 - x) * f n + x * f (n + 1) := by rw [hf_feq hn']; ring [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n ⊢ f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) [PROOFSTEP] rw [hf_feq hn'] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n ⊢ f ↑n + x * log ↑n = (1 - x) * f ↑n + x * (f ↑n + log ↑n) [PROOFSTEP] ring [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ f (↑n + x) ≤ f ↑n + x * log ↑n [PROOFSTEP] rw [this, (by ring : (n : ℝ) + x = (1 - x) * n + x * (n + 1))] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ ↑n + x = (1 - x) * ↑n + x * (↑n + 1) [PROOFSTEP] ring [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ f ((1 - x) * ↑n + x * (↑n + 1)) ≤ (1 - x) * f ↑n + x * f (↑n + 1) [PROOFSTEP] simpa only [smul_eq_mul] using hf_conv.2 hn' (by linarith : 0 < (n + 1 : ℝ)) (by linarith : 0 ≤ 1 - x) hx.le (by linarith) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ 0 < ↑n + 1 [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ 0 ≤ 1 - x [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : n ≠ 0 hx : 0 < x hx' : x ≤ 1 hn' : 0 < ↑n this : f ↑n + x * log ↑n = (1 - x) * f ↑n + x * f (↑n + 1) ⊢ 1 - x + x = 1 [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x ⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x) [PROOFSTEP] have npos : 0 < (n : ℝ) - 1 := by rw [← Nat.cast_one, sub_pos, Nat.cast_lt]; linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x ⊢ 0 < ↑n - 1 [PROOFSTEP] rw [← Nat.cast_one, sub_pos, Nat.cast_lt] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x ⊢ 1 < n [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 ⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x) [PROOFSTEP] have c := (convexOn_iff_slope_mono_adjacent.mp <| hf_conv).2 npos (by linarith : 0 < (n : ℝ) + x) (by linarith : (n : ℝ) - 1 < (n : ℝ)) (by linarith) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 ⊢ 0 < ↑n + x [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 ⊢ ↑n - 1 < ↑n [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 ⊢ ↑n < ↑n + x [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 c : (f ↑n - f (↑n - 1)) / (↑n - (↑n - 1)) ≤ (f (↑n + x) - f ↑n) / (↑n + x - ↑n) ⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x) [PROOFSTEP] rw [add_sub_cancel', sub_sub_cancel, div_one] at c [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x ⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x) [PROOFSTEP] have : f (↑n - 1) = f n - log (↑n - 1) := by -- Porting note: was -- nth_rw_rhs 1 [(by ring : (n : ℝ) = ↑n - 1 + 1)] -- rw [hf_feq npos, add_sub_cancel]rw [eq_sub_iff_add_eq, ← hf_feq npos, sub_add_cancel] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x ⊢ f (↑n - 1) = f ↑n - log (↑n - 1) [PROOFSTEP] rw [eq_sub_iff_add_eq, ← hf_feq npos, sub_add_cancel] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hn : 2 ≤ n hx : 0 < x npos : 0 < ↑n - 1 c : f ↑n - f (↑n - 1) ≤ (f (↑n + x) - f ↑n) / x this : f (↑n - 1) = f ↑n - log (↑n - 1) ⊢ f ↑n + x * log (↑n - 1) ≤ f (↑n + x) [PROOFSTEP] rwa [this, le_div_iff hx, sub_sub_cancel, le_sub_iff_add_le, mul_comm _ x, add_comm] at c [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ logGammaSeq (x + 1) n = logGammaSeq x (n + 1) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] dsimp only [Nat.factorial_succ, logGammaSeq] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] conv_rhs => rw [Finset.sum_range_succ', Nat.cast_zero, add_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ | x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [Finset.sum_range_succ', Nat.cast_zero, add_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ | x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [Finset.sum_range_succ', Nat.cast_zero, add_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ | x * log ↑(n + 1) + log ↑((n + 1) * n !) - ∑ m in Finset.range (n + 1 + 1), log (x + ↑m) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [Finset.sum_range_succ', Nat.cast_zero, add_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log ↑(n + 1) + log ↑((n + 1) * n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [Nat.cast_mul, log_mul] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x - (x + 1) * (log (↑n + 1) - log ↑n) case hx f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ↑(n + 1) ≠ 0 case hy f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ↑n ! ≠ 0 [PROOFSTEP] rotate_left [GOAL] case hx f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ↑(n + 1) ≠ 0 [PROOFSTEP] rw [Nat.cast_ne_zero] [GOAL] case hx f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ n + 1 ≠ 0 [PROOFSTEP] exact Nat.succ_ne_zero n [GOAL] case hy f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ↑n ! ≠ 0 [PROOFSTEP] rw [Nat.cast_ne_zero] [GOAL] case hy f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ n ! ≠ 0 [PROOFSTEP] exact Nat.factorial_ne_zero n [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] have : ∑ m : ℕ in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k : ℕ in Finset.range (n + 1), log (x + ↑(k + 1)) := by refine' Finset.sum_congr (by rfl) fun m _ => _ congr 1 push_cast abel [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) [PROOFSTEP] refine' Finset.sum_congr (by rfl) fun m _ => _ [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ ⊢ Finset.range (n + 1) = Finset.range (n + 1) [PROOFSTEP] rfl [GOAL] f : ℝ → ℝ x✝¹ : ℝ n✝ : ℕ x : ℝ n m : ℕ x✝ : m ∈ Finset.range (n + 1) ⊢ log (x + 1 + ↑m) = log (x + ↑(m + 1)) [PROOFSTEP] congr 1 [GOAL] case e_x f : ℝ → ℝ x✝¹ : ℝ n✝ : ℕ x : ℝ n m : ℕ x✝ : m ∈ Finset.range (n + 1) ⊢ x + 1 + ↑m = x + ↑(m + 1) [PROOFSTEP] push_cast [GOAL] case e_x f : ℝ → ℝ x✝¹ : ℝ n✝ : ℕ x : ℝ n m : ℕ x✝ : m ∈ Finset.range (n + 1) ⊢ x + 1 + ↑m = x + (↑m + 1) [PROOFSTEP] abel [GOAL] case e_x f : ℝ → ℝ x✝¹ : ℝ n✝ : ℕ x : ℝ n m : ℕ x✝ : m ∈ Finset.range (n + 1) ⊢ x + 1 + ↑m = x + (↑m + 1) [PROOFSTEP] abel [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ this : ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log ↑(n + 1) + (log ↑(n + 1) + log ↑n !) - (∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) + log x) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [← this, Nat.cast_add_one n] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ x : ℝ n : ℕ this : ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = ∑ k in Finset.range (n + 1), log (x + ↑(k + 1)) ⊢ (x + 1) * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + 1 + ↑m) = x * log (↑n + 1) + (log (↑n + 1) + log ↑n !) - (∑ m in Finset.range (n + 1), log (x + 1 + ↑m) + log x) + log x - (x + 1) * (log (↑n + 1) - log ↑n) [PROOFSTEP] ring [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f x ≤ f 1 + x * log (↑n + 1) - x * log ↑n + logGammaSeq x n [PROOFSTEP] rw [logGammaSeq, ← add_sub_assoc, le_sub_iff_add_le, ← f_add_nat_eq (@hf_feq) hx, add_comm x] [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f (↑(n + 1) + x) ≤ f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !) [PROOFSTEP] refine' (f_add_nat_le hf_conv (@hf_feq) (Nat.add_one_ne_zero n) hx hx').trans (le_of_eq _) [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f ↑(n + 1) + x * log ↑(n + 1) = f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !) [PROOFSTEP] rw [f_nat_eq @hf_feq (by linarith : n + 1 ≠ 0), Nat.add_sub_cancel, Nat.cast_add_one] [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ n + 1 ≠ 0 [PROOFSTEP] linarith [GOAL] f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f 1 + log ↑n ! + x * log (↑n + 1) = f 1 + x * log (↑n + 1) - x * log ↑n + (x * log ↑n + log ↑n !) [PROOFSTEP] ring [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ f 1 + logGammaSeq x n ≤ f x [PROOFSTEP] dsimp [logGammaSeq] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ f 1 + (x * log ↑n + log ↑n ! - ∑ m in Finset.range (n + 1), log (x + ↑m)) ≤ f x [PROOFSTEP] rw [← add_sub_assoc, sub_le_iff_le_add, ← f_add_nat_eq (@hf_feq) hx, add_comm x _] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ f 1 + (x * log ↑n + log ↑n !) ≤ f (↑(n + 1) + x) [PROOFSTEP] refine' le_trans (le_of_eq _) (f_add_nat_ge hf_conv @hf_feq _ hx) [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ f 1 + (x * log ↑n + log ↑n !) = f ↑(n + 1) + x * log (↑(n + 1) - 1) [PROOFSTEP] rw [f_nat_eq @hf_feq, Nat.add_sub_cancel, Nat.cast_add_one, add_sub_cancel] [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ f 1 + (x * log ↑n + log ↑n !) = f 1 + log ↑n ! + x * log ↑n [PROOFSTEP] ring [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ n + 1 ≠ 0 [PROOFSTEP] exact Nat.succ_ne_zero _ [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ 2 ≤ n + 1 [PROOFSTEP] apply Nat.succ_le_succ [GOAL] case refine'_2.a f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hn : n ≠ 0 ⊢ 1 ≤ n [PROOFSTEP] linarith [Nat.pos_of_ne_zero hn] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] refine' tendsto_of_tendsto_of_tendsto_of_le_of_le' _ tendsto_const_nhds _ _ -- Porting note: `show` no longer reorders goals [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ℕ → ℝ case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1)) case refine'_3 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b case refine'_4 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, logGammaSeq x b ≤ f x - f 1 [PROOFSTEP] pick_goal 4 [GOAL] case refine'_4 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, logGammaSeq x b ≤ f x - f 1 case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ℕ → ℝ case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1)) case refine'_3 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b [PROOFSTEP] show ∀ᶠ n : ℕ in atTop, logGammaSeq x n ≤ f x - f 1 [GOAL] case refine'_4 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (n : ℕ) in atTop, logGammaSeq x n ≤ f x - f 1 [PROOFSTEP] refine' Eventually.mp (eventually_ne_atTop 0) (eventually_of_forall fun n hn => _) [GOAL] case refine'_4 f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ hn : n ≠ 0 ⊢ logGammaSeq x n ≤ f x - f 1 [PROOFSTEP] exact le_sub_iff_add_le'.mpr (ge_logGammaSeq hf_conv (@hf_feq) hx hn) -- Porting note: `show` no longer reorders goals [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ℕ → ℝ case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1)) case refine'_3 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b [PROOFSTEP] pick_goal 3 [GOAL] case refine'_3 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, ?refine'_1 b ≤ logGammaSeq x b case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ℕ → ℝ case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto ?refine'_1 atTop (𝓝 (f x - f 1)) [PROOFSTEP] show ∀ᶠ n : ℕ in atTop, f x - f 1 - x * (log (n + 1) - log n) ≤ logGammaSeq x n [GOAL] case refine'_3 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (n : ℕ) in atTop, f x - f 1 - x * (log (↑n + 1) - log ↑n) ≤ logGammaSeq x n [PROOFSTEP] refine' eventually_of_forall fun n => _ [GOAL] case refine'_3 f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f x - f 1 - x * (log (↑n + 1) - log ↑n) ≤ logGammaSeq x n [PROOFSTEP] rw [sub_le_iff_le_add', sub_le_iff_le_add'] [GOAL] case refine'_3 f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f x ≤ f 1 + (x * (log (↑n + 1) - log ↑n) + logGammaSeq x n) [PROOFSTEP] convert le_logGammaSeq hf_conv (@hf_feq) hx hx' n using 1 [GOAL] case h.e'_4 f : ℝ → ℝ x : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 n : ℕ ⊢ f 1 + (x * (log (↑n + 1) - log ↑n) + logGammaSeq x n) = f 1 + x * log (↑n + 1) - x * log ↑n + logGammaSeq x n [PROOFSTEP] ring [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1)) [PROOFSTEP] have : f x - f 1 = f x - f 1 - x * 0 := by ring [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ f x - f 1 = f x - f 1 - x * 0 [PROOFSTEP] ring [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 this : f x - f 1 = f x - f 1 - x * 0 ⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1)) [PROOFSTEP] nth_rw 2 [this] [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 this : f x - f 1 = f x - f 1 - x * 0 ⊢ Tendsto (fun b => f x - f 1 - x * (log (↑b + 1) - log ↑b)) atTop (𝓝 (f x - f 1 - x * 0)) [PROOFSTEP] exact Tendsto.sub tendsto_const_nhds (tendsto_log_nat_add_one_sub_log.const_mul _) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] suffices ∀ m : ℕ, ↑m < x → x ≤ m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 <| f x - f 1) by refine' this ⌈x - 1⌉₊ _ _ · rcases lt_or_le x 1 with ⟨⟩ · rwa [Nat.ceil_eq_zero.mpr (by linarith : x - 1 ≤ 0), Nat.cast_zero] · convert Nat.ceil_lt_add_one (by linarith : 0 ≤ x - 1) abel · rw [← sub_le_iff_le_add]; exact Nat.le_ceil _ [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] refine' this ⌈x - 1⌉₊ _ _ [GOAL] case refine'_1 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) ⊢ ↑⌈x - 1⌉₊ < x [PROOFSTEP] rcases lt_or_le x 1 with ⟨⟩ [GOAL] case refine'_1.inl f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : x < 1 ⊢ ↑⌈x - 1⌉₊ < x [PROOFSTEP] rwa [Nat.ceil_eq_zero.mpr (by linarith : x - 1 ≤ 0), Nat.cast_zero] [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : x < 1 ⊢ x - 1 ≤ 0 [PROOFSTEP] linarith [GOAL] case refine'_1.inr f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : 1 ≤ x ⊢ ↑⌈x - 1⌉₊ < x [PROOFSTEP] convert Nat.ceil_lt_add_one (by linarith : 0 ≤ x - 1) [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : 1 ≤ x ⊢ 0 ≤ x - 1 [PROOFSTEP] linarith [GOAL] case h.e'_4 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : 1 ≤ x ⊢ x = x - 1 + 1 [PROOFSTEP] abel [GOAL] case h.e'_4 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) h✝ : 1 ≤ x ⊢ x = x - 1 + 1 [PROOFSTEP] abel [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) ⊢ x ≤ ↑⌈x - 1⌉₊ + 1 [PROOFSTEP] rw [← sub_le_iff_le_add] [GOAL] case refine'_2 f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x this : ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) ⊢ x - 1 ≤ ↑⌈x - 1⌉₊ [PROOFSTEP] exact Nat.le_ceil _ [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x ⊢ ∀ (m : ℕ), ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] intro m [GOAL] f : ℝ → ℝ x : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x m : ℕ ⊢ ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] induction' m with m hm generalizing x [GOAL] case zero f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ x : ℝ hx : 0 < x ⊢ ↑Nat.zero < x → x ≤ ↑Nat.zero + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] rw [Nat.cast_zero, zero_add] [GOAL] case zero f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ x : ℝ hx : 0 < x ⊢ 0 < x → x ≤ 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] exact fun _ hx' => tendsto_logGammaSeq_of_le_one hf_conv (@hf_feq) hx hx' [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) x : ℝ hx : 0 < x ⊢ ↑(Nat.succ m) < x → x ≤ ↑(Nat.succ m) + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] intro hy hy' [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) x : ℝ hx : 0 < x hy : ↑(Nat.succ m) < x hy' : x ≤ ↑(Nat.succ m) + 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] rw [Nat.cast_succ, ← sub_le_iff_le_add] at hy' [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) x : ℝ hx : 0 < x hy : ↑(Nat.succ m) < x hy' : x - 1 ≤ ↑m + 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] rw [Nat.cast_succ, ← lt_sub_iff_add_lt] at hy [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ hm : ∀ {x : ℝ}, 0 < x → ↑m < x → x ≤ ↑m + 1 → Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] specialize hm ((Nat.cast_nonneg _).trans_lt hy) hy hy' [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] have : ∀ᶠ n : ℕ in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) := by refine' Eventually.mp (eventually_ge_atTop 1) (eventually_of_forall fun n hn => _) have := logGammaSeq_add_one (x - 1) (n - 1) rw [sub_add_cancel, Nat.sub_add_cancel hn] at this rw [this] ring [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) ⊢ ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) [PROOFSTEP] refine' Eventually.mp (eventually_ge_atTop 1) (eventually_of_forall fun n hn => _) [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) n : ℕ hn : 1 ≤ n ⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) [PROOFSTEP] have := logGammaSeq_add_one (x - 1) (n - 1) [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) n : ℕ hn : 1 ≤ n this : logGammaSeq (x - 1 + 1) (n - 1) = logGammaSeq (x - 1) (n - 1 + 1) + log (x - 1) - (x - 1 + 1) * (log (↑(n - 1) + 1) - log ↑(n - 1)) ⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) [PROOFSTEP] rw [sub_add_cancel, Nat.sub_add_cancel hn] at this [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) n : ℕ hn : 1 ≤ n this : logGammaSeq x (n - 1) = logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1)) ⊢ logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) [PROOFSTEP] rw [this] [GOAL] f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) n : ℕ hn : 1 ≤ n this : logGammaSeq x (n - 1) = logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1)) ⊢ logGammaSeq (x - 1) n = logGammaSeq (x - 1) n + log (x - 1) - x * (log (↑(n - 1) + 1) - log ↑(n - 1)) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) [PROOFSTEP] ring [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 hm : Tendsto (logGammaSeq (x - 1)) atTop (𝓝 (f (x - 1) - f 1)) this : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] replace hm := ((Tendsto.congr' this hm).add (tendsto_const_nhds : Tendsto (fun _ => log (x - 1)) _ _)).comp (tendsto_add_atTop_nat 1) [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto ((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘ fun a => a + 1) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] have : ((fun x_1 : ℕ => (fun n : ℕ => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b : ℕ => log (x - 1)) x_1) ∘ fun a : ℕ => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) := by ext1 n dsimp only [Function.comp_apply] rw [sub_add_cancel, Nat.add_sub_cancel] [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto ((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘ fun a => a + 1) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) ⊢ ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) [PROOFSTEP] ext1 n [GOAL] case h f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto ((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘ fun a => a + 1) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) n : ℕ ⊢ ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) n = logGammaSeq x n + x * (log (↑n + 1) - log ↑n) [PROOFSTEP] dsimp only [Function.comp_apply] [GOAL] case h f : ℝ → ℝ x✝ : ℝ n✝ : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto ((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘ fun a => a + 1) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) n : ℕ ⊢ logGammaSeq x (n + 1 - 1) + x * (log (↑(n + 1 - 1) + 1) - log ↑(n + 1 - 1)) - log (x - 1) + log (x - 1) = logGammaSeq x n + x * (log (↑n + 1) - log ↑n) [PROOFSTEP] rw [sub_add_cancel, Nat.add_sub_cancel] [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto ((fun x_1 => logGammaSeq x (x_1 - 1) + x * (log (↑(x_1 - 1) + 1) - log ↑(x_1 - 1)) - log (x - 1) + log (x - 1)) ∘ fun a => a + 1) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] rw [this] at hm [GOAL] case succ f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1)) [PROOFSTEP] convert hm.sub (tendsto_log_nat_add_one_sub_log.const_mul x) using 2 [GOAL] case h.e'_3.h f : ℝ → ℝ x✝¹ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝¹ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) x✝ : ℕ ⊢ logGammaSeq x x✝ = logGammaSeq x x✝ + x * (log (↑x✝ + 1) - log ↑x✝) - x * (log (↑x✝ + 1) - log ↑x✝) [PROOFSTEP] ring [GOAL] case h.e'_5.h.e'_3 f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) ⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0 [PROOFSTEP] have := hf_feq ((Nat.cast_nonneg m).trans_lt hy) [GOAL] case h.e'_5.h.e'_3 f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝¹ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this✝ : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) this : f (x - 1 + 1) = f (x - 1) + log (x - 1) ⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0 [PROOFSTEP] rw [sub_add_cancel] at this [GOAL] case h.e'_5.h.e'_3 f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝¹ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this✝ : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) this : f x = f (x - 1) + log (x - 1) ⊢ f x - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0 [PROOFSTEP] rw [this] [GOAL] case h.e'_5.h.e'_3 f : ℝ → ℝ x✝ : ℝ n : ℕ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx✝ : 0 < x✝ m : ℕ x : ℝ hx : 0 < x hy : ↑m < x - 1 hy' : x - 1 ≤ ↑m + 1 this✝¹ : ∀ᶠ (n : ℕ) in atTop, logGammaSeq (x - 1) n = logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1) hm : Tendsto (fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f (x - 1) - f 1 + log (x - 1))) this✝ : ((fun x_1 => (fun n => logGammaSeq x (n - 1) + x * (log (↑(n - 1) + 1) - log ↑(n - 1)) - log (x - 1)) x_1 + (fun b => log (x - 1)) x_1) ∘ fun a => a + 1) = fun n => logGammaSeq x n + x * (log (↑n + 1) - log ↑n) this : f x = f (x - 1) + log (x - 1) ⊢ f (x - 1) + log (x - 1) - f 1 = f (x - 1) - f 1 + log (x - 1) - x * 0 [PROOFSTEP] ring [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ x : ℝ hx : 0 < x ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (log (Gamma x))) [PROOFSTEP] have : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 := by simp_rw [Function.comp_apply, Gamma_one, log_one, sub_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ x : ℝ hx : 0 < x ⊢ log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 [PROOFSTEP] simp_rw [Function.comp_apply, Gamma_one, log_one, sub_zero] [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ x : ℝ hx : 0 < x this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (log (Gamma x))) [PROOFSTEP] rw [this] [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ x : ℝ hx : 0 < x this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 ((log ∘ Gamma) x - (log ∘ Gamma) 1)) [PROOFSTEP] refine' BohrMollerup.tendsto_logGammaSeq convexOn_log_Gamma (fun {y} hy => _) hx [GOAL] f : ℝ → ℝ x✝ : ℝ n : ℕ x : ℝ hx : 0 < x this : log (Gamma x) = (log ∘ Gamma) x - (log ∘ Gamma) 1 y : ℝ hy : 0 < y ⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y [PROOFSTEP] rw [Function.comp_apply, Gamma_add_one hy.ne', log_mul hy.ne' (Gamma_pos_of_pos hy).ne', add_comm, Function.comp_apply] [GOAL] f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 ⊢ EqOn f Gamma (Ioi 0) [PROOFSTEP] suffices : EqOn (log ∘ f) (log ∘ Gamma) (Ioi (0 : ℝ)) [GOAL] f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 this : EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0) ⊢ EqOn f Gamma (Ioi 0) case this f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 ⊢ EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0) [PROOFSTEP] exact fun x hx => log_injOn_pos (hf_pos hx) (Gamma_pos_of_pos hx) (this hx) [GOAL] case this f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 ⊢ EqOn (log ∘ f) (log ∘ Gamma) (Ioi 0) [PROOFSTEP] intro x hx [GOAL] case this f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 ⊢ (log ∘ f) x = (log ∘ Gamma) x [PROOFSTEP] have e1 := BohrMollerup.tendsto_logGammaSeq hf_conv ?_ hx [GOAL] case this.refine_2 f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 e1 : Tendsto (BohrMollerup.logGammaSeq x) atTop (𝓝 ((log ∘ f) x - (log ∘ f) 1)) ⊢ (log ∘ f) x = (log ∘ Gamma) x [PROOFSTEP] rw [Function.comp_apply (f := log) (g := f) (x := 1), hf_one, log_one, sub_zero] at e1 [GOAL] case this.refine_2 f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 e1 : Tendsto (BohrMollerup.logGammaSeq x) atTop (𝓝 ((log ∘ f) x)) ⊢ (log ∘ f) x = (log ∘ Gamma) x [PROOFSTEP] exact tendsto_nhds_unique e1 (BohrMollerup.tendsto_log_gamma hx) [GOAL] case this.refine_1 f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 ⊢ ∀ {y : ℝ}, 0 < y → (log ∘ f) (y + 1) = (log ∘ f) y + log y [PROOFSTEP] intro y hy [GOAL] case this.refine_1 f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : 0 < y ⊢ (log ∘ f) (y + 1) = (log ∘ f) y + log y [PROOFSTEP] rw [Function.comp_apply, Function.comp_apply, hf_feq hy, log_mul hy.ne' (hf_pos hy).ne'] [GOAL] case this.refine_1 f : ℝ → ℝ hf_conv : ConvexOn ℝ (Ioi 0) (log ∘ f) hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = y * f y hf_pos : ∀ {y : ℝ}, 0 < y → 0 < f y hf_one : f 1 = 1 x : ℝ hx : x ∈ Ioi 0 y : ℝ hy : 0 < y ⊢ log y + log (f y) = log (f y) + log y [PROOFSTEP] ring [GOAL] ⊢ Gamma 2 = 1 [PROOFSTEP] simpa [one_add_one_eq_two] using Gamma_nat_eq_factorial 1 [GOAL] ⊢ Gamma (3 / 2) < 1 [PROOFSTEP] have A : (0 : ℝ) < 3 / 2 := by norm_num [GOAL] ⊢ 0 < 3 / 2 [PROOFSTEP] norm_num [GOAL] A : 0 < 3 / 2 ⊢ Gamma (3 / 2) < 1 [PROOFSTEP] have := BohrMollerup.f_add_nat_le convexOn_log_Gamma (fun {y} hy => ?_) two_ne_zero one_half_pos (by norm_num : 1 / 2 ≤ (1 : ℝ)) [GOAL] A : 0 < 3 / 2 ⊢ 1 / 2 ≤ 1 [PROOFSTEP] norm_num [GOAL] case refine_2 A : 0 < 3 / 2 this : (log ∘ Gamma) (↑2 + 1 / 2) ≤ (log ∘ Gamma) ↑2 + 1 / 2 * log ↑2 ⊢ Gamma (3 / 2) < 1 case refine_1 A : 0 < 3 / 2 y : ℝ hy : 0 < y ⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y [PROOFSTEP] swap [GOAL] case refine_1 A : 0 < 3 / 2 y : ℝ hy : 0 < y ⊢ (log ∘ Gamma) (y + 1) = (log ∘ Gamma) y + log y [PROOFSTEP] rw [Function.comp_apply, Gamma_add_one hy.ne', log_mul hy.ne' (Gamma_pos_of_pos hy).ne', add_comm, Function.comp_apply] [GOAL] case refine_2 A : 0 < 3 / 2 this : (log ∘ Gamma) (↑2 + 1 / 2) ≤ (log ∘ Gamma) ↑2 + 1 / 2 * log ↑2 ⊢ Gamma (3 / 2) < 1 [PROOFSTEP] rw [Function.comp_apply, Function.comp_apply, Nat.cast_two, Gamma_two, log_one, zero_add, (by norm_num : (2 : ℝ) + 1 / 2 = 3 / 2 + 1), Gamma_add_one A.ne', log_mul A.ne' (Gamma_pos_of_pos A).ne', ← le_sub_iff_add_le', log_le_iff_le_exp (Gamma_pos_of_pos A)] at this [GOAL] A : 0 < 3 / 2 this : log (Gamma (2 + 1 / 2)) ≤ 1 / 2 * log 2 ⊢ 2 + 1 / 2 = 3 / 2 + 1 [PROOFSTEP] norm_num [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ Gamma (3 / 2) < 1 [PROOFSTEP] refine' this.trans_lt (exp_lt_one_iff.mpr _) [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ 1 / 2 * log 2 - log (3 / 2) < 0 [PROOFSTEP] rw [mul_comm, ← mul_div_assoc, div_sub' _ _ (2 : ℝ) two_ne_zero] [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ (log 2 * 1 - 2 * log (3 / 2)) / 2 < 0 [PROOFSTEP] refine' div_neg_of_neg_of_pos _ two_pos [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ log 2 * 1 - 2 * log (3 / 2) < 0 [PROOFSTEP] rw [sub_neg, mul_one, ← Nat.cast_two, ← log_pow, ← exp_lt_exp, Nat.cast_two, exp_log two_pos, exp_log] [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ 2 < (3 / 2) ^ 2 [PROOFSTEP] norm_num [GOAL] case refine_2 A : 0 < 3 / 2 this : Gamma (3 / 2) ≤ rexp (1 / 2 * log 2 - log (3 / 2)) ⊢ 0 < (3 / 2) ^ 2 [PROOFSTEP] norm_num [GOAL] ⊢ StrictMonoOn Gamma (Ici 2) [PROOFSTEP] convert convexOn_Gamma.strict_mono_of_lt (by norm_num : (0 : ℝ) < 3 / 2) (by norm_num : (3 / 2 : ℝ) < 2) (Gamma_two.symm ▸ Gamma_three_div_two_lt_one) [GOAL] ⊢ 0 < 3 / 2 [PROOFSTEP] norm_num [GOAL] ⊢ 3 / 2 < 2 [PROOFSTEP] norm_num [GOAL] case h.e'_6 ⊢ Ici 2 = Ioi 0 ∩ Ici 2 [PROOFSTEP] symm [GOAL] case h.e'_6 ⊢ Ioi 0 ∩ Ici 2 = Ici 2 [PROOFSTEP] rw [inter_eq_right_iff_subset] [GOAL] case h.e'_6 ⊢ Ici 2 ⊆ Ioi 0 [PROOFSTEP] exact fun x hx => two_pos.trans_le <| mem_Ici.mp hx [GOAL] s : ℝ hs : s ≠ 0 ⊢ doublingGamma (s + 1) = s * doublingGamma s [PROOFSTEP] rw [doublingGamma, doublingGamma, (by abel : s + 1 - 1 = s - 1 + 1), add_div, add_assoc, add_halves (1 : ℝ), Gamma_add_one (div_ne_zero hs two_ne_zero), rpow_add two_pos, rpow_one] [GOAL] s : ℝ hs : s ≠ 0 ⊢ s + 1 - 1 = s - 1 + 1 [PROOFSTEP] abel [GOAL] s : ℝ hs : s ≠ 0 ⊢ s + 1 - 1 = s - 1 + 1 [PROOFSTEP] abel [GOAL] s : ℝ hs : s ≠ 0 ⊢ Gamma (s / 2 + 1 / 2) * (s / 2 * Gamma (s / 2)) * (2 ^ (s - 1) * 2) / sqrt π = s * (Gamma (s / 2) * Gamma (s / 2 + 1 / 2) * 2 ^ (s - 1) / sqrt π) [PROOFSTEP] ring [GOAL] ⊢ doublingGamma 1 = 1 [PROOFSTEP] simp_rw [doublingGamma, Gamma_one_half_eq, add_halves (1 : ℝ), sub_self, Gamma_one, mul_one, rpow_zero, mul_one, div_self (sqrt_ne_zero'.mpr pi_pos)] [GOAL] ⊢ EqOn (log ∘ doublingGamma) (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) (Ioi 0) [PROOFSTEP] intro s hs [GOAL] s : ℝ hs : s ∈ Ioi 0 ⊢ (log ∘ doublingGamma) s = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s [PROOFSTEP] have h1 : sqrt π ≠ 0 := sqrt_ne_zero'.mpr pi_pos [GOAL] s : ℝ hs : s ∈ Ioi 0 h1 : sqrt π ≠ 0 ⊢ (log ∘ doublingGamma) s = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s [PROOFSTEP] have h2 : Gamma (s / 2) ≠ 0 := (Gamma_pos_of_pos <| div_pos hs two_pos).ne' [GOAL] s : ℝ hs : s ∈ Ioi 0 h1 : sqrt π ≠ 0 h2 : Gamma (s / 2) ≠ 0 ⊢ (log ∘ doublingGamma) s = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s [PROOFSTEP] have h3 : Gamma (s / 2 + 1 / 2) ≠ 0 := (Gamma_pos_of_pos <| add_pos (div_pos hs two_pos) one_half_pos).ne' [GOAL] s : ℝ hs : s ∈ Ioi 0 h1 : sqrt π ≠ 0 h2 : Gamma (s / 2) ≠ 0 h3 : Gamma (s / 2 + 1 / 2) ≠ 0 ⊢ (log ∘ doublingGamma) s = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s [PROOFSTEP] have h4 : (2 : ℝ) ^ (s - 1) ≠ 0 := (rpow_pos_of_pos two_pos _).ne' [GOAL] s : ℝ hs : s ∈ Ioi 0 h1 : sqrt π ≠ 0 h2 : Gamma (s / 2) ≠ 0 h3 : Gamma (s / 2 + 1 / 2) ≠ 0 h4 : 2 ^ (s - 1) ≠ 0 ⊢ (log ∘ doublingGamma) s = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - log (2 * sqrt π)) s [PROOFSTEP] rw [Function.comp_apply, doublingGamma, log_div (mul_ne_zero (mul_ne_zero h2 h3) h4) h1, log_mul (mul_ne_zero h2 h3) h4, log_mul h2 h3, log_rpow two_pos, log_mul two_ne_zero h1] [GOAL] s : ℝ hs : s ∈ Ioi 0 h1 : sqrt π ≠ 0 h2 : Gamma (s / 2) ≠ 0 h3 : Gamma (s / 2 + 1 / 2) ≠ 0 h4 : 2 ^ (s - 1) ≠ 0 ⊢ log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + (s - 1) * log 2 - log (sqrt π) = (fun s => log (Gamma (s / 2)) + log (Gamma (s / 2 + 1 / 2)) + s * log 2 - (log 2 + log (sqrt π))) s [PROOFSTEP] ring_nf [GOAL] ⊢ ConvexOn ℝ (Ioi 0) (log ∘ doublingGamma) [PROOFSTEP] refine' (((ConvexOn.add _ _).add _).add_const _).congr log_doublingGamma_eq.symm [GOAL] case refine'_1 ⊢ ConvexOn ℝ (Ioi 0) fun s => log (Gamma (s / 2)) [PROOFSTEP] convert convexOn_log_Gamma.comp_affineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2 : ℝ)).toAffineMap using 1 [GOAL] case h.e'_9 ⊢ Ioi 0 = ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2))) ⁻¹' Ioi 0 [PROOFSTEP] simpa only [zero_div] using (preimage_const_mul_Ioi (0 : ℝ) one_half_pos).symm [GOAL] case h.e'_10 ⊢ (fun s => log (Gamma (s / 2))) = (log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2))) [PROOFSTEP] ext1 x [GOAL] case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2)) = ((log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)))) x [PROOFSTEP] simp only [LinearMap.coe_toAffineMap, Function.comp_apply, DistribMulAction.toLinearMap_apply] [GOAL] case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2)) = log (Gamma ((1 / 2) • x)) [PROOFSTEP] rw [smul_eq_mul, mul_comm, mul_one_div] [GOAL] case refine'_2 ⊢ ConvexOn ℝ (Ioi 0) fun s => log (Gamma (s / 2 + 1 / 2)) [PROOFSTEP] refine' ConvexOn.subset _ (Ioi_subset_Ioi <| neg_one_lt_zero.le) (convex_Ioi _) [GOAL] case refine'_2 ⊢ ConvexOn ℝ (Ioi (-1)) fun s => log (Gamma (s / 2 + 1 / 2)) [PROOFSTEP] convert convexOn_log_Gamma.comp_affineMap ((DistribMulAction.toLinearMap ℝ ℝ (1 / 2 : ℝ)).toAffineMap + AffineMap.const ℝ ℝ (1 / 2 : ℝ)) using 1 [GOAL] case h.e'_9 ⊢ Ioi (-1) = ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2)) ⁻¹' Ioi 0 [PROOFSTEP] change Ioi (-1 : ℝ) = ((fun x : ℝ => x + 1 / 2) ∘ fun x : ℝ => (1 / 2 : ℝ) * x) ⁻¹' Ioi 0 [GOAL] case h.e'_9 ⊢ Ioi (-1) = ((fun x => x + 1 / 2) ∘ fun x => 1 / 2 * x) ⁻¹' Ioi 0 [PROOFSTEP] rw [preimage_comp, preimage_add_const_Ioi, zero_sub, preimage_const_mul_Ioi (_ : ℝ) one_half_pos, neg_div, div_self (@one_half_pos ℝ _).ne'] [GOAL] case h.e'_10 ⊢ (fun s => log (Gamma (s / 2 + 1 / 2))) = (log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2)) [PROOFSTEP] ext1 x [GOAL] case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2 + 1 / 2)) = ((log ∘ Gamma) ∘ ↑(LinearMap.toAffineMap (DistribMulAction.toLinearMap ℝ ℝ (1 / 2)) + AffineMap.const ℝ ℝ (1 / 2))) x [PROOFSTEP] change log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2 : ℝ) • x + 1 / 2)) [GOAL] case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2) • x + 1 / 2)) [PROOFSTEP] rw [smul_eq_mul, mul_comm, mul_one_div] [GOAL] case refine'_3 ⊢ ConvexOn ℝ (Ioi 0) fun s => s * log 2 [PROOFSTEP] simpa only [mul_comm _ (log _)] using (convexOn_id (convex_Ioi (0 : ℝ))).smul (log_pos one_lt_two).le [GOAL] s : ℝ hs : 0 < s ⊢ doublingGamma s = Gamma s [PROOFSTEP] refine' eq_Gamma_of_log_convex doublingGamma_log_convex_Ioi (fun {y} hy => doublingGamma_add_one y hy.ne') (fun {y} hy => _) doublingGamma_one hs [GOAL] s : ℝ hs : 0 < s y : ℝ hy : 0 < y ⊢ 0 < doublingGamma y [PROOFSTEP] apply_rules [mul_pos, Gamma_pos_of_pos, add_pos, inv_pos_of_pos, rpow_pos_of_pos, two_pos, one_pos, sqrt_pos_of_pos pi_pos] [GOAL] s : ℝ hs : 0 < s ⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π [PROOFSTEP] rw [← doublingGamma_eq_Gamma (mul_pos two_pos hs), doublingGamma, mul_div_cancel_left _ (two_ne_zero' ℝ), (by abel : 1 - 2 * s = -(2 * s - 1)), rpow_neg zero_le_two] [GOAL] s : ℝ hs : 0 < s ⊢ 1 - 2 * s = -(2 * s - 1) [PROOFSTEP] abel [GOAL] s : ℝ hs : 0 < s ⊢ 1 - 2 * s = -(2 * s - 1) [PROOFSTEP] abel [GOAL] s : ℝ hs : 0 < s ⊢ Gamma s * Gamma (s + 1 / 2) = Gamma s * Gamma (s + 1 / 2) * 2 ^ (2 * s - 1) / sqrt π * (2 ^ (2 * s - 1))⁻¹ * sqrt π [PROOFSTEP] field_simp [(sqrt_pos_of_pos pi_pos).ne', (rpow_pos_of_pos two_pos (2 * s - 1)).ne'] [GOAL] s : ℝ hs : 0 < s ⊢ Gamma s * Gamma ((s * 2 + 1) / 2) * (sqrt π * 2 ^ (2 * s - 1)) = Gamma s * Gamma ((s * 2 + 1) / 2) * 2 ^ (2 * s - 1) * sqrt π [PROOFSTEP] ring
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup", "llama_tokens": 55891}
[GOAL] x y : ℝ hx : 0 < x ⊢ log x = ↑(OrderIso.symm expOrderIso) { val := x, property := hx } [PROOFSTEP] rw [log_of_ne_zero hx.ne'] [GOAL] x y : ℝ hx : 0 < x ⊢ ↑(OrderIso.symm expOrderIso) { val := |x|, property := (_ : 0 < |x|) } = ↑(OrderIso.symm expOrderIso) { val := x, property := hx } [PROOFSTEP] congr [GOAL] case h.e_6.h.e_val x y : ℝ hx : 0 < x ⊢ |x| = x [PROOFSTEP] exact abs_of_pos hx [GOAL] x y : ℝ hx : x ≠ 0 ⊢ exp (log x) = |x| [PROOFSTEP] rw [log_of_ne_zero hx, ← coe_expOrderIso_apply, OrderIso.apply_symm_apply, Subtype.coe_mk] [GOAL] x y : ℝ hx : 0 < x ⊢ exp (log x) = x [PROOFSTEP] rw [exp_log_eq_abs hx.ne'] [GOAL] x y : ℝ hx : 0 < x ⊢ |x| = x [PROOFSTEP] exact abs_of_pos hx [GOAL] x y : ℝ hx : x < 0 ⊢ exp (log x) = -x [PROOFSTEP] rw [exp_log_eq_abs (ne_of_lt hx)] [GOAL] x y : ℝ hx : x < 0 ⊢ |x| = -x [PROOFSTEP] exact abs_of_neg hx [GOAL] x✝ y x : ℝ ⊢ x ≤ exp (log x) [PROOFSTEP] by_cases h_zero : x = 0 [GOAL] case pos x✝ y x : ℝ h_zero : x = 0 ⊢ x ≤ exp (log x) [PROOFSTEP] rw [h_zero, log, dif_pos rfl, exp_zero] [GOAL] case pos x✝ y x : ℝ h_zero : x = 0 ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] case neg x✝ y x : ℝ h_zero : ¬x = 0 ⊢ x ≤ exp (log x) [PROOFSTEP] rw [exp_log_eq_abs h_zero] [GOAL] case neg x✝ y x : ℝ h_zero : ¬x = 0 ⊢ x ≤ |x| [PROOFSTEP] exact le_abs_self _ [GOAL] x y : ℝ ⊢ exp (log 1) = exp 0 [PROOFSTEP] rw [exp_log zero_lt_one, exp_zero] [GOAL] x✝ y x : ℝ ⊢ log |x| = log x [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos x✝ y x : ℝ h : x = 0 ⊢ log |x| = log x [PROOFSTEP] simp [h] [GOAL] case neg x✝ y x : ℝ h : ¬x = 0 ⊢ log |x| = log x [PROOFSTEP] rw [← exp_eq_exp, exp_log_eq_abs h, exp_log_eq_abs (abs_pos.2 h).ne', abs_abs] [GOAL] x✝ y x : ℝ ⊢ log (-x) = log x [PROOFSTEP] rw [← log_abs x, ← log_abs (-x), abs_neg] [GOAL] x✝ y x : ℝ hx : 0 < x ⊢ sinh (log x) = (x - x⁻¹) / 2 [PROOFSTEP] rw [sinh_eq, exp_neg, exp_log hx] [GOAL] x✝ y x : ℝ hx : 0 < x ⊢ cosh (log x) = (x + x⁻¹) / 2 [PROOFSTEP] rw [cosh_eq, exp_neg, exp_log hx] [GOAL] x✝¹ y x : ℝ x✝ : x ∈ univ ⊢ log (-exp x) = x [PROOFSTEP] rw [log_neg_eq_log, log_exp] [GOAL] x y : ℝ hx : x ≠ 0 hy : y ≠ 0 ⊢ exp (log (x * y)) = exp (log x + log y) [PROOFSTEP] rw [exp_log_eq_abs (mul_ne_zero hx hy), exp_add, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_mul] [GOAL] x y : ℝ hx : x ≠ 0 hy : y ≠ 0 ⊢ exp (log (x / y)) = exp (log x - log y) [PROOFSTEP] rw [exp_log_eq_abs (div_ne_zero hx hy), exp_sub, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_div] [GOAL] x✝ y x : ℝ ⊢ log x⁻¹ = -log x [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos x✝ y x : ℝ hx : x = 0 ⊢ log x⁻¹ = -log x [PROOFSTEP] simp [hx] [GOAL] case neg x✝ y x : ℝ hx : ¬x = 0 ⊢ log x⁻¹ = -log x [PROOFSTEP] rw [← exp_eq_exp, exp_log_eq_abs (inv_ne_zero hx), exp_neg, exp_log_eq_abs hx, abs_inv] [GOAL] x y : ℝ h : 0 < x h₁ : 0 < y ⊢ log x ≤ log y ↔ x ≤ y [PROOFSTEP] rw [← exp_le_exp, exp_log h, exp_log h₁] [GOAL] x y : ℝ hx : 0 < x ⊢ x < y → log x < log y [PROOFSTEP] intro h [GOAL] x y : ℝ hx : 0 < x h : x < y ⊢ log x < log y [PROOFSTEP] rwa [← exp_lt_exp, exp_log hx, exp_log (lt_trans hx h)] [GOAL] x y : ℝ hx : 0 < x ⊢ x ≤ y → log x ≤ log y [PROOFSTEP] intro hxy [GOAL] x y : ℝ hx : 0 < x hxy : x ≤ y ⊢ log x ≤ log y [PROOFSTEP] cases hxy.eq_or_lt with | inl h_eq => simp [h_eq] | inr hlt => exact le_of_lt <| log_lt_log hx hlt [GOAL] x y : ℝ hx : 0 < x hxy : x ≤ y x✝ : x = y ∨ x < y ⊢ log x ≤ log y [PROOFSTEP] cases hxy.eq_or_lt with | inl h_eq => simp [h_eq] | inr hlt => exact le_of_lt <| log_lt_log hx hlt [GOAL] case inl x y : ℝ hx : 0 < x hxy : x ≤ y h_eq : x = y ⊢ log x ≤ log y [PROOFSTEP] | inl h_eq => simp [h_eq] [GOAL] case inl x y : ℝ hx : 0 < x hxy : x ≤ y h_eq : x = y ⊢ log x ≤ log y [PROOFSTEP] simp [h_eq] [GOAL] case inr x y : ℝ hx : 0 < x hxy : x ≤ y hlt : x < y ⊢ log x ≤ log y [PROOFSTEP] | inr hlt => exact le_of_lt <| log_lt_log hx hlt [GOAL] case inr x y : ℝ hx : 0 < x hxy : x ≤ y hlt : x < y ⊢ log x ≤ log y [PROOFSTEP] exact le_of_lt <| log_lt_log hx hlt [GOAL] x y : ℝ hx : 0 < x hy : 0 < y ⊢ log x < log y ↔ x < y [PROOFSTEP] rw [← exp_lt_exp, exp_log hx, exp_log hy] [GOAL] x y : ℝ hx : 0 < x ⊢ log x ≤ y ↔ x ≤ exp y [PROOFSTEP] rw [← exp_le_exp, exp_log hx] [GOAL] x y : ℝ hx : 0 < x ⊢ log x < y ↔ x < exp y [PROOFSTEP] rw [← exp_lt_exp, exp_log hx] [GOAL] x y : ℝ hy : 0 < y ⊢ x ≤ log y ↔ exp x ≤ y [PROOFSTEP] rw [← exp_le_exp, exp_log hy] [GOAL] x y : ℝ hy : 0 < y ⊢ x < log y ↔ exp x < y [PROOFSTEP] rw [← exp_lt_exp, exp_log hy] [GOAL] x y : ℝ hx : 0 < x ⊢ 0 < log x ↔ 1 < x [PROOFSTEP] rw [← log_one] [GOAL] x y : ℝ hx : 0 < x ⊢ log 1 < log x ↔ 1 < x [PROOFSTEP] exact log_lt_log_iff zero_lt_one hx [GOAL] x y : ℝ hx : x < -1 ⊢ 0 < log x [PROOFSTEP] rw [← neg_neg x, log_neg_eq_log] [GOAL] x y : ℝ hx : x < -1 ⊢ 0 < log (-x) [PROOFSTEP] have : 1 < -x := by linarith [GOAL] x y : ℝ hx : x < -1 ⊢ 1 < -x [PROOFSTEP] linarith [GOAL] x y : ℝ hx : x < -1 this : 1 < -x ⊢ 0 < log (-x) [PROOFSTEP] exact log_pos this [GOAL] x y : ℝ h : 0 < x ⊢ log x < 0 ↔ x < 1 [PROOFSTEP] rw [← log_one] [GOAL] x y : ℝ h : 0 < x ⊢ log x < log 1 ↔ x < 1 [PROOFSTEP] exact log_lt_log_iff h zero_lt_one [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x ⊢ log x < 0 [PROOFSTEP] rw [← neg_neg x, log_neg_eq_log] [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x ⊢ log (-x) < 0 [PROOFSTEP] have h0' : 0 < -x := by linarith [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x ⊢ 0 < -x [PROOFSTEP] linarith [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x h0' : 0 < -x ⊢ log (-x) < 0 [PROOFSTEP] have h1' : -x < 1 := by linarith [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x h0' : 0 < -x ⊢ -x < 1 [PROOFSTEP] linarith [GOAL] x y : ℝ h0 : x < 0 h1 : -1 < x h0' : 0 < -x h1' : -x < 1 ⊢ log (-x) < 0 [PROOFSTEP] exact log_neg h0' h1' [GOAL] x y : ℝ hx : 0 < x ⊢ 0 ≤ log x ↔ 1 ≤ x [PROOFSTEP] rw [← not_lt, log_neg_iff hx, not_lt] [GOAL] x y : ℝ hx : 0 < x ⊢ log x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] rw [← not_lt, log_pos_iff hx, not_lt] [GOAL] x y : ℝ hx : 0 ≤ x ⊢ log x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hx) [GOAL] case inl y : ℝ hx : 0 ≤ 0 ⊢ log 0 ≤ 0 ↔ 0 ≤ 1 [PROOFSTEP] simp [le_refl, zero_le_one] [GOAL] case inr x y : ℝ hx✝ : 0 ≤ x hx : 0 < x ⊢ log x ≤ 0 ↔ x ≤ 1 [PROOFSTEP] exact log_nonpos_iff hx [GOAL] x y : ℝ n : ℕ ⊢ 0 ≤ log ↑n [PROOFSTEP] by_cases hn : n = 0 [GOAL] case pos x y : ℝ n : ℕ hn : n = 0 ⊢ 0 ≤ log ↑n case neg x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] case pos => simp [hn] [GOAL] x y : ℝ n : ℕ hn : n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] case pos => simp [hn] [GOAL] x y : ℝ n : ℕ hn : n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] simp [hn] [GOAL] case neg x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] case neg => have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn exact log_nonneg this [GOAL] x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] case neg => have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn exact log_nonneg this [GOAL] x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] have : (1 : ℝ) ≤ n := by exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn [GOAL] x y : ℝ n : ℕ hn : ¬n = 0 ⊢ 1 ≤ ↑n [PROOFSTEP] exact_mod_cast Nat.one_le_of_lt <| Nat.pos_of_ne_zero hn [GOAL] x y : ℝ n : ℕ hn : ¬n = 0 this : 1 ≤ ↑n ⊢ 0 ≤ log ↑n [PROOFSTEP] exact log_nonneg this [GOAL] x y : ℝ n : ℕ ⊢ 0 ≤ log (-↑n) [PROOFSTEP] rw [← log_neg_eq_log, neg_neg] [GOAL] x y : ℝ n : ℕ ⊢ 0 ≤ log ↑n [PROOFSTEP] exact log_nat_cast_nonneg _ [GOAL] x y : ℝ n : ℤ ⊢ 0 ≤ log ↑n [PROOFSTEP] cases lt_trichotomy 0 n with | inl hn => have : (1 : ℝ) ≤ n := by exact_mod_cast hn exact log_nonneg this | inr hn => cases hn with | inl hn => simp [hn.symm] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] x y : ℝ n : ℤ x✝ : 0 < n ∨ 0 = n ∨ n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] cases lt_trichotomy 0 n with | inl hn => have : (1 : ℝ) ≤ n := by exact_mod_cast hn exact log_nonneg this | inr hn => cases hn with | inl hn => simp [hn.symm] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] case inl x y : ℝ n : ℤ hn : 0 < n ⊢ 0 ≤ log ↑n [PROOFSTEP] | inl hn => have : (1 : ℝ) ≤ n := by exact_mod_cast hn exact log_nonneg this [GOAL] case inl x y : ℝ n : ℤ hn : 0 < n ⊢ 0 ≤ log ↑n [PROOFSTEP] have : (1 : ℝ) ≤ n := by exact_mod_cast hn [GOAL] x y : ℝ n : ℤ hn : 0 < n ⊢ 1 ≤ ↑n [PROOFSTEP] exact_mod_cast hn [GOAL] case inl x y : ℝ n : ℤ hn : 0 < n this : 1 ≤ ↑n ⊢ 0 ≤ log ↑n [PROOFSTEP] exact log_nonneg this [GOAL] case inr x y : ℝ n : ℤ hn : 0 = n ∨ n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] | inr hn => cases hn with | inl hn => simp [hn.symm] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] case inr x y : ℝ n : ℤ hn : 0 = n ∨ n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] cases hn with | inl hn => simp [hn.symm] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] case inr x y : ℝ n : ℤ hn : 0 = n ∨ n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] cases hn with | inl hn => simp [hn.symm] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] case inr.inl x y : ℝ n : ℤ hn : 0 = n ⊢ 0 ≤ log ↑n [PROOFSTEP] | inl hn => simp [hn.symm] [GOAL] case inr.inl x y : ℝ n : ℤ hn : 0 = n ⊢ 0 ≤ log ↑n [PROOFSTEP] simp [hn.symm] [GOAL] case inr.inr x y : ℝ n : ℤ hn : n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] | inr hn => have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn rw [← log_neg_eq_log] exact log_nonneg this [GOAL] case inr.inr x y : ℝ n : ℤ hn : n < 0 ⊢ 0 ≤ log ↑n [PROOFSTEP] have : (1 : ℝ) ≤ -n := by rw [← neg_zero, ← lt_neg] at hn ; exact_mod_cast hn [GOAL] x y : ℝ n : ℤ hn : n < 0 ⊢ 1 ≤ -↑n [PROOFSTEP] rw [← neg_zero, ← lt_neg] at hn [GOAL] x y : ℝ n : ℤ hn : 0 < -n ⊢ 1 ≤ -↑n [PROOFSTEP] exact_mod_cast hn [GOAL] case inr.inr x y : ℝ n : ℤ hn : n < 0 this : 1 ≤ -↑n ⊢ 0 ≤ log ↑n [PROOFSTEP] rw [← log_neg_eq_log] [GOAL] case inr.inr x y : ℝ n : ℤ hn : n < 0 this : 1 ≤ -↑n ⊢ 0 ≤ log (-↑n) [PROOFSTEP] exact log_nonneg this [GOAL] x y : ℝ ⊢ StrictAntiOn log (Iio 0) [PROOFSTEP] rintro x (hx : x < 0) y (hy : y < 0) hxy [GOAL] x✝ y✝ x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ log y < log x [PROOFSTEP] rw [← log_abs y, ← log_abs x] [GOAL] x✝ y✝ x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ log |y| < log |x| [PROOFSTEP] refine' log_lt_log (abs_pos.2 hy.ne) _ [GOAL] x✝ y✝ x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ |y| < |x| [PROOFSTEP] rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] [GOAL] x y : ℝ hx1 : 0 < x hx2 : x ≠ 1 ⊢ log x < x - 1 [PROOFSTEP] have h : log x ≠ 0 [GOAL] case h x y : ℝ hx1 : 0 < x hx2 : x ≠ 1 ⊢ log x ≠ 0 [PROOFSTEP] rwa [← log_one, log_injOn_pos.ne_iff hx1] [GOAL] case h x y : ℝ hx1 : 0 < x hx2 : x ≠ 1 ⊢ 1 ∈ Ioi 0 [PROOFSTEP] exact mem_Ioi.mpr zero_lt_one [GOAL] x y : ℝ hx1 : 0 < x hx2 : x ≠ 1 h : log x ≠ 0 ⊢ log x < x - 1 [PROOFSTEP] linarith [add_one_lt_exp_of_nonzero h, exp_log hx1] [GOAL] x✝ y x : ℝ ⊢ log x = 0 ↔ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] constructor [GOAL] case mp x✝ y x : ℝ ⊢ log x = 0 → x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] intro h [GOAL] case mp x✝ y x : ℝ h : log x = 0 ⊢ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] rcases lt_trichotomy x 0 with (x_lt_zero | rfl | x_gt_zero) [GOAL] case mp.inl x✝ y x : ℝ h : log x = 0 x_lt_zero : x < 0 ⊢ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] refine' Or.inr (Or.inr (neg_eq_iff_eq_neg.mp _)) [GOAL] case mp.inl x✝ y x : ℝ h : log x = 0 x_lt_zero : x < 0 ⊢ -x = 1 [PROOFSTEP] rw [← log_neg_eq_log x] at h [GOAL] case mp.inl x✝ y x : ℝ h : log (-x) = 0 x_lt_zero : x < 0 ⊢ -x = 1 [PROOFSTEP] exact eq_one_of_pos_of_log_eq_zero (neg_pos.mpr x_lt_zero) h [GOAL] case mp.inr.inl x y : ℝ h : log 0 = 0 ⊢ 0 = 0 ∨ 0 = 1 ∨ 0 = -1 [PROOFSTEP] exact Or.inl rfl [GOAL] case mp.inr.inr x✝ y x : ℝ h : log x = 0 x_gt_zero : 0 < x ⊢ x = 0 ∨ x = 1 ∨ x = -1 [PROOFSTEP] exact Or.inr (Or.inl (eq_one_of_pos_of_log_eq_zero x_gt_zero h)) [GOAL] case mpr x✝ y x : ℝ ⊢ x = 0 ∨ x = 1 ∨ x = -1 → log x = 0 [PROOFSTEP] rintro (rfl | rfl | rfl) [GOAL] case mpr.inl x y : ℝ ⊢ log 0 = 0 [PROOFSTEP] simp only [log_one, log_zero, log_neg_eq_log] [GOAL] case mpr.inr.inl x y : ℝ ⊢ log 1 = 0 [PROOFSTEP] simp only [log_one, log_zero, log_neg_eq_log] [GOAL] case mpr.inr.inr x y : ℝ ⊢ log (-1) = 0 [PROOFSTEP] simp only [log_one, log_zero, log_neg_eq_log] [GOAL] x✝ y x : ℝ ⊢ log x ≠ 0 ↔ x ≠ 0 ∧ x ≠ 1 ∧ x ≠ -1 [PROOFSTEP] simpa only [not_or] using log_eq_zero.not [GOAL] x✝ y x : ℝ n : ℕ ⊢ log (x ^ n) = ↑n * log x [PROOFSTEP] induction' n with n ih [GOAL] case zero x✝ y x : ℝ ⊢ log (x ^ Nat.zero) = ↑Nat.zero * log x [PROOFSTEP] simp [GOAL] case succ x✝ y x : ℝ n : ℕ ih : log (x ^ n) = ↑n * log x ⊢ log (x ^ Nat.succ n) = ↑(Nat.succ n) * log x [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case succ.inl x y : ℝ n : ℕ ih : log (0 ^ n) = ↑n * log 0 ⊢ log (0 ^ Nat.succ n) = ↑(Nat.succ n) * log 0 [PROOFSTEP] simp [GOAL] case succ.inr x✝ y x : ℝ n : ℕ ih : log (x ^ n) = ↑n * log x hx : x ≠ 0 ⊢ log (x ^ Nat.succ n) = ↑(Nat.succ n) * log x [PROOFSTEP] rw [pow_succ', log_mul (pow_ne_zero _ hx) hx, ih, Nat.cast_succ, add_mul, one_mul] [GOAL] x✝ y x : ℝ n : ℤ ⊢ log (x ^ n) = ↑n * log x [PROOFSTEP] induction n [GOAL] case ofNat x✝ y x : ℝ a✝ : ℕ ⊢ log (x ^ Int.ofNat a✝) = ↑(Int.ofNat a✝) * log x [PROOFSTEP] rw [Int.ofNat_eq_coe, zpow_ofNat, log_pow, Int.cast_ofNat] [GOAL] case negSucc x✝ y x : ℝ a✝ : ℕ ⊢ log (x ^ Int.negSucc a✝) = ↑(Int.negSucc a✝) * log x [PROOFSTEP] rw [zpow_negSucc, log_inv, log_pow, Int.cast_negSucc, Nat.cast_add_one, neg_mul_eq_neg_mul] [GOAL] x✝ y x : ℝ hx : 0 ≤ x ⊢ log (sqrt x) = log x / 2 [PROOFSTEP] rw [eq_div_iff, mul_comm, ← Nat.cast_two, ← log_pow, sq_sqrt hx] [GOAL] x✝ y x : ℝ hx : 0 ≤ x ⊢ 2 ≠ 0 [PROOFSTEP] exact two_ne_zero [GOAL] x✝ y x : ℝ hx : 0 < x ⊢ log x ≤ x - 1 [PROOFSTEP] rw [le_sub_iff_add_le] [GOAL] x✝ y x : ℝ hx : 0 < x ⊢ log x + 1 ≤ x [PROOFSTEP] convert add_one_le_exp (log x) [GOAL] case h.e'_4 x✝ y x : ℝ hx : 0 < x ⊢ x = exp (log x) [PROOFSTEP] rw [exp_log hx] [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 ⊢ |log x * x| < 1 [PROOFSTEP] have : 0 < 1 / x := by simpa only [one_div, inv_pos] using h1 [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 ⊢ 0 < 1 / x [PROOFSTEP] simpa only [one_div, inv_pos] using h1 [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : 0 < 1 / x ⊢ |log x * x| < 1 [PROOFSTEP] replace := log_le_sub_one_of_pos this [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : log (1 / x) ≤ 1 / x - 1 ⊢ |log x * x| < 1 [PROOFSTEP] replace : log (1 / x) < 1 / x := by linarith [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : log (1 / x) ≤ 1 / x - 1 ⊢ log (1 / x) < 1 / x [PROOFSTEP] linarith [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : log (1 / x) < 1 / x ⊢ |log x * x| < 1 [PROOFSTEP] rw [log_div one_ne_zero h1.ne', log_one, zero_sub, lt_div_iff h1] at this [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ |log x * x| < 1 [PROOFSTEP] have aux : 0 ≤ -log x * x := by refine' mul_nonneg _ h1.le rw [← log_inv] apply log_nonneg rw [← le_inv h1 zero_lt_one, inv_one] exact h2 [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ 0 ≤ -log x * x [PROOFSTEP] refine' mul_nonneg _ h1.le [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ 0 ≤ -log x [PROOFSTEP] rw [← log_inv] [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ 0 ≤ log x⁻¹ [PROOFSTEP] apply log_nonneg [GOAL] case hx x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ 1 ≤ x⁻¹ [PROOFSTEP] rw [← le_inv h1 zero_lt_one, inv_one] [GOAL] case hx x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 ⊢ x ≤ 1 [PROOFSTEP] exact h2 [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : -log x * x < 1 aux : 0 ≤ -log x * x ⊢ |log x * x| < 1 [PROOFSTEP] rw [← abs_of_nonneg aux, neg_mul, abs_neg] at this [GOAL] x✝ y x : ℝ h1 : 0 < x h2 : x ≤ 1 this : |log x * x| < 1 aux : 0 ≤ -log x * x ⊢ |log x * x| < 1 [PROOFSTEP] exact this [GOAL] x y : ℝ ⊢ Tendsto (fun x => log (exp x)) atTop atTop [PROOFSTEP] simpa only [log_exp] using tendsto_id [GOAL] x y : ℝ ⊢ Tendsto log (𝓝[{0}ᶜ] 0) atBot [PROOFSTEP] rw [← show _ = log from funext log_abs] [GOAL] x y : ℝ ⊢ Tendsto (fun x => log |x|) (𝓝[{0}ᶜ] 0) atBot [PROOFSTEP] refine' Tendsto.comp (g := log) _ tendsto_abs_nhdsWithin_zero [GOAL] x y : ℝ ⊢ Tendsto log (𝓝[Ioi 0] 0) atBot [PROOFSTEP] simpa [← tendsto_comp_exp_atBot] using tendsto_id [GOAL] x y : ℝ ⊢ ContinuousOn log {0}ᶜ [PROOFSTEP] simp only [continuousOn_iff_continuous_restrict, restrict] [GOAL] x y : ℝ ⊢ Continuous fun x => log ↑x [PROOFSTEP] conv in log _ => rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)] [GOAL] x✝ y : ℝ x : ↑{0}ᶜ | log ↑x [PROOFSTEP] rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)] [GOAL] x✝ y : ℝ x : ↑{0}ᶜ | log ↑x [PROOFSTEP] rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)] [GOAL] x✝ y : ℝ x : ↑{0}ᶜ | log ↑x [PROOFSTEP] rw [log_of_ne_zero (show (x : ℝ) ≠ 0 from x.2)] [GOAL] x y : ℝ ⊢ Continuous fun x => ↑(OrderIso.symm expOrderIso) { val := |↑x|, property := (_ : 0 < |↑x|) } [PROOFSTEP] exact expOrderIso.symm.continuous.comp (continuous_subtype_val.norm.subtype_mk _) [GOAL] x y : ℝ ⊢ ContinuousAt log x ↔ x ≠ 0 [PROOFSTEP] refine' ⟨_, continuousAt_log⟩ [GOAL] x y : ℝ ⊢ ContinuousAt log x → x ≠ 0 [PROOFSTEP] rintro h rfl [GOAL] y : ℝ h : ContinuousAt log 0 ⊢ False [PROOFSTEP] exact not_tendsto_nhds_of_tendsto_atBot tendsto_log_nhdsWithin_zero _ (h.tendsto.mono_left inf_le_left) [GOAL] x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf : ∀ (x : α), x ∈ s → f x ≠ 0 ⊢ log (∏ i in s, f i) = ∑ i in s, log (f i) [PROOFSTEP] induction' s using Finset.cons_induction_on with a s ha ih [GOAL] case h₁ x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s → f x ≠ 0 hf : ∀ (x : α), x ∈ ∅ → f x ≠ 0 ⊢ log (∏ i in ∅, f i) = ∑ i in ∅, log (f i) [PROOFSTEP] simp [GOAL] case h₂ x y : ℝ α : Type u_1 s✝ : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0 a : α s : Finset α ha : ¬a ∈ s ih : (∀ (x : α), x ∈ s → f x ≠ 0) → log (∏ i in s, f i) = ∑ i in s, log (f i) hf : ∀ (x : α), x ∈ Finset.cons a s ha → f x ≠ 0 ⊢ log (∏ i in Finset.cons a s ha, f i) = ∑ i in Finset.cons a s ha, log (f i) [PROOFSTEP] rw [Finset.forall_mem_cons] at hf [GOAL] case h₂ x y : ℝ α : Type u_1 s✝ : Finset α f : α → ℝ hf✝ : ∀ (x : α), x ∈ s✝ → f x ≠ 0 a : α s : Finset α ha : ¬a ∈ s ih : (∀ (x : α), x ∈ s → f x ≠ 0) → log (∏ i in s, f i) = ∑ i in s, log (f i) hf : f a ≠ 0 ∧ ∀ (x : α), x ∈ s → f x ≠ 0 ⊢ log (∏ i in Finset.cons a s ha, f i) = ∑ i in Finset.cons a s ha, log (f i) [PROOFSTEP] simp [ih hf.2, log_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] [GOAL] x y : ℝ n : ℕ ⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => ↑t * log ↑p [PROOFSTEP] rcases eq_or_ne n 0 with (rfl | hn) [GOAL] case inl x y : ℝ ⊢ log ↑0 = Finsupp.sum (Nat.factorization 0) fun p t => ↑t * log ↑p [PROOFSTEP] simp -- relies on junk values of `log` and `Nat.factorization` [GOAL] case inr x y : ℝ n : ℕ hn : n ≠ 0 ⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => ↑t * log ↑p [PROOFSTEP] simp only [← log_pow, ← Nat.cast_pow] [GOAL] case inr x y : ℝ n : ℕ hn : n ≠ 0 ⊢ log ↑n = Finsupp.sum (Nat.factorization n) fun p t => log ↑(p ^ t) [PROOFSTEP] rw [← Finsupp.log_prod, ← Nat.cast_finsupp_prod, Nat.factorization_prod_pow_eq_self hn] [GOAL] case inr.hg x y : ℝ n : ℕ hn : n ≠ 0 ⊢ ∀ (a : ℕ), ↑(a ^ ↑(Nat.factorization n) a) = 0 → ↑(Nat.factorization n) a = 0 [PROOFSTEP] intro p hp [GOAL] case inr.hg x y : ℝ n : ℕ hn : n ≠ 0 p : ℕ hp : ↑(p ^ ↑(Nat.factorization n) p) = 0 ⊢ ↑(Nat.factorization n) p = 0 [PROOFSTEP] rw [pow_eq_zero (Nat.cast_eq_zero.1 hp), Nat.factorization_zero_right] [GOAL] x y a b : ℝ n : ℕ ha : a ≠ 0 ⊢ (fun x => x ^ n / (a * exp x + b)) ∘ log =ᶠ[atTop] fun x => log x ^ n / (a * x + b) [PROOFSTEP] filter_upwards [eventually_gt_atTop (0 : ℝ)] with x hx using by simp [exp_log hx] [GOAL] x✝ y a b : ℝ n : ℕ ha : a ≠ 0 x : ℝ hx : 0 < x ⊢ ((fun x => x ^ n / (a * exp x + b)) ∘ log) x = log x ^ n / (a * x + b) [PROOFSTEP] simp [exp_log hx] [GOAL] x y : ℝ n : ℕ ⊢ (fun x => log x ^ n) =o[atTop] id [PROOFSTEP] rw [Asymptotics.isLittleO_iff_tendsto'] [GOAL] x y : ℝ n : ℕ ⊢ Tendsto (fun x => log x ^ n / id x) atTop (𝓝 0) [PROOFSTEP] simpa using tendsto_pow_log_div_mul_add_atTop 1 0 n one_ne_zero [GOAL] x y : ℝ n : ℕ ⊢ ∀ᶠ (x : ℝ) in atTop, id x = 0 → log x ^ n = 0 [PROOFSTEP] filter_upwards [eventually_ne_atTop (0 : ℝ)] with x h₁ h₂ using (h₁ h₂).elim [GOAL] x y c : ℝ ⊢ (fun x => c) =o[atTop] log [PROOFSTEP] refine Asymptotics.isLittleO_of_tendsto' ?_ <| Tendsto.div_atTop (a := c) (by simp) tendsto_log_atTop [GOAL] x y c : ℝ ⊢ Tendsto (fun x => c) atTop (𝓝 c) [PROOFSTEP] simp [GOAL] x y c : ℝ ⊢ ∀ᶠ (x : ℝ) in atTop, log x = 0 → c = 0 [PROOFSTEP] filter_upwards [eventually_gt_atTop 1] with x hx [GOAL] case h x✝ y c x : ℝ hx : 1 < x ⊢ log x = 0 → c = 0 [PROOFSTEP] aesop (add safe forward log_pos) [GOAL] y : ℝ ⊢ Tendsto (fun x => log (x + y) - log x) atTop (𝓝 0) [PROOFSTEP] have : Tendsto (fun x ↦ 1 + y / x) atTop (𝓝 (1 + 0)) [GOAL] case this y : ℝ ⊢ Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) [PROOFSTEP] exact tendsto_const_nhds.add (tendsto_const_nhds.div_atTop tendsto_id) [GOAL] y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) ⊢ Tendsto (fun x => log (x + y) - log x) atTop (𝓝 0) [PROOFSTEP] rw [← comap_exp_nhds_exp, exp_zero, tendsto_comap_iff, ← add_zero (1 : ℝ)] [GOAL] y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) ⊢ Tendsto (exp ∘ fun x => log (x + y) - log x) atTop (𝓝 (1 + 0)) [PROOFSTEP] refine' this.congr' _ [GOAL] y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) ⊢ (fun x => 1 + y / x) =ᶠ[atTop] exp ∘ fun x => log (x + y) - log x [PROOFSTEP] filter_upwards [eventually_gt_atTop (0 : ℝ), eventually_gt_atTop (-y)] with x hx₀ hxy [GOAL] case h y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) x : ℝ hx₀ : 0 < x hxy : -y < x ⊢ 1 + y / x = (exp ∘ fun x => log (x + y) - log x) x [PROOFSTEP] rw [comp_apply, exp_sub, exp_log, exp_log, one_add_div] [GOAL] case h y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) x : ℝ hx₀ : 0 < x hxy : -y < x ⊢ x ≠ 0 [PROOFSTEP] linarith [GOAL] case h y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) x : ℝ hx₀ : 0 < x hxy : -y < x ⊢ 0 < x [PROOFSTEP] linarith [GOAL] case h y : ℝ this : Tendsto (fun x => 1 + y / x) atTop (𝓝 (1 + 0)) x : ℝ hx₀ : 0 < x hxy : -y < x ⊢ 0 < x + y [PROOFSTEP] linarith [GOAL] e : ℝ n : ℕ h : NormNum.IsNat e n ⊢ 0 ≤ Real.log e [PROOFSTEP] rw [NormNum.IsNat.to_eq h rfl] [GOAL] e : ℝ n : ℕ h : NormNum.IsNat e n ⊢ 0 ≤ Real.log ↑n [PROOFSTEP] exact Real.log_nat_cast_nonneg _ [GOAL] e : ℝ n : ℕ h : NormNum.IsNat e n w : Nat.blt 1 n = true ⊢ 0 < Real.log e [PROOFSTEP] rw [NormNum.IsNat.to_eq h rfl] [GOAL] e : ℝ n : ℕ h : NormNum.IsNat e n w : Nat.blt 1 n = true ⊢ 0 < Real.log ↑n [PROOFSTEP] apply Real.log_pos [GOAL] case hx e : ℝ n : ℕ h : NormNum.IsNat e n w : Nat.blt 1 n = true ⊢ 1 < ↑n [PROOFSTEP] simpa using w [GOAL] e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) ⊢ 0 ≤ Real.log e [PROOFSTEP] rw [NormNum.IsInt.neg_to_eq h rfl] [GOAL] e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) ⊢ 0 ≤ Real.log (-↑n) [PROOFSTEP] exact Real.log_neg_nat_cast_nonneg _ [GOAL] e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) w : Nat.blt 1 n = true ⊢ 0 < Real.log e [PROOFSTEP] rw [NormNum.IsInt.neg_to_eq h rfl] [GOAL] e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) w : Nat.blt 1 n = true ⊢ 0 < Real.log (-↑n) [PROOFSTEP] rw [Real.log_neg_eq_log] [GOAL] e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) w : Nat.blt 1 n = true ⊢ 0 < Real.log ↑n [PROOFSTEP] apply Real.log_pos [GOAL] case hx e : ℝ n : ℕ h : NormNum.IsInt e (Int.negOfNat n) w : Nat.blt 1 n = true ⊢ 1 < ↑n [PROOFSTEP] simpa using w [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (1 < ↑n / ↑d) = true ⊢ 0 < Real.log e [PROOFSTEP] rw [eq, invOf_eq_inv, ← div_eq_mul_inv] [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (1 < ↑n / ↑d) = true ⊢ 0 < Real.log (↑n / ↑d) [PROOFSTEP] have : 1 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (1 < ↑n / ↑d) = true ⊢ 1 < ↑n / ↑d [PROOFSTEP] exact_mod_cast of_decide_eq_true h [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (1 < ↑n / ↑d) = true this : 1 < ↑n / ↑d ⊢ 0 < Real.log (↑n / ↑d) [PROOFSTEP] exact Real.log_pos this [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (↑n / ↑d < -1) = true ⊢ 0 < Real.log e [PROOFSTEP] rw [eq, invOf_eq_inv, ← div_eq_mul_inv] [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (↑n / ↑d < -1) = true ⊢ 0 < Real.log (↑n / ↑d) [PROOFSTEP] have : (n : ℝ) / d < -1 := by exact_mod_cast of_decide_eq_true h [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (↑n / ↑d < -1) = true ⊢ ↑n / ↑d < -1 [PROOFSTEP] exact_mod_cast of_decide_eq_true h [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h : decide (↑n / ↑d < -1) = true this : ↑n / ↑d < -1 ⊢ 0 < Real.log (↑n / ↑d) [PROOFSTEP] exact Real.log_pos_of_lt_neg_one this [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true ⊢ Real.log e ≠ 0 [PROOFSTEP] rw [eq, invOf_eq_inv, ← div_eq_mul_inv] [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] have h₁' : 0 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h₁ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true ⊢ 0 < ↑n / ↑d [PROOFSTEP] exact_mod_cast of_decide_eq_true h₁ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true h₁' : 0 < ↑n / ↑d ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] have h₂' : (n : ℝ) / d < 1 := by exact_mod_cast of_decide_eq_true h₂ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true h₁' : 0 < ↑n / ↑d ⊢ ↑n / ↑d < 1 [PROOFSTEP] exact_mod_cast of_decide_eq_true h₂ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (0 < ↑n / ↑d) = true h₂ : decide (↑n / ↑d < 1) = true h₁' : 0 < ↑n / ↑d h₂' : ↑n / ↑d < 1 ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] exact ne_of_lt <| Real.log_neg h₁' h₂' [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true ⊢ Real.log e ≠ 0 [PROOFSTEP] rw [eq, invOf_eq_inv, ← div_eq_mul_inv] [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] have h₁' : (n : ℝ) / d < 0 := by exact_mod_cast of_decide_eq_true h₁ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true ⊢ ↑n / ↑d < 0 [PROOFSTEP] exact_mod_cast of_decide_eq_true h₁ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true h₁' : ↑n / ↑d < 0 ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] have h₂' : -1 < (n : ℝ) / d := by exact_mod_cast of_decide_eq_true h₂ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true h₁' : ↑n / ↑d < 0 ⊢ -1 < ↑n / ↑d [PROOFSTEP] exact_mod_cast of_decide_eq_true h₂ [GOAL] e : ℝ n : ℤ d : ℕ inv : Invertible ↑d eq : e = ↑n * ⅟↑d h₁ : decide (↑n / ↑d < 0) = true h₂ : decide (-1 < ↑n / ↑d) = true h₁' : ↑n / ↑d < 0 h₂' : -1 < ↑n / ↑d ⊢ Real.log (↑n / ↑d) ≠ 0 [PROOFSTEP] exact ne_of_lt <| Real.log_neg_of_lt_zero h₁' h₂' [GOAL] $x✝ : Type x✝ «$_zα» : Zero $x✝ «$_pα» : PartialOrder $x✝ «$e» : $x✝ «$f» : ℝ → ℝ «$a» : ℝ «$n» : ℤ «$d» : ℕ «$i» : DivisionRing ℝ := Real.instDivisionRingReal «$p» : NormNum.IsRat «$a» «$n» «$d» ⊢ Sort ?u.471336 [PROOFSTEP] clear! «$i» [GOAL] $x✝ : Type x✝ «$_zα» : Zero $x✝ «$_pα» : PartialOrder $x✝ «$e» : $x✝ «$f» : ℝ → ℝ «$a» : ℝ «$n» : ℤ «$d» : ℕ ⊢ Sort ?u.471336 [PROOFSTEP] exact NormNum.IsRat «$a» «$n» «$d»
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Basic", "llama_tokens": 16598}
[GOAL] x : ℂ ⊢ x ^ 0 = 1 [PROOFSTEP] simp [cpow_def] [GOAL] x y : ℂ ⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp only [cpow_def] [GOAL] x y : ℂ ⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] split_ifs [GOAL] case pos x y : ℂ h✝¹ : x = 0 h✝ : y = 0 ⊢ 1 = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] case neg x y : ℂ h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 0 = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] case neg x y : ℂ h✝ : ¬x = 0 ⊢ exp (log x * y) = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] x : ℂ h : x ≠ 0 ⊢ 0 ^ x = 0 [PROOFSTEP] simp [cpow_def, *] [GOAL] x a : ℂ ⊢ 0 ^ x = a ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] constructor [GOAL] case mp x a : ℂ ⊢ 0 ^ x = a → x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] intro hyp [GOAL] case mp x a : ℂ hyp : 0 ^ x = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] simp only [cpow_def, eq_self_iff_true, if_true] at hyp [GOAL] case mp x a : ℂ hyp : (if x = 0 then 1 else 0) = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] by_cases x = 0 [GOAL] case mp x a : ℂ hyp : (if x = 0 then 1 else 0) = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] by_cases x = 0 [GOAL] case pos x a : ℂ hyp : (if x = 0 then 1 else 0) = a h : x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] subst h [GOAL] case pos a : ℂ hyp : (if 0 = 0 then 1 else 0) = a ⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1 [PROOFSTEP] simp only [if_true, eq_self_iff_true] at hyp [GOAL] case pos a : ℂ hyp : 1 = a ⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1 [PROOFSTEP] right [GOAL] case pos.h a : ℂ hyp : 1 = a ⊢ 0 = 0 ∧ a = 1 [PROOFSTEP] exact ⟨rfl, hyp.symm⟩ [GOAL] case neg x a : ℂ hyp : (if x = 0 then 1 else 0) = a h : ¬x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] rw [if_neg h] at hyp [GOAL] case neg x a : ℂ hyp : 0 = a h : ¬x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] left [GOAL] case neg.h x a : ℂ hyp : 0 = a h : ¬x = 0 ⊢ x ≠ 0 ∧ a = 0 [PROOFSTEP] exact ⟨h, hyp.symm⟩ [GOAL] case mpr x a : ℂ ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 → 0 ^ x = a [PROOFSTEP] rintro (⟨h, rfl⟩ | ⟨rfl, rfl⟩) [GOAL] case mpr.inl.intro x : ℂ h : x ≠ 0 ⊢ 0 ^ x = 0 [PROOFSTEP] exact zero_cpow h [GOAL] case mpr.inr.intro ⊢ 0 ^ 0 = 1 [PROOFSTEP] exact cpow_zero _ [GOAL] x a : ℂ ⊢ a = 0 ^ x ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] rw [← zero_cpow_eq_iff, eq_comm] [GOAL] x : ℂ hx : x = 0 ⊢ x ^ 1 = x [PROOFSTEP] simp [hx, cpow_def] [GOAL] x : ℂ hx : ¬x = 0 ⊢ x ^ 1 = x [PROOFSTEP] rw [cpow_def, if_neg (one_ne_zero : (1 : ℂ) ≠ 0), if_neg hx, mul_one, exp_log hx] [GOAL] x : ℂ ⊢ 1 ^ x = 1 [PROOFSTEP] rw [cpow_def] [GOAL] x : ℂ ⊢ (if 1 = 0 then if x = 0 then 1 else 0 else exp (log 1 * x)) = 1 [PROOFSTEP] split_ifs [GOAL] case pos x : ℂ h✝¹ : 1 = 0 h✝ : x = 0 ⊢ 1 = 1 [PROOFSTEP] simp_all [one_ne_zero] [GOAL] case neg x : ℂ h✝¹ : 1 = 0 h✝ : ¬x = 0 ⊢ 0 = 1 [PROOFSTEP] simp_all [one_ne_zero] [GOAL] case neg x : ℂ h✝ : ¬1 = 0 ⊢ exp (log 1 * x) = 1 [PROOFSTEP] simp_all [one_ne_zero] [GOAL] x y z : ℂ hx : x ≠ 0 ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] simp only [cpow_def, ite_mul, boole_mul, mul_ite, mul_boole] [GOAL] x y z : ℂ hx : x ≠ 0 ⊢ (if x = 0 then if y + z = 0 then 1 else 0 else exp (log x * (y + z))) = if x = 0 then if z = 0 then if x = 0 then if y = 0 then 1 * 1 else 0 * 1 else exp (log x * y) * 1 else if x = 0 then if y = 0 then 1 * 0 else 0 * 0 else exp (log x * y) * 0 else if x = 0 then if y = 0 then 1 * exp (log x * z) else 0 * exp (log x * z) else exp (log x * y) * exp (log x * z) [PROOFSTEP] simp_all [exp_add, mul_add] [GOAL] x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π ⊢ x ^ (y * z) = (x ^ y) ^ z [PROOFSTEP] simp only [cpow_def] [GOAL] x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π ⊢ (if x = 0 then if y * z = 0 then 1 else 0 else exp (log x * (y * z))) = if (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 then if z = 0 then 1 else 0 else exp (log (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) * z) [PROOFSTEP] split_ifs [GOAL] case pos x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : y * z = 0 h✝² : y = 0 h✝¹ : 1 = 0 h✝ : z = 0 ⊢ 1 = 1 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : y * z = 0 h✝² : y = 0 h✝¹ : 1 = 0 h✝ : ¬z = 0 ⊢ 1 = 0 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝³ : x = 0 h✝² : y * z = 0 h✝¹ : y = 0 h✝ : ¬1 = 0 ⊢ 1 = exp (log 1 * z) [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case pos x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : y * z = 0 h✝² : ¬y = 0 h✝¹ : 0 = 0 h✝ : z = 0 ⊢ 1 = 1 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : y * z = 0 h✝² : ¬y = 0 h✝¹ : 0 = 0 h✝ : ¬z = 0 ⊢ 1 = 0 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝³ : x = 0 h✝² : y * z = 0 h✝¹ : ¬y = 0 h✝ : ¬0 = 0 ⊢ 1 = exp (log 0 * z) [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case pos x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : ¬y * z = 0 h✝² : y = 0 h✝¹ : 1 = 0 h✝ : z = 0 ⊢ 0 = 1 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : ¬y * z = 0 h✝² : y = 0 h✝¹ : 1 = 0 h✝ : ¬z = 0 ⊢ 0 = 0 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝³ : x = 0 h✝² : ¬y * z = 0 h✝¹ : y = 0 h✝ : ¬1 = 0 ⊢ 0 = exp (log 1 * z) [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case pos x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : ¬y * z = 0 h✝² : ¬y = 0 h✝¹ : 0 = 0 h✝ : z = 0 ⊢ 0 = 1 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝⁴ : x = 0 h✝³ : ¬y * z = 0 h✝² : ¬y = 0 h✝¹ : 0 = 0 h✝ : ¬z = 0 ⊢ 0 = 0 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝³ : x = 0 h✝² : ¬y * z = 0 h✝¹ : ¬y = 0 h✝ : ¬0 = 0 ⊢ 0 = exp (log 0 * z) [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case pos x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝² : ¬x = 0 h✝¹ : exp (log x * y) = 0 h✝ : z = 0 ⊢ exp (log x * (y * z)) = 1 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝² : ¬x = 0 h✝¹ : exp (log x * y) = 0 h✝ : ¬z = 0 ⊢ exp (log x * (y * z)) = 0 [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] case neg x y z : ℂ h₁ : -π < (log x * y).im h₂ : (log x * y).im ≤ π h✝¹ : ¬x = 0 h✝ : ¬exp (log x * y) = 0 ⊢ exp (log x * (y * z)) = exp (log (exp (log x * y)) * z) [PROOFSTEP] simp_all [exp_ne_zero, log_exp h₁ h₂, mul_assoc] [GOAL] x y : ℂ ⊢ x ^ (-y) = (x ^ y)⁻¹ [PROOFSTEP] simp only [cpow_def, neg_eq_zero, mul_neg] [GOAL] x y : ℂ ⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (-(log x * y))) = (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y))⁻¹ [PROOFSTEP] split_ifs [GOAL] case pos x y : ℂ h✝¹ : x = 0 h✝ : y = 0 ⊢ 1 = 1⁻¹ [PROOFSTEP] simp [exp_neg] [GOAL] case neg x y : ℂ h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 0 = 0⁻¹ [PROOFSTEP] simp [exp_neg] [GOAL] case neg x y : ℂ h✝ : ¬x = 0 ⊢ exp (-(log x * y)) = (exp (log x * y))⁻¹ [PROOFSTEP] simp [exp_neg] [GOAL] x y z : ℂ hx : x ≠ 0 ⊢ x ^ (y - z) = x ^ y / x ^ z [PROOFSTEP] rw [sub_eq_add_neg, cpow_add _ _ hx, cpow_neg, div_eq_mul_inv] [GOAL] x : ℂ ⊢ x ^ (-1) = x⁻¹ [PROOFSTEP] simpa using cpow_neg x 1 [GOAL] x : ℂ ⊢ x ^ ↑0 = x ^ 0 [PROOFSTEP] simp [GOAL] x : ℂ n : ℕ hx : x = 0 ⊢ x ^ ↑(n + 1) = x ^ (n + 1) [PROOFSTEP] simp only [hx, pow_succ, Complex.zero_cpow (Nat.cast_ne_zero.2 (Nat.succ_ne_zero _)), zero_mul] [GOAL] x : ℂ n : ℕ hx : ¬x = 0 ⊢ x ^ ↑(n + 1) = x ^ (n + 1) [PROOFSTEP] simp [cpow_add, hx, pow_add, cpow_nat_cast x n] [GOAL] x : ℂ ⊢ x ^ 2 = x ^ 2 [PROOFSTEP] rw [← cpow_nat_cast] [GOAL] x : ℂ ⊢ x ^ 2 = x ^ ↑2 [PROOFSTEP] simp only [Nat.cast_ofNat] [GOAL] x : ℂ n : ℕ ⊢ x ^ ↑↑n = x ^ ↑n [PROOFSTEP] simp [GOAL] x : ℂ n : ℕ ⊢ x ^ ↑-[n+1] = x ^ -[n+1] [PROOFSTEP] rw [zpow_negSucc] [GOAL] x : ℂ n : ℕ ⊢ x ^ ↑-[n+1] = (x ^ (n + 1))⁻¹ [PROOFSTEP] simp only [Int.negSucc_coe, Int.cast_neg, Complex.cpow_neg, inv_eq_one_div, Int.cast_ofNat, cpow_nat_cast] [GOAL] x : ℂ n : ℕ hn : n ≠ 0 ⊢ (x ^ (↑n)⁻¹) ^ n = x [PROOFSTEP] suffices im (log x * (n⁻¹ : ℂ)) ∈ Ioc (-π) π by rw [← cpow_nat_cast, ← cpow_mul _ this.1 this.2, inv_mul_cancel, cpow_one] exact_mod_cast hn [GOAL] x : ℂ n : ℕ hn : n ≠ 0 this : (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π ⊢ (x ^ (↑n)⁻¹) ^ n = x [PROOFSTEP] rw [← cpow_nat_cast, ← cpow_mul _ this.1 this.2, inv_mul_cancel, cpow_one] [GOAL] x : ℂ n : ℕ hn : n ≠ 0 this : (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π ⊢ ↑n ≠ 0 [PROOFSTEP] exact_mod_cast hn [GOAL] x : ℂ n : ℕ hn : n ≠ 0 ⊢ (log x * (↑n)⁻¹).im ∈ Set.Ioc (-π) π [PROOFSTEP] rw [mul_comm, ← ofReal_nat_cast, ← ofReal_inv, ofReal_mul_im, ← div_eq_inv_mul] [GOAL] x : ℂ n : ℕ hn : n ≠ 0 ⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π [PROOFSTEP] rw [← pos_iff_ne_zero] at hn [GOAL] x : ℂ n : ℕ hn : 0 < n ⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π [PROOFSTEP] have hn' : 0 < (n : ℝ) := by assumption_mod_cast [GOAL] x : ℂ n : ℕ hn : 0 < n ⊢ 0 < ↑n [PROOFSTEP] assumption_mod_cast [GOAL] x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n ⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π [PROOFSTEP] have hn1 : 1 ≤ (n : ℝ) := by exact_mod_cast Nat.succ_le_iff.2 hn [GOAL] x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n ⊢ 1 ≤ ↑n [PROOFSTEP] exact_mod_cast Nat.succ_le_iff.2 hn [GOAL] x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n hn1 : 1 ≤ ↑n ⊢ (log x).im / ↑n ∈ Set.Ioc (-π) π [PROOFSTEP] constructor [GOAL] case left x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n hn1 : 1 ≤ ↑n ⊢ -π < (log x).im / ↑n [PROOFSTEP] rw [lt_div_iff hn'] [GOAL] case left x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n hn1 : 1 ≤ ↑n ⊢ -π * ↑n < (log x).im [PROOFSTEP] calc -π * n ≤ -π * 1 := mul_le_mul_of_nonpos_left hn1 (neg_nonpos.2 Real.pi_pos.le) _ = -π := (mul_one _) _ < im (log x) := neg_pi_lt_log_im _ [GOAL] case right x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n hn1 : 1 ≤ ↑n ⊢ (log x).im / ↑n ≤ π [PROOFSTEP] rw [div_le_iff hn'] [GOAL] case right x : ℂ n : ℕ hn : 0 < n hn' : 0 < ↑n hn1 : 1 ≤ ↑n ⊢ (log x).im ≤ π * ↑n [PROOFSTEP] calc im (log x) ≤ π := log_im_le_pi _ _ = π * 1 := (mul_one π).symm _ ≤ π * n := mul_le_mul_of_nonneg_left hn1 Real.pi_pos.le [GOAL] a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] rcases eq_or_ne r 0 with (rfl | hr) [GOAL] case inl a b : ℝ ha : 0 ≤ a hb : 0 ≤ b ⊢ (↑a * ↑b) ^ 0 = ↑a ^ 0 * ↑b ^ 0 [PROOFSTEP] simp only [cpow_zero, mul_one] [GOAL] case inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] rcases eq_or_lt_of_le ha with (rfl | ha') [GOAL] case inr.inl b : ℝ hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha : 0 ≤ 0 ⊢ (↑0 * ↑b) ^ r = ↑0 ^ r * ↑b ^ r [PROOFSTEP] rw [ofReal_zero, zero_mul, zero_cpow hr, zero_mul] [GOAL] case inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] rcases eq_or_lt_of_le hb with (rfl | hb') [GOAL] case inr.inr.inl a : ℝ ha : 0 ≤ a r : ℂ hr : r ≠ 0 ha' : 0 < a hb : 0 ≤ 0 ⊢ (↑a * ↑0) ^ r = ↑a ^ r * ↑0 ^ r [PROOFSTEP] rw [ofReal_zero, mul_zero, zero_cpow hr, mul_zero] [GOAL] case inr.inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a hb' : 0 < b ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] have ha'' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha'.ne' [GOAL] case inr.inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a hb' : 0 < b ha'' : ↑a ≠ 0 ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] have hb'' : (b : ℂ) ≠ 0 := ofReal_ne_zero.mpr hb'.ne' [GOAL] case inr.inr.inr a b : ℝ ha : 0 ≤ a hb : 0 ≤ b r : ℂ hr : r ≠ 0 ha' : 0 < a hb' : 0 < b ha'' : ↑a ≠ 0 hb'' : ↑b ≠ 0 ⊢ (↑a * ↑b) ^ r = ↑a ^ r * ↑b ^ r [PROOFSTEP] rw [cpow_def_of_ne_zero (mul_ne_zero ha'' hb''), log_ofReal_mul ha' hb'', ofReal_log ha, add_mul, exp_add, ← cpow_def_of_ne_zero ha'', ← cpow_def_of_ne_zero hb''] [GOAL] x n : ℂ ⊢ x⁻¹ ^ n = if arg x = π then ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)⁻¹ else (x ^ n)⁻¹ [PROOFSTEP] simp_rw [Complex.cpow_def, log_inv_eq_ite, inv_eq_zero, map_eq_zero, ite_mul, neg_mul, IsROrC.conj_inv, apply_ite conj, apply_ite exp, apply_ite Inv.inv, map_zero, map_one, exp_neg, inv_one, inv_zero, ← exp_conj, map_mul, conj_conj] [GOAL] x n : ℂ ⊢ (if x = 0 then if n = 0 then 1 else 0 else if arg x = π then (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ else (exp (log x * n))⁻¹) = if arg x = π then if x = 0 then if n = 0 then 1 else 0 else (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ else if x = 0 then if n = 0 then 1 else 0 else (exp (log x * n))⁻¹ [PROOFSTEP] split_ifs with hx hn ha ha [GOAL] case pos x n : ℂ hx : x = 0 hn : n = 0 ha : arg x = π ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hx : x = 0 hn : n = 0 ha : ¬arg x = π ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] case pos x n : ℂ hx : x = 0 hn : ¬n = 0 ha : arg x = π ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hx : x = 0 hn : ¬n = 0 ha : ¬arg x = π ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case pos x n : ℂ hx : ¬x = 0 h✝ : arg x = π ⊢ (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ = (exp (↑(starRingEnd ℂ) (log x) * n))⁻¹ [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hx : ¬x = 0 h✝ : ¬arg x = π ⊢ (exp (log x * n))⁻¹ = (exp (log x * n))⁻¹ [PROOFSTEP] rfl [GOAL] x n : ℂ hx : arg x ≠ π ⊢ x⁻¹ ^ n = (x ^ n)⁻¹ [PROOFSTEP] rw [inv_cpow_eq_ite, if_neg hx] [GOAL] x n : ℂ ⊢ (x ^ n)⁻¹ = if arg x = π then ↑(starRingEnd ℂ) (x⁻¹ ^ ↑(starRingEnd ℂ) n) else x⁻¹ ^ n [PROOFSTEP] rw [inv_cpow_eq_ite, apply_ite conj, conj_conj, conj_conj] [GOAL] x n : ℂ ⊢ (x ^ n)⁻¹ = if arg x = π then if arg x = π then (x ^ n)⁻¹ else ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)⁻¹ else x⁻¹ ^ n [PROOFSTEP] split_ifs with h [GOAL] case pos x n : ℂ h : arg x = π ⊢ (x ^ n)⁻¹ = (x ^ n)⁻¹ [PROOFSTEP] rfl [GOAL] case neg x n : ℂ h : ¬arg x = π ⊢ (x ^ n)⁻¹ = x⁻¹ ^ n [PROOFSTEP] rw [inv_cpow _ _ h] [GOAL] x n : ℂ ⊢ ↑(starRingEnd ℂ) x ^ n = if arg x = π then x ^ n else ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n) [PROOFSTEP] simp_rw [cpow_def, map_eq_zero, apply_ite conj, map_one, map_zero, ← exp_conj, map_mul, conj_conj, log_conj_eq_ite] [GOAL] x n : ℂ ⊢ (if x = 0 then if n = 0 then 1 else 0 else exp ((if arg x = π then log x else ↑(starRingEnd ℂ) (log x)) * n)) = if arg x = π then if x = 0 then if n = 0 then 1 else 0 else exp (log x * n) else if x = 0 then if n = 0 then 1 else 0 else exp (↑(starRingEnd ℂ) (log x) * n) [PROOFSTEP] split_ifs with hcx hn hx [GOAL] case pos x n : ℂ hcx : x = 0 hn : n = 0 hx : arg x = π ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hcx : x = 0 hn : n = 0 hx : ¬arg x = π ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] case pos x n : ℂ hcx : x = 0 hn : ¬n = 0 h✝ : arg x = π ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hcx : x = 0 hn : ¬n = 0 h✝ : ¬arg x = π ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case pos x n : ℂ hcx : ¬x = 0 h✝ : arg x = π ⊢ exp (log x * n) = exp (log x * n) [PROOFSTEP] rfl [GOAL] case neg x n : ℂ hcx : ¬x = 0 h✝ : ¬arg x = π ⊢ exp (↑(starRingEnd ℂ) (log x) * n) = exp (↑(starRingEnd ℂ) (log x) * n) [PROOFSTEP] rfl [GOAL] x n : ℂ hx : arg x ≠ π ⊢ ↑(starRingEnd ℂ) x ^ n = ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n) [PROOFSTEP] rw [conj_cpow_eq_ite, if_neg hx] [GOAL] x n : ℂ hx : arg x ≠ π ⊢ x ^ ↑(starRingEnd ℂ) n = ↑(starRingEnd ((fun x => ℂ) x)) (↑(starRingEnd ℂ) x ^ n) [PROOFSTEP] rw [conj_cpow _ _ hx, conj_conj]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Complex", "llama_tokens": 9583}
[GOAL] y : ℝ hy : 0 < y ⊢ Tendsto (fun x => x ^ y) atTop atTop [PROOFSTEP] rw [tendsto_atTop_atTop] [GOAL] y : ℝ hy : 0 < y ⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a ^ y [PROOFSTEP] intro b [GOAL] y : ℝ hy : 0 < y b : ℝ ⊢ ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a ^ y [PROOFSTEP] use max b 0 ^ (1 / y) [GOAL] case h y : ℝ hy : 0 < y b : ℝ ⊢ ∀ (a : ℝ), max b 0 ^ (1 / y) ≤ a → b ≤ a ^ y [PROOFSTEP] intro x hx [GOAL] case h y : ℝ hy : 0 < y b x : ℝ hx : max b 0 ^ (1 / y) ≤ x ⊢ b ≤ x ^ y [PROOFSTEP] exact le_of_max_le_left (by convert rpow_le_rpow (rpow_nonneg_of_nonneg (le_max_right b 0) (1 / y)) hx (le_of_lt hy) using 1 rw [← rpow_mul (le_max_right b 0), (eq_div_iff (ne_of_gt hy)).mp rfl, Real.rpow_one]) [GOAL] y : ℝ hy : 0 < y b x : ℝ hx : max b 0 ^ (1 / y) ≤ x ⊢ max b ?m.773 ≤ x ^ y [PROOFSTEP] convert rpow_le_rpow (rpow_nonneg_of_nonneg (le_max_right b 0) (1 / y)) hx (le_of_lt hy) using 1 [GOAL] case h.e'_3 y : ℝ hy : 0 < y b x : ℝ hx : max b 0 ^ (1 / y) ≤ x ⊢ max b ?m.773 = (max b 0 ^ (1 / y)) ^ y [PROOFSTEP] rw [← rpow_mul (le_max_right b 0), (eq_div_iff (ne_of_gt hy)).mp rfl, Real.rpow_one] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 ⊢ Tendsto (Real.rpow b) atTop (𝓝 0) [PROOFSTEP] show Tendsto (fun z => b ^ z) atTop (𝓝 0) [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] rcases lt_trichotomy b 0 with hb | rfl | hb [GOAL] case inl b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) case inr.inl hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0) case inr.inr b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] case inl => -- b < 0 simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false] rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm] refine IsLittleO.mul_isBigO ?exp ?cos case exp => rw [isLittleO_const_iff one_ne_zero] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id rw [← log_neg_eq_log, log_neg_iff (by linarith)] linarith case cos => rw [isBigO_iff] exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] case inl => -- b < 0 simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false] rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm] refine IsLittleO.mul_isBigO ?exp ?cos case exp => rw [isLittleO_const_iff one_ne_zero] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id rw [← log_neg_eq_log, log_neg_iff (by linarith)] linarith case cos => rw [isBigO_iff] exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] simp_rw [Real.rpow_def_of_nonpos hb.le, hb.ne, ite_false] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ Tendsto (fun z => exp (log b * z) * cos (z * π)) atTop (𝓝 0) [PROOFSTEP] rw [← isLittleO_const_iff (c := (1 : ℝ)) one_ne_zero, (one_mul (1 : ℝ)).symm] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => exp (log b * z) * cos (z * π)) =o[atTop] fun _x => 1 * 1 [PROOFSTEP] refine IsLittleO.mul_isBigO ?exp ?cos [GOAL] case exp b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1 case cos b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1 [PROOFSTEP] case exp => rw [isLittleO_const_iff one_ne_zero] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id rw [← log_neg_eq_log, log_neg_iff (by linarith)] linarith [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1 [PROOFSTEP] case exp => rw [isLittleO_const_iff one_ne_zero] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id rw [← log_neg_eq_log, log_neg_iff (by linarith)] linarith [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => exp (log b * z)) =o[atTop] fun _x => 1 [PROOFSTEP] rw [isLittleO_const_iff one_ne_zero] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ Tendsto (fun z => exp (log b * z)) atTop (𝓝 0) [PROOFSTEP] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ log b < 0 [PROOFSTEP] rw [← log_neg_eq_log, log_neg_iff (by linarith)] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ 0 < -b [PROOFSTEP] linarith [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ -b < 1 [PROOFSTEP] linarith [GOAL] case cos b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1 [PROOFSTEP] case cos => rw [isBigO_iff] exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1 [PROOFSTEP] case cos => rw [isBigO_iff] exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ (fun z => cos (z * π)) =O[atTop] fun _x => 1 [PROOFSTEP] rw [isBigO_iff] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 ⊢ ∃ c, ∀ᶠ (x : ℝ) in atTop, ‖cos (x * π)‖ ≤ c * ‖1‖ [PROOFSTEP] exact ⟨1, eventually_of_forall fun x => by simp [Real.abs_cos_le_one]⟩ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : b < 0 x : ℝ ⊢ ‖cos (x * π)‖ ≤ 1 * ‖1‖ [PROOFSTEP] simp [Real.abs_cos_le_one] [GOAL] case inr.inl hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0) case inr.inr b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] case inr.inl => -- b = 0 refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl) rw [tendsto_pure] filter_upwards [eventually_ne_atTop 0] with _ hx simp [hx] [GOAL] hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0) [PROOFSTEP] case inr.inl => -- b = 0 refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl) rw [tendsto_pure] filter_upwards [eventually_ne_atTop 0] with _ hx simp [hx] [GOAL] hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ Tendsto (fun z => 0 ^ z) atTop (𝓝 0) [PROOFSTEP] refine Tendsto.mono_right ?_ (Iff.mpr pure_le_nhds_iff rfl) [GOAL] hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ Tendsto (fun z => 0 ^ z) atTop (pure 0) [PROOFSTEP] rw [tendsto_pure] [GOAL] hb₀ : -1 < 0 hb₁ : 0 < 1 ⊢ ∀ᶠ (x : ℝ) in atTop, 0 ^ x = 0 [PROOFSTEP] filter_upwards [eventually_ne_atTop 0] with _ hx [GOAL] case h hb₀ : -1 < 0 hb₁ : 0 < 1 a✝ : ℝ hx : a✝ ≠ 0 ⊢ 0 ^ a✝ = 0 [PROOFSTEP] simp [hx] [GOAL] case inr.inr b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] case inr.inr => -- b > 0 simp_rw [Real.rpow_def_of_pos hb] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id exact (log_neg_iff hb).mpr hb₁ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] case inr.inr => -- b > 0 simp_rw [Real.rpow_def_of_pos hb] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id exact (log_neg_iff hb).mpr hb₁ [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => b ^ z) atTop (𝓝 0) [PROOFSTEP] simp_rw [Real.rpow_def_of_pos hb] [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ Tendsto (fun z => exp (log b * z)) atTop (𝓝 0) [PROOFSTEP] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_neg ?_).mpr tendsto_id [GOAL] b : ℝ hb₀ : -1 < b hb₁ : b < 1 hb : 0 < b ⊢ log b < 0 [PROOFSTEP] exact (log_neg_iff hb).mpr hb₁ [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (Real.rpow b) atBot (𝓝 0) [PROOFSTEP] show Tendsto (fun z => b ^ z) atBot (nhds 0) [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (fun z => b ^ z) atBot (𝓝 0) [PROOFSTEP] simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)] [GOAL] b : ℝ hb : 1 < b ⊢ 0 < b [PROOFSTEP] positivity [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (fun z => exp (log b * z)) atBot (𝓝 0) [PROOFSTEP] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_of_pos ?_).mpr tendsto_id [GOAL] b : ℝ hb : 1 < b ⊢ 0 < log b [PROOFSTEP] exact (log_pos_iff (by positivity)).mpr <| by aesop [GOAL] b : ℝ hb : 1 < b ⊢ 0 < b [PROOFSTEP] positivity [GOAL] b : ℝ hb : 1 < b ⊢ 1 < b [PROOFSTEP] aesop [GOAL] b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ Tendsto (Real.rpow b) atBot atTop [PROOFSTEP] show Tendsto (fun z => b ^ z) atBot atTop [GOAL] b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ Tendsto (fun z => b ^ z) atBot atTop [PROOFSTEP] simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)] [GOAL] b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ 0 < b [PROOFSTEP] positivity [GOAL] b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ Tendsto (fun z => exp (log b * z)) atBot atTop [PROOFSTEP] refine tendsto_exp_atTop.comp <| (tendsto_const_mul_atTop_iff_neg <| tendsto_id (α := ℝ)).mpr ?_ [GOAL] b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ log b < 0 [PROOFSTEP] exact (log_neg_iff hb₀).mpr hb₁ [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (Real.rpow b) atBot (𝓝 0) [PROOFSTEP] show Tendsto (fun z => b ^ z) atBot (𝓝 0) [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (fun z => b ^ z) atBot (𝓝 0) [PROOFSTEP] simp_rw [Real.rpow_def_of_pos (by positivity : 0 < b)] [GOAL] b : ℝ hb : 1 < b ⊢ 0 < b [PROOFSTEP] positivity [GOAL] b : ℝ hb : 1 < b ⊢ Tendsto (fun z => exp (log b * z)) atBot (𝓝 0) [PROOFSTEP] refine tendsto_exp_atBot.comp <| (tendsto_const_mul_atBot_iff_pos <| tendsto_id (α := ℝ)).mpr ?_ [GOAL] b : ℝ hb : 1 < b ⊢ 0 < log b [PROOFSTEP] exact (log_pos_iff (by positivity)).mpr <| by aesop [GOAL] b : ℝ hb : 1 < b ⊢ 0 < b [PROOFSTEP] positivity [GOAL] b : ℝ hb : 1 < b ⊢ 1 < b [PROOFSTEP] aesop [GOAL] a b c : ℝ hb : 0 ≠ b ⊢ Tendsto (fun x => x ^ (a / (b * x + c))) atTop (𝓝 1) [PROOFSTEP] refine' Tendsto.congr' _ ((tendsto_exp_nhds_0_nhds_1.comp (by simpa only [mul_zero, pow_one] using (@tendsto_const_nhds _ _ _ a _).mul (tendsto_div_pow_mul_exp_add_atTop b c 1 hb))).comp tendsto_log_atTop) [GOAL] a b c : ℝ hb : 0 ≠ b ⊢ Tendsto ?m.296219 atTop (𝓝 0) [PROOFSTEP] simpa only [mul_zero, pow_one] using (@tendsto_const_nhds _ _ _ a _).mul (tendsto_div_pow_mul_exp_add_atTop b c 1 hb) [GOAL] a b c : ℝ hb : 0 ≠ b ⊢ (exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log =ᶠ[atTop] fun x => x ^ (a / (b * x + c)) [PROOFSTEP] apply eventuallyEq_of_mem (Ioi_mem_atTop (0 : ℝ)) [GOAL] a b c : ℝ hb : 0 ≠ b ⊢ EqOn ((exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log) (fun x => x ^ (a / (b * x + c))) (Set.Ioi 0) [PROOFSTEP] intro x hx [GOAL] a b c : ℝ hb : 0 ≠ b x : ℝ hx : x ∈ Set.Ioi 0 ⊢ ((exp ∘ fun x => a * (x / (b * exp x + c))) ∘ log) x = (fun x => x ^ (a / (b * x + c))) x [PROOFSTEP] simp only [Set.mem_Ioi, Function.comp_apply] at hx ⊢ [GOAL] a b c : ℝ hb : 0 ≠ b x : ℝ hx : 0 < x ⊢ exp (a * (log x / (b * exp (log x) + c))) = x ^ (a / (b * x + c)) [PROOFSTEP] rw [exp_log hx, ← exp_log (rpow_pos_of_pos hx (a / (b * x + c))), log_rpow hx (a / (b * x + c))] [GOAL] a b c : ℝ hb : 0 ≠ b x : ℝ hx : 0 < x ⊢ exp (a * (log x / (b * x + c))) = exp (a / (b * x + c) * log x) [PROOFSTEP] field_simp [GOAL] ⊢ Tendsto (fun x => x ^ (1 / x)) atTop (𝓝 1) [PROOFSTEP] convert tendsto_rpow_div_mul_add (1 : ℝ) _ (0 : ℝ) zero_ne_one [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] funext [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] congr 2 [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] ring [GOAL] ⊢ Tendsto (fun x => x ^ (-1 / x)) atTop (𝓝 1) [PROOFSTEP] convert tendsto_rpow_div_mul_add (-(1 : ℝ)) _ (0 : ℝ) zero_ne_one [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] funext [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] congr 2 [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 x✝ : ℝ ⊢ x✝ = 1 * x✝ + 0 [PROOFSTEP] ring [GOAL] s : ℝ ⊢ Tendsto (fun x => exp x / x ^ s) atTop atTop [PROOFSTEP] cases' archimedean_iff_nat_lt.1 Real.instArchimedean s with n hn [GOAL] case intro s : ℝ n : ℕ hn : s < ↑n ⊢ Tendsto (fun x => exp x / x ^ s) atTop atTop [PROOFSTEP] refine' tendsto_atTop_mono' _ _ (tendsto_exp_div_pow_atTop n) [GOAL] case intro s : ℝ n : ℕ hn : s < ↑n ⊢ (fun x => exp x / x ^ n) ≤ᶠ[atTop] fun x => exp x / x ^ s [PROOFSTEP] filter_upwards [eventually_gt_atTop (0 : ℝ), eventually_ge_atTop (1 : ℝ)] with x hx₀ hx₁ [GOAL] case h s : ℝ n : ℕ hn : s < ↑n x : ℝ hx₀ : 0 < x hx₁ : 1 ≤ x ⊢ exp x / x ^ n ≤ exp x / x ^ s [PROOFSTEP] rw [div_le_div_left (exp_pos _) (pow_pos hx₀ _) (rpow_pos_of_pos hx₀ _), ← Real.rpow_nat_cast] [GOAL] case h s : ℝ n : ℕ hn : s < ↑n x : ℝ hx₀ : 0 < x hx₁ : 1 ≤ x ⊢ x ^ s ≤ x ^ ↑n [PROOFSTEP] exact rpow_le_rpow_of_exponent_le hx₁ hn.le [GOAL] s b : ℝ hb : 0 < b ⊢ Tendsto (fun x => exp (b * x) / x ^ s) atTop atTop [PROOFSTEP] refine' ((tendsto_rpow_atTop hb).comp (tendsto_exp_div_rpow_atTop (s / b))).congr' _ [GOAL] s b : ℝ hb : 0 < b ⊢ ((fun x => x ^ b) ∘ fun x => exp x / x ^ (s / b)) =ᶠ[atTop] fun x => exp (b * x) / x ^ s [PROOFSTEP] filter_upwards [eventually_ge_atTop (0 : ℝ)] with x hx₀ [GOAL] case h s b : ℝ hb : 0 < b x : ℝ hx₀ : 0 ≤ x ⊢ ((fun x => x ^ b) ∘ fun x => exp x / x ^ (s / b)) x = exp (b * x) / x ^ s [PROOFSTEP] simp [Real.div_rpow, (exp_pos x).le, rpow_nonneg_of_nonneg, ← Real.rpow_mul, ← exp_mul, mul_comm x, hb.ne', *] [GOAL] s b : ℝ hb : 0 < b ⊢ Tendsto (fun x => x ^ s * exp (-b * x)) atTop (𝓝 0) [PROOFSTEP] refine' (tendsto_exp_mul_div_rpow_atTop s b hb).inv_tendsto_atTop.congr' _ [GOAL] s b : ℝ hb : 0 < b ⊢ (fun x => exp (b * x) / x ^ s)⁻¹ =ᶠ[atTop] fun x => x ^ s * exp (-b * x) [PROOFSTEP] filter_upwards with x using by simp [exp_neg, inv_div, div_eq_mul_inv _ (exp _)] [GOAL] s b : ℝ hb : 0 < b x : ℝ ⊢ (fun x => exp (b * x) / x ^ s)⁻¹ x = x ^ s * exp (-b * x) [PROOFSTEP] simp [exp_neg, inv_div, div_eq_mul_inv _ (exp _)] [GOAL] y : ℝ hy : 0 < y ⊢ Tendsto (fun x => ↑x ^ y) atTop atTop [PROOFSTEP] rw [Filter.tendsto_atTop_atTop] [GOAL] y : ℝ hy : 0 < y ⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y [PROOFSTEP] intro b [GOAL] y : ℝ hy : 0 < y b : ℝ ⊢ ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y [PROOFSTEP] obtain ⟨c, hc⟩ := tendsto_atTop_atTop.mp (tendsto_rpow_atTop hy) b [GOAL] case intro y : ℝ hy : 0 < y b c : ℝ hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y ⊢ ∃ i, ∀ (a : ℝ≥0), i ≤ a → b ≤ ↑a ^ y [PROOFSTEP] use c.toNNReal [GOAL] case h y : ℝ hy : 0 < y b c : ℝ hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y ⊢ ∀ (a : ℝ≥0), toNNReal c ≤ a → b ≤ ↑a ^ y [PROOFSTEP] intro a ha [GOAL] case h y : ℝ hy : 0 < y b c : ℝ hc : ∀ (a : ℝ), c ≤ a → b ≤ a ^ y a : ℝ≥0 ha : toNNReal c ≤ a ⊢ b ≤ ↑a ^ y [PROOFSTEP] exact_mod_cast hc a (Real.toNNReal_le_iff_le_coe.mp ha) [GOAL] y : ℝ hy : 0 < y ⊢ Tendsto (fun x => x ^ y) (𝓝 ⊤) (𝓝 ⊤) [PROOFSTEP] rw [ENNReal.tendsto_nhds_top_iff_nnreal] [GOAL] y : ℝ hy : 0 < y ⊢ ∀ (x : ℝ≥0), ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y [PROOFSTEP] intro x [GOAL] y : ℝ hy : 0 < y x : ℝ≥0 ⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y [PROOFSTEP] obtain ⟨c, _, hc⟩ := (atTop_basis_Ioi.tendsto_iff atTop_basis_Ioi).mp (NNReal.tendsto_rpow_atTop hy) x trivial [GOAL] case intro.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x ⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y [PROOFSTEP] have hc' : Set.Ioi ↑c ∈ 𝓝 (⊤ : ℝ≥0∞) := Ioi_mem_nhds ENNReal.coe_lt_top [GOAL] case intro.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ ⊢ ∀ᶠ (a : ℝ≥0∞) in 𝓝 ⊤, ↑x < a ^ y [PROOFSTEP] refine' eventually_of_mem hc' _ [GOAL] case intro.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ ⊢ ∀ (x_1 : ℝ≥0∞), x_1 ∈ Set.Ioi ↑c → ↑x < x_1 ^ y [PROOFSTEP] intro a ha [GOAL] case intro.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0∞ ha : a ∈ Set.Ioi ↑c ⊢ ↑x < a ^ y [PROOFSTEP] by_cases ha' : a = ⊤ [GOAL] case pos y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0∞ ha : a ∈ Set.Ioi ↑c ha' : a = ⊤ ⊢ ↑x < a ^ y [PROOFSTEP] simp [ha', hy] [GOAL] case neg y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0∞ ha : a ∈ Set.Ioi ↑c ha' : ¬a = ⊤ ⊢ ↑x < a ^ y [PROOFSTEP] lift a to ℝ≥0 using ha' [GOAL] case neg.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc : ∀ (x_1 : ℝ≥0), x_1 ∈ Set.Ioi c → ↑x_1 ^ y ∈ Set.Ioi ↑x hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0 ha : ↑a ∈ Set.Ioi ↑c ⊢ ↑x < ↑a ^ y [PROOFSTEP] simp only [Set.mem_Ioi, coe_lt_coe] at ha hc [GOAL] case neg.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0 ha : c < a hc : ∀ (x_1 : ℝ≥0), c < x_1 → ↑x < ↑x_1 ^ y ⊢ ↑x < ↑a ^ y [PROOFSTEP] rw [ENNReal.coe_rpow_of_nonneg _ hy.le] [GOAL] case neg.intro y : ℝ hy : 0 < y x c : ℝ≥0 left✝ : True hc' : Set.Ioi ↑c ∈ 𝓝 ⊤ a : ℝ≥0 ha : c < a hc : ∀ (x_1 : ℝ≥0), c < x_1 → ↑x < ↑x_1 ^ y ⊢ ↑x < ↑(a ^ y) [PROOFSTEP] exact_mod_cast hc a ha [GOAL] α : Type u_1 l : Filter α f g : α → ℂ hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im| ⊢ (fun x => Real.exp (arg (f x) * (g x).im)) =Θ[l] fun x => 1 [PROOFSTEP] rcases hl with ⟨b, hb⟩ [GOAL] case intro α : Type u_1 l : Filter α f g : α → ℂ b : ℝ hb : ∀ᶠ (x : ℝ) in Filter.map (fun x => |(g x).im|) l, (fun x x_1 => x ≤ x_1) x b ⊢ (fun x => Real.exp (arg (f x) * (g x).im)) =Θ[l] fun x => 1 [PROOFSTEP] refine' Real.isTheta_exp_comp_one.2 ⟨π * b, _⟩ [GOAL] case intro α : Type u_1 l : Filter α f g : α → ℂ b : ℝ hb : ∀ᶠ (x : ℝ) in Filter.map (fun x => |(g x).im|) l, (fun x x_1 => x ≤ x_1) x b ⊢ ∀ᶠ (x : ℝ) in Filter.map (fun x => |arg (f x) * (g x).im|) l, (fun x x_1 => x ≤ x_1) x (π * b) [PROOFSTEP] rw [eventually_map] at hb ⊢ [GOAL] case intro α : Type u_1 l : Filter α f g : α → ℂ b : ℝ hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b ⊢ ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |arg (f a) * (g a).im| (π * b) [PROOFSTEP] refine' hb.mono fun x hx => _ [GOAL] case intro α : Type u_1 l : Filter α f g : α → ℂ b : ℝ hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b x : α hx : (fun x x_1 => x ≤ x_1) |(g x).im| b ⊢ (fun x x_1 => x ≤ x_1) |arg (f x) * (g x).im| (π * b) [PROOFSTEP] erw [abs_mul] [GOAL] case intro α : Type u_1 l : Filter α f g : α → ℂ b : ℝ hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) |(g a).im| b x : α hx : (fun x x_1 => x ≤ x_1) |(g x).im| b ⊢ (fun x x_1 => x ≤ x_1) (|arg (f x)| * |(g x).im|) (π * b) [PROOFSTEP] exact mul_le_mul (abs_arg_le_pi _) hx (abs_nonneg _) Real.pi_pos.le [GOAL] α : Type u_1 l : Filter α f g : α → ℂ hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im| ⊢ (let_fun this := fun x => ↑abs (f x) ^ (g x).re / 1; this) =ᶠ[l] let_fun this := fun x => ↑abs (f x) ^ (g x).re; this [PROOFSTEP] simp only [ofReal_one, div_one] [GOAL] α : Type u_1 l : Filter α f g : α → ℂ hl : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im| ⊢ (fun x => ↑abs (f x) ^ (g x).re) =ᶠ[l] fun x => ↑abs (f x) ^ (g x).re [PROOFSTEP] rfl [GOAL] α : Type u_1 l : Filter α f g : α → ℂ hl_im : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im| hl : ∀ᶠ (x : α) in l, f x = 0 → (g x).re = 0 → g x = 0 ⊢ (let_fun this := fun x => ↑abs (f x) ^ (g x).re / 1; this) =ᶠ[l] let_fun this := fun x => ↑abs (f x) ^ (g x).re; this [PROOFSTEP] simp only [ofReal_one, div_one] [GOAL] α : Type u_1 l : Filter α f g : α → ℂ hl_im : IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun x => |(g x).im| hl : ∀ᶠ (x : α) in l, f x = 0 → (g x).re = 0 → g x = 0 ⊢ (fun x => ↑abs (f x) ^ (g x).re) =ᶠ[l] fun x => ↑abs (f x) ^ (g x).re [PROOFSTEP] rfl [GOAL] α : Type u_1 l : Filter α f g : α → ℂ b : ℂ hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ ∀ᶠ (x : α) in l, f x = 0 → b.re = 0 → b = 0 [PROOFSTEP] convert hl [GOAL] case a α : Type u_1 l : Filter α f g : α → ℂ b : ℂ hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ (∀ᶠ (x : α) in l, f x = 0 → b.re = 0 → b = 0) ↔ b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0 [PROOFSTEP] rw [eventually_imp_distrib_right] [GOAL] case a α : Type u_1 l : Filter α f g : α → ℂ b : ℂ hl : b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0 ⊢ (∃ᶠ (x : α) in l, f x = 0) → b.re = 0 → b = 0 ↔ b.re = 0 → b ≠ 0 → ∀ᶠ (x : α) in l, f x ≠ 0 [PROOFSTEP] tauto [GOAL] α : Type u_1 r c : ℝ l : Filter α f g : α → ℝ h : IsBigOWith c l f g hc : 0 ≤ c hr : 0 ≤ r hg : 0 ≤ᶠ[l] g ⊢ IsBigOWith (c ^ r) l (fun x => f x ^ r) fun x => g x ^ r [PROOFSTEP] apply IsBigOWith.of_bound [GOAL] case a α : Type u_1 r c : ℝ l : Filter α f g : α → ℝ h : IsBigOWith c l f g hc : 0 ≤ c hr : 0 ≤ r hg : 0 ≤ᶠ[l] g ⊢ ∀ᶠ (x : α) in l, ‖f x ^ r‖ ≤ c ^ r * ‖g x ^ r‖ [PROOFSTEP] filter_upwards [hg, h.bound] with x hgx hx [GOAL] case h α : Type u_1 r c : ℝ l : Filter α f g : α → ℝ h : IsBigOWith c l f g hc : 0 ≤ c hr : 0 ≤ r hg : 0 ≤ᶠ[l] g x : α hgx : OfNat.ofNat 0 x ≤ g x hx : ‖f x‖ ≤ c * ‖g x‖ ⊢ ‖f x ^ r‖ ≤ c ^ r * ‖g x ^ r‖ [PROOFSTEP] calc |f x ^ r| ≤ |f x| ^ r := abs_rpow_le_abs_rpow _ _ _ ≤ (c * |g x|) ^ r := (rpow_le_rpow (abs_nonneg _) hx hr) _ = c ^ r * |g x ^ r| := by rw [mul_rpow hc (abs_nonneg _), abs_rpow_of_nonneg hgx] [GOAL] α : Type u_1 r c : ℝ l : Filter α f g : α → ℝ h : IsBigOWith c l f g hc : 0 ≤ c hr : 0 ≤ r hg : 0 ≤ᶠ[l] g x : α hgx : OfNat.ofNat 0 x ≤ g x hx : ‖f x‖ ≤ c * ‖g x‖ ⊢ (c * |g x|) ^ r = c ^ r * |g x ^ r| [PROOFSTEP] rw [mul_rpow hc (abs_nonneg _), abs_rpow_of_nonneg hgx] [GOAL] α : Type u_1 r c✝ : ℝ l : Filter α f g : α → ℝ hr : 0 < r hg : 0 ≤ᶠ[l] g h : f =o[l] g c : ℝ hc : 0 < c ⊢ (c ^ r⁻¹) ^ r = c [PROOFSTEP] rw [← rpow_mul hc.le, inv_mul_cancel hr.ne', Real.rpow_one] [GOAL] s b : ℝ hb : 0 < b ⊢ Tendsto (fun x => x ^ s / exp (b * x)) atTop (𝓝 0) [PROOFSTEP] simpa only [div_eq_mul_inv, exp_neg, neg_mul] using tendsto_rpow_mul_exp_neg_mul_atTop_nhds_0 s b hb [GOAL] k : ℤ b : ℝ hb : 0 < b ⊢ (fun x => x ^ ↑k) =o[atTop] fun x => exp (b * x) [PROOFSTEP] simpa only [rpow_int_cast] using isLittleO_rpow_exp_pos_mul_atTop k hb [GOAL] k : ℕ b : ℝ hb : 0 < b ⊢ (fun x => x ^ ↑k) =o[atTop] fun x => exp (b * x) [PROOFSTEP] simpa using isLittleO_zpow_exp_pos_mul_atTop k hb [GOAL] s : ℝ ⊢ (fun x => x ^ s) =o[atTop] exp [PROOFSTEP] simpa only [one_mul] using isLittleO_rpow_exp_pos_mul_atTop s one_pos [GOAL] a : ℝ ha : 0 < a b : ℝ ⊢ (fun x => exp (-a * x)) =o[atTop] fun x => x ^ b [PROOFSTEP] apply isLittleO_of_tendsto' [GOAL] case hgf a : ℝ ha : 0 < a b : ℝ ⊢ ∀ᶠ (x : ℝ) in atTop, x ^ b = 0 → exp (-a * x) = 0 [PROOFSTEP] refine' (eventually_gt_atTop 0).mp (eventually_of_forall fun t ht h => _) [GOAL] case hgf a : ℝ ha : 0 < a b t : ℝ ht : 0 < t h : t ^ b = 0 ⊢ exp (-a * t) = 0 [PROOFSTEP] rw [rpow_eq_zero_iff_of_nonneg ht.le] at h [GOAL] case hgf a : ℝ ha : 0 < a b t : ℝ ht : 0 < t h : t = 0 ∧ b ≠ 0 ⊢ exp (-a * t) = 0 [PROOFSTEP] exact (ht.ne' h.1).elim [GOAL] case a a : ℝ ha : 0 < a b : ℝ ⊢ Tendsto (fun x => exp (-a * x) / x ^ b) atTop (𝓝 0) [PROOFSTEP] refine' (tendsto_exp_mul_div_rpow_atTop (-b) a ha).inv_tendsto_atTop.congr' _ [GOAL] case a a : ℝ ha : 0 < a b : ℝ ⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ =ᶠ[atTop] fun x => exp (-a * x) / x ^ b [PROOFSTEP] refine' (eventually_ge_atTop 0).mp (eventually_of_forall fun t ht => _) [GOAL] case a a : ℝ ha : 0 < a b t : ℝ ht : 0 ≤ t ⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ t = (fun x => exp (-a * x) / x ^ b) t [PROOFSTEP] dsimp only [GOAL] case a a : ℝ ha : 0 < a b t : ℝ ht : 0 ≤ t ⊢ (fun x => exp (a * x) / x ^ (-b))⁻¹ t = exp (-a * t) / t ^ b [PROOFSTEP] rw [Pi.inv_apply, inv_div, ← inv_div_inv, neg_mul, Real.exp_neg, rpow_neg ht, inv_inv] [GOAL] s r : ℝ hs : 0 < s r' : ℝ := max r 1 hr : 0 < r' H : 0 < s / r' x : ℝ hx : 1 ≤ log x ⊢ ‖log x ^ r‖ ≤ 1 * ‖log x ^ r'‖ [PROOFSTEP] have hx₀ : 0 ≤ log x := zero_le_one.trans hx [GOAL] s r : ℝ hs : 0 < s r' : ℝ := max r 1 hr : 0 < r' H : 0 < s / r' x : ℝ hx : 1 ≤ log x hx₀ : 0 ≤ log x ⊢ ‖log x ^ r‖ ≤ 1 * ‖log x ^ r'‖ [PROOFSTEP] simp [norm_eq_abs, abs_rpow_of_nonneg, abs_rpow_of_nonneg hx₀, rpow_le_rpow_of_exponent_le (hx.trans (le_abs_self _))] [GOAL] s r : ℝ hs : 0 < s r' : ℝ := max r 1 hr : 0 < r' H : 0 < s / r' x : ℝ hx : 0 ≤ x ⊢ (fun x => (x ^ (s / r')) ^ r') x = (fun x => x ^ s) x [PROOFSTEP] simp only [← rpow_mul hx, div_mul_cancel _ hr.ne'] [GOAL] s r : ℝ hs : s < 0 x : ℝ hx : x ∈ Set.Icc 0 1 ⊢ x ∈ {x | (fun x => ((fun x => log x ^ r) ∘ fun x => x⁻¹) x = (fun x => |log x| ^ r) x) x} [PROOFSTEP] simp [abs_of_nonpos, log_nonpos hx.1 hx.2] [GOAL] s r : ℝ hs : s < 0 x : ℝ hx : x ∈ Set.Ioi 0 ⊢ ((fun x => x ^ (-s)) ∘ fun x => x⁻¹) x = (fun x => x ^ s) x [PROOFSTEP] rw [Function.comp_apply, inv_rpow hx.out.le, rpow_neg hx.out.le, inv_inv] [GOAL] r : ℝ hr : r < 0 x : ℝ hx : x ∈ Set.Icc 0 1 ⊢ x ∈ {x | (fun x => (fun x => -|log x| ^ 1) x = log x) x} [PROOFSTEP] simp [abs_of_nonpos (log_nonpos hx.1 hx.2)] [GOAL] r : ℝ hr : 0 < r x : ℝ hx : x ∈ Set.Ioi 0 ⊢ log x / x ^ (-r) = (fun x => log x * x ^ r) x [PROOFSTEP] rw [rpow_neg hx.out.le, div_inv_eq_mul]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Asymptotics", "llama_tokens": 14394}
[GOAL] x : ℂ ⊢ Real.sin (arg x) = x.im / ↑abs x [PROOFSTEP] unfold arg [GOAL] x : ℂ ⊢ Real.sin (if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then arcsin ((-x).im / ↑abs x) + π else arcsin ((-x).im / ↑abs x) - π) = x.im / ↑abs x [PROOFSTEP] split_ifs [GOAL] case pos x : ℂ h✝ : 0 ≤ x.re ⊢ Real.sin (arcsin (x.im / ↑abs x)) = x.im / ↑abs x [PROOFSTEP] simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] [GOAL] case pos x : ℂ h✝¹ : ¬0 ≤ x.re h✝ : 0 ≤ x.im ⊢ Real.sin (arcsin ((-x).im / ↑abs x) + π) = x.im / ↑abs x [PROOFSTEP] simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] [GOAL] case neg x : ℂ h✝¹ : ¬0 ≤ x.re h✝ : ¬0 ≤ x.im ⊢ Real.sin (arcsin ((-x).im / ↑abs x) - π) = x.im / ↑abs x [PROOFSTEP] simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] [GOAL] x : ℂ hx : x ≠ 0 ⊢ Real.cos (arg x) = x.re / ↑abs x [PROOFSTEP] rw [arg] [GOAL] x : ℂ hx : x ≠ 0 ⊢ Real.cos (if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then arcsin ((-x).im / ↑abs x) + π else arcsin ((-x).im / ↑abs x) - π) = x.re / ↑abs x [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos x : ℂ hx : x ≠ 0 h₁ : 0 ≤ x.re ⊢ Real.cos (arcsin (x.im / ↑abs x)) = x.re / ↑abs x [PROOFSTEP] rw [Real.cos_arcsin] [GOAL] case pos x : ℂ hx : x ≠ 0 h₁ : 0 ≤ x.re ⊢ sqrt (1 - (x.im / ↑abs x) ^ 2) = x.re / ↑abs x [PROOFSTEP] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] [GOAL] case pos x : ℂ hx : x ≠ 0 h₁ : ¬0 ≤ x.re h₂ : 0 ≤ x.im ⊢ Real.cos (arcsin ((-x).im / ↑abs x) + π) = x.re / ↑abs x [PROOFSTEP] rw [Real.cos_add_pi, Real.cos_arcsin] [GOAL] case pos x : ℂ hx : x ≠ 0 h₁ : ¬0 ≤ x.re h₂ : 0 ≤ x.im ⊢ -sqrt (1 - ((-x).im / ↑abs x) ^ 2) = x.re / ↑abs x [PROOFSTEP] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] [GOAL] case neg x : ℂ hx : x ≠ 0 h₁ : ¬0 ≤ x.re h₂ : ¬0 ≤ x.im ⊢ Real.cos (arcsin ((-x).im / ↑abs x) - π) = x.re / ↑abs x [PROOFSTEP] rw [Real.cos_sub_pi, Real.cos_arcsin] [GOAL] case neg x : ℂ hx : x ≠ 0 h₁ : ¬0 ≤ x.re h₂ : ¬0 ≤ x.im ⊢ -sqrt (1 - ((-x).im / ↑abs x) ^ 2) = x.re / ↑abs x [PROOFSTEP] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] [GOAL] x : ℂ ⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl ⊢ ↑(↑abs 0) * exp (↑(arg 0) * I) = 0 [PROOFSTEP] simp [GOAL] case inr x : ℂ hx : x ≠ 0 ⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x [PROOFSTEP] have : abs x ≠ 0 := abs.ne_zero hx [GOAL] case inr x : ℂ hx : x ≠ 0 this : ↑abs x ≠ 0 ⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x [PROOFSTEP] ext [GOAL] case inr.a x : ℂ hx : x ≠ 0 this : ↑abs x ≠ 0 ⊢ (↑(↑abs x) * exp (↑(arg x) * I)).re = x.re [PROOFSTEP] field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] [GOAL] case inr.a x : ℂ hx : x ≠ 0 this : ↑abs x ≠ 0 ⊢ (↑(↑abs x) * exp (↑(arg x) * I)).im = x.im [PROOFSTEP] field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] [GOAL] x : ℂ ⊢ ↑(↑abs x) * (cos ↑(arg x) + sin ↑(arg x) * I) = x [PROOFSTEP] rw [← exp_mul_I, abs_mul_exp_arg_mul_I] [GOAL] z : ℂ ⊢ ↑abs z = 1 ↔ ∃ θ, exp (↑θ * I) = z [PROOFSTEP] refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ [GOAL] case refine'_1 z : ℂ hz : ↑abs z = 1 ⊢ exp (↑(arg z) * I) = z [PROOFSTEP] calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z [GOAL] z : ℂ hz : ↑abs z = 1 ⊢ exp (↑(arg z) * I) = ↑(↑abs z) * exp (↑(arg z) * I) [PROOFSTEP] rw [hz, ofReal_one, one_mul] [GOAL] case refine'_2 z : ℂ ⊢ (∃ θ, exp (↑θ * I) = z) → ↑abs z = 1 [PROOFSTEP] rintro ⟨θ, rfl⟩ [GOAL] case refine'_2.intro θ : ℝ ⊢ ↑abs (exp (↑θ * I)) = 1 [PROOFSTEP] exact Complex.abs_exp_ofReal_mul_I θ [GOAL] ⊢ (Set.range fun x => exp (↑x * I)) = Metric.sphere 0 1 [PROOFSTEP] ext x [GOAL] case h x : ℂ ⊢ (x ∈ Set.range fun x => exp (↑x * I)) ↔ x ∈ Metric.sphere 0 1 [PROOFSTEP] simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] [GOAL] r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π ⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = θ [PROOFSTEP] simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] [GOAL] r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π ⊢ (if 0 ≤ (↑r * (cos ↑θ + sin ↑θ * I)).re then arcsin ((↑r * (cos ↑θ + sin ↑θ * I)).im / r) else if 0 ≤ (↑r * (cos ↑θ + sin ↑θ * I)).im then arcsin ((-(↑r * (cos ↑θ + sin ↑θ * I))).im / r) + π else arcsin ((-(↑r * (cos ↑θ + sin ↑θ * I))).im / r) - π) = θ [PROOFSTEP] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] [GOAL] r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) [GOAL] case pos r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [if_pos] [GOAL] case pos r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) ⊢ arcsin (Real.sin θ) = θ case pos.hc r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) ⊢ 0 ≤ Real.cos θ [PROOFSTEP] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] [GOAL] case neg r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : ¬θ ∈ Set.Icc (-(π / 2)) (π / 2) ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ [GOAL] case neg r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ < -(π / 2) ∨ π / 2 < θ ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] cases' h₁ with h₁ h₁ [GOAL] case neg.inl r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : θ < -(π / 2) ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] replace hθ := hθ.1 [GOAL] case neg.inl r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith [GOAL] r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ ⊢ Real.cos θ < 0 [PROOFSTEP] rw [← neg_pos, ← Real.cos_add_pi] [GOAL] r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ ⊢ 0 < Real.cos (θ + π) [PROOFSTEP] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ [GOAL] case refine'_1 r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ ⊢ -(π / 2) < θ + π [PROOFSTEP] linarith [GOAL] case refine'_2 r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ ⊢ θ + π < π / 2 [PROOFSTEP] linarith [GOAL] case neg.inl r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ [GOAL] r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 ⊢ θ < 0 [PROOFSTEP] linarith [GOAL] case neg.inl r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] [GOAL] case neg.inl r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] [GOAL] case neg.inl.hx₁ r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ -(π / 2) ≤ θ + π [PROOFSTEP] linarith [GOAL] case neg.inl.hx₂ r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ θ + π ≤ π / 2 [PROOFSTEP] linarith [GOAL] case neg.inl.hnc r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ ¬0 ≤ Real.sin θ [PROOFSTEP] exact hsin.not_le [GOAL] case neg.inl.hnc r : ℝ hr : 0 < r θ : ℝ h₁ : θ < -(π / 2) hθ : -π < θ hcos : Real.cos θ < 0 hsin : Real.sin θ < 0 ⊢ ¬0 ≤ Real.cos θ [PROOFSTEP] exact hcos.not_le [GOAL] case neg.inr r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Set.Ioc (-π) π h₁ : π / 2 < θ ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] replace hθ := hθ.2 [GOAL] case neg.inr r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) [GOAL] r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π ⊢ θ < π + π / 2 [PROOFSTEP] linarith [GOAL] case neg.inr r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ [GOAL] r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 ⊢ 0 ≤ θ [PROOFSTEP] linarith [GOAL] case neg.inr r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] [GOAL] case neg.inr r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ (if 0 ≤ Real.cos θ then arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then arcsin (-Real.sin θ) + π else arcsin (-Real.sin θ) - π) = θ [PROOFSTEP] rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] [GOAL] case neg.inr.hx₁ r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ -(π / 2) ≤ θ - π [PROOFSTEP] linarith [GOAL] case neg.inr.hx₂ r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ θ - π ≤ π / 2 [PROOFSTEP] linarith [GOAL] case neg.inr.hc r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ 0 ≤ Real.sin θ [PROOFSTEP] exact hsin [GOAL] case neg.inr.hnc r : ℝ hr : 0 < r θ : ℝ h₁ : π / 2 < θ hθ : θ ≤ π hcos : Real.cos θ < 0 hsin : 0 ≤ Real.sin θ ⊢ ¬0 ≤ Real.cos θ [PROOFSTEP] exact hcos.not_le [GOAL] θ : ℝ hθ : θ ∈ Set.Ioc (-π) π ⊢ arg (cos ↑θ + sin ↑θ * I) = θ [PROOFSTEP] rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] [GOAL] ⊢ arg 0 = 0 [PROOFSTEP] simp [arg, le_refl] [GOAL] x y : ℂ h₁ : ↑abs x = ↑abs y h₂ : arg x = arg y ⊢ x = y [PROOFSTEP] rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] [GOAL] z : ℂ ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] have hπ : 0 < π := Real.pi_pos [GOAL] z : ℂ hπ : 0 < π ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] rcases eq_or_ne z 0 with (rfl | hz) [GOAL] case inl hπ : 0 < π ⊢ arg 0 ∈ Set.Ioc (-π) π case inr z : ℂ hπ : 0 < π hz : z ≠ 0 ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] simp [hπ, hπ.le] [GOAL] case inr z : ℂ hπ : 0 < π hz : z ≠ 0 ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + N • (2 * π) ∈ Set.Ioc (-π) (-π + 2 * π) ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π ⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π [PROOFSTEP] simp only [← ofReal_one, ← ofReal_bit0, ← ofReal_mul, ← ofReal_add, ofReal_int_cast] [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π ⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π [PROOFSTEP] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π this : arg (↑(↑abs z) * (cos ↑(arg z + ↑N * (2 * π)) + sin ↑(arg z + ↑N * (2 * π)) * I)) = arg z + ↑N * (2 * π) ⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π [PROOFSTEP] push_cast at this [GOAL] case inr.intro.intro z : ℂ hπ : 0 < π hz : z ≠ 0 N : ℤ hN : arg z + ↑N * (2 * π) ∈ Set.Ioc (-π) π this : arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) = arg z + ↑N * (2 * π) ⊢ arg (↑(↑abs z) * (cos (↑(arg z) + ↑N * (2 * ↑π)) + sin (↑(arg z) + ↑N * (2 * ↑π)) * I)) ∈ Set.Ioc (-π) π [PROOFSTEP] rwa [this] [GOAL] z : ℂ ⊢ 0 ≤ arg z ↔ 0 ≤ z.im [PROOFSTEP] rcases eq_or_ne z 0 with (rfl | h₀) [GOAL] case inl ⊢ 0 ≤ arg 0 ↔ 0 ≤ 0.im [PROOFSTEP] simp [GOAL] case inr z : ℂ h₀ : z ≠ 0 ⊢ 0 ≤ arg z ↔ 0 ≤ z.im [PROOFSTEP] calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] [GOAL] z : ℂ h₀ : z ≠ 0 ⊢ 0 ≤ Real.sin (arg z) → 0 ≤ arg z [PROOFSTEP] contrapose! [GOAL] z : ℂ h₀ : z ≠ 0 ⊢ arg z < 0 → Real.sin (arg z) < 0 [PROOFSTEP] intro h [GOAL] z : ℂ h₀ : z ≠ 0 h : arg z < 0 ⊢ Real.sin (arg z) < 0 [PROOFSTEP] exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _) [GOAL] z : ℂ h₀ : z ≠ 0 ⊢ 0 ≤ Real.sin (arg z) ↔ 0 ≤ z.im [PROOFSTEP] rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] [GOAL] x : ℂ r : ℝ hr : 0 < r ⊢ arg (↑r * x) = arg x [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl r : ℝ hr : 0 < r ⊢ arg (↑r * 0) = arg 0 [PROOFSTEP] rw [mul_zero] [GOAL] case inr x : ℂ r : ℝ hr : 0 < r hx : x ≠ 0 ⊢ arg (↑r * x) = arg x [PROOFSTEP] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] [GOAL] x : ℂ r : ℝ hr : 0 < r hx : x ≠ 0 | arg (↑r * x) [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] [GOAL] x : ℂ r : ℝ hr : 0 < r hx : x ≠ 0 | arg (↑r * x) [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] [GOAL] x : ℂ r : ℝ hr : 0 < r hx : x ≠ 0 | arg (↑r * x) [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] [GOAL] x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ arg x = arg y ↔ ↑(↑abs y) / ↑(↑abs x) * x = y [PROOFSTEP] simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] [GOAL] x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ arg x = arg y ↔ arg (↑(↑abs y) / ↑(↑abs x) * x) = arg y [PROOFSTEP] rw [← ofReal_div, arg_real_mul] [GOAL] case hr x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ 0 < ↑abs y / ↑abs x [PROOFSTEP] exact div_pos (abs.pos hy) (abs.pos hx) [GOAL] ⊢ arg 1 = 0 [PROOFSTEP] simp [arg, zero_le_one] [GOAL] ⊢ arg (-1) = π [PROOFSTEP] simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] [GOAL] ⊢ arg I = π / 2 [PROOFSTEP] simp [arg, le_refl] [GOAL] ⊢ arg (-I) = -(π / 2) [PROOFSTEP] simp [arg, le_refl] [GOAL] x : ℂ ⊢ Real.tan (arg x) = x.im / x.re [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos x : ℂ h : x = 0 ⊢ Real.tan (arg x) = x.im / x.re [PROOFSTEP] simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] [GOAL] case neg x : ℂ h : ¬x = 0 ⊢ Real.tan (arg x) = x.im / x.re [PROOFSTEP] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] [GOAL] x : ℝ hx : 0 ≤ x ⊢ arg ↑x = 0 [PROOFSTEP] simp [arg, hx] [GOAL] z : ℂ ⊢ arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 z : ℂ h : arg z = 0 ⊢ 0 ≤ z.re ∧ z.im = 0 [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I z, h] [GOAL] case refine'_1 z : ℂ h : arg z = 0 ⊢ 0 ≤ (↑(↑abs z) * (cos ↑0 + sin ↑0 * I)).re ∧ (↑(↑abs z) * (cos ↑0 + sin ↑0 * I)).im = 0 [PROOFSTEP] simp [abs.nonneg] [GOAL] case refine'_2 z : ℂ ⊢ 0 ≤ z.re ∧ z.im = 0 → arg z = 0 [PROOFSTEP] cases' z with x y [GOAL] case refine'_2.mk x y : ℝ ⊢ 0 ≤ { re := x, im := y }.re ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = 0 [PROOFSTEP] rintro ⟨h, rfl : y = 0⟩ [GOAL] case refine'_2.mk.intro x : ℝ h : 0 ≤ { re := x, im := 0 }.re ⊢ arg { re := x, im := 0 } = 0 [PROOFSTEP] exact arg_ofReal_of_nonneg h [GOAL] z : ℂ ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 [PROOFSTEP] by_cases h₀ : z = 0 [GOAL] case pos z : ℂ h₀ : z = 0 ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 [PROOFSTEP] simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] [GOAL] case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 [PROOFSTEP] constructor [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 ⊢ arg z = π → z.re < 0 ∧ z.im = 0 [PROOFSTEP] intro h [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = π ⊢ z.re < 0 ∧ z.im = 0 [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I z, h] [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = π ⊢ (↑(↑abs z) * (cos ↑π + sin ↑π * I)).re < 0 ∧ (↑(↑abs z) * (cos ↑π + sin ↑π * I)).im = 0 [PROOFSTEP] simp [h₀] [GOAL] case neg.mpr z : ℂ h₀ : ¬z = 0 ⊢ z.re < 0 ∧ z.im = 0 → arg z = π [PROOFSTEP] cases' z with x y [GOAL] case neg.mpr.mk x y : ℝ h₀ : ¬{ re := x, im := y } = 0 ⊢ { re := x, im := y }.re < 0 ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = π [PROOFSTEP] rintro ⟨h : x < 0, rfl : y = 0⟩ [GOAL] case neg.mpr.mk.intro x : ℝ h : x < 0 h₀ : ¬{ re := x, im := 0 } = 0 ⊢ arg { re := x, im := 0 } = π [PROOFSTEP] rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] [GOAL] case neg.mpr.mk.intro x : ℝ h : x < 0 h₀ : ¬{ re := x, im := 0 } = 0 ⊢ arg { re := x, im := 0 } = arg (↑(-x) * -1) [PROOFSTEP] simp [← ofReal_def] [GOAL] z : ℂ ⊢ arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 [PROOFSTEP] rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] [GOAL] z : ℂ ⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im [PROOFSTEP] by_cases h₀ : z = 0 [GOAL] case pos z : ℂ h₀ : z = 0 ⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im [PROOFSTEP] simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] [GOAL] case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im [PROOFSTEP] constructor [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 ⊢ arg z = π / 2 → z.re = 0 ∧ 0 < z.im [PROOFSTEP] intro h [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = π / 2 ⊢ z.re = 0 ∧ 0 < z.im [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I z, h] [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = π / 2 ⊢ (↑(↑abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).re = 0 ∧ 0 < (↑(↑abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).im [PROOFSTEP] simp [h₀] [GOAL] case neg.mpr z : ℂ h₀ : ¬z = 0 ⊢ z.re = 0 ∧ 0 < z.im → arg z = π / 2 [PROOFSTEP] cases' z with x y [GOAL] case neg.mpr.mk x y : ℝ h₀ : ¬{ re := x, im := y } = 0 ⊢ { re := x, im := y }.re = 0 ∧ 0 < { re := x, im := y }.im → arg { re := x, im := y } = π / 2 [PROOFSTEP] rintro ⟨rfl : x = 0, hy : 0 < y⟩ [GOAL] case neg.mpr.mk.intro y : ℝ h₀ : ¬{ re := 0, im := y } = 0 hy : 0 < y ⊢ arg { re := 0, im := y } = π / 2 [PROOFSTEP] rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] [GOAL] z : ℂ ⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 [PROOFSTEP] by_cases h₀ : z = 0 [GOAL] case pos z : ℂ h₀ : z = 0 ⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 [PROOFSTEP] simp [h₀, lt_irrefl, Real.pi_ne_zero] [GOAL] case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 [PROOFSTEP] constructor [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 ⊢ arg z = -(π / 2) → z.re = 0 ∧ z.im < 0 [PROOFSTEP] intro h [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = -(π / 2) ⊢ z.re = 0 ∧ z.im < 0 [PROOFSTEP] rw [← abs_mul_cos_add_sin_mul_I z, h] [GOAL] case neg.mp z : ℂ h₀ : ¬z = 0 h : arg z = -(π / 2) ⊢ (↑(↑abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).re = 0 ∧ (↑(↑abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).im < 0 [PROOFSTEP] simp [h₀] [GOAL] case neg.mpr z : ℂ h₀ : ¬z = 0 ⊢ z.re = 0 ∧ z.im < 0 → arg z = -(π / 2) [PROOFSTEP] cases' z with x y [GOAL] case neg.mpr.mk x y : ℝ h₀ : ¬{ re := x, im := y } = 0 ⊢ { re := x, im := y }.re = 0 ∧ { re := x, im := y }.im < 0 → arg { re := x, im := y } = -(π / 2) [PROOFSTEP] rintro ⟨rfl : x = 0, hy : y < 0⟩ [GOAL] case neg.mpr.mk.intro y : ℝ h₀ : ¬{ re := 0, im := y } = 0 hy : y < 0 ⊢ arg { re := 0, im := y } = -(π / 2) [PROOFSTEP] rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] [GOAL] case neg.mpr.mk.intro y : ℝ h₀ : ¬{ re := 0, im := y } = 0 hy : y < 0 ⊢ arg (↑0 + ↑y * I) = arg (↑(-y) * -I) [PROOFSTEP] simp [GOAL] x : ℂ hx_re : x.re < 0 hx_im : 0 ≤ x.im ⊢ arg x = arcsin ((-x).im / ↑abs x) + π [PROOFSTEP] simp only [arg, hx_re.not_le, hx_im, if_true, if_false] [GOAL] x : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ arg x = arcsin ((-x).im / ↑abs x) - π [PROOFSTEP] simp only [arg, hx_re.not_le, hx_im.not_le, if_false] [GOAL] z : ℂ h₁ : 0 ≤ z.im h₂ : z ≠ 0 ⊢ arg z = arccos (z.re / ↑abs z) [PROOFSTEP] rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] [GOAL] z : ℂ hz : z.im < 0 ⊢ arg z = -arccos (z.re / ↑abs z) [PROOFSTEP] have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne [GOAL] z : ℂ hz : z.im < 0 h₀ : z ≠ 0 ⊢ arg z = -arccos (z.re / ↑abs z) [PROOFSTEP] rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] [GOAL] case hx₁ z : ℂ hz : z.im < 0 h₀ : z ≠ 0 ⊢ 0 ≤ -arg z case hx₂ z : ℂ hz : z.im < 0 h₀ : z ≠ 0 ⊢ -arg z ≤ π [PROOFSTEP] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] [GOAL] x : ℂ ⊢ arg (↑(starRingEnd ℂ) x) = if arg x = π then π else -arg x [PROOFSTEP] simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] [GOAL] x : ℂ ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] rcases lt_trichotomy x.re 0 with (hr | hr | hr) [GOAL] case inl x : ℂ hr : x.re < 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inr.inl x : ℂ hr : x.re = 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inr.inr x : ℂ hr : 0 < x.re ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inl.inl x : ℂ hr : x.re < 0 hi : x.im < 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] [GOAL] case inl.inr.inl x : ℂ hr : x.re < 0 hi : x.im = 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.not_le, hi] [GOAL] case inl.inr.inr x : ℂ hr : x.re < 0 hi : 0 < x.im ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] [GOAL] case inr.inl.inl x : ℂ hr : x.re = 0 hi : x.im < 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr] [GOAL] case inr.inl.inr.inl x : ℂ hr : x.re = 0 hi : x.im = 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr] [GOAL] case inr.inl.inr.inr x : ℂ hr : x.re = 0 hi : 0 < x.im ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr] [GOAL] case inr.inr.inl x : ℂ hr : 0 < x.re hi : x.im < 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.le, hi.ne] [GOAL] case inr.inr.inr.inl x : ℂ hr : 0 < x.re hi : x.im = 0 ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.le, hr.le.not_lt] [GOAL] case inr.inr.inr.inr x : ℂ hr : 0 < x.re hi : 0 < x.im ⊢ (if 0 ≤ x.re then -arcsin (x.im / ↑abs x) else if 0 ≤ -x.im then arcsin (x.im / ↑abs x) + π else arcsin (x.im / ↑abs x) - π) = if x.re < 0 ∧ x.im = 0 then π else -if 0 ≤ x.re then arcsin (x.im / ↑abs x) else if 0 ≤ x.im then -arcsin (x.im / ↑abs x) + π else -arcsin (x.im / ↑abs x) - π [PROOFSTEP] simp [hr, hr.le, hr.le.not_lt] [GOAL] x : ℂ ⊢ arg x⁻¹ = if arg x = π then π else -arg x [PROOFSTEP] rw [← arg_conj, inv_def, mul_comm] [GOAL] x : ℂ ⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos x : ℂ hx : x = 0 ⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x) [PROOFSTEP] simp [hx] [GOAL] case neg x : ℂ hx : ¬x = 0 ⊢ arg (↑(↑normSq x)⁻¹ * ↑(starRingEnd ℂ) x) = arg (↑(starRingEnd ℂ) x) [PROOFSTEP] exact arg_real_mul (conj x) (by simp [hx]) [GOAL] x : ℂ hx : ¬x = 0 ⊢ 0 < (↑normSq x)⁻¹ [PROOFSTEP] simp [hx] [GOAL] z : ℂ ⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 [PROOFSTEP] cases' le_or_lt 0 (re z) with hre hre [GOAL] case inl z : ℂ hre : 0 ≤ z.re ⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 [PROOFSTEP] simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] [GOAL] case inr z : ℂ hre : z.re < 0 ⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 [PROOFSTEP] simp only [hre.not_le, false_or_iff] [GOAL] case inr z : ℂ hre : z.re < 0 ⊢ arg z ≤ π / 2 ↔ z.im < 0 [PROOFSTEP] cases' le_or_lt 0 (im z) with him him [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ arg z ≤ π / 2 ↔ z.im < 0 [PROOFSTEP] simp only [him.not_lt] [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ arg z ≤ π / 2 ↔ False [PROOFSTEP] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ z.re ≠ 0 case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ 0 < ↑abs z [PROOFSTEP] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ arg z ≤ π / 2 ↔ z.im < 0 [PROOFSTEP] simp only [him] [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ arg z ≤ π / 2 ↔ True [PROOFSTEP] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ arcsin ((-z).im / ↑abs z) - π ≤ π / 2 [PROOFSTEP] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) [GOAL] z : ℂ ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im [PROOFSTEP] cases' le_or_lt 0 (re z) with hre hre [GOAL] case inl z : ℂ hre : 0 ≤ z.re ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im [PROOFSTEP] simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] [GOAL] case inr z : ℂ hre : z.re < 0 ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im [PROOFSTEP] simp only [hre.not_le, false_or_iff] [GOAL] case inr z : ℂ hre : z.re < 0 ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im [PROOFSTEP] cases' le_or_lt 0 (im z) with him him [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im [PROOFSTEP] simp only [him] [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ -(π / 2) ≤ arg z ↔ True [PROOFSTEP] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] [GOAL] case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ -(π / 2) ≤ arcsin ((-z).im / ↑abs z) + π [PROOFSTEP] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im [PROOFSTEP] simp only [him.not_le] [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ -(π / 2) ≤ arg z ↔ False [PROOFSTEP] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] [GOAL] case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ z.re ≠ 0 case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ 0 < ↑abs z [PROOFSTEP] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] [GOAL] z : ℂ ⊢ |arg z| ≤ π / 2 ↔ 0 ≤ z.re [PROOFSTEP] rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] [GOAL] x : ℂ ⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x) [PROOFSTEP] by_cases h : arg x = π [GOAL] case pos x : ℂ h : arg x = π ⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x) [PROOFSTEP] simp [arg_conj, h] [GOAL] case neg x : ℂ h : ¬arg x = π ⊢ ↑(arg (↑(starRingEnd ℂ) x)) = -↑(arg x) [PROOFSTEP] simp [arg_conj, h] [GOAL] x : ℂ ⊢ ↑(arg x⁻¹) = -↑(arg x) [PROOFSTEP] by_cases h : arg x = π [GOAL] case pos x : ℂ h : arg x = π ⊢ ↑(arg x⁻¹) = -↑(arg x) [PROOFSTEP] simp [arg_inv, h] [GOAL] case neg x : ℂ h : ¬arg x = π ⊢ ↑(arg x⁻¹) = -↑(arg x) [PROOFSTEP] simp [arg_inv, h] [GOAL] x : ℂ hi : 0 < x.im ⊢ arg (-x) = arg x - π [PROOFSTEP] rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] [GOAL] x : ℂ hi : 0 < x.im ⊢ -arccos ((-x).re / ↑abs (-x)) = arccos (x.re / ↑abs x) - π [PROOFSTEP] simp [neg_div, Real.arccos_neg] [GOAL] x : ℂ hi : x.im < 0 ⊢ arg (-x) = arg x + π [PROOFSTEP] rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] [GOAL] x : ℂ hi : x.im < 0 ⊢ arccos ((-x).re / ↑abs (-x)) = -arccos (x.re / ↑abs x) + π [PROOFSTEP] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] [GOAL] x : ℂ ⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inl x : ℂ hi : x.im < 0 ⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 [PROOFSTEP] simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] [GOAL] case inr.inl x : ℂ hi : x.im = 0 ⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 [PROOFSTEP] rw [(ext rfl hi : x = x.re)] [GOAL] case inr.inl x : ℂ hi : x.im = 0 ⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] rcases lt_trichotomy x.re 0 with (hr | hr | hr) [GOAL] case inr.inl.inl x : ℂ hi : x.im = 0 hr : x.re < 0 ⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] [GOAL] case inr.inl.inl x : ℂ hi : x.im = 0 hr : x.re < 0 ⊢ 0 = π - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] simp [hr] [GOAL] case inr.inl.inr.inl x : ℂ hi : x.im = 0 hr : x.re = 0 ⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] simp [hr, hi, Real.pi_ne_zero] [GOAL] case inr.inl.inr.inr x : ℂ hi : x.im = 0 hr : 0 < x.re ⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] [GOAL] case inr.inl.inr.inr x : ℂ hi : x.im = 0 hr : 0 < x.re ⊢ π = 0 - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 [PROOFSTEP] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] [GOAL] case inr.inr x : ℂ hi : 0 < x.im ⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 [PROOFSTEP] simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] [GOAL] x : ℂ ⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inl x : ℂ hi : x.im < 0 ⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re [PROOFSTEP] simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] [GOAL] case inr.inl x : ℂ hi : x.im = 0 ⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re [PROOFSTEP] rw [(ext rfl hi : x = x.re)] [GOAL] case inr.inl x : ℂ hi : x.im = 0 ⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] rcases lt_trichotomy x.re 0 with (hr | hr | hr) [GOAL] case inr.inl.inl x : ℂ hi : x.im = 0 hr : x.re < 0 ⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] [GOAL] case inr.inl.inl x : ℂ hi : x.im = 0 hr : x.re < 0 ⊢ 0 = π + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] [GOAL] case inr.inl.inr.inl x : ℂ hi : x.im = 0 hr : x.re = 0 ⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] simp [hr, hi, Real.pi_ne_zero.symm] [GOAL] case inr.inl.inr.inr x : ℂ hi : x.im = 0 hr : 0 < x.re ⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] [GOAL] case inr.inl.inr.inr x : ℂ hi : x.im = 0 hr : 0 < x.re ⊢ π = 0 + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re [PROOFSTEP] simp [hr] [GOAL] case inr.inr x : ℂ hi : 0 < x.im ⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re [PROOFSTEP] simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] [GOAL] x : ℂ hx : x ≠ 0 ⊢ ↑(arg (-x)) = ↑(arg x) + ↑π [PROOFSTEP] rcases lt_trichotomy x.im 0 with (hi | hi | hi) [GOAL] case inl x : ℂ hx : x ≠ 0 hi : x.im < 0 ⊢ ↑(arg (-x)) = ↑(arg x) + ↑π [PROOFSTEP] rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] [GOAL] case inr.inl x : ℂ hx : x ≠ 0 hi : x.im = 0 ⊢ ↑(arg (-x)) = ↑(arg x) + ↑π [PROOFSTEP] rw [(ext rfl hi : x = x.re)] [GOAL] case inr.inl x : ℂ hx : x ≠ 0 hi : x.im = 0 ⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π [PROOFSTEP] rcases lt_trichotomy x.re 0 with (hr | hr | hr) [GOAL] case inr.inl.inl x : ℂ hx : x ≠ 0 hi : x.im = 0 hr : x.re < 0 ⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π [PROOFSTEP] rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] [GOAL] case inr.inl.inr.inl x : ℂ hx : x ≠ 0 hi : x.im = 0 hr : x.re = 0 ⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π [PROOFSTEP] exact False.elim (hx (ext hr hi)) [GOAL] case inr.inl.inr.inr x : ℂ hx : x ≠ 0 hi : x.im = 0 hr : 0 < x.re ⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π [PROOFSTEP] rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] [GOAL] case inr.inr x : ℂ hx : x ≠ 0 hi : 0 < x.im ⊢ ↑(arg (-x)) = ↑(arg x) + ↑π [PROOFSTEP] rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] [GOAL] r : ℝ hr : 0 < r θ : ℝ ⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ [PROOFSTEP] have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring [GOAL] r : ℝ hr : 0 < r θ : ℝ ⊢ toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π [PROOFSTEP] convert toIocMod_mem_Ioc _ _ θ [GOAL] case h.e'_5.h.e'_4 r : ℝ hr : 0 < r θ : ℝ ⊢ π = -π + 2 * π [PROOFSTEP] ring [GOAL] r : ℝ hr : 0 < r θ : ℝ hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π ⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ [PROOFSTEP] convert arg_mul_cos_add_sin_mul_I hr hi using 3 [GOAL] case h.e'_2.h.e'_1.h.e'_6 r : ℝ hr : 0 < r θ : ℝ hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π ⊢ cos ↑θ + sin ↑θ * I = cos ↑(toIocMod two_pi_pos (-π) θ) + sin ↑(toIocMod two_pi_pos (-π) θ) * I [PROOFSTEP] simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] [GOAL] θ : ℝ ⊢ arg (cos ↑θ + sin ↑θ * I) = toIocMod two_pi_pos (-π) θ [PROOFSTEP] rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] [GOAL] r : ℝ hr : 0 < r θ : ℝ ⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ [PROOFSTEP] rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] [GOAL] r : ℝ hr : 0 < r θ : ℝ ⊢ ↑(- -⌊(-π + 2 * π - θ) / (2 * π)⌋) * (2 * π) = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ [PROOFSTEP] ring_nf [GOAL] θ : ℝ ⊢ arg (cos ↑θ + sin ↑θ * I) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ [PROOFSTEP] rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] [GOAL] r : ℝ hr : 0 < r θ : Angle ⊢ ↑(arg (↑r * (↑(Angle.cos θ) + ↑(Angle.sin θ) * I))) = θ [PROOFSTEP] induction' θ using Real.Angle.induction_on with θ [GOAL] case h r : ℝ hr : 0 < r θ : ℝ ⊢ ↑(arg (↑r * (↑(Angle.cos ↑θ) + ↑(Angle.sin ↑θ) * I))) = ↑θ [PROOFSTEP] rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] [GOAL] case h r : ℝ hr : 0 < r θ : ℝ ⊢ ∃ k, arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑k [PROOFSTEP] use⌊(π - θ) / (2 * π)⌋ [GOAL] case h r : ℝ hr : 0 < r θ : ℝ ⊢ arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ [PROOFSTEP] exact_mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ [GOAL] θ : Angle ⊢ ↑(arg (↑(Angle.cos θ) + ↑(Angle.sin θ) * I)) = θ [PROOFSTEP] rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] [GOAL] x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ ↑(arg (x * y)) = ↑(arg x) + ↑(arg y) [PROOFSTEP] convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 [GOAL] case h.e'_2.h.e'_1.h.e'_1 x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ x * y = ↑(↑abs x * ↑abs y) * (↑(Angle.cos (↑(arg x) + ↑(arg y))) + ↑(Angle.sin (↑(arg x) + ↑(arg y))) * I) [PROOFSTEP] simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] [GOAL] case h.e'_2.h.e'_1.h.e'_1 x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ x * y = ↑(↑abs x) * ↑(↑abs y) * (exp (↑(arg x) * I) * exp (↑(arg y) * I)) [PROOFSTEP] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] [GOAL] x y : ℂ hx : x ≠ 0 hy : y ≠ 0 ⊢ ↑(arg (x / y)) = ↑(arg x) - ↑(arg y) [PROOFSTEP] rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] [GOAL] z : ℂ ⊢ Angle.toReal ↑(arg z) = arg z [PROOFSTEP] rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] [GOAL] z : ℂ ⊢ arg z ∈ Set.Ioc (-π) π [PROOFSTEP] exact arg_mem_Ioc _ [GOAL] z : ℂ θ : Angle ⊢ ↑(arg z) = θ ↔ arg z = Angle.toReal θ [PROOFSTEP] rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] [GOAL] x y : ℂ ⊢ ↑(arg x) = ↑(arg y) ↔ arg x = arg y [PROOFSTEP] simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] [GOAL] x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) + π [PROOFSTEP] suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im [GOAL] x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im ⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) + π case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im [PROOFSTEP] exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le [GOAL] case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im [PROOFSTEP] refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) [GOAL] case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ IsOpen fun y => y.re < 0 ∧ 0 < y.im [PROOFSTEP] exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) [GOAL] x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) - π [PROOFSTEP] suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 [GOAL] x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0 ⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / ↑abs x) - π case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0 [PROOFSTEP] exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 [GOAL] case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0 [PROOFSTEP] refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) [GOAL] case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ IsOpen fun y => y.re < 0 ∧ y.im < 0 [PROOFSTEP] exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) [GOAL] x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt arg x [PROOFSTEP] have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h [GOAL] x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ ↑abs x ≠ 0 [PROOFSTEP] rw [abs.ne_zero_iff] [GOAL] x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] z : ℂ h : 0 < 0.re ∨ 0.im ≠ 0 ⊢ False [PROOFSTEP] simp at h [GOAL] x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 h₀ : ↑abs x ≠ 0 ⊢ ContinuousAt arg x [PROOFSTEP] rw [← lt_or_lt_iff_ne] at h [GOAL] x z : ℂ h✝ : 0 < x.re ∨ x.im ≠ 0 h : 0 < x.re ∨ x.im < 0 ∨ 0 < x.im h₀ : ↑abs x ≠ 0 ⊢ ContinuousAt arg x [PROOFSTEP] rcases h with (hx_re | hx_im | hx_im) [GOAL] case inl x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 h₀ : ↑abs x ≠ 0 hx_re : 0 < x.re ⊢ ContinuousAt arg x case inr.inl x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 h₀ : ↑abs x ≠ 0 hx_im : x.im < 0 ⊢ ContinuousAt arg x case inr.inr x z : ℂ h : 0 < x.re ∨ x.im ≠ 0 h₀ : ↑abs x ≠ 0 hx_im : 0 < x.im ⊢ ContinuousAt arg x [PROOFSTEP] exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) [PROOFSTEP] suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{z : ℂ | z.im < 0}] z) (𝓝 (-π)) [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) ⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) [PROOFSTEP] refine' H.congr' _ [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) ⊢ (fun x => arcsin ((-x).im / ↑abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg [PROOFSTEP] have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0 ⊢ (fun x => arcsin ((-x).im / ↑abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg [PROOFSTEP] filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | z.im < 0}), mem_nhdsWithin_of_mem_nhds this] with _ him hre [GOAL] case h x z✝ z : ℂ hre✝ : z.re < 0 him✝ : z.im = 0 H : Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0 a✝ : ℂ him : a✝.im < 0 hre : a✝.re < 0 ⊢ arcsin ((-a✝).im / ↑abs a✝) - π = arg a✝ [PROOFSTEP] rw [arg, if_neg hre.not_le, if_neg him.not_le] [GOAL] case H x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto (fun x => arcsin ((-x).im / ↑abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) [PROOFSTEP] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt (s := {z : ℂ | z.im < 0}) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below).sub_const π using 1 [GOAL] case h.e'_5 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ 𝓝 (-π) = 𝓝 ((arcsin ∘ (im ∘ Neg.neg / ↑abs)) z - π) [PROOFSTEP] simp [him] [GOAL] case H x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ↑abs z ≠ 0 [PROOFSTEP] lift z to ℝ using him [GOAL] case H.intro x z✝ : ℂ z : ℝ hre : (↑z).re < 0 ⊢ ↑abs ↑z ≠ 0 [PROOFSTEP] simpa using hre.ne [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z [PROOFSTEP] have : arg =ᶠ[𝓝[{z : ℂ | 0 ≤ z.im}] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | 0 ≤ z.im}), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π [PROOFSTEP] have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0 ⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π [PROOFSTEP] filter_upwards [self_mem_nhdsWithin (s := {z : ℂ | 0 ≤ z.im}), mem_nhdsWithin_of_mem_nhds this] with _ him hre [GOAL] case h x z✝ z : ℂ hre✝ : z.re < 0 him✝ : z.im = 0 this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0 a✝ : ℂ him : 0 ≤ a✝.im hre : a✝.re < 0 ⊢ arg a✝ = arcsin ((-a✝).im / ↑abs a✝) + π [PROOFSTEP] rw [arg, if_neg hre.not_le, if_pos him] [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π ⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z [PROOFSTEP] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ [GOAL] case refine'_1 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π ⊢ ContinuousWithinAt (fun x => arcsin ((-x).im / ↑abs x) + π) {z | 0 ≤ z.im} z [PROOFSTEP] refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds [GOAL] case refine'_1 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π ⊢ ↑abs z ≠ 0 [PROOFSTEP] lift z to ℝ using him [GOAL] case refine'_1.intro x z✝ : ℂ z : ℝ hre : (↑z).re < 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] ↑z] fun x => arcsin ((-x).im / ↑abs x) + π ⊢ ↑abs ↑z ≠ 0 [PROOFSTEP] simpa using hre.ne [GOAL] case refine'_2 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / ↑abs x) + π ⊢ arg z = arcsin ((-z).im / ↑abs z) + π [PROOFSTEP] rw [arg, if_neg hre.not_le, if_pos him.ge] [GOAL] x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto arg (𝓝[{z | 0 ≤ z.im}] z) (𝓝 π) [PROOFSTEP] simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto [GOAL] x z : ℂ h : x ≠ 0 ⊢ ContinuousAt (Angle.coe ∘ arg) x [PROOFSTEP] by_cases hs : 0 < x.re ∨ x.im ≠ 0 [GOAL] case pos x z : ℂ h : x ≠ 0 hs : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt (Angle.coe ∘ arg) x [PROOFSTEP] exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (Angle.coe ∘ arg) x [PROOFSTEP] rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (((Angle.coe ∘ arg) ∘ Neg.neg) ∘ Neg.neg) x [PROOFSTEP] refine' ContinuousAt.comp _ continuous_neg.continuousAt [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x) [PROOFSTEP] suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this [GOAL] x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) this : ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x) ⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x) [PROOFSTEP] rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x) [PROOFSTEP] have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ [GOAL] x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π [PROOFSTEP] rw [Function.update_eq_iff] [GOAL] x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ↑π = ↑(arg 0) + ↑π ∧ ∀ (x : ℂ), x ≠ 0 → ((Angle.coe ∘ arg) ∘ Neg.neg) x = ↑(arg x) + ↑π [PROOFSTEP] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ [GOAL] x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ↑π = ↑(arg 0) + ↑π [PROOFSTEP] simp [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π ⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x) [PROOFSTEP] rw [ha] [GOAL] case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π ⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x) [PROOFSTEP] push_neg at hs [GOAL] case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x) [PROOFSTEP] refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const [GOAL] case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ 0 < (-x).re [PROOFSTEP] rw [neg_re, neg_pos] [GOAL] case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ x.re < 0 [PROOFSTEP] exact hs.1.lt_of_ne fun h0 => h (ext_iff.2 ⟨h0, hs.2⟩)
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Complex.Arg", "llama_tokens": 31299}
[GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E r : 𝕜 hr₀ : r ≠ 0 hr : ‖r‖ < 1 hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s ⊢ y ∈ tangentConeAt 𝕜 s x [PROOFSTEP] refine ⟨fun n ↦ (r ^ n)⁻¹, fun n ↦ r ^ n • y, hs, ?_, ?_⟩ [GOAL] case refine_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E r : 𝕜 hr₀ : r ≠ 0 hr : ‖r‖ < 1 hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s ⊢ Tendsto (fun n => ‖(fun n => (r ^ n)⁻¹) n‖) atTop atTop [PROOFSTEP] simp only [norm_inv, norm_pow, ← inv_pow] [GOAL] case refine_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E r : 𝕜 hr₀ : r ≠ 0 hr : ‖r‖ < 1 hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s ⊢ Tendsto (fun n => ‖r‖⁻¹ ^ n) atTop atTop [PROOFSTEP] exact tendsto_pow_atTop_atTop_of_one_lt <| one_lt_inv (norm_pos_iff.2 hr₀) hr [GOAL] case refine_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E r : 𝕜 hr₀ : r ≠ 0 hr : ‖r‖ < 1 hs : ∀ᶠ (n : ℕ) in atTop, x + r ^ n • y ∈ s ⊢ Tendsto (fun n => (fun n => (r ^ n)⁻¹) n • (fun n => r ^ n • y) n) atTop (𝓝 y) [PROOFSTEP] simp only [inv_smul_smul₀ (pow_ne_zero _ hr₀), tendsto_const_nhds] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E h : s ⊆ t ⊢ tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 t x [PROOFSTEP] rintro y ⟨c, d, ds, ctop, clim⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : s ⊆ t y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ y ∈ tangentConeAt 𝕜 t x [PROOFSTEP] exact ⟨c, d, mem_of_superset ds fun n hn => h hn, ctop, clim⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] have A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) := tendsto_inv_atTop_zero.comp hc [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] have B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) := (continuous_norm.tendsto _).comp hd [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] have C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 (0 * ‖y‖)) := A.mul B [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 (0 * ‖y‖)) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] rw [zero_mul] at C [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] have : ∀ᶠ n in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ := by refine (eventually_ne_of_tendsto_norm_atTop hc 0).mono fun n hn => ?_ rw [norm_smul, ← mul_assoc, inv_mul_cancel, one_mul] rwa [Ne.def, norm_eq_zero] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) ⊢ ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ [PROOFSTEP] refine (eventually_ne_of_tendsto_norm_atTop hc 0).mono fun n hn => ?_ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) n : α hn : c n ≠ 0 ⊢ ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ [PROOFSTEP] rw [norm_smul, ← mul_assoc, inv_mul_cancel, one_mul] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) n : α hn : c n ≠ 0 ⊢ ‖c n‖ ≠ 0 [PROOFSTEP] rwa [Ne.def, norm_eq_zero] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] have D : Tendsto (fun n => ‖d n‖) l (𝓝 0) := Tendsto.congr' this C [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ D : Tendsto (fun n => ‖d n‖) l (𝓝 0) ⊢ Tendsto d l (𝓝 0) [PROOFSTEP] rw [tendsto_zero_iff_norm_tendsto_zero] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E α : Type u_5 l : Filter α c : α → 𝕜 d : α → E hc : Tendsto (fun n => ‖c n‖) l atTop hd : Tendsto (fun n => c n • d n) l (𝓝 y) A : Tendsto (fun n => ‖c n‖⁻¹) l (𝓝 0) B : Tendsto (fun n => ‖c n • d n‖) l (𝓝 ‖y‖) C : Tendsto (fun n => ‖c n‖⁻¹ * ‖c n • d n‖) l (𝓝 0) this : ∀ᶠ (n : α) in l, ‖c n‖⁻¹ * ‖c n • d n‖ = ‖d n‖ D : Tendsto (fun n => ‖d n‖) l (𝓝 0) ⊢ Tendsto (fun e => ‖d e‖) l (𝓝 0) [PROOFSTEP] exact D [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x ⊢ tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 t x [PROOFSTEP] rintro y ⟨c, d, ds, ctop, clim⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ y ∈ tangentConeAt 𝕜 t x [PROOFSTEP] refine' ⟨c, d, _, ctop, clim⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ ∀ᶠ (n : ℕ) in atTop, x + d n ∈ t [PROOFSTEP] suffices : Tendsto (fun n => x + d n) atTop (𝓝[t] x) [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) this : Tendsto (fun n => x + d n) atTop (𝓝[t] x) ⊢ ∀ᶠ (n : ℕ) in atTop, x + d n ∈ t case this 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ Tendsto (fun n => x + d n) atTop (𝓝[t] x) [PROOFSTEP] exact tendsto_principal.1 (tendsto_inf.1 this).2 [GOAL] case this 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ Tendsto (fun n => x + d n) atTop (𝓝[t] x) [PROOFSTEP] refine' (tendsto_inf.2 ⟨_, tendsto_principal.2 ds⟩).mono_right h [GOAL] case this 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t : Set E h : 𝓝[s] x ≤ 𝓝[t] x y : E c : ℕ → 𝕜 d : ℕ → E ds : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s ctop : Tendsto (fun n => ‖c n‖) atTop atTop clim : Tendsto (fun n => c n • d n) atTop (𝓝 y) ⊢ Tendsto (fun a => x + d a) atTop (𝓝 x) [PROOFSTEP] simpa only [add_zero] using tendsto_const_nhds.add (tangentConeAt.lim_zero atTop ctop clim) [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t ⊢ ↑(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x ⊆ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] rintro _ ⟨v, ⟨c, d, hd, hc, hy⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) ⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] have : ∀ n, ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < ((1 : ℝ) / 2) ^ n := by intro n rcases mem_closure_iff_nhds.1 ht _ (eventually_nhds_norm_smul_sub_lt (c n) y (pow_pos one_half_pos n)) with ⟨z, hz, hzt⟩ exact ⟨z - y, by simpa using hzt, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) ⊢ ∀ (n : ℕ), ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] intro n [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) n : ℕ ⊢ ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] rcases mem_closure_iff_nhds.1 ht _ (eventually_nhds_norm_smul_sub_lt (c n) y (pow_pos one_half_pos n)) with ⟨z, hz, hzt⟩ [GOAL] case intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) n : ℕ z : F hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x} hzt : z ∈ t ⊢ ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] exact ⟨z - y, by simpa using hzt, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) n : ℕ z : F hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x} hzt : z ∈ t ⊢ y + (z - y) ∈ t [PROOFSTEP] simpa using hzt [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) n : ℕ z : F hz : z ∈ {x | (fun y_1 => ‖c n • (y_1 - y)‖ < (1 / 2) ^ n) x} hzt : z ∈ t ⊢ ‖c n • (z - y)‖ < (1 / 2) ^ n [PROOFSTEP] simpa using hz [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) this : ∀ (n : ℕ), ∃ d', y + d' ∈ t ∧ ‖c n • d'‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] choose d' hd' using this [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.inl 𝕜 E F) v ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] refine' ⟨c, fun n => (d n, d' n), _, hc, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (fun n => (d n, d' n)) n ∈ s ×ˢ t case intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => c n • (fun n => (d n, d' n)) n) atTop (𝓝 (↑(LinearMap.inl 𝕜 E F) v)) [PROOFSTEP] show ∀ᶠ n in atTop, (x, y) + (d n, d' n) ∈ s ×ˢ t [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (d n, d' n) ∈ s ×ˢ t [PROOFSTEP] filter_upwards [hd] with n hn [GOAL] case h 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n n : ℕ hn : x + d n ∈ s ⊢ (x, y) + (d n, d' n) ∈ s ×ˢ t [PROOFSTEP] simp [hn, (hd' n).1] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => c n • (fun n => (d n, d' n)) n) atTop (𝓝 (↑(LinearMap.inl 𝕜 E F) v)) [PROOFSTEP] apply Tendsto.prod_mk_nhds hy _ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun c_1 => c c_1 • ((fun n => (d n, d' n)) c_1).snd) atTop (𝓝 (↑0 v)) [PROOFSTEP] refine' squeeze_zero_norm (fun n => (hd' n).2.le) _ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F ht : y ∈ closure t v : E c : ℕ → 𝕜 d : ℕ → E hd : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 v) d' : ℕ → F hd' : ∀ (n : ℕ), y + d' n ∈ t ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0) [PROOFSTEP] exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s ⊢ ↑(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y ⊆ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] rintro _ ⟨w, ⟨c, d, hd, hc, hy⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) ⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] have : ∀ n, ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < ((1 : ℝ) / 2) ^ n := by intro n rcases mem_closure_iff_nhds.1 hs _ (eventually_nhds_norm_smul_sub_lt (c n) x (pow_pos one_half_pos n)) with ⟨z, hz, hzs⟩ exact ⟨z - x, by simpa using hzs, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) ⊢ ∀ (n : ℕ), ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] intro n [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ ⊢ ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] rcases mem_closure_iff_nhds.1 hs _ (eventually_nhds_norm_smul_sub_lt (c n) x (pow_pos one_half_pos n)) with ⟨z, hz, hzs⟩ [GOAL] case intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ z : E hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s ⊢ ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] exact ⟨z - x, by simpa using hzs, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ z : E hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s ⊢ x + (z - x) ∈ s [PROOFSTEP] simpa using hzs [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ z : E hz : z ∈ {x_1 | (fun y => ‖c n • (y - x)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s ⊢ ‖c n • (z - x)‖ < (1 / 2) ^ n [PROOFSTEP] simpa using hz [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) this : ∀ (n : ℕ), ∃ d', x + d' ∈ s ∧ ‖c n • d'‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] choose d' hd' using this [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.inr 𝕜 E F) w ∈ tangentConeAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] refine' ⟨c, fun n => (d' n, d n), _, hc, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (fun n => (d' n, d n)) n ∈ s ×ˢ t case intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => c n • (fun n => (d' n, d n)) n) atTop (𝓝 (↑(LinearMap.inr 𝕜 E F) w)) [PROOFSTEP] show ∀ᶠ n in atTop, (x, y) + (d' n, d n) ∈ s ×ˢ t [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ ∀ᶠ (n : ℕ) in atTop, (x, y) + (d' n, d n) ∈ s ×ˢ t [PROOFSTEP] filter_upwards [hd] with n hn [GOAL] case h 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n n : ℕ hn : y + d n ∈ t ⊢ (x, y) + (d' n, d n) ∈ s ×ˢ t [PROOFSTEP] simp [hn, (hd' n).1] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => c n • (fun n => (d' n, d n)) n) atTop (𝓝 (↑(LinearMap.inr 𝕜 E F) w)) [PROOFSTEP] apply Tendsto.prod_mk_nhds _ hy [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun c_1 => c c_1 • ((fun n => (d' n, d n)) c_1).fst) atTop (𝓝 (↑0 w)) [PROOFSTEP] refine' squeeze_zero_norm (fun n => (hd' n).2.le) _ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : x ∈ closure s w : F c : ℕ → 𝕜 d : ℕ → F hd : ∀ᶠ (n : ℕ) in atTop, y + d n ∈ t hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → E hd' : ∀ (n : ℕ), x + d' n ∈ s ∧ ‖c n • d' n‖ < (1 / 2) ^ n ⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0) [PROOFSTEP] exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) ⊢ MapsTo (↑(LinearMap.single i)) (tangentConeAt 𝕜 (s i) (x i)) (tangentConeAt 𝕜 (Set.pi univ s) x) [PROOFSTEP] rintro w ⟨c, d, hd, hc, hy⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) ⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x [PROOFSTEP] have : ∀ (n) (j) (_ : j ≠ i), ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2 : ℝ) ^ n := by intro n j hj rcases mem_closure_iff_nhds.1 (hi j hj) _ (eventually_nhds_norm_smul_sub_lt (c n) (x j) (pow_pos one_half_pos n)) with ⟨z, hz, hzs⟩ exact ⟨z - x j, by simpa using hzs, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) ⊢ ∀ (n : ℕ) (j : ι), j ≠ i → ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] intro n j hj [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ j : ι hj : j ≠ i ⊢ ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] rcases mem_closure_iff_nhds.1 (hi j hj) _ (eventually_nhds_norm_smul_sub_lt (c n) (x j) (pow_pos one_half_pos n)) with ⟨z, hz, hzs⟩ [GOAL] case intro.intro 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ j : ι hj : j ≠ i z : E j hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s j ⊢ ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n [PROOFSTEP] exact ⟨z - x j, by simpa using hzs, by simpa using hz⟩ [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ j : ι hj : j ≠ i z : E j hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s j ⊢ x j + (z - x j) ∈ s j [PROOFSTEP] simpa using hzs [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) n : ℕ j : ι hj : j ≠ i z : E j hz : z ∈ {x_1 | (fun y => ‖c n • (y - x j)‖ < (1 / 2) ^ n) x_1} hzs : z ∈ s j ⊢ ‖c n • (z - x j)‖ < (1 / 2) ^ n [PROOFSTEP] simpa using hz [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) this : ∀ (n : ℕ) (j : ι), j ≠ i → ∃ d', x j + d' ∈ s j ∧ ‖c n • d'‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x [PROOFSTEP] choose! d' hd's hcd' using this [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n ⊢ ↑(LinearMap.single i) w ∈ tangentConeAt 𝕜 (Set.pi univ s) x [PROOFSTEP] refine' ⟨c, fun n => Function.update (d' n) i (d n), hd.mono fun n hn j _ => _, hc, tendsto_pi_nhds.2 fun j => _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝¹ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n n : ℕ hn : x i + d n ∈ s i j : ι x✝ : j ∈ univ ⊢ (x + (fun n => Function.update (d' n) i (d n)) n) j ∈ s j [PROOFSTEP] rcases em (j = i) with (rfl | hj) [GOAL] case intro.intro.intro.intro.refine'_1.inl 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝¹ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i c : ℕ → 𝕜 hc : Tendsto (fun n => ‖c n‖) atTop atTop d' : ℕ → (j : ι) → E j n : ℕ j : ι x✝ : j ∈ univ hi : ∀ (j_1 : ι), j_1 ≠ j → x j_1 ∈ closure (s j_1) w : E j d : ℕ → E j hd : ∀ᶠ (n : ℕ) in atTop, x j + d n ∈ s j hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) hd's : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → x j_1 + d' n j_1 ∈ s j_1 hcd' : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → ‖c n • d' n j_1‖ < (1 / 2) ^ n hn : x j + d n ∈ s j ⊢ (x + (fun n => Function.update (d' n) j (d n)) n) j ∈ s j [PROOFSTEP] simp [*] [GOAL] case intro.intro.intro.intro.refine'_1.inr 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝¹ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n n : ℕ hn : x i + d n ∈ s i j : ι x✝ : j ∈ univ hj : ¬j = i ⊢ (x + (fun n => Function.update (d' n) i (d n)) n) j ∈ s j [PROOFSTEP] simp [*] [GOAL] case intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n j : ι ⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j)) [PROOFSTEP] rcases em (j = i) with (rfl | hj) [GOAL] case intro.intro.intro.intro.refine'_2.inl 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i c : ℕ → 𝕜 hc : Tendsto (fun n => ‖c n‖) atTop atTop d' : ℕ → (j : ι) → E j j : ι hi : ∀ (j_1 : ι), j_1 ≠ j → x j_1 ∈ closure (s j_1) w : E j d : ℕ → E j hd : ∀ᶠ (n : ℕ) in atTop, x j + d n ∈ s j hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) hd's : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → x j_1 + d' n j_1 ∈ s j_1 hcd' : ∀ (n : ℕ) (j_1 : ι), j_1 ≠ j → ‖c n • d' n j_1‖ < (1 / 2) ^ n ⊢ Tendsto (fun i => (c i • (fun n => Function.update (d' n) j (d n)) i) j) atTop (𝓝 (↑(LinearMap.single j) w j)) [PROOFSTEP] simp [hy] [GOAL] case intro.intro.intro.intro.refine'_2.inr 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n j : ι hj : ¬j = i ⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j)) [PROOFSTEP] suffices Tendsto (fun n => c n • d' n j) atTop (𝓝 0) by simpa [hj] [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n j : ι hj : ¬j = i this : Tendsto (fun n => c n • d' n j) atTop (𝓝 0) ⊢ Tendsto (fun i_1 => (c i_1 • (fun n => Function.update (d' n) i (d n)) i_1) j) atTop (𝓝 (↑(LinearMap.single i) w j)) [PROOFSTEP] simpa [hj] [GOAL] case intro.intro.intro.intro.refine'_2.inr 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n j : ι hj : ¬j = i ⊢ Tendsto (fun n => c n • d' n j) atTop (𝓝 0) [PROOFSTEP] refine' squeeze_zero_norm (fun n => (hcd' n j hj).le) _ [GOAL] case intro.intro.intro.intro.refine'_2.inr 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : DecidableEq ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i i : ι hi : ∀ (j : ι), j ≠ i → x j ∈ closure (s j) w : E i c : ℕ → 𝕜 d : ℕ → E i hd : ∀ᶠ (n : ℕ) in atTop, x i + d n ∈ s i hc : Tendsto (fun n => ‖c n‖) atTop atTop hy : Tendsto (fun n => c n • d n) atTop (𝓝 w) d' : ℕ → (j : ι) → E j hd's : ∀ (n : ℕ) (j : ι), j ≠ i → x j + d' n j ∈ s j hcd' : ∀ (n : ℕ) (j : ι), j ≠ i → ‖c n • d' n j‖ < (1 / 2) ^ n j : ι hj : ¬j = i ⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0) [PROOFSTEP] exact tendsto_pow_atTop_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s ⊢ y - x ∈ tangentConeAt ℝ s x [PROOFSTEP] refine mem_tangentConeAt_of_pow_smul one_half_pos.ne' (by norm_num) ?_ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s ⊢ ‖1 / 2‖ < 1 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s ⊢ ∀ᶠ (n : ℕ) in atTop, x + (1 / 2) ^ n • (y - x) ∈ s [PROOFSTEP] refine (eventually_ne_atTop 0).mono fun n hn ↦ (h ?_) [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x + (1 / 2) ^ n • (y - x) ∈ openSegment ℝ x y [PROOFSTEP] rw [openSegment_eq_image] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x + (1 / 2) ^ n • (y - x) ∈ (fun θ => (1 - θ) • x + θ • y) '' Ioo 0 1 [PROOFSTEP] refine ⟨(1 / 2) ^ n, ⟨?_, ?_⟩, ?_⟩ [GOAL] case refine_1 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ 0 < (1 / 2) ^ n [PROOFSTEP] exact pow_pos one_half_pos _ [GOAL] case refine_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ (1 / 2) ^ n < 1 [PROOFSTEP] exact pow_lt_one one_half_pos.le one_half_lt_one hn [GOAL] case refine_3 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ (fun θ => (1 - θ) • x + θ • y) ((1 / 2) ^ n) = x + (1 / 2) ^ n • (y - x) [PROOFSTEP] simp only [sub_smul, one_smul, smul_sub] [GOAL] case refine_3 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x - (1 / 2) ^ n • x + (1 / 2) ^ n • y = x + ((1 / 2) ^ n • y - (1 / 2) ^ n • x) [PROOFSTEP] abel [GOAL] case refine_3 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G x y : G h : openSegment ℝ x y ⊆ s n : ℕ hn : n ≠ 0 ⊢ x - (1 / 2) ^ n • x + (1 / 2) ^ n • y = x + ((1 / 2) ^ n • y - (1 / 2) ^ n • x) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E ⊢ UniqueDiffWithinAt 𝕜 univ x [PROOFSTEP] rw [uniqueDiffWithinAt_iff, tangentCone_univ] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E ⊢ Dense ↑(Submodule.span 𝕜 univ) ∧ x ∈ closure univ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E h : UniqueDiffWithinAt 𝕜 s x st : 𝓝[s] x ≤ 𝓝[t] x ⊢ UniqueDiffWithinAt 𝕜 t x [PROOFSTEP] simp only [uniqueDiffWithinAt_iff] at * [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E st : 𝓝[s] x ≤ 𝓝[t] x h : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t x)) ∧ x ∈ closure t [PROOFSTEP] rw [mem_closure_iff_nhdsWithin_neBot] at h ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E st : 𝓝[s] x ≤ 𝓝[t] x h : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ NeBot (𝓝[s] x) ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t x)) ∧ NeBot (𝓝[t] x) [PROOFSTEP] exact ⟨h.1.mono <| Submodule.span_mono <| tangentCone_mono_nhds st, h.2.mono st⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E h : s ∈ 𝓝 x ⊢ UniqueDiffWithinAt 𝕜 s x [PROOFSTEP] simpa only [univ_inter] using uniqueDiffWithinAt_univ.inter h [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : UniqueDiffWithinAt 𝕜 s x ht : UniqueDiffWithinAt 𝕜 t y ⊢ UniqueDiffWithinAt 𝕜 (s ×ˢ t) (x, y) [PROOFSTEP] rw [uniqueDiffWithinAt_iff] at hs ht ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) ∧ (x, y) ∈ closure (s ×ˢ t) [PROOFSTEP] rw [closure_prod_eq] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) ∧ (x, y) ∈ closure s ×ˢ closure t [PROOFSTEP] refine' ⟨_, hs.2, ht.2⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) [PROOFSTEP] have : _ ≤ Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)) := Submodule.span_mono (union_subset (subset_tangentCone_prod_left ht.2) (subset_tangentCone_prod_right hs.2)) [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t this : Submodule.span 𝕜 (↑(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x ∪ ↑(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y) ≤ Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)) ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) [PROOFSTEP] rw [LinearMap.span_inl_union_inr, SetLike.le_def] at this [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y✝ : E s t✝ : Set E t : Set F y : F hs : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ∧ x ∈ closure s ht : Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) ∧ y ∈ closure t this : ∀ ⦃x_1 : E × F⦄, x_1 ∈ Submodule.prod (Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) (Submodule.span 𝕜 (tangentConeAt 𝕜 t y)) → x_1 ∈ Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y)) ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s ×ˢ t) (x, y))) [PROOFSTEP] exact (hs.1.prod ht.1).mono this [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), UniqueDiffWithinAt 𝕜 (s i) (x i) ⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ s) x [PROOFSTEP] classical simp only [uniqueDiffWithinAt_iff, closure_pi_set] at h ⊢ refine' ⟨(dense_pi univ fun i _ => (h i).1).mono _, fun i _ => (h i).2⟩ norm_cast simp only [← Submodule.iSup_map_single, iSup_le_iff, LinearMap.map_span, Submodule.span_le, ← mapsTo'] exact fun i => (mapsTo_tangentCone_pi fun j _ => (h j).2).mono Subset.rfl Submodule.subset_span [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), UniqueDiffWithinAt 𝕜 (s i) (x i) ⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ s) x [PROOFSTEP] simp only [uniqueDiffWithinAt_iff, closure_pi_set] at h ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i) ⊢ Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x)) ∧ x ∈ Set.pi univ fun i => closure (s i) [PROOFSTEP] refine' ⟨(dense_pi univ fun i _ => (h i).1).mono _, fun i _ => (h i).2⟩ [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i) ⊢ (Set.pi univ fun i => ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i)))) ⊆ ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x)) [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i) ⊢ (Submodule.pi univ fun i => Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ≤ Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x) [PROOFSTEP] simp only [← Submodule.iSup_map_single, iSup_le_iff, LinearMap.map_span, Submodule.span_le, ← mapsTo'] [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i h : ∀ (i : ι), Dense ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (s i) (x i))) ∧ x i ∈ closure (s i) ⊢ ∀ (i : ι), MapsTo (fun a => ↑(LinearMap.single i) a) (tangentConeAt 𝕜 (s i) (x i)) ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (Set.pi univ s) x)) [PROOFSTEP] exact fun i => (mapsTo_tangentCone_pi fun j _ => (h j).2).mono Subset.rfl Submodule.subset_span [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) ⊢ UniqueDiffWithinAt 𝕜 (Set.pi I s) x [PROOFSTEP] classical rw [← Set.univ_pi_piecewise_univ] refine' UniqueDiffWithinAt.univ_pi ι E _ _ fun i => _ by_cases hi : i ∈ I <;> simp [*, uniqueDiffWithinAt_univ] [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) ⊢ UniqueDiffWithinAt 𝕜 (Set.pi I s) x [PROOFSTEP] rw [← Set.univ_pi_piecewise_univ] [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) ⊢ UniqueDiffWithinAt 𝕜 (Set.pi univ (piecewise I s fun x => univ)) x [PROOFSTEP] refine' UniqueDiffWithinAt.univ_pi ι E _ _ fun i => _ [GOAL] 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) i : ι ⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i) [PROOFSTEP] by_cases hi : i ∈ I [GOAL] case pos 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) i : ι hi : i ∈ I ⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i) [PROOFSTEP] simp [*, uniqueDiffWithinAt_univ] [GOAL] case neg 𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E✝ : Type u_2 inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : NormedSpace 𝕜 E✝ F : Type u_3 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F G : Type u_4 inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace ℝ G x✝ y : E✝ s✝ t : Set E✝ ι : Type u_5 inst✝² : Finite ι E : ι → Type u_6 inst✝¹ : (i : ι) → NormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) s : (i : ι) → Set (E i) x : (i : ι) → E i I : Set ι h : ∀ (i : ι), i ∈ I → UniqueDiffWithinAt 𝕜 (s i) (x i) i : ι hi : ¬i ∈ I ⊢ UniqueDiffWithinAt 𝕜 (piecewise I s (fun x => univ) i) (x i) [PROOFSTEP] simp [*, uniqueDiffWithinAt_univ] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y : E s✝ t : Set E s : Set G conv : Convex ℝ s hs : Set.Nonempty (interior s) x : G hx : x ∈ closure s ⊢ UniqueDiffWithinAt ℝ s x [PROOFSTEP] rcases hs with ⟨y, hy⟩ [GOAL] case intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : y ∈ interior s ⊢ UniqueDiffWithinAt ℝ s x [PROOFSTEP] suffices y - x ∈ interior (tangentConeAt ℝ s x) by refine' ⟨Dense.of_closure _, hx⟩ simp [(Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior' ⟨y - x, interior_mono Submodule.subset_span this⟩] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : y ∈ interior s this : y - x ∈ interior (tangentConeAt ℝ s x) ⊢ UniqueDiffWithinAt ℝ s x [PROOFSTEP] refine' ⟨Dense.of_closure _, hx⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : y ∈ interior s this : y - x ∈ interior (tangentConeAt ℝ s x) ⊢ Dense (closure ↑(Submodule.span ℝ (tangentConeAt ℝ s x))) [PROOFSTEP] simp [(Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior' ⟨y - x, interior_mono Submodule.subset_span this⟩] [GOAL] case intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : y ∈ interior s ⊢ y - x ∈ interior (tangentConeAt ℝ s x) [PROOFSTEP] rw [mem_interior_iff_mem_nhds] [GOAL] case intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : y ∈ interior s ⊢ tangentConeAt ℝ s x ∈ 𝓝 (y - x) [PROOFSTEP] replace hy : interior s ∈ 𝓝 y := IsOpen.mem_nhds isOpen_interior hy [GOAL] case intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : interior s ∈ 𝓝 y ⊢ tangentConeAt ℝ s x ∈ 𝓝 (y - x) [PROOFSTEP] apply mem_of_superset ((isOpenMap_sub_right x).image_mem_nhds hy) [GOAL] case intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : interior s ∈ 𝓝 y ⊢ (fun x_1 => x_1 - x) '' interior s ⊆ tangentConeAt ℝ s x [PROOFSTEP] rintro _ ⟨z, zs, rfl⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : interior s ∈ 𝓝 y z : G zs : z ∈ interior s ⊢ (fun x_1 => x_1 - x) z ∈ tangentConeAt ℝ s x [PROOFSTEP] refine' mem_tangentCone_of_openSegment_subset (Subset.trans _ interior_subset) [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x✝ y✝ : E s✝ t : Set E s : Set G conv : Convex ℝ s x : G hx : x ∈ closure s y : G hy : interior s ∈ 𝓝 y z : G zs : z ∈ interior s ⊢ openSegment ℝ x z ⊆ interior s [PROOFSTEP] exact conv.openSegment_closure_interior_subset_interior hx zs [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ Set.Nonempty (interior (Ici a)) [PROOFSTEP] simp only [interior_Ici, nonempty_Ioi] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ Set.Nonempty (interior (Iic a)) [PROOFSTEP] simp only [interior_Iic, nonempty_Iio] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a b : ℝ hab : a < b ⊢ Set.Nonempty (interior (Icc a b)) [PROOFSTEP] simp only [interior_Icc, nonempty_Ioo, hab] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a b : ℝ hab : a < b ⊢ Set.Nonempty (interior (Ico a b)) [PROOFSTEP] simp only [interior_Ico, nonempty_Ioo, hab] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a b : ℝ hab : ¬a < b ⊢ UniqueDiffOn ℝ (Ico a b) [PROOFSTEP] simp only [Ico_eq_empty hab, uniqueDiffOn_empty] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a b : ℝ hab : a < b ⊢ Set.Nonempty (interior (Ioc a b)) [PROOFSTEP] simp only [interior_Ioc, nonempty_Ioo, hab] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a b : ℝ hab : ¬a < b ⊢ UniqueDiffOn ℝ (Ioc a b) [PROOFSTEP] simp only [Ioc_eq_empty hab, uniqueDiffOn_empty] [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ Set.Nonempty (interior (Ioi a)) [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ a ∈ closure (Ioi a) [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ Set.Nonempty (interior (Iio a)) [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G x y : E s t : Set E a : ℝ ⊢ a ∈ closure (Iio a) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Analysis.Calculus.TangentCone", "llama_tokens": 43127}
[GOAL] ⊢ 0 < 2 * π [PROOFSTEP] norm_num [GOAL] ⊢ 0 < π [PROOFSTEP] exact pi_pos [GOAL] x : ℝ n : ℕ ⊢ ↑(↑n * x) = n • ↑x [PROOFSTEP] simpa only [nsmul_eq_mul] using coeHom.map_nsmul x n [GOAL] x : ℝ n : ℤ ⊢ ↑(↑n * x) = n • ↑x [PROOFSTEP] simpa only [zsmul_eq_mul] using coeHom.map_zsmul x n [GOAL] ψ θ : ℝ ⊢ ↑θ = ↑ψ ↔ ∃ k, θ - ψ = 2 * π * ↑k [PROOFSTEP] simp only [QuotientAddGroup.eq, AddSubgroup.zmultiples_eq_closure, AddSubgroup.mem_closure_singleton, zsmul_eq_mul', (sub_eq_neg_add _ _).symm, eq_comm] -- Porting note: added `rw`, `simp [Angle.coe, QuotientAddGroup.eq]` doesn't fire otherwise [GOAL] ψ θ : ℝ ⊢ ↑ψ = ↑θ ↔ ∃ k, θ - ψ = 2 * π * ↑k [PROOFSTEP] rw [Angle.coe, Angle.coe, QuotientAddGroup.eq] [GOAL] ψ θ : ℝ ⊢ -ψ + θ ∈ AddSubgroup.zmultiples (2 * π) ↔ ∃ k, θ - ψ = 2 * π * ↑k [PROOFSTEP] simp only [AddSubgroup.zmultiples_eq_closure, AddSubgroup.mem_closure_singleton, zsmul_eq_mul', (sub_eq_neg_add _ _).symm, eq_comm] [GOAL] ⊢ 2 * π - 0 = 2 * π * ↑1 [PROOFSTEP] rw [sub_zero, Int.cast_one, mul_one] [GOAL] ⊢ -↑π = ↑π [PROOFSTEP] rw [← coe_neg, angle_eq_iff_two_pi_dvd_sub] [GOAL] ⊢ ∃ k, -π - π = 2 * π * ↑k [PROOFSTEP] use-1 [GOAL] case h ⊢ -π - π = 2 * π * ↑(-1) [PROOFSTEP] simp [two_mul, sub_eq_add_neg] [GOAL] θ : ℝ ⊢ 2 • ↑(θ / 2) = ↑θ [PROOFSTEP] rw [← coe_nsmul, two_nsmul, add_halves] [GOAL] θ : ℝ ⊢ 2 • ↑(θ / 2) = ↑θ [PROOFSTEP] rw [← coe_zsmul, two_zsmul, add_halves] [GOAL] ⊢ 2 • ↑(-π / 2) = ↑π [PROOFSTEP] rw [two_nsmul_coe_div_two, coe_neg, neg_coe_pi] [GOAL] ⊢ 2 • ↑(-π / 2) = ↑π [PROOFSTEP] rw [two_zsmul, ← two_nsmul, two_nsmul_neg_pi_div_two] [GOAL] θ : Angle ⊢ θ - ↑π = θ + ↑π [PROOFSTEP] rw [sub_eq_add_neg, neg_coe_pi] [GOAL] ⊢ 2 • ↑π = 0 [PROOFSTEP] simp [← coe_nat_mul_eq_nsmul] [GOAL] ⊢ 2 • ↑π = 0 [PROOFSTEP] simp [← coe_int_mul_eq_zsmul] [GOAL] ⊢ ↑π + ↑π = 0 [PROOFSTEP] rw [← two_nsmul, two_nsmul_coe_pi] [GOAL] ψ θ : Angle ⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π [PROOFSTEP] have : Int.natAbs 2 = 2 := rfl [GOAL] ψ θ : Angle this : Int.natAbs 2 = 2 ⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π [PROOFSTEP] rw [zsmul_eq_iff two_ne_zero, this, Fin.exists_fin_two, Fin.val_zero, Fin.val_one, zero_smul, coe_zero, add_zero, one_smul, Int.cast_two, mul_div_cancel_left (_ : ℝ) two_ne_zero] [GOAL] ψ θ : Angle ⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π [PROOFSTEP] simp_rw [← coe_nat_zsmul, Nat.cast_ofNat, two_zsmul_eq_iff] [GOAL] θ : Angle ⊢ 2 • θ = 0 ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] convert two_nsmul_eq_iff [GOAL] case h.e'_1.h.e'_3 θ : Angle ⊢ 0 = 2 • 0 [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_2.h.e'_3 θ : Angle ⊢ ↑π = 0 + ↑π [PROOFSTEP] simp [GOAL] θ : Angle ⊢ 2 • θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← two_nsmul_eq_zero_iff] [GOAL] θ : Angle ⊢ 2 • θ = 0 ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul, two_nsmul_eq_zero_iff] [GOAL] θ : Angle ⊢ 2 • θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← two_zsmul_eq_zero_iff] [GOAL] θ : Angle ⊢ θ = -θ ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] rw [← add_eq_zero_iff_eq_neg, ← two_nsmul, two_nsmul_eq_zero_iff] [GOAL] θ : Angle ⊢ θ ≠ -θ ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← eq_neg_self_iff.not] [GOAL] θ : Angle ⊢ -θ = θ ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] rw [eq_comm, eq_neg_self_iff] [GOAL] θ : Angle ⊢ -θ ≠ θ ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← neg_eq_self_iff.not] [GOAL] θ : Angle ⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] have h : (π : Angle) = (2 : ℕ) • (π / 2 : ℝ) := by rw [two_nsmul, add_halves] [GOAL] θ : Angle ⊢ ↑π = ↑(2 • (π / 2)) [PROOFSTEP] rw [two_nsmul, add_halves] [GOAL] θ : Angle h : ↑π = ↑(2 • (π / 2)) ⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] nth_rw 1 [h] [GOAL] θ : Angle h : ↑π = ↑(2 • (π / 2)) ⊢ 2 • θ = ↑(2 • (π / 2)) ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] rw [coe_nsmul, two_nsmul_eq_iff] -- Porting note: `congr` didn't simplify the goal of iff of `Or`s [GOAL] θ : Angle h : ↑π = ↑(2 • (π / 2)) ⊢ θ = ↑(π / 2) ∨ θ = ↑(π / 2) + ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] convert Iff.rfl [GOAL] case h.e'_2.h.e'_2.h.e'_3 θ : Angle h : ↑π = ↑(2 • (π / 2)) ⊢ ↑(-π / 2) = ↑(π / 2) + ↑π [PROOFSTEP] rw [add_comm, ← coe_add, ← sub_eq_zero, ← coe_sub, neg_div, ← neg_sub, sub_neg_eq_add, add_assoc, add_halves, ← two_mul, coe_neg, coe_two_pi, neg_zero] [GOAL] θ : Angle ⊢ 2 • θ = ↑π ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] rw [two_zsmul, ← two_nsmul, two_nsmul_eq_pi_iff] [GOAL] θ ψ : ℝ ⊢ cos θ = cos ψ ↔ ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] constructor [GOAL] case mp θ ψ : ℝ ⊢ cos θ = cos ψ → ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] intro Hcos [GOAL] case mp θ ψ : ℝ Hcos : cos θ = cos ψ ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] rw [← sub_eq_zero, cos_sub_cos, mul_eq_zero, mul_eq_zero, neg_eq_zero, eq_false (two_ne_zero' ℝ), false_or_iff, sin_eq_zero_iff, sin_eq_zero_iff] at Hcos [GOAL] case mp θ ψ : ℝ Hcos✝ : cos θ = cos ψ Hcos : (∃ n, ↑n * π = (θ + ψ) / 2) ∨ ∃ n, ↑n * π = (θ - ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] rcases Hcos with (⟨n, hn⟩ | ⟨n, hn⟩) [GOAL] case mp.inl.intro θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π = (θ + ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] right [GOAL] case mp.inl.intro.h θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π = (θ + ψ) / 2 ⊢ ↑θ = -↑ψ [PROOFSTEP] rw [eq_div_iff_mul_eq (two_ne_zero' ℝ), ← sub_eq_iff_eq_add] at hn [GOAL] case mp.inl.intro.h θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π * 2 - ψ = θ ⊢ ↑θ = -↑ψ [PROOFSTEP] rw [← hn, coe_sub, eq_neg_iff_add_eq_zero, sub_add_cancel, mul_assoc, coe_int_mul_eq_zsmul, mul_comm, coe_two_pi, zsmul_zero] [GOAL] case mp.inr.intro θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π = (θ - ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ [PROOFSTEP] left [GOAL] case mp.inr.intro.h θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π = (θ - ψ) / 2 ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [eq_div_iff_mul_eq (two_ne_zero' ℝ), eq_sub_iff_add_eq] at hn [GOAL] case mp.inr.intro.h θ ψ : ℝ Hcos : cos θ = cos ψ n : ℤ hn : ↑n * π * 2 + ψ = θ ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [← hn, coe_add, mul_assoc, coe_int_mul_eq_zsmul, mul_comm, coe_two_pi, zsmul_zero, zero_add] [GOAL] case mpr θ ψ : ℝ ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ → cos θ = cos ψ [PROOFSTEP] rw [angle_eq_iff_two_pi_dvd_sub, ← coe_neg, angle_eq_iff_two_pi_dvd_sub] [GOAL] case mpr θ ψ : ℝ ⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - -ψ = 2 * π * ↑k) → cos θ = cos ψ [PROOFSTEP] rintro (⟨k, H⟩ | ⟨k, H⟩) [GOAL] case mpr.inl.intro θ ψ : ℝ k : ℤ H : θ - ψ = 2 * π * ↑k ⊢ cos θ = cos ψ case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - -ψ = 2 * π * ↑k ⊢ cos θ = cos ψ [PROOFSTEP] rw [← sub_eq_zero, cos_sub_cos, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ), mul_comm π _, sin_int_mul_pi, mul_zero] [GOAL] case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - -ψ = 2 * π * ↑k ⊢ cos θ = cos ψ [PROOFSTEP] rw [← sub_eq_zero, cos_sub_cos, ← sub_neg_eq_add, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ), mul_comm π _, sin_int_mul_pi, mul_zero, zero_mul] [GOAL] θ ψ : ℝ ⊢ sin θ = sin ψ ↔ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] constructor [GOAL] case mp θ ψ : ℝ ⊢ sin θ = sin ψ → ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] intro Hsin [GOAL] case mp θ ψ : ℝ Hsin : sin θ = sin ψ ⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] rw [← cos_pi_div_two_sub, ← cos_pi_div_two_sub] at Hsin [GOAL] case mp θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) ⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] cases' cos_eq_iff_coe_eq_or_eq_neg.mp Hsin with h h [GOAL] case mp.inl θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑(π / 2 - θ) = ↑(π / 2 - ψ) ⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] left [GOAL] case mp.inl.h θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑(π / 2 - θ) = ↑(π / 2 - ψ) ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [coe_sub, coe_sub] at h [GOAL] case mp.inl.h θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑(π / 2) - ↑θ = ↑(π / 2) - ↑ψ ⊢ ↑θ = ↑ψ [PROOFSTEP] exact sub_right_inj.1 h [GOAL] case mp.inr θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑(π / 2 - θ) = -↑(π / 2 - ψ) ⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π [PROOFSTEP] right [GOAL] case mp.inr.h θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑(π / 2 - θ) = -↑(π / 2 - ψ) ⊢ ↑θ + ↑ψ = ↑π [PROOFSTEP] rw [coe_sub, coe_sub, eq_neg_iff_add_eq_zero, add_sub, sub_add_eq_add_sub, ← coe_add, add_halves, sub_sub, sub_eq_zero] at h [GOAL] case mp.inr.h θ ψ : ℝ Hsin : cos (π / 2 - θ) = cos (π / 2 - ψ) h : ↑π = ↑θ + ↑ψ ⊢ ↑θ + ↑ψ = ↑π [PROOFSTEP] exact h.symm [GOAL] case mpr θ ψ : ℝ ⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π → sin θ = sin ψ [PROOFSTEP] rw [angle_eq_iff_two_pi_dvd_sub, ← eq_sub_iff_add_eq, ← coe_sub, angle_eq_iff_two_pi_dvd_sub] [GOAL] case mpr θ ψ : ℝ ⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - (π - ψ) = 2 * π * ↑k) → sin θ = sin ψ [PROOFSTEP] rintro (⟨k, H⟩ | ⟨k, H⟩) [GOAL] case mpr.inl.intro θ ψ : ℝ k : ℤ H : θ - ψ = 2 * π * ↑k ⊢ sin θ = sin ψ case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - (π - ψ) = 2 * π * ↑k ⊢ sin θ = sin ψ [PROOFSTEP] rw [← sub_eq_zero, sin_sub_sin, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ), mul_comm π _, sin_int_mul_pi, mul_zero, zero_mul] [GOAL] case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - (π - ψ) = 2 * π * ↑k ⊢ sin θ = sin ψ [PROOFSTEP] have H' : θ + ψ = 2 * k * π + π := by rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ← mul_assoc] at H [GOAL] θ ψ : ℝ k : ℤ H : θ - (π - ψ) = 2 * π * ↑k ⊢ θ + ψ = 2 * ↑k * π + π [PROOFSTEP] rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ← mul_assoc] at H [GOAL] case mpr.inr.intro θ ψ : ℝ k : ℤ H : θ - (π - ψ) = 2 * π * ↑k H' : θ + ψ = 2 * ↑k * π + π ⊢ sin θ = sin ψ [PROOFSTEP] rw [← sub_eq_zero, sin_sub_sin, H', add_div, mul_assoc 2 _ π, mul_div_cancel_left _ (two_ne_zero' ℝ), cos_add_pi_div_two, sin_int_mul_pi, neg_zero, mul_zero] [GOAL] θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ ⊢ ↑θ = ↑ψ [PROOFSTEP] cases' cos_eq_iff_coe_eq_or_eq_neg.mp Hcos with hc hc [GOAL] case inl θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑θ = ↑ψ ⊢ ↑θ = ↑ψ [PROOFSTEP] exact hc [GOAL] case inr θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑θ = -↑ψ ⊢ ↑θ = ↑ψ [PROOFSTEP] cases' sin_eq_iff_coe_eq_or_add_eq_pi.mp Hsin with hs hs [GOAL] case inr.inl θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑θ = -↑ψ hs : ↑θ = ↑ψ ⊢ ↑θ = ↑ψ [PROOFSTEP] exact hs [GOAL] case inr.inr θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑θ = -↑ψ hs : ↑θ + ↑ψ = ↑π ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [eq_neg_iff_add_eq_zero, hs] at hc [GOAL] case inr.inr θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑π = 0 hs : ↑θ + ↑ψ = ↑π ⊢ ↑θ = ↑ψ [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n, n • _ = _ := QuotientAddGroup.leftRel_apply.mp (Quotient.exact' hc) [GOAL] case inr.inr.intro θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑π = 0 hs : ↑θ + ↑ψ = ↑π n : ℤ hn : n • (2 * π) = -π + 0 ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [← neg_one_mul, add_zero, ← sub_eq_zero, zsmul_eq_mul, ← mul_assoc, ← sub_mul, mul_eq_zero, eq_false (ne_of_gt pi_pos), or_false_iff, sub_neg_eq_add, ← Int.cast_zero, ← Int.cast_one, ← Int.int_cast_ofNat, ← Int.cast_mul, ← Int.cast_add, Int.cast_inj] at hn [GOAL] case inr.inr.intro θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑π = 0 hs : ↑θ + ↑ψ = ↑π n : ℤ hn✝ : n • (2 * π) = -1 * π hn : n * 2 + 1 = 0 ⊢ ↑θ = ↑ψ [PROOFSTEP] have : (n * 2 + 1) % (2 : ℤ) = 0 % (2 : ℤ) := congr_arg (· % (2 : ℤ)) hn [GOAL] case inr.inr.intro θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑π = 0 hs : ↑θ + ↑ψ = ↑π n : ℤ hn✝ : n • (2 * π) = -1 * π hn : n * 2 + 1 = 0 this : (n * 2 + 1) % 2 = 0 % 2 ⊢ ↑θ = ↑ψ [PROOFSTEP] rw [add_comm, Int.add_mul_emod_self] at this [GOAL] case inr.inr.intro θ ψ : ℝ Hcos : cos θ = cos ψ Hsin : sin θ = sin ψ hc : ↑π = 0 hs : ↑θ + ↑ψ = ↑π n : ℤ hn✝ : n • (2 * π) = -1 * π hn : n * 2 + 1 = 0 this : 1 % 2 = 0 % 2 ⊢ ↑θ = ↑ψ [PROOFSTEP] exact absurd this one_ne_zero [GOAL] θ : Angle ψ : ℝ ⊢ cos θ = Real.cos ψ ↔ θ = ↑ψ ∨ θ = -↑ψ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h ψ x✝ : ℝ ⊢ cos ↑x✝ = Real.cos ψ ↔ ↑x✝ = ↑ψ ∨ ↑x✝ = -↑ψ [PROOFSTEP] exact cos_eq_iff_coe_eq_or_eq_neg [GOAL] θ ψ : Angle ⊢ cos θ = cos ψ ↔ θ = ψ ∨ θ = -ψ [PROOFSTEP] induction ψ using Real.Angle.induction_on [GOAL] case h θ : Angle x✝ : ℝ ⊢ cos θ = cos ↑x✝ ↔ θ = ↑x✝ ∨ θ = -↑x✝ [PROOFSTEP] exact cos_eq_real_cos_iff_eq_or_eq_neg [GOAL] θ : Angle ψ : ℝ ⊢ sin θ = Real.sin ψ ↔ θ = ↑ψ ∨ θ + ↑ψ = ↑π [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h ψ x✝ : ℝ ⊢ sin ↑x✝ = Real.sin ψ ↔ ↑x✝ = ↑ψ ∨ ↑x✝ + ↑ψ = ↑π [PROOFSTEP] exact sin_eq_iff_coe_eq_or_add_eq_pi [GOAL] θ ψ : Angle ⊢ sin θ = sin ψ ↔ θ = ψ ∨ θ + ψ = ↑π [PROOFSTEP] induction ψ using Real.Angle.induction_on [GOAL] case h θ : Angle x✝ : ℝ ⊢ sin θ = sin ↑x✝ ↔ θ = ↑x✝ ∨ θ + ↑x✝ = ↑π [PROOFSTEP] exact sin_eq_real_sin_iff_eq_or_add_eq_pi [GOAL] ⊢ sin 0 = 0 [PROOFSTEP] rw [← coe_zero, sin_coe, Real.sin_zero] [GOAL] ⊢ sin ↑π = 0 [PROOFSTEP] rw [sin_coe, Real.sin_pi] [GOAL] θ : Angle ⊢ sin θ = 0 ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] nth_rw 1 [← sin_zero] [GOAL] θ : Angle ⊢ sin θ = sin 0 ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] rw [sin_eq_iff_eq_or_add_eq_pi] [GOAL] θ : Angle ⊢ θ = 0 ∨ θ + 0 = ↑π ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] simp [GOAL] θ : Angle ⊢ sin θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← sin_eq_zero_iff] [GOAL] θ : Angle ⊢ sin (-θ) = -sin θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ sin (-↑x✝) = -sin ↑x✝ [PROOFSTEP] exact Real.sin_neg _ [GOAL] ⊢ Function.Antiperiodic sin ↑π [PROOFSTEP] intro θ [GOAL] θ : Angle ⊢ sin (θ + ↑π) = -sin θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ sin (↑x✝ + ↑π) = -sin ↑x✝ [PROOFSTEP] exact Real.sin_antiperiodic _ [GOAL] ⊢ cos 0 = 1 [PROOFSTEP] rw [← coe_zero, cos_coe, Real.cos_zero] [GOAL] ⊢ cos ↑π = -1 [PROOFSTEP] rw [cos_coe, Real.cos_pi] [GOAL] θ : Angle ⊢ cos (-θ) = cos θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos (-↑x✝) = cos ↑x✝ [PROOFSTEP] exact Real.cos_neg _ [GOAL] ⊢ Function.Antiperiodic cos ↑π [PROOFSTEP] intro θ [GOAL] θ : Angle ⊢ cos (θ + ↑π) = -cos θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos (↑x✝ + ↑π) = -cos ↑x✝ [PROOFSTEP] exact Real.cos_antiperiodic _ [GOAL] θ : Angle ⊢ cos θ = 0 ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] rw [← cos_pi_div_two, ← cos_coe, cos_eq_iff_eq_or_eq_neg, ← coe_neg, ← neg_div] [GOAL] θ₁ θ₂ : Angle ⊢ sin (θ₁ + θ₂) = sin θ₁ * cos θ₂ + cos θ₁ * sin θ₂ [PROOFSTEP] induction θ₁ using Real.Angle.induction_on [GOAL] case h θ₂ : Angle x✝ : ℝ ⊢ sin (↑x✝ + θ₂) = sin ↑x✝ * cos θ₂ + cos ↑x✝ * sin θ₂ [PROOFSTEP] induction θ₂ using Real.Angle.induction_on [GOAL] case h.h x✝¹ x✝ : ℝ ⊢ sin (↑x✝¹ + ↑x✝) = sin ↑x✝¹ * cos ↑x✝ + cos ↑x✝¹ * sin ↑x✝ [PROOFSTEP] exact Real.sin_add _ _ [GOAL] θ₁ θ₂ : Angle ⊢ cos (θ₁ + θ₂) = cos θ₁ * cos θ₂ - sin θ₁ * sin θ₂ [PROOFSTEP] induction θ₂ using Real.Angle.induction_on [GOAL] case h θ₁ : Angle x✝ : ℝ ⊢ cos (θ₁ + ↑x✝) = cos θ₁ * cos ↑x✝ - sin θ₁ * sin ↑x✝ [PROOFSTEP] induction θ₁ using Real.Angle.induction_on [GOAL] case h.h x✝¹ x✝ : ℝ ⊢ cos (↑x✝ + ↑x✝¹) = cos ↑x✝ * cos ↑x✝¹ - sin ↑x✝ * sin ↑x✝¹ [PROOFSTEP] exact Real.cos_add _ _ [GOAL] θ : Angle ⊢ cos θ ^ 2 + sin θ ^ 2 = 1 [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos ↑x✝ ^ 2 + sin ↑x✝ ^ 2 = 1 [PROOFSTEP] exact Real.cos_sq_add_sin_sq _ [GOAL] θ : Angle ⊢ sin (θ + ↑(π / 2)) = cos θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ sin (↑x✝ + ↑(π / 2)) = cos ↑x✝ [PROOFSTEP] exact Real.sin_add_pi_div_two _ [GOAL] θ : Angle ⊢ sin (θ - ↑(π / 2)) = -cos θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ sin (↑x✝ - ↑(π / 2)) = -cos ↑x✝ [PROOFSTEP] exact Real.sin_sub_pi_div_two _ [GOAL] θ : Angle ⊢ sin (↑(π / 2) - θ) = cos θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ sin (↑(π / 2) - ↑x✝) = cos ↑x✝ [PROOFSTEP] exact Real.sin_pi_div_two_sub _ [GOAL] θ : Angle ⊢ cos (θ + ↑(π / 2)) = -sin θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos (↑x✝ + ↑(π / 2)) = -sin ↑x✝ [PROOFSTEP] exact Real.cos_add_pi_div_two _ [GOAL] θ : Angle ⊢ cos (θ - ↑(π / 2)) = sin θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos (↑x✝ - ↑(π / 2)) = sin ↑x✝ [PROOFSTEP] exact Real.cos_sub_pi_div_two _ [GOAL] θ : Angle ⊢ cos (↑(π / 2) - θ) = sin θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ cos (↑(π / 2) - ↑x✝) = sin ↑x✝ [PROOFSTEP] exact Real.cos_pi_div_two_sub _ [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |sin θ| = |sin ψ| [PROOFSTEP] rw [two_nsmul_eq_iff] at h [GOAL] θ ψ : Angle h : θ = ψ ∨ θ = ψ + ↑π ⊢ |sin θ| = |sin ψ| [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case inl θ : Angle ⊢ |sin θ| = |sin θ| [PROOFSTEP] rfl [GOAL] case inr ψ : Angle ⊢ |sin (ψ + ↑π)| = |sin ψ| [PROOFSTEP] rw [sin_add_pi, abs_neg] [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |sin θ| = |sin ψ| [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul] at h [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |sin θ| = |sin ψ| [PROOFSTEP] exact abs_sin_eq_of_two_nsmul_eq h [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |cos θ| = |cos ψ| [PROOFSTEP] rw [two_nsmul_eq_iff] at h [GOAL] θ ψ : Angle h : θ = ψ ∨ θ = ψ + ↑π ⊢ |cos θ| = |cos ψ| [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case inl θ : Angle ⊢ |cos θ| = |cos θ| [PROOFSTEP] rfl [GOAL] case inr ψ : Angle ⊢ |cos (ψ + ↑π)| = |cos ψ| [PROOFSTEP] rw [cos_add_pi, abs_neg] [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |cos θ| = |cos ψ| [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul] at h [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ |cos θ| = |cos ψ| [PROOFSTEP] exact abs_cos_eq_of_two_nsmul_eq h [GOAL] θ ψ : ℝ ⊢ ↑(toIcoMod two_pi_pos ψ θ) = ↑θ [PROOFSTEP] rw [angle_eq_iff_two_pi_dvd_sub] [GOAL] θ ψ : ℝ ⊢ ∃ k, toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑k [PROOFSTEP] refine' ⟨-toIcoDiv two_pi_pos ψ θ, _⟩ [GOAL] θ ψ : ℝ ⊢ toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIcoDiv two_pi_pos ψ θ) [PROOFSTEP] rw [toIcoMod_sub_self, zsmul_eq_mul, mul_comm] [GOAL] θ ψ : ℝ ⊢ ↑(toIocMod two_pi_pos ψ θ) = ↑θ [PROOFSTEP] rw [angle_eq_iff_two_pi_dvd_sub] [GOAL] θ ψ : ℝ ⊢ ∃ k, toIocMod two_pi_pos ψ θ - θ = 2 * π * ↑k [PROOFSTEP] refine' ⟨-toIocDiv two_pi_pos ψ θ, _⟩ [GOAL] θ ψ : ℝ ⊢ toIocMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIocDiv two_pi_pos ψ θ) [PROOFSTEP] rw [toIocMod_sub_self, zsmul_eq_mul, mul_comm] [GOAL] θ : ℝ ⊢ toReal ↑θ = θ ↔ -π < θ ∧ θ ≤ π [PROOFSTEP] rw [toReal_coe, toIocMod_eq_self two_pi_pos] [GOAL] θ : ℝ ⊢ θ ∈ Set.Ioc (-π) (-π + 2 * π) ↔ -π < θ ∧ θ ≤ π [PROOFSTEP] ring_nf [GOAL] θ : ℝ ⊢ θ ∈ Set.Ioc (-π) π ↔ -π < θ ∧ θ ≤ π [PROOFSTEP] rfl [GOAL] θ : ℝ ⊢ toReal ↑θ = θ ↔ θ ∈ Set.Ioc (-π) π [PROOFSTEP] rw [toReal_coe_eq_self_iff, ← Set.mem_Ioc] [GOAL] ⊢ Function.Injective toReal [PROOFSTEP] intro θ ψ h [GOAL] θ ψ : Angle h : toReal θ = toReal ψ ⊢ θ = ψ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h ψ : Angle x✝ : ℝ h : toReal ↑x✝ = toReal ψ ⊢ ↑x✝ = ψ [PROOFSTEP] induction ψ using Real.Angle.induction_on [GOAL] case h.h x✝¹ x✝ : ℝ h : toReal ↑x✝¹ = toReal ↑x✝ ⊢ ↑x✝¹ = ↑x✝ [PROOFSTEP] simpa [toReal_coe, toIocMod_eq_toIocMod, zsmul_eq_mul, mul_comm _ (2 * π), ← angle_eq_iff_two_pi_dvd_sub, eq_comm] using h [GOAL] θ : Angle ⊢ ↑(toReal θ) = θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ ↑(toReal ↑x✝) = ↑x✝ [PROOFSTEP] exact coe_toIocMod _ _ [GOAL] θ : Angle ⊢ -π < toReal θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ -π < toReal ↑x✝ [PROOFSTEP] exact left_lt_toIocMod _ _ _ [GOAL] θ : Angle ⊢ toReal θ ≤ π [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ toReal ↑x✝ ≤ π [PROOFSTEP] convert toIocMod_le_right two_pi_pos _ _ [GOAL] case h.e'_4 x✝ : ℝ ⊢ π = -π + 2 * π [PROOFSTEP] ring [GOAL] θ : Angle ⊢ toIocMod two_pi_pos (-π) (toReal θ) = toReal θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ toIocMod two_pi_pos (-π) (toReal ↑x✝) = toReal ↑x✝ [PROOFSTEP] rw [toReal_coe] [GOAL] case h x✝ : ℝ ⊢ toIocMod two_pi_pos (-π) (toIocMod two_pi_pos (-π) x✝) = toIocMod two_pi_pos (-π) x✝ [PROOFSTEP] exact toIocMod_toIocMod _ _ _ _ [GOAL] ⊢ toReal 0 = 0 [PROOFSTEP] rw [← coe_zero, toReal_coe_eq_self_iff] [GOAL] ⊢ -π < 0 ∧ 0 ≤ π [PROOFSTEP] exact ⟨Left.neg_neg_iff.2 Real.pi_pos, Real.pi_pos.le⟩ [GOAL] θ : Angle ⊢ toReal θ = 0 ↔ θ = 0 [PROOFSTEP] nth_rw 1 [← toReal_zero] [GOAL] θ : Angle ⊢ toReal θ = toReal 0 ↔ θ = 0 [PROOFSTEP] exact toReal_inj [GOAL] ⊢ toReal ↑π = π [PROOFSTEP] rw [toReal_coe_eq_self_iff] [GOAL] ⊢ -π < π ∧ π ≤ π [PROOFSTEP] exact ⟨Left.neg_lt_self Real.pi_pos, le_refl _⟩ [GOAL] θ : Angle ⊢ toReal θ = π ↔ θ = ↑π [PROOFSTEP] rw [← toReal_inj, toReal_pi] [GOAL] ⊢ ↑π ≠ 0 [PROOFSTEP] rw [← toReal_injective.ne_iff, toReal_pi, toReal_zero] [GOAL] ⊢ π ≠ 0 [PROOFSTEP] exact Real.pi_ne_zero [GOAL] ⊢ -π < π / 2 ∧ π / 2 ≤ π [PROOFSTEP] constructor [GOAL] case left ⊢ -π < π / 2 [PROOFSTEP] linarith [pi_pos] [GOAL] case right ⊢ π / 2 ≤ π [PROOFSTEP] linarith [pi_pos] [GOAL] θ : Angle ⊢ toReal θ = π / 2 ↔ θ = ↑(π / 2) [PROOFSTEP] rw [← toReal_inj, toReal_pi_div_two] [GOAL] ⊢ -π < -π / 2 ∧ -π / 2 ≤ π [PROOFSTEP] constructor [GOAL] case left ⊢ -π < -π / 2 [PROOFSTEP] linarith [pi_pos] [GOAL] case right ⊢ -π / 2 ≤ π [PROOFSTEP] linarith [pi_pos] [GOAL] θ : Angle ⊢ toReal θ = -π / 2 ↔ θ = ↑(-π / 2) [PROOFSTEP] rw [← toReal_inj, toReal_neg_pi_div_two] [GOAL] ⊢ ↑(π / 2) ≠ 0 [PROOFSTEP] rw [← toReal_injective.ne_iff, toReal_pi_div_two, toReal_zero] [GOAL] ⊢ π / 2 ≠ 0 [PROOFSTEP] exact div_ne_zero Real.pi_ne_zero two_ne_zero [GOAL] ⊢ ↑(-π / 2) ≠ 0 [PROOFSTEP] rw [← toReal_injective.ne_iff, toReal_neg_pi_div_two, toReal_zero] [GOAL] ⊢ -π / 2 ≠ 0 [PROOFSTEP] exact div_ne_zero (neg_ne_zero.2 Real.pi_ne_zero) two_ne_zero [GOAL] θ : ℝ ⊢ |toReal (-↑θ)| = θ ↔ 0 ≤ θ ∧ θ ≤ π [PROOFSTEP] refine' ⟨fun h => h ▸ ⟨abs_nonneg _, abs_toReal_le_pi _⟩, fun h => _⟩ [GOAL] θ : ℝ h : 0 ≤ θ ∧ θ ≤ π ⊢ |toReal (-↑θ)| = θ [PROOFSTEP] by_cases hnegpi : θ = π [GOAL] case pos θ : ℝ h : 0 ≤ θ ∧ θ ≤ π hnegpi : θ = π ⊢ |toReal (-↑θ)| = θ [PROOFSTEP] simp [hnegpi, Real.pi_pos.le] [GOAL] case neg θ : ℝ h : 0 ≤ θ ∧ θ ≤ π hnegpi : ¬θ = π ⊢ |toReal (-↑θ)| = θ [PROOFSTEP] rw [← coe_neg, toReal_coe_eq_self_iff.2 ⟨neg_lt_neg (lt_of_le_of_ne h.2 hnegpi), (neg_nonpos.2 h.1).trans Real.pi_pos.le⟩, abs_neg, abs_eq_self.2 h.1] [GOAL] θ : Angle ⊢ |toReal θ| = π / 2 ↔ θ = ↑(π / 2) ∨ θ = ↑(-π / 2) [PROOFSTEP] rw [abs_eq (div_nonneg Real.pi_pos.le two_pos.le), ← neg_div, toReal_eq_pi_div_two_iff, toReal_eq_neg_pi_div_two_iff] [GOAL] n : ℕ h : n ≠ 0 θ : Angle ⊢ toReal (n • θ) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n) [PROOFSTEP] nth_rw 1 [← coe_toReal θ] [GOAL] n : ℕ h : n ≠ 0 θ : Angle ⊢ toReal (n • ↑(toReal θ)) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n) [PROOFSTEP] have h' : 0 < (n : ℝ) := by exact_mod_cast Nat.pos_of_ne_zero h [GOAL] n : ℕ h : n ≠ 0 θ : Angle ⊢ 0 < ↑n [PROOFSTEP] exact_mod_cast Nat.pos_of_ne_zero h [GOAL] n : ℕ h : n ≠ 0 θ : Angle h' : 0 < ↑n ⊢ toReal (n • ↑(toReal θ)) = ↑n * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / ↑n) (π / ↑n) [PROOFSTEP] rw [← coe_nsmul, nsmul_eq_mul, toReal_coe_eq_self_iff, Set.mem_Ioc, div_lt_iff' h', le_div_iff' h'] [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / 2) (π / 2) [PROOFSTEP] exact_mod_cast nsmul_toReal_eq_mul two_ne_zero [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ ↔ toReal θ ∈ Set.Ioc (-π / 2) (π / 2) [PROOFSTEP] rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul] [GOAL] θ : ℝ k : ℤ ⊢ toReal ↑θ = θ - 2 * ↑k * π ↔ θ ∈ Set.Ioc ((2 * ↑k - 1) * π) ((2 * ↑k + 1) * π) [PROOFSTEP] rw [← sub_zero (θ : Angle), ← zsmul_zero k, ← coe_two_pi, ← coe_zsmul, ← coe_sub, zsmul_eq_mul, ← mul_assoc, mul_comm (k : ℝ), toReal_coe_eq_self_iff, Set.mem_Ioc] [GOAL] θ : ℝ k : ℤ ⊢ -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π ↔ (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π [PROOFSTEP] exact ⟨fun h => ⟨by linarith, by linarith⟩, fun h => ⟨by linarith, by linarith⟩⟩ [GOAL] θ : ℝ k : ℤ h : -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π ⊢ (2 * ↑k - 1) * π < θ [PROOFSTEP] linarith [GOAL] θ : ℝ k : ℤ h : -π < θ - 2 * ↑k * π ∧ θ - 2 * ↑k * π ≤ π ⊢ θ ≤ (2 * ↑k + 1) * π [PROOFSTEP] linarith [GOAL] θ : ℝ k : ℤ h : (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π ⊢ -π < θ - 2 * ↑k * π [PROOFSTEP] linarith [GOAL] θ : ℝ k : ℤ h : (2 * ↑k - 1) * π < θ ∧ θ ≤ (2 * ↑k + 1) * π ⊢ θ - 2 * ↑k * π ≤ π [PROOFSTEP] linarith [GOAL] θ : ℝ ⊢ toReal ↑θ = θ - 2 * π ↔ θ ∈ Set.Ioc π (3 * π) [PROOFSTEP] convert @toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff θ 1 [GOAL] case h.e'_1.h.e'_3.h.e'_6.h.e'_5 θ : ℝ ⊢ 2 = 2 * ↑1 [PROOFSTEP] norm_num [GOAL] case h.e'_2.h.e'_5.h.e'_3 θ : ℝ ⊢ π = (2 * ↑1 - 1) * π [PROOFSTEP] norm_num [GOAL] case h.e'_2.h.e'_5.h.e'_4.h.e'_5 θ : ℝ ⊢ 3 = 2 * ↑1 + 1 [PROOFSTEP] norm_num [GOAL] θ : ℝ ⊢ toReal ↑θ = θ + 2 * π ↔ θ ∈ Set.Ioc (-3 * π) (-π) [PROOFSTEP] convert @toReal_coe_eq_self_sub_two_mul_int_mul_pi_iff θ (-1) using 2 [GOAL] case h.e'_1.h.e'_3 θ : ℝ ⊢ θ + 2 * π = θ - 2 * ↑(-1) * π [PROOFSTEP] norm_num [GOAL] case h.e'_2.h.e'_5 θ : ℝ ⊢ Set.Ioc (-3 * π) (-π) = Set.Ioc ((2 * ↑(-1) - 1) * π) ((2 * ↑(-1) + 1) * π) [PROOFSTEP] norm_num [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ [PROOFSTEP] nth_rw 1 [← coe_toReal θ] [GOAL] θ : Angle ⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ [PROOFSTEP] rw [← coe_nsmul, two_nsmul, ← two_mul, toReal_coe_eq_self_sub_two_pi_iff, Set.mem_Ioc] [GOAL] θ : Angle ⊢ π < 2 * toReal θ ∧ 2 * toReal θ ≤ 3 * π ↔ π / 2 < toReal θ [PROOFSTEP] exact ⟨fun h => by linarith, fun h => ⟨(div_lt_iff' (zero_lt_two' ℝ)).1 h, by linarith [pi_pos, toReal_le_pi θ]⟩⟩ [GOAL] θ : Angle h : π < 2 * toReal θ ∧ 2 * toReal θ ≤ 3 * π ⊢ π / 2 < toReal θ [PROOFSTEP] linarith [GOAL] θ : Angle h : π / 2 < toReal θ ⊢ 2 * toReal θ ≤ 3 * π [PROOFSTEP] linarith [pi_pos, toReal_le_pi θ] [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ - 2 * π ↔ π / 2 < toReal θ [PROOFSTEP] rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul_sub_two_pi] [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2 [PROOFSTEP] nth_rw 1 [← coe_toReal θ] [GOAL] θ : Angle ⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2 [PROOFSTEP] rw [← coe_nsmul, two_nsmul, ← two_mul, toReal_coe_eq_self_add_two_pi_iff, Set.mem_Ioc] [GOAL] θ : Angle ⊢ -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π ↔ toReal θ ≤ -π / 2 [PROOFSTEP] refine' ⟨fun h => by linarith, fun h => ⟨by linarith [pi_pos, neg_pi_lt_toReal θ], (le_div_iff' (zero_lt_two' ℝ)).1 h⟩⟩ [GOAL] θ : Angle h : -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π ⊢ toReal θ ≤ -π / 2 [PROOFSTEP] linarith [GOAL] θ : Angle h : toReal θ ≤ -π / 2 ⊢ -3 * π < 2 * toReal θ [PROOFSTEP] linarith [pi_pos, neg_pi_lt_toReal θ] [GOAL] θ : Angle ⊢ toReal (2 • θ) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2 [PROOFSTEP] rw [two_zsmul, ← two_nsmul, two_nsmul_toReal_eq_two_mul_add_two_pi] [GOAL] θ : Angle ⊢ Real.sin (toReal θ) = sin θ [PROOFSTEP] conv_rhs => rw [← coe_toReal θ, sin_coe] [GOAL] θ : Angle | sin θ [PROOFSTEP] rw [← coe_toReal θ, sin_coe] [GOAL] θ : Angle | sin θ [PROOFSTEP] rw [← coe_toReal θ, sin_coe] [GOAL] θ : Angle | sin θ [PROOFSTEP] rw [← coe_toReal θ, sin_coe] [GOAL] θ : Angle ⊢ Real.cos (toReal θ) = cos θ [PROOFSTEP] conv_rhs => rw [← coe_toReal θ, cos_coe] [GOAL] θ : Angle | cos θ [PROOFSTEP] rw [← coe_toReal θ, cos_coe] [GOAL] θ : Angle | cos θ [PROOFSTEP] rw [← coe_toReal θ, cos_coe] [GOAL] θ : Angle | cos θ [PROOFSTEP] rw [← coe_toReal θ, cos_coe] [GOAL] θ : Angle ⊢ 0 ≤ cos θ ↔ |toReal θ| ≤ π / 2 [PROOFSTEP] nth_rw 1 [← coe_toReal θ] [GOAL] θ : Angle ⊢ 0 ≤ cos ↑(toReal θ) ↔ |toReal θ| ≤ π / 2 [PROOFSTEP] rw [abs_le, cos_coe] [GOAL] θ : Angle ⊢ 0 ≤ Real.cos (toReal θ) ↔ -(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2 [PROOFSTEP] refine' ⟨fun h => _, cos_nonneg_of_mem_Icc⟩ [GOAL] θ : Angle h : 0 ≤ Real.cos (toReal θ) ⊢ -(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2 [PROOFSTEP] by_contra hn [GOAL] θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : ¬(-(π / 2) ≤ toReal θ ∧ toReal θ ≤ π / 2) ⊢ False [PROOFSTEP] rw [not_and_or, not_le, not_le] at hn [GOAL] θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ∨ π / 2 < toReal θ ⊢ False [PROOFSTEP] refine' (not_lt.2 h) _ [GOAL] θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ∨ π / 2 < toReal θ ⊢ Real.cos (toReal θ) < 0 [PROOFSTEP] rcases hn with (hn | hn) [GOAL] case inl θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ⊢ Real.cos (toReal θ) < 0 [PROOFSTEP] rw [← Real.cos_neg] [GOAL] case inl θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ⊢ Real.cos (-toReal θ) < 0 [PROOFSTEP] refine' cos_neg_of_pi_div_two_lt_of_lt (by linarith) _ [GOAL] θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ⊢ π / 2 < -toReal θ [PROOFSTEP] linarith [GOAL] case inl θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : toReal θ < -(π / 2) ⊢ -toReal θ < π + π / 2 [PROOFSTEP] linarith [neg_pi_lt_toReal θ] [GOAL] case inr θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : π / 2 < toReal θ ⊢ Real.cos (toReal θ) < 0 [PROOFSTEP] refine' cos_neg_of_pi_div_two_lt_of_lt hn _ [GOAL] case inr θ : Angle h : 0 ≤ Real.cos (toReal θ) hn : π / 2 < toReal θ ⊢ toReal θ < π + π / 2 [PROOFSTEP] linarith [toReal_le_pi θ] [GOAL] θ : Angle ⊢ 0 < cos θ ↔ |toReal θ| < π / 2 [PROOFSTEP] rw [lt_iff_le_and_ne, lt_iff_le_and_ne, cos_nonneg_iff_abs_toReal_le_pi_div_two, ← and_congr_right] [GOAL] θ : Angle ⊢ |toReal θ| ≤ π / 2 → (|toReal θ| ≠ π / 2 ↔ 0 ≠ cos θ) [PROOFSTEP] rintro - [GOAL] θ : Angle ⊢ |toReal θ| ≠ π / 2 ↔ 0 ≠ cos θ [PROOFSTEP] rw [Ne.def, Ne.def, not_iff_not, @eq_comm ℝ 0, abs_toReal_eq_pi_div_two_iff, cos_eq_zero_iff] [GOAL] θ : Angle ⊢ cos θ < 0 ↔ π / 2 < |toReal θ| [PROOFSTEP] rw [← not_le, ← not_le, not_iff_not, cos_nonneg_iff_abs_toReal_le_pi_div_two] [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ |cos θ| = |sin ψ| [PROOFSTEP] rw [← eq_sub_iff_add_eq, ← two_nsmul_coe_div_two, ← nsmul_sub, two_nsmul_eq_iff] at h [GOAL] θ ψ : Angle h : θ = ↑(π / 2) - ψ ∨ θ = ↑(π / 2) - ψ + ↑π ⊢ |cos θ| = |sin ψ| [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case inl ψ : Angle ⊢ |cos (↑(π / 2) - ψ)| = |sin ψ| [PROOFSTEP] simp [cos_pi_div_two_sub] [GOAL] case inr ψ : Angle ⊢ |cos (↑(π / 2) - ψ + ↑π)| = |sin ψ| [PROOFSTEP] simp [cos_pi_div_two_sub] [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ |cos θ| = |sin ψ| [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul] at h [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ |cos θ| = |sin ψ| [PROOFSTEP] exact abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi h [GOAL] x : ℝ ⊢ tan ↑x = Real.tan x [PROOFSTEP] rw [tan, sin_coe, cos_coe, Real.tan_eq_sin_div_cos] [GOAL] ⊢ tan 0 = 0 [PROOFSTEP] rw [← coe_zero, tan_coe, Real.tan_zero] [GOAL] ⊢ tan ↑π = 0 [PROOFSTEP] rw [tan_coe, Real.tan_pi] [GOAL] ⊢ Function.Periodic tan ↑π [PROOFSTEP] intro θ [GOAL] θ : Angle ⊢ tan (θ + ↑π) = tan θ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h x✝ : ℝ ⊢ tan (↑x✝ + ↑π) = tan ↑x✝ [PROOFSTEP] rw [← coe_add, tan_coe, tan_coe] [GOAL] case h x✝ : ℝ ⊢ Real.tan (x✝ + π) = Real.tan x✝ [PROOFSTEP] exact Real.tan_periodic _ [GOAL] θ : Angle ⊢ Real.tan (toReal θ) = tan θ [PROOFSTEP] conv_rhs => rw [← coe_toReal θ, tan_coe] [GOAL] θ : Angle | tan θ [PROOFSTEP] rw [← coe_toReal θ, tan_coe] [GOAL] θ : Angle | tan θ [PROOFSTEP] rw [← coe_toReal θ, tan_coe] [GOAL] θ : Angle | tan θ [PROOFSTEP] rw [← coe_toReal θ, tan_coe] [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ tan θ = tan ψ [PROOFSTEP] rw [two_nsmul_eq_iff] at h [GOAL] θ ψ : Angle h : θ = ψ ∨ θ = ψ + ↑π ⊢ tan θ = tan ψ [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case inl θ : Angle ⊢ tan θ = tan θ [PROOFSTEP] rfl [GOAL] case inr ψ : Angle ⊢ tan (ψ + ↑π) = tan ψ [PROOFSTEP] exact tan_add_pi _ [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ tan θ = tan ψ [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul] at h [GOAL] θ ψ : Angle h : 2 • θ = 2 • ψ ⊢ tan θ = tan ψ [PROOFSTEP] exact tan_eq_of_two_nsmul_eq h [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ tan ψ = (tan θ)⁻¹ [PROOFSTEP] induction θ using Real.Angle.induction_on [GOAL] case h ψ : Angle x✝ : ℝ h : 2 • ↑x✝ + 2 • ψ = ↑π ⊢ tan ψ = (tan ↑x✝)⁻¹ [PROOFSTEP] induction ψ using Real.Angle.induction_on [GOAL] case h.h x✝¹ x✝ : ℝ h : 2 • ↑x✝¹ + 2 • ↑x✝ = ↑π ⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹ [PROOFSTEP] rw [← smul_add, ← coe_add, ← coe_nsmul, two_nsmul, ← two_mul, angle_eq_iff_two_pi_dvd_sub] at h [GOAL] case h.h x✝¹ x✝ : ℝ h : ∃ k, 2 * (x✝¹ + x✝) - π = 2 * π * ↑k ⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹ [PROOFSTEP] rcases h with ⟨k, h⟩ [GOAL] case h.h.intro x✝¹ x✝ : ℝ k : ℤ h : 2 * (x✝¹ + x✝) - π = 2 * π * ↑k ⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹ [PROOFSTEP] rw [sub_eq_iff_eq_add, ← mul_inv_cancel_left₀ two_ne_zero π, mul_assoc, ← mul_add, mul_right_inj' (two_ne_zero' ℝ), ← eq_sub_iff_add_eq', mul_inv_cancel_left₀ two_ne_zero π, inv_mul_eq_div, mul_comm] at h [GOAL] case h.h.intro x✝¹ x✝ : ℝ k : ℤ h : x✝ = ↑k * π + π / 2 - x✝¹ ⊢ tan ↑x✝ = (tan ↑x✝¹)⁻¹ [PROOFSTEP] rw [tan_coe, tan_coe, ← tan_pi_div_two_sub, h, add_sub_assoc, add_comm] [GOAL] case h.h.intro x✝¹ x✝ : ℝ k : ℤ h : x✝ = ↑k * π + π / 2 - x✝¹ ⊢ Real.tan (π / 2 - x✝¹ + ↑k * π) = Real.tan (π / 2 - x✝¹) [PROOFSTEP] exact Real.tan_periodic.int_mul _ _ [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ tan ψ = (tan θ)⁻¹ [PROOFSTEP] simp_rw [two_zsmul, ← two_nsmul] at h [GOAL] θ ψ : Angle h : 2 • θ + 2 • ψ = ↑π ⊢ tan ψ = (tan θ)⁻¹ [PROOFSTEP] exact tan_eq_inv_of_two_nsmul_add_two_nsmul_eq_pi h [GOAL] ⊢ sign 0 = 0 [PROOFSTEP] rw [sign, sin_zero, _root_.sign_zero] [GOAL] ⊢ sign ↑π = 0 [PROOFSTEP] rw [sign, sin_coe_pi, _root_.sign_zero] [GOAL] θ : Angle ⊢ sign (-θ) = -sign θ [PROOFSTEP] simp_rw [sign, sin_neg, Left.sign_neg] [GOAL] θ : Angle ⊢ sign (θ + ↑π) = -sign θ [PROOFSTEP] rw [sign, sign, sin_add_pi, Left.sign_neg] [GOAL] θ : Angle ⊢ sign (↑π + θ) = -sign θ [PROOFSTEP] rw [add_comm, sign_add_pi] [GOAL] θ : Angle ⊢ sign (↑π - θ) = sign θ [PROOFSTEP] simp [sign_antiperiodic.sub_eq'] [GOAL] θ : Angle ⊢ sign θ = 0 ↔ θ = 0 ∨ θ = ↑π [PROOFSTEP] rw [sign, _root_.sign_eq_zero_iff, sin_eq_zero_iff] [GOAL] θ : Angle ⊢ sign θ ≠ 0 ↔ θ ≠ 0 ∧ θ ≠ ↑π [PROOFSTEP] rw [← not_or, ← sign_eq_zero_iff] [GOAL] θ : Angle ⊢ toReal θ < 0 ↔ sign θ = -1 [PROOFSTEP] rw [sign, ← sin_toReal, sign_eq_neg_one_iff] [GOAL] θ : Angle ⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0 [PROOFSTEP] rcases lt_trichotomy θ.toReal 0 with (h | h | h) [GOAL] case inl θ : Angle h : toReal θ < 0 ⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0 [PROOFSTEP] exact ⟨fun _ => Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_toReal θ), fun _ => h⟩ [GOAL] case inr.inl θ : Angle h : toReal θ = 0 ⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0 [PROOFSTEP] simp [h] [GOAL] case inr.inr θ : Angle h : 0 < toReal θ ⊢ toReal θ < 0 ↔ Real.sin (toReal θ) < 0 [PROOFSTEP] exact ⟨fun hn => False.elim (h.asymm hn), fun hn => False.elim (hn.not_le (sin_nonneg_of_nonneg_of_le_pi h.le (toReal_le_pi θ)))⟩ [GOAL] θ : Angle ⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ [PROOFSTEP] rcases lt_trichotomy θ.toReal 0 with (h | h | h) [GOAL] case inl θ : Angle h : toReal θ < 0 ⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ [PROOFSTEP] refine' ⟨fun hn => False.elim (h.not_le hn), fun hn => _⟩ [GOAL] case inl θ : Angle h : toReal θ < 0 hn : 0 ≤ sign θ ⊢ 0 ≤ toReal θ [PROOFSTEP] rw [toReal_neg_iff_sign_neg.1 h] at hn [GOAL] case inl θ : Angle h : toReal θ < 0 hn : 0 ≤ -1 ⊢ 0 ≤ toReal θ [PROOFSTEP] exact False.elim (hn.not_lt (by decide)) [GOAL] θ : Angle h : toReal θ < 0 hn : 0 ≤ -1 ⊢ -1 < 0 [PROOFSTEP] decide [GOAL] case inr.inl θ : Angle h : toReal θ = 0 ⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ [PROOFSTEP] simp [h, sign, ← sin_toReal] [GOAL] case inr.inr θ : Angle h : 0 < toReal θ ⊢ 0 ≤ toReal θ ↔ 0 ≤ sign θ [PROOFSTEP] refine' ⟨fun _ => _, fun _ => h.le⟩ [GOAL] case inr.inr θ : Angle h : 0 < toReal θ x✝ : 0 ≤ toReal θ ⊢ 0 ≤ sign θ [PROOFSTEP] rw [sign, ← sin_toReal, sign_nonneg_iff] [GOAL] case inr.inr θ : Angle h : 0 < toReal θ x✝ : 0 ≤ toReal θ ⊢ 0 ≤ Real.sin (toReal θ) [PROOFSTEP] exact sin_nonneg_of_nonneg_of_le_pi h.le (toReal_le_pi θ) [GOAL] θ : Angle h : θ ≠ ↑π ⊢ ↑SignType.sign (toReal θ) = sign θ [PROOFSTEP] rcases lt_trichotomy θ.toReal 0 with (ht | ht | ht) [GOAL] case inl θ : Angle h : θ ≠ ↑π ht : toReal θ < 0 ⊢ ↑SignType.sign (toReal θ) = sign θ [PROOFSTEP] simp [ht, toReal_neg_iff_sign_neg.1 ht] [GOAL] case inr.inl θ : Angle h : θ ≠ ↑π ht : toReal θ = 0 ⊢ ↑SignType.sign (toReal θ) = sign θ [PROOFSTEP] simp [sign, ht, ← sin_toReal] [GOAL] case inr.inr θ : Angle h : θ ≠ ↑π ht : 0 < toReal θ ⊢ ↑SignType.sign (toReal θ) = sign θ [PROOFSTEP] rw [sign, ← sin_toReal, sign_pos ht, sign_pos (sin_pos_of_pos_of_lt_pi ht ((toReal_le_pi θ).lt_of_ne (toReal_eq_pi_iff.not.2 h)))] [GOAL] θ : Angle h : 0 ≤ sign θ ⊢ ↑|toReal θ| = θ [PROOFSTEP] rw [abs_eq_self.2 (toReal_nonneg_iff_sign_nonneg.2 h), coe_toReal] [GOAL] θ : Angle h : sign θ ≤ 0 ⊢ -↑|toReal θ| = θ [PROOFSTEP] rw [SignType.nonpos_iff] at h [GOAL] θ : Angle h : sign θ = -1 ∨ sign θ = 0 ⊢ -↑|toReal θ| = θ [PROOFSTEP] rcases h with (h | h) [GOAL] case inl θ : Angle h : sign θ = -1 ⊢ -↑|toReal θ| = θ [PROOFSTEP] rw [abs_of_neg (toReal_neg_iff_sign_neg.2 h), coe_neg, neg_neg, coe_toReal] [GOAL] case inr θ : Angle h : sign θ = 0 ⊢ -↑|toReal θ| = θ [PROOFSTEP] rw [sign_eq_zero_iff] at h [GOAL] case inr θ : Angle h : θ = 0 ∨ θ = ↑π ⊢ -↑|toReal θ| = θ [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case inr.inl ⊢ -↑|toReal 0| = 0 [PROOFSTEP] simp [abs_of_pos Real.pi_pos] [GOAL] case inr.inr ⊢ -↑|toReal ↑π| = ↑π [PROOFSTEP] simp [abs_of_pos Real.pi_pos] [GOAL] θ ψ : Angle ⊢ θ = ψ ↔ sign θ = sign ψ ∧ |toReal θ| = |toReal ψ| [PROOFSTEP] refine' ⟨_, fun h => _⟩ [GOAL] case refine'_1 θ ψ : Angle ⊢ θ = ψ → sign θ = sign ψ ∧ |toReal θ| = |toReal ψ| [PROOFSTEP] rintro rfl [GOAL] case refine'_1 θ : Angle ⊢ sign θ = sign θ ∧ |toReal θ| = |toReal θ| [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case refine'_2 θ ψ : Angle h : sign θ = sign ψ ∧ |toReal θ| = |toReal ψ| ⊢ θ = ψ [PROOFSTEP] rcases h with ⟨hs, hr⟩ [GOAL] case refine'_2.intro θ ψ : Angle hs : sign θ = sign ψ hr : |toReal θ| = |toReal ψ| ⊢ θ = ψ [PROOFSTEP] rw [abs_eq_abs] at hr [GOAL] case refine'_2.intro θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = toReal ψ ∨ toReal θ = -toReal ψ ⊢ θ = ψ [PROOFSTEP] rcases hr with (hr | hr) [GOAL] case refine'_2.intro.inl θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = toReal ψ ⊢ θ = ψ [PROOFSTEP] exact toReal_injective hr [GOAL] case refine'_2.intro.inr θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -toReal ψ ⊢ θ = ψ [PROOFSTEP] by_cases h : θ = π [GOAL] case pos θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -toReal ψ h : θ = ↑π ⊢ θ = ψ [PROOFSTEP] rw [h, toReal_pi, ← neg_eq_iff_eq_neg] at hr [GOAL] case pos θ ψ : Angle hs : sign θ = sign ψ hr : -π = toReal ψ h : θ = ↑π ⊢ θ = ψ [PROOFSTEP] exact False.elim ((neg_pi_lt_toReal ψ).ne hr) [GOAL] case neg θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -toReal ψ h : ¬θ = ↑π ⊢ θ = ψ [PROOFSTEP] by_cases h' : ψ = π [GOAL] case pos θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -toReal ψ h : ¬θ = ↑π h' : ψ = ↑π ⊢ θ = ψ [PROOFSTEP] rw [h', toReal_pi] at hr [GOAL] case pos θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -π h : ¬θ = ↑π h' : ψ = ↑π ⊢ θ = ψ [PROOFSTEP] exact False.elim ((neg_pi_lt_toReal θ).ne hr.symm) [GOAL] case neg θ ψ : Angle hs : sign θ = sign ψ hr : toReal θ = -toReal ψ h : ¬θ = ↑π h' : ¬ψ = ↑π ⊢ θ = ψ [PROOFSTEP] rw [← sign_toReal h, ← sign_toReal h', hr, Left.sign_neg, SignType.neg_eq_self_iff, _root_.sign_eq_zero_iff, toReal_eq_zero_iff] at hs [GOAL] case neg θ ψ : Angle hs : ψ = 0 hr : toReal θ = -toReal ψ h : ¬θ = ↑π h' : ¬ψ = ↑π ⊢ θ = ψ [PROOFSTEP] rw [hs, toReal_zero, neg_zero, toReal_eq_zero_iff] at hr [GOAL] case neg θ ψ : Angle hs : ψ = 0 hr : θ = 0 h : ¬θ = ↑π h' : ¬ψ = ↑π ⊢ θ = ψ [PROOFSTEP] rw [hr, hs] [GOAL] θ ψ : Angle h : sign θ = sign ψ ⊢ θ = ψ ↔ |toReal θ| = |toReal ψ| [PROOFSTEP] simpa [h] using @eq_iff_sign_eq_and_abs_toReal_eq θ ψ [GOAL] ⊢ sign ↑(π / 2) = 1 [PROOFSTEP] rw [sign, sin_coe, sin_pi_div_two, sign_one] [GOAL] ⊢ sign ↑(-π / 2) = -1 [PROOFSTEP] rw [sign, sin_coe, neg_div, Real.sin_neg, sin_pi_div_two, Left.sign_neg, sign_one] [GOAL] θ : ℝ h0 : 0 ≤ θ hpi : θ ≤ π ⊢ 0 ≤ sign ↑θ [PROOFSTEP] rw [sign, sign_nonneg_iff] [GOAL] θ : ℝ h0 : 0 ≤ θ hpi : θ ≤ π ⊢ 0 ≤ sin ↑θ [PROOFSTEP] exact sin_nonneg_of_nonneg_of_le_pi h0 hpi [GOAL] θ : ℝ h0 : 0 ≤ θ hpi : θ ≤ π ⊢ sign (-↑θ) ≤ 0 [PROOFSTEP] rw [sign, sign_nonpos_iff, sin_neg, Left.neg_nonpos_iff] [GOAL] θ : ℝ h0 : 0 ≤ θ hpi : θ ≤ π ⊢ 0 ≤ sin ↑θ [PROOFSTEP] exact sin_nonneg_of_nonneg_of_le_pi h0 hpi [GOAL] θ : Angle ⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2 [PROOFSTEP] by_cases hpi : θ = π [GOAL] case pos θ : Angle hpi : θ = ↑π ⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2 [PROOFSTEP] simp [hpi] [GOAL] case neg θ : Angle hpi : ¬θ = ↑π ⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2 [PROOFSTEP] rw [or_iff_right hpi] [GOAL] case neg θ : Angle hpi : ¬θ = ↑π ⊢ sign (2 • θ) = sign θ ↔ |toReal θ| < π / 2 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case neg.refine'_1 θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ ⊢ |toReal θ| < π / 2 [PROOFSTEP] by_contra hle [GOAL] case neg.refine'_1 θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hle : ¬|toReal θ| < π / 2 ⊢ False [PROOFSTEP] rw [not_lt, le_abs, le_neg] at hle [GOAL] case neg.refine'_1 θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2) ⊢ False [PROOFSTEP] have hpi' : θ.toReal ≠ π := by simpa using hpi [GOAL] θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2) ⊢ toReal θ ≠ π [PROOFSTEP] simpa using hpi [GOAL] case neg.refine'_1 θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hle : π / 2 ≤ toReal θ ∨ toReal θ ≤ -(π / 2) hpi' : toReal θ ≠ π ⊢ False [PROOFSTEP] rcases hle with (hle | hle) [GOAL] case neg.refine'_1.inl θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ ⊢ False [PROOFSTEP] rcases hle.eq_or_lt with (heq | hlt) [GOAL] case neg.refine'_1.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) ⊢ False [PROOFSTEP] rcases hle.eq_or_lt with (heq | hlt) [GOAL] case neg.refine'_1.inl.inl θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ heq : π / 2 = toReal θ ⊢ False [PROOFSTEP] rw [← coe_toReal θ, ← heq] at h [GOAL] case neg.refine'_1.inl.inl θ : Angle hpi : ¬θ = ↑π h : sign (2 • ↑(π / 2)) = sign ↑(π / 2) hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ heq : π / 2 = toReal θ ⊢ False [PROOFSTEP] simp at h [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ ⊢ False [PROOFSTEP] rw [← sign_toReal hpi, sign_pos (pi_div_two_pos.trans hlt), ← sign_toReal, two_nsmul_toReal_eq_two_mul_sub_two_pi.2 hlt, _root_.sign_neg] at h [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : -1 = 1 hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ ⊢ False [PROOFSTEP] simp at h [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (2 * toReal θ - 2 * π) = 1 hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ ⊢ 2 * toReal θ - 2 * π < 0 [PROOFSTEP] rw [← mul_sub] [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (2 * toReal θ - 2 * π) = 1 hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ ⊢ 2 * (toReal θ - π) < 0 [PROOFSTEP] exact mul_neg_of_pos_of_neg two_pos (sub_neg.2 ((toReal_le_pi _).lt_of_ne hpi')) [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = 1 hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ ⊢ 2 • θ ≠ ↑π [PROOFSTEP] intro he [GOAL] case neg.refine'_1.inl.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = 1 hpi' : toReal θ ≠ π hle : π / 2 ≤ toReal θ hlt : π / 2 < toReal θ he : 2 • θ = ↑π ⊢ False [PROOFSTEP] simp [he] at h [GOAL] case neg.refine'_1.inr.inl θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) heq : toReal θ = -(π / 2) ⊢ False [PROOFSTEP] rw [← coe_toReal θ, heq] at h [GOAL] case neg.refine'_1.inr.inl θ : Angle hpi : ¬θ = ↑π h : sign (2 • ↑(-(π / 2))) = sign ↑(-(π / 2)) hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) heq : toReal θ = -(π / 2) ⊢ False [PROOFSTEP] simp at h [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = sign θ hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) ⊢ False [PROOFSTEP] rw [← sign_toReal hpi, _root_.sign_neg (hlt.trans (Left.neg_neg_iff.2 pi_div_two_pos)), ← sign_toReal] at h [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (toReal (2 • θ)) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) ⊢ False case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) ⊢ 2 • θ ≠ ↑π [PROOFSTEP] swap [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) ⊢ 2 • θ ≠ ↑π [PROOFSTEP] intro he [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : sign (2 • θ) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) he : 2 • θ = ↑π ⊢ False [PROOFSTEP] simp [he] at h [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (toReal (2 • θ)) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -(π / 2) ⊢ False [PROOFSTEP] rw [← neg_div] at hlt [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (toReal (2 • θ)) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -π / 2 ⊢ False [PROOFSTEP] rw [two_nsmul_toReal_eq_two_mul_add_two_pi.2 hlt.le, sign_pos] at h [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : 1 = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -π / 2 ⊢ False [PROOFSTEP] simp at h [GOAL] case neg.refine'_1.inr.inr θ : Angle hpi : ¬θ = ↑π h : ↑SignType.sign (2 * toReal θ + 2 * π) = -1 hpi' : toReal θ ≠ π hle : toReal θ ≤ -(π / 2) hlt : toReal θ < -π / 2 ⊢ 0 < 2 * toReal θ + 2 * π [PROOFSTEP] linarith [neg_pi_lt_toReal θ] [GOAL] case neg.refine'_2 θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 ⊢ sign (2 • θ) = sign θ [PROOFSTEP] have hpi' : (2 : ℕ) • θ ≠ π := by rw [Ne.def, two_nsmul_eq_pi_iff, not_or] constructor · rintro rfl simp [pi_pos, div_pos, abs_of_pos] at h · rintro rfl rw [toReal_neg_pi_div_two] at h simp [pi_pos, div_pos, neg_div, abs_of_pos] at h [GOAL] θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 ⊢ 2 • θ ≠ ↑π [PROOFSTEP] rw [Ne.def, two_nsmul_eq_pi_iff, not_or] [GOAL] θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 ⊢ ¬θ = ↑(π / 2) ∧ ¬θ = ↑(-π / 2) [PROOFSTEP] constructor [GOAL] case left θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 ⊢ ¬θ = ↑(π / 2) [PROOFSTEP] rintro rfl [GOAL] case left hpi : ¬↑(π / 2) = ↑π h : |toReal ↑(π / 2)| < π / 2 ⊢ False [PROOFSTEP] simp [pi_pos, div_pos, abs_of_pos] at h [GOAL] case right θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 ⊢ ¬θ = ↑(-π / 2) [PROOFSTEP] rintro rfl [GOAL] case right hpi : ¬↑(-π / 2) = ↑π h : |toReal ↑(-π / 2)| < π / 2 ⊢ False [PROOFSTEP] rw [toReal_neg_pi_div_two] at h [GOAL] case right hpi : ¬↑(-π / 2) = ↑π h : |-π / 2| < π / 2 ⊢ False [PROOFSTEP] simp [pi_pos, div_pos, neg_div, abs_of_pos] at h [GOAL] case neg.refine'_2 θ : Angle hpi : ¬θ = ↑π h : |toReal θ| < π / 2 hpi' : 2 • θ ≠ ↑π ⊢ sign (2 • θ) = sign θ [PROOFSTEP] rw [abs_lt, ← neg_div] at h [GOAL] case neg.refine'_2 θ : Angle hpi : ¬θ = ↑π h : -π / 2 < toReal θ ∧ toReal θ < π / 2 hpi' : 2 • θ ≠ ↑π ⊢ sign (2 • θ) = sign θ [PROOFSTEP] rw [← sign_toReal hpi, ← sign_toReal hpi', two_nsmul_toReal_eq_two_mul.2 ⟨h.1, h.2.le⟩, sign_mul, sign_pos (zero_lt_two' ℝ), one_mul] [GOAL] θ : Angle ⊢ sign (2 • θ) = sign θ ↔ θ = ↑π ∨ |toReal θ| < π / 2 [PROOFSTEP] rw [two_zsmul, ← two_nsmul, sign_two_nsmul_eq_sign_iff] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α f : α → Angle s : Set α hf : ContinuousOn f s hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π ⊢ ContinuousOn (sign ∘ f) s [PROOFSTEP] refine' (ContinuousAt.continuousOn fun θ hθ => _).comp hf (Set.mapsTo_image f s) [GOAL] α : Type u_1 inst✝ : TopologicalSpace α f : α → Angle s : Set α hf : ContinuousOn f s hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π θ : Angle hθ : θ ∈ f '' s ⊢ ContinuousAt sign θ [PROOFSTEP] obtain ⟨z, hz, rfl⟩ := hθ [GOAL] case intro.intro α : Type u_1 inst✝ : TopologicalSpace α f : α → Angle s : Set α hf : ContinuousOn f s hs : ∀ (z : α), z ∈ s → f z ≠ 0 ∧ f z ≠ ↑π z : α hz : z ∈ s ⊢ ContinuousAt sign (f z) [PROOFSTEP] exact continuousAt_sign (hs _ hz).1 (hs _ hz).2
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle", "llama_tokens": 28825}
[GOAL] x : ℝ hx : 0 < x ⊢ HasStrictDerivAt log x⁻¹ x [PROOFSTEP] have : HasStrictDerivAt log (exp <| log x)⁻¹ x := (hasStrictDerivAt_exp <| log x).of_local_left_inverse (continuousAt_log hx.ne') (ne_of_gt <| exp_pos _) <| Eventually.mono (lt_mem_nhds hx) @exp_log [GOAL] x : ℝ hx : 0 < x this : HasStrictDerivAt log (exp (log x))⁻¹ x ⊢ HasStrictDerivAt log x⁻¹ x [PROOFSTEP] rwa [exp_log hx] at this [GOAL] x : ℝ hx : x ≠ 0 ⊢ HasStrictDerivAt log x⁻¹ x [PROOFSTEP] cases' hx.lt_or_lt with hx hx [GOAL] case inl x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ HasStrictDerivAt log x⁻¹ x [PROOFSTEP] convert (hasStrictDerivAt_log_of_pos (neg_pos.mpr hx)).comp x (hasStrictDerivAt_neg x) using 1 [GOAL] case h.e'_6 x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ log = log ∘ Neg.neg [PROOFSTEP] ext y [GOAL] case h.e'_6.h x : ℝ hx✝ : x ≠ 0 hx : x < 0 y : ℝ ⊢ log y = (log ∘ Neg.neg) y [PROOFSTEP] exact (log_neg_eq_log y).symm [GOAL] case h.e'_7 x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ x⁻¹ = (-x)⁻¹ * -1 [PROOFSTEP] field_simp [hx.ne] [GOAL] case inr x : ℝ hx✝ : x ≠ 0 hx : 0 < x ⊢ HasStrictDerivAt log x⁻¹ x [PROOFSTEP] exact hasStrictDerivAt_log_of_pos hx [GOAL] x✝ x : ℝ hx : x = 0 ⊢ deriv log x = x⁻¹ [PROOFSTEP] rw [deriv_zero_of_not_differentiableAt (differentiableAt_log_iff.not_left.2 hx), hx, inv_zero] [GOAL] x : ℝ n : ℕ∞ ⊢ ContDiffOn ℝ n log {0}ᶜ [PROOFSTEP] suffices : ContDiffOn ℝ ⊤ log {0}ᶜ [GOAL] x : ℝ n : ℕ∞ this : ContDiffOn ℝ ⊤ log {0}ᶜ ⊢ ContDiffOn ℝ n log {0}ᶜ case this x : ℝ n : ℕ∞ ⊢ ContDiffOn ℝ ⊤ log {0}ᶜ [PROOFSTEP] exact this.of_le le_top [GOAL] case this x : ℝ n : ℕ∞ ⊢ ContDiffOn ℝ ⊤ log {0}ᶜ [PROOFSTEP] refine' (contDiffOn_top_iff_deriv_of_open isOpen_compl_singleton).2 _ [GOAL] case this x : ℝ n : ℕ∞ ⊢ DifferentiableOn ℝ log {0}ᶜ ∧ ContDiffOn ℝ ⊤ (deriv log) {0}ᶜ [PROOFSTEP] simp [differentiableOn_log, contDiffOn_inv] [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasDerivWithinAt f f' s x hx : f x ≠ 0 ⊢ HasDerivWithinAt (fun y => Real.log (f y)) (f' / f x) s x [PROOFSTEP] rw [div_eq_inv_mul] [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasDerivWithinAt f f' s x hx : f x ≠ 0 ⊢ HasDerivWithinAt (fun y => Real.log (f y)) ((f x)⁻¹ * f') s x [PROOFSTEP] exact (hasDerivAt_log hx).comp_hasDerivWithinAt x hf [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasDerivAt f f' x hx : f x ≠ 0 ⊢ HasDerivAt (fun y => Real.log (f y)) (f' / f x) x [PROOFSTEP] rw [← hasDerivWithinAt_univ] at * [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasDerivWithinAt f f' Set.univ x hx : f x ≠ 0 ⊢ HasDerivWithinAt (fun y => Real.log (f y)) (f' / f x) Set.univ x [PROOFSTEP] exact hf.log hx [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasStrictDerivAt f f' x hx : f x ≠ 0 ⊢ HasStrictDerivAt (fun y => Real.log (f y)) (f' / f x) x [PROOFSTEP] rw [div_eq_inv_mul] [GOAL] f : ℝ → ℝ x f' : ℝ s : Set ℝ hf : HasStrictDerivAt f f' x hx : f x ≠ 0 ⊢ HasStrictDerivAt (fun y => Real.log (f y)) ((f x)⁻¹ * f') x [PROOFSTEP] exact (hasStrictDerivAt_log hx).comp x hf [GOAL] t : ℝ ⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t) [PROOFSTEP] have h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[≠] 0) (𝓝 t) := by simpa [hasDerivAt_iff_tendsto_slope, slope_fun_def] using (((hasDerivAt_id (0 : ℝ)).const_mul t).const_add 1).log (by simp) [GOAL] t : ℝ ⊢ Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t) [PROOFSTEP] simpa [hasDerivAt_iff_tendsto_slope, slope_fun_def] using (((hasDerivAt_id (0 : ℝ)).const_mul t).const_add 1).log (by simp) [GOAL] t : ℝ ⊢ 1 + t * id 0 ≠ 0 [PROOFSTEP] simp [GOAL] t : ℝ h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t) ⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t) [PROOFSTEP] have h₂ : Tendsto (fun x : ℝ => x⁻¹) atTop (𝓝[≠] 0) := tendsto_inv_atTop_zero'.mono_right (nhdsWithin_mono _ fun x hx => (Set.mem_Ioi.mp hx).ne') [GOAL] t : ℝ h₁ : Tendsto (fun h => h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t) h₂ : Tendsto (fun x => x⁻¹) atTop (𝓝[{0}ᶜ] 0) ⊢ Tendsto (fun x => x * log (1 + t / x)) atTop (𝓝 t) [PROOFSTEP] simpa only [(· ∘ ·), inv_inv] using h₁.comp h₂ [GOAL] x : ℝ h : |x| < 1 n : ℕ ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] let F : ℝ → ℝ := fun x => (∑ i in range n, x ^ (i + 1) / (i + 1)) + log (1 - x) [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] let F' : ℝ → ℝ := fun x ↦ -x ^ n / (1 - x) -- Porting note: In `mathlib3`, the proof used `deriv`/`DifferentiableAt`. `simp` failed to -- compute `deriv`, so I changed the proof to use `HasDerivAt` instead -- First step: compute the derivative of `F` [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] have A : ∀ y ∈ Ioo (-1 : ℝ) 1, HasDerivAt F (F' y) y := fun y hy ↦ by have : HasDerivAt F ((∑ i in range n, ↑(i + 1) * y ^ i / (↑i + 1)) + (-1) / (1 - y)) y := .add (.sum fun i _ ↦ (hasDerivAt_pow (i + 1) y).div_const ((i : ℝ) + 1)) (((hasDerivAt_id y).const_sub _).log <| sub_ne_zero.2 hy.2.ne') convert this using 1 calc -y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y) := by field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne'] ring _ = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) := by congr with i rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne'] -- second step: show that the derivative of `F` is small [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 ⊢ HasDerivAt F (F' y) y [PROOFSTEP] have : HasDerivAt F ((∑ i in range n, ↑(i + 1) * y ^ i / (↑i + 1)) + (-1) / (1 - y)) y := .add (.sum fun i _ ↦ (hasDerivAt_pow (i + 1) y).div_const ((i : ℝ) + 1)) (((hasDerivAt_id y).const_sub _).log <| sub_ne_zero.2 hy.2.ne') [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y ⊢ HasDerivAt F (F' y) y [PROOFSTEP] convert this using 1 [GOAL] case h.e'_7 x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y ⊢ F' y = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) [PROOFSTEP] calc -y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y) := by field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne'] ring _ = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) := by congr with i rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne'] -- second step: show that the derivative of `F` is small [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y ⊢ -y ^ n / (1 - y) = ∑ i in Finset.range n, y ^ i + -1 / (1 - y) [PROOFSTEP] field_simp [geom_sum_eq hy.2.ne, sub_ne_zero.2 hy.2.ne, sub_ne_zero.2 hy.2.ne'] [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y ⊢ -(y ^ n * ((y - 1) * (1 - y))) = ((y ^ n - 1) * (1 - y) + (1 - y)) * (1 - y) [PROOFSTEP] ring [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y ⊢ ∑ i in Finset.range n, y ^ i + -1 / (1 - y) = ∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y) [PROOFSTEP] congr with i [GOAL] case e_a.e_f.h x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) y : ℝ hy : y ∈ Set.Ioo (-1) 1 this : HasDerivAt F (∑ i in Finset.range n, ↑(i + 1) * y ^ i / (↑i + 1) + -1 / (1 - y)) y i : ℕ ⊢ y ^ i = ↑(i + 1) * y ^ i / (↑i + 1) [PROOFSTEP] rw [Nat.cast_succ, mul_div_cancel_left _ (Nat.cast_add_one_pos i).ne'] -- second step: show that the derivative of `F` is small [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] have B : ∀ y ∈ Icc (-|x|) |x|, |F' y| ≤ |x| ^ n / (1 - |x|) := fun y hy ↦ calc |F' y| = |y| ^ n / |1 - y| := by simp [abs_div] _ ≤ |x| ^ n / (1 - |x|) := by have : |y| ≤ |x| := abs_le.2 hy have : 1 - |x| ≤ |1 - y| := le_trans (by linarith [hy.2]) (le_abs_self _) gcongr exact sub_pos.2 h [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| ⊢ |F' y| = |y| ^ n / |1 - y| [PROOFSTEP] simp [abs_div] [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| ⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|) [PROOFSTEP] have : |y| ≤ |x| := abs_le.2 hy [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| this : |y| ≤ |x| ⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|) [PROOFSTEP] have : 1 - |x| ≤ |1 - y| := le_trans (by linarith [hy.2]) (le_abs_self _) [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| this : |y| ≤ |x| ⊢ 1 - |x| ≤ 1 - y [PROOFSTEP] linarith [hy.2] [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| this✝ : |y| ≤ |x| this : 1 - |x| ≤ |1 - y| ⊢ |y| ^ n / |1 - y| ≤ |x| ^ n / (1 - |x|) [PROOFSTEP] gcongr [GOAL] case hd x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y y : ℝ hy : y ∈ Set.Icc (-|x|) |x| this✝ : |y| ≤ |x| this : 1 - |x| ≤ |1 - y| ⊢ 0 < 1 - |x| [PROOFSTEP] exact sub_pos.2 h [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] have C : ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖ := by refine Convex.norm_image_sub_le_of_norm_hasDerivWithin_le (fun y hy ↦ (A _ ?_).hasDerivWithinAt) B (convex_Icc _ _) ?_ ?_ · exact Icc_subset_Ioo (neg_lt_neg h) h hy · simp · simp [le_abs_self x, neg_le.mp (neg_le_abs_self x)] -- fourth step: conclude by massaging the inequality of the third step [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) ⊢ ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖ [PROOFSTEP] refine Convex.norm_image_sub_le_of_norm_hasDerivWithin_le (fun y hy ↦ (A _ ?_).hasDerivWithinAt) B (convex_Icc _ _) ?_ ?_ [GOAL] case refine_1 x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) y : ℝ hy : y ∈ Set.Icc (-|x|) |x| ⊢ y ∈ Set.Ioo (-1) 1 [PROOFSTEP] exact Icc_subset_Ioo (neg_lt_neg h) h hy [GOAL] case refine_2 x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) ⊢ 0 ∈ Set.Icc (-|x|) |x| [PROOFSTEP] simp [GOAL] case refine_3 x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) ⊢ x ∈ Set.Icc (-|x|) |x| [PROOFSTEP] simp [le_abs_self x, neg_le.mp (neg_le_abs_self x)] -- fourth step: conclude by massaging the inequality of the third step [GOAL] x : ℝ h : |x| < 1 n : ℕ F : ℝ → ℝ := fun x => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x) F' : ℝ → ℝ := fun x => -x ^ n / (1 - x) A : ∀ (y : ℝ), y ∈ Set.Ioo (-1) 1 → HasDerivAt F (F' y) y B : ∀ (y : ℝ), y ∈ Set.Icc (-|x|) |x| → |F' y| ≤ |x| ^ n / (1 - |x|) C : ‖F x - F 0‖ ≤ |x| ^ n / (1 - |x|) * ‖x - 0‖ ⊢ |∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1) + log (1 - x)| ≤ |x| ^ (n + 1) / (1 - |x|) [PROOFSTEP] simpa [div_mul_eq_mul_div, pow_succ'] using C [GOAL] x : ℝ h : |x| < 1 ⊢ HasSum (fun n => x ^ (n + 1) / (↑n + 1)) (-log (1 - x)) [PROOFSTEP] rw [Summable.hasSum_iff_tendsto_nat] [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1)) atTop (𝓝 (-log (1 - x))) x : ℝ h : |x| < 1 ⊢ Summable fun n => x ^ (n + 1) / (↑n + 1) [PROOFSTEP] show Tendsto (fun n : ℕ => ∑ i : ℕ in range n, x ^ (i + 1) / (i + 1)) atTop (𝓝 (-log (1 - x))) [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ (i + 1) / (↑i + 1)) atTop (𝓝 (-log (1 - x))) [PROOFSTEP] rw [tendsto_iff_norm_tendsto_zero] [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun e => ‖∑ i in Finset.range e, x ^ (i + 1) / (↑i + 1) - -log (1 - x)‖) atTop (𝓝 0) [PROOFSTEP] simp only [norm_eq_abs, sub_neg_eq_add] [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun e => |∑ i in Finset.range e, x ^ (i + 1) / (↑i + 1) + log (1 - x)|) atTop (𝓝 0) [PROOFSTEP] refine' squeeze_zero (fun n => abs_nonneg _) (abs_log_sub_add_sum_range_le h) _ [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 0) [PROOFSTEP] suffices Tendsto (fun t : ℕ => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|))) by simpa [GOAL] x : ℝ h : |x| < 1 this : Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|))) ⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 0) [PROOFSTEP] simpa [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun t => |x| ^ (t + 1) / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|))) [PROOFSTEP] simp only [pow_succ] [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun t => |x| * |x| ^ t / (1 - |x|)) atTop (𝓝 (|x| * 0 / (1 - |x|))) [PROOFSTEP] refine' (tendsto_const_nhds.mul _).div_const _ [GOAL] x : ℝ h : |x| < 1 ⊢ Tendsto (fun t => |x| ^ t) atTop (𝓝 0) [PROOFSTEP] exact tendsto_pow_atTop_nhds_0_of_lt_1 (abs_nonneg _) h [GOAL] x : ℝ h : |x| < 1 ⊢ Summable fun n => x ^ (n + 1) / (↑n + 1) [PROOFSTEP] show Summable fun n : ℕ => x ^ (n + 1) / (n + 1) [GOAL] x : ℝ h : |x| < 1 ⊢ Summable fun n => x ^ (n + 1) / (↑n + 1) [PROOFSTEP] refine' summable_of_norm_bounded _ (summable_geometric_of_lt_1 (abs_nonneg _) h) fun i => _ [GOAL] x : ℝ h : |x| < 1 i : ℕ ⊢ ‖x ^ (i + 1) / (↑i + 1)‖ ≤ |x| ^ i [PROOFSTEP] calc ‖x ^ (i + 1) / (i + 1)‖ = |x| ^ (i + 1) / (i + 1) := by have : (0 : ℝ) ≤ i + 1 := le_of_lt (Nat.cast_add_one_pos i) rw [norm_eq_abs, abs_div, ← pow_abs, abs_of_nonneg this] _ ≤ |x| ^ (i + 1) / (0 + 1) := by gcongr exact i.cast_nonneg _ ≤ |x| ^ i := by simpa [pow_succ'] using mul_le_of_le_one_right (pow_nonneg (abs_nonneg x) i) (le_of_lt h) [GOAL] x : ℝ h : |x| < 1 i : ℕ ⊢ ‖x ^ (i + 1) / (↑i + 1)‖ = |x| ^ (i + 1) / (↑i + 1) [PROOFSTEP] have : (0 : ℝ) ≤ i + 1 := le_of_lt (Nat.cast_add_one_pos i) [GOAL] x : ℝ h : |x| < 1 i : ℕ this : 0 ≤ ↑i + 1 ⊢ ‖x ^ (i + 1) / (↑i + 1)‖ = |x| ^ (i + 1) / (↑i + 1) [PROOFSTEP] rw [norm_eq_abs, abs_div, ← pow_abs, abs_of_nonneg this] [GOAL] x : ℝ h : |x| < 1 i : ℕ ⊢ |x| ^ (i + 1) / (↑i + 1) ≤ |x| ^ (i + 1) / (0 + 1) [PROOFSTEP] gcongr [GOAL] case h.bc x : ℝ h : |x| < 1 i : ℕ ⊢ 0 ≤ ↑i [PROOFSTEP] exact i.cast_nonneg [GOAL] x : ℝ h : |x| < 1 i : ℕ ⊢ |x| ^ (i + 1) / (0 + 1) ≤ |x| ^ i [PROOFSTEP] simpa [pow_succ'] using mul_le_of_le_one_right (pow_nonneg (abs_nonneg x) i) (le_of_lt h) [GOAL] x : ℝ h : |x| < 1 ⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x)) [PROOFSTEP] set term := fun n : ℕ => -1 * ((-x) ^ (n + 1) / ((n : ℝ) + 1)) + x ^ (n + 1) / (n + 1) [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) ⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x)) [PROOFSTEP] have h_term_eq_goal : term ∘ (· * ·) 2 = fun k : ℕ => 2 * (1 / (2 * k + 1)) * x ^ (2 * k + 1) := by ext n dsimp only [(· ∘ ·)] rw [Odd.neg_pow (⟨n, rfl⟩ : Odd (2 * n + 1)) x] push_cast ring_nf [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) ⊢ term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) [PROOFSTEP] ext n [GOAL] case h x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) n : ℕ ⊢ (term ∘ (fun x x_1 => x * x_1) 2) n = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1) [PROOFSTEP] dsimp only [(· ∘ ·)] [GOAL] case h x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) n : ℕ ⊢ -1 * ((-x) ^ (2 * n + 1) / (↑(2 * n) + 1)) + x ^ (2 * n + 1) / (↑(2 * n) + 1) = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1) [PROOFSTEP] rw [Odd.neg_pow (⟨n, rfl⟩ : Odd (2 * n + 1)) x] [GOAL] case h x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) n : ℕ ⊢ -1 * (-x ^ (2 * n + 1) / (↑(2 * n) + 1)) + x ^ (2 * n + 1) / (↑(2 * n) + 1) = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1) [PROOFSTEP] push_cast [GOAL] case h x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) n : ℕ ⊢ -1 * (-x ^ (2 * n + 1) / (2 * ↑n + 1)) + x ^ (2 * n + 1) / (2 * ↑n + 1) = 2 * (1 / (2 * ↑n + 1)) * x ^ (2 * n + 1) [PROOFSTEP] ring_nf [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) ⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x)) [PROOFSTEP] rw [← h_term_eq_goal, (mul_right_injective₀ (two_ne_zero' ℕ)).hasSum_iff] [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) ⊢ HasSum term (log (1 + x) - log (1 - x)) [PROOFSTEP] have h₁ := (hasSum_pow_div_log_of_abs_lt_1 (Eq.trans_lt (abs_neg x) h)).mul_left (-1) [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) h₁ : HasSum (fun i => -1 * ((-x) ^ (i + 1) / (↑i + 1))) (-1 * -log (1 - -x)) ⊢ HasSum term (log (1 + x) - log (1 - x)) [PROOFSTEP] convert h₁.add (hasSum_pow_div_log_of_abs_lt_1 h) using 1 [GOAL] case h.e'_6 x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) h₁ : HasSum (fun i => -1 * ((-x) ^ (i + 1) / (↑i + 1))) (-1 * -log (1 - -x)) ⊢ log (1 + x) - log (1 - x) = -1 * -log (1 - -x) + -log (1 - x) [PROOFSTEP] ring_nf [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) ⊢ ∀ (x : ℕ), ¬x ∈ Set.range ((fun x x_1 => x * x_1) 2) → term x = 0 [PROOFSTEP] intro m hm [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) m : ℕ hm : ¬m ∈ Set.range ((fun x x_1 => x * x_1) 2) ⊢ term m = 0 [PROOFSTEP] rw [range_two_mul, Set.mem_setOf_eq, ← Nat.even_add_one] at hm [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) m : ℕ hm : Even (m + 1) ⊢ term m = 0 [PROOFSTEP] dsimp [GOAL] x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : term ∘ (fun x x_1 => x * x_1) 2 = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) m : ℕ hm : Even (m + 1) ⊢ -1 * ((-x) ^ (m + 1) / (↑m + 1)) + x ^ (m + 1) / (↑m + 1) = 0 [PROOFSTEP] rw [Even.neg_pow hm, neg_one_mul, neg_add_self] [GOAL] a : ℝ h : 0 < a ⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * (1 / (2 * a + 1)) ^ (2 * k + 1)) (log (1 + a⁻¹)) [PROOFSTEP] have h₁ : |1 / (2 * a + 1)| < 1 := by rw [abs_of_pos, div_lt_one] · linarith · linarith · exact div_pos one_pos (by linarith) [GOAL] a : ℝ h : 0 < a ⊢ |1 / (2 * a + 1)| < 1 [PROOFSTEP] rw [abs_of_pos, div_lt_one] [GOAL] a : ℝ h : 0 < a ⊢ 1 < 2 * a + 1 [PROOFSTEP] linarith [GOAL] a : ℝ h : 0 < a ⊢ 0 < 2 * a + 1 [PROOFSTEP] linarith [GOAL] a : ℝ h : 0 < a ⊢ 0 < 1 / (2 * a + 1) [PROOFSTEP] exact div_pos one_pos (by linarith) [GOAL] a : ℝ h : 0 < a ⊢ 0 < 2 * a + 1 [PROOFSTEP] linarith [GOAL] a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 ⊢ HasSum (fun k => 2 * (1 / (2 * ↑k + 1)) * (1 / (2 * a + 1)) ^ (2 * k + 1)) (log (1 + a⁻¹)) [PROOFSTEP] convert hasSum_log_sub_log_of_abs_lt_1 h₁ using 1 [GOAL] case h.e'_6 a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 ⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1)) [PROOFSTEP] have h₂ : (2 : ℝ) * a + 1 ≠ 0 := by linarith [GOAL] a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 ⊢ 2 * a + 1 ≠ 0 [PROOFSTEP] linarith [GOAL] case h.e'_6 a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 ⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1)) [PROOFSTEP] have h₃ := h.ne' [GOAL] case h.e'_6 a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ log (1 + a⁻¹) = log (1 + 1 / (2 * a + 1)) - log (1 - 1 / (2 * a + 1)) [PROOFSTEP] rw [← log_div] [GOAL] case h.e'_6 a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ log (1 + a⁻¹) = log ((1 + 1 / (2 * a + 1)) / (1 - 1 / (2 * a + 1))) [PROOFSTEP] congr [GOAL] case h.e'_6.e_x a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ 1 + a⁻¹ = (1 + 1 / (2 * a + 1)) / (1 - 1 / (2 * a + 1)) [PROOFSTEP] field_simp [GOAL] case h.e'_6.e_x a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ (a + 1) * (2 * a) = (2 * a + 1 + 1) * a [PROOFSTEP] linarith [GOAL] case h.e'_6.hx a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ 1 + 1 / (2 * a + 1) ≠ 0 [PROOFSTEP] field_simp [GOAL] case h.e'_6.hx a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ ¬2 * a + 1 + 1 = 0 [PROOFSTEP] linarith [GOAL] case h.e'_6.hy a : ℝ h : 0 < a h₁ : |1 / (2 * a + 1)| < 1 h₂ : 2 * a + 1 ≠ 0 h₃ : a ≠ 0 ⊢ 1 - 1 / (2 * a + 1) ≠ 0 [PROOFSTEP] field_simp
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Log.Deriv", "llama_tokens": 14354}
[GOAL] s : ℝ ⊢ (fun x => exp (-x) * x ^ s) =o[atTop] fun x => exp (-(1 / 2) * x) [PROOFSTEP] refine' isLittleO_of_tendsto (fun x hx => _) _ [GOAL] case refine'_1 s x : ℝ hx : exp (-(1 / 2) * x) = 0 ⊢ exp (-x) * x ^ s = 0 [PROOFSTEP] exfalso [GOAL] case refine'_1.h s x : ℝ hx : exp (-(1 / 2) * x) = 0 ⊢ False [PROOFSTEP] exact (exp_pos (-(1 / 2) * x)).ne' hx [GOAL] case refine'_2 s : ℝ ⊢ Tendsto (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) atTop (𝓝 0) [PROOFSTEP] have : (fun x : ℝ => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x : ℝ => exp (1 / 2 * x) / x ^ s)⁻¹ := by ext1 x field_simp [exp_ne_zero, exp_neg, ← Real.exp_add] left ring [GOAL] s : ℝ ⊢ (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ [PROOFSTEP] ext1 x [GOAL] case h s x : ℝ ⊢ exp (-x) * x ^ s / exp (-(1 / 2) * x) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ x [PROOFSTEP] field_simp [exp_ne_zero, exp_neg, ← Real.exp_add] [GOAL] case h s x : ℝ ⊢ x = x * 2 + -x ∨ x ^ s = 0 [PROOFSTEP] left [GOAL] case h.h s x : ℝ ⊢ x = x * 2 + -x [PROOFSTEP] ring [GOAL] case refine'_2 s : ℝ this : (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ ⊢ Tendsto (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) atTop (𝓝 0) [PROOFSTEP] rw [this] [GOAL] case refine'_2 s : ℝ this : (fun x => exp (-x) * x ^ s / exp (-(1 / 2) * x)) = (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ ⊢ Tendsto (fun x => exp (1 / 2 * x) / x ^ s)⁻¹ atTop (𝓝 0) [PROOFSTEP] exact (tendsto_exp_mul_div_rpow_atTop s (1 / 2) one_half_pos).inv_tendsto_atTop [GOAL] s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 0) [PROOFSTEP] rw [← Ioc_union_Ioi_eq_Ioi (@zero_le_one ℝ _ _ _ _), integrableOn_union] [GOAL] s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioc 0 1) ∧ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 1) [PROOFSTEP] constructor [GOAL] case left s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioc 0 1) [PROOFSTEP] rw [← integrableOn_Icc_iff_integrableOn_Ioc] [GOAL] case left s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Icc 0 1) [PROOFSTEP] refine' IntegrableOn.continuousOn_mul continuousOn_id.neg.exp _ isCompact_Icc [GOAL] case left s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => x ^ (s - 1)) (Icc 0 1) [PROOFSTEP] refine' (intervalIntegrable_iff_integrable_Icc_of_le zero_le_one).mp _ [GOAL] case left s : ℝ h : 0 < s ⊢ IntervalIntegrable (fun x => x ^ (s - 1)) volume 0 1 [PROOFSTEP] exact intervalIntegrable_rpow' (by linarith) [GOAL] s : ℝ h : 0 < s ⊢ -1 < s - 1 [PROOFSTEP] linarith [GOAL] case right s : ℝ h : 0 < s ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 1) [PROOFSTEP] refine' integrable_of_isBigO_exp_neg one_half_pos _ (Gamma_integrand_isLittleO _).isBigO [GOAL] case right s : ℝ h : 0 < s ⊢ ContinuousOn (fun x => exp (-x) * x ^ (s - 1)) (Ici 1) [PROOFSTEP] refine' continuousOn_id.neg.exp.mul (continuousOn_id.rpow_const _) [GOAL] case right s : ℝ h : 0 < s ⊢ ∀ (x : ℝ), x ∈ Ici 1 → id x ≠ 0 ∨ 0 ≤ s - 1 [PROOFSTEP] intro x hx [GOAL] case right s : ℝ h : 0 < s x : ℝ hx : x ∈ Ici 1 ⊢ id x ≠ 0 ∨ 0 ≤ s - 1 [PROOFSTEP] exact Or.inl ((zero_lt_one : (0 : ℝ) < 1).trans_le hx).ne' [GOAL] s : ℂ hs : 0 < s.re ⊢ IntegrableOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioi 0) [PROOFSTEP] constructor [GOAL] case left s : ℂ hs : 0 < s.re ⊢ AEStronglyMeasurable (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Measure.restrict volume (Ioi 0)) [PROOFSTEP] refine' ContinuousOn.aestronglyMeasurable _ measurableSet_Ioi [GOAL] case left s : ℂ hs : 0 < s.re ⊢ ContinuousOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioi 0) [PROOFSTEP] apply (continuous_ofReal.comp continuous_neg.exp).continuousOn.mul [GOAL] case left s : ℂ hs : 0 < s.re ⊢ ContinuousOn (fun x => ↑x ^ (s - 1)) (Ioi 0) [PROOFSTEP] apply ContinuousAt.continuousOn [GOAL] case left.hcont s : ℂ hs : 0 < s.re ⊢ ∀ (x : ℝ), x ∈ Ioi 0 → ContinuousAt (fun x => ↑x ^ (s - 1)) x [PROOFSTEP] intro x hx [GOAL] case left.hcont s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x [PROOFSTEP] have : ContinuousAt (fun x : ℂ => x ^ (s - 1)) ↑x := by apply continuousAt_cpow_const; rw [ofReal_re]; exact Or.inl hx [GOAL] s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ ContinuousAt (fun x => x ^ (s - 1)) ↑x [PROOFSTEP] apply continuousAt_cpow_const [GOAL] case ha s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ 0 < (↑x).re ∨ (↑x).im ≠ 0 [PROOFSTEP] rw [ofReal_re] [GOAL] case ha s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ 0 < x ∨ (↑x).im ≠ 0 [PROOFSTEP] exact Or.inl hx [GOAL] case left.hcont s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 this : ContinuousAt (fun x => x ^ (s - 1)) ↑x ⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x [PROOFSTEP] exact ContinuousAt.comp this continuous_ofReal.continuousAt [GOAL] case right s : ℂ hs : 0 < s.re ⊢ HasFiniteIntegral fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1) [PROOFSTEP] rw [← hasFiniteIntegral_norm_iff] [GOAL] case right s : ℂ hs : 0 < s.re ⊢ HasFiniteIntegral fun a => ‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖ [PROOFSTEP] refine' HasFiniteIntegral.congr (Real.GammaIntegral_convergent hs).2 _ [GOAL] case right s : ℂ hs : 0 < s.re ⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) =ᵐ[Measure.restrict volume (Ioi 0)] fun a => ‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖ [PROOFSTEP] refine' (ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ fun x hx => _) [GOAL] case right s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) x = (fun a => ‖↑(Real.exp (-a)) * ↑a ^ (s - 1)‖) x [PROOFSTEP] dsimp only [GOAL] case right s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ Real.exp (-x) * x ^ (s.re - 1) = ‖↑(Real.exp (-x)) * ↑x ^ (s - 1)‖ [PROOFSTEP] rw [norm_eq_abs, map_mul, abs_of_nonneg <| le_of_lt <| exp_pos <| -x, abs_cpow_eq_rpow_re_of_pos hx _] [GOAL] case right s : ℂ hs : 0 < s.re x : ℝ hx : x ∈ Ioi 0 ⊢ Real.exp (-x) * x ^ (s.re - 1) = Real.exp (-x) * x ^ (s - 1).re [PROOFSTEP] simp [GOAL] s : ℂ ⊢ GammaIntegral (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaIntegral s) [PROOFSTEP] rw [GammaIntegral, GammaIntegral, ← integral_conj] [GOAL] s : ℂ ⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) = ∫ (a : ℝ) in Ioi 0, ↑(starRingEnd ℂ) (↑(Real.exp (-a)) * ↑a ^ (s - 1)) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun x hx => _ [GOAL] s : ℂ x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) = ↑(starRingEnd ℂ) (↑(Real.exp (-x)) * ↑x ^ (s - 1)) [PROOFSTEP] dsimp only [GOAL] s : ℂ x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(Real.exp (-x)) * ↑x ^ (↑(starRingEnd ℂ) s - 1) = ↑(starRingEnd ℂ) (↑(Real.exp (-x)) * ↑x ^ (s - 1)) [PROOFSTEP] rw [RingHom.map_mul, conj_ofReal, cpow_def_of_ne_zero (ofReal_ne_zero.mpr (ne_of_gt hx)), cpow_def_of_ne_zero (ofReal_ne_zero.mpr (ne_of_gt hx)), ← exp_conj, RingHom.map_mul, ← ofReal_log (le_of_lt hx), conj_ofReal, RingHom.map_sub, RingHom.map_one] [GOAL] s : ℝ ⊢ GammaIntegral ↑s = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ GammaIntegral ↑s = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [GammaIntegral] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] conv_rhs => rw [this, ← _root_.integral_ofReal] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r | ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [this, ← _root_.integral_ofReal] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r | ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [this, ← _root_.integral_ofReal] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r | ↑(∫ (x : ℝ) in Ioi 0, Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [this, ← _root_.integral_ofReal] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ ∫ (x : ℝ) in Ioi 0, ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ∫ (a : ℝ) in Ioi 0, ↑(Real.exp (-a) * a ^ (s - 1)) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi _ [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r ⊢ EqOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (↑s - 1)) (fun a => ↑(Real.exp (-a) * a ^ (s - 1))) (Ioi 0) [PROOFSTEP] intro x hx [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 ⊢ (fun x => ↑(Real.exp (-x)) * ↑x ^ (↑s - 1)) x = (fun a => ↑(Real.exp (-a) * a ^ (s - 1))) x [PROOFSTEP] dsimp only [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] conv_rhs => rw [← this] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 | ↑(Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [← this] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 | ↑(Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [← this] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 | ↑(Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [← this] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [ofReal_mul, ofReal_cpow (mem_Ioi.mp hx).le] [GOAL] s : ℝ this : ∀ (r : ℝ), ↑r = ↑r x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(Real.exp (-x)) * ↑x ^ (↑s - 1) = ↑(Real.exp (-x)) * ↑x ^ ↑(s - 1) [PROOFSTEP] simp [GOAL] ⊢ GammaIntegral 1 = 1 [PROOFSTEP] simpa only [← ofReal_one, GammaIntegral_ofReal, ofReal_inj, sub_self, rpow_zero, mul_one] using integral_exp_neg_Ioi_zero [GOAL] s : ℂ X : ℝ hs : 0 < s.re hX : 0 ≤ X ⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) volume 0 X [PROOFSTEP] rw [intervalIntegrable_iff_integrable_Ioc_of_le hX] [GOAL] s : ℂ X : ℝ hs : 0 < s.re hX : 0 ≤ X ⊢ IntegrableOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioc 0 X) [PROOFSTEP] exact IntegrableOn.mono_set (GammaIntegral_convergent hs) Ioc_subset_Ioi_self [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s)) volume 0 X [PROOFSTEP] convert (Gamma_integrand_interval_integrable (s + 1) _ hX).neg [GOAL] case h.e'_3.h s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x✝ : ℝ ⊢ -(↑(Real.exp (-x✝)) * ↑x✝ ^ s) = (-fun x => ↑(Real.exp (-x)) * ↑x ^ (s + 1 - 1)) x✝ [PROOFSTEP] simp only [ofReal_exp, ofReal_neg, add_sub_cancel] [GOAL] case h.e'_3.h s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x✝ : ℝ ⊢ -(exp (-↑x✝) * ↑x✝ ^ s) = (-fun x => exp (-↑x) * ↑x ^ s) x✝ [PROOFSTEP] rfl [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ 0 < (s + 1).re [PROOFSTEP] simp only [add_re, one_re] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ 0 < s.re + 1 [PROOFSTEP] linarith [GOAL] s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y ⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 Y [PROOFSTEP] have : (fun x => (-x).exp * (s * x ^ (s - 1)) : ℝ → ℂ) = (fun x => s * ((-x).exp * x ^ (s - 1)) : ℝ → ℂ) := by ext1; ring [GOAL] s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y ⊢ (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) [PROOFSTEP] ext1 [GOAL] case h s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y x✝ : ℝ ⊢ ↑(Real.exp (-x✝)) * (s * ↑x✝ ^ (s - 1)) = s * (↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1)) [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ IntervalIntegrable (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 Y [PROOFSTEP] rw [this, intervalIntegrable_iff_integrable_Ioc_of_le hY] [GOAL] s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ IntegrableOn (fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) (Ioc 0 Y) [PROOFSTEP] constructor [GOAL] case left s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ AEStronglyMeasurable (fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) (Measure.restrict volume (Ioc 0 Y)) [PROOFSTEP] refine' (continuousOn_const.mul _).aestronglyMeasurable measurableSet_Ioc [GOAL] case left s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ ContinuousOn (fun x => ↑(Real.exp (-x)) * ↑x ^ (s - 1)) (Ioc 0 Y) [PROOFSTEP] apply (continuous_ofReal.comp continuous_neg.exp).continuousOn.mul [GOAL] case left s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ ContinuousOn (fun x => ↑x ^ (s - 1)) (Ioc 0 Y) [PROOFSTEP] apply ContinuousAt.continuousOn [GOAL] case left.hcont s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ ∀ (x : ℝ), x ∈ Ioc 0 Y → ContinuousAt (fun x => ↑x ^ (s - 1)) x [PROOFSTEP] intro x hx [GOAL] case left.hcont s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ ContinuousAt (fun x => ↑x ^ (s - 1)) x [PROOFSTEP] refine' (_ : ContinuousAt (fun x : ℂ => x ^ (s - 1)) _).comp continuous_ofReal.continuousAt [GOAL] case left.hcont s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ ContinuousAt (fun x => x ^ (s - 1)) ↑x [PROOFSTEP] apply continuousAt_cpow_const [GOAL] case left.hcont.ha s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ 0 < (↑x).re ∨ (↑x).im ≠ 0 [PROOFSTEP] rw [ofReal_re] [GOAL] case left.hcont.ha s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ 0 < x ∨ (↑x).im ≠ 0 [PROOFSTEP] exact Or.inl hx.1 [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ HasFiniteIntegral fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) [PROOFSTEP] rw [← hasFiniteIntegral_norm_iff] [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ HasFiniteIntegral fun a => ‖s * (↑(Real.exp (-a)) * ↑a ^ (s - 1))‖ [PROOFSTEP] simp_rw [norm_eq_abs, map_mul] [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ HasFiniteIntegral fun a => ↑abs s * (↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1))) [PROOFSTEP] refine' (((Real.GammaIntegral_convergent hs).mono_set Ioc_subset_Ioi_self).hasFiniteIntegral.congr _).const_mul _ [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ (fun x => Real.exp (-x) * x ^ (s.re - 1)) =ᵐ[Measure.restrict volume (Ioc 0 Y)] fun a => ↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1)) [PROOFSTEP] rw [EventuallyEq, ae_restrict_iff'] [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ ∀ᵐ (x : ℝ), x ∈ Ioc 0 Y → Real.exp (-x) * x ^ (s.re - 1) = ↑abs ↑(Real.exp (-x)) * ↑abs (↑x ^ (s - 1)) [PROOFSTEP] apply ae_of_all [GOAL] case right.a s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ ∀ (a : ℝ), a ∈ Ioc 0 Y → Real.exp (-a) * a ^ (s.re - 1) = ↑abs ↑(Real.exp (-a)) * ↑abs (↑a ^ (s - 1)) [PROOFSTEP] intro x hx [GOAL] case right.a s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ Real.exp (-x) * x ^ (s.re - 1) = ↑abs ↑(Real.exp (-x)) * ↑abs (↑x ^ (s - 1)) [PROOFSTEP] rw [abs_of_nonneg (exp_pos _).le, abs_cpow_eq_rpow_re_of_pos hx.1] [GOAL] case right.a s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) x : ℝ hx : x ∈ Ioc 0 Y ⊢ Real.exp (-x) * x ^ (s.re - 1) = Real.exp (-x) * x ^ (s - 1).re [PROOFSTEP] simp [GOAL] case right s : ℂ hs : 0 < s.re Y : ℝ hY : 0 ≤ Y this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) ⊢ MeasurableSet (Ioc 0 Y) [PROOFSTEP] exact measurableSet_Ioc [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ partialGamma (s + 1) X = s * partialGamma s X - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [partialGamma, partialGamma, add_sub_cancel] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have F_der_I : ∀ x : ℝ, x ∈ Ioo 0 X → HasDerivAt (fun x => (-x).exp * x ^ s : ℝ → ℂ) (-((-x).exp * x ^ s) + (-x).exp * (s * x ^ (s - 1))) x := by intro x hx have d1 : HasDerivAt (fun y : ℝ => (-y).exp) (-(-x).exp) x := by simpa using (hasDerivAt_neg x).exp have d2 : HasDerivAt (fun y : ℝ => ↑y ^ s) (s * x ^ (s - 1)) x := by have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_ simpa only [mul_one] using t.comp_ofReal simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1 simpa only [ofReal_neg, neg_mul] using d1.ofReal_comp.mul d2 [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X ⊢ ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x [PROOFSTEP] intro x hx [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X ⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x [PROOFSTEP] have d1 : HasDerivAt (fun y : ℝ => (-y).exp) (-(-x).exp) x := by simpa using (hasDerivAt_neg x).exp [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X ⊢ HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x [PROOFSTEP] simpa using (hasDerivAt_neg x).exp [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x ⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x [PROOFSTEP] have d2 : HasDerivAt (fun y : ℝ => ↑y ^ s) (s * x ^ (s - 1)) x := by have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_ simpa only [mul_one] using t.comp_ofReal simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1 [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x ⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x [PROOFSTEP] have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_ [GOAL] case refine_2 s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x t : HasDerivAt (fun x => id x ^ s) (s * id ↑x ^ (s - 1) * 1) ↑x ⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x case refine_1 s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x ⊢ 0 < (id ↑x).re ∨ (id ↑x).im ≠ 0 [PROOFSTEP] simpa only [mul_one] using t.comp_ofReal [GOAL] case refine_1 s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x ⊢ 0 < (id ↑x).re ∨ (id ↑x).im ≠ 0 [PROOFSTEP] simpa only [id.def, ofReal_re, ofReal_im, Ne.def, eq_self_iff_true, not_true, or_false_iff, mul_one] using hx.1 [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => Real.exp (-y)) (-Real.exp (-x)) x d2 : HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x ⊢ HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x [PROOFSTEP] simpa only [ofReal_neg, neg_mul] using d1.ofReal_comp.mul d2 [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have cont := (continuous_ofReal.comp continuous_neg.exp).mul (continuous_ofReal_cpow_const hs) [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have der_ible := (Gamma_integrand_deriv_integrable_A hs hX).add (Gamma_integrand_deriv_integrable_B hs hX) [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have int_eval := integral_eq_sub_of_hasDerivAt_of_le hX cont.continuousOn F_der_I der_ible [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : ∫ (y : ℝ) in 0 ..X, -(↑(Real.exp (-y)) * ↑y ^ s) + ↑(Real.exp (-y)) * (s * ↑y ^ (s - 1)) = (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] apply_fun fun x : ℂ => -x at int_eval [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : -∫ (y : ℝ) in 0 ..X, -(↑(Real.exp (-y)) * ↑y ^ s) + ↑(Real.exp (-y)) * (s * ↑y ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [intervalIntegral.integral_add (Gamma_integrand_deriv_integrable_A hs hX) (Gamma_integrand_deriv_integrable_B hs hX), intervalIntegral.integral_neg, neg_add, neg_neg] at int_eval [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) ⊢ ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [eq_sub_of_add_eq int_eval, sub_neg_eq_add, neg_sub, add_comm, add_sub] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) ⊢ (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have : (fun x => (-x).exp * (s * x ^ (s - 1)) : ℝ → ℂ) = (fun x => s * (-x).exp * x ^ (s - 1) : ℝ → ℂ) := by ext1; ring [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) ⊢ (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) [PROOFSTEP] ext1 [GOAL] case h s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) x✝ : ℝ ⊢ ↑(Real.exp (-x✝)) * (s * ↑x✝ ^ (s - 1)) = s * ↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1) [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [this] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] have t := @integral_const_mul 0 X volume _ _ s fun x : ℝ => (-x).exp * x ^ (s - 1) [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [← t, ofReal_zero, zero_cpow] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) + (ofReal' ∘ fun y => Real.exp (-y)) 0 * 0 - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] rw [mul_zero, add_zero] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) - (ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s = (∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1))) - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] congr 2 [GOAL] case e_a.e_f s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ (fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1)) = fun x => s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) [PROOFSTEP] ext1 [GOAL] case e_a.e_f.h s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) x✝ : ℝ ⊢ s * ↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1) = s * (↑(Real.exp (-x✝)) * ↑x✝ ^ (s - 1)) [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) ⊢ s ≠ 0 [PROOFSTEP] contrapose! hs [GOAL] s : ℂ X : ℝ hX : 0 ≤ X F_der_I : ∀ (x : ℝ), x ∈ Ioo 0 X → HasDerivAt (fun x => ↑(Real.exp (-x)) * ↑x ^ s) (-(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal' ∘ fun y => Real.exp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(Real.exp (-x)) * ↑x ^ s) + ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal' ∘ fun y => Real.exp (-y)) X * ↑X ^ s - (ofReal' ∘ fun y => Real.exp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(Real.exp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(Real.exp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(Real.exp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(Real.exp (-x)) * ↑x ^ (s - 1) hs : s = 0 ⊢ s.re ≤ 0 [PROOFSTEP] rw [hs, zero_re] [GOAL] s : ℂ hs : 0 < s.re ⊢ GammaIntegral (s + 1) = s * GammaIntegral s [PROOFSTEP] suffices Tendsto (s + 1).partialGamma atTop (𝓝 <| s * GammaIntegral s) by refine' tendsto_nhds_unique _ this apply tendsto_partialGamma; rw [add_re, one_re]; linarith [GOAL] s : ℂ hs : 0 < s.re this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) ⊢ GammaIntegral (s + 1) = s * GammaIntegral s [PROOFSTEP] refine' tendsto_nhds_unique _ this [GOAL] s : ℂ hs : 0 < s.re this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) ⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (GammaIntegral (s + 1))) [PROOFSTEP] apply tendsto_partialGamma [GOAL] case hs s : ℂ hs : 0 < s.re this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) ⊢ 0 < (s + 1).re [PROOFSTEP] rw [add_re, one_re] [GOAL] case hs s : ℂ hs : 0 < s.re this : Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) ⊢ 0 < s.re + 1 [PROOFSTEP] linarith [GOAL] s : ℂ hs : 0 < s.re ⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) [PROOFSTEP] have : (fun X : ℝ => s * partialGamma s X - X ^ s * (-X).exp) =ᶠ[atTop] (s + 1).partialGamma := by apply eventuallyEq_of_mem (Ici_mem_atTop (0 : ℝ)) intro X hX rw [partialGamma_add_one hs (mem_Ici.mp hX)] ring_nf [GOAL] s : ℂ hs : 0 < s.re ⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) [PROOFSTEP] apply eventuallyEq_of_mem (Ici_mem_atTop (0 : ℝ)) [GOAL] s : ℂ hs : 0 < s.re ⊢ EqOn (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) (partialGamma (s + 1)) (Ici 0) [PROOFSTEP] intro X hX [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : X ∈ Ici 0 ⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) X = partialGamma (s + 1) X [PROOFSTEP] rw [partialGamma_add_one hs (mem_Ici.mp hX)] [GOAL] s : ℂ hs : 0 < s.re X : ℝ hX : X ∈ Ici 0 ⊢ (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) X = s * partialGamma s X - ↑(Real.exp (-X)) * ↑X ^ s [PROOFSTEP] ring_nf [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ Tendsto (partialGamma (s + 1)) atTop (𝓝 (s * GammaIntegral s)) [PROOFSTEP] refine' Tendsto.congr' this _ [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ Tendsto (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 (s * GammaIntegral s)) [PROOFSTEP] suffices Tendsto (fun X => -X ^ s * (-X).exp : ℝ → ℂ) atTop (𝓝 0) by simpa using Tendsto.add (Tendsto.const_mul s (tendsto_partialGamma hs)) this [GOAL] s : ℂ hs : 0 < s.re this✝ : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) this : Tendsto (fun X => -↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 0) ⊢ Tendsto (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 (s * GammaIntegral s)) [PROOFSTEP] simpa using Tendsto.add (Tendsto.const_mul s (tendsto_partialGamma hs)) this [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ Tendsto (fun X => -↑X ^ s * ↑(Real.exp (-X))) atTop (𝓝 0) [PROOFSTEP] rw [tendsto_zero_iff_norm_tendsto_zero] [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ Tendsto (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) atTop (𝓝 0) [PROOFSTEP] have : (fun e : ℝ => ‖-(e : ℂ) ^ s * (-e).exp‖) =ᶠ[atTop] fun e : ℝ => e ^ s.re * (-1 * e).exp := by refine' eventuallyEq_of_mem (Ioi_mem_atTop 0) _ intro x hx; dsimp only rw [norm_eq_abs, map_mul, abs.map_neg, abs_cpow_eq_rpow_re_of_pos hx, abs_of_nonneg (exp_pos (-x)).le, neg_mul, one_mul] [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) =ᶠ[atTop] fun e => e ^ s.re * Real.exp (-1 * e) [PROOFSTEP] refine' eventuallyEq_of_mem (Ioi_mem_atTop 0) _ [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) ⊢ EqOn (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) (fun e => e ^ s.re * Real.exp (-1 * e)) (Ioi 0) [PROOFSTEP] intro x hx [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) x : ℝ hx : x ∈ Ioi 0 ⊢ (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) x = (fun e => e ^ s.re * Real.exp (-1 * e)) x [PROOFSTEP] dsimp only [GOAL] s : ℂ hs : 0 < s.re this : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) x : ℝ hx : x ∈ Ioi 0 ⊢ ‖-↑x ^ s * ↑(Real.exp (-x))‖ = x ^ s.re * Real.exp (-1 * x) [PROOFSTEP] rw [norm_eq_abs, map_mul, abs.map_neg, abs_cpow_eq_rpow_re_of_pos hx, abs_of_nonneg (exp_pos (-x)).le, neg_mul, one_mul] [GOAL] s : ℂ hs : 0 < s.re this✝ : (fun X => s * partialGamma s X - ↑X ^ s * ↑(Real.exp (-X))) =ᶠ[atTop] partialGamma (s + 1) this : (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) =ᶠ[atTop] fun e => e ^ s.re * Real.exp (-1 * e) ⊢ Tendsto (fun e => ‖-↑e ^ s * ↑(Real.exp (-e))‖) atTop (𝓝 0) [PROOFSTEP] exact (tendsto_congr' this).mpr (tendsto_rpow_mul_exp_neg_mul_atTop_nhds_0 _ _ zero_lt_one) [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n ⊢ GammaAux n s = GammaAux n (s + 1) / s [PROOFSTEP] induction' n with n hn generalizing s [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : -s.re < ↑Nat.zero ⊢ GammaAux Nat.zero s = GammaAux Nat.zero (s + 1) / s [PROOFSTEP] simp only [Nat.zero_eq, CharP.cast_eq_zero, Left.neg_neg_iff] at h1 [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : 0 < s.re ⊢ GammaAux Nat.zero s = GammaAux Nat.zero (s + 1) / s [PROOFSTEP] dsimp only [GammaAux] [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : 0 < s.re ⊢ GammaIntegral s = GammaIntegral (s + 1) / s [PROOFSTEP] rw [GammaIntegral_add_one h1] [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : 0 < s.re ⊢ GammaIntegral s = s * GammaIntegral s / s [PROOFSTEP] rw [mul_comm, mul_div_cancel] [GOAL] case zero.h s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : 0 < s.re ⊢ s ≠ 0 [PROOFSTEP] contrapose! h1 [GOAL] case zero.h s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : s = 0 ⊢ s.re ≤ 0 [PROOFSTEP] rw [h1] [GOAL] case zero.h s✝ : ℂ n : ℕ h1✝ : -s✝.re < ↑n s : ℂ h1 : s = 0 ⊢ 0.re ≤ 0 [PROOFSTEP] simp [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑(Nat.succ n) ⊢ GammaAux (Nat.succ n) s = GammaAux (Nat.succ n) (s + 1) / s [PROOFSTEP] dsimp only [GammaAux] [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑(Nat.succ n) ⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s [PROOFSTEP] have hh1 : -(s + 1).re < n := by rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1 rw [add_re, one_re]; linarith [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑(Nat.succ n) ⊢ -(s + 1).re < ↑n [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1 [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑n + 1 ⊢ -(s + 1).re < ↑n [PROOFSTEP] rw [add_re, one_re] [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑n + 1 ⊢ -(s.re + 1) < ↑n [PROOFSTEP] linarith [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : -s✝.re < ↑n✝ n : ℕ hn : ∀ (s : ℂ), -s.re < ↑n → GammaAux n s = GammaAux n (s + 1) / s s : ℂ h1 : -s.re < ↑(Nat.succ n) hh1 : -(s + 1).re < ↑n ⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s [PROOFSTEP] rw [← hn (s + 1) hh1] [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n ⊢ GammaAux n s = GammaAux (n + 1) s [PROOFSTEP] cases' n with n n [GOAL] case zero s : ℂ h1 : -s.re < ↑Nat.zero ⊢ GammaAux Nat.zero s = GammaAux (Nat.zero + 1) s [PROOFSTEP] simp only [Nat.zero_eq, CharP.cast_eq_zero, Left.neg_neg_iff] at h1 [GOAL] case zero s : ℂ h1 : 0 < s.re ⊢ GammaAux Nat.zero s = GammaAux (Nat.zero + 1) s [PROOFSTEP] dsimp only [GammaAux] [GOAL] case zero s : ℂ h1 : 0 < s.re ⊢ GammaIntegral s = GammaIntegral (s + 1) / s [PROOFSTEP] rw [GammaIntegral_add_one h1, mul_div_cancel_left] [GOAL] case zero.ha s : ℂ h1 : 0 < s.re ⊢ s ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case zero.ha h1 : 0 < 0.re ⊢ False [PROOFSTEP] rw [zero_re] at h1 [GOAL] case zero.ha h1 : 0 < 0 ⊢ False [PROOFSTEP] exact h1.false [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) ⊢ GammaAux (Nat.succ n) s = GammaAux (Nat.succ n + 1) s [PROOFSTEP] dsimp only [GammaAux] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) ⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s [PROOFSTEP] have : GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1) := by have hh1 : -(s + 1).re < n := by rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1 rw [add_re, one_re]; linarith rw [GammaAux_recurrence1 (s + 1) n hh1] [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) ⊢ GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1) [PROOFSTEP] have hh1 : -(s + 1).re < n := by rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1 rw [add_re, one_re]; linarith [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) ⊢ -(s + 1).re < ↑n [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at h1 [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n + 1 ⊢ -(s + 1).re < ↑n [PROOFSTEP] rw [add_re, one_re] [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n + 1 ⊢ -(s.re + 1) < ↑n [PROOFSTEP] linarith [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) hh1 : -(s + 1).re < ↑n ⊢ GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1) [PROOFSTEP] rw [GammaAux_recurrence1 (s + 1) n hh1] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑(Nat.succ n) this : GammaAux n (s + 1 + 1) / (s + 1) = GammaAux n (s + 1) ⊢ GammaAux n (s + 1) / s = GammaAux n (s + 1 + 1) / (s + 1) / s [PROOFSTEP] rw [this] [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n ⊢ Gamma s = GammaAux n s [PROOFSTEP] have u : ∀ k : ℕ, GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s := by intro k; induction' k with k hk · simp [Gamma] · rw [← hk, Nat.succ_eq_add_one, ← add_assoc] refine' (GammaAux_recurrence2 s (⌊1 - s.re⌋₊ + k) _).symm rw [Nat.cast_add] have i0 := Nat.sub_one_lt_floor (1 - s.re) simp only [sub_sub_cancel_left] at i0 refine' lt_add_of_lt_of_nonneg i0 _ rw [← Nat.cast_zero, Nat.cast_le]; exact Nat.zero_le k [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n ⊢ ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s [PROOFSTEP] intro k [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ ⊢ GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s [PROOFSTEP] induction' k with k hk [GOAL] case zero s : ℂ n : ℕ h1 : -s.re < ↑n ⊢ GammaAux (⌊1 - s.re⌋₊ + Nat.zero) s = Gamma s [PROOFSTEP] simp [Gamma] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ GammaAux (⌊1 - s.re⌋₊ + Nat.succ k) s = Gamma s [PROOFSTEP] rw [← hk, Nat.succ_eq_add_one, ← add_assoc] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ GammaAux (⌊1 - s.re⌋₊ + k + 1) s = GammaAux (⌊1 - s.re⌋₊ + k) s [PROOFSTEP] refine' (GammaAux_recurrence2 s (⌊1 - s.re⌋₊ + k) _).symm [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ -s.re < ↑(⌊1 - s.re⌋₊ + k) [PROOFSTEP] rw [Nat.cast_add] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k [PROOFSTEP] have i0 := Nat.sub_one_lt_floor (1 - s.re) [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s i0 : 1 - s.re - 1 < ↑⌊1 - s.re⌋₊ ⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k [PROOFSTEP] simp only [sub_sub_cancel_left] at i0 [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s i0 : -s.re < ↑⌊1 - s.re⌋₊ ⊢ -s.re < ↑⌊1 - s.re⌋₊ + ↑k [PROOFSTEP] refine' lt_add_of_lt_of_nonneg i0 _ [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s i0 : -s.re < ↑⌊1 - s.re⌋₊ ⊢ 0 ≤ ↑k [PROOFSTEP] rw [← Nat.cast_zero, Nat.cast_le] [GOAL] case succ s : ℂ n : ℕ h1 : -s.re < ↑n k : ℕ hk : GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s i0 : -s.re < ↑⌊1 - s.re⌋₊ ⊢ 0 ≤ k [PROOFSTEP] exact Nat.zero_le k [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ Gamma s = GammaAux n s [PROOFSTEP] convert (u <| n - ⌊1 - s.re⌋₊).symm [GOAL] case h.e'_3.h.e'_1 s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ n = ⌊1 - s.re⌋₊ + (n - ⌊1 - s.re⌋₊) [PROOFSTEP] rw [Nat.add_sub_of_le] [GOAL] case h.e'_3.h.e'_1 s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ ⌊1 - s.re⌋₊ ≤ n [PROOFSTEP] by_cases 0 ≤ 1 - s.re [GOAL] case h.e'_3.h.e'_1 s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s ⊢ ⌊1 - s.re⌋₊ ≤ n [PROOFSTEP] by_cases 0 ≤ 1 - s.re [GOAL] case pos s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : 0 ≤ 1 - s.re ⊢ ⌊1 - s.re⌋₊ ≤ n [PROOFSTEP] apply Nat.le_of_lt_succ [GOAL] case pos.a s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : 0 ≤ 1 - s.re ⊢ ⌊1 - s.re⌋₊ < Nat.succ n [PROOFSTEP] exact_mod_cast lt_of_le_of_lt (Nat.floor_le h) (by linarith : 1 - s.re < n + 1) [GOAL] s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : 0 ≤ 1 - s.re ⊢ 1 - s.re < ↑n + 1 [PROOFSTEP] linarith [GOAL] case neg s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : ¬0 ≤ 1 - s.re ⊢ ⌊1 - s.re⌋₊ ≤ n [PROOFSTEP] rw [Nat.floor_of_nonpos] [GOAL] case neg s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : ¬0 ≤ 1 - s.re ⊢ 0 ≤ n case neg s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : ¬0 ≤ 1 - s.re ⊢ 1 - s.re ≤ 0 [PROOFSTEP] linarith [GOAL] case neg s : ℂ n : ℕ h1 : -s.re < ↑n u : ∀ (k : ℕ), GammaAux (⌊1 - s.re⌋₊ + k) s = Gamma s h : ¬0 ≤ 1 - s.re ⊢ 1 - s.re ≤ 0 [PROOFSTEP] linarith [GOAL] s : ℂ h2 : s ≠ 0 ⊢ Gamma (s + 1) = s * Gamma s [PROOFSTEP] let n := ⌊1 - s.re⌋₊ [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ ⊢ Gamma (s + 1) = s * Gamma s [PROOFSTEP] have t1 : -s.re < n := by simpa only [sub_sub_cancel_left] using Nat.sub_one_lt_floor (1 - s.re) [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ ⊢ -s.re < ↑n [PROOFSTEP] simpa only [sub_sub_cancel_left] using Nat.sub_one_lt_floor (1 - s.re) [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n ⊢ Gamma (s + 1) = s * Gamma s [PROOFSTEP] have t2 : -(s + 1).re < n := by rw [add_re, one_re]; linarith [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n ⊢ -(s + 1).re < ↑n [PROOFSTEP] rw [add_re, one_re] [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n ⊢ -(s.re + 1) < ↑n [PROOFSTEP] linarith [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n t2 : -(s + 1).re < ↑n ⊢ Gamma (s + 1) = s * Gamma s [PROOFSTEP] rw [Gamma_eq_GammaAux s n t1, Gamma_eq_GammaAux (s + 1) n t2, GammaAux_recurrence1 s n t1] [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n t2 : -(s + 1).re < ↑n ⊢ GammaAux n (s + 1) = s * (GammaAux n (s + 1) / s) [PROOFSTEP] field_simp [GOAL] s : ℂ h2 : s ≠ 0 n : ℕ := ⌊1 - s.re⌋₊ t1 : -s.re < ↑n t2 : -(s + 1).re < ↑n ⊢ GammaAux ⌊1 - s.re⌋₊ (s + 1) * s = s * GammaAux ⌊1 - s.re⌋₊ (s + 1) [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re ⊢ -s.re < ↑0 [PROOFSTEP] norm_cast [GOAL] s : ℂ hs : 0 < s.re ⊢ -s.re < 0 [PROOFSTEP] linarith [GOAL] ⊢ Gamma 1 = 1 [PROOFSTEP] rw [Gamma_eq_integral] [GOAL] ⊢ GammaIntegral 1 = 1 ⊢ 0 < 1.re [PROOFSTEP] simpa using GammaIntegral_one [GOAL] ⊢ 0 < 1.re [PROOFSTEP] simp [GOAL] n : ℕ ⊢ Gamma (↑n + 1) = ↑n ! [PROOFSTEP] induction' n with n hn [GOAL] case zero ⊢ Gamma (↑Nat.zero + 1) = ↑Nat.zero ! [PROOFSTEP] simpa using Gamma_one [GOAL] case succ n : ℕ hn : Gamma (↑n + 1) = ↑n ! ⊢ Gamma (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! [PROOFSTEP] rw [Gamma_add_one n.succ <| Nat.cast_ne_zero.mpr <| Nat.succ_ne_zero n] [GOAL] case succ n : ℕ hn : Gamma (↑n + 1) = ↑n ! ⊢ ↑(Nat.succ n) * Gamma ↑(Nat.succ n) = ↑(Nat.succ n)! [PROOFSTEP] simp only [Nat.cast_succ, Nat.factorial_succ, Nat.cast_mul] [GOAL] case succ n : ℕ hn : Gamma (↑n + 1) = ↑n ! ⊢ (↑n + 1) * Gamma (↑n + 1) = (↑n + 1) * ↑n ! [PROOFSTEP] congr [GOAL] ⊢ Gamma 0 = 0 [PROOFSTEP] simp_rw [Gamma, zero_re, sub_zero, Nat.floor_one, GammaAux, div_zero] [GOAL] n : ℕ ⊢ Gamma (-↑n) = 0 [PROOFSTEP] induction' n with n IH [GOAL] case zero ⊢ Gamma (-↑Nat.zero) = 0 [PROOFSTEP] rw [Nat.cast_zero, neg_zero, Gamma_zero] [GOAL] case succ n : ℕ IH : Gamma (-↑n) = 0 ⊢ Gamma (-↑(Nat.succ n)) = 0 [PROOFSTEP] have A : -(n.succ : ℂ) ≠ 0 := by rw [neg_ne_zero, Nat.cast_ne_zero] apply Nat.succ_ne_zero [GOAL] n : ℕ IH : Gamma (-↑n) = 0 ⊢ -↑(Nat.succ n) ≠ 0 [PROOFSTEP] rw [neg_ne_zero, Nat.cast_ne_zero] [GOAL] n : ℕ IH : Gamma (-↑n) = 0 ⊢ Nat.succ n ≠ 0 [PROOFSTEP] apply Nat.succ_ne_zero [GOAL] case succ n : ℕ IH : Gamma (-↑n) = 0 A : -↑(Nat.succ n) ≠ 0 ⊢ Gamma (-↑(Nat.succ n)) = 0 [PROOFSTEP] have : -(n : ℂ) = -↑n.succ + 1 := by simp [GOAL] n : ℕ IH : Gamma (-↑n) = 0 A : -↑(Nat.succ n) ≠ 0 ⊢ -↑n = -↑(Nat.succ n) + 1 [PROOFSTEP] simp [GOAL] case succ n : ℕ IH : Gamma (-↑n) = 0 A : -↑(Nat.succ n) ≠ 0 this : -↑n = -↑(Nat.succ n) + 1 ⊢ Gamma (-↑(Nat.succ n)) = 0 [PROOFSTEP] rw [this, Gamma_add_one _ A] at IH [GOAL] case succ n : ℕ IH : -↑(Nat.succ n) * Gamma (-↑(Nat.succ n)) = 0 A : -↑(Nat.succ n) ≠ 0 this : -↑n = -↑(Nat.succ n) + 1 ⊢ Gamma (-↑(Nat.succ n)) = 0 [PROOFSTEP] contrapose! IH [GOAL] case succ n : ℕ A : -↑(Nat.succ n) ≠ 0 this : -↑n = -↑(Nat.succ n) + 1 IH : Gamma (-↑(Nat.succ n)) ≠ 0 ⊢ -↑(Nat.succ n) * Gamma (-↑(Nat.succ n)) ≠ 0 [PROOFSTEP] exact mul_ne_zero A IH [GOAL] s : ℂ ⊢ Gamma (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (Gamma s) [PROOFSTEP] suffices : ∀ (n : ℕ) (s : ℂ), GammaAux n (conj s) = conj (GammaAux n s) [GOAL] s : ℂ this : ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) ⊢ Gamma (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (Gamma s) case this s : ℂ ⊢ ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) [PROOFSTEP] exact this _ _ [GOAL] case this s : ℂ ⊢ ∀ (n : ℕ) (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) [PROOFSTEP] intro n [GOAL] case this s : ℂ n : ℕ ⊢ ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) [PROOFSTEP] induction' n with n IH [GOAL] case this.zero s : ℂ ⊢ ∀ (s : ℂ), GammaAux Nat.zero (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux Nat.zero s) [PROOFSTEP] rw [GammaAux] [GOAL] case this.zero s : ℂ ⊢ ∀ (s : ℂ), GammaIntegral (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaIntegral s) [PROOFSTEP] exact GammaIntegral_conj [GOAL] case this.succ s : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) ⊢ ∀ (s : ℂ), GammaAux (Nat.succ n) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux (Nat.succ n) s) [PROOFSTEP] intro s [GOAL] case this.succ s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ ⊢ GammaAux (Nat.succ n) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux (Nat.succ n) s) [PROOFSTEP] rw [GammaAux] [GOAL] case this.succ s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ ⊢ (fun s => GammaAux n (s + 1) / s) (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) ((fun s => GammaAux n (s + 1) / s) s) [PROOFSTEP] dsimp only [GOAL] case this.succ s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ ⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1) / s) [PROOFSTEP] rw [div_eq_mul_inv _ s, RingHom.map_mul, conj_inv, ← div_eq_mul_inv] [GOAL] case this.succ s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ ⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1)) / ↑(starRingEnd ℂ) s [PROOFSTEP] suffices conj s + 1 = conj (s + 1) by rw [this, IH] [GOAL] s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ this : ↑(starRingEnd ℂ) s + 1 = ↑(starRingEnd ℂ) (s + 1) ⊢ GammaAux n (↑(starRingEnd ℂ) s + 1) / ↑(starRingEnd ℂ) s = ↑(starRingEnd ℂ) (GammaAux n (s + 1)) / ↑(starRingEnd ℂ) s [PROOFSTEP] rw [this, IH] [GOAL] case this.succ s✝ : ℂ n : ℕ IH : ∀ (s : ℂ), GammaAux n (↑(starRingEnd ℂ) s) = ↑(starRingEnd ℂ) (GammaAux n s) s : ℂ ⊢ ↑(starRingEnd ℂ) s + 1 = ↑(starRingEnd ℂ) (s + 1) [PROOFSTEP] rw [RingHom.map_add, RingHom.map_one] [GOAL] s : ℂ ⊢ GammaIntegral s = mellin (fun x => ↑(Real.exp (-x))) s [PROOFSTEP] simp only [mellin, GammaIntegral, smul_eq_mul, mul_comm] [GOAL] s : ℂ hs : 0 < s.re ⊢ HasDerivAt GammaIntegral (∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) * (↑(Real.log t) * ↑(Real.exp (-t)))) s [PROOFSTEP] rw [GammaIntegral_eq_mellin] [GOAL] s : ℂ hs : 0 < s.re ⊢ HasDerivAt (mellin fun x => ↑(Real.exp (-x))) (∫ (t : ℝ) in Ioi 0, ↑t ^ (s - 1) * (↑(Real.log t) * ↑(Real.exp (-t)))) s [PROOFSTEP] convert (mellin_hasDerivAt_of_isBigO_rpow (E := ℂ) _ _ (lt_add_one _) _ hs).2 [GOAL] case convert_2 s : ℂ hs : 0 < s.re ⊢ LocallyIntegrableOn (fun x => ↑(Real.exp (-x))) (Ioi 0) [PROOFSTEP] refine' (Continuous.continuousOn _).locallyIntegrableOn measurableSet_Ioi [GOAL] case convert_2 s : ℂ hs : 0 < s.re ⊢ Continuous fun x => ↑(Real.exp (-x)) [PROOFSTEP] exact continuous_ofReal.comp (Real.continuous_exp.comp continuous_neg) [GOAL] case convert_3 s : ℂ hs : 0 < s.re ⊢ (fun x => ↑(Real.exp (-x))) =O[atTop] fun x => x ^ (-(s.re + 1)) [PROOFSTEP] rw [← isBigO_norm_left] [GOAL] case convert_3 s : ℂ hs : 0 < s.re ⊢ (fun x => ‖↑(Real.exp (-x))‖) =O[atTop] fun x => x ^ (-(s.re + 1)) [PROOFSTEP] simp_rw [Complex.norm_eq_abs, abs_ofReal, ← Real.norm_eq_abs, isBigO_norm_left] [GOAL] case convert_3 s : ℂ hs : 0 < s.re ⊢ (fun x => Real.exp (-x)) =O[atTop] fun x => x ^ (-(s.re + 1)) [PROOFSTEP] simpa only [neg_one_mul] using (isLittleO_exp_neg_mul_rpow_atTop zero_lt_one _).isBigO [GOAL] case convert_4 s : ℂ hs : 0 < s.re ⊢ (fun x => ↑(Real.exp (-x))) =O[𝓝[Ioi 0] 0] fun x => x ^ (-0) [PROOFSTEP] simp_rw [neg_zero, rpow_zero] [GOAL] case convert_4 s : ℂ hs : 0 < s.re ⊢ (fun x => ↑(Real.exp (-x))) =O[𝓝[Ioi 0] 0] fun x => 1 [PROOFSTEP] refine' isBigO_const_of_tendsto (_ : Tendsto _ _ (𝓝 (1 : ℂ))) one_ne_zero [GOAL] case convert_4 s : ℂ hs : 0 < s.re ⊢ Tendsto (fun x => ↑(Real.exp (-x))) (𝓝[Ioi 0] 0) (𝓝 1) [PROOFSTEP] rw [(by simp : (1 : ℂ) = Real.exp (-0))] [GOAL] s : ℂ hs : 0 < s.re ⊢ 1 = ↑(Real.exp (-0)) [PROOFSTEP] simp [GOAL] case convert_4 s : ℂ hs : 0 < s.re ⊢ Tendsto (fun x => ↑(Real.exp (-x))) (𝓝[Ioi 0] 0) (𝓝 ↑(Real.exp (-0))) [PROOFSTEP] exact (continuous_ofReal.comp (Real.continuous_exp.comp continuous_neg)).continuousWithinAt [GOAL] s : ℂ n : ℕ h1 : 1 - s.re < ↑n h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ (GammaAux n) s [PROOFSTEP] induction' n with n hn generalizing s [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : 1 - s✝.re < ↑n h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℂ h1 : 1 - s.re < ↑Nat.zero h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ (GammaAux Nat.zero) s [PROOFSTEP] refine' (hasDerivAt_GammaIntegral _).differentiableAt [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : 1 - s✝.re < ↑n h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℂ h1 : 1 - s.re < ↑Nat.zero h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ 0 < s.re [PROOFSTEP] rw [Nat.cast_zero] at h1 [GOAL] case zero s✝ : ℂ n : ℕ h1✝ : 1 - s✝.re < ↑n h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℂ h1 : 1 - s.re < 0 h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ 0 < s.re [PROOFSTEP] linarith [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ hn : ∀ (s : ℂ), 1 - s.re < ↑n → (∀ (m : ℕ), s ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) s s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ (GammaAux (Nat.succ n)) s [PROOFSTEP] dsimp only [GammaAux] [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ hn : ∀ (s : ℂ), 1 - s.re < ↑n → (∀ (m : ℕ), s ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) s s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s [PROOFSTEP] specialize hn (s + 1) [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) ⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s [PROOFSTEP] have a : 1 - (s + 1).re < ↑n := by rw [Nat.cast_succ] at h1 ; rw [Complex.add_re, Complex.one_re]; linarith [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) ⊢ 1 - (s + 1).re < ↑n [PROOFSTEP] rw [Nat.cast_succ] at h1 [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑n + 1 h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) ⊢ 1 - (s + 1).re < ↑n [PROOFSTEP] rw [Complex.add_re, Complex.one_re] [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑n + 1 h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) ⊢ 1 - (s.re + 1) < ↑n [PROOFSTEP] linarith [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n ⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s [PROOFSTEP] have b : ∀ m : ℕ, s + 1 ≠ -m := by intro m; have := h2 (1 + m) contrapose! this rw [← eq_sub_iff_add_eq] at this simpa using this [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n ⊢ ∀ (m : ℕ), s + 1 ≠ -↑m [PROOFSTEP] intro m [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n m : ℕ ⊢ s + 1 ≠ -↑m [PROOFSTEP] have := h2 (1 + m) [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n m : ℕ this : s ≠ -↑(1 + m) ⊢ s + 1 ≠ -↑m [PROOFSTEP] contrapose! this [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n m : ℕ this : s + 1 = -↑m ⊢ s = -↑(1 + m) [PROOFSTEP] rw [← eq_sub_iff_add_eq] at this [GOAL] s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n m : ℕ this : s = -↑m - 1 ⊢ s = -↑(1 + m) [PROOFSTEP] simpa using this [GOAL] case succ s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n b : ∀ (m : ℕ), s + 1 ≠ -↑m ⊢ DifferentiableAt ℂ (fun s => GammaAux n (s + 1) / s) s [PROOFSTEP] refine' DifferentiableAt.div (DifferentiableAt.comp _ (hn a b) _) _ _ [GOAL] case succ.refine'_1 s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n b : ∀ (m : ℕ), s + 1 ≠ -↑m ⊢ DifferentiableAt ℂ (fun s => s + 1) s [PROOFSTEP] rw [differentiableAt_add_const_iff (1 : ℂ)] [GOAL] case succ.refine'_1 s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n b : ∀ (m : ℕ), s + 1 ≠ -↑m ⊢ DifferentiableAt ℂ (fun s => s) s [PROOFSTEP] exact differentiableAt_id [GOAL] case succ.refine'_2 s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n b : ∀ (m : ℕ), s + 1 ≠ -↑m ⊢ DifferentiableAt ℂ (fun s => s) s [PROOFSTEP] exact differentiableAt_id [GOAL] case succ.refine'_3 s✝ : ℂ n✝ : ℕ h1✝ : 1 - s✝.re < ↑n✝ h2✝ : ∀ (m : ℕ), s✝ ≠ -↑m n : ℕ s : ℂ h1 : 1 - s.re < ↑(Nat.succ n) h2 : ∀ (m : ℕ), s ≠ -↑m hn : 1 - (s + 1).re < ↑n → (∀ (m : ℕ), s + 1 ≠ -↑m) → DifferentiableAt ℂ (GammaAux n) (s + 1) a : 1 - (s + 1).re < ↑n b : ∀ (m : ℕ), s + 1 ≠ -↑m ⊢ s ≠ 0 [PROOFSTEP] simpa using h2 0 [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ Gamma s [PROOFSTEP] let n := ⌊1 - s.re⌋₊ + 1 [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 ⊢ DifferentiableAt ℂ Gamma s [PROOFSTEP] have hn : 1 - s.re < n := by exact_mod_cast Nat.lt_floor_add_one (1 - s.re) [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 ⊢ 1 - s.re < ↑n [PROOFSTEP] exact_mod_cast Nat.lt_floor_add_one (1 - s.re) [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n ⊢ DifferentiableAt ℂ Gamma s [PROOFSTEP] apply (differentiableAt_GammaAux s n hn hs).congr_of_eventuallyEq [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n ⊢ Gamma =ᶠ[𝓝 s] GammaAux n [PROOFSTEP] let S := {t : ℂ | 1 - t.re < n} [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ Gamma =ᶠ[𝓝 s] GammaAux n [PROOFSTEP] have : S ∈ 𝓝 s := by rw [mem_nhds_iff]; use S refine' ⟨Subset.rfl, _, hn⟩ have : S = re ⁻¹' Ioi (1 - n : ℝ) := by ext; rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq]; exact sub_lt_comm rw [this] refine' Continuous.isOpen_preimage continuous_re _ isOpen_Ioi [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ S ∈ 𝓝 s [PROOFSTEP] rw [mem_nhds_iff] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ ∃ t, t ⊆ S ∧ IsOpen t ∧ s ∈ t [PROOFSTEP] use S [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ S ⊆ S ∧ IsOpen S ∧ s ∈ S [PROOFSTEP] refine' ⟨Subset.rfl, _, hn⟩ [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ IsOpen S [PROOFSTEP] have : S = re ⁻¹' Ioi (1 - n : ℝ) := by ext; rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq]; exact sub_lt_comm [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} ⊢ S = re ⁻¹' Ioi (1 - ↑n) [PROOFSTEP] ext [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} x✝ : ℂ ⊢ x✝ ∈ S ↔ x✝ ∈ re ⁻¹' Ioi (1 - ↑n) [PROOFSTEP] rw [preimage, Ioi, mem_setOf_eq, mem_setOf_eq, mem_setOf_eq] [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} x✝ : ℂ ⊢ 1 - x✝.re < ↑n ↔ 1 - ↑n < x✝.re [PROOFSTEP] exact sub_lt_comm [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S = re ⁻¹' Ioi (1 - ↑n) ⊢ IsOpen S [PROOFSTEP] rw [this] [GOAL] case h s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S = re ⁻¹' Ioi (1 - ↑n) ⊢ IsOpen (re ⁻¹' Ioi (1 - ↑n)) [PROOFSTEP] refine' Continuous.isOpen_preimage continuous_re _ isOpen_Ioi [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S ∈ 𝓝 s ⊢ Gamma =ᶠ[𝓝 s] GammaAux n [PROOFSTEP] apply eventuallyEq_of_mem this [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S ∈ 𝓝 s ⊢ EqOn Gamma (GammaAux n) S [PROOFSTEP] intro t ht [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S ∈ 𝓝 s t : ℂ ht : t ∈ S ⊢ Gamma t = GammaAux n t [PROOFSTEP] rw [mem_setOf_eq] at ht [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S ∈ 𝓝 s t : ℂ ht : 1 - t.re < ↑n ⊢ Gamma t = GammaAux n t [PROOFSTEP] apply Gamma_eq_GammaAux [GOAL] case h1 s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ := ⌊1 - s.re⌋₊ + 1 hn : 1 - s.re < ↑n S : Set ℂ := {t | 1 - t.re < ↑n} this : S ∈ 𝓝 s t : ℂ ht : 1 - t.re < ↑n ⊢ -t.re < ↑n [PROOFSTEP] linarith [GOAL] ⊢ Tendsto (fun z => z * Gamma z) (𝓝[{0}ᶜ] 0) (𝓝 1) [PROOFSTEP] rw [show 𝓝 (1 : ℂ) = 𝓝 (Gamma (0 + 1)) by simp only [zero_add, Complex.Gamma_one]] [GOAL] ⊢ 𝓝 1 = 𝓝 (Gamma (0 + 1)) [PROOFSTEP] simp only [zero_add, Complex.Gamma_one] [GOAL] ⊢ Tendsto (fun z => z * Gamma z) (𝓝[{0}ᶜ] 0) (𝓝 (Gamma (0 + 1))) [PROOFSTEP] convert (Tendsto.mono_left _ nhdsWithin_le_nhds).congr' (eventuallyEq_of_mem self_mem_nhdsWithin Complex.Gamma_add_one) [GOAL] case convert_1 ⊢ Tendsto (fun x => Gamma (x + 1)) (𝓝 0) (𝓝 (Gamma (0 + 1))) [PROOFSTEP] refine' ContinuousAt.comp (g := Gamma) _ (continuous_id.add continuous_const).continuousAt [GOAL] case convert_1 ⊢ ContinuousAt Gamma (0 + 1) [PROOFSTEP] refine' (Complex.differentiableAt_Gamma _ fun m => _).continuousAt [GOAL] case convert_1 m : ℕ ⊢ 0 + 1 ≠ -↑m [PROOFSTEP] rw [zero_add, ← ofReal_nat_cast, ← ofReal_neg, ← ofReal_one, Ne.def, ofReal_inj] [GOAL] case convert_1 m : ℕ ⊢ ¬1 = -↑m [PROOFSTEP] refine' (lt_of_le_of_lt _ zero_lt_one).ne' [GOAL] case convert_1 m : ℕ ⊢ -↑m ≤ 0 [PROOFSTEP] exact neg_nonpos.mpr (Nat.cast_nonneg _) [GOAL] s : ℝ hs : 0 < s ⊢ Gamma s = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] rw [Gamma, Complex.Gamma_eq_integral (by rwa [Complex.ofReal_re] : 0 < Complex.re s)] [GOAL] s : ℝ hs : 0 < s ⊢ 0 < (↑s).re [PROOFSTEP] rwa [Complex.ofReal_re] [GOAL] s : ℝ hs : 0 < s ⊢ (Complex.GammaIntegral ↑s).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] dsimp only [Complex.GammaIntegral] [GOAL] s : ℝ hs : 0 < s ⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ (↑s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] simp_rw [← Complex.ofReal_one, ← Complex.ofReal_sub] [GOAL] s : ℝ hs : 0 < s ⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] suffices ∫ x : ℝ in Ioi 0, ↑(exp (-x)) * (x : ℂ) ^ ((s - 1 : ℝ) : ℂ) = ∫ x : ℝ in Ioi 0, ((exp (-x) * x ^ (s - 1) : ℝ) : ℂ) by have cc : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl conv_lhs => rw [this]; enter [1, 2, x]; rw [cc] rw [_root_.integral_ofReal, ← cc, Complex.ofReal_re] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) ⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] have cc : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r ⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] conv_lhs => rw [this]; enter [1, 2, x]; rw [cc] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r | (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re [PROOFSTEP] rw [this]; enter [1, 2, x]; rw [cc] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r | (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re [PROOFSTEP] rw [this]; enter [1, 2, x]; rw [cc] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r | (∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1)).re [PROOFSTEP] rw [this] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r | (∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))).re [PROOFSTEP] enter [1, 2, x] [GOAL] case h s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r x : ℝ | ↑(exp (-x) * x ^ (s - 1)) [PROOFSTEP] rw [cc] [GOAL] s : ℝ hs : 0 < s this : ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) cc : ∀ (r : ℝ), ↑r = ↑r ⊢ (∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1))).re = ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] rw [_root_.integral_ofReal, ← cc, Complex.ofReal_re] [GOAL] s : ℝ hs : 0 < s ⊢ ∫ (x : ℝ) in Ioi 0, ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ∫ (x : ℝ) in Ioi 0, ↑(exp (-x) * x ^ (s - 1)) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun x hx => _ [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ ↑(exp (-x)) * ↑x ^ ↑(s - 1) = ↑(exp (-x) * x ^ (s - 1)) [PROOFSTEP] push_cast [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑(x ^ (s - 1)) [PROOFSTEP] rw [Complex.ofReal_cpow (le_of_lt hx)] [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑x ^ ↑(s - 1) [PROOFSTEP] push_cast [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ Complex.exp (-↑x) * ↑x ^ (↑s - 1) = Complex.exp (-↑x) * ↑x ^ (↑s - 1) [PROOFSTEP] rfl [GOAL] s : ℝ hs : s ≠ 0 ⊢ Gamma (s + 1) = s * Gamma s [PROOFSTEP] simp_rw [Gamma] [GOAL] s : ℝ hs : s ≠ 0 ⊢ (Complex.Gamma ↑(s + 1)).re = s * (Complex.Gamma ↑s).re [PROOFSTEP] rw [Complex.ofReal_add, Complex.ofReal_one, Complex.Gamma_add_one, Complex.ofReal_mul_re] [GOAL] case h2 s : ℝ hs : s ≠ 0 ⊢ ↑s ≠ 0 [PROOFSTEP] rwa [Complex.ofReal_ne_zero] [GOAL] ⊢ Gamma 1 = 1 [PROOFSTEP] rw [Gamma, Complex.ofReal_one, Complex.Gamma_one, Complex.one_re] [GOAL] s : ℝ ⊢ Complex.Gamma ↑s = ↑(Gamma s) [PROOFSTEP] rw [Gamma, eq_comm, ← Complex.conj_eq_iff_re, ← Complex.Gamma_conj, Complex.conj_ofReal] [GOAL] n : ℕ ⊢ Gamma (↑n + 1) = ↑n ! [PROOFSTEP] rw [Gamma, Complex.ofReal_add, Complex.ofReal_nat_cast, Complex.ofReal_one, Complex.Gamma_nat_eq_factorial, ← Complex.ofReal_nat_cast, Complex.ofReal_re] [GOAL] ⊢ Gamma 0 = 0 [PROOFSTEP] simpa only [← Complex.ofReal_zero, Complex.Gamma_ofReal, Complex.ofReal_inj] using Complex.Gamma_zero [GOAL] n : ℕ ⊢ Gamma (-↑n) = 0 [PROOFSTEP] simpa only [← Complex.ofReal_nat_cast, ← Complex.ofReal_neg, Complex.Gamma_ofReal, Complex.ofReal_eq_zero] using Complex.Gamma_neg_nat_eq_zero n [GOAL] s : ℝ hs : 0 < s ⊢ 0 < Gamma s [PROOFSTEP] rw [Gamma_eq_integral hs] [GOAL] s : ℝ hs : 0 < s ⊢ 0 < ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] have : (Function.support fun x : ℝ => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 := by rw [inter_eq_right_iff_subset] intro x hx rw [Function.mem_support] exact mul_ne_zero (exp_pos _).ne' (rpow_pos_of_pos hx _).ne' [GOAL] s : ℝ hs : 0 < s ⊢ (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 [PROOFSTEP] rw [inter_eq_right_iff_subset] [GOAL] s : ℝ hs : 0 < s ⊢ Ioi 0 ⊆ Function.support fun x => exp (-x) * x ^ (s - 1) [PROOFSTEP] intro x hx [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ x ∈ Function.support fun x => exp (-x) * x ^ (s - 1) [PROOFSTEP] rw [Function.mem_support] [GOAL] s : ℝ hs : 0 < s x : ℝ hx : x ∈ Ioi 0 ⊢ exp (-x) * x ^ (s - 1) ≠ 0 [PROOFSTEP] exact mul_ne_zero (exp_pos _).ne' (rpow_pos_of_pos hx _).ne' [GOAL] s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ 0 < ∫ (x : ℝ) in Ioi 0, exp (-x) * x ^ (s - 1) [PROOFSTEP] rw [set_integral_pos_iff_support_of_nonneg_ae] [GOAL] s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ 0 < ↑↑volume ((Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0) [PROOFSTEP] rw [this, volume_Ioi, ← ENNReal.ofReal_zero] [GOAL] s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ ENNReal.ofReal 0 < ⊤ [PROOFSTEP] exact ENNReal.ofReal_lt_top [GOAL] case hf s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ 0 ≤ᵐ[Measure.restrict volume (Ioi 0)] fun x => exp (-x) * x ^ (s - 1) [PROOFSTEP] refine' eventually_of_mem (self_mem_ae_restrict measurableSet_Ioi) _ [GOAL] case hf s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ ∀ (x : ℝ), x ∈ Ioi 0 → OfNat.ofNat 0 x ≤ (fun x => exp (-x) * x ^ (s - 1)) x [PROOFSTEP] exact fun x hx => (mul_pos (exp_pos _) (rpow_pos_of_pos hx _)).le [GOAL] case hfi s : ℝ hs : 0 < s this : (Function.support fun x => exp (-x) * x ^ (s - 1)) ∩ Ioi 0 = Ioi 0 ⊢ IntegrableOn (fun x => exp (-x) * x ^ (s - 1)) (Ioi 0) [PROOFSTEP] exact GammaIntegral_convergent hs [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ Gamma s ≠ 0 [PROOFSTEP] suffices ∀ {n : ℕ}, -(n : ℝ) < s → Gamma s ≠ 0 by apply this swap; exact ⌊-s⌋₊ + 1 rw [neg_lt, Nat.cast_add, Nat.cast_one] exact Nat.lt_floor_add_one _ [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] apply this [GOAL] case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -↑?n < s case n s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ ℕ [PROOFSTEP] swap [GOAL] case n s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ ℕ case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -↑?n < s [PROOFSTEP] exact ⌊-s⌋₊ + 1 [GOAL] case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -↑(⌊-s⌋₊ + 1) < s [PROOFSTEP] rw [neg_lt, Nat.cast_add, Nat.cast_one] [GOAL] case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -s < ↑⌊-s⌋₊ + 1 [PROOFSTEP] exact Nat.lt_floor_add_one _ [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 [PROOFSTEP] intro n [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m n : ℕ ⊢ -↑n < s → Gamma s ≠ 0 [PROOFSTEP] induction' n with _ n_ih generalizing s [GOAL] case zero s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ -↑Nat.zero < s → Gamma s ≠ 0 [PROOFSTEP] intro hs [GOAL] case zero s✝ : ℝ hs✝¹ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℝ hs✝ : ∀ (m : ℕ), s ≠ -↑m hs : -↑Nat.zero < s ⊢ Gamma s ≠ 0 [PROOFSTEP] refine' (Gamma_pos_of_pos _).ne' [GOAL] case zero s✝ : ℝ hs✝¹ : ∀ (m : ℕ), s✝ ≠ -↑m s : ℝ hs✝ : ∀ (m : ℕ), s ≠ -↑m hs : -↑Nat.zero < s ⊢ 0 < s [PROOFSTEP] rwa [Nat.cast_zero, neg_zero] at hs [GOAL] case succ s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ -↑(Nat.succ n✝) < s → Gamma s ≠ 0 [PROOFSTEP] intro hs' [GOAL] case succ s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s ⊢ Gamma s ≠ 0 [PROOFSTEP] have : Gamma (s + 1) ≠ 0 := by apply n_ih · intro m specialize hs (1 + m) contrapose! hs rw [← eq_sub_iff_add_eq] at hs rw [hs] push_cast ring · rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, neg_add] at hs' linarith [GOAL] s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s ⊢ Gamma (s + 1) ≠ 0 [PROOFSTEP] apply n_ih [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s ⊢ ∀ (m : ℕ), s + 1 ≠ -↑m [PROOFSTEP] intro m [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s m : ℕ ⊢ s + 1 ≠ -↑m [PROOFSTEP] specialize hs (1 + m) [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(Nat.succ n✝) < s m : ℕ hs : s ≠ -↑(1 + m) ⊢ s + 1 ≠ -↑m [PROOFSTEP] contrapose! hs [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(Nat.succ n✝) < s m : ℕ hs : s + 1 = -↑m ⊢ s = -↑(1 + m) [PROOFSTEP] rw [← eq_sub_iff_add_eq] at hs [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(Nat.succ n✝) < s m : ℕ hs : s = -↑m - 1 ⊢ s = -↑(1 + m) [PROOFSTEP] rw [hs] [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(Nat.succ n✝) < s m : ℕ hs : s = -↑m - 1 ⊢ -↑m - 1 = -↑(1 + m) [PROOFSTEP] push_cast [GOAL] case hs s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs' : -↑(Nat.succ n✝) < s m : ℕ hs : s = -↑m - 1 ⊢ -↑m - 1 = -(1 + ↑m) [PROOFSTEP] ring [GOAL] case a s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s ⊢ -↑n✝ < s + 1 [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one, neg_add] at hs' [GOAL] case a s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑n✝ + -1 < s ⊢ -↑n✝ < s + 1 [PROOFSTEP] linarith [GOAL] case succ s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s this : Gamma (s + 1) ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] rw [Gamma_add_one, mul_ne_zero_iff] at this [GOAL] case succ s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s this : s ≠ 0 ∧ Gamma s ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] exact this.2 [GOAL] case succ s✝ : ℝ hs✝ : ∀ (m : ℕ), s✝ ≠ -↑m n✝ : ℕ n_ih : ∀ {s : ℝ}, (∀ (m : ℕ), s ≠ -↑m) → -↑n✝ < s → Gamma s ≠ 0 s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m hs' : -↑(Nat.succ n✝) < s this : Gamma (s + 1) ≠ 0 ⊢ s ≠ 0 [PROOFSTEP] simpa using hs 0 [GOAL] s : ℝ ⊢ Gamma s = 0 → ∃ m, s = -↑m [PROOFSTEP] contrapose! [GOAL] s : ℝ ⊢ (∀ (m : ℕ), s ≠ -↑m) → Gamma s ≠ 0 [PROOFSTEP] exact Gamma_ne_zero [GOAL] s : ℝ ⊢ (∃ m, s = -↑m) → Gamma s = 0 [PROOFSTEP] rintro ⟨m, rfl⟩ [GOAL] case intro m : ℕ ⊢ Gamma (-↑m) = 0 [PROOFSTEP] exact Gamma_neg_nat_eq_zero m [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℝ Gamma s [PROOFSTEP] refine' (Complex.differentiableAt_Gamma _ _).hasDerivAt.real_of_complex.differentiableAt [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ ∀ (m : ℕ), ↑s ≠ -↑m [PROOFSTEP] simp_rw [← Complex.ofReal_nat_cast, ← Complex.ofReal_neg, Ne.def, Complex.ofReal_inj] [GOAL] s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ ∀ (m : ℕ), ¬s = -↑m [PROOFSTEP] exact hs
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.Basic", "llama_tokens": 49468}
[GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ Function.Injective fun A => ↑A.toSubring [PROOFSTEP] intro ⟨_, _⟩ ⟨_, _⟩ h [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K toSubring✝¹ : Subring K mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier toSubring✝ : Subring K mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier h : (fun A => ↑A.toSubring) { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } = (fun A => ↑A.toSubring) { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } ⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } = { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } [PROOFSTEP] replace h := SetLike.coe_injective' h [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K toSubring✝¹ : Subring K mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier toSubring✝ : Subring K mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier h : { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ }.toSubring = { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring ⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } = { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } [PROOFSTEP] congr [GOAL] K : Type u inst✝ : Field K A x y : ValuationSubring K h : x.toSubring = y.toSubring ⊢ x = y [PROOFSTEP] cases x [GOAL] case mk K : Type u inst✝ : Field K A y : ValuationSubring K toSubring✝ : Subring K mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier h : { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring = y.toSubring ⊢ { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } = y [PROOFSTEP] cases y [GOAL] case mk.mk K : Type u inst✝ : Field K A : ValuationSubring K toSubring✝¹ : Subring K mem_or_inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier ∨ x⁻¹ ∈ toSubring✝¹.carrier toSubring✝ : Subring K mem_or_inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier ∨ x⁻¹ ∈ toSubring✝.carrier h : { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ }.toSubring = { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ }.toSubring ⊢ { toSubring := toSubring✝¹, mem_or_inv_mem' := mem_or_inv_mem'✝¹ } = { toSubring := toSubring✝, mem_or_inv_mem' := mem_or_inv_mem'✝ } [PROOFSTEP] congr [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ CommRing { x // x ∈ A.toSubring } [PROOFSTEP] infer_instance [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ IsDomain { x // x ∈ A.toSubring } [PROOFSTEP] infer_instance [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases (b : K) = 0 [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases (b : K) = 0 [GOAL] case pos K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use 0 [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑b = 0 ⊢ a * 0 = b ∨ b * 0 = a [PROOFSTEP] left [GOAL] case h.h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑b = 0 ⊢ a * 0 = b [PROOFSTEP] ext [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑b = 0 ⊢ ↑(a * 0) = ↑b [PROOFSTEP] simp [h] [GOAL] case neg K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ¬↑b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases (a : K) = 0 [GOAL] case neg K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ¬↑b = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] by_cases (a : K) = 0 [GOAL] case pos K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ↑a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use 0 [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ↑a = 0 ⊢ a * 0 = b ∨ b * 0 = a [PROOFSTEP] right [GOAL] case h.h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ↑a = 0 ⊢ b * 0 = a [PROOFSTEP] ext [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ↑a = 0 ⊢ ↑(b * 0) = ↑a [PROOFSTEP] simp [h] [GOAL] case neg K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] cases' A.mem_or_inv_mem (a / b) with hh hh [GOAL] case neg.inl K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑a / ↑b ∈ A ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use⟨a / b, hh⟩ [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑a / ↑b ∈ A ⊢ a * { val := ↑a / ↑b, property := hh } = b ∨ b * { val := ↑a / ↑b, property := hh } = a [PROOFSTEP] right [GOAL] case h.h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑a / ↑b ∈ A ⊢ b * { val := ↑a / ↑b, property := hh } = a [PROOFSTEP] ext [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑a / ↑b ∈ A ⊢ ↑(b * { val := ↑a / ↑b, property := hh }) = ↑a [PROOFSTEP] field_simp [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑a / ↑b ∈ A ⊢ ↑b * ↑a = ↑a * ↑b [PROOFSTEP] ring [GOAL] case neg.inr K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : (↑a / ↑b)⁻¹ ∈ A ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] rw [show (a / b : K)⁻¹ = b / a by field_simp] at hh [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : (↑a / ↑b)⁻¹ ∈ A ⊢ (↑a / ↑b)⁻¹ = ↑b / ↑a [PROOFSTEP] field_simp [GOAL] case neg.inr K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑b / ↑a ∈ A ⊢ ∃ c, a * c = b ∨ b * c = a [PROOFSTEP] use⟨b / a, hh⟩ [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑b / ↑a ∈ A ⊢ a * { val := ↑b / ↑a, property := hh } = b ∨ b * { val := ↑b / ↑a, property := hh } = a [PROOFSTEP] left [GOAL] case h.h K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑b / ↑a ∈ A ⊢ a * { val := ↑b / ↑a, property := hh } = b [PROOFSTEP] ext [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑b / ↑a ∈ A ⊢ ↑(a * { val := ↑b / ↑a, property := hh }) = ↑b [PROOFSTEP] field_simp [GOAL] case h.h.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h✝ : ¬↑b = 0 h : ¬↑a = 0 hh : ↑b / ↑a ∈ A ⊢ ↑a * ↑b = ↑b * ↑a [PROOFSTEP] ring [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ Algebra { x // x ∈ A.toSubring } K [PROOFSTEP] infer_instance -- Porting note: Somehow it cannot find this instance and I'm too lazy to debug. wrong prio? [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K z : K ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] by_cases z = 0 [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K z : K ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] by_cases z = 0 [GOAL] case pos K : Type u inst✝ : Field K A : ValuationSubring K z : K h : z = 0 ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] use(0, 1) [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K z : K h : z = 0 ⊢ z * ↑(algebraMap { x // x ∈ A } K) ↑(0, 1).snd = ↑(algebraMap { x // x ∈ A } K) (0, 1).fst [PROOFSTEP] simp [h] [GOAL] case neg K : Type u inst✝ : Field K A : ValuationSubring K z : K h : ¬z = 0 ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] cases' A.mem_or_inv_mem z with hh hh [GOAL] case neg.inl K : Type u inst✝ : Field K A : ValuationSubring K z : K h : ¬z = 0 hh : z ∈ A ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] use(⟨z, hh⟩, 1) [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K z : K h : ¬z = 0 hh : z ∈ A ⊢ z * ↑(algebraMap { x // x ∈ A } K) ↑({ val := z, property := hh }, 1).snd = ↑(algebraMap { x // x ∈ A } K) ({ val := z, property := hh }, 1).fst [PROOFSTEP] simp [GOAL] case neg.inr K : Type u inst✝ : Field K A : ValuationSubring K z : K h : ¬z = 0 hh : z⁻¹ ∈ A ⊢ ∃ x, z * ↑(algebraMap { x // x ∈ A } K) ↑x.snd = ↑(algebraMap { x // x ∈ A } K) x.fst [PROOFSTEP] refine ⟨⟨1, ⟨⟨_, hh⟩, ?_⟩⟩, mul_inv_cancel h⟩ [GOAL] case neg.inr K : Type u inst✝ : Field K A : ValuationSubring K z : K h : ¬z = 0 hh : z⁻¹ ∈ A ⊢ { val := z⁻¹, property := hh } ∈ nonZeroDivisors { x // x ∈ A } [PROOFSTEP] exact mem_nonZeroDivisors_iff_ne_zero.2 fun c => h (inv_eq_zero.mp (congr_arg Subtype.val c)) [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑(algebraMap { x // x ∈ A } K) a = ↑(algebraMap { x // x ∈ A } K) b ⊢ ↑1 * a = ↑1 * b [PROOFSTEP] ext [GOAL] case a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ A } h : ↑(algebraMap { x // x ∈ A } K) a = ↑(algebraMap { x // x ∈ A } K) b ⊢ ↑(↑1 * a) = ↑(↑1 * b) [PROOFSTEP] simpa using h [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ LinearOrderedCommGroupWithZero (ValueGroup A) [PROOFSTEP] unfold ValueGroup [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ LinearOrderedCommGroupWithZero (ValuationRing.ValueGroup { x // x ∈ A } K) [PROOFSTEP] infer_instance [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A }ˣ ⊢ ↑(valuation A) ↑↑a = 1 [PROOFSTEP] rw [← A.valuation.map_one, valuation_eq_iff] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A }ˣ ⊢ ∃ a_1, ↑↑a_1 * 1 = ↑↑a [PROOFSTEP] use a [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A }ˣ ⊢ ↑↑a * 1 = ↑↑a [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ⊢ IsUnit a [PROOFSTEP] have ha : (a : K) ≠ 0 [GOAL] case ha K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ⊢ ↑a ≠ 0 [PROOFSTEP] intro c [GOAL] case ha K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 c : ↑a = 0 ⊢ False [PROOFSTEP] rw [c, A.valuation.map_zero] at h [GOAL] case ha K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : 0 = 1 c : ↑a = 0 ⊢ False [PROOFSTEP] exact zero_ne_one h [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ha : ↑a ≠ 0 ⊢ IsUnit a [PROOFSTEP] have ha' : (a : K)⁻¹ ∈ A := by rw [← valuation_le_one_iff, map_inv₀, h, inv_one] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ha : ↑a ≠ 0 ⊢ (↑a)⁻¹ ∈ A [PROOFSTEP] rw [← valuation_le_one_iff, map_inv₀, h, inv_one] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ha : ↑a ≠ 0 ha' : (↑a)⁻¹ ∈ A ⊢ IsUnit a [PROOFSTEP] apply isUnit_of_mul_eq_one a ⟨a⁻¹, ha'⟩ [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ha : ↑a ≠ 0 ha' : (↑a)⁻¹ ∈ A ⊢ a * { val := (↑a)⁻¹, property := ha' } = 1 [PROOFSTEP] ext [GOAL] case a K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } h : ↑(valuation A) ↑a = 1 ha : ↑a ≠ 0 ha' : (↑a)⁻¹ ∈ A ⊢ ↑(a * { val := (↑a)⁻¹, property := ha' }) = ↑1 [PROOFSTEP] field_simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } ⊢ a ∈ LocalRing.maximalIdeal { x // x ∈ A } ↔ ↑(valuation A) ↑a < 1 [PROOFSTEP] rw [LocalRing.mem_maximalIdeal] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } ⊢ a ∈ nonunits { x // x ∈ A } ↔ ↑(valuation A) ↑a < 1 [PROOFSTEP] dsimp [nonunits] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } ⊢ ¬IsUnit a ↔ ↑(valuation A) ↑a < 1 [PROOFSTEP] rw [valuation_eq_one_iff] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A } ⊢ ¬↑(valuation A) ↑a = 1 ↔ ↑(valuation A) ↑a < 1 [PROOFSTEP] exact (A.valuation_le_one a).lt_iff_ne.symm [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S ⊢ ∀ (x y : ValueGroup R), ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } (x * y) = ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } x * ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } y [PROOFSTEP] rintro ⟨⟩ ⟨⟩ [GOAL] case mk.mk K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x✝ : ValueGroup R a✝¹ : K y✝ : ValueGroup R a✝ : K ⊢ ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } (Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) = ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } (Quot.mk Setoid.r a✝¹) * ZeroHom.toFun { toFun := Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)), map_zero' := (_ : Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0 = Quotient.map' id (_ : ∀ (x y : K), Setoid.r x y → Setoid.r (id x) (id y)) 0) } (Quot.mk Setoid.r a✝) [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S ⊢ Monotone ↑(mapOfLE R S h) [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨a, ha⟩ [GOAL] case mk.mk.intro K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a✝² : ValueGroup R a✝¹ : K b✝ : ValueGroup R a✝ : K a : { x // x ∈ R } ha : a • a✝ = a✝¹ ⊢ ↑(mapOfLE R S h) (Quot.mk Setoid.r a✝¹) ≤ ↑(mapOfLE R S h) (Quot.mk Setoid.r a✝) [PROOFSTEP] exact ⟨R.inclusion S h a, ha⟩ [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S ⊢ ↑(mapOfLE R S h) ∘ ↑(valuation R) = ↑(valuation S) [PROOFSTEP] ext [GOAL] case h K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x✝ : K ⊢ (↑(mapOfLE R S h) ∘ ↑(valuation R)) x✝ = ↑(valuation S) x✝ [PROOFSTEP] rfl [GOAL] K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P ⊢ IsLocalization.AtPrime { x // x ∈ ofPrime A P } P [PROOFSTEP] apply Localization.subalgebra.isLocalization_ofField K P.primeCompl P.primeCompl_le_nonZeroDivisors [GOAL] K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P x : { x // x ∈ A } ⊢ ↑(valuation (ofPrime A P)) ↑x = 1 ↔ x ∈ Ideal.primeCompl P [PROOFSTEP] rw [← IsLocalization.AtPrime.isUnit_to_map_iff (A.ofPrime P) P x, valuation_eq_one_iff] [GOAL] K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P x : { x // x ∈ A } ⊢ ↑(valuation (ofPrime A P)) ↑x = 1 ↔ ↑(valuation (ofPrime A P)) ↑(↑(algebraMap { x // x ∈ A } { x // x ∈ ofPrime A P }) x) = 1 [PROOFSTEP] rfl [GOAL] K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P ⊢ idealOfLE A (ofPrime A P) (_ : A ≤ ofPrime A P) = P [PROOFSTEP] refine Ideal.ext (fun x => ?_) [GOAL] K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P x : { x // x ∈ A } ⊢ x ∈ idealOfLE A (ofPrime A P) (_ : A ≤ ofPrime A P) ↔ x ∈ P [PROOFSTEP] apply IsLocalization.AtPrime.to_map_mem_maximal_iff [GOAL] case h K : Type u inst✝¹ : Field K A✝ A : ValuationSubring K P : Ideal { x // x ∈ A } inst✝ : Ideal.IsPrime P x : { x // x ∈ A } ⊢ optParam (LocalRing { x // x ∈ ofPrime A P }) (_ : LocalRing { x // x ∈ ofPrime A P }) [PROOFSTEP] exact localRing (ofPrime A P) [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S ⊢ ofPrime R (idealOfLE R S h) = S [PROOFSTEP] ext x [GOAL] case h K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K ⊢ x ∈ ofPrime R (idealOfLE R S h) ↔ x ∈ S [PROOFSTEP] constructor [GOAL] case h.mp K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K ⊢ x ∈ ofPrime R (idealOfLE R S h) → x ∈ S [PROOFSTEP] rintro ⟨a, r, hr, rfl⟩ [GOAL] case h.mp.intro.intro.intro K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ ↑(algebraMap { x // x ∈ R } K) a * (↑(algebraMap { x // x ∈ R } K) r)⁻¹ ∈ S [PROOFSTEP] apply mul_mem [GOAL] case h.mp.intro.intro.intro.a K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ ↑(algebraMap { x // x ∈ R } K) a ∈ S [PROOFSTEP] exact h a.2 [GOAL] case h.mp.intro.intro.intro.a K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ (↑(algebraMap { x // x ∈ R } K) r)⁻¹ ∈ S [PROOFSTEP] rw [← valuation_le_one_iff, map_inv₀, ← inv_one, inv_le_inv₀] [GOAL] case h.mp.intro.intro.intro.a K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ 1 ≤ ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r) [PROOFSTEP] exact not_lt.1 ((not_iff_not.2 <| valuation_lt_one_iff S _).1 hr) [GOAL] case h.mp.intro.intro.intro.a.ha K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r) ≠ 0 [PROOFSTEP] intro hh [GOAL] case h.mp.intro.intro.intro.a.ha K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) hh : ↑(valuation S) (↑(algebraMap { x // x ∈ R } K) r) = 0 ⊢ False [PROOFSTEP] erw [Valuation.zero_iff, Subring.coe_eq_zero_iff] at hh [GOAL] case h.mp.intro.intro.intro.a.ha K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) hh : r = 0 ⊢ False [PROOFSTEP] apply hr [GOAL] case h.mp.intro.intro.intro.a.ha K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) hh : r = 0 ⊢ r ∈ ↑(idealOfLE R S h) [PROOFSTEP] rw [hh] [GOAL] case h.mp.intro.intro.intro.a.ha K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) hh : r = 0 ⊢ 0 ∈ ↑(idealOfLE R S h) [PROOFSTEP] apply Ideal.zero_mem (R.idealOfLE S h) [GOAL] case h.mp.intro.intro.intro.a.hb K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S a r : { x // x ∈ R } hr : r ∈ Ideal.primeCompl (idealOfLE R S h) ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] case h.mpr K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K ⊢ x ∈ S → x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] intro hx [GOAL] case h.mpr K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S ⊢ x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] by_cases hr : x ∈ R [GOAL] case pos K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S hr : x ∈ R ⊢ x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] exact R.le_ofPrime _ hr [GOAL] case neg K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S hr : ¬x ∈ R ⊢ x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] have : x ≠ 0 := fun h => hr (by rw [h]; exact R.zero_mem) [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h✝ : R ≤ S x : K hx : x ∈ S hr : ¬x ∈ R h : x = 0 ⊢ x ∈ R [PROOFSTEP] rw [h] [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K h✝ : R ≤ S x : K hx : x ∈ S hr : ¬x ∈ R h : x = 0 ⊢ 0 ∈ R [PROOFSTEP] exact R.zero_mem [GOAL] case neg K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S hr : ¬x ∈ R this : x ≠ 0 ⊢ x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] replace hr := (R.mem_or_inv_mem x).resolve_left hr [GOAL] case neg K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ x ∈ ofPrime R (idealOfLE R S h) [PROOFSTEP] use 1, ⟨x⁻¹, hr⟩ [GOAL] case h K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ ∃ x_1, x = ↑(algebraMap { x // x ∈ R } K) 1 * (↑(algebraMap { x // x ∈ R } K) { val := x⁻¹, property := hr })⁻¹ [PROOFSTEP] constructor [GOAL] case h.h K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ x = ↑(algebraMap { x // x ∈ R } K) 1 * (↑(algebraMap { x // x ∈ R } K) { val := x⁻¹, property := hr })⁻¹ [PROOFSTEP] field_simp [GOAL] case h.w K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ { val := x⁻¹, property := hr } ∈ Ideal.primeCompl (idealOfLE R S h) [PROOFSTEP] change (⟨x⁻¹, h hr⟩ : S) ∉ nonunits S [GOAL] case h.w K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ ¬{ val := x⁻¹, property := (_ : x⁻¹ ∈ S) } ∈ nonunits { x // x ∈ S } [PROOFSTEP] rw [mem_nonunits_iff, Classical.not_not] [GOAL] case h.w K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ IsUnit { val := x⁻¹, property := (_ : x⁻¹ ∈ S) } [PROOFSTEP] apply isUnit_of_mul_eq_one _ (⟨x, hx⟩ : S) [GOAL] case h.w K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ { val := x⁻¹, property := (_ : x⁻¹ ∈ S) } * { val := x, property := hx } = 1 [PROOFSTEP] ext [GOAL] case h.w.a K : Type u inst✝ : Field K A R S : ValuationSubring K h : R ≤ S x : K hx : x ∈ S this : x ≠ 0 hr : x⁻¹ ∈ R ⊢ ↑({ val := x⁻¹, property := (_ : x⁻¹ ∈ S) } * { val := x, property := hx }) = ↑1 [PROOFSTEP] field_simp [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K hR : A ≤ R hS : A ≤ S h : R ≤ S x : { x // x ∈ A } hx : x ∈ idealOfLE A S hS ⊢ ↑(valuation R) ↑(↑(inclusion A R hR) x) < 1 [PROOFSTEP] by_contra c [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K hR : A ≤ R hS : A ≤ S h : R ≤ S x : { x // x ∈ A } hx : x ∈ idealOfLE A S hS c : ¬↑(valuation R) ↑(↑(inclusion A R hR) x) < 1 ⊢ False [PROOFSTEP] push_neg at c [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K hR : A ≤ R hS : A ≤ S h : R ≤ S x : { x // x ∈ A } hx : x ∈ idealOfLE A S hS c : 1 ≤ ↑(valuation R) ↑(↑(inclusion A R hR) x) ⊢ False [PROOFSTEP] replace c := monotone_mapOfLE R S h c [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K hR : A ≤ R hS : A ≤ S h : R ≤ S x : { x // x ∈ A } hx : x ∈ idealOfLE A S hS c : ↑(mapOfLE R S h) 1 ≤ ↑(mapOfLE R S h) (↑(valuation R) ↑(↑(inclusion A R hR) x)) ⊢ False [PROOFSTEP] rw [(mapOfLE _ _ _).map_one, mapOfLE_valuation_apply] at c [GOAL] K : Type u inst✝ : Field K A R S : ValuationSubring K hR : A ≤ R hS : A ≤ S h : R ≤ S x : { x // x ∈ A } hx : x ∈ idealOfLE A S hS c : 1 ≤ ↑(valuation S) ↑(↑(inclusion A R hR) x) ⊢ False [PROOFSTEP] apply not_le_of_lt ((valuation_lt_one_iff S _).1 hx) c [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K P : PrimeSpectrum { x // x ∈ A } ⊢ (fun S => { asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}), IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) }) ((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) P) = P [PROOFSTEP] ext1 [GOAL] case asIdeal K : Type u inst✝ : Field K A : ValuationSubring K P : PrimeSpectrum { x // x ∈ A } ⊢ ((fun S => { asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}), IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) }) ((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) P)).asIdeal = P.asIdeal [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K S : ↑{S | A ≤ S} ⊢ (fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) ((fun S => { asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}), IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) }) S) = S [PROOFSTEP] ext1 [GOAL] case a K : Type u inst✝ : Field K A : ValuationSubring K S : ↑{S | A ≤ S} ⊢ ↑((fun P => { val := ofPrime A P.asIdeal, property := (_ : A ≤ ofPrime A P.asIdeal) }) ((fun S => { asIdeal := idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}), IsPrime := (_ : Ideal.IsPrime (idealOfLE A ↑S (_ : ↑S ∈ {S | A ≤ S}))) }) S)) = ↑S [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } a✝ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] dsimp at h [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] have := idealOfLE_le_of_le A _ _ ?_ ?_ h [GOAL] case refine_3 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ this : idealOfLE A ↑(↑(primeSpectrumEquiv A) b✝) ?refine_2 ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1 ⊢ a✝ ≤ b✝ case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] iterate 2 erw [idealOfLE_ofPrime] at this [GOAL] case refine_3 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ this : idealOfLE A ↑(↑(primeSpectrumEquiv A) b✝) ?refine_2 ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1 ⊢ a✝ ≤ b✝ case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] erw [idealOfLE_ofPrime] at this [GOAL] case refine_3 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ this : b✝.asIdeal ≤ idealOfLE A ↑(↑(primeSpectrumEquiv A) a✝) ?refine_1 ⊢ a✝ ≤ b✝ case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] erw [idealOfLE_ofPrime] at this [GOAL] case refine_3 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ this : b✝.asIdeal ≤ a✝.asIdeal ⊢ a✝ ≤ b✝ case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] exact this [GOAL] case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] all_goals exact le_ofPrime A (PrimeSpectrum.asIdeal _) [GOAL] case refine_1 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) a✝) [PROOFSTEP] exact le_ofPrime A (PrimeSpectrum.asIdeal _) [GOAL] case refine_2 K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : ↑(primeSpectrumEquiv A) a✝ ≤ ↑(primeSpectrumEquiv A) b✝ ⊢ A ≤ ↑(↑(primeSpectrumEquiv A) b✝) [PROOFSTEP] exact le_ofPrime A (PrimeSpectrum.asIdeal _) [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : a✝ ≤ b✝ ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } a✝ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b✝ [PROOFSTEP] apply ofPrime_le_of_le [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K src✝ : PrimeSpectrum { x // x ∈ A } ≃ ↑{S | A ≤ S} := primeSpectrumEquiv A a✝ b✝ : (PrimeSpectrum { x // x ∈ A })ᵒᵈ h : a✝ ≤ b✝ ⊢ b✝.asIdeal ≤ a✝.asIdeal [PROOFSTEP] exact h [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v ⊢ ∀ (x : K), x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] intro x [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K ⊢ x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] cases' le_or_lt (v x) 1 with h h [GOAL] case inl K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : ↑v x ≤ 1 ⊢ x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] left [GOAL] case inl.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : ↑v x ≤ 1 ⊢ x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact h [GOAL] case inr K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] right [GOAL] case inr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] change v x⁻¹ ≤ 1 [GOAL] case inr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ ↑v x⁻¹ ≤ 1 [PROOFSTEP] rw [map_inv₀ v, ← inv_one, inv_le_inv₀] [GOAL] case inr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ 1 ≤ ↑v x [PROOFSTEP] exact le_of_lt h [GOAL] case inr.h.ha K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ ↑v x ≠ 0 [PROOFSTEP] intro c [GOAL] case inr.h.ha K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x c : ↑v x = 0 ⊢ False [PROOFSTEP] simp [c] at h [GOAL] case inr.h.hb K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ src✝ : Subring K := integer v x : K h : 1 < ↑v x ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ ⊢ IsEquiv v₁ v₂ ↔ valuationSubring v₁ = valuationSubring v₂ [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ ⊢ IsEquiv v₁ v₂ → valuationSubring v₁ = valuationSubring v₂ [PROOFSTEP] intro h [GOAL] case mp K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : IsEquiv v₁ v₂ ⊢ valuationSubring v₁ = valuationSubring v₂ [PROOFSTEP] ext x [GOAL] case mp.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : IsEquiv v₁ v₂ x : K ⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂ [PROOFSTEP] specialize h x 1 [GOAL] case mp.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ x : K h : ↑v₁ x ≤ ↑v₁ 1 ↔ ↑v₂ x ≤ ↑v₂ 1 ⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂ [PROOFSTEP] simpa using h [GOAL] case mpr K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ ⊢ valuationSubring v₁ = valuationSubring v₂ → IsEquiv v₁ v₂ [PROOFSTEP] intro h [GOAL] case mpr K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : valuationSubring v₁ = valuationSubring v₂ ⊢ IsEquiv v₁ v₂ [PROOFSTEP] apply isEquiv_of_val_le_one [GOAL] case mpr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : valuationSubring v₁ = valuationSubring v₂ ⊢ ∀ {x : K}, ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1 [PROOFSTEP] intro x [GOAL] case mpr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : valuationSubring v₁ = valuationSubring v₂ x : K ⊢ ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1 [PROOFSTEP] have : x ∈ v₁.valuationSubring ↔ x ∈ v₂.valuationSubring := by rw [h] [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : valuationSubring v₁ = valuationSubring v₂ x : K ⊢ x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂ [PROOFSTEP] rw [h] [GOAL] case mpr.h K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ h : valuationSubring v₁ = valuationSubring v₂ x : K this : x ∈ valuationSubring v₁ ↔ x ∈ valuationSubring v₂ ⊢ ↑v₁ x ≤ 1 ↔ ↑v₂ x ≤ 1 [PROOFSTEP] simpa using this [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ ⊢ IsEquiv v (ValuationSubring.valuation (valuationSubring v)) [PROOFSTEP] rw [isEquiv_iff_val_le_one] [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ ⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑(ValuationSubring.valuation (valuationSubring v)) x ≤ 1 [PROOFSTEP] intro x [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ x : K ⊢ ↑v x ≤ 1 ↔ ↑(ValuationSubring.valuation (valuationSubring v)) x ≤ 1 [PROOFSTEP] rw [ValuationSubring.valuation_le_one_iff] [GOAL] K : Type u inst✝³ : Field K Γ : Type u_1 Γ₁ : Type u_2 Γ₂ : Type u_3 inst✝² : LinearOrderedCommGroupWithZero Γ inst✝¹ : LinearOrderedCommGroupWithZero Γ₁ inst✝ : LinearOrderedCommGroupWithZero Γ₂ v : Valuation K Γ v₁ : Valuation K Γ₁ v₂ : Valuation K Γ₂ x : K ⊢ ↑v x ≤ 1 ↔ x ∈ valuationSubring v [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ Valuation.valuationSubring (valuation A) = A [PROOFSTEP] ext [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K x✝ : K ⊢ x✝ ∈ Valuation.valuationSubring (valuation A) ↔ x✝ ∈ A [PROOFSTEP] rw [← A.valuation_le_one_iff] [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K x✝ : K ⊢ x✝ ∈ Valuation.valuationSubring (valuation A) ↔ ↑(valuation A) x✝ ≤ 1 [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } ⊢ ↑({ val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }) = ↑1 [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } ⊢ ↑({ val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) }) = ↑1 [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ unitGroup A } ⊢ (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a [PROOFSTEP] ext [GOAL] case a.a K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ unitGroup A } ⊢ ↑↑((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a)) = ↑↑a [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A }ˣ ⊢ (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a [PROOFSTEP] ext [GOAL] case a.a K : Type u inst✝ : Field K A : ValuationSubring K a : { x // x ∈ A }ˣ ⊢ ↑↑((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a)) = ↑↑a [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ unitGroup A } ⊢ Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } (a * b) = Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } a * Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } b [PROOFSTEP] ext [GOAL] case a.a K : Type u inst✝ : Field K A : ValuationSubring K a b : { x // x ∈ unitGroup A } ⊢ ↑↑(Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } (a * b)) = ↑↑(Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } a * Equiv.toFun { toFun := fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }, invFun := fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }, left_inv := (_ : ∀ (a : { x // x ∈ unitGroup A }), (fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) ((fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) a) = a), right_inv := (_ : ∀ (a : { x // x ∈ A }ˣ), (fun x => { val := { val := ↑↑x, property := (_ : ↑↑x ∈ A) }, inv := { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) }, val_inv := (_ : { val := ↑↑x, property := (_ : ↑↑x ∈ A) } * { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } = 1), inv_val := (_ : { val := ↑↑x⁻¹, property := (_ : ↑↑x⁻¹ ∈ A) } * { val := ↑↑x, property := (_ : ↑↑x ∈ A) } = 1) }) ((fun x => { val := ↑(Units.map ↑(subtype A)) x, property := (_ : ↑(valuation A) ↑↑x = 1) }) a) = a) } b) [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ unitGroup A ≤ unitGroup B ↔ A ≤ B [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ unitGroup A ≤ unitGroup B → A ≤ B [PROOFSTEP] intro h x hx [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : x ∈ A ⊢ x ∈ B [PROOFSTEP] rw [← A.valuation_le_one_iff x, le_iff_lt_or_eq] at hx [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1 ⊢ x ∈ B [PROOFSTEP] by_cases h_1 : x = 0 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1 h_1 : x = 0 ⊢ x ∈ B [PROOFSTEP] simp only [h_1, zero_mem] [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1 h_1 : ¬x = 0 ⊢ x ∈ B [PROOFSTEP] by_cases h_2 : 1 + x = 0 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1 h_1 : ¬x = 0 h_2 : 1 + x = 0 ⊢ x ∈ B [PROOFSTEP] simp only [← add_eq_zero_iff_neg_eq.1 h_2, neg_mem _ _ (one_mem _)] [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K hx : ↑(valuation A) x < 1 ∨ ↑(valuation A) x = 1 h_1 : ¬x = 0 h_2 : ¬1 + x = 0 ⊢ x ∈ B [PROOFSTEP] cases' hx with hx hx [GOAL] case neg.inl K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K h_1 : ¬x = 0 h_2 : ¬1 + x = 0 hx : ↑(valuation A) x < 1 ⊢ x ∈ B [PROOFSTEP] have := h (show Units.mk0 _ h_2 ∈ A.unitGroup from A.valuation.map_one_add_of_lt hx) [GOAL] case neg.inl K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K h_1 : ¬x = 0 h_2 : ¬1 + x = 0 hx : ↑(valuation A) x < 1 this : Units.mk0 (1 + x) h_2 ∈ unitGroup B ⊢ x ∈ B [PROOFSTEP] simpa using B.add_mem _ _ (show 1 + x ∈ B from SetLike.coe_mem (B.unitGroupMulEquiv ⟨_, this⟩ : B)) (B.neg_mem _ B.one_mem) [GOAL] case neg.inr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K h_1 : ¬x = 0 h_2 : ¬1 + x = 0 hx : ↑(valuation A) x = 1 ⊢ x ∈ B [PROOFSTEP] have := h (show Units.mk0 x h_1 ∈ A.unitGroup from hx) [GOAL] case neg.inr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A ≤ unitGroup B x : K h_1 : ¬x = 0 h_2 : ¬1 + x = 0 hx : ↑(valuation A) x = 1 this : Units.mk0 x h_1 ∈ unitGroup B ⊢ x ∈ B [PROOFSTEP] refine' SetLike.coe_mem (B.unitGroupMulEquiv ⟨_, this⟩ : B) [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ A ≤ B → unitGroup A ≤ unitGroup B [PROOFSTEP] rintro h x (hx : A.valuation x = 1) [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : Kˣ hx : ↑(valuation A) ↑x = 1 ⊢ x ∈ unitGroup B [PROOFSTEP] apply_fun A.mapOfLE B h at hx [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : Kˣ hx : ↑(mapOfLE A B h) (↑(valuation A) ↑x) = ↑(mapOfLE A B h) 1 ⊢ x ∈ unitGroup B [PROOFSTEP] simpa using hx [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : unitGroup A = unitGroup B ⊢ A = B [PROOFSTEP] simpa only [le_antisymm_iff, unitGroup_le_unitGroup] using h [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ nonunits B ≤ nonunits A ↔ A ≤ B [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ nonunits B ≤ nonunits A → A ≤ B [PROOFSTEP] intro h x hx [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits B ≤ nonunits A x : K hx : x ∈ A ⊢ x ∈ B [PROOFSTEP] by_cases h_1 : x = 0 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits B ≤ nonunits A x : K hx : x ∈ A h_1 : x = 0 ⊢ x ∈ B [PROOFSTEP] simp only [h_1, zero_mem] [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits B ≤ nonunits A x : K hx : x ∈ A h_1 : ¬x = 0 ⊢ x ∈ B [PROOFSTEP] rw [← valuation_le_one_iff, ← not_lt, Valuation.one_lt_val_iff _ h_1] at hx ⊢ [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits B ≤ nonunits A x : K hx : ¬↑(valuation A) x⁻¹ < 1 h_1 : ¬x = 0 ⊢ ¬↑(valuation B) x⁻¹ < 1 [PROOFSTEP] by_contra h_2 [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits B ≤ nonunits A x : K hx : ¬↑(valuation A) x⁻¹ < 1 h_1 : ¬x = 0 h_2 : ↑(valuation B) x⁻¹ < 1 ⊢ False [PROOFSTEP] exact hx (h h_2) [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ A ≤ B → nonunits B ≤ nonunits A [PROOFSTEP] intro h x hx [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : K hx : x ∈ nonunits B ⊢ x ∈ nonunits A [PROOFSTEP] by_contra h_1 [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : K hx : x ∈ nonunits B h_1 : ¬x ∈ nonunits A ⊢ False [PROOFSTEP] exact not_lt.2 (monotone_mapOfLE _ _ h (not_lt.1 h_1)) hx [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : nonunits A = nonunits B ⊢ A = B [PROOFSTEP] simpa only [le_antisymm_iff, nonunits_le_nonunits] using h.symm [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ Subtype.val '' ↑(LocalRing.maximalIdeal { x // x ∈ A }) = ↑(nonunits A) [PROOFSTEP] ext a [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a : K ⊢ a ∈ Subtype.val '' ↑(LocalRing.maximalIdeal { x // x ∈ A }) ↔ a ∈ ↑(nonunits A) [PROOFSTEP] simp only [Set.mem_image, SetLike.mem_coe, mem_nonunits_iff_exists_mem_maximalIdeal] [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a : K ⊢ (∃ x, x ∈ LocalRing.maximalIdeal { x // x ∈ A } ∧ ↑x = a) ↔ ∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A } [PROOFSTEP] erw [Subtype.exists] [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a : K ⊢ (∃ a_1 b, { val := a_1, property := b } ∈ LocalRing.maximalIdeal { x // x ∈ A } ∧ ↑{ val := a_1, property := b } = a) ↔ ∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A } [PROOFSTEP] simp_rw [exists_and_right, exists_eq_right] -- Porting note: added [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K a : K ⊢ (∃ x, { val := a, property := (_ : a ∈ ↑A) } ∈ LocalRing.maximalIdeal { x // x ∈ A }) ↔ ∃ ha, { val := a, property := ha } ∈ LocalRing.maximalIdeal { x // x ∈ A } [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ ∀ {a b : Kˣ}, a ∈ {x | ↑(valuation A) (↑x - 1) < 1} → b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1} [PROOFSTEP] intro a b ha hb [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : Kˣ ha : a ∈ {x | ↑(valuation A) (↑x - 1) < 1} hb : b ∈ {x | ↑(valuation A) (↑x - 1) < 1} ⊢ a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1} [PROOFSTEP] rw [Set.mem_setOf] at ha hb [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 hb : ↑(valuation A) (↑b - 1) < 1 ⊢ a * b ∈ {x | ↑(valuation A) (↑x - 1) < 1} [PROOFSTEP] refine' lt_of_le_of_lt _ (max_lt hb ha) -- Porting note: `sub_add_sub_cancel` needed some help [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 hb : ↑(valuation A) (↑b - 1) < 1 ⊢ ↑(valuation A) (↑(a * b) - 1) ≤ max (↑(valuation A) (↑b - 1)) (↑(valuation A) (↑a - 1)) [PROOFSTEP] rw [← one_mul (A.valuation (b - 1)), ← A.valuation.map_one_add_of_lt ha, add_sub_cancel'_right, ← Valuation.map_mul, mul_sub_one, ← sub_add_sub_cancel (↑(a * b) : K) _ 1] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a b : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 hb : ↑(valuation A) (↑b - 1) < 1 ⊢ ↑(valuation A) (↑(a * b) - ?m.1681005 + (?m.1681005 - 1)) ≤ max (↑(valuation A) (↑a * ↑b - ↑a)) (↑(valuation A) (↑a - 1)) K : Type u inst✝ : Field K A : ValuationSubring K a b : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 hb : ↑(valuation A) (↑b - 1) < 1 ⊢ K [PROOFSTEP] exact A.valuation.map_add _ _ [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ 1 ∈ { carrier := {x | ↑(valuation A) (↑x - 1) < 1}, mul_mem' := (_ : ∀ {a b : Kˣ}, a ∈ {x | ↑(valuation A) (↑x - 1) < 1} → b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) }.carrier [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ ∀ {x : Kˣ}, x ∈ { toSubsemigroup := { carrier := {x | ↑(valuation A) (↑x - 1) < 1}, mul_mem' := (_ : ∀ {a b : Kˣ}, a ∈ {x | ↑(valuation A) (↑x - 1) < 1} → b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) }, one_mem' := (_ : ↑(valuation A) (1 - 1) < 1) }.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemigroup := { carrier := {x | ↑(valuation A) (↑x - 1) < 1}, mul_mem' := (_ : ∀ {a b : Kˣ}, a ∈ {x | ↑(valuation A) (↑x - 1) < 1} → b ∈ {x | ↑(valuation A) (↑x - 1) < 1} → ↑(valuation A) (↑(a * b) - 1) < 1) }, one_mem' := (_ : ↑(valuation A) (1 - 1) < 1) }.toSubsemigroup.carrier [PROOFSTEP] dsimp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ ∀ {x : Kˣ}, ↑(valuation A) (↑x - 1) < 1 → ↑(valuation A) (↑x⁻¹ - 1) < 1 [PROOFSTEP] intro a ha [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 ⊢ ↑(valuation A) (↑a⁻¹ - 1) < 1 [PROOFSTEP] conv => lhs rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 | ↑(valuation A) (↑a⁻¹ - 1) < 1 [PROOFSTEP] lhs rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 | ↑(valuation A) (↑a⁻¹ - 1) < 1 [PROOFSTEP] lhs rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 | ↑(valuation A) (↑a⁻¹ - 1) < 1 [PROOFSTEP] lhs [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 | ↑(valuation A) (↑a⁻¹ - 1) [PROOFSTEP] rw [← mul_one (A.valuation _), ← A.valuation.map_one_add_of_lt ha] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ ha : ↑(valuation A) (↑a - 1) < 1 ⊢ ↑(valuation A) (↑a⁻¹ - 1) * ↑(valuation A) (1 + (↑a - 1)) < 1 [PROOFSTEP] rwa [add_sub_cancel'_right, ← Valuation.map_mul, sub_mul, Units.inv_mul, ← neg_sub, one_mul, Valuation.map_neg] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K a : Kˣ h : a ∈ principalUnitGroup A ⊢ a ∈ unitGroup A [PROOFSTEP] simpa only [add_sub_cancel'_right] using A.valuation.map_one_add_of_lt h [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ principalUnitGroup B ≤ principalUnitGroup A ↔ A ≤ B [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ principalUnitGroup B ≤ principalUnitGroup A → A ≤ B [PROOFSTEP] intro h x hx [GOAL] case mp K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A ⊢ x ∈ B [PROOFSTEP] by_cases h_1 : x = 0 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A h_1 : x = 0 ⊢ x ∈ B [PROOFSTEP] simp only [h_1, zero_mem] [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A h_1 : ¬x = 0 ⊢ x ∈ B [PROOFSTEP] by_cases h_2 : x⁻¹ + 1 = 0 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A h_1 : ¬x = 0 h_2 : x⁻¹ + 1 = 0 ⊢ x ∈ B [PROOFSTEP] rw [add_eq_zero_iff_eq_neg, inv_eq_iff_eq_inv, inv_neg, inv_one] at h_2 [GOAL] case pos K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A h_1 : ¬x = 0 h_2 : x = -1 ⊢ x ∈ B [PROOFSTEP] simpa only [h_2] using B.neg_mem _ B.one_mem [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx : x ∈ A h_1 : ¬x = 0 h_2 : ¬x⁻¹ + 1 = 0 ⊢ x ∈ B [PROOFSTEP] rw [← valuation_le_one_iff, ← not_lt, Valuation.one_lt_val_iff _ h_1, ← add_sub_cancel x⁻¹, ← Units.val_mk0 h_2, ← mem_principalUnitGroup_iff] at hx ⊢ [GOAL] case neg K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup B ≤ principalUnitGroup A x : K hx✝¹ : ¬↑(valuation A) x⁻¹ < 1 hx✝ : ¬↑(valuation A) (x⁻¹ + 1 - 1) < 1 h_1 : ¬x = 0 h_2 : ¬x⁻¹ + 1 = 0 hx : ¬Units.mk0 (x⁻¹ + 1) h_2 ∈ principalUnitGroup A ⊢ ¬Units.mk0 (x⁻¹ + 1) h_2 ∈ principalUnitGroup B [PROOFSTEP] simpa only [hx] using @h (Units.mk0 (x⁻¹ + 1) h_2) [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K ⊢ A ≤ B → principalUnitGroup B ≤ principalUnitGroup A [PROOFSTEP] intro h x hx [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : Kˣ hx : x ∈ principalUnitGroup B ⊢ x ∈ principalUnitGroup A [PROOFSTEP] by_contra h_1 [GOAL] case mpr K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : A ≤ B x : Kˣ hx : x ∈ principalUnitGroup B h_1 : ¬x ∈ principalUnitGroup A ⊢ False [PROOFSTEP] exact not_lt.2 (monotone_mapOfLE _ _ h (not_lt.1 h_1)) hx [GOAL] K : Type u inst✝ : Field K A✝ A B : ValuationSubring K h : principalUnitGroup A = principalUnitGroup B ⊢ A = B [PROOFSTEP] simpa [le_antisymm_iff, principalUnitGroup_le_principalUnitGroup] using h.symm [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } ⊢ ↑x ∈ principalUnitGroup A ↔ ↑(unitGroupMulEquiv A) x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) [PROOFSTEP] rw [MonoidHom.mem_ker, Units.ext_iff] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } ⊢ ↑x ∈ principalUnitGroup A ↔ ↑(↑(Units.map ↑(LocalRing.residue { x // x ∈ A })) (↑(unitGroupMulEquiv A) x)) = ↑1 [PROOFSTEP] let π := Ideal.Quotient.mk (LocalRing.maximalIdeal A) [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } := Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A }) ⊢ ↑x ∈ principalUnitGroup A ↔ ↑(↑(Units.map ↑(LocalRing.residue { x // x ∈ A })) (↑(unitGroupMulEquiv A) x)) = ↑1 [PROOFSTEP] convert_to _ ↔ π _ = 1 [GOAL] case convert_3 K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } := Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A }) ⊢ ↑x ∈ principalUnitGroup A ↔ ↑π ↑(↑(unitGroupMulEquiv A) x) = 1 [PROOFSTEP] rw [← π.map_one, ← sub_eq_zero, ← π.map_sub, Ideal.Quotient.eq_zero_iff_mem, valuation_lt_one_iff] [GOAL] case convert_3 K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ unitGroup A } π : { x // x ∈ A } →+* { x // x ∈ A } ⧸ LocalRing.maximalIdeal { x // x ∈ A } := Ideal.Quotient.mk (LocalRing.maximalIdeal { x // x ∈ A }) ⊢ ↑x ∈ principalUnitGroup A ↔ ↑(valuation A) ↑(↑(↑(unitGroupMulEquiv A) x) - 1) < 1 [PROOFSTEP] simp [mem_principalUnitGroup_iff] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) } ⊢ ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A [PROOFSTEP] rw [A.coe_mem_principalUnitGroup_iff] [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) } ⊢ ↑(unitGroupMulEquiv A) (↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) [PROOFSTEP] simpa using SetLike.coe_mem x [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ principalUnitGroup A } ⊢ (fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) ((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x) = x [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) } ⊢ (fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) ((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) = x [PROOFSTEP] simp [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K x y : { x // x ∈ principalUnitGroup A } ⊢ Equiv.toFun { toFun := fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }, invFun := fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }, left_inv := (_ : ∀ (x : { x // x ∈ principalUnitGroup A }), { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)) ∈ principalUnitGroup A) } = x), right_inv := (_ : ∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }), { val := ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } = x) } (x * y) = Equiv.toFun { toFun := fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }, invFun := fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }, left_inv := (_ : ∀ (x : { x // x ∈ principalUnitGroup A }), { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)) ∈ principalUnitGroup A) } = x), right_inv := (_ : ∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }), { val := ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } = x) } x * Equiv.toFun { toFun := fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }, invFun := fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }, left_inv := (_ : ∀ (x : { x // x ∈ principalUnitGroup A }), { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑((fun x => { val := ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑x, property := (_ : ↑x ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) }) x)) ∈ principalUnitGroup A) } = x), right_inv := (_ : ∀ (x : { x // x ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) }), { val := ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) }, property := (_ : ↑(unitGroupMulEquiv A) { val := ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x), property := (_ : ↑((fun x => { val := ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x), property := (_ : ↑(↑(MulEquiv.symm (unitGroupMulEquiv A)) ↑x) ∈ principalUnitGroup A) }) x) ∈ unitGroup A) } ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A }))) } = x) } y [PROOFSTEP] rfl [GOAL] K : Type u inst✝ : Field K A : ValuationSubring K ⊢ MonoidHom.ker (unitGroupToResidueFieldUnits A) = Subgroup.comap (Subgroup.subtype (unitGroup A)) (principalUnitGroup A) [PROOFSTEP] ext -- Porting note: simp fails but rw works -- See https://github.com/leanprover-community/mathlib4/issues/5026 -- simp [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff] [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K x✝ : { x // x ∈ unitGroup A } ⊢ x✝ ∈ MonoidHom.ker (unitGroupToResidueFieldUnits A) ↔ x✝ ∈ Subgroup.comap (Subgroup.subtype (unitGroup A)) (principalUnitGroup A) [PROOFSTEP] rw [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff] [GOAL] case h K : Type u inst✝ : Field K A : ValuationSubring K x✝ : { x // x ∈ unitGroup A } ⊢ x✝ ∈ MonoidHom.ker (unitGroupToResidueFieldUnits A) ↔ ↑(unitGroupMulEquiv A) x✝ ∈ MonoidHom.ker (Units.map ↑(LocalRing.residue { x // x ∈ A })) [PROOFSTEP] rfl -- simp [Subgroup.mem_comap, Subgroup.coeSubtype, coe_mem_principalUnitGroup_iff] [GOAL] K : Type u inst✝² : Field K A : ValuationSubring K G : Type u_1 inst✝¹ : Group G inst✝ : MulSemiringAction G K g : G S : ValuationSubring K src✝ : Subring K := g • S.toSubring x : K h : (g⁻¹ • x)⁻¹ ∈ S ⊢ g⁻¹ • x⁻¹ ∈ S.toSubring [PROOFSTEP] rwa [smul_inv''] [GOAL] K : Type u inst✝² : Field K A✝ : ValuationSubring K L : Type u_1 J : Type u_2 inst✝¹ : Field L inst✝ : Field J A : ValuationSubring L f : K →+* L src✝ : Subring K := Subring.comap f A.toSubring k : K ⊢ k ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ∨ k⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] simp [ValuationSubring.mem_or_inv_mem]
{"mathlib_filename": "Mathlib.RingTheory.Valuation.ValuationSubring", "llama_tokens": 43928}
[GOAL] x : ℝ≥0 y : ℝ ⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] rw [← NNReal.coe_eq, coe_rpow, ← NNReal.coe_eq_zero] [GOAL] x : ℝ≥0 y : ℝ ⊢ ↑x ^ y = ↑0 ↔ ↑x = 0 ∧ y ≠ 0 [PROOFSTEP] exact Real.rpow_eq_zero_iff_of_nonneg x.2 [GOAL] x : ℝ≥0 ⊢ x ^ (-1) = x⁻¹ [PROOFSTEP] simp [rpow_neg] [GOAL] y : ℝ hy : y ≠ 0 x : ℝ≥0 ⊢ (x ^ y) ^ (1 / y) = x [PROOFSTEP] field_simp [← rpow_mul] [GOAL] y : ℝ hy : y ≠ 0 x : ℝ≥0 ⊢ (x ^ (1 / y)) ^ y = x [PROOFSTEP] field_simp [← rpow_mul] [GOAL] x : ℝ≥0 ⊢ ↑sqrt x = x ^ (1 / 2) [PROOFSTEP] refine' NNReal.eq _ [GOAL] x : ℝ≥0 ⊢ ↑(↑sqrt x) = ↑(x ^ (1 / 2)) [PROOFSTEP] push_cast [GOAL] x : ℝ≥0 ⊢ Real.sqrt ↑x = ↑x ^ (1 / 2) [PROOFSTEP] exact Real.sqrt_eq_rpow x.1 [GOAL] x : ℝ≥0 n : ℕ ⊢ ↑(x ^ ↑n) = ↑(x ^ n) [PROOFSTEP] simpa only [coe_rpow, coe_pow] using Real.rpow_nat_cast x n [GOAL] x : ℝ≥0 ⊢ x ^ 2 = x ^ 2 [PROOFSTEP] rw [← rpow_nat_cast] [GOAL] x : ℝ≥0 ⊢ x ^ 2 = x ^ ↑2 [PROOFSTEP] simp only [Nat.cast_ofNat] [GOAL] ι : Type u_1 l : List ι f : ι → ℝ≥0 r : ℝ ⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map f l) ^ r [PROOFSTEP] rw [← list_prod_map_rpow, List.map_map] [GOAL] ι : Type u_1 l : List ι f : ι → ℝ≥0 r : ℝ ⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map ((fun x => x ^ r) ∘ f) l) [PROOFSTEP] rfl [GOAL] l : List ℝ hl : ∀ (x : ℝ), x ∈ l → 0 ≤ x r : ℝ ⊢ List.prod (List.map (fun x => x ^ r) l) = List.prod l ^ r [PROOFSTEP] lift l to List ℝ≥0 using hl [GOAL] case intro r : ℝ l : List ℝ≥0 ⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r [PROOFSTEP] have := congr_arg ((↑) : ℝ≥0 → ℝ) (NNReal.list_prod_map_rpow l r) [GOAL] case intro r : ℝ l : List ℝ≥0 this : ↑(List.prod (List.map (fun x => x ^ r) l)) = ↑(List.prod l ^ r) ⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r [PROOFSTEP] push_cast at this [GOAL] case intro r : ℝ l : List ℝ≥0 this : List.prod (List.map toReal (List.map (fun x => x ^ r) l)) = List.prod (List.map toReal l) ^ r ⊢ List.prod (List.map (fun x => x ^ r) (List.map toReal l)) = List.prod (List.map toReal l) ^ r [PROOFSTEP] rw [List.map_map] at this ⊢ [GOAL] case intro r : ℝ l : List ℝ≥0 this : List.prod (List.map (toReal ∘ fun x => x ^ r) l) = List.prod (List.map toReal l) ^ r ⊢ List.prod (List.map ((fun x => x ^ r) ∘ toReal) l) = List.prod (List.map toReal l) ^ r [PROOFSTEP] exact_mod_cast this [GOAL] ι : Type u_1 l : List ι f : ι → ℝ hl : ∀ (i : ι), i ∈ l → 0 ≤ f i r : ℝ ⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map f l) ^ r [PROOFSTEP] rw [← Real.list_prod_map_rpow (l.map f) _ r, List.map_map] [GOAL] ι : Type u_1 l : List ι f : ι → ℝ hl : ∀ (i : ι), i ∈ l → 0 ≤ f i r : ℝ ⊢ List.prod (List.map (fun x => f x ^ r) l) = List.prod (List.map ((fun x => x ^ r) ∘ f) l) ι : Type u_1 l : List ι f : ι → ℝ hl : ∀ (i : ι), i ∈ l → 0 ≤ f i r : ℝ ⊢ ∀ (x : ℝ), x ∈ List.map f l → 0 ≤ x [PROOFSTEP] rfl [GOAL] ι : Type u_1 l : List ι f : ι → ℝ hl : ∀ (i : ι), i ∈ l → 0 ≤ f i r : ℝ ⊢ ∀ (x : ℝ), x ∈ List.map f l → 0 ≤ x [PROOFSTEP] simpa using hl [GOAL] ι : Type u_1 s : Multiset ι f : ι → ℝ hs : ∀ (i : ι), i ∈ s → 0 ≤ f i r : ℝ ⊢ Multiset.prod (Multiset.map (fun x => f x ^ r) s) = Multiset.prod (Multiset.map f s) ^ r [PROOFSTEP] induction' s using Quotient.inductionOn with l [GOAL] case h ι : Type u_1 s : Multiset ι f : ι → ℝ hs✝ : ∀ (i : ι), i ∈ s → 0 ≤ f i r : ℝ l : List ι hs : ∀ (i : ι), i ∈ Quotient.mk (List.isSetoid ι) l → 0 ≤ f i ⊢ Multiset.prod (Multiset.map (fun x => f x ^ r) (Quotient.mk (List.isSetoid ι) l)) = Multiset.prod (Multiset.map f (Quotient.mk (List.isSetoid ι) l)) ^ r [PROOFSTEP] simpa using Real.list_prod_map_rpow' l f hs r [GOAL] x y : ℝ≥0 z : ℝ hz : 0 < z ⊢ x ≤ y ^ (1 / z) ↔ x ^ z ≤ y [PROOFSTEP] rw [← rpow_le_rpow_iff hz, rpow_self_rpow_inv hz.ne'] [GOAL] x y : ℝ≥0 z : ℝ hz : 0 < z ⊢ x ^ (1 / z) ≤ y ↔ x ≤ y ^ z [PROOFSTEP] rw [← rpow_le_rpow_iff hz, rpow_self_rpow_inv hz.ne'] [GOAL] p : ℝ x : ℝ≥0 hx_pos : 0 < x ⊢ 0 < x ^ p [PROOFSTEP] have rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p := by intro p hp_pos rw [← zero_rpow hp_pos.ne'] exact rpow_lt_rpow hx_pos hp_pos [GOAL] p : ℝ x : ℝ≥0 hx_pos : 0 < x ⊢ ∀ {p : ℝ}, 0 < p → 0 < x ^ p [PROOFSTEP] intro p hp_pos [GOAL] p✝ : ℝ x : ℝ≥0 hx_pos : 0 < x p : ℝ hp_pos : 0 < p ⊢ 0 < x ^ p [PROOFSTEP] rw [← zero_rpow hp_pos.ne'] [GOAL] p✝ : ℝ x : ℝ≥0 hx_pos : 0 < x p : ℝ hp_pos : 0 < p ⊢ 0 ^ p < x ^ p [PROOFSTEP] exact rpow_lt_rpow hx_pos hp_pos [GOAL] p : ℝ x : ℝ≥0 hx_pos : 0 < x rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p ⊢ 0 < x ^ p [PROOFSTEP] rcases lt_trichotomy (0 : ℝ) p with (hp_pos | rfl | hp_neg) [GOAL] case inl p : ℝ x : ℝ≥0 hx_pos : 0 < x rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p hp_pos : 0 < p ⊢ 0 < x ^ p [PROOFSTEP] exact rpow_pos_of_nonneg hp_pos [GOAL] case inr.inl x : ℝ≥0 hx_pos : 0 < x rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p ⊢ 0 < x ^ 0 [PROOFSTEP] simp only [zero_lt_one, rpow_zero] [GOAL] case inr.inr p : ℝ x : ℝ≥0 hx_pos : 0 < x rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p hp_neg : p < 0 ⊢ 0 < x ^ p [PROOFSTEP] rw [← neg_neg p, rpow_neg, inv_pos] [GOAL] case inr.inr p : ℝ x : ℝ≥0 hx_pos : 0 < x rpow_pos_of_nonneg : ∀ {p : ℝ}, 0 < p → 0 < x ^ p hp_neg : p < 0 ⊢ 0 < x ^ (-p) [PROOFSTEP] exact rpow_pos_of_nonneg (neg_pos.mpr hp_neg) [GOAL] x : ℝ≥0 z : ℝ hx : x ≤ 1 h_one_le : 1 ≤ z ⊢ x ^ z ≤ x [PROOFSTEP] rcases eq_bot_or_bot_lt x with (rfl | (h : 0 < x)) [GOAL] case inl z : ℝ h_one_le : 1 ≤ z hx : ⊥ ≤ 1 ⊢ ⊥ ^ z ≤ ⊥ [PROOFSTEP] have : z ≠ 0 := by linarith [GOAL] z : ℝ h_one_le : 1 ≤ z hx : ⊥ ≤ 1 ⊢ z ≠ 0 [PROOFSTEP] linarith [GOAL] case inl z : ℝ h_one_le : 1 ≤ z hx : ⊥ ≤ 1 this : z ≠ 0 ⊢ ⊥ ^ z ≤ ⊥ [PROOFSTEP] simp [this] [GOAL] case inr x : ℝ≥0 z : ℝ hx : x ≤ 1 h_one_le : 1 ≤ z h : 0 < x ⊢ x ^ z ≤ x [PROOFSTEP] nth_rw 2 [← NNReal.rpow_one x] [GOAL] case inr x : ℝ≥0 z : ℝ hx : x ≤ 1 h_one_le : 1 ≤ z h : 0 < x ⊢ x ^ z ≤ x ^ 1 [PROOFSTEP] exact NNReal.rpow_le_rpow_of_exponent_ge h hx h_one_le [GOAL] x : ℝ hx : x ≠ 0 y z : ℝ≥0 hyz : (fun y => y ^ x) y = (fun y => y ^ x) z ⊢ y = z [PROOFSTEP] simpa only [rpow_inv_rpow_self hx] using congr_arg (fun y => y ^ (1 / x)) hyz [GOAL] x : ℝ hx : x ≠ 0 y : ℝ≥0 ⊢ (fun y => y ^ x) (y ^ x⁻¹) = y [PROOFSTEP] simp_rw [← rpow_mul, _root_.inv_mul_cancel hx, rpow_one] [GOAL] x y : ℝ≥0 z : ℝ hz : z ≠ 0 ⊢ x = y ^ (1 / z) ↔ x ^ z = y [PROOFSTEP] rw [← rpow_eq_rpow_iff hz, rpow_self_rpow_inv hz] [GOAL] x y : ℝ≥0 z : ℝ hz : z ≠ 0 ⊢ x ^ (1 / z) = y ↔ x = y ^ z [PROOFSTEP] rw [← rpow_eq_rpow_iff hz, rpow_self_rpow_inv hz] [GOAL] x : ℝ≥0 n : ℕ hn : n ≠ 0 ⊢ (x ^ n) ^ (↑n)⁻¹ = x [PROOFSTEP] rw [← NNReal.coe_eq, coe_rpow, NNReal.coe_pow] [GOAL] x : ℝ≥0 n : ℕ hn : n ≠ 0 ⊢ (↑x ^ n) ^ (↑n)⁻¹ = ↑x [PROOFSTEP] exact Real.pow_nat_rpow_nat_inv x.2 hn [GOAL] x : ℝ≥0 n : ℕ hn : n ≠ 0 ⊢ (x ^ (↑n)⁻¹) ^ n = x [PROOFSTEP] rw [← NNReal.coe_eq, NNReal.coe_pow, coe_rpow] [GOAL] x : ℝ≥0 n : ℕ hn : n ≠ 0 ⊢ (↑x ^ (↑n)⁻¹) ^ n = ↑x [PROOFSTEP] exact Real.rpow_nat_inv_pow_nat x.2 hn [GOAL] x y : ℝ hx : 0 ≤ x ⊢ toNNReal (x ^ y) = toNNReal x ^ y [PROOFSTEP] nth_rw 1 [← Real.coe_toNNReal x hx] [GOAL] x y : ℝ hx : 0 ≤ x ⊢ toNNReal (↑(toNNReal x) ^ y) = toNNReal x ^ y [PROOFSTEP] rw [← NNReal.coe_rpow, Real.toNNReal_coe] [GOAL] z : ℝ h : 0 < z x y : ℝ≥0 hxy : x < y ⊢ (fun x => x ^ z) x < (fun x => x ^ z) y [PROOFSTEP] simp only [NNReal.rpow_lt_rpow hxy h, coe_lt_coe] [GOAL] z : ℝ h : 0 ≤ z h0 : 0 = z ⊢ Monotone fun x => x ^ 0 [PROOFSTEP] simp only [rpow_zero, monotone_const] [GOAL] y : ℝ hy : 0 < y x : ℝ≥0 ⊢ (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x [PROOFSTEP] dsimp [GOAL] y : ℝ hy : 0 < y x : ℝ≥0 ⊢ (x ^ (1 / y)) ^ y = x [PROOFSTEP] rw [← rpow_mul, one_div_mul_cancel hy.ne.symm, rpow_one] [GOAL] y : ℝ hy : 0 < y ⊢ OrderIso.symm (orderIsoRpow y hy) = orderIsoRpow (1 / y) (_ : 0 < 1 / y) [PROOFSTEP] simp only [orderIsoRpow, one_div_one_div] [GOAL] y : ℝ hy : 0 < y ⊢ OrderIso.symm (StrictMono.orderIsoOfRightInverse (fun x => x ^ y) (_ : StrictMono fun x => x ^ y) (fun x => x ^ (1 / y)) (_ : ∀ (x : ℝ≥0), (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x)) = StrictMono.orderIsoOfRightInverse (fun x => x ^ (1 / y)) (_ : StrictMono fun x => x ^ (1 / y)) (fun x => x ^ y) (_ : Function.RightInverse (fun x => x ^ y) fun x => x ^ (1 / y)) [PROOFSTEP] rfl [GOAL] x : ℝ≥0∞ ⊢ x ^ 0 = 1 [PROOFSTEP] cases x [GOAL] case none ⊢ none ^ 0 = 1 [PROOFSTEP] dsimp only [(· ^ ·), Pow.pow, rpow] [GOAL] case none ⊢ (if 0 < 0 then ⊤ else if 0 = 0 then 1 else 0) = 1 [PROOFSTEP] simp [lt_irrefl] [GOAL] case some val✝ : ℝ≥0 ⊢ Option.some val✝ ^ 0 = 1 [PROOFSTEP] dsimp only [(· ^ ·), Pow.pow, rpow] [GOAL] case some val✝ : ℝ≥0 ⊢ (if val✝ = 0 ∧ 0 < 0 then ⊤ else ↑(NNReal.rpow val✝ 0)) = 1 [PROOFSTEP] simp [lt_irrefl] [GOAL] y : ℝ h : 0 < y ⊢ ⊤ ^ y = ⊤ [PROOFSTEP] simp [top_rpow_def, h] [GOAL] y : ℝ h : y < 0 ⊢ ⊤ ^ y = 0 [PROOFSTEP] simp [top_rpow_def, asymm h, ne_of_lt h] [GOAL] y : ℝ h : 0 < y ⊢ 0 ^ y = 0 [PROOFSTEP] rw [← ENNReal.coe_zero, ← ENNReal.some_eq_coe] [GOAL] y : ℝ h : 0 < y ⊢ Option.some 0 ^ y = Option.some 0 [PROOFSTEP] dsimp only [(· ^ ·), rpow, Pow.pow] [GOAL] y : ℝ h : 0 < y ⊢ (if 0 = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow 0 y)) = Option.some 0 [PROOFSTEP] simp [h, asymm h, ne_of_gt h] [GOAL] y : ℝ h : y < 0 ⊢ 0 ^ y = ⊤ [PROOFSTEP] rw [← ENNReal.coe_zero, ← ENNReal.some_eq_coe] [GOAL] y : ℝ h : y < 0 ⊢ Option.some 0 ^ y = ⊤ [PROOFSTEP] dsimp only [(· ^ ·), rpow, Pow.pow] [GOAL] y : ℝ h : y < 0 ⊢ (if 0 = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow 0 y)) = ⊤ [PROOFSTEP] simp [h, ne_of_gt h] [GOAL] y : ℝ ⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤ [PROOFSTEP] rcases lt_trichotomy (0 : ℝ) y with (H | rfl | H) [GOAL] case inl y : ℝ H : 0 < y ⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤ [PROOFSTEP] simp [H, ne_of_gt, zero_rpow_of_pos, lt_irrefl] [GOAL] case inr.inl ⊢ 0 ^ 0 = if 0 < 0 then 0 else if 0 = 0 then 1 else ⊤ [PROOFSTEP] simp [lt_irrefl] [GOAL] case inr.inr y : ℝ H : y < 0 ⊢ 0 ^ y = if 0 < y then 0 else if y = 0 then 1 else ⊤ [PROOFSTEP] simp [H, asymm H, ne_of_lt, zero_rpow_of_neg] [GOAL] y : ℝ ⊢ 0 ^ y * 0 ^ y = 0 ^ y [PROOFSTEP] rw [zero_rpow_def] [GOAL] y : ℝ ⊢ ((if 0 < y then 0 else if y = 0 then 1 else ⊤) * if 0 < y then 0 else if y = 0 then 1 else ⊤) = if 0 < y then 0 else if y = 0 then 1 else ⊤ [PROOFSTEP] split_ifs [GOAL] case pos y : ℝ h✝ : 0 < y ⊢ 0 * 0 = 0 case pos y : ℝ h✝¹ : ¬0 < y h✝ : y = 0 ⊢ 1 * 1 = 1 case neg y : ℝ h✝¹ : ¬0 < y h✝ : ¬y = 0 ⊢ ⊤ * ⊤ = ⊤ [PROOFSTEP] exacts [zero_mul _, one_mul _, top_mul_top] [GOAL] x : ℝ≥0 h : x ≠ 0 y : ℝ ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] rw [← ENNReal.some_eq_coe] [GOAL] x : ℝ≥0 h : x ≠ 0 y : ℝ ⊢ Option.some x ^ y = ↑(x ^ y) [PROOFSTEP] dsimp only [(· ^ ·), Pow.pow, rpow] [GOAL] x : ℝ≥0 h : x ≠ 0 y : ℝ ⊢ (if x = 0 ∧ y < 0 then ⊤ else ↑(NNReal.rpow x y)) = ↑(NNReal.rpow x y) [PROOFSTEP] simp [h] [GOAL] x : ℝ≥0 y : ℝ h : 0 ≤ y ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos x : ℝ≥0 y : ℝ h : 0 ≤ y hx : x = 0 ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] rcases le_iff_eq_or_lt.1 h with (H | H) [GOAL] case pos.inl x : ℝ≥0 y : ℝ h : 0 ≤ y hx : x = 0 H : 0 = y ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] simp [hx, H.symm] [GOAL] case pos.inr x : ℝ≥0 y : ℝ h : 0 ≤ y hx : x = 0 H : 0 < y ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] simp [hx, zero_rpow_of_pos H, NNReal.zero_rpow (ne_of_gt H)] [GOAL] case neg x : ℝ≥0 y : ℝ h : 0 ≤ y hx : ¬x = 0 ⊢ ↑x ^ y = ↑(x ^ y) [PROOFSTEP] exact coe_rpow_of_ne_zero hx _ [GOAL] x : ℝ≥0∞ ⊢ x ^ 1 = x [PROOFSTEP] cases x [GOAL] case none ⊢ none ^ 1 = none [PROOFSTEP] exact dif_pos zero_lt_one [GOAL] case some val✝ : ℝ≥0 ⊢ Option.some val✝ ^ 1 = Option.some val✝ [PROOFSTEP] change ite _ _ _ = _ [GOAL] case some val✝ : ℝ≥0 ⊢ (if val✝ = 0 ∧ 1 < 0 then ⊤ else ↑(val✝ ^ 1)) = Option.some val✝ [PROOFSTEP] simp only [NNReal.rpow_one, some_eq_coe, ite_eq_right_iff, top_ne_coe, and_imp] [GOAL] case some val✝ : ℝ≥0 ⊢ val✝ = 0 → 1 < 0 → False [PROOFSTEP] exact fun _ => zero_le_one.not_lt [GOAL] x : ℝ ⊢ 1 ^ x = 1 [PROOFSTEP] rw [← coe_one, coe_rpow_of_ne_zero one_ne_zero] [GOAL] x : ℝ ⊢ ↑(1 ^ x) = ↑1 [PROOFSTEP] simp [GOAL] x : ℝ≥0∞ y : ℝ ⊢ x ^ y = 0 ↔ x = 0 ∧ 0 < y ∨ x = ⊤ ∧ y < 0 [PROOFSTEP] cases' x with x [GOAL] case none y : ℝ ⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0 [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case none.inl y : ℝ H : y < 0 ⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0 [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case none.inr.inl y : ℝ H : y = 0 ⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0 [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case none.inr.inr y : ℝ H : 0 < y ⊢ none ^ y = 0 ↔ none = 0 ∧ 0 < y ∨ none = ⊤ ∧ y < 0 [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case some y : ℝ x : ℝ≥0 ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos y : ℝ x : ℝ≥0 h : x = 0 ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case pos.inl y : ℝ x : ℝ≥0 h : x = 0 H : y < 0 ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case pos.inr.inl y : ℝ x : ℝ≥0 h : x = 0 H : y = 0 ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case pos.inr.inr y : ℝ x : ℝ≥0 h : x = 0 H : 0 < y ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case neg y : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ Option.some x ^ y = 0 ↔ Option.some x = 0 ∧ 0 < y ∨ Option.some x = ⊤ ∧ y < 0 [PROOFSTEP] simp [coe_rpow_of_ne_zero h, h] [GOAL] x : ℝ≥0∞ y : ℝ ⊢ x ^ y = ⊤ ↔ x = 0 ∧ y < 0 ∨ x = ⊤ ∧ 0 < y [PROOFSTEP] cases' x with x [GOAL] case none y : ℝ ⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case none.inl y : ℝ H : y < 0 ⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case none.inr.inl y : ℝ H : y = 0 ⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case none.inr.inr y : ℝ H : 0 < y ⊢ none ^ y = ⊤ ↔ none = 0 ∧ y < 0 ∨ none = ⊤ ∧ 0 < y [PROOFSTEP] simp [H, top_rpow_of_neg, top_rpow_of_pos, le_of_lt] [GOAL] case some y : ℝ x : ℝ≥0 ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos y : ℝ x : ℝ≥0 h : x = 0 ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case pos.inl y : ℝ x : ℝ≥0 h : x = 0 H : y < 0 ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case pos.inr.inl y : ℝ x : ℝ≥0 h : x = 0 H : y = 0 ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case pos.inr.inr y : ℝ x : ℝ≥0 h : x = 0 H : 0 < y ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] simp [h, H, zero_rpow_of_neg, zero_rpow_of_pos, le_of_lt] [GOAL] case neg y : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ Option.some x ^ y = ⊤ ↔ Option.some x = 0 ∧ y < 0 ∨ Option.some x = ⊤ ∧ 0 < y [PROOFSTEP] simp [coe_rpow_of_ne_zero h, h] [GOAL] x : ℝ≥0∞ y : ℝ hy : 0 < y ⊢ x ^ y = ⊤ ↔ x = ⊤ [PROOFSTEP] simp [rpow_eq_top_iff, hy, asymm hy] [GOAL] x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y ⊢ x ^ y = ⊤ → x = ⊤ [PROOFSTEP] rw [ENNReal.rpow_eq_top_iff] [GOAL] x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y ⊢ x = 0 ∧ y < 0 ∨ x = ⊤ ∧ 0 < y → x = ⊤ [PROOFSTEP] rintro (h | h) [GOAL] case inl x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y h : x = 0 ∧ y < 0 ⊢ x = ⊤ [PROOFSTEP] exfalso [GOAL] case inl.h x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y h : x = 0 ∧ y < 0 ⊢ False [PROOFSTEP] rw [lt_iff_not_ge] at h [GOAL] case inl.h x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y h : x = 0 ∧ ¬y ≥ 0 ⊢ False [PROOFSTEP] exact h.right hy0 [GOAL] case inr x : ℝ≥0∞ y : ℝ hy0 : 0 ≤ y h : x = ⊤ ∧ 0 < y ⊢ x = ⊤ [PROOFSTEP] exact h.left [GOAL] x : ℝ≥0∞ y z : ℝ hx : x ≠ 0 h'x : x ≠ ⊤ ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] cases' x with x [GOAL] case none y z : ℝ hx : none ≠ 0 h'x : none ≠ ⊤ ⊢ none ^ (y + z) = none ^ y * none ^ z [PROOFSTEP] exact (h'x rfl).elim [GOAL] case some y z : ℝ x : ℝ≥0 hx : Option.some x ≠ 0 h'x : Option.some x ≠ ⊤ ⊢ Option.some x ^ (y + z) = Option.some x ^ y * Option.some x ^ z [PROOFSTEP] have : x ≠ 0 := fun h => by simp [h] at hx [GOAL] y z : ℝ x : ℝ≥0 hx : Option.some x ≠ 0 h'x : Option.some x ≠ ⊤ h : x = 0 ⊢ False [PROOFSTEP] simp [h] at hx [GOAL] case some y z : ℝ x : ℝ≥0 hx : Option.some x ≠ 0 h'x : Option.some x ≠ ⊤ this : x ≠ 0 ⊢ Option.some x ^ (y + z) = Option.some x ^ y * Option.some x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero this, NNReal.rpow_add this] [GOAL] x : ℝ≥0∞ y : ℝ ⊢ x ^ (-y) = (x ^ y)⁻¹ [PROOFSTEP] cases' x with x [GOAL] case none y : ℝ ⊢ none ^ (-y) = (none ^ y)⁻¹ [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case none.inl y : ℝ H : y < 0 ⊢ none ^ (-y) = (none ^ y)⁻¹ [PROOFSTEP] simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr] [GOAL] case none.inr.inl y : ℝ H : y = 0 ⊢ none ^ (-y) = (none ^ y)⁻¹ [PROOFSTEP] simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr] [GOAL] case none.inr.inr y : ℝ H : 0 < y ⊢ none ^ (-y) = (none ^ y)⁻¹ [PROOFSTEP] simp [top_rpow_of_pos, top_rpow_of_neg, H, neg_pos.mpr] [GOAL] case some y : ℝ x : ℝ≥0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos y : ℝ x : ℝ≥0 h : x = 0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] rcases lt_trichotomy y 0 with (H | H | H) [GOAL] case pos.inl y : ℝ x : ℝ≥0 h : x = 0 H : y < 0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr] [GOAL] case pos.inr.inl y : ℝ x : ℝ≥0 h : x = 0 H : y = 0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr] [GOAL] case pos.inr.inr y : ℝ x : ℝ≥0 h : x = 0 H : 0 < y ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] simp [h, zero_rpow_of_pos, zero_rpow_of_neg, H, neg_pos.mpr] [GOAL] case neg y : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] have A : x ^ y ≠ 0 := by simp [h] [GOAL] y : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ x ^ y ≠ 0 [PROOFSTEP] simp [h] [GOAL] case neg y : ℝ x : ℝ≥0 h : ¬x = 0 A : x ^ y ≠ 0 ⊢ Option.some x ^ (-y) = (Option.some x ^ y)⁻¹ [PROOFSTEP] simp [coe_rpow_of_ne_zero h, ← coe_inv A, NNReal.rpow_neg] [GOAL] x : ℝ≥0∞ y z : ℝ hx : x ≠ 0 h'x : x ≠ ⊤ ⊢ x ^ (y - z) = x ^ y / x ^ z [PROOFSTEP] rw [sub_eq_add_neg, rpow_add _ _ hx h'x, rpow_neg, div_eq_mul_inv] [GOAL] x : ℝ≥0∞ ⊢ x ^ (-1) = x⁻¹ [PROOFSTEP] simp [rpow_neg] [GOAL] x : ℝ≥0∞ y z : ℝ ⊢ x ^ (y * z) = (x ^ y) ^ z [PROOFSTEP] cases' x with x [GOAL] case none y z : ℝ ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy y 0 with (Hy | Hy | Hy) [GOAL] case none.inl y z : ℝ Hy : y < 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inr.inl y z : ℝ Hy : y = 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inr.inr y z : ℝ Hy : 0 < y ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inl.inl y z : ℝ Hy : y < 0 Hz : z < 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inl.inr.inl y z : ℝ Hy : y < 0 Hz : z = 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inl.inr.inr y z : ℝ Hy : y < 0 Hz : 0 < z ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inl.inl y z : ℝ Hy : y = 0 Hz : z < 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inl.inr.inl y z : ℝ Hy : y = 0 Hz : z = 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inl.inr.inr y z : ℝ Hy : y = 0 Hz : 0 < z ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inr.inl y z : ℝ Hy : 0 < y Hz : z < 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inr.inr.inl y z : ℝ Hy : 0 < y Hz : z = 0 ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case none.inr.inr.inr.inr y z : ℝ Hy : 0 < y Hz : 0 < z ⊢ none ^ (y * z) = (none ^ y) ^ z [PROOFSTEP] simp [Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case some y z : ℝ x : ℝ≥0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos y z : ℝ x : ℝ≥0 h : x = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy y 0 with (Hy | Hy | Hy) [GOAL] case pos.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y < 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inr.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inr.inr y z : ℝ x : ℝ≥0 h : x = 0 Hy : 0 < y ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inl.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y < 0 Hz : z < 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inl.inr.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y < 0 Hz : z = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inl.inr.inr y z : ℝ x : ℝ≥0 h : x = 0 Hy : y < 0 Hz : 0 < z ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inl.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y = 0 Hz : z < 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inl.inr.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : y = 0 Hz : z = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inl.inr.inr y z : ℝ x : ℝ≥0 h : x = 0 Hy : y = 0 Hz : 0 < z ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inr.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : 0 < y Hz : z < 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inr.inr.inl y z : ℝ x : ℝ≥0 h : x = 0 Hy : 0 < y Hz : z = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case pos.inr.inr.inr.inr y z : ℝ x : ℝ≥0 h : x = 0 Hy : 0 < y Hz : 0 < z ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [h, Hy, Hz, zero_rpow_of_neg, zero_rpow_of_pos, top_rpow_of_neg, top_rpow_of_pos, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case neg y z : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] have : x ^ y ≠ 0 := by simp [h] [GOAL] y z : ℝ x : ℝ≥0 h : ¬x = 0 ⊢ x ^ y ≠ 0 [PROOFSTEP] simp [h] [GOAL] case neg y z : ℝ x : ℝ≥0 h : ¬x = 0 this : x ^ y ≠ 0 ⊢ Option.some x ^ (y * z) = (Option.some x ^ y) ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero h, coe_rpow_of_ne_zero this, NNReal.rpow_mul] [GOAL] x : ℝ≥0∞ n : ℕ ⊢ x ^ ↑n = x ^ n [PROOFSTEP] cases x [GOAL] case none n : ℕ ⊢ none ^ ↑n = none ^ n [PROOFSTEP] cases n [GOAL] case none.zero ⊢ none ^ ↑Nat.zero = none ^ Nat.zero [PROOFSTEP] simp [top_rpow_of_pos (Nat.cast_add_one_pos _), top_pow (Nat.succ_pos _)] [GOAL] case none.succ n✝ : ℕ ⊢ none ^ ↑(Nat.succ n✝) = none ^ Nat.succ n✝ [PROOFSTEP] simp [top_rpow_of_pos (Nat.cast_add_one_pos _), top_pow (Nat.succ_pos _)] [GOAL] case some n : ℕ val✝ : ℝ≥0 ⊢ Option.some val✝ ^ ↑n = Option.some val✝ ^ n [PROOFSTEP] simp [coe_rpow_of_nonneg _ (Nat.cast_nonneg n)] [GOAL] x : ℝ≥0∞ ⊢ x ^ 2 = x ^ 2 [PROOFSTEP] rw [← rpow_nat_cast] [GOAL] x : ℝ≥0∞ ⊢ x ^ 2 = x ^ ↑2 [PROOFSTEP] simp only [Nat.cast_ofNat] [GOAL] x y : ℝ≥0∞ z : ℝ ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] rcases eq_or_ne z 0 with (rfl | hz) [GOAL] case inl x y : ℝ≥0∞ ⊢ (x * y) ^ 0 = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ 0 < 0 then ⊤ else x ^ 0 * y ^ 0 [PROOFSTEP] simp [GOAL] case inr x y : ℝ≥0∞ z : ℝ hz : z ≠ 0 ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] replace hz := hz.lt_or_lt [GOAL] case inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] wlog hxy : x ≤ y [GOAL] case inr.inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z this : ∀ (x y : ℝ≥0∞) (z : ℝ), z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z hxy : ¬x ≤ y ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] convert this y x z hz (le_of_not_le hxy) using 2 [GOAL] case h.e'_2.h.e'_5 x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z this : ∀ (x y : ℝ≥0∞) (z : ℝ), z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z hxy : ¬x ≤ y ⊢ x * y = y * x [PROOFSTEP] simp only [mul_comm, and_comm, or_comm] [GOAL] case h.e'_3.h₁.a x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z this : ∀ (x y : ℝ≥0∞) (z : ℝ), z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z hxy : ¬x ≤ y ⊢ (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 ↔ (y = 0 ∧ x = ⊤ ∨ y = ⊤ ∧ x = 0) ∧ z < 0 [PROOFSTEP] simp only [mul_comm, and_comm, or_comm] [GOAL] case h.e'_3.h₃ x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z this : ∀ (x y : ℝ≥0∞) (z : ℝ), z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z hxy : ¬x ≤ y a✝ : ¬((y = 0 ∧ x = ⊤ ∨ y = ⊤ ∧ x = 0) ∧ z < 0) ⊢ x ^ z * y ^ z = y ^ z * x ^ z [PROOFSTEP] simp only [mul_comm, and_comm, or_comm] [GOAL] x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hxy : x ≤ y ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx0) [GOAL] case inl y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hxy : 0 ≤ y ⊢ (0 * y) ^ z = if (0 = 0 ∧ y = ⊤ ∨ 0 = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else 0 ^ z * y ^ z [PROOFSTEP] induction y using ENNReal.recTopCoe [GOAL] case inl.top z : ℝ hz : z < 0 ∨ 0 < z hxy : 0 ≤ ⊤ ⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z [PROOFSTEP] cases' hz with hz hz [GOAL] case inl.coe z : ℝ hz : z < 0 ∨ 0 < z x✝ : ℝ≥0 hxy : 0 ≤ ↑x✝ ⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z [PROOFSTEP] cases' hz with hz hz [GOAL] case inl.top.inl z : ℝ hxy : 0 ≤ ⊤ hz : z < 0 ⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z [PROOFSTEP] simp [*, hz.not_lt] [GOAL] case inl.top.inr z : ℝ hxy : 0 ≤ ⊤ hz : 0 < z ⊢ (0 * ⊤) ^ z = if (0 = 0 ∧ ⊤ = ⊤ ∨ 0 = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ⊤ ^ z [PROOFSTEP] simp [*, hz.not_lt] [GOAL] case inl.coe.inl z : ℝ x✝ : ℝ≥0 hxy : 0 ≤ ↑x✝ hz : z < 0 ⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z [PROOFSTEP] simp [*, hz.not_lt] [GOAL] case inl.coe.inr z : ℝ x✝ : ℝ≥0 hxy : 0 ≤ ↑x✝ hz : 0 < z ⊢ (0 * ↑x✝) ^ z = if (0 = 0 ∧ ↑x✝ = ⊤ ∨ 0 = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else 0 ^ z * ↑x✝ ^ z [PROOFSTEP] simp [*, hz.not_lt] [GOAL] case inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hxy : x ≤ y hx0 : x ≠ 0 ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy0) [GOAL] case inr.inl x : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hx0 : x ≠ 0 hxy : x ≤ 0 ⊢ (x * 0) ^ z = if (x = 0 ∧ 0 = ⊤ ∨ x = ⊤ ∧ 0 = 0) ∧ z < 0 then ⊤ else x ^ z * 0 ^ z [PROOFSTEP] exact (hx0 (bot_unique hxy)).elim [GOAL] case inr.inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hxy : x ≤ y hx0 : x ≠ 0 hy0 : y ≠ 0 ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z [PROOFSTEP] induction x using ENNReal.recTopCoe [GOAL] case inr.inr.top y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hy0 : y ≠ 0 hxy : ⊤ ≤ y hx0 : ⊤ ≠ 0 ⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z [PROOFSTEP] cases' hz with hz hz [GOAL] case inr.inr.top.inl y : ℝ≥0∞ z : ℝ hy0 : y ≠ 0 hxy : ⊤ ≤ y hx0 : ⊤ ≠ 0 hz : z < 0 ⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z [PROOFSTEP] simp [hz, top_unique hxy] [GOAL] case inr.inr.top.inr y : ℝ≥0∞ z : ℝ hy0 : y ≠ 0 hxy : ⊤ ≤ y hx0 : ⊤ ≠ 0 hz : 0 < z ⊢ (⊤ * y) ^ z = if (⊤ = 0 ∧ y = ⊤ ∨ ⊤ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ⊤ ^ z * y ^ z [PROOFSTEP] simp [hz, top_unique hxy] [GOAL] case inr.inr.coe y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hy0 : y ≠ 0 x✝ : ℝ≥0 hxy : ↑x✝ ≤ y hx0 : ↑x✝ ≠ 0 ⊢ (↑x✝ * y) ^ z = if (↑x✝ = 0 ∧ y = ⊤ ∨ ↑x✝ = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * y ^ z [PROOFSTEP] induction y using ENNReal.recTopCoe [GOAL] case inr.inr.coe.top z : ℝ hz : z < 0 ∨ 0 < z x✝ : ℝ≥0 hx0 : ↑x✝ ≠ 0 hy0 : ⊤ ≠ 0 hxy : ↑x✝ ≤ ⊤ ⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z [PROOFSTEP] rw [ne_eq, coe_eq_zero] at hx0 [GOAL] case inr.inr.coe.top z : ℝ hz : z < 0 ∨ 0 < z x✝ : ℝ≥0 hx0 : ¬x✝ = 0 hy0 : ⊤ ≠ 0 hxy : ↑x✝ ≤ ⊤ ⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z [PROOFSTEP] cases' hz with hz hz [GOAL] case inr.inr.coe.top.inl z : ℝ x✝ : ℝ≥0 hx0 : ¬x✝ = 0 hy0 : ⊤ ≠ 0 hxy : ↑x✝ ≤ ⊤ hz : z < 0 ⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z [PROOFSTEP] simp [*] [GOAL] case inr.inr.coe.top.inr z : ℝ x✝ : ℝ≥0 hx0 : ¬x✝ = 0 hy0 : ⊤ ≠ 0 hxy : ↑x✝ ≤ ⊤ hz : 0 < z ⊢ (↑x✝ * ⊤) ^ z = if (↑x✝ = 0 ∧ ⊤ = ⊤ ∨ ↑x✝ = ⊤ ∧ ⊤ = 0) ∧ z < 0 then ⊤ else ↑x✝ ^ z * ⊤ ^ z [PROOFSTEP] simp [*] [GOAL] case inr.inr.coe.coe z : ℝ hz : z < 0 ∨ 0 < z x✝¹ : ℝ≥0 hx0 : ↑x✝¹ ≠ 0 x✝ : ℝ≥0 hy0 : ↑x✝ ≠ 0 hxy : ↑x✝¹ ≤ ↑x✝ ⊢ (↑x✝¹ * ↑x✝) ^ z = if (↑x✝¹ = 0 ∧ ↑x✝ = ⊤ ∨ ↑x✝¹ = ⊤ ∧ ↑x✝ = 0) ∧ z < 0 then ⊤ else ↑x✝¹ ^ z * ↑x✝ ^ z [PROOFSTEP] simp only [*, false_and_iff, and_false_iff, false_or_iff, if_false] [GOAL] case inr.inr.coe.coe z : ℝ hz : z < 0 ∨ 0 < z x✝¹ : ℝ≥0 hx0 : ↑x✝¹ ≠ 0 x✝ : ℝ≥0 hy0 : ↑x✝ ≠ 0 hxy : ↑x✝¹ ≤ ↑x✝ ⊢ (↑x✝¹ * ↑x✝) ^ z = ↑x✝¹ ^ z * ↑x✝ ^ z [PROOFSTEP] norm_cast at * [GOAL] case inr.inr.coe.coe z : ℝ x✝¹ x✝ : ℝ≥0 hz : z < 0 ∨ 0 < z hx0 : ¬x✝¹ = 0 hy0 : ¬x✝ = 0 hxy : x✝¹ ≤ x✝ ⊢ ↑(x✝¹ * x✝) ^ z = ↑x✝¹ ^ z * ↑x✝ ^ z [PROOFSTEP] rw [coe_rpow_of_ne_zero (mul_ne_zero hx0 hy0), NNReal.mul_rpow] [GOAL] case inr.inr.coe.coe z : ℝ x✝¹ x✝ : ℝ≥0 hz : z < 0 ∨ 0 < z hx0 : ¬x✝¹ = 0 hy0 : ¬x✝ = 0 hxy : x✝¹ ≤ x✝ ⊢ ↑(x✝¹ ^ z * x✝ ^ z) = ↑x✝¹ ^ z * ↑x✝ ^ z [PROOFSTEP] norm_cast [GOAL] x y : ℝ≥0∞ hx : x ≠ ⊤ hy : y ≠ ⊤ z : ℝ ⊢ (x * y) ^ z = x ^ z * y ^ z [PROOFSTEP] simp [*, mul_rpow_eq_ite] [GOAL] x y : ℝ≥0∞ hx : x ≠ 0 hy : y ≠ 0 z : ℝ ⊢ (x * y) ^ z = x ^ z * y ^ z [PROOFSTEP] simp [*, mul_rpow_eq_ite] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 ≤ z ⊢ (x * y) ^ z = x ^ z * y ^ z [PROOFSTEP] simp [hz.not_lt, mul_rpow_eq_ite] [GOAL] x : ℝ≥0∞ y : ℝ ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy) [GOAL] case inl x : ℝ≥0∞ ⊢ x⁻¹ ^ 0 = (x ^ 0)⁻¹ [PROOFSTEP] simp only [rpow_zero, inv_one] [GOAL] case inr x : ℝ≥0∞ y : ℝ hy : y ≠ 0 ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] replace hy := hy.lt_or_lt [GOAL] case inr x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | h0) [GOAL] case inr.inl y : ℝ hy : y < 0 ∨ 0 < y ⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹ [PROOFSTEP] cases hy [GOAL] case inr.inl.inl y : ℝ h✝ : y < 0 ⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹ [PROOFSTEP] simp [*] [GOAL] case inr.inl.inr y : ℝ h✝ : 0 < y ⊢ 0⁻¹ ^ y = (0 ^ y)⁻¹ [PROOFSTEP] simp [*] [GOAL] case inr.inr x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y h0 : x ≠ 0 ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] rcases eq_or_ne x ⊤ with (rfl | h_top) [GOAL] case inr.inr.inl y : ℝ hy : y < 0 ∨ 0 < y h0 : ⊤ ≠ 0 ⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹ [PROOFSTEP] cases hy [GOAL] case inr.inr.inl.inl y : ℝ h0 : ⊤ ≠ 0 h✝ : y < 0 ⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹ [PROOFSTEP] simp [*] [GOAL] case inr.inr.inl.inr y : ℝ h0 : ⊤ ≠ 0 h✝ : 0 < y ⊢ ⊤⁻¹ ^ y = (⊤ ^ y)⁻¹ [PROOFSTEP] simp [*] [GOAL] case inr.inr.inr x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y h0 : x ≠ 0 h_top : x ≠ ⊤ ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] apply ENNReal.eq_inv_of_mul_eq_one_left [GOAL] case inr.inr.inr.h x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y h0 : x ≠ 0 h_top : x ≠ ⊤ ⊢ x⁻¹ ^ y * x ^ y = 1 [PROOFSTEP] rw [← mul_rpow_of_ne_zero (ENNReal.inv_ne_zero.2 h_top) h0, ENNReal.inv_mul_cancel h0 h_top, one_rpow] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 ≤ z ⊢ (x / y) ^ z = x ^ z / y ^ z [PROOFSTEP] rw [div_eq_mul_inv, mul_rpow_of_nonneg _ _ hz, inv_rpow, div_eq_mul_inv] [GOAL] z : ℝ h : 0 < z ⊢ StrictMono fun x => x ^ z [PROOFSTEP] intro x y hxy [GOAL] z : ℝ h : 0 < z x y : ℝ≥0∞ hxy : x < y ⊢ (fun x => x ^ z) x < (fun x => x ^ z) y [PROOFSTEP] lift x to ℝ≥0 using ne_top_of_lt hxy [GOAL] case intro z : ℝ h : 0 < z y : ℝ≥0∞ x : ℝ≥0 hxy : ↑x < y ⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) y [PROOFSTEP] rcases eq_or_ne y ∞ with (rfl | hy) [GOAL] case intro.inl z : ℝ h : 0 < z x : ℝ≥0 hxy : ↑x < ⊤ ⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) ⊤ [PROOFSTEP] simp only [top_rpow_of_pos h, coe_rpow_of_nonneg _ h.le, coe_lt_top] [GOAL] case intro.inr z : ℝ h : 0 < z y : ℝ≥0∞ x : ℝ≥0 hxy : ↑x < y hy : y ≠ ⊤ ⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) y [PROOFSTEP] lift y to ℝ≥0 using hy [GOAL] case intro.inr.intro z : ℝ h : 0 < z x y : ℝ≥0 hxy : ↑x < ↑y ⊢ (fun x => x ^ z) ↑x < (fun x => x ^ z) ↑y [PROOFSTEP] simp only [coe_rpow_of_nonneg _ h.le, NNReal.rpow_lt_rpow (coe_lt_coe.1 hxy) h, coe_lt_coe] [GOAL] z : ℝ h : 0 ≤ z h0 : 0 = z ⊢ Monotone fun x => x ^ 0 [PROOFSTEP] simp only [rpow_zero, monotone_const] [GOAL] y : ℝ hy : 0 < y x : ℝ≥0∞ ⊢ (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x [PROOFSTEP] dsimp [GOAL] y : ℝ hy : 0 < y x : ℝ≥0∞ ⊢ (x ^ (1 / y)) ^ y = x [PROOFSTEP] rw [← rpow_mul, one_div_mul_cancel hy.ne.symm, rpow_one] [GOAL] y : ℝ hy : 0 < y ⊢ OrderIso.symm (orderIsoRpow y hy) = orderIsoRpow (1 / y) (_ : 0 < 1 / y) [PROOFSTEP] simp only [orderIsoRpow, one_div_one_div] [GOAL] y : ℝ hy : 0 < y ⊢ OrderIso.symm (StrictMono.orderIsoOfRightInverse (fun x => x ^ y) (_ : StrictMono fun x => x ^ y) (fun x => x ^ (1 / y)) (_ : ∀ (x : ℝ≥0∞), (fun x => x ^ y) ((fun x => x ^ (1 / y)) x) = x)) = StrictMono.orderIsoOfRightInverse (fun x => x ^ (1 / y)) (_ : StrictMono fun x => x ^ (1 / y)) (fun x => x ^ y) (_ : Function.RightInverse (fun x => x ^ y) fun x => x ^ (1 / y)) [PROOFSTEP] rfl [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ≤ y ^ (1 / z) ↔ x ^ z ≤ y [PROOFSTEP] nth_rw 1 [← rpow_one x] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ 1 ≤ y ^ (1 / z) ↔ x ^ z ≤ y [PROOFSTEP] nth_rw 1 [← @_root_.mul_inv_cancel _ _ z hz.ne'] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ (z * z⁻¹) ≤ y ^ (1 / z) ↔ x ^ z ≤ y [PROOFSTEP] rw [rpow_mul, ← one_div, @rpow_le_rpow_iff _ _ (1 / z) (by simp [hz])] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ 0 < 1 / z [PROOFSTEP] simp [hz] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x < y ^ (1 / z) ↔ x ^ z < y [PROOFSTEP] nth_rw 1 [← rpow_one x] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ 1 < y ^ (1 / z) ↔ x ^ z < y [PROOFSTEP] nth_rw 1 [← @_root_.mul_inv_cancel _ _ z (ne_of_lt hz).symm] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ (z * z⁻¹) < y ^ (1 / z) ↔ x ^ z < y [PROOFSTEP] rw [rpow_mul, ← one_div, @rpow_lt_rpow_iff _ _ (1 / z) (by simp [hz])] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ 0 < 1 / z [PROOFSTEP] simp [hz] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ (1 / z) ≤ y ↔ x ≤ y ^ z [PROOFSTEP] nth_rw 1 [← ENNReal.rpow_one y] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ (1 / z) ≤ y ^ 1 ↔ x ≤ y ^ z [PROOFSTEP] nth_rw 2 [← @_root_.mul_inv_cancel _ _ z hz.ne.symm] [GOAL] x y : ℝ≥0∞ z : ℝ hz : 0 < z ⊢ x ^ (1 / z) ≤ y ^ (z * z⁻¹) ↔ x ≤ y ^ z [PROOFSTEP] rw [ENNReal.rpow_mul, ← one_div, ENNReal.rpow_le_rpow_iff (one_div_pos.2 hz)] [GOAL] x : ℝ≥0∞ y z : ℝ hx : 1 < x hx' : x ≠ ⊤ hyz : y < z ⊢ x ^ y < x ^ z [PROOFSTEP] lift x to ℝ≥0 using hx' [GOAL] case intro y z : ℝ hyz : y < z x : ℝ≥0 hx : 1 < ↑x ⊢ ↑x ^ y < ↑x ^ z [PROOFSTEP] rw [one_lt_coe_iff] at hx [GOAL] case intro y z : ℝ hyz : y < z x : ℝ≥0 hx : 1 < x ⊢ ↑x ^ y < ↑x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt (lt_trans zero_lt_one hx)), NNReal.rpow_lt_rpow_of_exponent_lt hx hyz] [GOAL] x : ℝ≥0∞ y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ x ^ y ≤ x ^ z [PROOFSTEP] cases x [GOAL] case none y z : ℝ hyz : y ≤ z hx : 1 ≤ none ⊢ none ^ y ≤ none ^ z [PROOFSTEP] rcases lt_trichotomy y 0 with (Hy | Hy | Hy) [GOAL] case none.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y < 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y = 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inr.inr y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y ⊢ none ^ y ≤ none ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case none.inl.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y < 0 Hz : z < 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inl.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y < 0 Hz : z = 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inl.inr.inr y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y < 0 Hz : 0 < z ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inl.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y = 0 Hz : z < 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inl.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y = 0 Hz : z = 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inl.inr.inr y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y = 0 Hz : 0 < z ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y Hz : z < 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inr.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y Hz : z = 0 ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inr.inr.inr y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y Hz : 0 < z ⊢ none ^ y ≤ none ^ z [PROOFSTEP] simp [Hy, Hz, top_rpow_of_neg, top_rpow_of_pos, le_refl] [GOAL] case none.inr.inl.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : y = 0 Hz : z < 0 ⊢ False [PROOFSTEP] linarith [GOAL] case none.inr.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y Hz : z < 0 ⊢ False [PROOFSTEP] linarith [GOAL] case none.inr.inr.inr.inl y z : ℝ hyz : y ≤ z hx : 1 ≤ none Hy : 0 < y Hz : z = 0 ⊢ False [PROOFSTEP] linarith [GOAL] case some y z : ℝ hyz : y ≤ z val✝ : ℝ≥0 hx : 1 ≤ Option.some val✝ ⊢ Option.some val✝ ^ y ≤ Option.some val✝ ^ z [PROOFSTEP] simp only [one_le_coe_iff, some_eq_coe] at hx [GOAL] case some y z : ℝ hyz : y ≤ z val✝ : ℝ≥0 hx : 1 ≤ val✝ ⊢ Option.some val✝ ^ y ≤ Option.some val✝ ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt (lt_of_lt_of_le zero_lt_one hx)), NNReal.rpow_le_rpow_of_exponent_le hx hyz] [GOAL] x : ℝ≥0∞ y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ x ^ y < x ^ z [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx1 le_top) [GOAL] case intro y z : ℝ hyz : z < y x : ℝ≥0 hx0 : 0 < ↑x hx1 : ↑x < 1 ⊢ ↑x ^ y < ↑x ^ z [PROOFSTEP] simp only [coe_lt_one_iff, coe_pos] at hx0 hx1 [GOAL] case intro y z : ℝ hyz : z < y x : ℝ≥0 hx0 : 0 < x hx1 : x < 1 ⊢ ↑x ^ y < ↑x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt hx0), NNReal.rpow_lt_rpow_of_exponent_gt hx0 hx1 hyz] [GOAL] x : ℝ≥0∞ y z : ℝ hx1 : x ≤ 1 hyz : z ≤ y ⊢ x ^ y ≤ x ^ z [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx1 coe_lt_top) [GOAL] case intro y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] rcases lt_trichotomy y 0 with (Hy | Hy | Hy) [GOAL] case pos.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : 0 < y ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] rcases lt_trichotomy z 0 with (Hz | Hz | Hz) [GOAL] case pos.inl.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 Hz : z < 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inl.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 Hz : z = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inl.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 Hz : 0 < z ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inl.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y = 0 Hz : z < 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inl.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y = 0 Hz : z = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inl.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y = 0 Hz : 0 < z ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : 0 < y Hz : z < 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inr.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : 0 < y Hz : z = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inr.inr.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : 0 < y Hz : 0 < z ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [Hy, Hz, h, zero_rpow_of_neg, zero_rpow_of_pos, le_refl] [GOAL] case pos.inl.inr.inl y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 Hz : z = 0 ⊢ False [PROOFSTEP] linarith [GOAL] case pos.inl.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y < 0 Hz : 0 < z ⊢ False [PROOFSTEP] linarith [GOAL] case pos.inr.inl.inr.inr y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : x = 0 Hy : y = 0 Hz : 0 < z ⊢ False [PROOFSTEP] linarith [GOAL] case neg y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : ↑x ≤ 1 h : ¬x = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] rw [coe_le_one_iff] at hx1 [GOAL] case neg y z : ℝ hyz : z ≤ y x : ℝ≥0 hx1 : x ≤ 1 h : ¬x = 0 ⊢ ↑x ^ y ≤ ↑x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero h, NNReal.rpow_le_rpow_of_exponent_ge (bot_lt_iff_ne_bot.mpr h) hx1 hyz] [GOAL] x : ℝ≥0∞ z : ℝ hx : x ≤ 1 h_one_le : 1 ≤ z ⊢ x ^ z ≤ x [PROOFSTEP] nth_rw 2 [← ENNReal.rpow_one x] [GOAL] x : ℝ≥0∞ z : ℝ hx : x ≤ 1 h_one_le : 1 ≤ z ⊢ x ^ z ≤ x ^ 1 [PROOFSTEP] exact ENNReal.rpow_le_rpow_of_exponent_ge hx h_one_le [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 ≤ x h_one_le : 1 ≤ z ⊢ x ≤ x ^ z [PROOFSTEP] nth_rw 1 [← ENNReal.rpow_one x] [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 ≤ x h_one_le : 1 ≤ z ⊢ x ^ 1 ≤ x ^ z [PROOFSTEP] exact ENNReal.rpow_le_rpow_of_exponent_le hx h_one_le [GOAL] p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p ⊢ 0 < x ^ p [PROOFSTEP] by_cases hp_zero : p = 0 [GOAL] case pos p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p hp_zero : p = 0 ⊢ 0 < x ^ p [PROOFSTEP] simp [hp_zero, zero_lt_one] [GOAL] case neg p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p hp_zero : ¬p = 0 ⊢ 0 < x ^ p [PROOFSTEP] rw [← Ne.def] at hp_zero [GOAL] case neg p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p hp_zero : p ≠ 0 ⊢ 0 < x ^ p [PROOFSTEP] have hp_pos := lt_of_le_of_ne hp_nonneg hp_zero.symm [GOAL] case neg p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p hp_zero : p ≠ 0 hp_pos : 0 < p ⊢ 0 < x ^ p [PROOFSTEP] rw [← zero_rpow_of_pos hp_pos] [GOAL] case neg p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hp_nonneg : 0 ≤ p hp_zero : p ≠ 0 hp_pos : 0 < p ⊢ 0 ^ p < x ^ p [PROOFSTEP] exact rpow_lt_rpow hx_pos hp_pos [GOAL] p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hx_ne_top : x ≠ ⊤ ⊢ 0 < x ^ p [PROOFSTEP] cases' lt_or_le 0 p with hp_pos hp_nonpos [GOAL] case inl p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hx_ne_top : x ≠ ⊤ hp_pos : 0 < p ⊢ 0 < x ^ p [PROOFSTEP] exact rpow_pos_of_nonneg hx_pos (le_of_lt hp_pos) [GOAL] case inr p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hx_ne_top : x ≠ ⊤ hp_nonpos : p ≤ 0 ⊢ 0 < x ^ p [PROOFSTEP] rw [← neg_neg p, rpow_neg, ENNReal.inv_pos] [GOAL] case inr p : ℝ x : ℝ≥0∞ hx_pos : 0 < x hx_ne_top : x ≠ ⊤ hp_nonpos : p ≤ 0 ⊢ x ^ (-p) ≠ ⊤ [PROOFSTEP] exact rpow_ne_top_of_nonneg (Right.nonneg_neg_iff.mpr hp_nonpos) hx_ne_top [GOAL] x : ℝ≥0∞ z : ℝ hx : x < 1 hz : 0 < z ⊢ x ^ z < 1 [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx le_top) [GOAL] case intro z : ℝ hz : 0 < z x : ℝ≥0 hx : ↑x < 1 ⊢ ↑x ^ z < 1 [PROOFSTEP] simp only [coe_lt_one_iff] at hx [GOAL] case intro z : ℝ hz : 0 < z x : ℝ≥0 hx : x < 1 ⊢ ↑x ^ z < 1 [PROOFSTEP] simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.rpow_lt_one hx hz] [GOAL] x : ℝ≥0∞ z : ℝ hx : x ≤ 1 hz : 0 ≤ z ⊢ x ^ z ≤ 1 [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx coe_lt_top) [GOAL] case intro z : ℝ hz : 0 ≤ z x : ℝ≥0 hx : ↑x ≤ 1 ⊢ ↑x ^ z ≤ 1 [PROOFSTEP] simp only [coe_le_one_iff] at hx [GOAL] case intro z : ℝ hz : 0 ≤ z x : ℝ≥0 hx : x ≤ 1 ⊢ ↑x ^ z ≤ 1 [PROOFSTEP] simp [coe_rpow_of_nonneg _ hz, NNReal.rpow_le_one hx hz] [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 < x hz : z < 0 ⊢ x ^ z < 1 [PROOFSTEP] cases x [GOAL] case none z : ℝ hz : z < 0 hx : 1 < none ⊢ none ^ z < 1 [PROOFSTEP] simp [top_rpow_of_neg hz, zero_lt_one] [GOAL] case some z : ℝ hz : z < 0 val✝ : ℝ≥0 hx : 1 < Option.some val✝ ⊢ Option.some val✝ ^ z < 1 [PROOFSTEP] simp only [some_eq_coe, one_lt_coe_iff] at hx [GOAL] case some z : ℝ hz : z < 0 val✝ : ℝ≥0 hx : 1 < val✝ ⊢ Option.some val✝ ^ z < 1 [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt (lt_trans zero_lt_one hx)), NNReal.rpow_lt_one_of_one_lt_of_neg hx hz] [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 ≤ x hz : z < 0 ⊢ x ^ z ≤ 1 [PROOFSTEP] cases x [GOAL] case none z : ℝ hz : z < 0 hx : 1 ≤ none ⊢ none ^ z ≤ 1 [PROOFSTEP] simp [top_rpow_of_neg hz, zero_lt_one] [GOAL] case some z : ℝ hz : z < 0 val✝ : ℝ≥0 hx : 1 ≤ Option.some val✝ ⊢ Option.some val✝ ^ z ≤ 1 [PROOFSTEP] simp only [one_le_coe_iff, some_eq_coe] at hx [GOAL] case some z : ℝ hz : z < 0 val✝ : ℝ≥0 hx : 1 ≤ val✝ ⊢ Option.some val✝ ^ z ≤ 1 [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt (lt_of_lt_of_le zero_lt_one hx)), NNReal.rpow_le_one_of_one_le_of_nonpos hx (le_of_lt hz)] [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 < x hz : 0 < z ⊢ 1 < x ^ z [PROOFSTEP] cases x [GOAL] case none z : ℝ hz : 0 < z hx : 1 < none ⊢ 1 < none ^ z [PROOFSTEP] simp [top_rpow_of_pos hz] [GOAL] case some z : ℝ hz : 0 < z val✝ : ℝ≥0 hx : 1 < Option.some val✝ ⊢ 1 < Option.some val✝ ^ z [PROOFSTEP] simp only [some_eq_coe, one_lt_coe_iff] at hx [GOAL] case some z : ℝ hz : 0 < z val✝ : ℝ≥0 hx : 1 < val✝ ⊢ 1 < Option.some val✝ ^ z [PROOFSTEP] simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.one_lt_rpow hx hz] [GOAL] x : ℝ≥0∞ z : ℝ hx : 1 ≤ x hz : 0 < z ⊢ 1 ≤ x ^ z [PROOFSTEP] cases x [GOAL] case none z : ℝ hz : 0 < z hx : 1 ≤ none ⊢ 1 ≤ none ^ z [PROOFSTEP] simp [top_rpow_of_pos hz] [GOAL] case some z : ℝ hz : 0 < z val✝ : ℝ≥0 hx : 1 ≤ Option.some val✝ ⊢ 1 ≤ Option.some val✝ ^ z [PROOFSTEP] simp only [one_le_coe_iff, some_eq_coe] at hx [GOAL] case some z : ℝ hz : 0 < z val✝ : ℝ≥0 hx : 1 ≤ val✝ ⊢ 1 ≤ Option.some val✝ ^ z [PROOFSTEP] simp [coe_rpow_of_nonneg _ (le_of_lt hz), NNReal.one_le_rpow hx (le_of_lt hz)] [GOAL] x : ℝ≥0∞ z : ℝ hx1 : 0 < x hx2 : x < 1 hz : z < 0 ⊢ 1 < x ^ z [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx2 le_top) [GOAL] case intro z : ℝ hz : z < 0 x : ℝ≥0 hx1 : 0 < ↑x hx2 : ↑x < 1 ⊢ 1 < ↑x ^ z [PROOFSTEP] simp only [coe_lt_one_iff, coe_pos] at hx1 hx2 ⊢ [GOAL] case intro z : ℝ hz : z < 0 x : ℝ≥0 hx1 : 0 < x hx2 : x < 1 ⊢ 1 < ↑x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt hx1), NNReal.one_lt_rpow_of_pos_of_lt_one_of_neg hx1 hx2 hz] [GOAL] x : ℝ≥0∞ z : ℝ hx1 : 0 < x hx2 : x ≤ 1 hz : z < 0 ⊢ 1 ≤ x ^ z [PROOFSTEP] lift x to ℝ≥0 using ne_of_lt (lt_of_le_of_lt hx2 coe_lt_top) [GOAL] case intro z : ℝ hz : z < 0 x : ℝ≥0 hx1 : 0 < ↑x hx2 : ↑x ≤ 1 ⊢ 1 ≤ ↑x ^ z [PROOFSTEP] simp only [coe_le_one_iff, coe_pos] at hx1 hx2 ⊢ [GOAL] case intro z : ℝ hz : z < 0 x : ℝ≥0 hx1 : 0 < x hx2 : x ≤ 1 ⊢ 1 ≤ ↑x ^ z [PROOFSTEP] simp [coe_rpow_of_ne_zero (ne_of_gt hx1), NNReal.one_le_rpow_of_pos_of_le_one_of_nonpos hx1 hx2 (le_of_lt hz)] [GOAL] x : ℝ≥0∞ z : ℝ ⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z) [PROOFSTEP] rcases lt_trichotomy z 0 with (H | H | H) [GOAL] case inl x : ℝ≥0∞ z : ℝ H : z < 0 ⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z) [PROOFSTEP] cases' x with x [GOAL] case inl.none z : ℝ H : z < 0 ⊢ ENNReal.toNNReal none ^ z = ENNReal.toNNReal (none ^ z) [PROOFSTEP] simp [H, ne_of_lt] [GOAL] case inl.some z : ℝ H : z < 0 x : ℝ≥0 ⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos z : ℝ H : z < 0 x : ℝ≥0 hx : x = 0 ⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z) [PROOFSTEP] simp [hx, H, ne_of_lt] [GOAL] case neg z : ℝ H : z < 0 x : ℝ≥0 hx : ¬x = 0 ⊢ ENNReal.toNNReal (Option.some x) ^ z = ENNReal.toNNReal (Option.some x ^ z) [PROOFSTEP] simp [coe_rpow_of_ne_zero hx] [GOAL] case inr.inl x : ℝ≥0∞ z : ℝ H : z = 0 ⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z) [PROOFSTEP] simp [H] [GOAL] case inr.inr x : ℝ≥0∞ z : ℝ H : 0 < z ⊢ ENNReal.toNNReal x ^ z = ENNReal.toNNReal (x ^ z) [PROOFSTEP] cases x [GOAL] case inr.inr.none z : ℝ H : 0 < z ⊢ ENNReal.toNNReal none ^ z = ENNReal.toNNReal (none ^ z) [PROOFSTEP] simp [H, ne_of_gt] [GOAL] case inr.inr.some z : ℝ H : 0 < z val✝ : ℝ≥0 ⊢ ENNReal.toNNReal (Option.some val✝) ^ z = ENNReal.toNNReal (Option.some val✝ ^ z) [PROOFSTEP] simp [coe_rpow_of_nonneg _ (le_of_lt H)] [GOAL] x : ℝ≥0∞ z : ℝ ⊢ ENNReal.toReal x ^ z = ENNReal.toReal (x ^ z) [PROOFSTEP] rw [ENNReal.toReal, ENNReal.toReal, ← NNReal.coe_rpow, ENNReal.toNNReal_rpow] [GOAL] x p : ℝ hx_pos : 0 < x ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] simp_rw [ENNReal.ofReal] [GOAL] x p : ℝ hx_pos : 0 < x ⊢ ↑(toNNReal x) ^ p = ↑(toNNReal (x ^ p)) [PROOFSTEP] rw [coe_rpow_of_ne_zero, coe_eq_coe, Real.toNNReal_rpow_of_nonneg hx_pos.le] [GOAL] case h x p : ℝ hx_pos : 0 < x ⊢ toNNReal x ≠ 0 [PROOFSTEP] simp [hx_pos] [GOAL] x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] by_cases hp0 : p = 0 [GOAL] case pos x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : p = 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] simp [hp0] [GOAL] case neg x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : ¬p = 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] by_cases hx0 : x = 0 [GOAL] case pos x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : ¬p = 0 hx0 : x = 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] rw [← Ne.def] at hp0 [GOAL] case pos x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : p ≠ 0 hx0 : x = 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] have hp_pos : 0 < p := lt_of_le_of_ne hp_nonneg hp0.symm [GOAL] case pos x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : p ≠ 0 hx0 : x = 0 hp_pos : 0 < p ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] simp [hx0, hp_pos, hp_pos.ne.symm] [GOAL] case neg x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : ¬p = 0 hx0 : ¬x = 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] rw [← Ne.def] at hx0 [GOAL] case neg x p : ℝ hx_nonneg : 0 ≤ x hp_nonneg : 0 ≤ p hp0 : ¬p = 0 hx0 : x ≠ 0 ⊢ ENNReal.ofReal x ^ p = ENNReal.ofReal (x ^ p) [PROOFSTEP] exact ofReal_rpow_of_pos (hx_nonneg.lt_of_ne hx0.symm) [GOAL] x : ℝ hx : x ≠ 0 ⊢ Function.Injective fun y => y ^ x [PROOFSTEP] intro y z hyz [GOAL] x : ℝ hx : x ≠ 0 y z : ℝ≥0∞ hyz : (fun y => y ^ x) y = (fun y => y ^ x) z ⊢ y = z [PROOFSTEP] dsimp only at hyz [GOAL] x : ℝ hx : x ≠ 0 y z : ℝ≥0∞ hyz : y ^ x = z ^ x ⊢ y = z [PROOFSTEP] rw [← rpow_one y, ← rpow_one z, ← _root_.mul_inv_cancel hx, rpow_mul, rpow_mul, hyz] [GOAL] x : ℝ hx : x ≠ 0 y : ℝ≥0∞ ⊢ (fun y => y ^ x) (y ^ x⁻¹) = y [PROOFSTEP] simp_rw [← rpow_mul, _root_.inv_mul_cancel hx, rpow_one]
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.NNReal", "llama_tokens": 33377}
[GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ x ^ y = if x = 0 then if y = 0 then 1 else 0 else exp (log x * y) [PROOFSTEP] simp only [rpow_def, Complex.cpow_def] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ (if ↑x = 0 then if ↑y = 0 then 1 else 0 else Complex.exp (Complex.log ↑x * ↑y)).re = if x = 0 then if y = 0 then 1 else 0 else exp (log x * y) [PROOFSTEP] split_ifs [GOAL] case pos x : ℝ hx : 0 ≤ x y : ℝ h✝³ : ↑x = 0 h✝² : ↑y = 0 h✝¹ : x = 0 h✝ : y = 0 ⊢ 1.re = 1 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝³ : ↑x = 0 h✝² : ↑y = 0 h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 1.re = 0 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝² : ↑x = 0 h✝¹ : ↑y = 0 h✝ : ¬x = 0 ⊢ 1.re = exp (log x * y) [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case pos x : ℝ hx : 0 ≤ x y : ℝ h✝³ : ↑x = 0 h✝² : ¬↑y = 0 h✝¹ : x = 0 h✝ : y = 0 ⊢ 0.re = 1 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝³ : ↑x = 0 h✝² : ¬↑y = 0 h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 0.re = 0 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝² : ↑x = 0 h✝¹ : ¬↑y = 0 h✝ : ¬x = 0 ⊢ 0.re = exp (log x * y) [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case pos x : ℝ hx : 0 ≤ x y : ℝ h✝² : ¬↑x = 0 h✝¹ : x = 0 h✝ : y = 0 ⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = 1 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝² : ¬↑x = 0 h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = 0 [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝¹ : ¬↑x = 0 h✝ : ¬x = 0 ⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y) [PROOFSTEP] simp_all [(Complex.ofReal_log hx).symm, -Complex.ofReal_mul, -IsROrC.ofReal_mul, (Complex.ofReal_mul _ _).symm, Complex.exp_ofReal_re, Complex.ofReal_eq_zero] [GOAL] x : ℝ hx : 0 < x y : ℝ ⊢ x ^ y = exp (log x * y) [PROOFSTEP] rw [rpow_def_of_nonneg (le_of_lt hx), if_neg (ne_of_gt hx)] [GOAL] x y : ℝ ⊢ exp (x * y) = exp x ^ y [PROOFSTEP] rw [rpow_def_of_pos (exp_pos _), log_exp] [GOAL] x : ℝ ⊢ exp 1 ^ x = exp x [PROOFSTEP] rw [← exp_mul, one_mul] [GOAL] x y : ℝ hx : 0 ≤ x ⊢ x ^ y = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp only [rpow_def_of_nonneg hx] [GOAL] x y : ℝ hx : 0 ≤ x ⊢ (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y)) = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] split_ifs [GOAL] case pos x y : ℝ hx : 0 ≤ x h✝¹ : x = 0 h✝ : y = 0 ⊢ 1 = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] case neg x y : ℝ hx : 0 ≤ x h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 0 = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] case neg x y : ℝ hx : 0 ≤ x h✝ : ¬x = 0 ⊢ exp (log x * y) = 0 ↔ x = 0 ∧ y ≠ 0 [PROOFSTEP] simp [*, exp_ne_zero] [GOAL] x : ℝ hx : x < 0 y : ℝ ⊢ x ^ y = exp (log x * y) * cos (y * π) [PROOFSTEP] rw [rpow_def, Complex.cpow_def, if_neg] [GOAL] x : ℝ hx : x < 0 y : ℝ ⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y) * cos (y * π) case hnc x : ℝ hx : x < 0 y : ℝ ⊢ ¬↑x = 0 [PROOFSTEP] have : Complex.log x * y = ↑(log (-x) * y) + ↑(y * π) * Complex.I := by simp only [Complex.log, abs_of_neg hx, Complex.arg_ofReal_of_neg hx, Complex.abs_ofReal, Complex.ofReal_mul] ring [GOAL] x : ℝ hx : x < 0 y : ℝ ⊢ Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I [PROOFSTEP] simp only [Complex.log, abs_of_neg hx, Complex.arg_ofReal_of_neg hx, Complex.abs_ofReal, Complex.ofReal_mul] [GOAL] x : ℝ hx : x < 0 y : ℝ ⊢ (↑(log (-x)) + ↑π * Complex.I) * ↑y = ↑(log (-x)) * ↑y + ↑y * ↑π * Complex.I [PROOFSTEP] ring [GOAL] x : ℝ hx : x < 0 y : ℝ this : Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I ⊢ (Complex.exp (Complex.log ↑x * ↑y)).re = exp (log x * y) * cos (y * π) [PROOFSTEP] rw [this, Complex.exp_add_mul_I, ← Complex.ofReal_exp, ← Complex.ofReal_cos, ← Complex.ofReal_sin, mul_add, ← Complex.ofReal_mul, ← mul_assoc, ← Complex.ofReal_mul, Complex.add_re, Complex.ofReal_re, Complex.mul_re, Complex.I_re, Complex.ofReal_im, Real.log_neg_eq_log] [GOAL] x : ℝ hx : x < 0 y : ℝ this : Complex.log ↑x * ↑y = ↑(log (-x) * y) + ↑(y * π) * Complex.I ⊢ exp (log x * y) * cos (y * π) + ((↑(exp (log x * y) * sin (y * π))).re * 0 - 0 * Complex.I.im) = exp (log x * y) * cos (y * π) [PROOFSTEP] ring [GOAL] case hnc x : ℝ hx : x < 0 y : ℝ ⊢ ¬↑x = 0 [PROOFSTEP] rw [Complex.ofReal_eq_zero] [GOAL] case hnc x : ℝ hx : x < 0 y : ℝ ⊢ ¬x = 0 [PROOFSTEP] exact ne_of_lt hx [GOAL] x : ℝ hx : x ≤ 0 y : ℝ ⊢ x ^ y = if x = 0 then if y = 0 then 1 else 0 else exp (log x * y) * cos (y * π) [PROOFSTEP] split_ifs with h [GOAL] case pos x : ℝ hx : x ≤ 0 y : ℝ h : x = 0 h✝ : y = 0 ⊢ x ^ y = 1 [PROOFSTEP] simp [rpow_def, *] [GOAL] case neg x : ℝ hx : x ≤ 0 y : ℝ h : x = 0 h✝ : ¬y = 0 ⊢ x ^ y = 0 [PROOFSTEP] simp [rpow_def, *] [GOAL] case neg x : ℝ hx : x ≤ 0 y : ℝ h : ¬x = 0 ⊢ x ^ y = exp (log x * y) * cos (y * π) [PROOFSTEP] simp [rpow_def, *] [GOAL] case neg x : ℝ hx : x ≤ 0 y : ℝ h : ¬x = 0 ⊢ (↑x ^ ↑y).re = exp (log x * y) * cos (y * π) [PROOFSTEP] exact rpow_def_of_neg (lt_of_le_of_ne hx h) _ [GOAL] x : ℝ hx : 0 < x y : ℝ ⊢ 0 < x ^ y [PROOFSTEP] rw [rpow_def_of_pos hx] [GOAL] x : ℝ hx : 0 < x y : ℝ ⊢ 0 < exp (log x * y) [PROOFSTEP] apply exp_pos [GOAL] x : ℝ ⊢ x ^ 0 = 1 [PROOFSTEP] simp [rpow_def] [GOAL] x : ℝ ⊢ 0 < x ^ 0 [PROOFSTEP] simp [GOAL] x : ℝ h : x ≠ 0 ⊢ 0 ^ x = 0 [PROOFSTEP] simp [rpow_def, *] [GOAL] x a : ℝ ⊢ 0 ^ x = a ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] constructor [GOAL] case mp x a : ℝ ⊢ 0 ^ x = a → x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] intro hyp [GOAL] case mp x a : ℝ hyp : 0 ^ x = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] simp only [rpow_def, Complex.ofReal_zero] at hyp [GOAL] case mp x a : ℝ hyp : (0 ^ ↑x).re = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] by_cases x = 0 [GOAL] case mp x a : ℝ hyp : (0 ^ ↑x).re = a ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] by_cases x = 0 [GOAL] case pos x a : ℝ hyp : (0 ^ ↑x).re = a h : x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] subst h [GOAL] case pos a : ℝ hyp : (0 ^ ↑0).re = a ⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1 [PROOFSTEP] simp only [Complex.one_re, Complex.ofReal_zero, Complex.cpow_zero] at hyp [GOAL] case pos a : ℝ hyp : 1 = a ⊢ 0 ≠ 0 ∧ a = 0 ∨ 0 = 0 ∧ a = 1 [PROOFSTEP] exact Or.inr ⟨rfl, hyp.symm⟩ [GOAL] case neg x a : ℝ hyp : (0 ^ ↑x).re = a h : ¬x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] rw [Complex.zero_cpow (Complex.ofReal_ne_zero.mpr h)] at hyp [GOAL] case neg x a : ℝ hyp : 0.re = a h : ¬x = 0 ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] exact Or.inl ⟨h, hyp.symm⟩ [GOAL] case mpr x a : ℝ ⊢ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 → 0 ^ x = a [PROOFSTEP] rintro (⟨h, rfl⟩ | ⟨rfl, rfl⟩) [GOAL] case mpr.inl.intro x : ℝ h : x ≠ 0 ⊢ 0 ^ x = 0 [PROOFSTEP] exact zero_rpow h [GOAL] case mpr.inr.intro ⊢ 0 ^ 0 = 1 [PROOFSTEP] exact rpow_zero _ [GOAL] x a : ℝ ⊢ a = 0 ^ x ↔ x ≠ 0 ∧ a = 0 ∨ x = 0 ∧ a = 1 [PROOFSTEP] rw [← zero_rpow_eq_iff, eq_comm] [GOAL] x : ℝ ⊢ x ^ 1 = x [PROOFSTEP] simp [rpow_def] [GOAL] x : ℝ ⊢ 1 ^ x = 1 [PROOFSTEP] simp [rpow_def] [GOAL] x : ℝ ⊢ 0 ^ x ≤ 1 [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos x : ℝ h : x = 0 ⊢ 0 ^ x ≤ 1 [PROOFSTEP] simp [h, zero_le_one] [GOAL] case neg x : ℝ h : ¬x = 0 ⊢ 0 ^ x ≤ 1 [PROOFSTEP] simp [h, zero_le_one] [GOAL] x : ℝ ⊢ 0 ≤ 0 ^ x [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos x : ℝ h : x = 0 ⊢ 0 ≤ 0 ^ x [PROOFSTEP] simp [h, zero_le_one] [GOAL] case neg x : ℝ h : ¬x = 0 ⊢ 0 ≤ 0 ^ x [PROOFSTEP] simp [h, zero_le_one] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ 0 ≤ x ^ y [PROOFSTEP] rw [rpow_def_of_nonneg hx] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ 0 ≤ if x = 0 then if y = 0 then 1 else 0 else exp (log x * y) [PROOFSTEP] split_ifs [GOAL] case pos x : ℝ hx : 0 ≤ x y : ℝ h✝¹ : x = 0 h✝ : y = 0 ⊢ 0 ≤ 1 [PROOFSTEP] simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ 0 ≤ 0 [PROOFSTEP] simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝ : ¬x = 0 ⊢ 0 ≤ exp (log x * y) [PROOFSTEP] simp only [zero_le_one, le_refl, le_of_lt (exp_pos _)] [GOAL] x y : ℝ hx_nonneg : 0 ≤ x ⊢ |x ^ y| = |x| ^ y [PROOFSTEP] have h_rpow_nonneg : 0 ≤ x ^ y := Real.rpow_nonneg_of_nonneg hx_nonneg _ [GOAL] x y : ℝ hx_nonneg : 0 ≤ x h_rpow_nonneg : 0 ≤ x ^ y ⊢ |x ^ y| = |x| ^ y [PROOFSTEP] rw [abs_eq_self.mpr hx_nonneg, abs_eq_self.mpr h_rpow_nonneg] [GOAL] x y : ℝ ⊢ |x ^ y| ≤ |x| ^ y [PROOFSTEP] cases' le_or_lt 0 x with hx hx [GOAL] case inl x y : ℝ hx : 0 ≤ x ⊢ |x ^ y| ≤ |x| ^ y [PROOFSTEP] rw [abs_rpow_of_nonneg hx] [GOAL] case inr x y : ℝ hx : x < 0 ⊢ |x ^ y| ≤ |x| ^ y [PROOFSTEP] rw [abs_of_neg hx, rpow_def_of_neg hx, rpow_def_of_pos (neg_pos.2 hx), log_neg_eq_log, abs_mul, abs_of_pos (exp_pos _)] [GOAL] case inr x y : ℝ hx : x < 0 ⊢ exp (log x * y) * |cos (y * π)| ≤ exp (log x * y) [PROOFSTEP] exact mul_le_of_le_one_right (exp_pos _).le (abs_cos_le_one _) [GOAL] x y : ℝ ⊢ |x ^ y| ≤ exp (log x * y) [PROOFSTEP] refine' (abs_rpow_le_abs_rpow x y).trans _ [GOAL] x y : ℝ ⊢ |x| ^ y ≤ exp (log x * y) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos x y : ℝ hx : x = 0 ⊢ |x| ^ y ≤ exp (log x * y) [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos x y : ℝ hx : x = 0 hy : y = 0 ⊢ |x| ^ y ≤ exp (log x * y) [PROOFSTEP] simp [hx, hy, zero_le_one] [GOAL] case neg x y : ℝ hx : x = 0 hy : ¬y = 0 ⊢ |x| ^ y ≤ exp (log x * y) [PROOFSTEP] simp [hx, hy, zero_le_one] [GOAL] case neg x y : ℝ hx : ¬x = 0 ⊢ |x| ^ y ≤ exp (log x * y) [PROOFSTEP] rw [rpow_def_of_pos (abs_pos.2 hx), log_abs] [GOAL] x y : ℝ hx_nonneg : 0 ≤ x ⊢ ‖x ^ y‖ = ‖x‖ ^ y [PROOFSTEP] simp_rw [Real.norm_eq_abs] [GOAL] x y : ℝ hx_nonneg : 0 ≤ x ⊢ |x ^ y| = |x| ^ y [PROOFSTEP] exact abs_rpow_of_nonneg hx_nonneg [GOAL] x y✝ z✝ : ℝ hx : 0 < x y z : ℝ ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] simp only [rpow_def_of_pos hx, mul_add, exp_add] [GOAL] x y z : ℝ hx : 0 ≤ x h : y + z ≠ 0 ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] rcases hx.eq_or_lt with (rfl | pos) [GOAL] case inl y z : ℝ h : y + z ≠ 0 hx : 0 ≤ 0 ⊢ 0 ^ (y + z) = 0 ^ y * 0 ^ z [PROOFSTEP] rw [zero_rpow h, zero_eq_mul] [GOAL] case inl y z : ℝ h : y + z ≠ 0 hx : 0 ≤ 0 ⊢ 0 ^ y = 0 ∨ 0 ^ z = 0 [PROOFSTEP] have : y ≠ 0 ∨ z ≠ 0 := not_and_or.1 fun ⟨hy, hz⟩ => h <| hy.symm ▸ hz.symm ▸ zero_add 0 [GOAL] case inl y z : ℝ h : y + z ≠ 0 hx : 0 ≤ 0 this : y ≠ 0 ∨ z ≠ 0 ⊢ 0 ^ y = 0 ∨ 0 ^ z = 0 [PROOFSTEP] exact this.imp zero_rpow zero_rpow [GOAL] case inr x y z : ℝ hx : 0 ≤ x h : y + z ≠ 0 pos : 0 < x ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] exact rpow_add pos _ _ [GOAL] x y z : ℝ hx : 0 ≤ x hy : 0 ≤ y hz : 0 ≤ z ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] rcases hy.eq_or_lt with (rfl | hy) [GOAL] case inl x z : ℝ hx : 0 ≤ x hz : 0 ≤ z hy : 0 ≤ 0 ⊢ x ^ (0 + z) = x ^ 0 * x ^ z [PROOFSTEP] rw [zero_add, rpow_zero, one_mul] [GOAL] case inr x y z : ℝ hx : 0 ≤ x hy✝ : 0 ≤ y hz : 0 ≤ z hy : 0 < y ⊢ x ^ (y + z) = x ^ y * x ^ z [PROOFSTEP] exact rpow_add' hx (ne_of_gt <| add_pos_of_pos_of_nonneg hy hz) [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ ⊢ x ^ y * x ^ z ≤ x ^ (y + z) [PROOFSTEP] rcases le_iff_eq_or_lt.1 hx with (H | pos) [GOAL] case inl x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ H : 0 = x ⊢ x ^ y * x ^ z ≤ x ^ (y + z) [PROOFSTEP] by_cases h : y + z = 0 [GOAL] case pos x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ H : 0 = x h : y + z = 0 ⊢ x ^ y * x ^ z ≤ x ^ (y + z) [PROOFSTEP] simp only [H.symm, h, rpow_zero] [GOAL] case pos x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ H : 0 = x h : y + z = 0 ⊢ 0 ^ y * 0 ^ z ≤ 1 [PROOFSTEP] calc (0 : ℝ) ^ y * 0 ^ z ≤ 1 * 1 := mul_le_mul (zero_rpow_le_one y) (zero_rpow_le_one z) (zero_rpow_nonneg z) zero_le_one _ = 1 := by simp [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ H : 0 = x h : y + z = 0 ⊢ 1 * 1 = 1 [PROOFSTEP] simp [GOAL] case neg x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ H : 0 = x h : ¬y + z = 0 ⊢ x ^ y * x ^ z ≤ x ^ (y + z) [PROOFSTEP] simp [rpow_add', ← H, h] [GOAL] case inr x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ pos : 0 < x ⊢ x ^ y * x ^ z ≤ x ^ (y + z) [PROOFSTEP] simp [rpow_add pos] [GOAL] x y z : ℝ ι : Type u_1 a : ℝ ha : 0 ≤ a s : Finset ι f : ι → ℝ h : ∀ (x : ι), x ∈ s → 0 ≤ f x ⊢ a ^ ∑ x in s, f x = ∏ x in s, a ^ f x [PROOFSTEP] induction' s using Finset.cons_induction with i s hi ihs [GOAL] case empty x y z : ℝ ι : Type u_1 a : ℝ ha : 0 ≤ a s : Finset ι f : ι → ℝ h✝ : ∀ (x : ι), x ∈ s → 0 ≤ f x h : ∀ (x : ι), x ∈ ∅ → 0 ≤ f x ⊢ a ^ ∑ x in ∅, f x = ∏ x in ∅, a ^ f x [PROOFSTEP] rw [sum_empty, Finset.prod_empty, rpow_zero] [GOAL] case cons x y z : ℝ ι : Type u_1 a : ℝ ha : 0 ≤ a s✝ : Finset ι f : ι → ℝ h✝ : ∀ (x : ι), x ∈ s✝ → 0 ≤ f x i : ι s : Finset ι hi : ¬i ∈ s ihs : (∀ (x : ι), x ∈ s → 0 ≤ f x) → a ^ ∑ x in s, f x = ∏ x in s, a ^ f x h : ∀ (x : ι), x ∈ cons i s hi → 0 ≤ f x ⊢ a ^ ∑ x in cons i s hi, f x = ∏ x in cons i s hi, a ^ f x [PROOFSTEP] rw [forall_mem_cons] at h [GOAL] case cons x y z : ℝ ι : Type u_1 a : ℝ ha : 0 ≤ a s✝ : Finset ι f : ι → ℝ h✝ : ∀ (x : ι), x ∈ s✝ → 0 ≤ f x i : ι s : Finset ι hi : ¬i ∈ s ihs : (∀ (x : ι), x ∈ s → 0 ≤ f x) → a ^ ∑ x in s, f x = ∏ x in s, a ^ f x h : 0 ≤ f i ∧ ∀ (x : ι), x ∈ s → 0 ≤ f x ⊢ a ^ ∑ x in cons i s hi, f x = ∏ x in cons i s hi, a ^ f x [PROOFSTEP] rw [sum_cons, prod_cons, ← ihs h.2, rpow_add_of_nonneg ha h.1 (sum_nonneg h.2)] [GOAL] x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ ⊢ x ^ (-y) = (x ^ y)⁻¹ [PROOFSTEP] simp only [rpow_def_of_nonneg hx] [GOAL] x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ ⊢ (if x = 0 then if -y = 0 then 1 else 0 else exp (log x * -y)) = (if x = 0 then if y = 0 then 1 else 0 else exp (log x * y))⁻¹ [PROOFSTEP] split_ifs [GOAL] case pos x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ h✝² : x = 0 h✝¹ : -y = 0 h✝ : y = 0 ⊢ 1 = 1⁻¹ [PROOFSTEP] simp_all [exp_neg] [GOAL] case neg x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ h✝² : x = 0 h✝¹ : -y = 0 h✝ : ¬y = 0 ⊢ 1 = 0⁻¹ [PROOFSTEP] simp_all [exp_neg] [GOAL] case pos x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ h✝² : x = 0 h✝¹ : ¬-y = 0 h✝ : y = 0 ⊢ 0 = 1⁻¹ [PROOFSTEP] simp_all [exp_neg] [GOAL] case neg x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ h✝² : x = 0 h✝¹ : ¬-y = 0 h✝ : ¬y = 0 ⊢ 0 = 0⁻¹ [PROOFSTEP] simp_all [exp_neg] [GOAL] case neg x✝ y✝ z x : ℝ hx : 0 ≤ x y : ℝ h✝ : ¬x = 0 ⊢ exp (log x * -y) = (exp (log x * y))⁻¹ [PROOFSTEP] simp_all [exp_neg] [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 < x y z : ℝ ⊢ x ^ (y - z) = x ^ y / x ^ z [PROOFSTEP] simp only [sub_eq_add_neg, rpow_add hx, rpow_neg (le_of_lt hx), div_eq_mul_inv] [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ h : y - z ≠ 0 ⊢ x ^ (y - z) = x ^ y / x ^ z [PROOFSTEP] simp only [sub_eq_add_neg] at h ⊢ [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ h : y + -z ≠ 0 ⊢ x ^ (y + -z) = x ^ y / x ^ z [PROOFSTEP] simp only [rpow_add' hx h, rpow_neg hx, div_eq_mul_inv] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ ↑(x ^ y) = ↑x ^ ↑y [PROOFSTEP] simp only [Real.rpow_def_of_nonneg hx, Complex.cpow_def, ofReal_eq_zero] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ ↑(if x = 0 then if y = 0 then 1 else 0 else Real.exp (Real.log x * y)) = if x = 0 then if y = 0 then 1 else 0 else exp (log ↑x * ↑y) [PROOFSTEP] split_ifs [GOAL] case pos x : ℝ hx : 0 ≤ x y : ℝ h✝¹ : x = 0 h✝ : y = 0 ⊢ ↑1 = 1 [PROOFSTEP] simp [Complex.ofReal_log hx] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝¹ : x = 0 h✝ : ¬y = 0 ⊢ ↑0 = 0 [PROOFSTEP] simp [Complex.ofReal_log hx] [GOAL] case neg x : ℝ hx : 0 ≤ x y : ℝ h✝ : ¬x = 0 ⊢ ↑(Real.exp (Real.log x * y)) = exp (log ↑x * ↑y) [PROOFSTEP] simp [Complex.ofReal_log hx] [GOAL] x : ℝ hx : x ≤ 0 y : ℂ ⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y) [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hlt) [GOAL] case inl y : ℂ hx : 0 ≤ 0 ⊢ ↑0 ^ y = (-↑0) ^ y * exp (↑π * I * y) [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy) [GOAL] case inl.inl hx : 0 ≤ 0 ⊢ ↑0 ^ 0 = (-↑0) ^ 0 * exp (↑π * I * 0) [PROOFSTEP] simp [*] [GOAL] case inl.inr y : ℂ hx : 0 ≤ 0 hy : y ≠ 0 ⊢ ↑0 ^ y = (-↑0) ^ y * exp (↑π * I * y) [PROOFSTEP] simp [*] [GOAL] case inr x : ℝ hx : x ≤ 0 y : ℂ hlt : x < 0 ⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y) [PROOFSTEP] have hne : (x : ℂ) ≠ 0 := ofReal_ne_zero.mpr hlt.ne [GOAL] case inr x : ℝ hx : x ≤ 0 y : ℂ hlt : x < 0 hne : ↑x ≠ 0 ⊢ ↑x ^ y = (-↑x) ^ y * exp (↑π * I * y) [PROOFSTEP] rw [cpow_def_of_ne_zero hne, cpow_def_of_ne_zero (neg_ne_zero.2 hne), ← exp_add, ← add_mul, log, log, abs.map_neg, arg_ofReal_of_neg hlt, ← ofReal_neg, arg_ofReal_of_nonneg (neg_nonneg.2 hx), ofReal_zero, zero_mul, add_zero] [GOAL] z : ℂ hz : z ≠ 0 w : ℂ ⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] rw [cpow_def_of_ne_zero hz, abs_exp, mul_re, log_re, log_im, Real.exp_sub, Real.rpow_def_of_pos (abs.pos hz)] [GOAL] z w : ℂ h : z = 0 → w.re = 0 → w = 0 ⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] rcases ne_or_eq z 0 with (hz | rfl) <;> [exact abs_cpow_of_ne_zero hz w; rw [map_zero]] [GOAL] z w : ℂ h : z = 0 → w.re = 0 → w = 0 ⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] rcases ne_or_eq z 0 with (hz | rfl) [GOAL] case inl z w : ℂ h : z = 0 → w.re = 0 → w = 0 hz : z ≠ 0 ⊢ ↑abs (z ^ w) = ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] exact abs_cpow_of_ne_zero hz w [GOAL] case inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 ⊢ ↑abs (0 ^ w) = ↑abs 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] rw [map_zero] [GOAL] case inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 ⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] cases' eq_or_ne w.re 0 with hw hw [GOAL] case inr.inl w : ℂ h : 0 = 0 → w.re = 0 → w = 0 hw : w.re = 0 ⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] simp [hw, h rfl hw] [GOAL] case inr.inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 hw : w.re ≠ 0 ⊢ ↑abs (0 ^ w) = 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] rw [Real.zero_rpow hw, zero_div, zero_cpow, map_zero] [GOAL] case inr.inr w : ℂ h : 0 = 0 → w.re = 0 → w = 0 hw : w.re ≠ 0 ⊢ w ≠ 0 [PROOFSTEP] exact ne_of_apply_ne re hw [GOAL] z w : ℂ ⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] rcases ne_or_eq z 0 with (hz | rfl) <;> [exact (abs_cpow_of_ne_zero hz w).le; rw [map_zero]] [GOAL] z w : ℂ ⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] rcases ne_or_eq z 0 with (hz | rfl) [GOAL] case inl z w : ℂ hz : z ≠ 0 ⊢ ↑abs (z ^ w) ≤ ↑abs z ^ w.re / Real.exp (arg z * w.im) [PROOFSTEP] exact (abs_cpow_of_ne_zero hz w).le [GOAL] case inr w : ℂ ⊢ ↑abs (0 ^ w) ≤ ↑abs 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] rw [map_zero] [GOAL] case inr w : ℂ ⊢ ↑abs (0 ^ w) ≤ 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] rcases eq_or_ne w 0 with (rfl | hw) [GOAL] case inr.inl ⊢ ↑abs (0 ^ 0) ≤ 0 ^ 0.re / Real.exp (arg 0 * 0.im) [PROOFSTEP] simp [GOAL] case inr.inr w : ℂ hw : w ≠ 0 ⊢ ↑abs (0 ^ w) ≤ 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] rw [zero_cpow hw, map_zero] [GOAL] case inr.inr w : ℂ hw : w ≠ 0 ⊢ 0 ≤ 0 ^ w.re / Real.exp (arg 0 * w.im) [PROOFSTEP] exact div_nonneg (Real.rpow_nonneg_of_nonneg le_rfl _) (Real.exp_pos _).le [GOAL] x : ℂ y : ℝ ⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) <;> [rcases eq_or_ne y 0 with (rfl | hy); skip] [GOAL] x : ℂ y : ℝ ⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl y : ℝ ⊢ ↑abs (0 ^ ↑y) = ↑abs 0 ^ y [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy) [GOAL] case inr x : ℂ y : ℝ hx : x ≠ 0 ⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y [PROOFSTEP] skip [GOAL] case inl.inl ⊢ ↑abs (0 ^ ↑0) = ↑abs 0 ^ 0 [PROOFSTEP] simp [*, abs_cpow_of_ne_zero] [GOAL] case inl.inr y : ℝ hy : y ≠ 0 ⊢ ↑abs (0 ^ ↑y) = ↑abs 0 ^ y [PROOFSTEP] simp [*, abs_cpow_of_ne_zero] [GOAL] case inr x : ℂ y : ℝ hx : x ≠ 0 ⊢ ↑abs (x ^ ↑y) = ↑abs x ^ y [PROOFSTEP] simp [*, abs_cpow_of_ne_zero] [GOAL] x : ℂ n : ℕ ⊢ ↑abs (x ^ (↑n)⁻¹) = ↑abs x ^ (↑n)⁻¹ [PROOFSTEP] rw [← abs_cpow_real] [GOAL] x : ℂ n : ℕ ⊢ ↑abs (x ^ (↑n)⁻¹) = ↑abs (x ^ ↑(↑n)⁻¹) [PROOFSTEP] simp [-abs_cpow_real] [GOAL] x : ℝ hx : 0 < x y : ℂ ⊢ ↑abs (↑x ^ y) = x ^ y.re [PROOFSTEP] rw [abs_cpow_of_ne_zero (ofReal_ne_zero.mpr hx.ne'), arg_ofReal_of_nonneg hx.le, zero_mul, Real.exp_zero, div_one, abs_of_nonneg hx.le] [GOAL] x : ℝ hx : 0 ≤ x y : ℂ hy : y.re ≠ 0 ⊢ ↑abs (↑x ^ y) = x ^ y.re [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hlt) [GOAL] case inl y : ℂ hy : y.re ≠ 0 hx : 0 ≤ 0 ⊢ ↑abs (↑0 ^ y) = 0 ^ y.re [PROOFSTEP] rw [ofReal_zero, zero_cpow, map_zero, Real.zero_rpow hy] [GOAL] case inl y : ℂ hy : y.re ≠ 0 hx : 0 ≤ 0 ⊢ y ≠ 0 [PROOFSTEP] exact ne_of_apply_ne re hy [GOAL] case inr x : ℝ hx : 0 ≤ x y : ℂ hy : y.re ≠ 0 hlt : 0 < x ⊢ ↑abs (↑x ^ y) = x ^ y.re [PROOFSTEP] exact abs_cpow_eq_rpow_re_of_pos hlt y [GOAL] x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ ⊢ x ^ (y * z) = (x ^ y) ^ z [PROOFSTEP] rw [← Complex.ofReal_inj, Complex.ofReal_cpow (rpow_nonneg_of_nonneg hx _), Complex.ofReal_cpow hx, Complex.ofReal_mul, Complex.cpow_mul, Complex.ofReal_cpow hx] [GOAL] case h₁ x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ ⊢ -π < (Complex.log ↑x * ↑y).im [PROOFSTEP] simp only [(Complex.ofReal_mul _ _).symm, (Complex.ofReal_log hx).symm, Complex.ofReal_im, neg_lt_zero, pi_pos, le_of_lt pi_pos] [GOAL] case h₂ x✝ y✝ z✝ x : ℝ hx : 0 ≤ x y z : ℝ ⊢ (Complex.log ↑x * ↑y).im ≤ π [PROOFSTEP] simp only [(Complex.ofReal_mul _ _).symm, (Complex.ofReal_log hx).symm, Complex.ofReal_im, neg_lt_zero, pi_pos, le_of_lt pi_pos] [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ n : ℤ ⊢ x ^ (y + ↑n) = x ^ y * x ^ n [PROOFSTEP] rw [rpow_def, rpow_def, Complex.ofReal_add, Complex.cpow_add _ _ (Complex.ofReal_ne_zero.mpr hx), Complex.ofReal_int_cast, Complex.cpow_int_cast, ← Complex.ofReal_zpow, mul_comm, Complex.ofReal_mul_re, mul_comm] [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ n : ℕ ⊢ x ^ (y + ↑n) = x ^ y * x ^ n [PROOFSTEP] simpa using rpow_add_int hx y n [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ n : ℕ ⊢ x ^ (y - ↑n) = x ^ y / x ^ n [PROOFSTEP] simpa using rpow_add_int hx y (-n) [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ n : ℕ ⊢ x ^ (y - ↑n) = x ^ y / x ^ n [PROOFSTEP] simpa using rpow_sub_int hx y n [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ ⊢ x ^ (y + 1) = x ^ y * x [PROOFSTEP] simpa using rpow_add_nat hx y 1 [GOAL] x✝ y✝ z x : ℝ hx : x ≠ 0 y : ℝ ⊢ x ^ (y - 1) = x ^ y / x [PROOFSTEP] simpa using rpow_sub_nat hx y 1 [GOAL] x✝ y z x : ℝ n : ℤ ⊢ x ^ ↑n = x ^ n [PROOFSTEP] simp only [rpow_def, ← Complex.ofReal_zpow, Complex.cpow_int_cast, Complex.ofReal_int_cast, Complex.ofReal_re] [GOAL] x✝ y z x : ℝ n : ℕ ⊢ x ^ ↑n = x ^ n [PROOFSTEP] simpa using rpow_int_cast x n [GOAL] x✝ y z x : ℝ ⊢ x ^ 2 = x ^ 2 [PROOFSTEP] rw [← rpow_nat_cast] [GOAL] x✝ y z x : ℝ ⊢ x ^ 2 = x ^ ↑2 [PROOFSTEP] simp only [Nat.cast_ofNat] [GOAL] x✝ y z x : ℝ ⊢ x ^ (-1) = x⁻¹ [PROOFSTEP] suffices H : x ^ ((-1 : ℤ) : ℝ) = x⁻¹ [GOAL] x✝ y z x : ℝ H : x ^ ↑(-1) = x⁻¹ ⊢ x ^ (-1) = x⁻¹ [PROOFSTEP] rwa [Int.cast_neg, Int.cast_one] at H [GOAL] case H x✝ y z x : ℝ ⊢ x ^ ↑(-1) = x⁻¹ [PROOFSTEP] simp only [rpow_int_cast, zpow_one, zpow_neg] [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ (x * y) ^ z = x ^ z * y ^ z [PROOFSTEP] iterate 2 rw [Real.rpow_def_of_nonneg]; split_ifs with h_ifs <;> simp_all [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ (x * y) ^ z = x ^ z * y ^ z [PROOFSTEP] rw [Real.rpow_def_of_nonneg] [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ (if x * y = 0 then if z = 0 then 1 else 0 else exp (log (x * y) * z)) = x ^ z * y ^ z [PROOFSTEP] split_ifs with h_ifs [GOAL] case pos x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : x * y = 0 h✝ : z = 0 ⊢ 1 = x ^ z * y ^ z [PROOFSTEP] simp_all [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : x * y = 0 h✝ : ¬z = 0 ⊢ 0 = x ^ z * y ^ z [PROOFSTEP] simp_all [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x * y = 0 ⊢ exp (log (x * y) * z) = x ^ z * y ^ z [PROOFSTEP] simp_all [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : x = 0 ∨ y = 0 h✝ : ¬z = 0 ⊢ x ^ z = 0 ∨ y ^ z = 0 case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬(x = 0 ∨ y = 0) ⊢ exp (log (x * y) * z) = x ^ z * y ^ z case hx x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ 0 ≤ x * y [PROOFSTEP] rw [Real.rpow_def_of_nonneg] [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : x = 0 ∨ y = 0 h✝ : ¬z = 0 ⊢ (if x = 0 then if z = 0 then 1 else 0 else exp (log x * z)) = 0 ∨ y ^ z = 0 [PROOFSTEP] split_ifs with h_ifs [GOAL] case pos x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs✝ : x = 0 ∨ y = 0 h✝ : ¬z = 0 h_ifs : x = 0 ⊢ 0 = 0 ∨ y ^ z = 0 [PROOFSTEP] simp_all [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs✝ : x = 0 ∨ y = 0 h✝ : ¬z = 0 h_ifs : ¬x = 0 ⊢ exp (log x * z) = 0 ∨ y ^ z = 0 [PROOFSTEP] simp_all [GOAL] case neg.hx x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : x = 0 ∨ y = 0 h✝ : ¬z = 0 ⊢ 0 ≤ x [PROOFSTEP] exact h [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬(x = 0 ∨ y = 0) ⊢ exp (log (x * y) * z) = x ^ z * y ^ z [PROOFSTEP] rw [not_or] at h_ifs [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 ⊢ exp (log (x * y) * z) = x ^ z * y ^ z [PROOFSTEP] have hx : 0 < x := by cases' lt_or_eq_of_le h with h₂ h₂ · exact h₂ exfalso apply h_ifs.1 exact Eq.symm h₂ [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 ⊢ 0 < x [PROOFSTEP] cases' lt_or_eq_of_le h with h₂ h₂ [GOAL] case inl x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 h₂ : 0 < x ⊢ 0 < x [PROOFSTEP] exact h₂ [GOAL] case inr x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 h₂ : 0 = x ⊢ 0 < x [PROOFSTEP] exfalso [GOAL] case inr.h x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 h₂ : 0 = x ⊢ False [PROOFSTEP] apply h_ifs.1 [GOAL] case inr.h x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 h₂ : 0 = x ⊢ x = 0 [PROOFSTEP] exact Eq.symm h₂ [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x ⊢ exp (log (x * y) * z) = x ^ z * y ^ z [PROOFSTEP] have hy : 0 < y := by cases' lt_or_eq_of_le h₁ with h₂ h₂ · exact h₂ exfalso apply h_ifs.2 exact Eq.symm h₂ [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x ⊢ 0 < y [PROOFSTEP] cases' lt_or_eq_of_le h₁ with h₂ h₂ [GOAL] case inl x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x h₂ : 0 < y ⊢ 0 < y [PROOFSTEP] exact h₂ [GOAL] case inr x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x h₂ : 0 = y ⊢ 0 < y [PROOFSTEP] exfalso [GOAL] case inr.h x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x h₂ : 0 = y ⊢ False [PROOFSTEP] apply h_ifs.2 [GOAL] case inr.h x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x h₂ : 0 = y ⊢ y = 0 [PROOFSTEP] exact Eq.symm h₂ [GOAL] case neg x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y h_ifs : ¬x = 0 ∧ ¬y = 0 hx : 0 < x hy : 0 < y ⊢ exp (log (x * y) * z) = x ^ z * y ^ z [PROOFSTEP] rw [log_mul (ne_of_gt hx) (ne_of_gt hy), add_mul, exp_add, rpow_def_of_pos hx, rpow_def_of_pos hy] [GOAL] case hx x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : 0 ≤ y ⊢ 0 ≤ x * y [PROOFSTEP] exact mul_nonneg h h₁ [GOAL] x y✝ z : ℝ hx : 0 ≤ x y : ℝ ⊢ x⁻¹ ^ y = (x ^ y)⁻¹ [PROOFSTEP] simp only [← rpow_neg_one, ← rpow_mul hx, mul_comm] [GOAL] x y z✝ : ℝ hx : 0 ≤ x hy : 0 ≤ y z : ℝ ⊢ (x / y) ^ z = x ^ z / y ^ z [PROOFSTEP] simp only [div_eq_mul_inv, mul_rpow hx (inv_nonneg.2 hy), inv_rpow hy] [GOAL] x✝ y✝ z x : ℝ hx : 0 < x y : ℝ ⊢ log (x ^ y) = y * log x [PROOFSTEP] apply exp_injective [GOAL] case a x✝ y✝ z x : ℝ hx : 0 < x y : ℝ ⊢ exp (log (x ^ y)) = exp (y * log x) [PROOFSTEP] rw [exp_log (rpow_pos_of_pos hx y), ← exp_log hx, mul_comm, rpow_def_of_pos (exp_pos (log x)) y] [GOAL] x y z : ℝ hx : 0 ≤ x hxy : x < y hz : 0 < z ⊢ x ^ z < y ^ z [PROOFSTEP] rw [le_iff_eq_or_lt] at hx [GOAL] x y z : ℝ hx : 0 = x ∨ 0 < x hxy : x < y hz : 0 < z ⊢ x ^ z < y ^ z [PROOFSTEP] cases' hx with hx hx [GOAL] case inl x y z : ℝ hxy : x < y hz : 0 < z hx : 0 = x ⊢ x ^ z < y ^ z [PROOFSTEP] rw [← hx, zero_rpow (ne_of_gt hz)] [GOAL] case inl x y z : ℝ hxy : x < y hz : 0 < z hx : 0 = x ⊢ 0 < y ^ z [PROOFSTEP] exact rpow_pos_of_pos (by rwa [← hx] at hxy ) _ [GOAL] x y z : ℝ hxy : x < y hz : 0 < z hx : 0 = x ⊢ 0 < y [PROOFSTEP] rwa [← hx] at hxy [GOAL] case inr x y z : ℝ hxy : x < y hz : 0 < z hx : 0 < x ⊢ x ^ z < y ^ z [PROOFSTEP] rw [rpow_def_of_pos hx, rpow_def_of_pos (lt_trans hx hxy), exp_lt_exp] [GOAL] case inr x y z : ℝ hxy : x < y hz : 0 < z hx : 0 < x ⊢ log x * z < log y * z [PROOFSTEP] exact mul_lt_mul_of_pos_right (log_lt_log hx hxy) hz [GOAL] x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : x ≤ y h₂ : 0 ≤ z ⊢ x ^ z ≤ y ^ z [PROOFSTEP] rcases eq_or_lt_of_le h₁ with (rfl | h₁') [GOAL] case inl x✝ y z✝ x z : ℝ h : 0 ≤ x h₂ : 0 ≤ z h₁ : x ≤ x ⊢ x ^ z ≤ x ^ z [PROOFSTEP] rfl [GOAL] case inr x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : x ≤ y h₂ : 0 ≤ z h₁' : x < y ⊢ x ^ z ≤ y ^ z [PROOFSTEP] rcases eq_or_lt_of_le h₂ with (rfl | h₂') [GOAL] case inr.inl x✝ y✝ z x y : ℝ h : 0 ≤ x h₁ : x ≤ y h₁' : x < y h₂ : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0 [PROOFSTEP] simp [GOAL] case inr.inr x✝ y✝ z✝ x y z : ℝ h : 0 ≤ x h₁ : x ≤ y h₂ : 0 ≤ z h₁' : x < y h₂' : 0 < z ⊢ x ^ z ≤ y ^ z [PROOFSTEP] exact le_of_lt (rpow_lt_rpow h h₁' h₂') [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z [PROOFSTEP] have hz' : 0 < -z := by rwa [lt_neg, neg_zero] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ 0 < -z [PROOFSTEP] rwa [lt_neg, neg_zero] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z ⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z [PROOFSTEP] have hxz : 0 < x ^ (-z) := Real.rpow_pos_of_pos hx _ [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) ⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z [PROOFSTEP] have hyz : 0 < y ^ z⁻¹ := Real.rpow_pos_of_pos hy _ [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x ≤ y ^ z⁻¹ ↔ y ≤ x ^ z [PROOFSTEP] rw [← Real.rpow_le_rpow_iff hx.le hyz.le hz', ← Real.rpow_mul hy.le] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x ^ (-z) ≤ y ^ (z⁻¹ * -z) ↔ y ≤ x ^ z [PROOFSTEP] simp only [ne_of_lt hz, Real.rpow_neg_one, mul_neg, inv_mul_cancel, Ne.def, not_false_iff] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x ^ (-z) ≤ y⁻¹ ↔ y ≤ x ^ z [PROOFSTEP] rw [le_inv hxz hy, ← Real.rpow_neg_one, ← Real.rpow_mul hx.le] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ y ≤ x ^ (-z * -1) ↔ y ≤ x ^ z [PROOFSTEP] simp [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x < y ^ z⁻¹ ↔ y < x ^ z [PROOFSTEP] have hz' : 0 < -z := by rwa [lt_neg, neg_zero] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ 0 < -z [PROOFSTEP] rwa [lt_neg, neg_zero] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z ⊢ x < y ^ z⁻¹ ↔ y < x ^ z [PROOFSTEP] have hxz : 0 < x ^ (-z) := Real.rpow_pos_of_pos hx _ [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) ⊢ x < y ^ z⁻¹ ↔ y < x ^ z [PROOFSTEP] have hyz : 0 < y ^ z⁻¹ := Real.rpow_pos_of_pos hy _ [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x < y ^ z⁻¹ ↔ y < x ^ z [PROOFSTEP] rw [← Real.rpow_lt_rpow_iff hx.le hyz.le hz', ← Real.rpow_mul hy.le] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x ^ (-z) < y ^ (z⁻¹ * -z) ↔ y < x ^ z [PROOFSTEP] simp only [ne_of_lt hz, Real.rpow_neg_one, mul_neg, inv_mul_cancel, Ne.def, not_false_iff] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ x ^ (-z) < y⁻¹ ↔ y < x ^ z [PROOFSTEP] rw [lt_inv hxz hy, ← Real.rpow_neg_one, ← Real.rpow_mul hx.le] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 hz' : 0 < -z hxz : 0 < x ^ (-z) hyz : 0 < y ^ z⁻¹ ⊢ y < x ^ (-z * -1) ↔ y < x ^ z [PROOFSTEP] simp [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x ^ z⁻¹ < y ↔ y ^ z < x [PROOFSTEP] convert lt_rpow_inv_iff_of_neg (Real.rpow_pos_of_pos hx z⁻¹) (Real.rpow_pos_of_pos hy z) hz [GOAL] case h.e'_1.h.e'_4 x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ y = (y ^ z) ^ z⁻¹ [PROOFSTEP] simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz] [GOAL] case h.e'_2.h.e'_4 x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x = (x ^ z⁻¹) ^ z [PROOFSTEP] simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x ^ z⁻¹ ≤ y ↔ y ^ z ≤ x [PROOFSTEP] convert le_rpow_inv_iff_of_neg (Real.rpow_pos_of_pos hx z⁻¹) (Real.rpow_pos_of_pos hy z) hz [GOAL] case h.e'_1.h.e'_4 x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ y = (y ^ z) ^ z⁻¹ [PROOFSTEP] simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz] [GOAL] case h.e'_2.h.e'_4 x y z : ℝ hx : 0 < x hy : 0 < y hz : z < 0 ⊢ x = (x ^ z⁻¹) ^ z [PROOFSTEP] simp [← Real.rpow_mul hx.le, ← Real.rpow_mul hy.le, ne_of_lt hz] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ x ^ y < x ^ z [PROOFSTEP] repeat' rw [rpow_def_of_pos (lt_trans zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ x ^ y < x ^ z [PROOFSTEP] rw [rpow_def_of_pos (lt_trans zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ exp (log x * y) < x ^ z [PROOFSTEP] rw [rpow_def_of_pos (lt_trans zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ exp (log x * y) < exp (log x * z) [PROOFSTEP] rw [rpow_def_of_pos (lt_trans zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ exp (log x * y) < exp (log x * z) [PROOFSTEP] rw [exp_lt_exp] [GOAL] x y z : ℝ hx : 1 < x hyz : y < z ⊢ log x * y < log x * z [PROOFSTEP] exact mul_lt_mul_of_pos_left hyz (log_pos hx) [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ x ^ y ≤ x ^ z [PROOFSTEP] repeat' rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ x ^ y ≤ x ^ z [PROOFSTEP] rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ exp (log x * y) ≤ x ^ z [PROOFSTEP] rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ exp (log x * y) ≤ exp (log x * z) [PROOFSTEP] rw [rpow_def_of_pos (lt_of_lt_of_le zero_lt_one hx)] [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ exp (log x * y) ≤ exp (log x * z) [PROOFSTEP] rw [exp_le_exp] [GOAL] x y z : ℝ hx : 1 ≤ x hyz : y ≤ z ⊢ log x * y ≤ log x * z [PROOFSTEP] exact mul_le_mul_of_nonneg_left hyz (log_nonneg hx) [GOAL] x✝ y✝ z✝ x y z : ℝ hy : 0 < y hxy : y < x hz : z < 0 ⊢ x ^ z < y ^ z [PROOFSTEP] have hx : 0 < x := hy.trans hxy [GOAL] x✝ y✝ z✝ x y z : ℝ hy : 0 < y hxy : y < x hz : z < 0 hx : 0 < x ⊢ x ^ z < y ^ z [PROOFSTEP] rw [← neg_neg z, Real.rpow_neg (le_of_lt hx) (-z), Real.rpow_neg (le_of_lt hy) (-z), inv_lt_inv (rpow_pos_of_pos hx _) (rpow_pos_of_pos hy _)] [GOAL] x✝ y✝ z✝ x y z : ℝ hy : 0 < y hxy : y < x hz : z < 0 hx : 0 < x ⊢ y ^ (-z) < x ^ (-z) [PROOFSTEP] exact Real.rpow_lt_rpow (by positivity) hxy <| neg_pos_of_neg hz [GOAL] x✝ y✝ z✝ x y z : ℝ hy : 0 < y hxy : y < x hz : z < 0 hx : 0 < x ⊢ 0 ≤ y [PROOFSTEP] positivity [GOAL] x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 ⊢ x ^ z ≤ y ^ z [PROOFSTEP] rcases ne_or_eq z 0 with hz_zero | rfl [GOAL] case inl x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 ⊢ x ^ z ≤ y ^ z case inr x✝ y✝ x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0 [PROOFSTEP] case inl => rcases ne_or_eq x y with hxy' | rfl case inl => exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) case inr => simp [GOAL] x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 ⊢ x ^ z ≤ y ^ z [PROOFSTEP] case inl => rcases ne_or_eq x y with hxy' | rfl case inl => exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) case inr => simp [GOAL] x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 ⊢ x ^ z ≤ y ^ z [PROOFSTEP] rcases ne_or_eq x y with hxy' | rfl [GOAL] case inl x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 hxy' : x ≠ y ⊢ x ^ z ≤ y ^ z case inr x✝ y z x : ℝ hz : z ≤ 0 hz_zero : z ≠ 0 hy : 0 < x hxy : x ≤ x ⊢ x ^ z ≤ x ^ z [PROOFSTEP] case inl => exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) [GOAL] x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 hxy' : x ≠ y ⊢ x ^ z ≤ y ^ z [PROOFSTEP] case inl => exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) [GOAL] x✝ y✝ z x y : ℝ hy : 0 < y hxy : y ≤ x hz : z ≤ 0 hz_zero : z ≠ 0 hxy' : x ≠ y ⊢ x ^ z ≤ y ^ z [PROOFSTEP] exact le_of_lt <| rpow_lt_rpow_of_exponent_neg hy (Ne.lt_of_le (id (Ne.symm hxy')) hxy) (Ne.lt_of_le hz_zero hz) [GOAL] case inr x✝ y z x : ℝ hz : z ≤ 0 hz_zero : z ≠ 0 hy : 0 < x hxy : x ≤ x ⊢ x ^ z ≤ x ^ z [PROOFSTEP] case inr => simp [GOAL] x✝ y z x : ℝ hz : z ≤ 0 hz_zero : z ≠ 0 hy : 0 < x hxy : x ≤ x ⊢ x ^ z ≤ x ^ z [PROOFSTEP] case inr => simp [GOAL] x✝ y z x : ℝ hz : z ≤ 0 hz_zero : z ≠ 0 hy : 0 < x hxy : x ≤ x ⊢ x ^ z ≤ x ^ z [PROOFSTEP] simp [GOAL] case inr x✝ y✝ x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0 [PROOFSTEP] case inr => simp [GOAL] x✝ y✝ x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0 [PROOFSTEP] case inr => simp [GOAL] x✝ y✝ x y : ℝ hy : 0 < y hxy : y ≤ x hz : 0 ≤ 0 ⊢ x ^ 0 ≤ y ^ 0 [PROOFSTEP] simp [GOAL] x y z : ℝ hx : 1 < x ⊢ x ^ y ≤ x ^ z ↔ y ≤ z [PROOFSTEP] have x_pos : 0 < x := lt_trans zero_lt_one hx [GOAL] x y z : ℝ hx : 1 < x x_pos : 0 < x ⊢ x ^ y ≤ x ^ z ↔ y ≤ z [PROOFSTEP] rw [← log_le_log (rpow_pos_of_pos x_pos y) (rpow_pos_of_pos x_pos z), log_rpow x_pos, log_rpow x_pos, mul_le_mul_right (log_pos hx)] [GOAL] x y z : ℝ hx : 1 < x ⊢ x ^ y < x ^ z ↔ y < z [PROOFSTEP] rw [lt_iff_not_le, rpow_le_rpow_left_iff hx, lt_iff_not_le] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ x ^ y < x ^ z [PROOFSTEP] repeat' rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ x ^ y < x ^ z [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ exp (log x * y) < x ^ z [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ exp (log x * y) < exp (log x * z) [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ exp (log x * y) < exp (log x * z) [PROOFSTEP] rw [exp_lt_exp] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ log x * y < log x * z [PROOFSTEP] exact mul_lt_mul_of_neg_left hyz (log_neg hx0 hx1) [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ x ^ y ≤ x ^ z [PROOFSTEP] repeat' rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ x ^ y ≤ x ^ z [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ exp (log x * y) ≤ x ^ z [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ exp (log x * y) ≤ exp (log x * z) [PROOFSTEP] rw [rpow_def_of_pos hx0] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ exp (log x * y) ≤ exp (log x * z) [PROOFSTEP] rw [exp_le_exp] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x ≤ 1 hyz : z ≤ y ⊢ log x * y ≤ log x * z [PROOFSTEP] exact mul_le_mul_of_nonpos_left hyz (log_nonpos (le_of_lt hx0) hx1) [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 ⊢ x ^ y ≤ x ^ z ↔ z ≤ y [PROOFSTEP] rw [← log_le_log (rpow_pos_of_pos hx0 y) (rpow_pos_of_pos hx0 z), log_rpow hx0, log_rpow hx0, mul_le_mul_right_of_neg (log_neg hx0 hx1)] [GOAL] x y z : ℝ hx0 : 0 < x hx1 : x < 1 ⊢ x ^ y < x ^ z ↔ z < y [PROOFSTEP] rw [lt_iff_not_le, rpow_le_rpow_left_iff_of_base_lt_one hx0 hx1, lt_iff_not_le] [GOAL] x✝ y z✝ x z : ℝ hx1 : 0 ≤ x hx2 : x < 1 hz : 0 < z ⊢ x ^ z < 1 [PROOFSTEP] rw [← one_rpow z] [GOAL] x✝ y z✝ x z : ℝ hx1 : 0 ≤ x hx2 : x < 1 hz : 0 < z ⊢ x ^ z < 1 ^ z [PROOFSTEP] exact rpow_lt_rpow hx1 hx2 hz [GOAL] x✝ y z✝ x z : ℝ hx1 : 0 ≤ x hx2 : x ≤ 1 hz : 0 ≤ z ⊢ x ^ z ≤ 1 [PROOFSTEP] rw [← one_rpow z] [GOAL] x✝ y z✝ x z : ℝ hx1 : 0 ≤ x hx2 : x ≤ 1 hz : 0 ≤ z ⊢ x ^ z ≤ 1 ^ z [PROOFSTEP] exact rpow_le_rpow hx1 hx2 hz [GOAL] x✝ y z✝ x z : ℝ hx : 1 < x hz : z < 0 ⊢ x ^ z < 1 [PROOFSTEP] convert rpow_lt_rpow_of_exponent_lt hx hz [GOAL] case h.e'_4 x✝ y z✝ x z : ℝ hx : 1 < x hz : z < 0 ⊢ 1 = x ^ 0 [PROOFSTEP] exact (rpow_zero x).symm [GOAL] x✝ y z✝ x z : ℝ hx : 1 ≤ x hz : z ≤ 0 ⊢ x ^ z ≤ 1 [PROOFSTEP] convert rpow_le_rpow_of_exponent_le hx hz [GOAL] case h.e'_4 x✝ y z✝ x z : ℝ hx : 1 ≤ x hz : z ≤ 0 ⊢ 1 = x ^ 0 [PROOFSTEP] exact (rpow_zero x).symm [GOAL] x✝ y z✝ x z : ℝ hx : 1 < x hz : 0 < z ⊢ 1 < x ^ z [PROOFSTEP] rw [← one_rpow z] [GOAL] x✝ y z✝ x z : ℝ hx : 1 < x hz : 0 < z ⊢ 1 ^ z < x ^ z [PROOFSTEP] exact rpow_lt_rpow zero_le_one hx hz [GOAL] x✝ y z✝ x z : ℝ hx : 1 ≤ x hz : 0 ≤ z ⊢ 1 ≤ x ^ z [PROOFSTEP] rw [← one_rpow z] [GOAL] x✝ y z✝ x z : ℝ hx : 1 ≤ x hz : 0 ≤ z ⊢ 1 ^ z ≤ x ^ z [PROOFSTEP] exact rpow_le_rpow zero_le_one hx hz [GOAL] x y z : ℝ hx1 : 0 < x hx2 : x < 1 hz : z < 0 ⊢ 1 < x ^ z [PROOFSTEP] convert rpow_lt_rpow_of_exponent_gt hx1 hx2 hz [GOAL] case h.e'_3 x y z : ℝ hx1 : 0 < x hx2 : x < 1 hz : z < 0 ⊢ 1 = x ^ 0 [PROOFSTEP] exact (rpow_zero x).symm [GOAL] x y z : ℝ hx1 : 0 < x hx2 : x ≤ 1 hz : z ≤ 0 ⊢ 1 ≤ x ^ z [PROOFSTEP] convert rpow_le_rpow_of_exponent_ge hx1 hx2 hz [GOAL] case h.e'_3 x y z : ℝ hx1 : 0 < x hx2 : x ≤ 1 hz : z ≤ 0 ⊢ 1 = x ^ 0 [PROOFSTEP] exact (rpow_zero x).symm [GOAL] x y z : ℝ hx : 0 < x ⊢ x ^ y < 1 ↔ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y [PROOFSTEP] rw [rpow_def_of_pos hx, exp_lt_one_iff, mul_neg_iff, log_pos_iff hx, log_neg_iff hx] [GOAL] x y z : ℝ hx : 0 ≤ x ⊢ x ^ y < 1 ↔ x = 0 ∧ y ≠ 0 ∨ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hx) [GOAL] case inl y z : ℝ hx : 0 ≤ 0 ⊢ 0 ^ y < 1 ↔ 0 = 0 ∧ y ≠ 0 ∨ 1 < 0 ∧ y < 0 ∨ 0 < 1 ∧ 0 < y [PROOFSTEP] rcases _root_.em (y = 0) with (rfl | hy) [GOAL] case inl.inl z : ℝ hx : 0 ≤ 0 ⊢ 0 ^ 0 < 1 ↔ 0 = 0 ∧ 0 ≠ 0 ∨ 1 < 0 ∧ 0 < 0 ∨ 0 < 1 ∧ 0 < 0 [PROOFSTEP] simp [*, lt_irrefl, zero_lt_one] [GOAL] case inl.inr y z : ℝ hx : 0 ≤ 0 hy : ¬y = 0 ⊢ 0 ^ y < 1 ↔ 0 = 0 ∧ y ≠ 0 ∨ 1 < 0 ∧ y < 0 ∨ 0 < 1 ∧ 0 < y [PROOFSTEP] simp [*, lt_irrefl, zero_lt_one] [GOAL] case inr x y z : ℝ hx✝ : 0 ≤ x hx : 0 < x ⊢ x ^ y < 1 ↔ x = 0 ∧ y ≠ 0 ∨ 1 < x ∧ y < 0 ∨ x < 1 ∧ 0 < y [PROOFSTEP] simp [rpow_lt_one_iff_of_pos hx, hx.ne.symm] [GOAL] x y z : ℝ hx : 0 < x ⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ x < 1 ∧ y < 0 [PROOFSTEP] rw [rpow_def_of_pos hx, one_lt_exp_iff, mul_pos_iff, log_pos_iff hx, log_neg_iff hx] [GOAL] x y z : ℝ hx : 0 ≤ x ⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ 0 < x ∧ x < 1 ∧ y < 0 [PROOFSTEP] rcases hx.eq_or_lt with (rfl | hx) [GOAL] case inl y z : ℝ hx : 0 ≤ 0 ⊢ 1 < 0 ^ y ↔ 1 < 0 ∧ 0 < y ∨ 0 < 0 ∧ 0 < 1 ∧ y < 0 [PROOFSTEP] rcases _root_.em (y = 0) with (rfl | hy) [GOAL] case inl.inl z : ℝ hx : 0 ≤ 0 ⊢ 1 < 0 ^ 0 ↔ 1 < 0 ∧ 0 < 0 ∨ 0 < 0 ∧ 0 < 1 ∧ 0 < 0 [PROOFSTEP] simp [*, lt_irrefl, (zero_lt_one' ℝ).not_lt] [GOAL] case inl.inr y z : ℝ hx : 0 ≤ 0 hy : ¬y = 0 ⊢ 1 < 0 ^ y ↔ 1 < 0 ∧ 0 < y ∨ 0 < 0 ∧ 0 < 1 ∧ y < 0 [PROOFSTEP] simp [*, lt_irrefl, (zero_lt_one' ℝ).not_lt] [GOAL] case inr x y z : ℝ hx✝ : 0 ≤ x hx : 0 < x ⊢ 1 < x ^ y ↔ 1 < x ∧ 0 < y ∨ 0 < x ∧ x < 1 ∧ y < 0 [PROOFSTEP] simp [one_lt_rpow_iff_of_pos hx, hx] [GOAL] x y z : ℝ hx0 : 0 ≤ x hx1 : x ≤ 1 hz : 0 ≤ z hyz : z ≤ y ⊢ x ^ y ≤ x ^ z [PROOFSTEP] rcases eq_or_lt_of_le hx0 with (rfl | hx0') [GOAL] case inl y z : ℝ hz : 0 ≤ z hyz : z ≤ y hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 ⊢ 0 ^ y ≤ 0 ^ z [PROOFSTEP] rcases eq_or_lt_of_le hz with (rfl | hz') [GOAL] case inl.inl y : ℝ hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 hz : 0 ≤ 0 hyz : 0 ≤ y ⊢ 0 ^ y ≤ 0 ^ 0 [PROOFSTEP] exact (rpow_zero 0).symm ▸ rpow_le_one hx0 hx1 hyz [GOAL] case inl.inr y z : ℝ hz : 0 ≤ z hyz : z ≤ y hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 hz' : 0 < z ⊢ 0 ^ y ≤ 0 ^ z [PROOFSTEP] rw [zero_rpow, zero_rpow] [GOAL] case inl.inr y z : ℝ hz : 0 ≤ z hyz : z ≤ y hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 hz' : 0 < z ⊢ z ≠ 0 [PROOFSTEP] linarith [GOAL] case inl.inr y z : ℝ hz : 0 ≤ z hyz : z ≤ y hx0 : 0 ≤ 0 hx1 : 0 ≤ 1 hz' : 0 < z ⊢ y ≠ 0 [PROOFSTEP] linarith [GOAL] case inr x y z : ℝ hx0 : 0 ≤ x hx1 : x ≤ 1 hz : 0 ≤ z hyz : z ≤ y hx0' : 0 < x ⊢ x ^ y ≤ x ^ z [PROOFSTEP] exact rpow_le_rpow_of_exponent_ge hx0' hx1 hyz [GOAL] x✝ y z x : ℝ hx : x ≠ 0 ⊢ InjOn (fun y => y ^ x) {y | 0 ≤ y} [PROOFSTEP] rintro y hy z hz (hyz : y ^ x = z ^ x) [GOAL] x✝ y✝ z✝ x : ℝ hx : x ≠ 0 y : ℝ hy : y ∈ {y | 0 ≤ y} z : ℝ hz : z ∈ {y | 0 ≤ y} hyz : y ^ x = z ^ x ⊢ y = z [PROOFSTEP] rw [← rpow_one y, ← rpow_one z, ← _root_.mul_inv_cancel hx, rpow_mul hy, rpow_mul hz, hyz] [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y ⊢ x ≤ y ^ z ↔ log x ≤ z * log y [PROOFSTEP] rw [← Real.log_le_log hx (Real.rpow_pos_of_pos hy z), Real.log_rpow hy] [GOAL] x y z : ℝ hx : 0 ≤ x hy : 0 < y h : log x ≤ z * log y ⊢ x ≤ y ^ z [PROOFSTEP] obtain hx | rfl := hx.lt_or_eq [GOAL] case inl x y z : ℝ hx✝ : 0 ≤ x hy : 0 < y h : log x ≤ z * log y hx : 0 < x ⊢ x ≤ y ^ z [PROOFSTEP] exact (le_rpow_iff_log_le hx hy).2 h [GOAL] case inr y z : ℝ hy : 0 < y hx : 0 ≤ 0 h : log 0 ≤ z * log y ⊢ 0 ≤ y ^ z [PROOFSTEP] exact (Real.rpow_pos_of_pos hy z).le [GOAL] x y z : ℝ hx : 0 < x hy : 0 < y ⊢ x < y ^ z ↔ log x < z * log y [PROOFSTEP] rw [← Real.log_lt_log_iff hx (Real.rpow_pos_of_pos hy z), Real.log_rpow hy] [GOAL] x y z : ℝ hx : 0 ≤ x hy : 0 < y h : log x < z * log y ⊢ x < y ^ z [PROOFSTEP] obtain hx | rfl := hx.lt_or_eq [GOAL] case inl x y z : ℝ hx✝ : 0 ≤ x hy : 0 < y h : log x < z * log y hx : 0 < x ⊢ x < y ^ z [PROOFSTEP] exact (lt_rpow_iff_log_lt hx hy).2 h [GOAL] case inr y z : ℝ hy : 0 < y hx : 0 ≤ 0 h : log 0 < z * log y ⊢ 0 < y ^ z [PROOFSTEP] exact Real.rpow_pos_of_pos hy z [GOAL] x y z : ℝ hx : 0 < x ⊢ x ^ y ≤ 1 ↔ 1 ≤ x ∧ y ≤ 0 ∨ x ≤ 1 ∧ 0 ≤ y [PROOFSTEP] rw [rpow_def_of_pos hx, exp_le_one_iff, mul_nonpos_iff, log_nonneg_iff hx, log_nonpos_iff hx] [GOAL] x✝ y z x t : ℝ h1 : 0 < x h2 : x ≤ 1 ht : 0 < t ⊢ |log x * x ^ t| < 1 / t [PROOFSTEP] rw [lt_div_iff ht] [GOAL] x✝ y z x t : ℝ h1 : 0 < x h2 : x ≤ 1 ht : 0 < t ⊢ |log x * x ^ t| * t < 1 [PROOFSTEP] have := abs_log_mul_self_lt (x ^ t) (rpow_pos_of_pos h1 t) (rpow_le_one h1.le h2 ht.le) [GOAL] x✝ y z x t : ℝ h1 : 0 < x h2 : x ≤ 1 ht : 0 < t this : |log (x ^ t) * x ^ t| < 1 ⊢ |log x * x ^ t| * t < 1 [PROOFSTEP] rwa [log_rpow h1, mul_assoc, abs_mul, abs_of_pos ht, mul_comm] at this [GOAL] x✝ y z x : ℝ hx : 0 ≤ x n : ℕ hn : n ≠ 0 ⊢ (x ^ n) ^ (↑n)⁻¹ = x [PROOFSTEP] have hn0 : (n : ℝ) ≠ 0 := Nat.cast_ne_zero.2 hn [GOAL] x✝ y z x : ℝ hx : 0 ≤ x n : ℕ hn : n ≠ 0 hn0 : ↑n ≠ 0 ⊢ (x ^ n) ^ (↑n)⁻¹ = x [PROOFSTEP] rw [← rpow_nat_cast, ← rpow_mul hx, mul_inv_cancel hn0, rpow_one] [GOAL] x✝ y z x : ℝ hx : 0 ≤ x n : ℕ hn : n ≠ 0 ⊢ (x ^ (↑n)⁻¹) ^ n = x [PROOFSTEP] have hn0 : (n : ℝ) ≠ 0 := Nat.cast_ne_zero.2 hn [GOAL] x✝ y z x : ℝ hx : 0 ≤ x n : ℕ hn : n ≠ 0 hn0 : ↑n ≠ 0 ⊢ (x ^ (↑n)⁻¹) ^ n = x [PROOFSTEP] rw [← rpow_nat_cast, ← rpow_mul hx, inv_mul_cancel hn0, rpow_one] [GOAL] x y z b : ℝ hb : 1 < b ⊢ StrictMono (rpow b) [PROOFSTEP] show StrictMono (fun (x : ℝ) => b ^ x) [GOAL] x y z b : ℝ hb : 1 < b ⊢ StrictMono fun x => b ^ x [PROOFSTEP] simp_rw [Real.rpow_def_of_pos (zero_lt_one.trans hb)] [GOAL] x y z b : ℝ hb : 1 < b ⊢ StrictMono fun x => exp (log b * x) [PROOFSTEP] exact exp_strictMono.comp <| StrictMono.const_mul strictMono_id <| Real.log_pos hb [GOAL] x y z b : ℝ hb : 1 ≤ b ⊢ Monotone (rpow b) [PROOFSTEP] rcases lt_or_eq_of_le hb with hb | rfl [GOAL] case inl x y z b : ℝ hb✝ : 1 ≤ b hb : 1 < b ⊢ Monotone (rpow b) case inr x y z : ℝ hb : 1 ≤ 1 ⊢ Monotone (rpow 1) [PROOFSTEP] case inl => exact (strictMono_rpow_of_base_gt_one hb).monotone [GOAL] x y z b : ℝ hb✝ : 1 ≤ b hb : 1 < b ⊢ Monotone (rpow b) [PROOFSTEP] case inl => exact (strictMono_rpow_of_base_gt_one hb).monotone [GOAL] x y z b : ℝ hb✝ : 1 ≤ b hb : 1 < b ⊢ Monotone (rpow b) [PROOFSTEP] exact (strictMono_rpow_of_base_gt_one hb).monotone [GOAL] case inr x y z : ℝ hb : 1 ≤ 1 ⊢ Monotone (rpow 1) [PROOFSTEP] case inr => intro _ _ _; simp [GOAL] x y z : ℝ hb : 1 ≤ 1 ⊢ Monotone (rpow 1) [PROOFSTEP] case inr => intro _ _ _; simp [GOAL] x y z : ℝ hb : 1 ≤ 1 ⊢ Monotone (rpow 1) [PROOFSTEP] intro _ _ _ [GOAL] x y z : ℝ hb : 1 ≤ 1 a✝¹ b✝ : ℝ a✝ : a✝¹ ≤ b✝ ⊢ rpow 1 a✝¹ ≤ rpow 1 b✝ [PROOFSTEP] simp [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ StrictAnti (rpow b) [PROOFSTEP] show StrictAnti (fun (x : ℝ) => b ^ x) [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ StrictAnti fun x => b ^ x [PROOFSTEP] simp_rw [Real.rpow_def_of_pos hb₀] [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁ : b < 1 ⊢ StrictAnti fun x => exp (log b * x) [PROOFSTEP] exact exp_strictMono.comp_strictAnti <| StrictMono.const_mul_of_neg strictMono_id <| Real.log_neg hb₀ hb₁ [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁ : b ≤ 1 ⊢ Antitone (rpow b) [PROOFSTEP] rcases lt_or_eq_of_le hb₁ with hb₁ | rfl [GOAL] case inl x y z b : ℝ hb₀ : 0 < b hb₁✝ : b ≤ 1 hb₁ : b < 1 ⊢ Antitone (rpow b) case inr x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone (rpow 1) [PROOFSTEP] case inl => exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁✝ : b ≤ 1 hb₁ : b < 1 ⊢ Antitone (rpow b) [PROOFSTEP] case inl => exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone [GOAL] x y z b : ℝ hb₀ : 0 < b hb₁✝ : b ≤ 1 hb₁ : b < 1 ⊢ Antitone (rpow b) [PROOFSTEP] exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone [GOAL] case inr x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone (rpow 1) [PROOFSTEP] case inr => intro _ _ _; simp [GOAL] x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone (rpow 1) [PROOFSTEP] case inr => intro _ _ _; simp [GOAL] x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone (rpow 1) [PROOFSTEP] intro _ _ _ [GOAL] x y z : ℝ hb₀ : 0 < 1 hb₁ : 1 ≤ 1 a✝¹ b✝ : ℝ a✝ : a✝¹ ≤ b✝ ⊢ rpow 1 b✝ ≤ rpow 1 a✝¹ [PROOFSTEP] simp [GOAL] z x✝ y x : ℝ ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] obtain h | h := le_or_lt 0 x [GOAL] case inl z x✝ y x : ℝ h : 0 ≤ x ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] rw [← mul_self_inj_of_nonneg (sqrt_nonneg _) (rpow_nonneg_of_nonneg h _), mul_self_sqrt h, ← sq, ← rpow_nat_cast, ← rpow_mul h] [GOAL] case inl z x✝ y x : ℝ h : 0 ≤ x ⊢ x = x ^ (1 / 2 * ↑2) [PROOFSTEP] norm_num [GOAL] case inr z x✝ y x : ℝ h : x < 0 ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] have : 1 / (2 : ℝ) * π = π / (2 : ℝ) [GOAL] case this z x✝ y x : ℝ h : x < 0 ⊢ 1 / 2 * π = π / 2 case inr z x✝ y x : ℝ h : x < 0 this : 1 / 2 * π = π / 2 ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] ring [GOAL] case inr z x✝ y x : ℝ h : x < 0 this : 1 / 2 * π = π / 2 ⊢ sqrt x = x ^ (1 / 2) [PROOFSTEP] rw [sqrt_eq_zero_of_nonpos h.le, rpow_def_of_neg h, this, cos_pi_div_two, mul_zero] [GOAL] z x✝ y x r : ℝ hx : 0 ≤ x ⊢ x ^ (r / 2) = sqrt x ^ r [PROOFSTEP] rw [sqrt_eq_rpow, ← rpow_mul hx] [GOAL] z x✝ y x r : ℝ hx : 0 ≤ x ⊢ x ^ (r / 2) = x ^ (1 / 2 * r) [PROOFSTEP] congr [GOAL] case e_a z x✝ y x r : ℝ hx : 0 ≤ x ⊢ r / 2 = 1 / 2 * r [PROOFSTEP] ring [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] have hn' : 0 < (n : ℝ) := by exact_mod_cast hn.bot_lt [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y ⊢ 0 < ↑n [PROOFSTEP] exact_mod_cast hn.bot_lt [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] obtain ⟨q, hxq, hqy⟩ := exists_rat_btwn (rpow_lt_rpow (le_max_left 0 x) (max_lt hy h) <| inv_pos.mpr hn') [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ hxq : max 0 x ^ (↑n)⁻¹ < ↑q hqy : ↑q < y ^ (↑n)⁻¹ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] have := rpow_nonneg_of_nonneg (le_max_left 0 x) n⁻¹ [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ hxq : max 0 x ^ (↑n)⁻¹ < ↑q hqy : ↑q < y ^ (↑n)⁻¹ this : 0 ≤ max 0 x ^ (↑n)⁻¹ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] have hq := this.trans_lt hxq [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ hxq : max 0 x ^ (↑n)⁻¹ < ↑q hqy : ↑q < y ^ (↑n)⁻¹ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] replace hxq := rpow_lt_rpow this hxq hn' [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ hqy : ↑q < y ^ (↑n)⁻¹ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : (max 0 x ^ (↑n)⁻¹) ^ ↑n < ↑q ^ ↑n ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] replace hqy := rpow_lt_rpow hq.le hqy hn' [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : (max 0 x ^ (↑n)⁻¹) ^ ↑n < ↑q ^ ↑n hqy : ↑q ^ ↑n < (y ^ (↑n)⁻¹) ^ ↑n ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] rw [rpow_nat_cast, rpow_nat_cast, rpow_nat_inv_pow_nat _ hn] at hxq hqy [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : max 0 x < ↑q ^ n hqy : ↑q ^ n < y ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] exact ⟨q, by exact_mod_cast hq, (le_max_right _ _).trans_lt hxq, hqy⟩ [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : max 0 x < ↑q ^ n hqy : ↑q ^ n < y ⊢ 0 < q [PROOFSTEP] exact_mod_cast hq [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : max 0 x < ↑q ^ n hqy : ↑q ^ n < (y ^ (↑n)⁻¹) ^ n ⊢ 0 ≤ y [PROOFSTEP] exact hy.le [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℝ h : x < y hy : 0 < y hn' : 0 < ↑n q : ℚ this : 0 ≤ max 0 x ^ (↑n)⁻¹ hq : 0 < ↑q hxq : (max 0 x ^ (↑n)⁻¹) ^ n < ↑q ^ n hqy : ↑q ^ n < (y ^ (↑n)⁻¹) ^ n ⊢ 0 ≤ max 0 x [PROOFSTEP] exact le_max_left _ _ [GOAL] z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℚ h : x < y hy : 0 < y ⊢ ∃ q, 0 < q ∧ x < q ^ n ∧ q ^ n < y [PROOFSTEP] apply_mod_cast exists_rat_pow_btwn_rat_aux hn x y [GOAL] case a z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℚ h : x < y hy : 0 < y ⊢ x < y [PROOFSTEP] assumption [GOAL] case a z x✝ y✝ : ℝ n : ℕ hn : n ≠ 0 x y : ℚ h : x < y hy : 0 < y ⊢ 0 < y [PROOFSTEP] assumption [GOAL] z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] obtain ⟨q₂, hx₂, hy₂⟩ := exists_rat_btwn (max_lt h hy) [GOAL] case intro.intro z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] obtain ⟨q₁, hx₁, hq₁₂⟩ := exists_rat_btwn hx₂ [GOAL] case intro.intro.intro.intro z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : ↑q₁ < ↑q₂ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] have : (0 : α) < q₂ := (le_max_right _ _).trans_lt hx₂ [GOAL] case intro.intro.intro.intro z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : ↑q₁ < ↑q₂ this : 0 < ↑q₂ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] norm_cast at hq₁₂ this [GOAL] case intro.intro.intro.intro z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : q₁ < q₂ this : 0 < q₂ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] obtain ⟨q, hq, hq₁, hq₂⟩ := exists_rat_pow_btwn_rat hn hq₁₂ this [GOAL] case intro.intro.intro.intro.intro.intro.intro z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : q₁ < q₂ this : 0 < q₂ q : ℚ hq : 0 < q hq₁ : q₁ < q ^ n hq₂ : q ^ n < q₂ ⊢ ∃ q, 0 < q ∧ x < ↑q ^ n ∧ ↑q ^ n < y [PROOFSTEP] refine' ⟨q, hq, (le_max_left _ _).trans_lt <| hx₁.trans _, hy₂.trans' _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : q₁ < q₂ this : 0 < q₂ q : ℚ hq : 0 < q hq₁ : q₁ < q ^ n hq₂ : q ^ n < q₂ ⊢ ↑q₁ < ↑q ^ n [PROOFSTEP] assumption_mod_cast [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 z x✝ y✝ : ℝ n : ℕ α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α hn : n ≠ 0 x y : α h : x < y hy : 0 < y q₂ : ℚ hx₂ : max x 0 < ↑q₂ hy₂ : ↑q₂ < y q₁ : ℚ hx₁ : max x 0 < ↑q₁ hq₁₂ : q₁ < q₂ this : 0 < q₂ q : ℚ hq : 0 < q hq₁ : q₁ < q ^ n hq₂ : q ^ n < q₂ ⊢ ↑q ^ n < ↑q₂ [PROOFSTEP] assumption_mod_cast
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Real", "llama_tokens": 35866}
[GOAL] u : ℂ hu : 0 < u.re v : ℂ ⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 (1 / 2) [PROOFSTEP] apply IntervalIntegrable.mul_continuousOn [GOAL] case hf u : ℂ hu : 0 < u.re v : ℂ ⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1)) volume 0 (1 / 2) [PROOFSTEP] refine' intervalIntegral.intervalIntegrable_cpow' _ [GOAL] case hf u : ℂ hu : 0 < u.re v : ℂ ⊢ -1 < (u - 1).re [PROOFSTEP] rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] [GOAL] case hg u : ℂ hu : 0 < u.re v : ℂ ⊢ ContinuousOn (fun x => (1 - ↑x) ^ (v - 1)) (uIcc 0 (1 / 2)) [PROOFSTEP] apply ContinuousAt.continuousOn [GOAL] case hg.hcont u : ℂ hu : 0 < u.re v : ℂ ⊢ ∀ (x : ℝ), x ∈ uIcc 0 (1 / 2) → ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x [PROOFSTEP] intro x hx [GOAL] case hg.hcont u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ uIcc 0 (1 / 2) ⊢ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x [PROOFSTEP] rw [uIcc_of_le (by positivity : (0 : ℝ) ≤ 1 / 2)] at hx [GOAL] u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ uIcc 0 (1 / 2) ⊢ 0 ≤ 1 / 2 [PROOFSTEP] positivity [GOAL] case hg.hcont u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x [PROOFSTEP] apply ContinuousAt.cpow [GOAL] case hg.hcont.hf u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ ContinuousAt (fun x => 1 - ↑x) x [PROOFSTEP] exact (continuous_const.sub continuous_ofReal).continuousAt [GOAL] case hg.hcont.hg u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ ContinuousAt (fun x => v - 1) x [PROOFSTEP] exact continuousAt_const [GOAL] case hg.hcont.h0 u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ 0 < (1 - ↑x).re ∨ (1 - ↑x).im ≠ 0 [PROOFSTEP] rw [sub_re, one_re, ofReal_re, sub_pos] [GOAL] case hg.hcont.h0 u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ x < 1 ∨ (1 - ↑x).im ≠ 0 [PROOFSTEP] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) [GOAL] u : ℂ hu : 0 < u.re v : ℂ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊢ 1 / 2 < 1 [PROOFSTEP] norm_num [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 1 [PROOFSTEP] refine' (betaIntegral_convergent_left hu v).trans _ [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume (1 / 2) 1 [PROOFSTEP] rw [IntervalIntegrable.iff_comp_neg] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ IntervalIntegrable (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) volume (-(1 / 2)) (-1) [PROOFSTEP] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 [GOAL] case h.e'_3 u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) = fun x => ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1) [PROOFSTEP] ext1 x [GOAL] case h.e'_3.h u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1) [PROOFSTEP] conv_lhs => rw [mul_comm] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) [PROOFSTEP] rw [mul_comm] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) [PROOFSTEP] rw [mul_comm] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) [PROOFSTEP] rw [mul_comm] [GOAL] case h.e'_3.h u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ (1 - ↑(-x)) ^ (v - 1) * ↑(-x) ^ (u - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1) [PROOFSTEP] congr 2 [GOAL] case h.e'_3.h.e_a.e_a u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ 1 - ↑(-x) = ↑(x + 1) [PROOFSTEP] push_cast [GOAL] case h.e'_3.h.e_a.e_a u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ 1 - -↑x = ↑x + 1 [PROOFSTEP] ring [GOAL] case h.e'_3.h.e_a.e_a u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ ↑(-x) = 1 - ↑(x + 1) [PROOFSTEP] push_cast [GOAL] case h.e'_3.h.e_a.e_a u v : ℂ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊢ -↑x = 1 - (↑x + 1) [PROOFSTEP] ring [GOAL] case h.e'_5 u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ -(1 / 2) = 1 / 2 - 1 [PROOFSTEP] norm_num [GOAL] case h.e'_6 u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ -1 = 0 - 1 [PROOFSTEP] norm_num [GOAL] u v : ℂ ⊢ betaIntegral v u = betaIntegral u v [PROOFSTEP] rw [betaIntegral, betaIntegral] [GOAL] u v : ℂ ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) [PROOFSTEP] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : ℂ) ^ (u - 1) * (1 - (x : ℂ)) ^ (v - 1)) neg_one_lt_zero.ne 1 [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) = (-1)⁻¹ • ∫ (x : ℝ) in -1 * 0 + 1 ..-1 * 1 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) [PROOFSTEP] rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) = ∫ (x : ℝ) in -1 * 1 + 1 ..-1 * 0 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) [PROOFSTEP] simp at this [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) [PROOFSTEP] conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) [PROOFSTEP] arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) [PROOFSTEP] arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) [PROOFSTEP] arg 1 [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | fun x => (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) [PROOFSTEP] intro x [GOAL] case h u v : ℂ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) x : ℝ | (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) [PROOFSTEP] rw [add_comm, ← sub_eq_add_neg, mul_comm] [GOAL] u v : ℂ this : ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) [PROOFSTEP] exact this [GOAL] u : ℂ hu : 0 < u.re ⊢ betaIntegral u 1 = 1 / u [PROOFSTEP] simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] [GOAL] u : ℂ hu : 0 < u.re ⊢ ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) = 1 / u [PROOFSTEP] rw [integral_cpow (Or.inl _)] [GOAL] u : ℂ hu : 0 < u.re ⊢ (↑1 ^ (u - 1 + 1) - ↑0 ^ (u - 1 + 1)) / (u - 1 + 1) = 1 / u [PROOFSTEP] rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] [GOAL] u : ℂ hu : 0 < u.re ⊢ u - 1 + 1 ≠ 0 [PROOFSTEP] rw [sub_add_cancel] [GOAL] u : ℂ hu : 0 < u.re ⊢ u ≠ 0 [PROOFSTEP] contrapose! hu [GOAL] u : ℂ hu : u = 0 ⊢ u.re ≤ 0 [PROOFSTEP] rw [hu, zero_re] [GOAL] u : ℂ hu : 0 < u.re ⊢ -1 < (u - 1).re [PROOFSTEP] rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] [GOAL] s t : ℂ a : ℝ ha : 0 < a ⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t [PROOFSTEP] have ha' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha.ne' [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 ⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t [PROOFSTEP] rw [betaIntegral] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 ⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1) [PROOFSTEP] have A : (a : ℂ) ^ (s + t - 1) = a * ((a : ℂ) ^ (s - 1) * (a : ℂ) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 ⊢ ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) [PROOFSTEP] rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 ⊢ s + t - 1 = 1 + (s - 1) + (t - 1) [PROOFSTEP] abel [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 ⊢ s + t - 1 = 1 + (s - 1) + (t - 1) [PROOFSTEP] abel [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1) [PROOFSTEP] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊢ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ∫ (x : ℝ) in 0 ..a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1)) [PROOFSTEP] simp_rw [intervalIntegral.integral_of_le ha.le] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊢ ∫ (x : ℝ) in Ioc 0 a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ∫ (x : ℝ) in Ioc 0 a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1)) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioc fun x hx => _ [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1)) [PROOFSTEP] rw [mul_mul_mul_comm] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1) * (↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1)) [PROOFSTEP] congr 1 [GOAL] case e_a s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ ↑x ^ (s - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1) [PROOFSTEP] rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] [GOAL] case e_a s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ (↑a - ↑x) ^ (t - 1) = ↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1) [PROOFSTEP] rw [(by norm_cast : (1 : ℂ) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)] [GOAL] s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ 1 - ↑(x / a) = ↑(1 - x / a) [PROOFSTEP] norm_cast [GOAL] case e_a s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ (↑a - ↑x) ^ (t - 1) = (↑a * ↑(1 - x / a)) ^ (t - 1) [PROOFSTEP] push_cast [GOAL] case e_a s t : ℂ a : ℝ ha : 0 < a ha' : ↑a ≠ 0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊢ (↑a - ↑x) ^ (t - 1) = (↑a * (1 - ↑x / ↑a)) ^ (t - 1) [PROOFSTEP] rw [mul_sub, mul_one, mul_div_cancel' _ ha'] [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re ⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t [PROOFSTEP] have conv_int := integral_posConvolution (GammaIntegral_convergent hs) (GammaIntegral_convergent ht) (ContinuousLinearMap.mul ℝ ℂ) [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(↑(ContinuousLinearMap.mul ℝ ℂ) (↑(rexp (-t_1)) * ↑t_1 ^ (s - 1))) (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = ↑(↑(ContinuousLinearMap.mul ℝ ℂ) (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1))) (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1)) ⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t [PROOFSTEP] simp_rw [ContinuousLinearMap.mul_apply'] at conv_int [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) ⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t [PROOFSTEP] have hst : 0 < re (s + t) := by rw [add_re]; exact add_pos hs ht [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) ⊢ 0 < (s + t).re [PROOFSTEP] rw [add_re] [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) ⊢ 0 < s.re + t.re [PROOFSTEP] exact add_pos hs ht [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re ⊢ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t [PROOFSTEP] rw [Gamma_eq_integral hs, Gamma_eq_integral ht, Gamma_eq_integral hst, GammaIntegral, GammaIntegral, GammaIntegral, ← conv_int, ← integral_mul_right (betaIntegral _ _)] [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re ⊢ ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = ∫ (a : ℝ) in Ioi 0, ↑(rexp (-a)) * ↑a ^ (s + t - 1) * betaIntegral s t [PROOFSTEP] refine' set_integral_congr measurableSet_Ioi fun x hx => _ [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 ⊢ ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = ↑(rexp (-x)) * ↑x ^ (s + t - 1) * betaIntegral s t [PROOFSTEP] rw [mul_assoc, ← betaIntegral_scaled s t hx, ← intervalIntegral.integral_const_mul] [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 ⊢ ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = ∫ (x_1 : ℝ) in 0 ..x, ↑(rexp (-x)) * (↑x_1 ^ (s - 1) * (↑x - ↑x_1) ^ (t - 1)) [PROOFSTEP] congr 1 with y : 1 [GOAL] case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ ↑(rexp (-y)) * ↑y ^ (s - 1) * (↑(rexp (-(x - y))) * ↑(x - y) ^ (t - 1)) = ↑(rexp (-x)) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1)) [PROOFSTEP] push_cast [GOAL] case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) = cexp (-↑x) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1)) [PROOFSTEP] suffices Complex.exp (-x) = Complex.exp (-y) * Complex.exp (-(x - y)) by rw [this]; ring [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ this : cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y)) ⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) = cexp (-↑x) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1)) [PROOFSTEP] rw [this] [GOAL] s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ this : cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y)) ⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) = cexp (-↑y) * cexp (-(↑x - ↑y)) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1)) [PROOFSTEP] ring [GOAL] case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ cexp (-↑x) = cexp (-↑y) * cexp (-(↑x - ↑y)) [PROOFSTEP] rw [← Complex.exp_add] [GOAL] case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ cexp (-↑x) = cexp (-↑y + -(↑x - ↑y)) [PROOFSTEP] congr 1 [GOAL] case e_f.h.e_z s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ -↑x = -↑y + -(↑x - ↑y) [PROOFSTEP] abel [GOAL] case e_f.h.e_z s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1)) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ -↑x = -↑y + -(↑x - ↑y) [PROOFSTEP] abel [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] let F : ℝ → ℂ := fun x => (x : ℂ) ^ u * (1 - (x : ℂ)) ^ v [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hu' : 0 < re (u + 1) := by rw [add_re, one_re]; positivity [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v ⊢ 0 < (u + 1).re [PROOFSTEP] rw [add_re, one_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v ⊢ 0 < u.re + 1 [PROOFSTEP] positivity [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hv' : 0 < re (v + 1) := by rw [add_re, one_re]; positivity [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re ⊢ 0 < (v + 1).re [PROOFSTEP] rw [add_re, one_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re ⊢ 0 < v.re + 1 [PROOFSTEP] positivity [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hc : ContinuousOn F (Icc 0 1) := by refine' (ContinuousAt.continuousOn fun x hx => _).mul (ContinuousAt.continuousOn fun x hx => _) · refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hu).comp continuous_ofReal.continuousAt rw [ofReal_re]; exact hx.1 · refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hv).comp (continuous_const.sub continuous_ofReal).continuousAt rw [sub_re, one_re, ofReal_re, sub_nonneg] exact hx.2 [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re ⊢ ContinuousOn F (Icc 0 1) [PROOFSTEP] refine' (ContinuousAt.continuousOn fun x hx => _).mul (ContinuousAt.continuousOn fun x hx => _) [GOAL] case refine'_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ ContinuousAt (fun x => ↑x ^ u) x [PROOFSTEP] refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hu).comp continuous_ofReal.continuousAt [GOAL] case refine'_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ 0 ≤ (↑x).re [PROOFSTEP] rw [ofReal_re] [GOAL] case refine'_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ 0 ≤ x [PROOFSTEP] exact hx.1 [GOAL] case refine'_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ ContinuousAt (fun x => (1 - ↑x) ^ v) x [PROOFSTEP] refine' (continuousAt_cpow_const_of_re_pos (Or.inl _) hv).comp (continuous_const.sub continuous_ofReal).continuousAt [GOAL] case refine'_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ 0 ≤ (1 - ↑x).re [PROOFSTEP] rw [sub_re, one_re, ofReal_re, sub_nonneg] [GOAL] case refine'_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re x : ℝ hx : x ∈ Icc 0 1 ⊢ x ≤ 1 [PROOFSTEP] exact hx.2 [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hder : ∀ x : ℝ, x ∈ Ioo (0 : ℝ) 1 → HasDerivAt F (u * ((x : ℂ) ^ (u - 1) * (1 - (x : ℂ)) ^ v) - v * ((x : ℂ) ^ u * (1 - (x : ℂ)) ^ (v - 1))) x := by intro x hx have U : HasDerivAt (fun y : ℂ => y ^ u) (u * (x : ℂ) ^ (u - 1)) ↑x := by have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_) simp only [id_eq, mul_one] at this · exact this · rw [id_eq, ofReal_re]; exact hx.1 have V : HasDerivAt (fun y : ℂ => (1 - y) ^ v) (-v * (1 - (x : ℂ)) ^ (v - 1)) ↑x := by have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_) swap; · rw [id.def, sub_re, one_re, ofReal_re, sub_pos]; exact hx.2 simp_rw [id.def] at A have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id convert HasDerivAt.comp (↑x) A B using 1 ring convert (U.mul V).comp_ofReal using 1 ring [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) ⊢ ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x [PROOFSTEP] intro x hx [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 ⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x [PROOFSTEP] have U : HasDerivAt (fun y : ℂ => y ^ u) (u * (x : ℂ) ^ (u - 1)) ↑x := by have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_) simp only [id_eq, mul_one] at this · exact this · rw [id_eq, ofReal_re]; exact hx.1 [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 ⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x [PROOFSTEP] have := @HasDerivAt.cpow_const _ _ _ u (hasDerivAt_id (x : ℂ)) (Or.inl ?_) [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 this : HasDerivAt (fun x => id x ^ u) (u * id ↑x ^ (u - 1) * 1) ↑x ⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 ⊢ 0 < (id ↑x).re [PROOFSTEP] simp only [id_eq, mul_one] at this [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 this : HasDerivAt (fun x => x ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x [PROOFSTEP] exact this [GOAL] case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 ⊢ 0 < (id ↑x).re [PROOFSTEP] rw [id_eq, ofReal_re] [GOAL] case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 ⊢ 0 < x [PROOFSTEP] exact hx.1 [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x [PROOFSTEP] have V : HasDerivAt (fun y : ℂ => (1 - y) ^ v) (-v * (1 - (x : ℂ)) ^ (v - 1)) ↑x := by have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_) swap; · rw [id.def, sub_re, one_re, ofReal_re, sub_pos]; exact hx.2 simp_rw [id.def] at A have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id convert HasDerivAt.comp (↑x) A B using 1 ring [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x [PROOFSTEP] have A := @HasDerivAt.cpow_const _ _ _ v (hasDerivAt_id (1 - (x : ℂ))) (Or.inl ?_) [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => id x ^ v) (v * id (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) ⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ 0 < (id (1 - ↑x)).re [PROOFSTEP] swap [GOAL] case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ 0 < (id (1 - ↑x)).re [PROOFSTEP] rw [id.def, sub_re, one_re, ofReal_re, sub_pos] [GOAL] case refine_1 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x ⊢ x < 1 [PROOFSTEP] exact hx.2 [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => id x ^ v) (v * id (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) ⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x [PROOFSTEP] simp_rw [id.def] at A [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) ⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x [PROOFSTEP] have B : HasDerivAt (fun y : ℂ => 1 - y) (-1) ↑x := by apply HasDerivAt.const_sub; apply hasDerivAt_id [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) ⊢ HasDerivAt (fun y => 1 - y) (-1) ↑x [PROOFSTEP] apply HasDerivAt.const_sub [GOAL] case hf u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) ⊢ HasDerivAt (fun x => x) 1 ↑x [PROOFSTEP] apply hasDerivAt_id [GOAL] case refine_2 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) B : HasDerivAt (fun y => 1 - y) (-1) ↑x ⊢ HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x [PROOFSTEP] convert HasDerivAt.comp (↑x) A B using 1 [GOAL] case h.e'_7 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x A : HasDerivAt (fun x => x ^ v) (v * (1 - ↑x) ^ (v - 1) * 1) (1 - ↑x) B : HasDerivAt (fun y => 1 - y) (-1) ↑x ⊢ -v * (1 - ↑x) ^ (v - 1) = v * (1 - ↑x) ^ (v - 1) * 1 * -1 [PROOFSTEP] ring [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x V : HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x ⊢ HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x [PROOFSTEP] convert (U.mul V).comp_ofReal using 1 [GOAL] case h.e'_7 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) x : ℝ hx : x ∈ Ioo 0 1 U : HasDerivAt (fun y => y ^ u) (u * ↑x ^ (u - 1)) ↑x V : HasDerivAt (fun y => (1 - y) ^ v) (-v * (1 - ↑x) ^ (v - 1)) ↑x ⊢ u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1)) = u * ↑x ^ (u - 1) * (1 - ↑x) ^ v + ↑x ^ u * (-v * (1 - ↑x) ^ (v - 1)) [PROOFSTEP] ring [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have h_int := ((betaIntegral_convergent hu hv').const_mul u).sub ((betaIntegral_convergent hu' hv).const_mul v) [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ (v + 1 - 1)) - v * (↑x ^ (u + 1 - 1) * (1 - ↑x) ^ (v - 1))) volume 0 1 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] rw [add_sub_cancel, add_sub_cancel] at h_int [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have int_ev := intervalIntegral.integral_eq_sub_of_hasDerivAt_of_le zero_le_one hc hder h_int [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hF0 : F 0 = 0 := by simp only [mul_eq_zero, ofReal_zero, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, sub_zero, one_cpow, one_ne_zero, or_false_iff] contrapose! hu; rw [hu, zero_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 ⊢ F 0 = 0 [PROOFSTEP] simp only [mul_eq_zero, ofReal_zero, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, sub_zero, one_cpow, one_ne_zero, or_false_iff] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 ⊢ ¬u = 0 [PROOFSTEP] contrapose! hu [GOAL] u v : ℂ hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hu : u = 0 ⊢ u.re ≤ 0 [PROOFSTEP] rw [hu, zero_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hF0 : F 0 = 0 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] have hF1 : F 1 = 0 := by simp only [mul_eq_zero, ofReal_one, one_cpow, one_ne_zero, sub_self, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, false_or_iff] contrapose! hv; rw [hv, zero_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hF0 : F 0 = 0 ⊢ F 1 = 0 [PROOFSTEP] simp only [mul_eq_zero, ofReal_one, one_cpow, one_ne_zero, sub_self, cpow_eq_zero_iff, eq_self_iff_true, Ne.def, true_and_iff, false_or_iff] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hF0 : F 0 = 0 ⊢ ¬v = 0 [PROOFSTEP] contrapose! hv [GOAL] u v : ℂ hu : 0 < u.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hF0 : F 0 = 0 hv : v = 0 ⊢ v.re ≤ 0 [PROOFSTEP] rw [hv, zero_re] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = F 1 - F 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] rw [hF0, hF1, sub_zero, intervalIntegral.integral_sub, intervalIntegral.integral_const_mul, intervalIntegral.integral_const_mul] at int_ev [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ u * betaIntegral u (v + 1) = v * betaIntegral (u + 1) v [PROOFSTEP] rw [betaIntegral, betaIntegral, ← sub_eq_zero] [GOAL] u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v + 1 - 1)) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u + 1 - 1) * (1 - ↑x) ^ (v - 1) = 0 [PROOFSTEP] convert int_ev [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_4.h.h.e'_6.h.e'_6 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 x✝ : ℝ ⊢ v + 1 - 1 = v [PROOFSTEP] ring [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_4.h.h.e'_5.h.e'_6 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : (u * ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * ∫ (x : ℝ) in 0 ..1, ↑x ^ u * (1 - ↑x) ^ (v - 1) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 x✝ : ℝ ⊢ u + 1 - 1 = u [PROOFSTEP] ring [GOAL] case hf u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ IntervalIntegrable (fun y => u * (↑y ^ (u - 1) * (1 - ↑y) ^ v)) volume 0 1 [PROOFSTEP] apply IntervalIntegrable.const_mul [GOAL] case hf.hf u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ v) volume 0 1 [PROOFSTEP] convert betaIntegral_convergent hu hv' [GOAL] case h.e'_3.h.h.e'_6.h.e'_6 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 x✝ : ℝ ⊢ v = v + 1 - 1 [PROOFSTEP] ring [GOAL] case hg u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ IntervalIntegrable (fun y => v * (↑y ^ u * (1 - ↑y) ^ (v - 1))) volume 0 1 [PROOFSTEP] apply IntervalIntegrable.const_mul [GOAL] case hg.hf u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 ⊢ IntervalIntegrable (fun x => ↑x ^ u * (1 - ↑x) ^ (v - 1)) volume 0 1 [PROOFSTEP] convert betaIntegral_convergent hu' hv [GOAL] case h.e'_3.h.h.e'_5.h.e'_6 u v : ℂ hu : 0 < u.re hv : 0 < v.re F : ℝ → ℂ := fun x => ↑x ^ u * (1 - ↑x) ^ v hu' : 0 < (u + 1).re hv' : 0 < (v + 1).re hc : ContinuousOn F (Icc 0 1) hder : ∀ (x : ℝ), x ∈ Ioo 0 1 → HasDerivAt F (u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) x h_int : IntervalIntegrable (fun x => u * (↑x ^ (u - 1) * (1 - ↑x) ^ v) - v * (↑x ^ u * (1 - ↑x) ^ (v - 1))) volume 0 1 int_ev : ∫ (y : ℝ) in 0 ..1, u * (↑y ^ (u - 1) * (1 - ↑y) ^ v) - v * (↑y ^ u * (1 - ↑y) ^ (v - 1)) = 0 hF0 : F 0 = 0 hF1 : F 1 = 0 x✝ : ℝ ⊢ u = u + 1 - 1 [PROOFSTEP] ring [GOAL] u : ℂ hu : 0 < u.re n : ℕ ⊢ betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) [PROOFSTEP] induction' n with n IH generalizing u [GOAL] case zero u✝ : ℂ hu✝ : 0 < u✝.re u : ℂ hu : 0 < u.re ⊢ betaIntegral u (↑Nat.zero + 1) = ↑Nat.zero ! / ∏ j in Finset.range (Nat.zero + 1), (u + ↑j) [PROOFSTEP] rw [Nat.cast_zero, zero_add, betaIntegral_eval_one_right hu, Nat.factorial_zero, Nat.cast_one] [GOAL] case zero u✝ : ℂ hu✝ : 0 < u✝.re u : ℂ hu : 0 < u.re ⊢ 1 / u = 1 / ∏ j in Finset.range (Nat.zero + 1), (u + ↑j) [PROOFSTEP] simp [GOAL] case succ u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re ⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j) [PROOFSTEP] have := betaIntegral_recurrence hu (?_ : 0 < re n.succ) [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : u * betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) ⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j) case succ.refine_1 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re ⊢ 0 < (↑(Nat.succ n)).re [PROOFSTEP] swap [GOAL] case succ.refine_1 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re ⊢ 0 < (↑(Nat.succ n)).re [PROOFSTEP] rw [← ofReal_nat_cast, ofReal_re] [GOAL] case succ.refine_1 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re ⊢ 0 < ↑(Nat.succ n) [PROOFSTEP] positivity [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : u * betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) ⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j) [PROOFSTEP] rw [mul_comm u _, ← eq_div_iff] at this [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j) case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) ⊢ u ≠ 0 [PROOFSTEP] swap [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) ⊢ u ≠ 0 [PROOFSTEP] contrapose! hu [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ this : betaIntegral u (↑(Nat.succ n) + 1) * u = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) hu : u = 0 ⊢ u.re ≤ 0 [PROOFSTEP] rw [hu, zero_re] [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n)! / ∏ j in Finset.range (Nat.succ n + 1), (u + ↑j) [PROOFSTEP] rw [this, Finset.prod_range_succ', Nat.cast_succ, IH] [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ (↑n + 1) * (↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u = ↑(Nat.succ n)! / ((∏ k in Finset.range (n + 1), (u + ↑(k + 1))) * (u + ↑0)) case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ 0 < (u + 1).re [PROOFSTEP] swap [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ 0 < (u + 1).re [PROOFSTEP] rw [add_re, one_re] [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ 0 < u.re + 1 [PROOFSTEP] positivity [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ (↑n + 1) * (↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u = ↑(Nat.succ n)! / ((∏ k in Finset.range (n + 1), (u + ↑(k + 1))) * (u + ↑0)) [PROOFSTEP] rw [Nat.factorial_succ, Nat.cast_mul, Nat.cast_add, Nat.cast_one, Nat.cast_zero, add_zero, ← mul_div_assoc, ← div_div] [GOAL] case succ.refine_2 u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u ⊢ ((↑n + 1) * ↑n ! / ∏ j in Finset.range (n + 1), (u + 1 + ↑j)) / u = ((↑n + 1) * ↑n ! / ∏ k in Finset.range (n + 1), (u + ↑(k + 1))) / u [PROOFSTEP] congr 3 with j : 1 [GOAL] case succ.refine_2.e_a.e_a.e_f.h u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u j : ℕ ⊢ u + 1 + ↑j = u + ↑(j + 1) [PROOFSTEP] push_cast [GOAL] case succ.refine_2.e_a.e_a.e_f.h u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u j : ℕ ⊢ u + 1 + ↑j = u + (↑j + 1) [PROOFSTEP] abel [GOAL] case succ.refine_2.e_a.e_a.e_f.h u✝ : ℂ hu✝ : 0 < u✝.re n : ℕ IH : ∀ {u : ℂ}, 0 < u.re → betaIntegral u (↑n + 1) = ↑n ! / ∏ j in Finset.range (n + 1), (u + ↑j) u : ℂ hu : 0 < u.re this : betaIntegral u (↑(Nat.succ n) + 1) = ↑(Nat.succ n) * betaIntegral (u + 1) ↑(Nat.succ n) / u j : ℕ ⊢ u + 1 + ↑j = u + (↑j + 1) [PROOFSTEP] abel [GOAL] s : ℂ hs : 0 < s.re n : ℕ ⊢ GammaSeq s n = ↑n ^ s * betaIntegral s (↑n + 1) [PROOFSTEP] rw [GammaSeq, betaIntegral_eval_nat_add_one_right hs n, ← mul_div_assoc] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 ⊢ GammaSeq (s + 1) n / s = ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] conv_lhs => rw [GammaSeq, Finset.prod_range_succ, div_div] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | GammaSeq (s + 1) n / s [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ, div_div] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | GammaSeq (s + 1) n / s [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ, div_div] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | GammaSeq (s + 1) n / s [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ, div_div] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 ⊢ ↑n ^ (s + 1) * ↑n ! / ((∏ x in Finset.range n, (s + 1 + ↑x)) * (s + 1 + ↑n) * s) = ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] conv_rhs => rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc, mul_comm _ (Finset.prod _ _)] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc, mul_comm _ (Finset.prod _ _)] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc, mul_comm _ (Finset.prod _ _)] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 | ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] rw [GammaSeq, Finset.prod_range_succ', Nat.cast_zero, add_zero, div_mul_div_comm, ← mul_assoc, ← mul_assoc, mul_comm _ (Finset.prod _ _)] [GOAL] s : ℂ n : ℕ hn : n ≠ 0 ⊢ ↑n ^ (s + 1) * ↑n ! / ((∏ x in Finset.range n, (s + 1 + ↑x)) * (s + 1 + ↑n) * s) = ↑n * ↑n ^ s * ↑n ! / ((∏ k in Finset.range n, (s + ↑(k + 1))) * (↑n + 1 + s) * s) [PROOFSTEP] congr 3 [GOAL] case e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 ⊢ ↑n ^ (s + 1) = ↑n * ↑n ^ s [PROOFSTEP] rw [cpow_add _ _ (Nat.cast_ne_zero.mpr hn), cpow_one, mul_comm] [GOAL] case e_a.e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 ⊢ ∏ x in Finset.range n, (s + 1 + ↑x) = ∏ k in Finset.range n, (s + ↑(k + 1)) [PROOFSTEP] refine' Finset.prod_congr (by rfl) fun x _ => _ [GOAL] s : ℂ n : ℕ hn : n ≠ 0 ⊢ Finset.range n = Finset.range n [PROOFSTEP] rfl [GOAL] case e_a.e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 x : ℕ x✝ : x ∈ Finset.range n ⊢ s + 1 + ↑x = s + ↑(x + 1) [PROOFSTEP] push_cast [GOAL] case e_a.e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 x : ℕ x✝ : x ∈ Finset.range n ⊢ s + 1 + ↑x = s + (↑x + 1) [PROOFSTEP] ring [GOAL] case e_a.e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 ⊢ s + 1 + ↑n = ↑n + 1 + s [PROOFSTEP] abel [GOAL] case e_a.e_a.e_a s : ℂ n : ℕ hn : n ≠ 0 ⊢ s + 1 + ↑n = ↑n + 1 + s [PROOFSTEP] abel [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 ⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) [PROOFSTEP] have : ∀ x : ℝ, x = x / n * n := by intro x; rw [div_mul_cancel]; exact Nat.cast_ne_zero.mpr hn [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 ⊢ ∀ (x : ℝ), x = x / ↑n * ↑n [PROOFSTEP] intro x [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 x : ℝ ⊢ x = x / ↑n * ↑n [PROOFSTEP] rw [div_mul_cancel] [GOAL] case h s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 x : ℝ ⊢ ↑n ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.mpr hn [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n ⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) [PROOFSTEP] conv_rhs => enter [1, x, 2, 1]; rw [this x] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n | ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) [PROOFSTEP] enter [1, x, 2, 1]; rw [this x] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n | ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) [PROOFSTEP] enter [1, x, 2, 1]; rw [this x] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n | ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) [PROOFSTEP] enter [1, x, 2, 1] [GOAL] case h s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n x : ℝ | ↑x [PROOFSTEP] rw [this x] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n ⊢ GammaSeq s n = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) [PROOFSTEP] rw [GammaSeq_eq_betaIntegral_of_re_pos hs] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this : ∀ (x : ℝ), x = x / ↑n * ↑n ⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) [PROOFSTEP] have := intervalIntegral.integral_comp_div (a := 0) (b := n) (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) : ℝ → ℂ) (Nat.cast_ne_zero.mpr hn) [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) (x / ↑n) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, (fun x => ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) x ⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) [PROOFSTEP] dsimp only at this [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ↑n ^ s * betaIntegral s (↑n + 1) = ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) [PROOFSTEP] rw [betaIntegral, this, real_smul, zero_div, div_self, add_sub_cancel, ← intervalIntegral.integral_const_mul, ← intervalIntegral.integral_const_mul] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ∫ (x : ℝ) in 0 ..1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ↑n ≠ 0 [PROOFSTEP] swap [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ↑n ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.mpr hn [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ∫ (x : ℝ) in 0 ..1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ∫ (x : ℝ) in 0 ..1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) [PROOFSTEP] simp_rw [intervalIntegral.integral_of_le zero_le_one] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) ⊢ ∫ (x : ℝ) in Ioc 0 1, ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ∫ (x : ℝ) in Ioc 0 1, ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) [PROOFSTEP] refine' set_integral_congr measurableSet_Ioc fun x hx => _ [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 ⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑↑n * (↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1)) [PROOFSTEP] push_cast [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 ⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1)) [PROOFSTEP] have hn' : (n : ℂ) ≠ 0 := Nat.cast_ne_zero.mpr hn [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 ⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1)) [PROOFSTEP] have A : (n : ℂ) ^ s = (n : ℂ) ^ (s - 1) * n := by conv_lhs => rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn'] simp [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 ⊢ ↑n ^ s = ↑n ^ (s - 1) * ↑n [PROOFSTEP] conv_lhs => rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn'] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 | ↑n ^ s [PROOFSTEP] rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn'] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 | ↑n ^ s [PROOFSTEP] rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn'] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 | ↑n ^ s [PROOFSTEP] rw [(by ring : s = s - 1 + 1), cpow_add _ _ hn'] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 ⊢ s = s - 1 + 1 [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 ⊢ ↑n ^ (s - 1) * ↑n ^ 1 = ↑n ^ (s - 1) * ↑n [PROOFSTEP] simp [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 A : ↑n ^ s = ↑n ^ (s - 1) * ↑n ⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1)) [PROOFSTEP] have B : ((x : ℂ) * ↑n) ^ (s - 1) = (x : ℂ) ^ (s - 1) * (n : ℂ) ^ (s - 1) := by rw [← ofReal_nat_cast, mul_cpow_ofReal_nonneg hx.1.le (Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn)).le] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 A : ↑n ^ s = ↑n ^ (s - 1) * ↑n ⊢ (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1) [PROOFSTEP] rw [← ofReal_nat_cast, mul_cpow_ofReal_nonneg hx.1.le (Nat.cast_pos.mpr (Nat.pos_of_ne_zero hn)).le] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 A : ↑n ^ s = ↑n ^ (s - 1) * ↑n B : (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1) ⊢ ↑n ^ s * (↑x ^ (s - 1) * (1 - ↑x) ^ ↑n) = ↑n * ((1 - ↑x) ^ n * (↑x * ↑n) ^ (s - 1)) [PROOFSTEP] rw [A, B, cpow_nat_cast] [GOAL] s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 this✝ : ∀ (x : ℝ), x = x / ↑n * ↑n this : ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑(x / ↑n * ↑n) ^ (s - 1) = ↑n • ∫ (x : ℝ) in 0 / ↑n..↑n / ↑n, ↑((1 - x) ^ n) * ↑(x * ↑n) ^ (s - 1) x : ℝ hx : x ∈ Ioc 0 1 hn' : ↑n ≠ 0 A : ↑n ^ s = ↑n ^ (s - 1) * ↑n B : (↑x * ↑n) ^ (s - 1) = ↑x ^ (s - 1) * ↑n ^ (s - 1) ⊢ ↑n ^ (s - 1) * ↑n * (↑x ^ (s - 1) * (1 - ↑x) ^ n) = ↑n * ((1 - ↑x) ^ n * (↑x ^ (s - 1) * ↑n ^ (s - 1))) [PROOFSTEP] ring [GOAL] s : ℂ hs : 0 < s.re ⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (Gamma s)) [PROOFSTEP] rw [Gamma_eq_integral hs] -- We apply dominated convergence to the following function, which we will show is uniformly -- bounded above by the Gamma integrand `exp (-x) * x ^ (re s - 1)`. [GOAL] s : ℂ hs : 0 < s.re ⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s)) [PROOFSTEP] let f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 (n : ℝ)) fun x : ℝ => ↑((1 - x / n) ^ n) * (x : ℂ) ^ (s - 1) -- integrability of f [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) ⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s)) [PROOFSTEP] have f_ible : ∀ n : ℕ, Integrable (f n) (volume.restrict (Ioi 0)) := by intro n rw [integrable_indicator_iff (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)), IntegrableOn, Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self, ← IntegrableOn, ← intervalIntegrable_iff_integrable_Ioc_of_le (by positivity : (0 : ℝ) ≤ n)] apply IntervalIntegrable.continuousOn_mul · refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] · apply Continuous.continuousOn exact IsROrC.continuous_ofReal.comp ((continuous_const.sub (continuous_id'.div_const ↑n)).pow n) -- pointwise limit of f [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) ⊢ ∀ (n : ℕ), Integrable (f n) [PROOFSTEP] intro n [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ Integrable (f n) [PROOFSTEP] rw [integrable_indicator_iff (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)), IntegrableOn, Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self, ← IntegrableOn, ← intervalIntegrable_iff_integrable_Ioc_of_le (by positivity : (0 : ℝ) ≤ n)] [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ 0 ≤ ↑n [PROOFSTEP] positivity [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ IntervalIntegrable (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) volume 0 ↑n [PROOFSTEP] apply IntervalIntegrable.continuousOn_mul [GOAL] case hf s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ IntervalIntegrable (fun x => ↑x ^ (s - 1)) volume 0 ↑n [PROOFSTEP] refine' intervalIntegral.intervalIntegrable_cpow' _ [GOAL] case hf s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ -1 < (s - 1).re [PROOFSTEP] rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] [GOAL] case hg s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ ContinuousOn (fun x => ↑((1 - x / ↑n) ^ n)) (uIcc 0 ↑n) [PROOFSTEP] apply Continuous.continuousOn [GOAL] case hg.h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) n : ℕ ⊢ Continuous fun x => ↑((1 - x / ↑n) ^ n) [PROOFSTEP] exact IsROrC.continuous_ofReal.comp ((continuous_const.sub (continuous_id'.div_const ↑n)).pow n) -- pointwise limit of f [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) ⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s)) [PROOFSTEP] have f_tends : ∀ x : ℝ, x ∈ Ioi (0 : ℝ) → Tendsto (fun n : ℕ => f n x) atTop (𝓝 <| ↑(Real.exp (-x)) * (x : ℂ) ^ (s - 1)) := by intro x hx apply Tendsto.congr' show ∀ᶠ n : ℕ in atTop, ↑((1 - x / n) ^ n) * (x : ℂ) ^ (s - 1) = f n x · refine' Eventually.mp (eventually_ge_atTop ⌈x⌉₊) (eventually_of_forall fun n hn => _) rw [Nat.ceil_le] at hn dsimp only rw [indicator_of_mem] exact ⟨hx, hn⟩ · simp_rw [mul_comm] refine' (Tendsto.comp (continuous_ofReal.tendsto _) _).const_mul _ convert tendsto_one_plus_div_pow_exp (-x) using 1 ext1 n rw [neg_div, ← sub_eq_add_neg]; norm_cast -- let `convert` identify the remaining goals [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) ⊢ ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) [PROOFSTEP] intro x hx [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) [PROOFSTEP] apply Tendsto.congr' [GOAL] case hl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ ?f₁ =ᶠ[atTop] fun n => f n x case h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ Tendsto ?f₁ atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) case f₁ s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ ℕ → ℂ [PROOFSTEP] show ∀ᶠ n : ℕ in atTop, ↑((1 - x / n) ^ n) * (x : ℂ) ^ (s - 1) = f n x [GOAL] case hl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ ∀ᶠ (n : ℕ) in atTop, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x [PROOFSTEP] refine' Eventually.mp (eventually_ge_atTop ⌈x⌉₊) (eventually_of_forall fun n hn => _) [GOAL] case hl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ hn : ⌈x⌉₊ ≤ n ⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x [PROOFSTEP] rw [Nat.ceil_le] at hn [GOAL] case hl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ hn : x ≤ ↑n ⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = f n x [PROOFSTEP] dsimp only [GOAL] case hl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ hn : x ≤ ↑n ⊢ ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x [PROOFSTEP] rw [indicator_of_mem] [GOAL] case hl.h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ hn : x ≤ ↑n ⊢ x ∈ Ioc 0 ↑n [PROOFSTEP] exact ⟨hx, hn⟩ [GOAL] case h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ Tendsto (fun x_1 => ↑((1 - x / ↑x_1) ^ x_1) * ↑x ^ (s - 1)) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) [PROOFSTEP] simp_rw [mul_comm] [GOAL] case h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ Tendsto (fun x_1 => ↑x ^ (s - 1) * ↑((1 - x / ↑x_1) ^ x_1)) atTop (𝓝 (↑x ^ (s - 1) * ↑(rexp (-x)))) [PROOFSTEP] refine' (Tendsto.comp (continuous_ofReal.tendsto _) _).const_mul _ [GOAL] case h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ Tendsto (fun x_1 => (1 - x / ↑x_1) ^ x_1) atTop (𝓝 (rexp (-x))) [PROOFSTEP] convert tendsto_one_plus_div_pow_exp (-x) using 1 [GOAL] case h.e'_3 s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 ⊢ (fun x_1 => (1 - x / ↑x_1) ^ x_1) = fun x_1 => (1 + -x / ↑x_1) ^ ↑x_1 [PROOFSTEP] ext1 n [GOAL] case h.e'_3.h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ ⊢ (1 - x / ↑n) ^ n = (1 + -x / ↑n) ^ ↑n [PROOFSTEP] rw [neg_div, ← sub_eq_add_neg] [GOAL] case h.e'_3.h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) x : ℝ hx : x ∈ Ioi 0 n : ℕ ⊢ (1 - x / ↑n) ^ n = (1 - x / ↑n) ^ ↑n [PROOFSTEP] norm_cast -- let `convert` identify the remaining goals [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) ⊢ Tendsto (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) atTop (𝓝 (GammaIntegral s)) [PROOFSTEP] convert tendsto_integral_of_dominated_convergence _ (fun n => (f_ible n).1) (Real.GammaIntegral_convergent hs) _ ((ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ f_tends)) using 1 -- limit of f is the integrand we want [GOAL] case h.e'_3 s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) ⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) = fun n => ∫ (a : ℝ) in Ioi 0, f n a [PROOFSTEP] ext1 n [GOAL] case h.e'_3.h s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ ⊢ ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) = ∫ (a : ℝ) in Ioi 0, f n a [PROOFSTEP] rw [integral_indicator (measurableSet_Ioc : MeasurableSet (Ioc (_ : ℝ) _)), intervalIntegral.integral_of_le (by positivity : 0 ≤ (n : ℝ)), Measure.restrict_restrict_of_subset Ioc_subset_Ioi_self] -- f is uniformly bounded by the Gamma integrand [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ ⊢ 0 ≤ ↑n [PROOFSTEP] positivity [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) ⊢ ∀ (n : ℕ), ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖f n a‖ ≤ rexp (-a) * a ^ (s.re - 1) [PROOFSTEP] intro n [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ ⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖f n a‖ ≤ rexp (-a) * a ^ (s.re - 1) [PROOFSTEP] refine' (ae_restrict_iff' measurableSet_Ioi).mpr (ae_of_all _ fun x hx => _) [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 ⊢ ‖f n x‖ ≤ rexp (-x) * x ^ (s.re - 1) [PROOFSTEP] dsimp only [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 ⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1) [PROOFSTEP] rcases lt_or_le (n : ℝ) x with (hxn | hxn) [GOAL] case inl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 hxn : ↑n < x ⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1) [PROOFSTEP] rw [indicator_of_not_mem (not_mem_Ioc_of_gt hxn), norm_zero, mul_nonneg_iff_right_nonneg_of_pos (exp_pos _)] [GOAL] case inl s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 hxn : ↑n < x ⊢ 0 ≤ x ^ (s.re - 1) [PROOFSTEP] exact rpow_nonneg_of_nonneg (le_of_lt hx) _ [GOAL] case inr s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 hxn : x ≤ ↑n ⊢ ‖indicator (Ioc 0 ↑n) (fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) x‖ ≤ rexp (-x) * x ^ (s.re - 1) [PROOFSTEP] rw [indicator_of_mem (mem_Ioc.mpr ⟨mem_Ioi.mp hx, hxn⟩), norm_mul, Complex.norm_eq_abs, Complex.abs_of_nonneg (pow_nonneg (sub_nonneg.mpr <| div_le_one_of_le hxn <| by positivity) _), Complex.norm_eq_abs, abs_cpow_eq_rpow_re_of_pos hx, sub_re, one_re, mul_le_mul_right (rpow_pos_of_pos hx _)] [GOAL] s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 hxn : x ≤ ↑n ⊢ 0 ≤ ↑n [PROOFSTEP] positivity [GOAL] case inr s : ℂ hs : 0 < s.re f : ℕ → ℝ → ℂ := fun n => indicator (Ioc 0 ↑n) fun x => ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1) f_ible : ∀ (n : ℕ), Integrable (f n) f_tends : ∀ (x : ℝ), x ∈ Ioi 0 → Tendsto (fun n => f n x) atTop (𝓝 (↑(rexp (-x)) * ↑x ^ (s - 1))) n : ℕ x : ℝ hx : x ∈ Ioi 0 hxn : x ≤ ↑n ⊢ (1 - x / ↑n) ^ n ≤ rexp (-x) [PROOFSTEP] exact one_sub_div_pow_le_exp_neg hxn [GOAL] s : ℂ ⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s)) [PROOFSTEP] suffices ∀ m : ℕ, -↑m < re s → Tendsto (GammaSeq s) atTop (𝓝 <| GammaAux m s) by rw [Gamma] apply this rw [neg_lt] rcases lt_or_le 0 (re s) with (hs | hs) · exact (neg_neg_of_pos hs).trans_le (Nat.cast_nonneg _) · refine' (Nat.lt_floor_add_one _).trans_le _ rw [sub_eq_neg_add, Nat.floor_add_one (neg_nonneg.mpr hs), Nat.cast_add_one] [GOAL] s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s)) [PROOFSTEP] rw [Gamma] [GOAL] s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux ⌊1 - s.re⌋₊ s)) [PROOFSTEP] apply this [GOAL] case a s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) ⊢ -↑⌊1 - s.re⌋₊ < s.re [PROOFSTEP] rw [neg_lt] [GOAL] case a s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) ⊢ -s.re < ↑⌊1 - s.re⌋₊ [PROOFSTEP] rcases lt_or_le 0 (re s) with (hs | hs) [GOAL] case a.inl s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) hs : 0 < s.re ⊢ -s.re < ↑⌊1 - s.re⌋₊ [PROOFSTEP] exact (neg_neg_of_pos hs).trans_le (Nat.cast_nonneg _) [GOAL] case a.inr s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) hs : s.re ≤ 0 ⊢ -s.re < ↑⌊1 - s.re⌋₊ [PROOFSTEP] refine' (Nat.lt_floor_add_one _).trans_le _ [GOAL] case a.inr s : ℂ this : ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) hs : s.re ≤ 0 ⊢ ↑⌊-s.re⌋₊ + 1 ≤ ↑⌊1 - s.re⌋₊ [PROOFSTEP] rw [sub_eq_neg_add, Nat.floor_add_one (neg_nonneg.mpr hs), Nat.cast_add_one] [GOAL] s : ℂ ⊢ ∀ (m : ℕ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) [PROOFSTEP] intro m [GOAL] s : ℂ m : ℕ ⊢ -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) [PROOFSTEP] induction' m with m IH generalizing s [GOAL] case zero s✝ s : ℂ ⊢ -↑Nat.zero < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s)) [PROOFSTEP] intro hs [GOAL] case zero s✝ s : ℂ hs : -↑Nat.zero < s.re ⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s)) [PROOFSTEP] rw [Nat.cast_zero, neg_zero] at hs [GOAL] case zero s✝ s : ℂ hs : 0 < s.re ⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux Nat.zero s)) [PROOFSTEP] rw [← Gamma_eq_GammaAux] [GOAL] case zero s✝ s : ℂ hs : 0 < s.re ⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s)) [PROOFSTEP] refine' Tendsto.congr' _ (approx_Gamma_integral_tendsto_Gamma_integral hs) [GOAL] case zero s✝ s : ℂ hs : 0 < s.re ⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) =ᶠ[atTop] GammaSeq s [PROOFSTEP] refine' (eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => _) [GOAL] case zero s✝ s : ℂ hs : 0 < s.re n : ℕ hn : n ≠ 0 ⊢ (fun n => ∫ (x : ℝ) in 0 ..↑n, ↑((1 - x / ↑n) ^ n) * ↑x ^ (s - 1)) n = GammaSeq s n [PROOFSTEP] exact (GammaSeq_eq_approx_Gamma_integral hs hn).symm [GOAL] case zero.h1 s✝ s : ℂ hs : 0 < s.re ⊢ -s.re < ↑Nat.zero [PROOFSTEP] rwa [Nat.cast_zero, neg_lt_zero] [GOAL] case succ s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ ⊢ -↑(Nat.succ m) < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s)) [PROOFSTEP] intro hs [GOAL] case succ s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑(Nat.succ m) < s.re ⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s)) [PROOFSTEP] rw [Nat.cast_succ, neg_add, ← sub_eq_add_neg, sub_lt_iff_lt_add, ← one_re, ← add_re] at hs [GOAL] case succ s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re ⊢ Tendsto (GammaSeq s) atTop (𝓝 (GammaAux (Nat.succ m) s)) [PROOFSTEP] rw [GammaAux] [GOAL] case succ s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re ⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s)) [PROOFSTEP] have := @Tendsto.congr' _ _ _ ?_ _ _ ((eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => ?_)) ((IH _ hs).div_const s) [GOAL] case succ.refine_3 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto ?succ.refine_1 atTop (𝓝 (GammaAux m (s + 1) / s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s)) case succ.refine_1 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re ⊢ ℕ → ℂ case succ.refine_2 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re n : ℕ hn : n ≠ 0 ⊢ GammaSeq (s + 1) n / s = ?succ.refine_1 n [PROOFSTEP] pick_goal 3 [GOAL] case succ.refine_2 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re n : ℕ hn : n ≠ 0 ⊢ GammaSeq (s + 1) n / s = ?succ.refine_1 n [PROOFSTEP] exact GammaSeq_add_one_left s hn [GOAL] case succ.refine_3 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s)) [PROOFSTEP] conv at this => arg 1; intro n; rw [mul_comm] [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) | Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) [PROOFSTEP] arg 1; intro n; rw [mul_comm] [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) | Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) [PROOFSTEP] arg 1; intro n; rw [mul_comm] [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) | Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) [PROOFSTEP] arg 1 [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) | fun n => ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] intro n [GOAL] case h s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => ↑n / (↑n + 1 + s) * GammaSeq s n) atTop (𝓝 (GammaAux m (s + 1) / s)) n : ℕ | ↑n / (↑n + 1 + s) * GammaSeq s n [PROOFSTEP] rw [mul_comm] [GOAL] case succ.refine_3 s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 ((fun s => GammaAux m (s + 1) / s) s)) [PROOFSTEP] rwa [← mul_one (GammaAux m (s + 1) / s), tendsto_mul_iff_of_ne_zero _ (one_ne_zero' ℂ)] at this [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s * 1)) ⊢ Tendsto (fun n => ↑n / (↑n + 1 + s)) atTop (𝓝 1) [PROOFSTEP] simp_rw [add_assoc] [GOAL] s✝ : ℂ m : ℕ IH : ∀ (s : ℂ), -↑m < s.re → Tendsto (GammaSeq s) atTop (𝓝 (GammaAux m s)) s : ℂ hs : -↑m < (s + 1).re this : Tendsto (fun n => GammaSeq s n * (↑n / (↑n + 1 + s))) atTop (𝓝 (GammaAux m (s + 1) / s * 1)) ⊢ Tendsto (fun n => ↑n / (↑n + (1 + s))) atTop (𝓝 1) [PROOFSTEP] exact tendsto_coe_nat_div_add_atTop (1 + s) [GOAL] z : ℂ n : ℕ hn : n ≠ 0 ⊢ GammaSeq z n * GammaSeq (1 - z) n = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] have aux : ∀ a b c d : ℂ, a * b * (c * d) = a * c * (b * d) := by intros; ring [GOAL] z : ℂ n : ℕ hn : n ≠ 0 ⊢ ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) [PROOFSTEP] intros [GOAL] z : ℂ n : ℕ hn : n ≠ 0 a✝ b✝ c✝ d✝ : ℂ ⊢ a✝ * b✝ * (c✝ * d✝) = a✝ * c✝ * (b✝ * d✝) [PROOFSTEP] ring [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) ⊢ GammaSeq z n * GammaSeq (1 - z) n = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] rw [GammaSeq, GammaSeq, div_mul_div_comm, aux, ← pow_two] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) ⊢ ↑n ^ z * ↑n ^ (1 - z) * ↑n ! ^ 2 / ((∏ j in Finset.range (n + 1), (z + ↑j)) * ∏ j in Finset.range (n + 1), (1 - z + ↑j)) = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] have : (n : ℂ) ^ z * (n : ℂ) ^ (1 - z) = n := by rw [← cpow_add _ _ (Nat.cast_ne_zero.mpr hn), add_sub_cancel'_right, cpow_one] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) ⊢ ↑n ^ z * ↑n ^ (1 - z) = ↑n [PROOFSTEP] rw [← cpow_add _ _ (Nat.cast_ne_zero.mpr hn), add_sub_cancel'_right, cpow_one] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n ⊢ ↑n ^ z * ↑n ^ (1 - z) * ↑n ! ^ 2 / ((∏ j in Finset.range (n + 1), (z + ↑j)) * ∏ j in Finset.range (n + 1), (1 - z + ↑j)) = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] rw [this, Finset.prod_range_succ', Finset.prod_range_succ, aux, ← Finset.prod_mul_distrib, Nat.cast_zero, add_zero, add_comm (1 - z) n, ← add_sub_assoc] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n ⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, (z + ↑(x + 1)) * (1 - z + ↑x)) * (z * (↑n + 1 - z))) = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] have : ∀ j : ℕ, (z + ↑(j + 1)) * (↑1 - z + ↑j) = ↑((j + 1) ^ 2) * (↑1 - z ^ 2 / ((j : ℂ) + 1) ^ 2) := by intro j push_cast have : (j : ℂ) + 1 ≠ 0 := by rw [← Nat.cast_succ, Nat.cast_ne_zero]; exact Nat.succ_ne_zero j field_simp; ring [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n ⊢ ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] intro j [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ ⊢ (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] push_cast [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ ⊢ (z + (↑j + 1)) * (1 - z + ↑j) = (↑j + 1) ^ 2 * (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] have : (j : ℂ) + 1 ≠ 0 := by rw [← Nat.cast_succ, Nat.cast_ne_zero]; exact Nat.succ_ne_zero j [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ ⊢ ↑j + 1 ≠ 0 [PROOFSTEP] rw [← Nat.cast_succ, Nat.cast_ne_zero] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ ⊢ Nat.succ j ≠ 0 [PROOFSTEP] exact Nat.succ_ne_zero j [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ this : ↑j + 1 ≠ 0 ⊢ (z + (↑j + 1)) * (1 - z + ↑j) = (↑j + 1) ^ 2 * (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] field_simp [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n j : ℕ this : ↑j + 1 ≠ 0 ⊢ (z + (↑j + 1)) * (1 - z + ↑j) * (↑j + 1) ^ 2 = (↑j + 1) ^ 2 * ((↑j + 1) ^ 2 - z ^ 2) [PROOFSTEP] ring [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) ⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, (z + ↑(x + 1)) * (1 - z + ↑x)) * (z * (↑n + 1 - z))) = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] simp_rw [this] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) ⊢ ↑n * ↑n ! ^ 2 / ((∏ x in Finset.range n, ↑((x + 1) ^ 2) * (1 - z ^ 2 / (↑x + 1) ^ 2)) * (z * (↑n + 1 - z))) = ↑n / (↑n + 1 - z) * (1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) [PROOFSTEP] rw [Finset.prod_mul_distrib, ← Nat.cast_prod, Finset.prod_pow, Finset.prod_range_add_one_eq_factorial, Nat.cast_pow, (by intros; ring : ∀ a b c d : ℂ, a * b * (c * d) = a * (d * (b * c))), ← div_div, mul_div_cancel, ← div_div, mul_comm z _, mul_one_div] [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) ⊢ ∀ (a b c d : ℂ), a * b * (c * d) = a * (d * (b * c)) [PROOFSTEP] intros [GOAL] z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) a✝ b✝ c✝ d✝ : ℂ ⊢ a✝ * b✝ * (c✝ * d✝) = a✝ * (d✝ * (b✝ * c✝)) [PROOFSTEP] ring [GOAL] case h z : ℂ n : ℕ hn : n ≠ 0 aux : ∀ (a b c d : ℂ), a * b * (c * d) = a * c * (b * d) this✝ : ↑n ^ z * ↑n ^ (1 - z) = ↑n this : ∀ (j : ℕ), (z + ↑(j + 1)) * (1 - z + ↑j) = ↑((j + 1) ^ 2) * (1 - z ^ 2 / (↑j + 1) ^ 2) ⊢ ↑n ! ^ 2 ≠ 0 [PROOFSTEP] exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr <| Nat.factorial_ne_zero n) [GOAL] z : ℂ ⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z) [PROOFSTEP] have pi_ne : (π : ℂ) ≠ 0 := Complex.ofReal_ne_zero.mpr pi_ne_zero [GOAL] z : ℂ pi_ne : ↑π ≠ 0 ⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z) [PROOFSTEP] by_cases hs : sin (↑π * z) = 0 [GOAL] case pos z : ℂ pi_ne : ↑π ≠ 0 hs : sin (↑π * z) = 0 ⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z) [PROOFSTEP] rw [hs, div_zero] [GOAL] case pos z : ℂ pi_ne : ↑π ≠ 0 hs : sin (↑π * z) = 0 ⊢ Gamma z * Gamma (1 - z) = 0 [PROOFSTEP] rw [← neg_eq_zero, ← Complex.sin_neg, ← mul_neg, Complex.sin_eq_zero_iff, mul_comm] at hs [GOAL] case pos z : ℂ pi_ne : ↑π ≠ 0 hs : ∃ k, -z * ↑π = ↑k * ↑π ⊢ Gamma z * Gamma (1 - z) = 0 [PROOFSTEP] obtain ⟨k, hk⟩ := hs [GOAL] case pos.intro z : ℂ pi_ne : ↑π ≠ 0 k : ℤ hk : -z * ↑π = ↑k * ↑π ⊢ Gamma z * Gamma (1 - z) = 0 [PROOFSTEP] rw [mul_eq_mul_right_iff, eq_false (ofReal_ne_zero.mpr pi_pos.ne'), or_false_iff, neg_eq_iff_eq_neg] at hk [GOAL] case pos.intro z : ℂ pi_ne : ↑π ≠ 0 k : ℤ hk : z = -↑k ⊢ Gamma z * Gamma (1 - z) = 0 [PROOFSTEP] rw [hk] [GOAL] case pos.intro z : ℂ pi_ne : ↑π ≠ 0 k : ℤ hk : z = -↑k ⊢ Gamma (-↑k) * Gamma (1 - -↑k) = 0 [PROOFSTEP] cases k [GOAL] case pos.intro.ofNat z : ℂ pi_ne : ↑π ≠ 0 a✝ : ℕ hk : z = -↑(Int.ofNat a✝) ⊢ Gamma (-↑(Int.ofNat a✝)) * Gamma (1 - -↑(Int.ofNat a✝)) = 0 [PROOFSTEP] rw [Int.ofNat_eq_coe, Int.cast_ofNat, Complex.Gamma_neg_nat_eq_zero, zero_mul] [GOAL] case pos.intro.negSucc z : ℂ pi_ne : ↑π ≠ 0 a✝ : ℕ hk : z = -↑(Int.negSucc a✝) ⊢ Gamma (-↑(Int.negSucc a✝)) * Gamma (1 - -↑(Int.negSucc a✝)) = 0 [PROOFSTEP] rw [Int.cast_negSucc, neg_neg, Nat.cast_add, Nat.cast_one, add_comm, sub_add_cancel', Complex.Gamma_neg_nat_eq_zero, mul_zero] [GOAL] case neg z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 ⊢ Gamma z * Gamma (1 - z) = ↑π / sin (↑π * z) [PROOFSTEP] refine' tendsto_nhds_unique ((GammaSeq_tendsto_Gamma z).mul (GammaSeq_tendsto_Gamma <| 1 - z)) _ [GOAL] case neg z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 ⊢ Tendsto (fun x => GammaSeq z x * GammaSeq (1 - z) x) atTop (𝓝 (↑π / sin (↑π * z))) [PROOFSTEP] have : ↑π / sin (↑π * z) = 1 * (π / sin (π * z)) := by rw [one_mul] [GOAL] z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 ⊢ ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) [PROOFSTEP] rw [one_mul] [GOAL] case neg z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) ⊢ Tendsto (fun x => GammaSeq z x * GammaSeq (1 - z) x) atTop (𝓝 (↑π / sin (↑π * z))) [PROOFSTEP] convert Tendsto.congr' ((eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => (GammaSeq_mul z hn).symm)) (Tendsto.mul _ _) [GOAL] case neg.convert_3 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) ⊢ Tendsto (fun n => ↑n / (↑n + 1 - z)) atTop (𝓝 1) [PROOFSTEP] convert tendsto_coe_nat_div_add_atTop (1 - z) using 1 [GOAL] case h.e'_3 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) ⊢ (fun n => ↑n / (↑n + 1 - z)) = fun n => ↑n / (↑n + (1 - z)) [PROOFSTEP] ext1 n [GOAL] case h.e'_3.h z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) n : ℕ ⊢ ↑n / (↑n + 1 - z) = ↑n / (↑n + (1 - z)) [PROOFSTEP] rw [add_sub_assoc] [GOAL] case neg.convert_4 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) ⊢ Tendsto (fun n => 1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) atTop (𝓝 (↑π / sin (↑π * z))) [PROOFSTEP] have : ↑π / sin (↑π * z) = 1 / (sin (π * z) / π) := by field_simp [GOAL] z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) ⊢ ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) [PROOFSTEP] field_simp [GOAL] case neg.convert_4 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) ⊢ Tendsto (fun n => 1 / (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2))) atTop (𝓝 (↑π / sin (↑π * z))) [PROOFSTEP] convert tendsto_const_nhds.div _ (div_ne_zero hs pi_ne) [GOAL] case neg.convert_4.convert_5 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) ⊢ Tendsto (fun x => z * ∏ j in Finset.range x, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (sin (↑π * z) / ↑π)) [PROOFSTEP] rw [← tendsto_mul_iff_of_ne_zero tendsto_const_nhds pi_ne, div_mul_cancel _ pi_ne] [GOAL] case neg.convert_4.convert_5 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) ⊢ Tendsto (fun n => (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π) atTop (𝓝 (sin (↑π * z))) [PROOFSTEP] convert tendsto_euler_sin_prod z using 1 [GOAL] case h.e'_3 z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) ⊢ (fun n => (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π) = fun n => ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] ext1 n [GOAL] case h.e'_3.h z : ℂ pi_ne : ↑π ≠ 0 hs : ¬sin (↑π * z) = 0 this✝ : ↑π / sin (↑π * z) = 1 * (↑π / sin (↑π * z)) this : ↑π / sin (↑π * z) = 1 / (sin (↑π * z) / ↑π) n : ℕ ⊢ (z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) * ↑π = ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2) [PROOFSTEP] rw [mul_comm, ← mul_assoc] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m ⊢ Gamma s ≠ 0 [PROOFSTEP] by_cases h_im : s.im = 0 [GOAL] case pos s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] have : s = ↑s.re := by conv_lhs => rw [← Complex.re_add_im s] rw [h_im, ofReal_zero, zero_mul, add_zero] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 ⊢ s = ↑s.re [PROOFSTEP] conv_lhs => rw [← Complex.re_add_im s] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 | s [PROOFSTEP] rw [← Complex.re_add_im s] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 | s [PROOFSTEP] rw [← Complex.re_add_im s] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 | s [PROOFSTEP] rw [← Complex.re_add_im s] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 ⊢ ↑s.re + ↑s.im * I = ↑s.re [PROOFSTEP] rw [h_im, ofReal_zero, zero_mul, add_zero] [GOAL] case pos s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 this : s = ↑s.re ⊢ Gamma s ≠ 0 [PROOFSTEP] rw [this, Gamma_ofReal, ofReal_ne_zero] [GOAL] case pos s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 this : s = ↑s.re ⊢ Real.Gamma s.re ≠ 0 [PROOFSTEP] refine' Real.Gamma_ne_zero fun n => _ [GOAL] case pos s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : s.im = 0 this : s = ↑s.re n : ℕ ⊢ s.re ≠ -↑n [PROOFSTEP] specialize hs n [GOAL] case pos s : ℂ h_im : s.im = 0 this : s = ↑s.re n : ℕ hs : s ≠ -↑n ⊢ s.re ≠ -↑n [PROOFSTEP] contrapose! hs [GOAL] case pos s : ℂ h_im : s.im = 0 this : s = ↑s.re n : ℕ hs : s.re = -↑n ⊢ s = -↑n [PROOFSTEP] rwa [this, ← ofReal_nat_cast, ← ofReal_neg, ofReal_inj] [GOAL] case neg s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] have : sin (↑π * s) ≠ 0 := by rw [Complex.sin_ne_zero_iff] intro k apply_fun im rw [ofReal_mul_im, ← ofReal_int_cast, ← ofReal_mul, ofReal_im] exact mul_ne_zero Real.pi_pos.ne' h_im [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 ⊢ sin (↑π * s) ≠ 0 [PROOFSTEP] rw [Complex.sin_ne_zero_iff] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 ⊢ ∀ (k : ℤ), ↑π * s ≠ ↑k * ↑π [PROOFSTEP] intro k [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 k : ℤ ⊢ ↑π * s ≠ ↑k * ↑π [PROOFSTEP] apply_fun im [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 k : ℤ ⊢ (↑π * s).im ≠ (↑k * ↑π).im [PROOFSTEP] rw [ofReal_mul_im, ← ofReal_int_cast, ← ofReal_mul, ofReal_im] [GOAL] s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 k : ℤ ⊢ π * s.im ≠ 0 [PROOFSTEP] exact mul_ne_zero Real.pi_pos.ne' h_im [GOAL] case neg s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 this : sin (↑π * s) ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] have A := div_ne_zero (ofReal_ne_zero.mpr Real.pi_pos.ne') this [GOAL] case neg s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 this : sin (↑π * s) ≠ 0 A : ↑π / sin (↑π * s) ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] rw [← Complex.Gamma_mul_Gamma_one_sub s, mul_ne_zero_iff] at A [GOAL] case neg s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 this : sin (↑π * s) ≠ 0 A : Gamma s ≠ 0 ∧ Gamma (1 - s) ≠ 0 ⊢ Gamma s ≠ 0 [PROOFSTEP] exact A.1 [GOAL] s : ℂ ⊢ Gamma s = 0 ↔ ∃ m, s = -↑m [PROOFSTEP] constructor [GOAL] case mp s : ℂ ⊢ Gamma s = 0 → ∃ m, s = -↑m [PROOFSTEP] contrapose! [GOAL] case mp s : ℂ ⊢ (∀ (m : ℕ), s ≠ -↑m) → Gamma s ≠ 0 [PROOFSTEP] exact Gamma_ne_zero [GOAL] case mpr s : ℂ ⊢ (∃ m, s = -↑m) → Gamma s = 0 [PROOFSTEP] rintro ⟨m, rfl⟩ [GOAL] case mpr.intro m : ℕ ⊢ Gamma (-↑m) = 0 [PROOFSTEP] exact Gamma_neg_nat_eq_zero m [GOAL] s : ℂ hs : 0 < s.re ⊢ Gamma s ≠ 0 [PROOFSTEP] refine' Gamma_ne_zero fun m => _ [GOAL] s : ℂ hs : 0 < s.re m : ℕ ⊢ s ≠ -↑m [PROOFSTEP] contrapose! hs [GOAL] s : ℂ m : ℕ hs : s = -↑m ⊢ s.re ≤ 0 [PROOFSTEP] simpa only [hs, neg_re, ← ofReal_nat_cast, ofReal_re, neg_nonpos] using Nat.cast_nonneg _ [GOAL] s : ℝ ⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s)) [PROOFSTEP] suffices : Tendsto ((↑) ∘ GammaSeq s : ℕ → ℂ) atTop (𝓝 <| Complex.Gamma s) [GOAL] s : ℝ this : Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s)) ⊢ Tendsto (GammaSeq s) atTop (𝓝 (Gamma s)) case this s : ℝ ⊢ Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s)) [PROOFSTEP] exact (Complex.continuous_re.tendsto (Complex.Gamma ↑s)).comp this [GOAL] case this s : ℝ ⊢ Tendsto (Complex.ofReal' ∘ GammaSeq s) atTop (𝓝 (Complex.Gamma ↑s)) [PROOFSTEP] convert Complex.GammaSeq_tendsto_Gamma s [GOAL] case h.e'_3 s : ℝ ⊢ Complex.ofReal' ∘ GammaSeq s = Complex.GammaSeq ↑s [PROOFSTEP] ext1 n [GOAL] case h.e'_3.h s : ℝ n : ℕ ⊢ (Complex.ofReal' ∘ GammaSeq s) n = Complex.GammaSeq (↑s) n [PROOFSTEP] dsimp only [GammaSeq, Function.comp_apply, Complex.GammaSeq] [GOAL] case h.e'_3.h s : ℝ n : ℕ ⊢ ↑(↑n ^ s * ↑n ! / ∏ j in Finset.range (n + 1), (s + ↑j)) = ↑n ^ ↑s * ↑n ! / ∏ j in Finset.range (n + 1), (↑s + ↑j) [PROOFSTEP] push_cast [GOAL] case h.e'_3.h s : ℝ n : ℕ ⊢ ↑(↑n ^ s) * ↑n ! / ∏ x in Finset.range (n + 1), (↑s + ↑x) = ↑n ^ ↑s * ↑n ! / ∏ x in Finset.range (n + 1), (↑s + ↑x) [PROOFSTEP] rw [Complex.ofReal_cpow n.cast_nonneg, Complex.ofReal_nat_cast] [GOAL] s : ℝ ⊢ Gamma s * Gamma (1 - s) = π / sin (π * s) [PROOFSTEP] simp_rw [← Complex.ofReal_inj, Complex.ofReal_div, Complex.ofReal_sin, Complex.ofReal_mul, ← Complex.Gamma_ofReal, Complex.ofReal_sub, Complex.ofReal_one] [GOAL] s : ℝ ⊢ Complex.Gamma ↑s * Complex.Gamma (1 - ↑s) = ↑π / Complex.sin (↑π * ↑s) [PROOFSTEP] exact Complex.Gamma_mul_Gamma_one_sub s [GOAL] s : ℂ ⊢ (Gamma s)⁻¹ = s * (Gamma (s + 1))⁻¹ [PROOFSTEP] rcases ne_or_eq s 0 with (h | rfl) [GOAL] case inl s : ℂ h : s ≠ 0 ⊢ (Gamma s)⁻¹ = s * (Gamma (s + 1))⁻¹ [PROOFSTEP] rw [Gamma_add_one s h, mul_inv, mul_inv_cancel_left₀ h] [GOAL] case inr ⊢ (Gamma 0)⁻¹ = 0 * (Gamma (0 + 1))⁻¹ [PROOFSTEP] rw [zero_add, Gamma_zero, inv_zero, zero_mul] [GOAL] ⊢ Differentiable ℂ fun s => (Gamma s)⁻¹ [PROOFSTEP] suffices : ∀ n : ℕ, ∀ (s : ℂ) (_ : -s.re < n), DifferentiableAt ℂ (fun u : ℂ => (Gamma u)⁻¹) s [GOAL] this : ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s ⊢ Differentiable ℂ fun s => (Gamma s)⁻¹ case this ⊢ ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] exact fun s => let ⟨n, h⟩ := exists_nat_gt (-s.re) this n s h [GOAL] case this ⊢ ∀ (n : ℕ) (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] intro n [GOAL] case this n : ℕ ⊢ ∀ (s : ℂ), -s.re < ↑n → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] induction' n with m hm [GOAL] case this.zero ⊢ ∀ (s : ℂ), -s.re < ↑Nat.zero → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] intro s hs [GOAL] case this.zero s : ℂ hs : -s.re < ↑Nat.zero ⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] rw [Nat.cast_zero, neg_lt_zero] at hs [GOAL] case this.zero s : ℂ hs : 0 < s.re ⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] suffices : ∀ m : ℕ, s ≠ -↑m [GOAL] case this.zero s : ℂ hs : 0 < s.re this : ∀ (m : ℕ), s ≠ -↑m ⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s case this s : ℂ hs : 0 < s.re ⊢ ∀ (m : ℕ), s ≠ -↑m [PROOFSTEP] exact (differentiableAt_Gamma _ this).inv (Gamma_ne_zero this) [GOAL] case this s : ℂ hs : 0 < s.re ⊢ ∀ (m : ℕ), s ≠ -↑m [PROOFSTEP] contrapose! hs [GOAL] case this s : ℂ hs : ∃ m, s = -↑m ⊢ s.re ≤ 0 [PROOFSTEP] rcases hs with ⟨m, rfl⟩ [GOAL] case this.intro m : ℕ ⊢ (-↑m).re ≤ 0 [PROOFSTEP] simpa only [neg_re, ← ofReal_nat_cast, ofReal_re, neg_nonpos] using Nat.cast_nonneg m [GOAL] case this.succ m : ℕ hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s ⊢ ∀ (s : ℂ), -s.re < ↑(Nat.succ m) → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] intro s hs [GOAL] case this.succ m : ℕ hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s s : ℂ hs : -s.re < ↑(Nat.succ m) ⊢ DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s [PROOFSTEP] rw [funext one_div_Gamma_eq_self_mul_one_div_Gamma_add_one] [GOAL] case this.succ m : ℕ hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s s : ℂ hs : -s.re < ↑(Nat.succ m) ⊢ DifferentiableAt ℂ (fun x => x * (Gamma (x + 1))⁻¹) s [PROOFSTEP] specialize hm (s + 1) (by rwa [add_re, one_re, neg_add', sub_lt_iff_lt_add, ← Nat.cast_succ]) [GOAL] m : ℕ hm : ∀ (s : ℂ), -s.re < ↑m → DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) s s : ℂ hs : -s.re < ↑(Nat.succ m) ⊢ -(s + 1).re < ↑m [PROOFSTEP] rwa [add_re, one_re, neg_add', sub_lt_iff_lt_add, ← Nat.cast_succ] [GOAL] case this.succ m : ℕ s : ℂ hs : -s.re < ↑(Nat.succ m) hm : DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) (s + 1) ⊢ DifferentiableAt ℂ (fun x => x * (Gamma (x + 1))⁻¹) s [PROOFSTEP] refine' differentiableAt_id.mul (hm.comp s _) [GOAL] case this.succ m : ℕ s : ℂ hs : -s.re < ↑(Nat.succ m) hm : DifferentiableAt ℂ (fun u => (Gamma u)⁻¹) (s + 1) ⊢ DifferentiableAt ℂ (fun x => x + 1) s [PROOFSTEP] exact differentiableAt_id.add (differentiableAt_const _) [GOAL] s : ℂ ⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π) [PROOFSTEP] suffices (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * (2 : ℂ) ^ (2 * z - 1) / ↑(Real.sqrt π) by convert congr_arg Inv.inv (congr_fun this s) using 1 · rw [mul_inv, inv_inv, inv_inv] · rw [div_eq_mul_inv, mul_inv, mul_inv, inv_inv, inv_inv, ← cpow_neg, neg_sub] [GOAL] s : ℂ this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) ⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π) [PROOFSTEP] convert congr_arg Inv.inv (congr_fun this s) using 1 [GOAL] case h.e'_2 s : ℂ this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) ⊢ Gamma s * Gamma (s + 1 / 2) = ((Gamma s)⁻¹ * (Gamma (s + 1 / 2))⁻¹)⁻¹ [PROOFSTEP] rw [mul_inv, inv_inv, inv_inv] [GOAL] case h.e'_3 s : ℂ this : (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) ⊢ Gamma (2 * s) * 2 ^ (1 - 2 * s) * ↑(sqrt π) = ((Gamma (2 * s))⁻¹ * 2 ^ (2 * s - 1) / ↑(sqrt π))⁻¹ [PROOFSTEP] rw [div_eq_mul_inv, mul_inv, mul_inv, inv_inv, inv_inv, ← cpow_neg, neg_sub] [GOAL] s : ℂ ⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) [PROOFSTEP] have h1 : AnalyticOn ℂ (fun z : ℂ => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ := by refine' DifferentiableOn.analyticOn _ isOpen_univ refine' (differentiable_one_div_Gamma.mul _).differentiableOn exact differentiable_one_div_Gamma.comp (differentiable_id.add (differentiable_const _)) [GOAL] s : ℂ ⊢ AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ [PROOFSTEP] refine' DifferentiableOn.analyticOn _ isOpen_univ [GOAL] s : ℂ ⊢ DifferentiableOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ [PROOFSTEP] refine' (differentiable_one_div_Gamma.mul _).differentiableOn [GOAL] s : ℂ ⊢ Differentiable ℂ fun z => (Gamma (z + 1 / 2))⁻¹ [PROOFSTEP] exact differentiable_one_div_Gamma.comp (differentiable_id.add (differentiable_const _)) [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) [PROOFSTEP] have h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * (2 : ℂ) ^ (2 * z - 1) / ↑(Real.sqrt π)) univ := by refine' DifferentiableOn.analyticOn _ isOpen_univ refine' (Differentiable.mul _ (differentiable_const _)).differentiableOn apply Differentiable.mul · exact differentiable_one_div_Gamma.comp (differentiable_id'.const_mul _) · refine' fun t => DifferentiableAt.const_cpow _ (Or.inl two_ne_zero) refine' DifferentiableAt.sub_const (differentiableAt_id.const_mul _) _ [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ [PROOFSTEP] refine' DifferentiableOn.analyticOn _ isOpen_univ [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ DifferentiableOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ [PROOFSTEP] refine' (Differentiable.mul _ (differentiable_const _)).differentiableOn [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ Differentiable ℂ fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) [PROOFSTEP] apply Differentiable.mul [GOAL] case ha s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ Differentiable ℂ fun y => (Gamma (2 * y))⁻¹ [PROOFSTEP] exact differentiable_one_div_Gamma.comp (differentiable_id'.const_mul _) [GOAL] case hb s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ ⊢ Differentiable ℂ fun y => 2 ^ (2 * y - 1) [PROOFSTEP] refine' fun t => DifferentiableAt.const_cpow _ (Or.inl two_ne_zero) [GOAL] case hb s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ t : ℂ ⊢ DifferentiableAt ℂ (fun y => 2 * y - 1) t [PROOFSTEP] refine' DifferentiableAt.sub_const (differentiableAt_id.const_mul _) _ [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ ⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) [PROOFSTEP] have h3 : Tendsto ((↑) : ℝ → ℂ) (𝓝[≠] 1) (𝓝[≠] 1) := by rw [tendsto_nhdsWithin_iff]; constructor · exact tendsto_nhdsWithin_of_tendsto_nhds continuous_ofReal.continuousAt · exact eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => ofReal_ne_one.mpr ht) [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ ⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) [PROOFSTEP] rw [tendsto_nhdsWithin_iff] [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ ⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝 1) ∧ ∀ᶠ (n : ℝ) in 𝓝[{1}ᶜ] 1, ↑n ∈ {1}ᶜ [PROOFSTEP] constructor [GOAL] case left s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ ⊢ Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝 1) [PROOFSTEP] exact tendsto_nhdsWithin_of_tendsto_nhds continuous_ofReal.continuousAt [GOAL] case right s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ ⊢ ∀ᶠ (n : ℝ) in 𝓝[{1}ᶜ] 1, ↑n ∈ {1}ᶜ [PROOFSTEP] exact eventually_nhdsWithin_iff.mpr (eventually_of_forall fun t ht => ofReal_ne_one.mpr ht) [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) ⊢ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) = fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π) [PROOFSTEP] refine' AnalyticOn.eq_of_frequently_eq h1 h2 (h3.frequently _) [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) ⊢ ∃ᶠ (x : ℝ) in 𝓝[{1}ᶜ] 1, (Gamma ↑x)⁻¹ * (Gamma (↑x + 1 / 2))⁻¹ = (Gamma (2 * ↑x))⁻¹ * 2 ^ (2 * ↑x - 1) / ↑(sqrt π) [PROOFSTEP] refine' ((Eventually.filter_mono nhdsWithin_le_nhds) _).frequently [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) ⊢ ∀ᶠ (x : ℝ) in 𝓝 1, (Gamma ↑x)⁻¹ * (Gamma (↑x + 1 / 2))⁻¹ = (Gamma (2 * ↑x))⁻¹ * 2 ^ (2 * ↑x - 1) / ↑(sqrt π) [PROOFSTEP] refine' (eventually_gt_nhds zero_lt_one).mp (eventually_of_forall fun t ht => _) [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) t : ℝ ht : 0 < t ⊢ (Gamma ↑t)⁻¹ * (Gamma (↑t + 1 / 2))⁻¹ = (Gamma (2 * ↑t))⁻¹ * 2 ^ (2 * ↑t - 1) / ↑(sqrt π) [PROOFSTEP] rw [← mul_inv, Gamma_ofReal, (by norm_num : (t : ℂ) + 1 / 2 = ↑(t + 1 / 2)), Gamma_ofReal, ← ofReal_mul, Gamma_mul_Gamma_add_half_of_pos ht, ofReal_mul, ofReal_mul, ← Gamma_ofReal, mul_inv, mul_inv, (by norm_num : 2 * (t : ℂ) = ↑(2 * t)), Gamma_ofReal, ofReal_cpow zero_le_two, show (2 : ℝ) = (2 : ℂ) by norm_cast, ← cpow_neg, ofReal_sub, ofReal_one, neg_sub, ← div_eq_mul_inv] [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) t : ℝ ht : 0 < t ⊢ ↑t + 1 / 2 = ↑(t + 1 / 2) [PROOFSTEP] norm_num [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) t : ℝ ht : 0 < t ⊢ 2 * ↑t = ↑(2 * t) [PROOFSTEP] norm_num [GOAL] s : ℂ h1 : AnalyticOn ℂ (fun z => (Gamma z)⁻¹ * (Gamma (z + 1 / 2))⁻¹) univ h2 : AnalyticOn ℂ (fun z => (Gamma (2 * z))⁻¹ * 2 ^ (2 * z - 1) / ↑(sqrt π)) univ h3 : Tendsto ofReal' (𝓝[{1}ᶜ] 1) (𝓝[{1}ᶜ] 1) t : ℝ ht : 0 < t ⊢ ↑2 = 2 [PROOFSTEP] norm_cast [GOAL] s : ℝ ⊢ Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π [PROOFSTEP] rw [← ofReal_inj] [GOAL] s : ℝ ⊢ ↑(Gamma s * Gamma (s + 1 / 2)) = ↑(Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt π) [PROOFSTEP] simpa only [← Gamma_ofReal, ofReal_cpow zero_le_two, ofReal_mul, ofReal_add, ofReal_div, ofReal_sub] using Complex.Gamma_mul_Gamma_add_half ↑s
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gamma.Beta", "llama_tokens": 70948}
[GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lip : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (↑Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε) bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasFDerivAt (fun x => F x t) (F' t) x₀ ⊢ IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] rw [← ae_restrict_iff' measurableSet_uIoc] at h_lip h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ ⊢ IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn F' (Ι a b) ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegral_eq_integral_uIoc] [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn F' (Ι a b) ∧ HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀ [PROOFSTEP] have := hasFDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas h_lip bound_integrable h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lip : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) this : Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀ ⊢ IntegrableOn F' (Ι a b) ∧ HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀ [PROOFSTEP] exact ⟨this.1, this.2.const_smul _⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : H → ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : H), x ∈ ball x₀ ε → ‖F' x t‖ ≤ bound t bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x t) (F' x t) x ⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] rw [← ae_restrict_iff' measurableSet_uIoc] at h_bound h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : H → ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 ⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegrable_iff] at hF_int bound_integrable [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : H → ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegral_eq_integral_uIoc] [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : H → ℝ → E F' : H → ℝ → H →L[𝕜] E x₀ : H ε_pos : 0 < ε hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ HasFDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀ [PROOFSTEP] exact (hasFDerivAt_integral_of_dominated_of_fderiv_le ε_pos hF_meas hF_int hF'_meas h_bound bound_integrable h_diff).const_smul _ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : 𝕜 → ℝ → E F' : ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lipsch : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → LipschitzOnWith (↑Real.nnabs (bound t)) (fun x => F x t) (ball x₀ ε) bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasDerivAt (fun x => F x t) (F' t) x₀ ⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] rw [← ae_restrict_iff' measurableSet_uIoc] at h_lipsch h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : 𝕜 → ℝ → E F' : ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lipsch : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀ ⊢ IntervalIntegrable F' μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : 𝕜 → ℝ → E F' : ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lipsch : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn F' (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegral_eq_integral_uIoc] [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : 𝕜 → ℝ → E F' : ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lipsch : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn F' (Ι a b) ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀ [PROOFSTEP] have := hasDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas h_lipsch bound_integrable h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F : 𝕜 → ℝ → E F' : ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable F' (Measure.restrict μ (Ι a b)) h_lipsch : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) this : Integrable F' ∧ HasDerivAt (fun x => ∫ (a : ℝ) in Ι a b, F x a ∂μ) (∫ (a : ℝ) in Ι a b, F' a ∂μ) x₀ ⊢ IntegrableOn F' (Ι a b) ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' t ∂μ) x₀ [PROOFSTEP] exact ⟨this.1, this.2.const_smul _⟩ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F F' : 𝕜 → ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x t‖ ≤ bound t bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x t) (F' x t) x ⊢ IntervalIntegrable (F' x₀) μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] rw [← ae_restrict_iff' measurableSet_uIoc] at h_bound h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F F' : 𝕜 → ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF_int : IntervalIntegrable (F x₀) μ a b hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x bound_integrable : IntervalIntegrable bound μ a b h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 ⊢ IntervalIntegrable (F' x₀) μ a b ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢ [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F F' : 𝕜 → ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀ [PROOFSTEP] simp only [intervalIntegral_eq_integral_uIoc] [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F F' : 𝕜 → ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) ⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀ [PROOFSTEP] have := hasDerivAt_integral_of_dominated_loc_of_deriv_le ε_pos hF_meas hF_int hF'_meas h_bound bound_integrable h_diff [GOAL] 𝕜 : Type u_1 inst✝⁶ : IsROrC 𝕜 μ : Measure ℝ E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedSpace 𝕜 E inst✝² : CompleteSpace E H : Type u_3 inst✝¹ : NormedAddCommGroup H inst✝ : NormedSpace 𝕜 H a b ε : ℝ bound : ℝ → ℝ F F' : 𝕜 → ℝ → E x₀ : 𝕜 ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b)) hF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b)) h_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x h_diff : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1 hF_int : IntegrableOn (F x₀) (Ι a b) bound_integrable : IntegrableOn bound (Ι a b) this : Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ι a b, F n a ∂μ) (∫ (a : ℝ) in Ι a b, F' x₀ a ∂μ) x₀ ⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F x t ∂μ) ((if a ≤ b then 1 else -1) • ∫ (t : ℝ) in Ι a b, F' x₀ t ∂μ) x₀ [PROOFSTEP] exact ⟨this.1, this.2.const_smul _⟩
{"mathlib_filename": "Mathlib.Analysis.Calculus.ParametricIntervalIntegral", "llama_tokens": 10295}
[GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have sub : ∀ x ∈ Ioo a b, Ioo a x ⊆ Ioo a b := fun x hx => Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hg : ∀ x ∈ Ioo a b, g x ≠ 0 := by intro x hx h have : Tendsto g (𝓝[<] x) (𝓝 0) := by rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1] exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0 exact exists_hasDerivAt_eq_zero' hx.1 hga this fun y hy => hgg' y <| sub x hx hy exact hg' y (sub x hx hyx) hy [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b ⊢ ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 [PROOFSTEP] intro x hx h [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 ⊢ False [PROOFSTEP] have : Tendsto g (𝓝[<] x) (𝓝 0) := by rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1] exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 ⊢ Tendsto g (𝓝[Iio x] x) (𝓝 0) [PROOFSTEP] rw [← h, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hx.1] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 ⊢ Tendsto g (𝓝[Ioo a x] x) (𝓝 (g x)) [PROOFSTEP] exact ((hgg' x hx).continuousAt.continuousWithinAt.mono <| sub x hx).tendsto [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 this : Tendsto g (𝓝[Iio x] x) (𝓝 0) ⊢ False [PROOFSTEP] obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 this : Tendsto g (𝓝[Iio x] x) (𝓝 0) ⊢ ∃ c, c ∈ Ioo a x ∧ g' c = 0 case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 this : Tendsto g (𝓝[Iio x] x) (𝓝 0) y : ℝ hyx : y ∈ Ioo a x hy : g' y = 0 ⊢ False [PROOFSTEP] exact exists_hasDerivAt_eq_zero' hx.1 hga this fun y hy => hgg' y <| sub x hx hy [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b x : ℝ hx : x ∈ Ioo a b h : g x = 0 this : Tendsto g (𝓝[Iio x] x) (𝓝 0) y : ℝ hyx : y ∈ Ioo a x hy : g' y = 0 ⊢ False [PROOFSTEP] exact hg' y (sub x hx hyx) hy [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have : ∀ x ∈ Ioo a b, ∃ c ∈ Ioo a x, f x * g' c = g x * f' c := by intro x hx rw [← sub_zero (f x), ← sub_zero (g x)] exact exists_ratio_hasDerivAt_eq_ratio_slope' g g' hx.1 f f' (fun y hy => hgg' y <| sub x hx hy) (fun y hy => hff' y <| sub x hx hy) hga hfa (tendsto_nhdsWithin_of_tendsto_nhds (hgg' x hx).continuousAt.tendsto) (tendsto_nhdsWithin_of_tendsto_nhds (hff' x hx).continuousAt.tendsto) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 ⊢ ∀ (x : ℝ), x ∈ Ioo a b → ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c [PROOFSTEP] intro x hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 x : ℝ hx : x ∈ Ioo a b ⊢ ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c [PROOFSTEP] rw [← sub_zero (f x), ← sub_zero (g x)] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 x : ℝ hx : x ∈ Ioo a b ⊢ ∃ c, c ∈ Ioo a x ∧ (f x - 0) * g' c = (g x - 0) * f' c [PROOFSTEP] exact exists_ratio_hasDerivAt_eq_ratio_slope' g g' hx.1 f f' (fun y hy => hgg' y <| sub x hx hy) (fun y hy => hff' y <| sub x hx hy) hga hfa (tendsto_nhdsWithin_of_tendsto_nhds (hgg' x hx).continuousAt.tendsto) (tendsto_nhdsWithin_of_tendsto_nhds (hff' x hx).continuousAt.tendsto) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 this : ∀ (x : ℝ), x ∈ Ioo a b → ∃ c, c ∈ Ioo a x ∧ f x * g' c = g x * f' c ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] choose! c hc using this [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have : ∀ x ∈ Ioo a b, ((fun x' => f' x' / g' x') ∘ c) x = f x / g x := by intro x hx rcases hc x hx with ⟨h₁, h₂⟩ field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)] simp only [h₂] rw [mul_comm] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) ⊢ ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x [PROOFSTEP] intro x hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) x : ℝ hx : x ∈ Ioo a b ⊢ ((fun x' => f' x' / g' x') ∘ c) x = f x / g x [PROOFSTEP] rcases hc x hx with ⟨h₁, h₂⟩ [GOAL] case intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) x : ℝ hx : x ∈ Ioo a b h₁ : c x ∈ Ioo a x h₂ : f x * g' (c x) = g x * f' (c x) ⊢ ((fun x' => f' x' / g' x') ∘ c) x = f x / g x [PROOFSTEP] field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)] [GOAL] case intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) x : ℝ hx : x ∈ Ioo a b h₁ : c x ∈ Ioo a x h₂ : f x * g' (c x) = g x * f' (c x) ⊢ f' (c x) * g x = f x * g' (c x) [PROOFSTEP] simp only [h₂] [GOAL] case intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) x : ℝ hx : x ∈ Ioo a b h₁ : c x ∈ Ioo a x h₂ : f x * g' (c x) = g x * f' (c x) ⊢ f' (c x) * g x = g x * f' (c x) [PROOFSTEP] rw [mul_comm] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have cmp : ∀ x ∈ Ioo a b, a < c x ∧ c x < x := fun x hx => (hc x hx).1 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rw [← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioo a b] a) l [PROOFSTEP] apply tendsto_nhdsWithin_congr this [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ Tendsto (fun x => ((fun x' => f' x' / g' x') ∘ c) x) (𝓝[Ioo a b] a) l [PROOFSTEP] apply hdiv.comp [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ Tendsto c (𝓝[Ioo a b] a) (𝓝[Ioi a] a) [PROOFSTEP] refine' tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ (tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id) _ _) _ [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, a ≤ c b case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, c b ≤ id b case refine'_3 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioo a b] a, c x ∈ Ioi a [PROOFSTEP] all_goals apply eventually_nhdsWithin_of_forall intro x hx have := cmp x hx try simp linarith [this] [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, a ≤ c b [PROOFSTEP] apply eventually_nhdsWithin_of_forall [GOAL] case refine'_1.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ (x : ℝ), x ∈ Ioo a b → a ≤ c x [PROOFSTEP] intro x hx [GOAL] case refine'_1.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b ⊢ a ≤ c x [PROOFSTEP] have := cmp x hx [GOAL] case refine'_1.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ a ≤ c x [PROOFSTEP] try simp [GOAL] case refine'_1.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ a ≤ c x [PROOFSTEP] simp [GOAL] case refine'_1.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ a ≤ c x [PROOFSTEP] linarith [this] [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioo a b] a, c b ≤ id b [PROOFSTEP] apply eventually_nhdsWithin_of_forall [GOAL] case refine'_2.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ (x : ℝ), x ∈ Ioo a b → c x ≤ id x [PROOFSTEP] intro x hx [GOAL] case refine'_2.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b ⊢ c x ≤ id x [PROOFSTEP] have := cmp x hx [GOAL] case refine'_2.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ c x ≤ id x [PROOFSTEP] try simp [GOAL] case refine'_2.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ c x ≤ id x [PROOFSTEP] simp [GOAL] case refine'_2.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ c x ≤ x [PROOFSTEP] linarith [this] [GOAL] case refine'_3 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioo a b] a, c x ∈ Ioi a [PROOFSTEP] apply eventually_nhdsWithin_of_forall [GOAL] case refine'_3.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x ⊢ ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioi a [PROOFSTEP] intro x hx [GOAL] case refine'_3.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b ⊢ c x ∈ Ioi a [PROOFSTEP] have := cmp x hx [GOAL] case refine'_3.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ c x ∈ Ioi a [PROOFSTEP] try simp [GOAL] case refine'_3.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ c x ∈ Ioi a [PROOFSTEP] simp [GOAL] case refine'_3.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l sub : ∀ (x : ℝ), x ∈ Ioo a b → Ioo a x ⊆ Ioo a b hg : ∀ (x : ℝ), x ∈ Ioo a b → g x ≠ 0 c : ℝ → ℝ hc : ∀ (x : ℝ), x ∈ Ioo a b → c x ∈ Ioo a x ∧ f x * g' (c x) = g x * f' (c x) this✝ : ∀ (x : ℝ), x ∈ Ioo a b → ((fun x' => f' x' / g' x') ∘ c) x = f x / g x cmp : ∀ (x : ℝ), x ∈ Ioo a b → a < c x ∧ c x < x x : ℝ hx : x ∈ Ioo a b this : a < c x ∧ c x < x ⊢ a < c x [PROOFSTEP] linarith [this] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] refine' lhopital_zero_right_on_Ioo hab hff' hgg' hg' _ _ hdiv [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x) (𝓝[Ioi a] a) (𝓝 0) [PROOFSTEP] rw [← hfa, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] a) (𝓝 (f a)) [PROOFSTEP] exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => g x) (𝓝[Ioi a] a) (𝓝 0) [PROOFSTEP] rw [← hga, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] a) (𝓝 (g a)) [PROOFSTEP] exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have hdnf : ∀ x ∈ -Ioo a b, HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x := fun x hx => comp x (hff' (-x) hx) (hasDerivAt_neg x) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have hdng : ∀ x ∈ -Ioo a b, HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x := fun x hx => comp x (hgg' (-x) hx) (hasDerivAt_neg x) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] rw [preimage_neg_Ioo] at hdnf [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ -Ioo a b → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] rw [preimage_neg_Ioo] at hdng [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have := lhopital_zero_right_on_Ioo (neg_lt_neg hab) hdnf hdng (by intro x hx h apply hg' _ (by rw [← preimage_neg_Ioo] at hx ; exact hx) rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h ) (hfb.comp tendsto_neg_nhdsWithin_Ioi_neg) (hgb.comp tendsto_neg_nhdsWithin_Ioi_neg) (by simp only [neg_div_neg_eq, mul_one, mul_neg] exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsWithin_Ioi_neg)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → g' (-x) * -1 ≠ 0 [PROOFSTEP] intro x hx h [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioo (-b) (-a) h : g' (-x) * -1 = 0 ⊢ False [PROOFSTEP] apply hg' _ (by rw [← preimage_neg_Ioo] at hx ; exact hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioo (-b) (-a) h : g' (-x) * -1 = 0 ⊢ ?m.13460 ∈ Ioo a b [PROOFSTEP] rw [← preimage_neg_Ioo] at hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx✝ : x ∈ Ioo (-b) (-a) hx : x ∈ -Ioo a b h : g' (-x) * -1 = 0 ⊢ ?m.13535 h ∈ Ioo a b [PROOFSTEP] exact hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioo (-b) (-a) h : g' (-x) * -1 = 0 ⊢ g' (-x) = 0 [PROOFSTEP] rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f' (-x) * -1 / (g' (-x) * -1)) (𝓝[Ioi (-b)] (-b)) ?m.13087 [PROOFSTEP] simp only [neg_div_neg_eq, mul_one, mul_neg] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f' (-x) / g' (-x)) (𝓝[Ioi (-b)] (-b)) ?m.13087 [PROOFSTEP] exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_nhdsWithin_Ioi_neg) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have := this.comp tendsto_neg_nhdsWithin_Iio [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l this : Tendsto ((fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) ∘ Neg.neg) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] unfold Function.comp at this [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l hdnf : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioo (-b) (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) (𝓝[Ioi (-b)] (-b)) l this : Tendsto (fun x => (fun x => f (-x) / g (-x)) (-x)) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] simpa only [neg_neg] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ioc a b) hcg : ContinuousOn g (Ioc a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : f b = 0 hgb : g b = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] refine' lhopital_zero_left_on_Ioo hab hff' hgg' hg' _ _ hdiv [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ioc a b) hcg : ContinuousOn g (Ioc a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : f b = 0 hgb : g b = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x) (𝓝[Iio b] b) (𝓝 0) [PROOFSTEP] rw [← hfb, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hab] [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ioc a b) hcg : ContinuousOn g (Ioc a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : f b = 0 hgb : g b = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] b) (𝓝 (f b)) [PROOFSTEP] exact ((hcf b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ioc a b) hcg : ContinuousOn g (Ioc a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : f b = 0 hgb : g b = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => g x) (𝓝[Iio b] b) (𝓝 0) [PROOFSTEP] rw [← hgb, ← nhdsWithin_Ioo_eq_nhdsWithin_Iio hab] [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x hcf : ContinuousOn f (Ioc a b) hcg : ContinuousOn g (Ioc a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → g' x ≠ 0 hfb : f b = 0 hgb : g b = 0 hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] b) (𝓝 (g b)) [PROOFSTEP] exact ((hcg b <| right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] obtain ⟨a', haa', ha'⟩ : ∃ a', a < a' ∧ 0 < a' := ⟨1 + max a 0, ⟨lt_of_le_of_lt (le_max_left a 0) (lt_one_add _), lt_of_le_of_lt (le_max_right a 0) (lt_one_add _)⟩⟩ [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have fact1 : ∀ x : ℝ, x ∈ Ioo 0 a'⁻¹ → x ≠ 0 := fun _ hx => (ne_of_lt hx.1).symm [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have fact2 : ∀ x ∈ Ioo 0 a'⁻¹, a < x⁻¹ := fun _ hx => lt_trans haa' ((lt_inv ha' hx.1).mpr hx.2) [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdnf : ∀ x ∈ Ioo 0 a'⁻¹, HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x := fun x hx => comp x (hff' x⁻¹ <| fact2 x hx) (hasDerivAt_inv <| fact1 x hx) [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdng : ∀ x ∈ Ioo 0 a'⁻¹, HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x := fun x hx => comp x (hgg' x⁻¹ <| fact2 x hx) (hasDerivAt_inv <| fact1 x hx) [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have := lhopital_zero_right_on_Ioo (inv_pos.mpr ha') hdnf hdng (by intro x hx refine' mul_ne_zero _ (neg_ne_zero.mpr <| inv_ne_zero <| pow_ne_zero _ <| fact1 x hx) exact hg' _ (fact2 x hx)) (hftop.comp tendsto_inv_zero_atTop) (hgtop.comp tendsto_inv_zero_atTop) (by refine' (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_atTop) rw [eventuallyEq_iff_exists_mem] use Ioi 0, self_mem_nhdsWithin intro x hx unfold Function.comp simp only erw [mul_div_mul_right] refine' neg_ne_zero.mpr (inv_ne_zero <| pow_ne_zero _ <| ne_of_gt hx)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → g' x⁻¹ * -(x ^ 2)⁻¹ ≠ 0 [PROOFSTEP] intro x hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioo 0 a'⁻¹ ⊢ g' x⁻¹ * -(x ^ 2)⁻¹ ≠ 0 [PROOFSTEP] refine' mul_ne_zero _ (neg_ne_zero.mpr <| inv_ne_zero <| pow_ne_zero _ <| fact1 x hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioo 0 a'⁻¹ ⊢ g' x⁻¹ ≠ 0 [PROOFSTEP] exact hg' _ (fact2 x hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ Tendsto (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) (𝓝[Ioi 0] 0) ?m.21930 [PROOFSTEP] refine' (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_atTop) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ ((fun x => f' x / g' x) ∘ fun x => x⁻¹) =ᶠ[𝓝[Ioi 0] 0] fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹) [PROOFSTEP] rw [eventuallyEq_iff_exists_mem] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ ∃ s, s ∈ 𝓝[Ioi 0] 0 ∧ EqOn ((fun x => f' x / g' x) ∘ fun x => x⁻¹) (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) s [PROOFSTEP] use Ioi 0, self_mem_nhdsWithin [GOAL] case right a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x ⊢ EqOn ((fun x => f' x / g' x) ∘ fun x => x⁻¹) (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) (Ioi 0) [PROOFSTEP] intro x hx [GOAL] case right a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioi 0 ⊢ ((fun x => f' x / g' x) ∘ fun x => x⁻¹) x = (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) x [PROOFSTEP] unfold Function.comp [GOAL] case right a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioi 0 ⊢ (fun x => f' x / g' x) ((fun x => x⁻¹) x) = (fun x => f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹)) x [PROOFSTEP] simp only [GOAL] case right a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioi 0 ⊢ f' x⁻¹ / g' x⁻¹ = f' x⁻¹ * -(x ^ 2)⁻¹ / (g' x⁻¹ * -(x ^ 2)⁻¹) [PROOFSTEP] erw [mul_div_mul_right] [GOAL] case right.hc a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x x : ℝ hx : x ∈ Ioi 0 ⊢ -(x ^ 2)⁻¹ ≠ 0 [PROOFSTEP] refine' neg_ne_zero.mpr (inv_ne_zero <| pow_ne_zero _ <| ne_of_gt hx) [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x this : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have := this.comp tendsto_inv_atTop_zero' [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x this✝ : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l this : Tendsto ((fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) ∘ fun r => r⁻¹) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] unfold Function.comp at this [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Ioi a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Ioi a → g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l a' : ℝ haa' : a < a' ha' : 0 < a' fact1 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 fact2 : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → a < x⁻¹ hdnf : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (f ∘ Inv.inv) (f' x⁻¹ * -(x ^ 2)⁻¹) x hdng : ∀ (x : ℝ), x ∈ Ioo 0 a'⁻¹ → HasDerivAt (g ∘ Inv.inv) (g' x⁻¹ * -(x ^ 2)⁻¹) x this✝ : Tendsto (fun x => (f ∘ Inv.inv) x / (g ∘ Inv.inv) x) (𝓝[Ioi 0] 0) l this : Tendsto (fun x => (fun x => f x⁻¹ / g x⁻¹) ((fun r => r⁻¹) x)) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] simpa only [inv_inv] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdnf : ∀ x ∈ -Iio a, HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x := fun x hx => comp x (hff' (-x) hx) (hasDerivAt_neg x) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdng : ∀ x ∈ -Iio a, HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x := fun x hx => comp x (hgg' (-x) hx) (hasDerivAt_neg x) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rw [preimage_neg_Iio] at hdnf [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ -Iio a → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rw [preimage_neg_Iio] at hdng [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have := lhopital_zero_atTop_on_Ioi hdnf hdng (by intro x hx h apply hg' _ (by rw [← preimage_neg_Iio] at hx ; exact hx) rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h ) (hfbot.comp tendsto_neg_atTop_atBot) (hgbot.comp tendsto_neg_atTop_atBot) (by simp only [mul_one, mul_neg, neg_div_neg_eq] exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_atTop_atBot)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ ∀ (x : ℝ), x ∈ Ioi (-a) → g' (-x) * -1 ≠ 0 [PROOFSTEP] intro x hx h [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioi (-a) h : g' (-x) * -1 = 0 ⊢ False [PROOFSTEP] apply hg' _ (by rw [← preimage_neg_Iio] at hx ; exact hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioi (-a) h : g' (-x) * -1 = 0 ⊢ ?m.26788 ∈ Iio a [PROOFSTEP] rw [← preimage_neg_Iio] at hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx✝ : x ∈ Ioi (-a) hx : x ∈ -Iio a h : g' (-x) * -1 = 0 ⊢ ?m.26876 h ∈ Iio a [PROOFSTEP] exact hx [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x x : ℝ hx : x ∈ Ioi (-a) h : g' (-x) * -1 = 0 ⊢ g' (-x) = 0 [PROOFSTEP] rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f' (-x) * -1 / (g' (-x) * -1)) atTop ?m.26621 [PROOFSTEP] simp only [mul_one, mul_neg, neg_div_neg_eq] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f' (-x) / g' (-x)) atTop ?m.26621 [PROOFSTEP] exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_atTop_atBot) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have := this.comp tendsto_neg_atBot_atTop [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l this : Tendsto ((fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) ∘ Neg.neg) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] unfold Function.comp at this [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt f (f' x) x hgg' : ∀ (x : ℝ), x ∈ Iio a → HasDerivAt g (g' x) x hg' : ∀ (x : ℝ), x ∈ Iio a → g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ (x : ℝ), x ∈ Ioi (-a) → HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this✝ : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l this : Tendsto (fun x => (fun x => f (-x) / g (-x)) (-x)) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] simpa only [neg_neg] [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hdf : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioo_mem_nhds hx.1 hx.2) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hdg : ∀ x ∈ Ioo a b, DifferentiableAt ℝ g x := fun x hx => by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x hdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] exact HasDerivAt.lhopital_zero_right_on_Ioo hab (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg' hfa hga hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] refine' lhopital_zero_right_on_Ioo hab hdf hg' _ _ hdiv [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x) (𝓝[Ioi a] a) (𝓝 0) [PROOFSTEP] rw [← hfa, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] case refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x) (𝓝[Ioo a b] a) (𝓝 (f a)) [PROOFSTEP] exact ((hcf a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => g x) (𝓝[Ioi a] a) (𝓝 0) [PROOFSTEP] rw [← hga, ← nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] case refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hcf : ContinuousOn f (Ico a b) hcg : ContinuousOn g (Ico a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfa : f a = 0 hga : g a = 0 hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => g x) (𝓝[Ioo a b] a) (𝓝 (g a)) [PROOFSTEP] exact ((hcg a <| left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have hdf : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioo_mem_nhds hx.1 hx.2) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] have hdg : ∀ x ∈ Ioo a b, DifferentiableAt ℝ g x := fun x hx => by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioo a b) hg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0 hfb : Tendsto f (𝓝[Iio b] b) (𝓝 0) hgb : Tendsto g (𝓝[Iio b] b) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l hdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x hdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l [PROOFSTEP] exact HasDerivAt.lhopital_zero_left_on_Ioo hab (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg' hfb hgb hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Ioi a) hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdf : ∀ x ∈ Ioi a, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Ioi_mem_nhds hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioi a) hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l hdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdg : ∀ x ∈ Ioi a, DifferentiableAt ℝ g x := fun x hx => by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Ioi a) hg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l hdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x hdg : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] exact HasDerivAt.lhopital_zero_atTop_on_Ioi (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg' hftop hgtop hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : DifferentiableOn ℝ f (Iio a) hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdf : ∀ x ∈ Iio a, DifferentiableAt ℝ f x := fun x hx => (hdf x hx).differentiableAt (Iio_mem_nhds hx) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Iio a) hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l hdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdg : ∀ x ∈ Iio a, DifferentiableAt ℝ g x := fun x hx => by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf✝ : DifferentiableOn ℝ f (Iio a) hg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l hdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x hdg : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] exact HasDerivAt.lhopital_zero_atBot_on_Iio (fun x hx => (hdf x hx).hasDerivAt) (fun x hx => (hdg x hx).hasDerivAt) hg' hfbot hgbot hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rw [eventually_iff_exists_mem] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y hgg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rcases hff' with ⟨s₁, hs₁, hff'⟩ [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hgg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rcases hgg' with ⟨s₂, hs₂, hgg'⟩ [GOAL] case intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hg' : ∃ v, v ∈ 𝓝[Ioi a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rcases hg' with ⟨s₃, hs₃, hg'⟩ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] let s := s₁ ∩ s₂ ∩ s₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hs : s ∈ 𝓝[>] a := inter_mem (inter_mem hs₁ hs₂) hs₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : s ∈ 𝓝[Ioi a] a ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rw [mem_nhdsWithin_Ioi_iff_exists_Ioo_subset] at hs [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] rcases hs with ⟨u, hau, hu⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] refine' lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo a u → HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo a u → HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo a u → g' x ≠ 0 [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ g' x ≠ 0 [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₁ [PROOFSTEP] first | exact (hu hx).1.1 | exact (hu hx).1.2 | exact (hu hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₁ [PROOFSTEP] exact (hu hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₂ [PROOFSTEP] first | exact (hu hx).1.1 | exact (hu hx).1.2 | exact (hu hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₂ [PROOFSTEP] exact (hu hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₂ [PROOFSTEP] exact (hu hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₃ [PROOFSTEP] first | exact (hu hx).1.1 | exact (hu hx).1.2 | exact (hu hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₃ [PROOFSTEP] exact (hu hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₃ [PROOFSTEP] exact (hu hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Ioi a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Ioi a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Ioi a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ u : ℝ hau : u ∈ Ioi a hu : Ioo a u ⊆ s x : ℝ hx : x ∈ Ioo a u ⊢ x ∈ s₃ [PROOFSTEP] exact (hu hx).2 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rw [eventually_iff_exists_mem] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y hgg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rcases hff' with ⟨s₁, hs₁, hff'⟩ [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hgg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rcases hgg' with ⟨s₂, hs₂, hgg'⟩ [GOAL] case intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hg' : ∃ v, v ∈ 𝓝[Iio a] a ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rcases hg' with ⟨s₃, hs₃, hg'⟩ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] let s := s₁ ∩ s₂ ∩ s₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] have hs : s ∈ 𝓝[<] a := inter_mem (inter_mem hs₁ hs₂) hs₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : s ∈ 𝓝[Iio a] a ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rw [mem_nhdsWithin_Iio_iff_exists_Ioo_subset] at hs [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : ∃ l, l ∈ Iio a ∧ Ioo l a ⊆ s ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] rcases hs with ⟨l, hal, hl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l✝ [PROOFSTEP] refine' lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo l a → HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo l a → HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioo l a → g' x ≠ 0 [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ g' x ≠ 0 [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₁ [PROOFSTEP] first | exact (hl hx).1.1 | exact (hl hx).1.2 | exact (hl hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₁ [PROOFSTEP] exact (hl hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₂ [PROOFSTEP] first | exact (hl hx).1.1 | exact (hl hx).1.2 | exact (hl hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₂ [PROOFSTEP] exact (hl hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₂ [PROOFSTEP] exact (hl hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₃ [PROOFSTEP] first | exact (hl hx).1.1 | exact (hl hx).1.2 | exact (hl hx).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₃ [PROOFSTEP] exact (hl hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₃ [PROOFSTEP] exact (hl hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l✝ s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[Iio a] a hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[Iio a] a hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[Iio a] a hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hal : l ∈ Iio a hl : Ioo l a ⊆ s x : ℝ hx : x ∈ Ioo l a ⊢ x ∈ s₃ [PROOFSTEP] exact (hl hx).2 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0 hfa : Tendsto f (𝓝[{a}ᶜ] a) (𝓝 0) hga : Tendsto g (𝓝[{a}ᶜ] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] simp only [← Iio_union_Ioi, nhdsWithin_union, tendsto_sup, eventually_sup] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x hgg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x hg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] exact ⟨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2⟩ [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply @lhopital_zero_nhds' _ _ _ f' _ g' [GOAL] case hff' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hff' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hgg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hgg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0 [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0 [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hff'.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] assumption [GOAL] case hgg'.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] assumption [GOAL] case hg'.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 [PROOFSTEP] assumption [GOAL] case hfa.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝 a) (𝓝 0) [PROOFSTEP] assumption [GOAL] case hga.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝 a) (𝓝 0) [PROOFSTEP] assumption [GOAL] case hdiv.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in 𝓝 a, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, g' x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝 a) l ⊢ Tendsto (fun x => f' x / g' x) (𝓝 a) l [PROOFSTEP] assumption [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in atTop, g' x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rw [eventually_iff_exists_mem] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y hgg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rcases hff' with ⟨s₁, hs₁, hff'⟩ [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hgg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rcases hgg' with ⟨s₂, hs₂, hgg'⟩ [GOAL] case intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hg' : ∃ v, v ∈ atTop ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rcases hg' with ⟨s₃, hs₃, hg'⟩ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] let s := s₁ ∩ s₂ ∩ s₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hs : s ∈ atTop := inter_mem (inter_mem hs₁ hs₂) hs₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : s ∈ atTop ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rw [mem_atTop_sets] at hs [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : ∃ a, ∀ (b : ℝ), b ≥ a → b ∈ s ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] rcases hs with ⟨l, hl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s ⊢ Tendsto (fun x => f x / g x) atTop l✝ [PROOFSTEP] have hl' : Ioi l ⊆ s := fun x hx => hl x (le_of_lt hx) [GOAL] case intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s ⊢ Tendsto (fun x => f x / g x) atTop l✝ [PROOFSTEP] refine' lhopital_zero_atTop_on_Ioi _ _ (fun x hx => hg' x <| (hl' hx).2) hftop hgtop hdiv [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioi l → HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s ⊢ ∀ (x : ℝ), x ∈ Ioi l → HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ x ∈ s₁ [PROOFSTEP] first | exact (hl' hx).1.1 | exact (hl' hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ x ∈ s₁ [PROOFSTEP] exact (hl' hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ x ∈ s₂ [PROOFSTEP] first | exact (hl' hx).1.1 | exact (hl' hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ x ∈ s₂ [PROOFSTEP] exact (hl' hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atTop l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atTop hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atTop hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atTop hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≥ l → b ∈ s hl' : Ioi l ⊆ s x : ℝ hx : x ∈ Ioi l ⊢ x ∈ s₂ [PROOFSTEP] exact (hl' hx).1.2 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (f' x) x hgg' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt g (g' x) x hg' : ∀ᶠ (x : ℝ) in atBot, g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rw [eventually_iff_exists_mem] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt f (f' y) y hgg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rcases hff' with ⟨s₁, hs₁, hff'⟩ [GOAL] case intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hgg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → HasDerivAt g (g' y) y hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rcases hgg' with ⟨s₂, hs₂, hgg'⟩ [GOAL] case intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hg' : ∃ v, v ∈ atBot ∧ ∀ (y : ℝ), y ∈ v → g' y ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rcases hg' with ⟨s₃, hs₃, hg'⟩ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] let s := s₁ ∩ s₂ ∩ s₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hs : s ∈ atBot := inter_mem (inter_mem hs₁ hs₂) hs₃ [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : s ∈ atBot ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rw [mem_atBot_sets] at hs [GOAL] case intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : ∃ a, ∀ (b : ℝ), b ≤ a → b ∈ s ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] rcases hs with ⟨l, hl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s ⊢ Tendsto (fun x => f x / g x) atBot l✝ [PROOFSTEP] have hl' : Iio l ⊆ s := fun x hx => hl x (le_of_lt hx) [GOAL] case intro.intro.intro.intro.intro.intro.intro a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s ⊢ Tendsto (fun x => f x / g x) atBot l✝ [PROOFSTEP] refine' lhopital_zero_atBot_on_Iio _ _ (fun x hx => hg' x <| (hl' hx).2) hfbot hgbot hdiv [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s ⊢ ∀ (x : ℝ), x ∈ Iio l → HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s ⊢ ∀ (x : ℝ), x ∈ Iio l → HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ HasDerivAt (fun x => f x) (f' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ HasDerivAt (fun x => g x) (g' x) x [PROOFSTEP] apply_assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ x ∈ s₁ [PROOFSTEP] first | exact (hl' hx).1.1 | exact (hl' hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ x ∈ s₁ [PROOFSTEP] exact (hl' hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ x ∈ s₂ [PROOFSTEP] first | exact (hl' hx).1.1 | exact (hl' hx).1.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ x ∈ s₂ [PROOFSTEP] exact (hl' hx).1.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2.a a b : ℝ hab : a < b l✝ : Filter ℝ f f' g g' : ℝ → ℝ hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l✝ s₁ : Set ℝ hs₁ : s₁ ∈ atBot hff' : ∀ (y : ℝ), y ∈ s₁ → HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ atBot hgg' : ∀ (y : ℝ), y ∈ s₂ → HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ atBot hg' : ∀ (y : ℝ), y ∈ s₃ → g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ l : ℝ hl : ∀ (b : ℝ), b ≤ l → b ∈ s hl' : Iio l ⊆ s x : ℝ hx : x ∈ Iio l ⊢ x ∈ s₂ [PROOFSTEP] exact (hl' hx).1.2 [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hdg : ∀ᶠ x in 𝓝[>] a, DifferentiableAt ℝ g x := hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hdf' : ∀ᶠ x in 𝓝[>] a, HasDerivAt f (deriv f x) x := hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (deriv f x) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] have hdg' : ∀ᶠ x in 𝓝[>] a, HasDerivAt g (deriv g x) x := hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (deriv f x) x hdg' : ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (deriv g x) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] exact HasDerivAt.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] have hdg : ∀ᶠ x in 𝓝[<] a, DifferentiableAt ℝ g x := hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] have hdf' : ∀ᶠ x in 𝓝[<] a, HasDerivAt f (deriv f x) x := hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (deriv f x) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] have hdg' : ∀ᶠ x in 𝓝[<] a, HasDerivAt g (deriv g x) x := hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (deriv f x) x hdg' : ∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (deriv g x) x ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l [PROOFSTEP] exact HasDerivAt.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[{a}ᶜ] a) (𝓝 0) hga : Tendsto g (𝓝[{a}ᶜ] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[{a}ᶜ] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] simp only [← Iio_union_Ioi, nhdsWithin_union, tendsto_sup, eventually_sup] at * [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, DifferentiableAt ℝ f x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, DifferentiableAt ℝ f x hg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, deriv g x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0) hga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => deriv f x / deriv g x) (𝓝[Ioi a] a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l [PROOFSTEP] exact ⟨lhopital_zero_nhds_left hdf.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhds_right hdf.2 hg'.2 hfa.2 hga.2 hdiv.2⟩ [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply lhopital_zero_nhds' [GOAL] case hdf a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ (fun x => f x) x [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdf a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, DifferentiableAt ℝ (fun x => f x) x [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv (fun x => g x) x ≠ 0 [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hg' a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, deriv (fun x => g x) x ≠ 0 [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hfa a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hga a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝[{a}ᶜ] a) (𝓝 0) [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] first | apply eventually_nhdsWithin_of_eventually_nhds | apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply eventually_nhdsWithin_of_eventually_nhds [GOAL] case hdiv a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝[{a}ᶜ] a) l [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds [GOAL] case hdf.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ (fun x => f x) x [PROOFSTEP] assumption [GOAL] case hg'.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ ∀ᶠ (x : ℝ) in 𝓝 a, deriv (fun x => g x) x ≠ 0 [PROOFSTEP] assumption [GOAL] case hfa.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => f x) (𝓝 a) (𝓝 0) [PROOFSTEP] assumption [GOAL] case hga.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => g x) (𝓝 a) (𝓝 0) [PROOFSTEP] assumption [GOAL] case hdiv.h a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝 a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝 a, deriv g x ≠ 0 hfa : Tendsto f (𝓝 a) (𝓝 0) hga : Tendsto g (𝓝 a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝 a) l ⊢ Tendsto (fun x => deriv (fun x => f x) x / deriv (fun x => g x) x) (𝓝 a) l [PROOFSTEP] assumption [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdg : ∀ᶠ x in atTop, DifferentiableAt ℝ g x := hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdf' : ∀ᶠ x in atTop, HasDerivAt f (deriv f x) x := hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (deriv f x) x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] have hdg' : ∀ᶠ x in atTop, HasDerivAt g (deriv g x) x := hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atTop, deriv g x ≠ 0 hftop : Tendsto f atTop (𝓝 0) hgtop : Tendsto g atTop (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l hdg : ∀ᶠ (x : ℝ) in atTop, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt f (deriv f x) x hdg' : ∀ᶠ (x : ℝ) in atTop, HasDerivAt g (deriv g x) x ⊢ Tendsto (fun x => f x / g x) atTop l [PROOFSTEP] exact HasDerivAt.lhopital_zero_atTop hdf' hdg' hg' hftop hgtop hdiv [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdg : ∀ᶠ x in atBot, DifferentiableAt ℝ g x := hg'.mp (eventually_of_forall fun _ hg' => by_contradiction fun h => hg' (deriv_zero_of_not_differentiableAt h)) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdf' : ∀ᶠ x in atBot, HasDerivAt f (deriv f x) x := hdf.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (deriv f x) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] have hdg' : ∀ᶠ x in atBot, HasDerivAt g (deriv g x) x := hdg.mp (eventually_of_forall fun _ => DifferentiableAt.hasDerivAt) [GOAL] a b : ℝ hab : a < b l : Filter ℝ f f' g g' : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in atBot, deriv g x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l hdg : ∀ᶠ (x : ℝ) in atBot, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt f (deriv f x) x hdg' : ∀ᶠ (x : ℝ) in atBot, HasDerivAt g (deriv g x) x ⊢ Tendsto (fun x => f x / g x) atBot l [PROOFSTEP] exact HasDerivAt.lhopital_zero_atBot hdf' hdg' hg' hfbot hgbot hdiv
{"mathlib_filename": "Mathlib.Analysis.Calculus.LHopital", "llama_tokens": 91399}
[GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ ⊢ LinearMap.range (ContinuousLinearMap.prod f' φ') ≠ ⊤ [PROOFSTEP] intro htop [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ ⊢ False [PROOFSTEP] set fφ := fun x => (f x, φ x) [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ fφ : E → F × ℝ := fun x => (f x, φ x) ⊢ False [PROOFSTEP] have A : map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀) := by change map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.1 = f x₀}] x₀) = 𝓝 (φ x₀) rw [← map_map, nhdsWithin, map_inf_principal_preimage, (hf'.prod hφ').map_nhds_eq_of_surj htop] exact map_snd_nhdsWithin _ [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ fφ : E → F × ℝ := fun x => (f x, φ x) ⊢ map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀) [PROOFSTEP] change map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.1 = f x₀}] x₀) = 𝓝 (φ x₀) [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ fφ : E → F × ℝ := fun x => (f x, φ x) ⊢ map (Prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.fst = f x₀}] x₀) = 𝓝 (φ x₀) [PROOFSTEP] rw [← map_map, nhdsWithin, map_inf_principal_preimage, (hf'.prod hφ').map_nhds_eq_of_surj htop] [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ fφ : E → F × ℝ := fun x => (f x, φ x) ⊢ map Prod.snd (𝓝 (f x₀, φ x₀) ⊓ 𝓟 {p | p.fst = f x₀}) = 𝓝 (φ x₀) [PROOFSTEP] exact map_snd_nhdsWithin _ [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ htop : LinearMap.range (ContinuousLinearMap.prod f' φ') = ⊤ fφ : E → F × ℝ := fun x => (f x, φ x) A : map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀) ⊢ False [PROOFSTEP] exact hextr.not_nhds_le_map A.ge [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 [PROOFSTEP] rcases Submodule.exists_le_ker_of_lt_top _ (lt_top_iff_ne_top.2 <| hextr.range_ne_top_of_hasStrictFDerivAt hf' hφ') with ⟨Λ', h0, hΛ'⟩ [GOAL] case intro.intro E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ' : F × ℝ →ₗ[ℝ] ℝ h0 : Λ' ≠ 0 hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker Λ' ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 [PROOFSTEP] set e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ := ((LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)).prod (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ).symm).trans (LinearMap.coprodEquiv ℝ) [GOAL] case intro.intro E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ' : F × ℝ →ₗ[ℝ] ℝ h0 : Λ' ≠ 0 hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker Λ' e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ := LinearEquiv.trans (LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ))) (LinearMap.coprodEquiv ℝ) ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 [PROOFSTEP] rcases e.surjective Λ' with ⟨⟨Λ, Λ₀⟩, rfl⟩ [GOAL] case intro.intro.intro.mk E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ := LinearEquiv.trans (LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ))) (LinearMap.coprodEquiv ℝ) Λ : F →ₗ[ℝ] ℝ Λ₀ : ℝ h0 : ↑e (Λ, Λ₀) ≠ 0 hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀)) ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 [PROOFSTEP] refine' ⟨Λ, Λ₀, e.map_ne_zero_iff.1 h0, fun x => _⟩ [GOAL] case intro.intro.intro.mk E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ := LinearEquiv.trans (LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ))) (LinearMap.coprodEquiv ℝ) Λ : F →ₗ[ℝ] ℝ Λ₀ : ℝ h0 : ↑e (Λ, Λ₀) ≠ 0 hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀)) x : E ⊢ ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 [PROOFSTEP] convert LinearMap.congr_fun (LinearMap.range_le_ker_iff.1 hΛ') x using 1 -- squeezed `simp [mul_comm]` to speed up elaboration [GOAL] case h.e'_2 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f : E → F φ : E → ℝ x₀ : E f' : E →L[ℝ] F φ' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] F × ℝ →ₗ[ℝ] ℝ := LinearEquiv.trans (LinearEquiv.prod (LinearEquiv.refl ℝ (F →ₗ[ℝ] ℝ)) (LinearEquiv.symm (LinearMap.ringLmapEquivSelf ℝ ℝ ℝ))) (LinearMap.coprodEquiv ℝ) Λ : F →ₗ[ℝ] ℝ Λ₀ : ℝ h0 : ↑e (Λ, Λ₀) ≠ 0 hΛ' : LinearMap.range (ContinuousLinearMap.prod f' φ') ≤ LinearMap.ker (↑e (Λ, Λ₀)) x : E ⊢ ↑Λ (↑f' x) + Λ₀ • ↑φ' x = ↑(LinearMap.comp (↑e (Λ, Λ₀)) ↑(ContinuousLinearMap.prod f' φ')) x [PROOFSTEP] simp only [smul_eq_mul, LinearEquiv.trans_apply, LinearEquiv.prod_apply, LinearEquiv.refl_apply, LinearMap.ringLmapEquivSelf_symm_apply, LinearMap.coprodEquiv_apply, ContinuousLinearMap.coe_prod, LinearMap.coprod_comp_prod, LinearMap.add_apply, LinearMap.coe_comp, ContinuousLinearMap.coe_coe, Function.comp_apply, LinearMap.coe_smulRight, LinearMap.one_apply, mul_comm] [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ ⊢ ∃ a b, (a, b) ≠ 0 ∧ a • f' + b • φ' = 0 [PROOFSTEP] obtain ⟨Λ, Λ₀, hΛ, hfΛ⟩ := hextr.exists_linear_map_of_hasStrictFDerivAt hf' hφ' [GOAL] case intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 ⊢ ∃ a b, (a, b) ≠ 0 ∧ a • f' + b • φ' = 0 [PROOFSTEP] refine' ⟨Λ 1, Λ₀, _, _⟩ [GOAL] case intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 ⊢ (↑Λ 1, Λ₀) ≠ 0 [PROOFSTEP] contrapose! hΛ [GOAL] case intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 hΛ : (↑Λ 1, Λ₀) = 0 ⊢ (Λ, Λ₀) = 0 [PROOFSTEP] simp only [Prod.mk_eq_zero] at hΛ ⊢ [GOAL] case intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 hΛ : ↑Λ 1 = 0 ∧ Λ₀ = 0 ⊢ Λ = 0 ∧ Λ₀ = 0 [PROOFSTEP] refine' ⟨LinearMap.ext fun x => _, hΛ.2⟩ [GOAL] case intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 hΛ : ↑Λ 1 = 0 ∧ Λ₀ = 0 x : ℝ ⊢ ↑Λ x = ↑0 x [PROOFSTEP] simpa [hΛ.1] using Λ.map_smul x 1 [GOAL] case intro.intro.intro.refine'_2 E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 ⊢ ↑Λ 1 • f' + Λ₀ • φ' = 0 [PROOFSTEP] ext x [GOAL] case intro.intro.intro.refine'_2.h E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 x : E ⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x [PROOFSTEP] have H₁ : Λ (f' x) = f' x * Λ 1 := by simpa only [mul_one, Algebra.id.smul_eq_mul] using Λ.map_smul (f' x) 1 [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 x : E ⊢ ↑Λ (↑f' x) = ↑f' x * ↑Λ 1 [PROOFSTEP] simpa only [mul_one, Algebra.id.smul_eq_mul] using Λ.map_smul (f' x) 1 [GOAL] case intro.intro.intro.refine'_2.h E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 x : E H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1 ⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x [PROOFSTEP] have H₂ : f' x * Λ 1 + Λ₀ * φ' x = 0 := by simpa only [Algebra.id.smul_eq_mul, H₁] using hfΛ x [GOAL] E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 x : E H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1 ⊢ ↑f' x * ↑Λ 1 + Λ₀ * ↑φ' x = 0 [PROOFSTEP] simpa only [Algebra.id.smul_eq_mul, H₁] using hfΛ x [GOAL] case intro.intro.intro.refine'_2.h E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ f : E → ℝ f' : E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | f x = f x₀} x₀ hf' : HasStrictFDerivAt f f' x₀ hφ' : HasStrictFDerivAt φ φ' x₀ Λ : Module.Dual ℝ ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hfΛ : ∀ (x : E), ↑Λ (↑f' x) + Λ₀ • ↑φ' x = 0 x : E H₁ : ↑Λ (↑f' x) = ↑f' x * ↑Λ 1 H₂ : ↑f' x * ↑Λ 1 + Λ₀ * ↑φ' x = 0 ⊢ ↑(↑Λ 1 • f' + Λ₀ • φ') x = ↑0 x [PROOFSTEP] simpa [mul_comm] using H₂ [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] letI := Classical.decEq ι [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] replace hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ [GOAL] case hextr E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι ⊢ IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ [PROOFSTEP] simpa only [Function.funext_iff] using hextr [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] rcases hextr.exists_linear_map_of_hasStrictFDerivAt (hasStrictFDerivAt_pi.2 fun i => hf' i) hφ' with ⟨Λ, Λ₀, h0, hsum⟩ [GOAL] case intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ Λ : Module.Dual ℝ (ι → ℝ) Λ₀ : ℝ h0 : (Λ, Λ₀) ≠ 0 hsum : ∀ (x : E), ↑Λ (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0 ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] rcases(LinearEquiv.piRing ℝ ℝ ι ℝ).symm.surjective Λ with ⟨Λ, rfl⟩ [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ Λ₀ : ℝ Λ : ι → ℝ h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0 hsum : ∀ (x : E), ↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0 ⊢ ∃ Λ Λ₀, (Λ, Λ₀) ≠ 0 ∧ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] refine' ⟨Λ, Λ₀, _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ Λ₀ : ℝ Λ : ι → ℝ h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0 hsum : ∀ (x : E), ↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0 ⊢ (Λ, Λ₀) ≠ 0 [PROOFSTEP] simpa only [Ne.def, Prod.ext_iff, LinearEquiv.map_eq_zero_iff, Prod.fst_zero] using h0 [GOAL] case intro.intro.intro.intro.refine'_2 E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ Λ₀ : ℝ Λ : ι → ℝ h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0 hsum : ∀ (x : E), ↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0 ⊢ ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 [PROOFSTEP] ext x [GOAL] case intro.intro.intro.intro.refine'_2.h E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Fintype ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ this : DecidableEq ι := Classical.decEq ι hextr : IsLocalExtrOn φ {x | (fun i => f i x) = fun i => f i x₀} x₀ Λ₀ : ℝ Λ : ι → ℝ h0 : (↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ, Λ₀) ≠ 0 hsum : ∀ (x : E), ↑(↑(LinearEquiv.symm (LinearEquiv.piRing ℝ ℝ ι ℝ)) Λ) (↑(ContinuousLinearMap.pi fun i => f' i) x) + Λ₀ • ↑φ' x = 0 x : E ⊢ ↑(∑ i : ι, Λ i • f' i + Λ₀ • φ') x = ↑0 x [PROOFSTEP] simpa [mul_comm] using hsum x [GOAL] E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ ⊢ ¬LinearIndependent ℝ (Option.elim' φ' f') [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι ⊢ ¬LinearIndependent ℝ (Option.elim' φ' f') [PROOFSTEP] rw [Fintype.linearIndependent_iff] [GOAL] case intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι ⊢ ¬∀ (g : Option ι → ℝ), ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 → ∀ (i : Option ι), g i = 0 [PROOFSTEP] push_neg [GOAL] case intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι ⊢ ∃ g, ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] rcases hextr.exists_multipliers_of_hasStrictFDerivAt hf' hφ' with ⟨Λ, Λ₀, hΛ, hΛf⟩ [GOAL] case intro.intro.intro.intro E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι Λ : ι → ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 ⊢ ∃ g, ∑ i : Option ι, g i • Option.elim' φ' f' i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] refine' ⟨Option.elim' Λ₀ Λ, _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι Λ : ι → ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 ⊢ ∑ i : Option ι, Option.elim' Λ₀ Λ i • Option.elim' φ' f' i = 0 [PROOFSTEP] simpa [add_comm] using hΛf [GOAL] case intro.intro.intro.intro.refine'_2 E : Type u_1 F : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F f✝ : E → F φ : E → ℝ x₀ : E f'✝ : E →L[ℝ] F φ' : E →L[ℝ] ℝ ι : Type u_3 inst✝ : Finite ι f : ι → E → ℝ f' : ι → E →L[ℝ] ℝ hextr : IsLocalExtrOn φ {x | ∀ (i : ι), f i x = f i x₀} x₀ hf' : ∀ (i : ι), HasStrictFDerivAt (f i) (f' i) x₀ hφ' : HasStrictFDerivAt φ φ' x₀ val✝ : Fintype ι Λ : ι → ℝ Λ₀ : ℝ hΛ : (Λ, Λ₀) ≠ 0 hΛf : ∑ i : ι, Λ i • f' i + Λ₀ • φ' = 0 ⊢ ∃ i, Option.elim' Λ₀ Λ i ≠ 0 [PROOFSTEP] simpa only [Function.funext_iff, not_and_or, or_comm, Option.exists, Prod.mk_eq_zero, Ne.def, not_forall] using hΛ
{"mathlib_filename": "Mathlib.Analysis.Calculus.LagrangeMultipliers", "llama_tokens": 15422}